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Then God said, "Let there be light"; and there was light. God saw that the light was good; 

and God separated the light from the darkness. 
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22  AABBSSTTRRAACCTT  
 

The molecular circadian clock enables anticipation of environmental changes. In 

mammals, clocks are ubiquitously present in almost all tissues and they are comprised of 

transcriptional-translational feedback loops of the so-called clock genes. The central clock 

represents the intrinsic pacemaker which is located in suprachiasmatic nuclei (SCN) of 

hypothalamus and synchronizes peripheral clocks. Clockwork system in alimentary tract and its 

regulatory link to intestinal functions are poorly understood. Therefore the objective of the thesis 

was to characterize molecular clock in particular parts of the rat intestine and to elucidate its link 

to the intestinal transport, regulation of cell cycle and neoplastic transformation in colonic tissue.  

We used quantitative RT-PCR (qPCR) to determine circadian profiles of mRNA 

expression of clock genes in the epithelium of duodenum, jejunum, ileum, and colon of rat. 

Furthermore, we analysed the expression of genes coding sodium chloride transporters and 

channels as well as cell cycle regulators in colon. To focus more precisely on different structures 

of intestinal epithelia we used laser capture microdissection. In addition, we performed Ussing 

chamber measurements to determine the colonic electrogenic transport. To study the 

contribution of circadian colonic clock to colon tumourigenesis, we used the model of colitis 

associated azoxymethane-induced colorectal carcinoma, where we studied circadian expression 

of clock and clock-controlled genes in colorectal tumours of mice. 

The experiments demonstrated functional molecular clock in all studied intestinal 

segments, as we observed robust rhythmic expression of main clock genes, Per1, Per2, Revrb, 

and Bmal1. We found circadian expression also in the genes Nhe3, Dra, Ae1, and Atp1a1 coding 

proteins involved in sodium chloride transport, particularly Na+/H+ exchanger (Nhe3), 

Cl-/HCO3
- exchangers (Dra, Ae1), and a subunit of Na/K ATPase (Atp1a1). Furthermore, the 

genes coding NHE3 regulatory factor 1 (Nherf1) and  regulatory subunit of sodium channel 

ENaC (Scnn1g) exhibited rhythmic pattern of mRNA expression. These rhythms were affected 

by feeding regime suggesting direct involvement of the peripheral clock. Moreover, we showed 

diurnal changes in the rate of electrogenic sodium transport via ENaC channels which indicated 

circadian regulation of sodium transport on the functional level. 

To dissect the role of the clock in epithelial cell proliferation we measured circadian 

expression of the main cell cycle regulators. We observed apparent rhythm in expression of the 

gene coding WEE1 kinase (Wee1), which withholds G2/M progression. This finding was also 

supported by laser capture microdissection experiments, where we found rhythmic expression of 
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Wee1 both in crypt base and crypt mouth even if we observed significant differences in total 

amounts of transcripts between both crypt compartments. In addition, the genes coding the 

cyclins A, and B1, and CDK inhibitor p27 exhibited rhythmic expression. We did not detect any 

significant rhythm of the gene coding c-Myc protooncogene, which was documented as rhythmic 

in some other tissues previously. Likewise, neither the genes p21, p16, nor cyclin D1 met the 

criteria of significant rhythm. We can hypothesize, that (i) the intestinal clock is at least partially 

involved in the regulation of proliferation of colonic epithelium, even if additional regulatory 

stimuli might play a substantial role and (ii) involvement of the clock is probably tissue specific. 

In the model of azoxymethane-induced colorectal carcinoma associated with colitis, we 

found substantially depressed rhythms of expression of the main clock genes Per1, Per2, and 

Revrb, and non-rhythmic expression of Bmal1 in tumour tissue comparing to control 

counterparts or healthy-looking adjacent colon tissue. Interestingly, the significant clock 

alteration was detected not only in neoplastic tissue but also in healthy-looking adjacent tissue.   

These data demonstrate involvement of circadian clock in processes of colorectal carcinogenesis.  

In summary, we characterized the circadian clock in the intestinal epithelium and 

revealed its involvement in the regulation of sodium chloride transport, epithelial proliferation, 

and the process of colonic epithelium tumourigenesis. These findings significantly advance 

understanding of the physiological output of the circadian clock with potential clinical use in 

future. 
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33  LLIITTEERRAATTUURREE  RREEVVIIEEWW  

3.1 Circadian rhythms and clock 

3.1.1 Circadian rhythms 

Earth rotation around the Sun as well as around the inner axis generates periodically 

changing environment for almost all living organisms. Correspondingly, most physiological 

processes and behaviour including activity/resting phase, body temperature, heart rate, hormonal 

levels, enzyme activities and other parameters exhibit rapid circadian (from Latin “circa diem” - 

“about a day”) changes, which are not just responses to relevant environmental cues, but rather 

intrinsically anticipated variations. Strong evolutionary pressure for adjusting organism according 

to changing environment and anticipating particular conditions during the year or within the day 

is evidenced by evolution of “time awareness” system, which appears early in phylogenetic history 

and governs numerous cellular and physiological processes. In mammals, nearly all cells are 

virtual clocks, hence, the whole body synchronization is required. Recently, a great progress has 

been made in circadian rhythms investigation and molecular basis of intrinsic pacemaker system 

was revealed. In this chapter, I review up-to-date knowledge of central and peripheral circadian 

clock mechanism and regulation, particularly in relation to transepithelial transport, cell cycle 

regulation, and tumourigenesis. 

3.1.2 The mechanism of molecular clock 

Studies during the last 15 years revealed molecular mechanism of clockwork system. 

From cyanobacteria, via fungi and plants to most complex metazoan including humans, there 

were reported studies describing molecular clock core comprised of the so called clock genes. 

Homologues genes operate in various types of organisms (e.g. Neurospora, Drosophilla, 

Xenopus, mouse, rat, human) with some particular specificities and differences, but the main 

principle is the same among all organisms (Dunlap, 1999). Basic molecular clockwork system is 

built up of specific genes, whose temporal transcription and translation regulation is orchestrated 

in circadian manner within transcriptional-translational feedback loop comprising of a set of 

clock genes (Fig 3.1). Positive elements Bmal1 and Clock encode proteins which are members of 

basic helix-loop-helix transcription factors containing PAS (Period-Arnt-Single-minded) domain. 

While expression of Clock mRNA is mostly constant, Bmal1 transcription fluctuates within 

“Without being sure of something, we can not 
begin to think about everything elses.” 

 
-Kathryn Schulz, 2010- 
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internal period lasting close to 24 hours. After translation in cytoplasm, CLOCK and BMAL1 

proteins heterodimerize and translocate to nucleus, where they act as transcription enhancers by 

binding to E-box elements in promoter sequences of Period genes (Per1, Per2, Per3), 

Cryptochrome genes (Cry1, Cry2), nuclear receptors RevErb, RevErb and receptor-related 

orphan receptors ROR (, , ). E-box elements are partially conserved sequences in promoter 

region, mostly with pattern CACGTG termed conservative E-boxes, though additional non-

canonical E-box-like sequences (CANNTG) seem to be also important for proper circadian 

expression (Nakahata et al., 2008; Ripperger & Schibler, 2006). Resulting protein heterodimer 

PER/CRY acts as a negative regulator, which inhibits CLOCK/BMAL1 activity. Simultaneously, 

REVERB proteins suppress, while ROR factors enhance Bmal1 transcription by binding to REV 

response element (RRE) in its promoter region (Ko & Takahashi, 2006; Lowrey & Takahashi, 

2004; Reppert & Weaver, 2001; Takahashi et al., 2008). This results in approximately 24 hours 

lasting autoregulatory periodic oscillations of positive as well as negative regulators activity. 

Figure 3.1 Molecular mechanism of main transcriptional-translational feedback loops comprising intrinsic circadian 

pacemaker. Heterodimer CLOCK/BMAL1 enhances expression of Per and Cry genes via E-box binding. 

Subsequently, the protein products of these genes negatively regulate CLOCK/BMAL1 activity, while they are being 

phosphorylated by casein kinase (CK)  and  for degradation. Furthermore, protein products of ROR and Reverb 

genes up-regulate and down-regulate, respectively, the expression of Bmal1 and E4bp4. Furthermore, DBP activates 

expression of Per genes via D-box sequence binding, while E4BP4 counteracts this action by competing binding 

position at D-box. In addition, CLOCK/BMAL1 regulates expression of various clock-controlled genes whose 

protein products constitute clock output. Enhancement is depicted as an orange line, while inhibition is depicted as a 

blue line. Positive elements are coloured orange; negative elements are coloured blue. 
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Concurrently, CLOCK/BMAL1 enhances transcription of various downstream clock-controlled 

genes by acting at E-box sequences in their promoter regions. Many of them are transcription 

factors (Dbp, D-box binding protein; Tef; thyrotroph embryonic factor; Hlf, hepatic leukemia 

factor) or transcription repressors (E4BP4, E4 promoter binding protein 4) and they act in 

protein signalling cascade to spread the signal of “actual time” as well as participate in 

co-regulation of clock core feedback loop (Bozek et al., 2009; Zhang & Kay, 2010).  

Direct regulatory action of the clock component CLOCK/BMAL1 in regulation of 

physiological output was observed in transcription orchestration of gene coding vasopressin 

(Avp), whose peptide product is the hormone regulating salt and water homeostasis both in 

periphery and in central nervous system. CLOCK/BMAL1 binds directly to E-box elements of 

Avp gene promoter and enhance its rhythmic transcription (Jin et al., 1999). 

The whole clockwork mechanism involves broader palette of genes participating in the 

final circadian output. Particularly, casein kinase  (CK) and  (CK) are able to alter stability 

of PER/CRY complex by specific phosphorylation, the signal for degradation of protein complex 

in proteasome. Recently there has been discovered the modulation of molecular clock by basic 

helix–loop–helix transcription factors Dec1 and Dec2, which repress CLOCK/BMAL1-induced 

transactivation of the Per1 promoter through direct protein–protein interactions with BMAL1 

(Honma et al., 2002). This action can be tissue specific, as expression of Dec1 and Dec2 is 

differently altered in various tissues of Clock-/- mutant mice (Noshiro et al., 2005). Moreover 

specific Dec2 mutation is linked to human short sleep phenotype suggesting its role in sleep 

homeostasis (He et al., 2009). Furthermore, F-box protein with leucine-rich repeats Fbxl3 has 

been shown to take part in regulation of the length of period by directing the degradation of the 

cryptochrome proteins (Busino et al., 2007; Godinho et al., 2007).  

3.1.3 Master clock in SCN 

Location of the central clock has been discovered by lesions of suprachiasmatic nuclei of 

hypothalamus (SCN). Animals with such lesions lost their rhythmic locomotor activity patterns 

(Stephan & Zucker, 1972) and corticosterone rhythm (Moore & Eichler, 1972), while their 

locomotor activity has been restored by implanted  SCN cells with the period of the donor (Silver 

et al., 1996). Similarly, genetically arrhythmic animals with implanted SCN were able to recover 

behavioural rhythms (Sujino et al., 2003) suggesting central role of SCN in keeping rhythmic 

physiological output. Subsequent analyses revealed, that SCN neurons isolated and cultured 

in vitro sustain autonomous circadian rhythms in electrical firing rate (Groos & Hendriks, 1982) 
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without needs of external stimuli, what indicates their role as intrinsic pacemaker. Period length is 

individual and genetically determined. In completely non-periodic conditions, such as total 

darkness, the clock would be free running according to intrinsic period length. Nonetheless, it is 

perfectly entrainable by environmental cues in order to be synchronized to ambient conditions, 

which can change during a year. The most prominent entraining signal (called also Zeitgeber – 

“time giver”) is light. Interestingly, light perceived at late subjective day/early subjective night 

causes phase delay of the clock, while in contrast light pulse during late subjective night/early 

subjective night causes phase advance (Golombek & Rosenstein, 2010; Lowrey & Takahashi, 

2004). Light is sensed via retina by non-image forming photoreceptors – photosensitive retinal 

ganglion cells, which express photosensitive pigment melanopsin (Hankins et al., 2008). The 

signal is spread via neurons of retino-hypothalamic tract (RHT) to SCN, where electric signals 

are converted to chemical, finally leading to altered regulation of core feedback loop (Berson et 

al., 2002). RHT projects not only to SCN, but also to intergeniculate leaflets (IGL), which 

projects back to SCN via geniculohypothalamic tract, so SCN can perceive light signal also 

indirectly. Additionally, projections from dorsal raphe nucleus, and median raphe nucleus can 

mediate non-photic signals to SCN (Dibner et al., 2010). As SCN function as pacemaker, timing 

signal has to be transmitted to other brain and peripheral structures. Additional projections lead 

timing signal to dorsomedial hypothalamus (DHM), and the arcuate nucleus. In the thalamus, 

axons from the SCN innervate the paraventricular nucleus and possibly the IGL (Dibner et al., 

2010). Moreover, clock genes are expressed within these particular brain structures, although 

their expression level and/or pattern, and response to environmental stimuli like light and/or 

feeding are distinct from the SCN master clock (Abe et al., 2002; Feillet et al., 2008; Namihira et 

al., 1999). 

3.1.4 Extra-SCN pacemakers 

3.1.4.1 Methamphetamine sensitive circadian oscillator - MASCO 

Interestingly extra-SCN autonomous pacemakers have been described recently. 

SCN-lesioned mice continually administered methamphetamine were able to restore clear 

rhythmic locomotor behaviour, although with longer period (Tataroglu et al., 2006). 

Furthermore, methamphetamine lengthened period of locomotor activity also of intact mice and 

desynchronized phase of Per2 gene in peripheral tissues (Pezuk et al., 2010). Analyses with 

various transgenic clock genes-defective mice did not abolish entrainment ability of 



 

 

 
12 

methamphetamine, suggesting presence of SCN-independent pacemaker – methamphetamine 

sensitive circadian oscillator (Mohawk et al., 2009). These findings are important in the view that 

there might be environmental cues and conditions, in which other oscillator beside central clock 

is able to govern particular physiological rhythms. 

3.1.4.2 Food-entrainable oscillator - FEO 

In fact, there is also another potent entrainment stimulus, which seems to be able to elicit 

central driven oscillations – it is food availability. When mammals are periodically exposed to 

food availability in a time frame limited to a few hours per day in the resting phase, they alter their 

physiological responses and behaviour including locomotor activity, body temperature, and 

corticosterone secretion in a way to anticipate food accessibility (Boulos & Terman, 1980; 

Mistlberger, 1994; Nelson et al., 1975; Stephan, 2002). Although locomotor activity in rodents is 

dominantly present in the active night phase, the daytime restricted feeding can invoke 

locomotor activity just in a short time frame before food availability, what is called 

food-anticipatory activity (FAA). FAA appears also in SCN-lesioned rats, documenting existence 

of an extra SCN food-entrainable oscillator (FEO) (Stephan et al., 1979). Until now, there is still 

unknown anatomical substance of FEO. Experiments to elucidate this issue have been conducted 

(Davidson et al., 2000; Mistlberger & Mumby, 1992) with no conclusive results. DHM was 

suggested as site of FEO niche based on Per2 mRNA oscillation and early response c-fos gene 

expression in region of DHM exclusively under restricted feeding. Furthermore, blocking of FAA 

behaviour in DHM-lesioned animals (Mieda et al., 2006) supported the hypothesis. However, 

following experiments did not confirm particular structure as definitive primary site of FEO 

(Landry et al., 2006; Moriya et al., 2009). In addition, participation of other brain parts, such as 

hippocampus and cerebral cortex has been demonstrated (Wakamatsu et al., 2001).  

Results of recent experiments suggest that complex processes and more brain structures 

participate in generating of the FAA behaviour (Mitra et al., 2011) and/or peripheral organs take 

a substantial role (LeSauter et al., 2009). Though it is not clear which anatomical structure is 

definite site of FEO, molecular analysis revealed partial role of clock genes in the process. Per2 

knockout mice exhibited altered anticipation of mealtime, while sustained peripheral 

synchronization (Feillet et al., 2006). In contrast, normal feeding time anticipation was observed 

in Per1, Clock and Bmal1 knockouts (Feillet et al., 2006; Pendergast et al., 2009; Pitts et al., 

2003). Interestingly, knockouts of Npas2 gene, Clock paralog, which plays the same role instead 
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of CLOCK in some forebrain structures, exhibit alteration in FAA behaviour (Dudley et al., 

2003) as well as Cry1/Cry2 doubleknockouts (Iijima et al., 2005). 

3.1.5 Peripheral clocks 

While molecular basis of clockwork system was revealed in the central nervous system, 

further experiments identified functional peripheral clocks in various peripheral tissues. Cultured 

fibroblasts were found to exhibit expression of clock genes Per1, Per2 in circadian manner 

accompanied by rhythmic expression of genes encoding transcription factors Rev-Erb, Dbp and 

Tef after serum shock (Balsalobre et al., 1998). Also, pineal gland cells rhythmically express 

numerous clock genes (Namihira et al., 1999). To date, molecular clockwork machinery was 

identified in almost all tissues, including retina (Tosini & Menaker, 1996), liver, lung, skeletal 

muscle (Yamazaki et al., 2000), kidney, heart, pancreas (Damiola, 2000), and recently, colon 

(Hoogerwerf et al., 2007; Sládek et al., 2007). The same molecular mechanism of the self-

sustaining feedback loop of clock gene transcription and translation is employed in peripheral 

tissues. However, these “slave” clocks are synchronized by central clock with neural and humoral 

signals (Dibner et al., 2010).  

In vitro experiments showed that cultured fibroblasts are acutely reset by corticosterone 

analogue, dexamethasone, which induces Per1 mRNA expression. Similarly, in vivo studies 

demonstrated that dexamethasone induced resetting of liver, kidney and heart clocks, while SCN 

was not affected by glucocorticoid application (Balsalobre, 2000). Interestingly, liver, lung and 

skeletal muscle responded differentially to light-induced phase shifting, when liver adapted to 

phase delay more slowly than lung and skeletal muscle. Response to the phase advance took more 

days with distinct adaptation rate for all studied tissues, however it was completed after 6 days 

(Yamazaki et al., 2000). Humoral signals are not the only possible candidates for mediation of 

entrainment, as neural projections from SCN via sympathetic and parasympathetic nervous 

system are also suggested to play a role in resetting of periphery (Cailotto et al., 2009; Logan et 

al., 2011; Shibata, 2004).  

As seen, unequivocal dissection is still missing and it seems that harmony of both 

regulatory principles participate. Moreover, regulation is much more complex, as emerging from 

experiments showing uncoupling of peripheral clock phase from the central clock under specific 

physiological conditions, particularly reverse restricted feeding (RF), when animals has limited 

access to food only for a few hours during the resting light phase (Damiola, 2000; Stokkan et al., 

2001). Liver clock is being entrained by scheduled feeding independently of the central clock, 
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when acrophase of clock genes is shifted according to mealtime in liver, while it remains 

unchanged in SCN. This is the first evidence that peripheral clocks can be uncoupled and RF can 

entrain peripheral clock independently of the central clock. Interestingly, only 4-hour, but not 8-

hour, RF was able to entrain peripheral clock in lung (Stokkan et al., 2001). Moreover, process of 

resetting clocks in kidney, heart, and pancreas was slower than that in the liver (Damiola, 2000) 

suggesting tissue specific response to external stimuli. Recently it has been shown, that restricted 

feeding shifts also the phase of colonic clock in the same way and the same phase as in liver, while 

SCN clock remains unshifted. This demonstrates partially independent functional clock, which 

might govern rhythmical changes in intestinal epithelium (Hoogerwerf et al., 2007; Sládek et al., 

2007). 

3.2 Intestinal rhythms and clock 

3.2.1 Rhythms of intestinal enzymes 

Simultaneously with general circadian rhythm observations, a lot of findings documented 

rhythmic changes in intestinal functions. Marked circadian variations in cholesterol synthesis 

(Edwards et al., 1972) and activity of HMG CoA (Shefer et al., 1972) in the jejunum and ileum 

were detected. Other experiments revealed strong diurnal variations in activity of numerous 

digestive enzymes in jejunum, particularly maltase, sucrase, trehalase, lactase, leucine 

aminopeptidase, and alkaline phosphatase. The highest activity was observed in the middle of the 

active (dark in rat) phase in animals fed ad libitum, and with maximal peak of activity shifted to 

the light phase, under condition of daytime feeding (Saito et al., 1975; Stevenson et al., 1975). 

Similarly, polyamine synthesis enzyme, ornithine decarboxylase, displayed rhythmic changes in 

activity with highest rate after food intake (Fujimoto et al., 1978).  

3.2.2 Transport rhythms 

3.2.2.1 Organic molecules transport 

Studies on circadian intestinal transport were pivoted by experiments of Baril and Potter 

(Baril & Potter, 1968), who found diurnal variations in amino acid 14C-cycloleucine uptake by 

small intestine. Similarly, daily fluctuations in intestinal transport of L-histidine with greater 

transport capacity during dark phase were observed in animals kept on conventional light-dark 



 

 

 
15 

conditions with ad libitum access to diet, whereas shift of maximal transport rate to light phase 

was detected in animals with daytime food access (Furuya & Yugari, 1971).  

In addition, diurnal changes in sucrose, glucose and water transport were detected in 

small intestine with higher rate during the dark phase, while daytime feeding shifted the maximal 

rate to the light phase (Fisher & Gardner, 1976; Stevenson & Fierstein, 1976). Further 

experiments revealed that circadian changes in glucose absorption reflect rhythmic availability of 

carbohydrate transporters. mRNA and protein levels of apical fructose transporter Glut5 and 

basolateral glucose transporter Glut2 were found to exhibit diurnal oscillations and regulation of 

Glut5 is influenced by food intake (Castelló et al., 1995; Corpe & Burant, 1996; Houghton et al., 

2008).  

Sglt1 (sodium glucose transporter 1), a gene coding protein responsible for active glucose 

absorption via antiport with sodium, was also found to be diurnally regulated at both mRNA and 

protein levels in particular segments of the small intestine (Corpe & Burant, 1996; Rhoads, 1998) 

and is considered as the main source of diurnal rhythmicity in intestinal absorptive capacity 

(Rhoads, 1998; Tavakkolizadeh et al., 2001).  

Food intake is a potent entrainment stimulus which is able to induce phase shift of Sglt1 

expression (Pan et al., 2004). However, no direct local effect of luminal content on Sglt1 rhythm 

was observed. Laparotomically formed isolated loops of jejunum enable to study jejunum 

epithelium without luminal content in vivo. Expressions of both mRNA, and protein were 

unaltered in such isolated loops comparing to the intact jejunum (Stearns et al., 2009), which 

suggests that intrinsic mechanism of regulation is involved rather than direct effect of luminal 

content. 

Various studies uncovered circadian pattern of mRNA, protein expression, and activity of 

PEPT1, the H+/peptide cotransporter, in rat duodenum (Pan et al., 2002), jejunum, but not 

ileum (Qandeel et al., 2009) under standard and RF conditions. The phases of both mRNA and 

protein rhythmic expressions were shifted from the beginning of the dark phase to the light phase 

according to food availability (Pan et al., 2004). Interestingly, after 4 days of food deprivation, the 

rhythmicity of protein expression as well as the absorption capacity were gradually abandoned, 

while the expression of mRNA remained rhythmic (Pan et al., 2003, 2004).  

Circadian patterns of transport capacity and expression were also observed in intestinal 

drug transporters, which play a substantial role in pharmacokinetics of many drugs, including 

chemicals used in cancer therapy, and participate in intestinal barrier as well as in tumour ability 

to dispose anticancer drugs (Chan et al., 2004). Apparent rhythmic expression and activity of 
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P-glycoprotein and one of its gene, Abcb1a/Mdr1a, was observed in mouse liver and intestine 

(Ando et al., 2005). Another member of ATP-binding cassette transporter (ABC) family, Abcc2, 

involved in the cellular efflux of cytotoxic drug irinotecan, exhibited circadian expression in 

mouse ileum (Okyar et al., 2011). Similarly, in rat jejunum, diurnal rhythmicity was observed for 

Abcb1/Mdr1 (multidrug-resistance like protein 1) and its expression was phase-shifted by 

restricted feeding (Hayashi et al., 2010; Stearns et al., 2008). In addition, Mct1 

(monocarboxylate transporter), Abcc2/Mrp2 (multidrug resistance protein 2), and Bcrp (breast 

cancer resistance protein) exhibited diurnal variations, while no significant rhythm was detected 

in Mdr3, Mrp1, Mrp3, Octn2 (organic cation transporter 2), and Oatp-b (organic anion 

transporter B) in rat jejunum (Stearns et al., 2008). Importantly, direct effect of peripheral clock 

was demonstrated, as clock-controlled transcription factor HLF activated transcription of the 

Mdr1a gene, whereas molecular clock component E4BP4 was able to suppress transcription at 

the same DNA binding site (Murakami et al., 2008). Moreover, in Clock-mutant mice intestinal 

Mdr1a rhythm was lost suggesting clock dependent circadian regulation (Murakami et al., 2008). 

3.2.2.2 Ion transport 

Generally, electrolyte transport is a fundamental mechanism for sustaining cell 

excitability and volume. Furthermore, renal and intestinal ion transport pathways are essential 

processes of maintaining electrolyte balance as well as blood and interstitial volume homeostasis 

in whole organism. There are several transporters and channels mediating transmembrane and 

transepithelial ion transport.  

In the intestine, the electroneutral sodium absorption (Fig. 3.2 A) is mediated by apically 

localized hydrogen/sodium exchangers NHE3 and NHE2 (coded by genes Slc9a3 and Slc9a2, 

respectively) (Zachos et al., 2005). Parallel to sodium absorption, the apically located 

transporters DRA (Down-regulated in adenoma, coded by Slc26a3 gene), PAT1 (Putative anion 

exchanger 1, coded by Slc26a6 gene) and AE1 (Anion exchanger 1, coded by Slc4a1 gene) 

mediate the exchange of luminal chloride for intracellular bicarbonate resulting in absorption of 

NaCl into epithelial cells (Geibel, 2005; Kunzelmann & Mall, 2002). On the basolateral 

membrane operates the sodium-potassium pump (Na+/K+-ATPase assembled from  and  

subunits, coded by Atp1a and Atp1b genes), which extrudes 3 sodium ions in exchange for 2 

potassium ions. The pump activity is the main driving force determining rate of sodium luminal 

uptake. Basolaterally located KCC1 transporter (coded by gene Slc12a4) extrudes potassium and 
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chloride ions, thus enabling NaCl to be fully transported through epithelium, while potassium 

ions are recycled (Kunzelmann & Mall, 2002).  

In the condition of low sodium intake, electrolyte homeostasis is essentially maintained 

by raised sodium retention. The mechanism of aldosterone-dependent activation of electrogenic 

sodium transport (Fig. 3.2 B) takes a part in both the aldosterone-sensitive distal nephron 

segments and distal colon epithelium, where sodium channel ENaC (heterotrimeric channel 

complex composed of one α subunit, one β subunit, and one γ subunit) is activated (Geibel, 

2005; Kunzelmann & Mall, 2002). Lowered dietary sodium intake is the stimulus for adrenal 

aldosterone synthesis and release via renin-angiotensin signalling. Aldosterone has direct effect 

on epithelial cells and after binding to its mineralocorticoid receptor, it enhances expression of 

regulatory subunits of ENaC ( and  in the kidney;  and  in the colon) (Epple et al., 2000). 

Moreover, it stimulates trafficking of vesicles with pre-synthesized sodium channels to apical 

membrane (Butterworth et al., 2009) and enhances ENaC deubiquitylation (Fakitsas et al., 

2007).  

Maintenance of electrolyte/water homeostasis includes balance between ion and water 

absorption and secretion. The epithelial surface of the intestinal lumen is covered by secreted 

mucus which is maintained hydrated by accompanying KCl and NaCl secretion followed by 

water movement. Distal colon is the final segment where it is possible to regulate and adjust 

Figure 3.2 Transepithelial sodium absorption in the colon. A. Electroneutral transport dominates under standard 

diet condition. Participating transporters and channels are depicted. B. Electrogenic sodium transport operates in 

colon if the Na+ dietary intake is decreased due to low-salt diet. Participating transporters and channels are depicted. 

DRA – Downregulated in adenoma, PAT1 – Putative anion exchanger 1, AE1 – anion exchanger 1, NHE2/3 – 

Na+/H+ exchanger, NHERF – NHE3-regulatory factor, ATPase – Na+/K+ ATPase, KCC1 – K+-Cl- cotransporter 1. 

ENaC – epithelial Na+ channel, CFTR – Cystic fibrosis transmembrane conductance regulator. 
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absorption/secretion balance, so that stool is in an appropriate consistency avoiding diarrhoea or 

constipation. Primary source of intestinal chloride efflux is chloride channel CFTR (cystic 

fibrosis transmembrane conductance regulator) located in apical membrane (Fig. 3.3). Besides, 

potassium channels are present in the apical membrane allowing potassium efflux that results in 

KCl secretion. To maintain secretion through the epithelial cells, the basolateral membrane 

has to allow ion intake from the serosal site in sufficient rate. Na+-K+-2Cl- cotransporter type 1 

(NKCC1, coded by Slc12a2) was identified to fulfil this function in basolateral membrane of 

colonic enterocytes (Barrett & Keely, 2000; Geibel, 2005). The imbalance between intestinal 

secretion and absorption may cause various pathologies such as cystic fibrosis or diarrhoea, which 

often accompany ulcerative colitis and Crohn’s disease. Therefore studies of the intestinal ion 

transport regulatory mechanisms are of particular interest.  

 

Various functions related to ion transport exhibit diurnal variations. For years it is known 

that excretion of urine follows circadian pattern with maximal peak in the first half of active phase 

(Mills & Stanbury, 1952). Similarly, renal excretion of electrolytes such as Na+, K+, Cl- and PO4
- 

was found to vary during 24 hours (Dossetor et al., 1963; Wesson, 1980). Correspondingly 

glomerulal filtration rate (Cambar et al., 1979) and blood pressure exhibit circadian oscillations 

(Lew, 1976; Millar-Craig et al., 1978). This is in parallel with the rhythm of sodium extrusion. It 

was postulated that impairment in daytime renal sodium might be the major cause of high blood 

pressure in non-dipping patients (Bankir et al., 2008; Burnier et al., 2007). Likewise 

Figure 3.3 Transepithelial chloride secretion in the colon. CFTR – Cystic fibrosis transmembrane conductance 

regulator, ATPase – Na+/K+ ATPase, NKCC1 – Na+-K+-Cl- cotransporter. 
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concentration of plasma corticosterone or cortisol, also aldosterone which is the main regulator 

of sodium absorption, exhibits diurnal variations (Bligh et al., 1993; Cugini et al., 1984; 

Hilfenhaus, 1976; Hurwitz et al., 2004). Moreover, it has been shown recently, that the gene 

coding 3 -hydroxysteroid dehydrogenase VI (Hsd3b6), an enzyme involved in aldosterone 

synthesis, is modulated by circadian clock (Doi et al., 2010). In addition, low aldosterone levels 

were observed in triple-knockout transgenic mice of clock-controlled transcriptional factors 

Dbp/Hlf/Tef and overproduction of aldosterone was detected in adrenal glands of Cry-null 

mice. These observations support the role of clock genes in aldosterone synthesis (Doi et al., 

2010; Wang et al., 2010).  

Diurnal changes of colonic transmural electrical potential difference were observed in 

rabbit, which is ceacotrophy animal model. Some small mammals, including rabbits are passing 

food through alimentary tract twice. They produce and eat soft faecal pellets directly from anus 

and store it in caecum, where it is to be mixed with ingested food. This process is time- and 

light-dependent and exhibit circadian rhythmicity (Jilge, 1982). In these animals, the 

transepithelial electrical potential measured in rectum varied during the day with maximal value 

of difference at the beginning of the night. Similarly, the plasma level of aldosterone exhibited 

circadian pattern peaking at the same daytime. Importantly, light/dark rhythm was determined as 

external synchronizer of observed rhythms, as light phase manipulation changed the 

transepithelial electrical potential differences regarding the part of the day (Clauss et al., 1988). 

Moreover, diurnal fluctuations were observed in colonic short circuit current (Isc) and sodium 

flux with greater extent during the late subjective day compared with the early subjective day 

(Clauss et al., 1988).  

Similar observations have been made in mice, where rectal amiloride-sensitive sodium 

transport exhibited diurnal variations with significantly higher activity during the late subjective 

day compared with the early subjective day. Moreover, the transport rate depended on salt intake 

and the potential difference in rectum exhibited greater negative values in condition of low-salt 

intake (Wang et al., 2000). This is in concordance with previous findings in rats, where low-salt 

diet stimulates potential difference and amiloride sensitive short circuit current (Pácha & 

Pohlová, 1995). Very recently it has been demonstrated that both NHE3 transporter and  

subunit of ENaC channel exhibit circadian expression in kidney and both genes might be under 

direct regulatory control of clock genes (Gumz et al., 2009; Nishinaga et al., 2009; Saifur Rohman 

et al., 2005). Moreover, circadian expression of Nhe3 mRNA was also detected in rat distal colon 

(Sládek et al., 2007). Using whole transcriptome microarray gene expression assays, recent 
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studies identified rhythmic expression of several other genes coding transporters, channels and 

associated proteins in the colon, particularly the  and  subunits of the sodium pump, and the 

NHE regulatory factor scaffold protein NHERF1 coded by Slc9a3r1 gene (Hoogerwerf et al., 

2008).  

Implications for contribution of local peripheral clock to sodium transport have been 

documented in the kidney and suggestions have been made regarding similar regulation in the 

colon. However detailed functional study of possible circadian control of colonic electrolyte 

transport is still lacking. 

3.2.3 Cell cycle rhythms 

3.2.3.1 Cell cycle regulation 

In order to maintain full-capacity absorptive, secretory, and barrier functions, the 

intestinal epithelium possesses huge renewal ability and is a site of enormous cell proliferation 

and exfoliation. The primary source of enterocytes are intestinal stem cells located in crypt base 

just few cells above Paneth cells, which provide innate immunity and are located at the very 

bottom of the crypts. Cells originated from stem cells continually differentiate and migrate along 

the crypt axis from the bottom to the crypt mouth or villus in the colon or small intestine, 

respectively, while being more differentiated and fully equipped to carry out their functions. 

Migrating cells differentiate into three functional types: most prominent enterocytes with 

absorptive/secretory functions, goblet cells producing and secreting mucus, and enteroendocrine 

cells producing paracrine/autocrine peptide hormones (Crosnier et al., 2006; van der Flier & 

Clevers, 2009). The self-renewal process takes about 3 – 5 days (van der Flier & Clevers, 2009). 

The strict cell cycle regulation is essential to sustain homeostasis in the number of epithelial cells 

sufficient to maintain proper intestinal functions and at the same time to prevent tissue 

hyperplasia or malformation. 

In general, epithelial cells share common principles of cell cycle regulatory pathways. 

Serine-threonine kinases, the so called cyclin dependent kinases (CDKs), their regulatory 

subunits called cyclins, and their inhibitors are taking part in regulatory pathways leading to 

either progression or regression of cell cycle. Cascades of subsequent varying levels of particular 

cyclins and their association with corresponding CDKs lead to activation of target substances by 

phosphorylation. It is followed by cell cycle progression and initiation of particular cellular 

responses finally directing cell to division. Opposite actions causing the withholding of cell cycle 
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are mediated by a class of regulators called CDK inhibitors (CKI). Most prominent are members 

of the Cip and Waf family, which universally inhibit CDK/cyclin complexes, particularly p21 

(also known as p21Waf1/Cip1), p27 (p27Kip1) and p57 (p57Kip2). p21 is directly activated by another 

important tumour suppressor p53 or p53-independently. p27 is able to mediate cell cycle arrest 

(Sherr & Roberts, 1999). Both p21 and p27 play significant role in intestinal epithelial cell 

differentiation (Quaroni et al., 2000). Another family (INK4/ARF) of CKI, which includes p15 

(p15INK4B), p16 (p16INK4A), p18 (p18INK4C), p19 (p19ARF), selectively binds and inhibits CDK4 

and CDK6, thus stops cell cycle progression (Tian & Quaroni, 1999). Their members participate 

in regulation of cellular senescence and are associated with development of malignant diseases 

(Witkiewicz et al., 2011).  

Progression of cell cycle (Fig 3.4) involves relatively long G1 phase, during which 

association of cyclins D (D1, D2, D3) with CKD4 and CDK6 is required. G1/S transition is 

initiated by accumulation of cyclin E, which binds to CDK2. Additionally, important target of 

CDK4/6 are retinoblastoma protein pRb and pRb-related proteins p107 and p130. In their 

hypophosphorylated state, they can sequester and inactivate E2F family proteins, so that E2Fs 

cannot act as transcription factors responsible for activating genes participating in promoting of 

G1/S transition. CDK2/cyclin A complex is present during S phase and complexes of 

CDK1/cyclin A and CDK1/cyclin B start S/G2 transition. Finally, CDK1/cyclin B is 

characteristic for entry to mitosis (Arellano & Moreno, 1997; Ekholm & Reed, 2000). 

Wee1/Myt1 kinases are potent negative regulators of that transition achieved by tyrosine 

phosphorylation and inactivation of CDK1/cyclin B kinase (McGowan & Russell, 1995). Their 

counterpart, family of CDC25 phospatases are able to dephosphorylate and activate 

CDK1/cyclin B resulting in mitosis progress (Karlsson-Rosenthal & Millar, 2006).  

Although basic principles of cell cycle regulation are employed within colonic epithelium, 

there are other important regulatory pathways, which contribute to proper balance of number, 

density and differentiation state of epithelial cells. Major driving force of intestinal epithelium 

proliferation is Wnt/-catenin pathway. In the absence of Wnt signal, -catenin is targeted for 

degradation by proteolysis through phosphorylation signal mediated by complex of adenomatous 

polyposis coli (APC), casein kinase I (CKI), glycogen synthase kinase 3 (GSK3), and axin. After 

binding Wnt to its Frizzled membrane receptor, phosphorylatory complex is inhibited and 

-catenin is no longer degraded, so it acts as transcription factor by binding T cell factor 

(TCF)and subsequently activating Wnt target genes (van der Flier & Clevers, 2009). One of the 
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principal Wnt target genes is the oncogene c-Myc, which was shown to be repressed by APC and 

activated by -catenin (He et al., 1998).  

In addition, there are some other pathways that play a role in a differentiation: BMP 

(bone morphogenetic factor) signalling associated with SMAD transcription factors operates in 

villi, but not in crypts; Notch signalling pathway is important in keeping crypt cells in non-

differentiated proliferating state (Crosnier et al., 2006; van der Flier & Clevers, 2009).  

3.2.3.2 Involvement of circadian clock in cell cycle 

As circadian clock is a strong pacemaker of different cellular and physiological processes, 

there were conducted several experiments to elucidate crosstalk between clock and cell cycle 

regulatory pathways. For long time it is known, that cell proliferation follows circadian pattern of 

rhythmic variations as detected by thymidine uptake (Burns et al., 1972), mitotic figures 

(Scheving et al., 1972) or DNA content (Ruby et al., 1973) at different time of day. Also, parts of 

Figure 3.4 Scheme of cell cycle regulation. CDKs (cyclin dependent kinases, CDK1, CDK2, CDK4, CDK6) form 

complexes with particular cyclins (cyclin D, E, A, B) and mediate cell cycle progression. At different stages of cell 

cycle, CDK inhibitors (p15, p16, p18, p19, p21, p27, p53, Gadd45) are able to withhold cell cycle progression by 

interacting with CDK/cyclin complexes. WEE1 kinase inhibits G2/M progression by phosphorylation of 

CKD1/cyclin B complex, while the phosphatase CDC25 counteracts the process. DNA damage response proteins 

ATM and ATR activate Check kinases CHK1 and CHK2, which act as cell cycle repressors. 
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mice alimentary tract, particularly oesophagus, stomach, jejunum and rectum exhibit strong daily 

variations in incorporation of labelled [3H]-thymidine (Scheving, 2000).  

Evidence for circadian expression of cell cycle associated proteins, as revealed by cosinor 

analysis, was documented by Bjarnason et al. (1999), when they detected in human oral mucosa 

circadian rhythm of protein expression of cyclins A, B1, and E, inhibitor of cell cycle progression 

p53, and marker of active proliferation Ki67. Similarly, other cell cycle regulators such as c-Myc, 

p53, cyclin D1, Mdm2, and Gadd45, were demonstrated to exhibit circadian pattern of 

expression in mouse liver (Fu et al., 2002). Recent reports showed that expression of important 

cell cycle inhibitor p21 followed diurnal changes in wild type mice liver, while the expression 

pattern was substantially elevated in Bmal1-null mice (Gréchez-Cassiau et al., 2008). Further 

analysis demonstrated that these circadian changes were p53-independent and that they were not 

regulated directly by CLOCK/BMAL1 as promoter region of p21 lacked E-box sequences. 

Nonetheless, performed experiments suggested direct responsiveness of p21 promoter to 

ROR/REVERB signalling (Gréchez-Cassiau et al., 2008). Furthermore, PER1 overexpression 

was able to induce c-Myc and repressed p21 in response to ionizing radiation (Gery et al., 2006). 

Additionally, the expression of many cell cycle regulatory genes was changed in Clock mutant 

mice cells. In particular, inhibitors p21 and p27 were up-regulated, while Cdk2 and cyclins D3 

and E1 were down-regulated as well as the expression of apoptosis-related genes such as Akt1, 

Bcl2, and Pbef (Miller et al., 2007). These experiments indirectly suggest an interfering role of 

clock genes in cell cycle regulation. 

Direct link of intestinal molecular clock and cell cycle regulation was proposed by Matsuo 

et al. (2003), who showed that regenerating liver (after 2/3 partial hepactomy; PH) is associated 

with intensive cell proliferation and entry to mitosis is dependent on the Zeitgeber rather than the 

time of hepactomy. This has been shown by experiment where massive entry to mitosis was 

observed 40 hours after PH performed at ZT8, whereas in animals with PH performed at ZT0 

most prominent entry to mitosis was observed 48 hours after PH, suggesting a substantial role of 

circadian clock timing in proliferation. Further, the same authors have shown that regulation of 

complex CDK1/cyclin B activity is crucial for circadian time-dependent entry to mitosis. In 

addition, potential candidates for mediating circadian time to cell cycle associated proteins were 

explored and it was found, that the expression of Wee1, the regulator of CDK1/cyclin B complex, 

is rhythmic and also circadian time-dependent regardless of PH timing. Moreover, Wee1 

promoter was found to contain E-boxes, which were able to functionally bind CLOCK/BMAL1 

heterodimer in circadian manner. Additionally, mitotic timing, and Wee1, Cdc2, and cyclin B 
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expression is impaired in Cry-deficient transgenic mice, while simultaneously WEE1 protein level 

is elevated, what is assigned to lack of CLOCK/BMAL1 inhibition by CRY (Matsuo et al., 2003). 

This study is an evidence for direct participation of peripheral clock in cell cycle regulation.  

Further, c-Myc gene is also supposed to be influenced by clock, as it was demonstrated in 

vitro that BMAL1/NPAS2 can suppress expression of c-Myc by direct binding to its promoter 

and inhibiting transcription (Fu et al., 2002). 

3.2.4 Clock in cancer 

3.2.4.1 Chronodisruption 

Recently, a lot of findings give an indication of the substantial role of repeated disruption 

of circadian rhythms, exposure to light at night, and impairment of circadian clock in pathological 

deregulation of proliferation, tissue malformation and carcinogenesis.  

Epidemiological studies documented increased risk of cancer incidence in shift workers 

or people with abnormal working hours, like pilots or flight service. As meta-analysis from several 

studies proves, in-flight personnel have 70% higher risk for breast cancer incidence and excess of 

40% risk assessment for prostate cancer occurrence (Erren et al., 2008). Although it is not 

possible to exclude participation of higher gained radiation during flights, data from other studies 

suggest that chronodisruption in shift workers might be the main source of elevated cancer risk. 

Combined meta-analysis of large epidemiological studies of shift workers estimated 40-50% 

higher risk for breast cancer (Erren et al., 2008). Furthermore, colorectal cancer risk was assessed 

in nurses working on night shifts with more profound risk when working more than 15 years 

(Schernhammer et al., 2003). In addition, long-term sleeping duration less than 6 hours was 

found to be of 50% higher risk of colonic adenoma incidence (Thompson et al., 2011).  

In experimental studies, chronodisruption was shown to affect rate of tumour growth as 

observed in xenograft model with implanted HeLa cancer cells; animals kept on constant light 

had significantly greater volume of tumour and higher rate of microvessel angiogenesis 

(Yasuniwa et al., 2010). 

3.2.4.2 Molecular clock disruption 

Disruption of clock at molecular level has been shown to be linked to process of tissue 

transformation and sensitizing cells to various harmful environmental cues (Khapre et al., 2010). 

Fu et al. (2002) have shown that Per2-mutant mice are cancer prone (with salivary gland 
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hyperplasia and developed teratomas around the genitals) and show substantially higher 

susceptibility to  radiation induced lymphoma tumour growth. Also, reduced apoptosis rate was 

detected in thymocytes of Per2-mutant mice after  radiation. Furthermore, rhythmicity of 

several cell cycle regulatory genes like c-Myc, and cyclin D1 is altered in Per2-mutant mice 

comparing wild type, suggesting significant role of Per2 in cell cycle regulation and 

tumourigenesis (Fu et al., 2002). Further research revealed that mice deficient in other clock 

genes, in particular Bmal1 (Bmal1+/-), Cry1 and Cry2 (Cry1-/-;Cry2-/-), Per1 and Per2 (Per1-/-

;Per2m/m) or Per2 alone (Per2-/-) are also all cancer prone (Lee et al., 2010).  

Attenuation of Per2 expression in colon cell line led to increased proliferation, 

presumably via up-regulation of -catenin and cyclin D. Similarly, Per2m/m mice develop colonic 

polyps and show an increase of small intestinal mucosa -catenin and cyclin D protein levels 

compared with the wild type mice (Wood et al., 2008). Moreover, increased colonic and small 

intestinal polyp formation can be found in mice with combined genotype of Per2 mutation with 

ApcMin/+ mutation (Min - multiple intestinal neoplasia; mouse with a heterozygous mutation of 

the Apc gene - adenomatous polyposis coli) (Wood et al., 2008). Rhythmic expression of Per2 

protein is substantially altered in the small intestine of ApcMin/+ mice and similarly, attenuation or 

phase shift of rhythmic mRNA expression was observed in several other clock genes, and 

clock-controlled genes Dbp and Wee1 (Yang et al., 2009a).  

In vitro overexpression of PER2 in lung and mammary cancer cell lines rapidly reduced 

proliferation and induced apoptosis, presumably via c-Myc, Bcl-XL and Bcl-2 down-regulation 

together with p53 and Bax up-regulation (Hua et al., 2006). Intratumoural mPer2 gene delivery 

in C57BL/6 mice was able to induce apoptosis in vivo (Hua et al., 2007). In addition, mutation of 

Per2 gene, which is known to be responsible for familial advanced sleep phase syndrome, led to 

enhanced resistance to X-ray-induced apoptosis and increased RAS-mediated oncogenic 

transformation in fibroblasts (Gu et al., 2012).  

Down-regulation of tumour Per1 expression increased breast cancer cell growth in vitro 

and implanted tumour growth in vivo, by enhancing the circadian amplitude of the two daily 

tumour growth peaks (Yang et al., 2009b). Conversely, overexpression of Per sensitized human 

colorectal cancer cell line to DNA damage-induced apoptosis, while in contrast, inhibition of 

Per1 blunted apoptosis (Gery et al., 2006). However, on the contrary, anti-apoptotic effect of 

Per1 was observed in hepatocellular, pancreatic, and gingival cancer cell lines (Sato et al., 2009, 

2011) suggesting tissue specific and possibly multivariable role of Per1.  
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Although cryptochromes deficient mice (Cry1-/-Cry2-/-) do not show any difference in 

radiation-induced tumour incidence or DNA damage checkpoint response comparing with the 

wild type mice (Gauger & Sancar, 2005), triple gene deficient mice (p53-/-Cry1-/-Cry2-/-) exhibit 

extended lifespan and reduced tumour incidence comparing with single p53 deficient mice 

(p53-/-), which are known to be strongly cancer prone (Ozturk et al., 2009). Observed effect was 

likely caused by increased genotoxic stress-induced apoptosis sensitivity of triple knockout cells 

mediated probably by p73 induction (Lee & Sancar, 2011).  

Clock gene deficiency has been shown to result in significantly increased pro-apoptotic 

and simultaneously decreased pro-proliferative gene expression (Antoch et al., 2008; Miller et al., 

2007), which correlated with a higher rate of radiation-induced apoptosis in both spleen and 

thymus of Clock deficient mice (Antoch et al., 2008). Although no radiation-induced tumour 

development was observed in Clock-mutant mice, they manifested significant weight loss, higher 

mortality, severe eye pathologies, acceleration of a number of degenerative processes associated 

with aging, and exhibited the signs of premature aging phenotype comparing with the irradiated 

wild type mice (Antoch et al., 2008).  

Similarly, substantially reduced lifespan, and premature ageing marks, including eye, skin 

and hair pathologies appeared in Bmal1 knockout mice (Bmal1-/-). This manifestation was in 

correlation with elevated reactive oxygen species in several tissues, suggesting possible 

mechanism of CLOCK/BMAL1 involvement in physiological oxidative stress responses 

(Kondratov et al., 2006).  

Interestingly, -radiation was able to advance substantially the phase of mice locomotor 

activity, and this phase shift depended on irradiation timing (Oklejewicz et al., 2008). Similarly, 

ultraviolet ionizing and oxidative stress phase-advanced Per2 expression in fibroblasts by a 

mechanism involving ATM/ATR DNA damage response pathway as documented by attenuated 

phase advance response after the pathway inhibition (Oklejewicz et al., 2008). Human 

TIMELESS protein (Drosophila orthologue), which interacts on one hand with circadian clock 

gene Cry2 and on the other hand with cell cycle checkpoint proteins CHK1 and ATR, plays an 

important role in the DNA damage checkpoint response (Unsal-Kaçmaz et al., 2005). Moreover, 

direct interaction of PER1 and DNA damage response proteins ATM and CHK2 (Gery et al., 

2006) implicate bidirectional signalling of clock and checkpoints regulatory pathways. 

Above mentioned studies indicate possible linking between circadian clock, cell cycle 

regulation, and tumourigenesis. However, exact mechanism and potential involvement of 

circadian clock in intestinal tumourigenesis is still lacking. 
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44  AAIIMMSS  
 
 
 
 

Although circadian rhythms in intestinal tract have been documented, the exact role of 

molecular circadian clock in intestinal physiology and pathology is not understood. Therefore the 

objective of the thesis was to characterize the circadian clock in distinct parts of the alimentary 

tract and to determine its role in epithelial transport as well as in the regulation of proliferation 

under physiological and pathological conditions. 

 

The following particular aims were addressed: 

 

 
1. To determine circadian expression of main clock genes in the epithelium of doudoenum, 

jejunum, ileum, and colon. 

 

 

2. To examine circadian regulation of electrolyte transport in colon: 

 

a. To determine circadian expression of genes coding transporters and channels 

mediating electroneutral and electrogenic electrolyte transport. 

 

b. To determine circadian variations in functional electrogenic sodium transport. 

 

 

3. To examine link between circadian clock and cell cycle regulation by determination of 

putative circadian rhythmicity of mRNA of genes coding cell cycle regulators in colonic 

epithelium. 

 

4. To examine the rhythmicity of circadian clock in tumourigenesis using the analysis of 

circadian mRNA expression of clock and clock-controlled genes in healthy and neoplastic 

colonic tissue in a model of chemically induced colorectal cancer. 

 
 

“I have no special talents. I am only 
passionately curious.” 

 
-Albert Einstein, 1952- 
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55  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

5.1 Experimental animals 

5.1.1 Rats 

6-week-old male Wistar rats (Velaz, Únětice, Czech Republic) were housed at local 

facility for at least 2 weeks of acclimatization to local conditions at 21 ± 2 °C under standard light 

regime (12 hours of light following 12 hours of darkness; CT0 is referred to light onset) with 

standard laboratory chow (6.7 mmol Na+/kg BW per day) and water access ad libitum. Animals 

were randomly divided in experimental and control groups. Control group animals (n = 28) had 

free access to standard chow ad libitum, whereas the animals subjected to “restricted feeding” 

(RF; n = 28) were given food for only 6 hours during light period (i.e., CT3 – CT9). Animals in 

another experimental group were fed a low-salt diet (mean dietary Na+ intake 0.75 mmol Na+/kg 

BW per day) for 7 days ad libitum in order to stimulate secondary hyperaldosteronism (Pácha & 

Pohlová, 1995).  

5.1.2 Mice 

20-week-old male CD-1 (ICR) mice (Charles River, Germany) were kept on standard 

light-dark conditions with 12 hours of light (light on at 6:00, defined as CT0) and 12 hours of 

dark (light off at 18:00, defined as CT12) with access to standard chow and water ad libitum. 

Animals were randomly split to intact control group and experimental group with induced colitis-

associated colorectal cancer. Experimental animals were injected by a single i.p. injection of 

azoxymethane (AOM; Sigma-Aldrich, St. Louis, MO, U.S.) dissolved in saline at a dose of 10 mg⁄ 

kg. One week later they were subjected to 6 repeated cycles of consumption of 2% DSS (MP 

Biomedicals, Irvine, CA, USA) dissolved in drinking water for 7 days followed by consumption of 

drinking water for the following 14 days (Bissahoyo et al., 2005; Švec et al., 2010; Tanaka et al., 

2003). 3 months after the last cycle (at the age of 52 weeks) tissue samples were collected from 

both treated and intact animals. 

 To compare young and aged animals, untreated intact 10-week-old mice kept under the 

same conditions were used in some experiments. 

All experiments were conducted in accordance with the European Union Law, and 

Principals of Laboratory Animal Care and were approved by the institutional Animal Care and 

Use Committee. 

“I did not think; I investigated.” 
 

-Wilhelm Röntgen, 1896- 
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5.2 Tissue harvesting 

5.2.1 Rat tissue harvesting 

On the day of sample collection, light was not switch on at the beginning of subjective 

day and animals were released into constant darkness, in order to avoid direct effect of light and 

maintain endogenous rhythms during sample collection. Animals were euthanized after deep 

anaesthesia (thiopental i.p. at dose 50 mg/kg) every 4 hours and small intestine and colon were 

excised and flushed with cold saline solution (0.15 M NaCl). Epithelial layers of intestinal 

segments of duodenum (1 cm from stomach pylorus), jejunum (in 1/3 of small intestine length), 

and ileum (in 2/3 of small intestine length) were mechanically scrapped in length of 2 cm and 

immediately stored in RNA-protective RNAlater solution (Applied Biosystems). Similarly 

epithelial layer of distal colon (2 cm from rectum) in length of 3 cm was scrapped and stored in 

RNAlater. For low-salt diet experiments, samples of distal colon scrapped mucosa were collected 

in the same way at early light phase (CT4) and early dark phase (CT16), respectively.  

5.2.2 Mice tissue harvesting 

In order to reveal internal rhythms, on the day of the samples collection, the light was not 

turned on as usually and the CT0 referred to the time of previous day light on. Every 4 hours, 5 

animals of each experimental group (intact control and AOM/DSS treated) were euthanized and 

colon was excised of its full length from caecum to rectum, rinsed with cold saline solution and 

longitudinally cut. From AOM/DSS treated mice approximately 20 mg of colorectal tumour 

tissue (hereafter “AOM/DSS tumour”) and 1 cm of surrounding, macroscopically healthy, whole 

thickness distal colon tissue (hereafter “AOM/DSS surroundings”) were collected. From control 

mice, 1 cm of whole thickness distal colon (hereafter “CTRL whole colon”) and scrapped 

Figure 5.1 Representative colorectal tumours in CD-1 mouse model of AOM-induced colitis-associated colorectal 

cancer. Tumours are predominantly localized in rectum (left in the picture), and in distal colon of mice. 
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mucosa layer enriched with epithelial cells (hereafter “CTRL mucosa”) were collected. Moreover 

liver tissue from both experimental groups was collected. All tissues were immediately placed in 

RNAlater solution and stored according to manufacturer’s recommendations until RNA 

isolation. 

5.3 Laser capture microdissection (LMD) 

 
In some experiment, microsamples from control rats were collected using LMD. Excised 

colon was rinsed, longitudinally cut and sample of 1 cm long distal colon (2 cm from rectum) was 

mounted in box with cryomold OCT substance (Sakura, Torrance, CA, USA) and frozen in 

liquid nitrogen. Sections of 8 µm were prepared on a cryostat (Leica Microsystems CM 3000, 

Wetzlar, Germany), subsequently placed on polyethylene naphthalate membrane coated slides 

(Leica) and immediately fixed in ice cold 96% ethanol. Water-free staining was performed in 2% 

cresyl violet acetate in 96% ethanol for 1 min followed by 3 ethanol washes, each of 1 min. After 

complete ethanol evaporation (5-10 minutes), samples were processed using LMD6000 laser 

capture microdissection system (Leica Microsystems, Wetzlar, Germany). Total area of 

approximately 0.2 mm2 of crypt base (defined as lower 1/3 of crypt length) and crypt mouth 

(defined as upper 1/3 of crypt length and surface epithelium) were excised using laser beam 

(representative sample is displayed in Fig 5.2), collected in tube with 70 µl of lysis buffer (RNeasy 

Micro Kit, Qiagen, Hilden, Germany), homogenized by vortexing for 30 s and stored in -80°C 

until RNA isolation. 

 

 

Figure 5.2 Laser capture microdissection procedure. Samples are excised from histological slices using laser beam and 

collected to the tube with lysis solution. Collection of rat colon crypt base and mouth are depicted. 
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5.4 RNA extraction and quantitative real time RT-PCR 

 

For macrosamples obtained by mucosal scrapping, whole-thick colon or tumour samples, 

respectively, the tissue was homogenized using MagnaLyser Green Beads (Roche Diagnostics), 

total RNA was isolated using GeneElute Mammalian total RNA miniprep kit (Sigma-Aldrich.) 

and first strand cDNA synthesis was performed with ImProm II Reverse transcription system 

(Promega, Madison, WI, USA) using random primers in total volume of 15 l according to 

manufacturer’s recommendations.  

For microdissected tissues, total RNA was isolated using the RNeasy Micro Kit (Qiagen) 

according to the manufacturer’s recommendations including on-column DNase I digestion. First 

strand cDNA was subsequently prepared in a total volume of 20 l using Sensiscript Reverse 

Transcriptase (Qiagen) according to the protocol.  

The resulting cDNAs were used as templates for quantitative PCR. All reactions were 

performed according to manufacturer’s instructions. 

Measurements using pre-made TaqMan probe Assays (Table 5.1; Applied Biosystems, 

Foster City, CA, USA) were performed in total volume of 20 l comprised of 8.25 l of PCR 

grade water, 0.75 l of FAM- or VIC-dyed TaqMan probe assay mix, 10 l of GeneExpression 

Master Mix (Applied Biosystems) and 1 l of cDNA sample (4 times diluted in the case of 

macrosamples) on the ABI PRISM 7000 Sequence Detection System (Applied Biosystems). 

PCR reaction was performed according to following program: 2 min at 50 °C, initial denaturation 

for 10 min at 95 °C, followed by 45 (or 55 respectively for microdissected samples) cycles of 

denaturation for 30 sec at 95 °C followed by annealing and elongation for 60 sec at 60 °C. Ct 

(cycle threshold) values were determined by method of fit points using SDS Software (Applied 

Biosystems). 

Measurements using SYBR Green and specific primers (Table 5.2) were performed in 

total volume of 15 l comprised of 5.75 l of PCR grade water, 0.75 l primers mix (20M 

each), 7.5 l of LightCycler480 SYBR Green I Mix (Roche) and 1 l cDNA sample (4 times 

diluted in the case of macrosamples) on the LightCycler 480 instrument (Roche). PCR reaction 

was carried out according to following thermal profile: initial denaturation for 10 min at 95 °C, 

followed by 45 (or 55 respectively for microdissected samples) cycles of denaturation for 30 sec 

at 95 °C, annealing for 20 sec at 61 °C and elongation for 20 sec at 72 °C. Fluorescence acquiring 
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was performed at the end of each cycle. Ct values were determined using 2nd derivative maximum 

method performed by LightCycler480 software (ver. 1.50; Roche). 

Standard curve method was applied to express relative concentrations and efficiency of 

PCR reactions. Data were normalized to normalization factor expressed as geometric mean of 

normalized concentrations of genes B2m, Gapd, and 18S rRNA for rat sample analysis, while 

Ywhaz, and Gapd were used for mouse sample analysis. Normalization genes were selected by 

particular housekeeping gene stability analysis (Andersen et al., 2004; Vandesompele et al., 

2002). 

Table 5.1. TaqMan Gene Expression Assays (Applied Biosystems) used for quantification of particular transcripts. 

Gene Alternative name catalog no. NCBI RefSeq 

rSlc9a3 Nhe3 Rn00561944_m1 NM_012654.1 

rScnn1a ENaC Rn00580652_m1 NM_031548.2 

rSccn1b ENaC Rn00561892_m1 NM_012648.1 

rSccn1g ENaC Rn00566891_m1 NM_017046.1 

rSlc26a3 Dra Rn00709709_m1 NM_053755.1 

rSlc4a1 Ae1 Rn00561909_m1 NM_012651.2 

rAtp1a1  Rn01533986_m1 NM_012504.1 

rAtp1b1  Rn00565405_m1 NM_013113.2 

rSlc9a3r1 Nherf1 Rn00572154_m1 NM_021594.1 

rSlc12a4 Kcc1 Rn00570248_m1 NM_019229.1 

rSlc12a2 Nkcc1 Rn00582505_m1 NM_031798.1 

rCftr  Rn01455968_m1 NM_031506.1 

rWee1  Rn01279391_m1 NM_001012742.1 

rMyc c-Myc Rn00561507_m1 NM_012603.2 

rCcnb1 cyclin B Rn00596848_m1 NM_171991.2 

rCcnd1 cyclin D Rn00432359_m1 NM_171992.4 

rCcna1 cyclin A Rn01761351_m1 NM_001011949.1 

rCdkn1a p21 (Cip1, Waf1) Rn00589996_m1 NM_080782.3 

rCdkn1b p27 (Kip1) Rn00582195_m1 NM_031762.3 

rCdkn2a p16 (Arf) Rn00580664_m1 NM_031550.1 

rB2m  Rn00560865_m1 NM_012512.2 

rGapdh  4352338E NM_017008.3  

18S rRNA  4319413E X03205.1 

mGapdh  4352339E NM_008084.2 

mWee1  Mm00494175_m1 NM_009516.3 

mMyc c-Myc Mm00487804_m1 NM_001177352.1 

mCdkn1a p21 (Cip1, Waf1) Mm00432448_m1 NM_007669.4 
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Table 5.2. Sequences of primers used for quantification of clock genes and some normalization genes in combination 

with SYBR Green I. *Sequence of primers for Ywhaz were selected from NCBI mouseprimerdepot (Cui et al., 2007), 

database issue D805. 

species Gene position 5' → 3' sequence NCBI RefSeq 

rat         

 rPer1 forward CGCACTTCGGGAGCTCAAACTTC NM_001034125.1 

  reverse GTCCATGGCACAGGGCTCACC  

 rPer2 forward CACGCAACGGGGAGTACATCACAC NM_031678.1 

  reverse CAAGGGGAGGCTGCGAACACAT  

 rBmal1 forward CAATGCGATGTCCCGGAAGTTAGA NM_024362.2 

  reverse AAATCCATCTGCTGCCCTGAGAAT  

 rRevErba forward GCTGTGCGGGAGGTGGTAGAAT NM_145775.2 

  reverse TGTAGGTTGTGCGGCTCAGGAA  

mouse         

 mPer1 forward TCTGGCCTGGGCTCTGGGTCTGGTTC NM_011065.4 

  reverse GCTGCGGGTGATGCTGGCTGAGGT  

 mPer2 forward CCTCTGGCCCCTGTGGATTG NM_011066.3 

  reverse AGCTGGGCCCTTGGTGGATAG  

 mBmal1 forward CAGAGCCGGAGCAGGAAAAATAGGT NM_007489.3 

  reverse CAGGGGGAGGCGTACTTGTGATGT  

 mRevErba forward TTTTGGCGGCTCAGCGTCATAAT NM_145434.3 

  reverse CCAGGTAGGCGGGTAGGAGGAAG  

 mDbp forward TTTTTGCGCCGCTGCTGTGGGAACG NM_016974.3 

  reverse GGGGGAGGGCGCGGGAGTGC  

 mB2m forward TCTCACTGACCGGCGTGTATGCTATC NM_009735.3 

  reverse AATGTGAGGCGGGTGGAACTGTG  

 mYwhaz* forward TTGAGCAGAAGACGGAAGGT NM_011740.3 

  reverse CTTTCTGGTTGCGAAGCATT  

 

5.5 Plasma collection and aldosterone measurements 

 

Blood samples (volume 1 ml) were collected from hearts of anesthetized rats (n=28) 

every 4 hours during 24 hour-interval (starting from CT0). Animals were kept on standard light 

conditions with ad libitum access to standard diet and water. In another experiment, blood 

samples were collected from rats kept on low-salt diet and their control counterparts kept on 

standard diet at early subjective day (CT4) and early subjective night (CT16). Samples were 

incubated at room temperature for 5 minutes in order to allow erythrocytes to precipitate. 
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Subsequently samples were centrifuged (10 min at 3000g) and plasma aliquots were stored at -

80 °C for further analysis. Level of aldosterone was determined using 125I aldosterone 

radioimmunoassay (Immunotech, Czech Republic) by competitive binding of radioactively 

labelled aldosterone according to manufacturer’s instructions. Plasma aldosterone is expressed in 

pg per ml of blood plasma. 

 

5.6 Electrophysiological experiments 

 

Rats kept on low-salt diet (n = 12) and corresponding controls (n = 11) were euthanized 

at early subjective day (CT4) and early subjective night (CT16). Subsequently, distal colon was 

excised, rinsed to get rid of content and cut longitudinally. The muscle layer was stripped and the 

mucosa was mounted in modified Ussing chambers containing Krebs-Ringer solution 

(composition in mM: 140.5 Na+, 5.4 K+, 1.2 Ca2+, 1.2 Mg2+, 119 Cl-, 21 HCO3
-, 0.6 H2PO4

-, 2.4 

HPO4
2-, 10 D-mannitol, 10 D-glucose, 2.5 L-glutamine, 0.5 β-hydroxybutyrate) gassed with 

carbogen (95% O2 + 5% CO2) and kept at 37 °C. After an equilibration period of 15 min (10 min 

in open-circuit mode and 5 min in voltage-clamp mode), amiloride (10-5 M) was added from 

mucosal side and the tissue response was recorded by a computer-controlled voltage clamp. Net 

active ion transport across the epithelium was measured as a short-circuit current (SCC, 

expressed in μA.cm-2) in voltage-clamp mode in which the spontaneous potential difference was 

maintained at 0 mV. Amiloride sensitive current represents electrogenic net flux of Na+ through 

ENaC channel (Benos, 1982). In addition to SCC, potential difference and tissue resistance were 

recorded at a sampling frequency of 1 Hz and the data were processed using Excel and Statistica 

6.1 (StatSoft, Tulsa, OK) softwares. 

 

5.7 Statistics 

 

The data of expression are presented as mean ± SEM. To test the simple effect of time on 

expression of particular transporters, channels and cell cycle regulators, one-way analysis of 

variance (ANOVA) was used and values P < 0.05 were considered significant. Post-hoc Fisher’s 

least-significance difference (LSD) test was used to assess differences between particular time 

points, where ANOVA test P values achieved significant level.  
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To evaluate rhythmicity, the cosinor analysis was applied using mathematical model of 

cosine curve expressed by formula M = A*cos(2πt/T - ϕ/T), where t represents time, M is the 

estimate of the mean of the oscillation, A is the amplitude of the cosine wave, T is the fixed period 

24 h, and ϕ is the time at which the peak of the rhythm occurs. Simple mathematical 

rearrangement using goniometric functions gave a linear model that was fitted using multiple 

linear regression, and the coefficient of determination (R2) and the P value corresponding to the 

non-null amplitude of the rhythm were calculated. Rhythms were considered being present when 

the effect of time detected by ANOVA reached significance, and the cosinor analysis revealed 

significant fit to cosine curve.  

In the case of determining the effect of feeding schedule, circadian time, and their 

interactions with gene expression, two-way ANOVA where time (CT0-CT24), and feeding 

schedule (normal feeding/restricted feeding) were the between-subject factors. The LSD test 

was used to evaluate differences between time points where appropriate.  

Two-way ANOVA was also used to identify the differences in gene expression along the 

crypt axis (crypt mouth/crypt base x circadian time) and the effect of dietary salt intake (low-salt 

diet/standard diet x circadian time) followed by the LSD test. Student’s t-test was used where the 

transcripts were detected only in the colonocytes of crypt mouth.  

All calculations were performed using Statistica 6.1 software. 
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66  RREESSUULLTTSS  

6.1 Intestinal clocks 

6.1.1 Clock gene expression along intestinal tract 

Diurnal variations of various intestinal functions have been observed and documented in 

numerous studies. Recently, also rhythmic expression of clock genes in colon has been detected. 

However, detailed study of peripheral clock and its regulation along intestinal tract is still missing. 

Hence, our first goal was to find out whether functional clock system exists within particular parts 

of the intestinal tract. We employed quantitative “real time” RT-PCR to determine daily mRNA 

expression profiles of main genes constituting molecular clock in duodenum, jejunum, ileum and 

colon of rats.  

Initial immunocytochemical analysis (data not shown) revealed dominant presence of 

core clock genes in epithelial cells compared to subepithelial and muscular layers (Sládek et al., 

2007), therefore, we focused on intestinal epithelium in following studies. Circadian expression 

profiles of clock genes detected in intestinal segments from duodenum to colon are presented in 

Fig. 6.1. As revealed by analysis of variance (ANOVA), we found significantly rhythmic mRNA 

expression of Per1, Per2, RevErb and Bmal1 in all studied segments, except Per2 in ileum, 

where P value was slightly higher than criterion of significance (P=0.51). Rhythmic expression of 

Per genes reached peak of maximum at the beginning of subjective night (CT12 for Per1, CT12 – 

CT16 for Per2) in all studied segments. The expression of clock gene RevErb began to rise at 

early subjective day with the peak of maximum reached during late subjective day (CT8 – CT12) 

in all segments. In contrast, expression of Bmal1 reached maximum level at the end of subjective 

night, while minimal expression occurred at the end of subjective day. Furthermore, cosinor 

analysis confirmed rhythmic expression of all genes in all segments (P<0.05) except Per1 and 

Per2 in colon where profiles did not fit cosine curve significantly. Together, presented data 

demonstrate functional circadian clock in the epithelium along alimentary tract from duodenum 

to colon. 

6.1.2 Spatial organization of colonic epithelial intestinal clock along colonic crypts 

As we found rhythmic expression of clock genes within macrosamples of scraped mucosa, 

we extended focus on distinct region of colonic crypts. We harboured technique of laser capture 

microdissection to analyze circadian expression profiles in the region of crypt base, where 

"What we observe is not nature itself, but nature 
exposed to our method of questioning.” 

 
-Werner Heisenberg, 1958- 
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intestinal stem cells and proliferating colonocytes are located, and in the region of crypt 

mouth/surface cells, where fully differentiated intestinal epithelial cells are located.  

 

Figure 6.1 Relative mRNA expression of clock genes along the rat intestine. Mucosa samples of rats kept on standard 

light-dark regime with 12 hours of light and 12 hours of dark period (LD 12:12) with access to standard chow diet 

and water ad libitum were collected within 24 hours. On the day of sample collection, light was not switched on as 

usual and animals were maintained and euthanized in constant darkness. Time is expressed as circadian time (CT); 

CT12 corresponds to time of previous light-off, and CT24 corresponds to time of previous light-on. mRNA levels of 

genes Bmal1, Per1, Per2 and RevErb were determined in samples of duodenum, jejunum, ileum, and colon using 

quantitative RT-PCR. Each timepoint is represented by mean ± SEM and converted to a percentage of the maximum 

level for each transcript. 

 

As revealed by one-way ANOVA, we detected significant diurnal rhythms in mRNA 

expression of core clock genes Per1, Per2 and Bmal1 (for all P<0.001) in both crypt base and 

crypt mouth/surface (Fig 6.2). In both histological compartments of colonic epithelium, Per1 

reached maximal expression at CT12 and minimal at CT4, and similarly, Per2 reached maximum 
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at CT16 and minimum at CT4. In contrast, Bmal1 expression peaked at CT24, being in opposite 

phase compared with Per1/Per2.  

 

 

Figure 6.2 Spatio-temporal organization of core clock genes Per1, Per2 and Bmal1 mRNA expression in colonocytes 

of crypt base (●) and crypt mouth (○).The rats were kept under a 12:12-h light-dark schedule, and, on the day of 

sampling, they were released into constant darkness. Transcript levels were determined using quantitative RT-PCR 

of laser-microdissected samples. Normalized data are expressed as a percentage of the maximum values found in the 

crypt mouth/surface colonocytes for each transcript and represent means ± SEM (4 animals for each time point). 

The rhythmicity of the genes was analyzed by 2-way ANOVA, which showed significant effects of time for all three 

genes (P<0.001) and that of position along the crypt axis for Per1 and Per2 (P<0.001). Individual differences were 

calculated by the post hoc LSD test; significant differences between crypt base and crypt mouth are indicated by 

*P<0.05 or **P<0.01. 

 

Moreover, the analysis proved the effect of position (crypt base vs. crypt 

mouth/surface cells) on expression of genes Per1 (P<0.001) and Per2 (P<0.001). Significantly 

higher expression of Per1 was observed in crypt mouth/surface cells at CT8 and CT12 (both 

P<0.01). On the contrary, Per2 exhibited significantly higher expression in crypt base at CT12 

(P<0.05) and CT16 (P<0.01). In spite of distinct cellular physiology of crypt base and crypt 

mouth/surface cells, these data demonstrate functional clock with the same phase in both cell 

compartments in accordance with data obtained from mucosal macrosamples. 

6.2 Circadian regulation of intestinal electrolyte transport 

6.2.1 Diurnal variations of electrolyte transporters and channels mRNA expression 
in distal colon  

To determine whether intestinal electrolyte transport, particularly NaCl absorption and 

secretion, is under circadian regulation, we studied daily expression of transporters and channels 

operating in colonic electrolyte transport. In samples of scraped colonic mucosa we studied the 
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expression profiles of chloride/bicarbonate transporters Dra and Ae1, sodium/hydrogen ion 

antiporter Nhe3 and its regulatory factor 1 (Nherf1), 1 and  subunit of sodium-potassium 

pump (Atp1a1, Atp1b1), , and  subunit of sodium channel ENaC, chloride-potassium 

cotransporter Kcc1, chloride channel cystic fibrosis transmembrane conductance regulator 

(Cftr), and sodium-potassium-chloride cotransporter Nkcc1 in order to examine possible 

regulation of electrolyte transport by intestinal circadian clock.  

As shown in Fig 6.3, we revealed diurnal variations in expression of genes Dra (P<0.01), 

Ae1 (P<0.001) and Nhe3 (P<0.05), which operate in the apical membrane of epithelium in the 

process of NaCl absorption and reached maximum peak at the beginning of subjective night 

(CT12). Catalytic 1 subunit of sodium-potassium pump (Atp1a1), which extrudes sodium ions 

across the basolateral membrane and thus is the rate limiting factor of NaCl absorption, displayed 

similar rhythmic expression (P<0.001) with peak also at CT12. Moreover, Nherf1 exhibited 

circadian expression (P<0.001) with pattern resembling Nhe3 diurnal variation. Surprisingly, we 

detected expression of regulatory  subunit of sodium channel ENaC, the rate-limiting subunit of 

ENaC, which mediate electrogenic sodium absorption and is activated in state of salt deprivation 

(Pácha & Pohlová, 1995). Its expression exhibited rhythmic pattern (P<0.01) with elevated level 

throughout subjective night and declined level throughout subjective day.  

Cosinor analyses confirmed a significant circadian rhythmicity for all of these genes (Dra: 

R2=0.43, P<0.001; Nhe3: R2=0.28, P<0.001; Ae1: R2=0.28, P<0.01; Atp1a1: R2=0.49, P<0.001; 

Nherf1: R2=0.28, P<0.01; ENaC: R2=0.26, P<0.05). Amplitudes of fitted curves were similar 

among studied genes (Dra: 24.65, 95 % CI = 14.71-34.59; Nhe3: 28.36, 95 % CI = 12.70-44.01; 

Ae1: 20.30, 95 % CI = 8.63-31.98; Apt1a1: 24.75, 95 % CI = 15.93-33.57; Nherf1: 26.07, 95 % CI 

= 18.66-33.48; ENaC: 27.62, 95 % CI = 7.91-47.33), as well as mesor (midway value between 

highest and lowest values of the fitted cosine function) (Dra: 77.95, 95 % CI = 71.01-84.88; 

Nhe3: 71.06, 95 % CI = 59.49-82.62; Ae1: 51.81, 95 % CI = 43.09-60.53; Apt1a1: 61.23, 95 % CI 

= 54.76-67.71; Nherf1: 64.93, 95 % CI = 59.63-70.23; ENaC: 60.78, 95 % CI = 47.26-74.31). 

Furthermore, we did not detect any significant differences in acrophase (timepoint of maximal 

value) of fitted cosine curves (Dra: 16.02, 95 % CI = 14.55-17.49; Nhe3: 13.58, 95 % CI = 11.29-

15.88; Ae1: 13.39, 95 % CI = 10.94-15.85; Apt1a1: 13.96, 95 % CI = 12.50-15.43; Nherf1: 14.57, 

95 % CI = 13.47-15.67; ENaC: 17.12, 95 % CI = 14.61-19.62). 
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Figure 6.3 Daily profile of mRNA expression of transporters and channels participating in colonic NaCl and KCl 

absorption and NaCl secretion in distal colon mucosa. Rats were kept on standard light-dark regime with 12 hours of 

light and 12 hours of dark period (LD 12:12) with access to standard chow diet and water ad libitum. Transcription 

levels of Cl-/HCO3
- exchangers (Dra, Ae1), Na+/H+ exchanger (Nhe3) and its regulator (Nherf1), , , and  

subunits of the epithelial Na+ channel (Enac, Enac, and Enac),  and  subunits of the Na+ pump (Atp1a1, 

Atp1b1), K+ -Cl- cotransporter (Kcc1), Cl- channel (Cftr), and Na+ -K+ -Cl- cotransporter (Nkcc1) were determined 

using quantitative RT-PCR, and the normalized values were converted to a percentage of the maximum level for each 

transcript. Each timepoint is represented by mean ± SEM. The rhythmicity of the genes was analyzed by a one-way 

ANOVA (P values are displayed in figure), cosinor analysis, and post hoc least-significant difference (LSD) test (for 

further details, see the text). CT, circadian time. 

 

In contrast to the above mentioned genes, we did not detect significant diurnal variation 

in basolaterally located 1 subunit of sodium-potassium pump or chloride-potassium 

cotransporter Kcc1. Furthermore, neither Cftr, nor Nkcc1 displayed significant 24-hour rhythmic 

pattern and their expression resembled rather ultradian circadian variation with phase 

approximately 12 hours. 
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6.2.2 Effect of restricted feeding on expression of genes participating in NaCl 
absorption 

Food intake is known to affect peripheral circadian clock (Sládek et al., 2007; Stokkan et 

al., 2001), hence we investigated the impact of feeding restricted to the light phase of the day 

(from CT3 to CT9) on expression of genes involved in colonic NaCl absorption.  

As shown in Fig 6.4, two-way ANOVA revealed significant effect of feeding regime on 

expression of ENaC (P<0.05), Atp1a1 (P<0.001) and Nherf1 (P<0.001). Furthermore, the 

analysis uncovered significant interaction of circadian time and feeding schedule for genes Ae1 

(P<0.01), Dra (P<0.001), γENaC (P<0.05) and Nherf1 (P<0.05) but not for Atp1a1. Restricted 

feeding induced increased expression of Dra at CT4 but decreased expression at CT20, increased 

expression of Ae1 at CT4 but decreased expression at CT 12, and increased expression of ENaC 

and Nherf1 at CT4 and CT8. In addition, restricted feeding significantly reduced the amplitude 

of Atp1a1 expression.  

Even if the effect of meal time was significant only in ENaC, Atp1a1, and Nherf1, the 

significant interaction between the variables suggests there are differences between the profiles of 

rats kept on ad libitum and restricted feeding conditions. Taken together the restricted feeding 

regime phase-advanced the rhythm of Dra, Ae1, and Nherf1 expression, decreased the amplitude 

of Atp1a1 expression, and abolished the rhythm of ENaC expression. 

6.2.3 Spatial localization of day/night variations in expression of transporters and 
channels operating in NaCl absorption 

To elucidate spatio-temporal distribution of expression along crypt axis, we determined 

mRNA level of particular transporters and channels in early subjective day (CT4) and early 

subjective night (CT16) in samples of crypt base, and crypt mouth/surface cells. Unlike the clock 

genes, the expression pattern of transporter, and channel genes differs along the crypt axis.  

As presented in Fig 6.5, we detected expression of Dra, Nhe3 and ENaC exclusively in 

crypt mouth/surface cells with no signal in crypt base. In contrast, expression of Cftr and Atp1a1 

was detected higher in crypt base. In crypt mouth/surface cells we observed diurnal variation in 

expression of Dra (P<0.01), ENaC (P<0.01), Nhe3 (tendency) and Nherf1 (P<0.01), with 

higher expression in dark phase (CT16). We did not observe any significant diurnal changes in 

expression of Cftr or Atp1a. The expression of Ae1 could not be determined as the amount of this 

transcript is relatively low and was below the detection limit in microdissected samples. Taken 
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together, the data from microsamples mostly confirmed the results obtained from scraped 

mucosa and demonstrate diurnal regulation of genes involved in colonic NaCl absorption.  

 

Figure 6.4 The effect of restricted feeding schedule on the 24-hour expression profiles of Dra, Ae1, Enac, Atp1a1, 

and Nherf1. Rats were kept on a 12:12-h light-dark schedule fed ad libitum (○), or subjected to restricted feeding 

regime (●) from CT3 to CT9 for 14 continual days. On the day of sampling, animals were released into constant 

darkness. Data are expressed as a percentage of the maximum mean value for each gene and represent means ± SEM 

(4 animals for each time point). Significant differences between normal and restricted feeding are indicated by 

*P<0.05 or **P<0.01. 

6.2.4 Involvement of aldosterone in circadian regulation of electrogenic transport 

As aldosterone is known to be a potent regulator of electrogenic sodium absorption by 

stimulation of regulatory subunits of ENaC channel (Epple et al., 2000), we investigated its level 

during 24 hours in order to reveal a possible role of aldosterone in oscillation of ENaC subunit. 

As shown in Fig 6.6, we observed diurnal changes of plasma concentration of aldosterone 

(P<0.05) in rats kept on standard diet and standard light conditions with strong peak at the 

beginning of dark phase (CT12). This observation corresponds with the expression of ENaC, 

and thus it implicates that oscillation of aldosterone might be involved in circadian regulation of 

intestinal sodium absorption and might drive the circadian changes of target gene expression. 



 

 

 
43 

 
Figure 6.5 Expression of genes, participating in colonic ion transport along the crypt axis. The mRNA levels were 

determined at CT4 (early subjective day) and CT16 (early subjective night) in microsamples of colonic crypt base 

(open bars) and crypt mouth/surface colonocytes (closed bars) harvested by laser microdissection. The rats were 

maintained under a 12:12-h light-dark schedule, and, on the day of sampling, they were released into constant 

darkness. The mRNA values of crypt mouth/surface cells at CT4 were set to 100%, and other data are presented as a 

percentage of this value. No expression of Dra, Nhe3,or Enac was found in the crypt base [not detected (n.d.)]. The 

values are means ± SEM (4–5 animals). *Significant difference between CT4 and CT16 at the same position along 

the axis (P<0.01); #significant difference between the crypt base and crypt mouth at the same time of day (P<0.01) 

as established by 2-way ANOVA and post hoc LSD test (Nherf1, Atp1a1, and Cftr) or Student’s t-test (Dra, Nhe3, 

and Enac). 

6.2.5 Circadian regulation of Na+ absorption in secondary hyperaldosteronism 

Colonic electrogenic sodium absorption plays physiological role mainly during secondary 

hyperaldosteronism, which is induced by low sodium intake (Pácha & Pohlová, 1995). As only 

very little is known about diurnal changes of this process, our goal was to elucidate possible clock 

and aldosterone participation in the regulation of electrogenic sodium absorption under the 

condition of secondary hyperaldosteronism. Hence, we determined plasma aldosterone level and 

colonic expression of ENaC channel subunits as well as core clock genes in early subjective day 

(CT4) and early subjective night (CT16) of rats fed low-salt diet and kept under standard light 

conditions.  
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Figure 6.6 Daily profile of aldosterone 

plasma levels in rats kept on a standard 

diet. The rats were maintained under a 

12:12-h light-dark schedule, and, on the 

day of sampling, they were released into 

constant darkness. CT0 corresponds to 

time of previous lights on. Each time point 

represents the mean ± SEM (4 animals for 

each time point). **Significantly different 

from the lowest value (P<0.01). 

 

 
As expected, low-salt diet rapidly stimulated plasma aldosterone concentration (Fig. 6.7; 

P<0.001). While low-salt diet had no significant effect on expression of non-regulatory ENaC, it 

substantially stimulated expression of regulatory subunits ENaC and ENaC (both P<0.001). 

Furthermore, circadian time affected expression of both ENaC (P<0.001) and ENaC 

(P<0.01), and expression reached higher level at early subjective night (CT16).  

As these results imply putative role of circadian clock, we analyzed core clock gene 

expression in the same conditions. The expression of clock genes Per1 and Bmal1 exhibited 

expected diurnal changes in standard diet fed animals, with higher expression at early night in 

case of Per1 (P<0.01) and at early day in case of Bmal1 (P<0.01). However, although Bmal1 

exhibited very similar expression pattern in low-salt diet group [i.e. higher expression during early 

day (P<0.01), with no significant changes between diet groups in either time point], Per1 gene 

exhibited no significant difference between day and night in the low-salt diet group. The 

expression of Per1 reached similar levels at both time points and this value was not significantly 

different from the night-time value of the standard diet group.  

Taken together these data demonstrate circadian regulation of intestinal sodium 

absorption in secondary hyperaldosteronism. Not only diurnal variations in expression of genes 

involved in electrogenic NaCl absorption, but also changes in Per1 expression and plasma 

aldosterone implicate considerable role of intestinal clock in regulation of NaCl absorption. 
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Figure 6.7 Effect of secondary hyperaldosteronism induced by low-salt diet on the diurnal changes in the plasma 

level of aldosterone and in expression of clock genes Per1 and Bmal1 and genes encoding subunits of epithelial Na+ 

channel (Enac, Enac, and Enac). Rats fed a low-salt diet were maintained under a 12:12-h light-dark schedule, 

and, on the day of sampling, they were released into constant darkness. CT4 corresponds to 4 h after the previous 

lights on and CT16 to 4 h after lights off. Blood plasma and colonic mucosa were collected at CT4 (open bars) and 

CT16 (closed bars) for subsequent radioimmunoassay of plasma aldosterone and  quantitative RT-PCR analyses. 

The gene expression levels are presented as a percentage of the morning (CT4) levels reached on the standard diet. 

The values are means ± SEM (4–5 animals). *Significant difference between CT4 and CT16 in animals kept on the 

same diet; #significant difference between animals kept on standard and low-salt diets at the same time of day, as 

established by 2-way ANOVA and post hoc LSD test (*,#P< 0.05 and **,##P <0.01). 
 

6.2.6 Diurnal variations of amiloride-sensitive short circuit current in distal colon of 
control and low-salt diet fed rats 

Although, we have shown circadian regulation of Na+ channel subunit expression, there is 

lack of functional evidence of such regulation. Hence, we utilized the method of short circuit  

current measurement in Ussing chamber to assess the values of electrogenic Na+ transport. This 

transport was quantified as amiloride-sensitive SCC, which reflects the rate of electrogenic Na+ 

absorption via ENaC channel. We measured amiloride-sensitive SCC in both, control and 

low-salt diet fed group, at two time points (early subjective day, CT4; early subjective night, 

CT16). In addition, we recorded potential difference (PD0) and transepithelial electrical 

resistance (R0), all parameters with frequency 1 Hz.  
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As expected, we detected no significant amiloride-sensitive SCC in control group 

(∆SCC: -4.1 ± 5.4 at CT4; -7.9 ± 2.3 at CT16; P>0.05), showing the absence of electrogenic 

sodium absorption via ENaC in normal diet fed rats. On the contrary, we detected significant 

changes of SCC in colon of rats kept on low-salt diet (Fig. 6.8). ∆SCC at early subjective night 

(-78.4 ± 19.6 at CT16; P<0.05) reached significantly greater value comparing to early subjective 

day (-19.7 ± 6.9 at CT4). We detected also significant rise of PD0 at CT16 (P<0.05), while no 

significant change in ∆R (Table 6.1).  

Regarding the observed data, we demonstrated in animals with induced secondary 

hyperaldosteronism diurnal variation of electrogenic sodium absorption with higher transport 

activity during the dark phase. We suggest that these changes are due to circadian regulations of 

key regulatory subunits of channel ENaC, which mediate electrogenic sodium absorption in 

distal colon. In addition, circadian oscillation of aldosterone might play a considerable role in this 

regulation. 

 

 

Figure 6.8 Differential effect of amiloride on 

short-circuit current (SCC) in rat colon 

during the light and dark period. The animals 

were kept on a 12:12-h light-dark schedule 

and fed a standard or low-salt diet. On the 

day of the experiment, the rats were released 

into darkness, and short-circuit currents were 

measured at 2 time points corresponding to 

CT4 (4 h after the previous lights on) and 

CT16 (4 h after the previous lights off). Each 

average curve represents the mean ± SEM of 

4–6 original 270-s tracings, but, for 

simplicity, only every 10th point is displayed. 

Significant differences between diet and time 

of day were tested by repeated-measures 

ANOVA: low-salt diet, CT4 vs. low-salt diet 

CT16: P<0.05; standard diet, CT16 vs. low-

salt diet, CT16: P<0.01. 
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Table 6.1. Summary of electrophysiological data in colon of rats kept on standard and low-salt diet 

Time PD0, mV SCC0, µA/cm2 R0, Ω . cm2 ∆ SCC, µA/cm2 ∆ R, Ω . cm2 

   
Standard diet 

  CT4 2.9 ± 0.4 57.6 ± 11.7 44.1 ± 4.0 4.1 ± 5.4 0.5 ± 3.4 

CT16 4.4 ± 1.2 71.6 ± 12.7 54.0 ± 6.5 7.9 ± 2.3 0.6 ± 3.1 

   
Low-salt diet 

  CT4 3.9 ± 0.6 68.8 ± 8.0 43.3 ± 5.1 19.7 ± 6.9 3.8 ± 3.6 

CT16 11.6 ± 2.4* 284.0 ± 40.9** 39.3 ± 4.3 78.4 ± 19.6* 22.7 ± 8.3 
Data represent means ± SE; n = 5–6 rats in each group. PD0, potential difference; SCC0, short-circuit current; R0, 
transepithelial electrical resistance at the beginning of the experiment; ∆SCC, amiloride-sensitive SCC; ∆R, the 
change of R in the presence of amiloride; CT, circadian time. Significantly different from CT4: *P<0.05 and 
**P<0.01. 
 

6.3 Circadian regulation of cell cycle in the intestinal epithelium 

6.3.1 Diurnal variations in expression of cell cycle regulator genes under standard 
conditions 

Colonic epithelium undergoes very dynamic cell renewal process associated with 

intensive proliferation and rapid turnover of colonocytes. Regarding these facts, and the presence 

of functional clock in the intestinal epithelium, and the findings suggesting interconnection 

between peripheral clock and cell proliferation, we examined putative circadian clock role in cell 

cycle regulation of colon epithelial cells.  

We determined daily mRNA expression profiles of key cell cycle regulators, transcription 

factor c-Myc, cyclins A, B1, and D1, inhibitory kinase Wee1, and cyclin-dependent kinase 

inhibitors p21, p27, and p16 in scraped mucosa from distal colon of rats kept under standard light 

and feeding regime (LD12:12; food and water ad libitum). Circadian expression profiles are 

presented in Fig. 6.9.  

As revealed by one-way ANOVA, we detected significant rhythm in expression of cyclin 

A (P<0.05) with maximum expression at CT8 and cyclin B1 (P<0.05) with maximum peak at 

CT4, while no significant diurnal changes were found in expression of cyclin D1 (P=0.77). 

Surprisingly, we did not observe any significant variation in expression of proto-oncogene c-Myc 

(P>0.05). However, the expression of inhibitory kinase Wee1 exhibited circadian oscillations 

(P<0.05) with maximum peak reached at CT12 – CT16. Furthermore, p27, one of studied 

cyclin-dependent kinase inhibitors, showed significant diurnal variation (P<0.01) with maximum 

at CT24, while the others, p21, and p16, did not reach level of significance (P>0.05). 
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Additionally, we applied cosinor analyses to expression profiles of genes, which were 

determined as significant by ANOVA analyses. All analyzed genes exhibited significant rhythm 

fitted to cosine curve (cyclin A: R2=0.56, P<0.05, mesor: 53.56, 95 % CI = 42.37-64.75, 

amplitude: 24.42, 95 % CI = 7.76-41.07, acrophase: 4.98, 95 % CI = 2.64-7.32; cyclin B1, 

R2=0.40, P<0.01, mesor: 72.01, 95 % CI = 60.37-83.66, amplitude: 30.16, 95 % CI = 13.06-47.26, 

acrophase: 4.30, 95 % CI = 2.30-6.30; Wee1, R2=0.55, P<0.001, mesor: 69.95, 95 % CI = 62.68-

77.22, amplitude: 25.09, 95 % CI = 14.57-35.61, acrophase: 17.28, 95 % CI = 15.77-18.80; p27, 

R2=0.44, P<0.01, mesor: 69.88, 95 % CI = 63.69-76.06, amplitude: 16.50, 95 % CI = 7.89-25.11, 

acrophase: 2.53, 95 % CI = 0.47-4.58).  

In conclusion, we found circadian rhythmicity in several cell cycle regulators, although 

there are others without circadian pattern of expression. These results suggest that regulation of 

colonocyte proliferation might be interconnected with intestinal circadian clock; however 

detailed analysis would be needed to fully elucidate this process.  

Figure 6.9 Daily profiles of mRNA expression of cell cycle regulatory genes in distal colon mucosa. Rats were 

maintained under standard light-dark regime schedule with 12-h light and 12-h dark phase, with access to standard 

chow diet and water ad libitum. mRNA abundance of genes c-myc, cyclins D1, A, and B1, G2/M inhibitory kinase 

Wee1, and cyclin-dependent kinase inhibitors p21, p27, and p16 were determined by quantitative RT-PCR. Levels of 

transcript are expressed as percentage of the maximum mean level for each particular transcript, and presented as 

means ± SEM (3-5 animals per time point). One-way ANOVA was used to assess significance of variations according 

circadian time, and P values are presented. Further post-hoc LSD test was employed to reveal differences between 

particular time points, and cosinor analysis was applied (see text for details). 

 



 

 

 
49 

6.3.2 Circadian expression of cell cycle regulator genes under restricted feeding 
regime 

As it is known that feeding schedule is powerful modulator of peripheral clock phasing, 

particularly in the liver and intestine (Sládek et al., 2007; Stokkan et al., 2001), and its 

manipulation could reveal more deeply coupling of peripheral circadian clock and proliferation, 

we determined expression profiles of rhythmic genes from previous experiment in animals kept 

under restricted feeding schedule with food availability between CT3 – CT9.  

As shown in Fig. 6.10, two-way ANOVA revealed significant effect of factors feeding 

regime, and time respectively, only in cyclin B1 (both effects P<0.05). No interaction between 

the factors was observed. In contrast, neither significant differences of any factor nor interaction 

were detected in case of cyclin A, Wee1, and p27 (P>0.05).  

These results suggest that though there is diurnal variation in expression of some cell cycle 

regulators in standard light conditions, coupling to intestinal circadian clock is not preserved 

during changes of feeding regime. It is likely that another regulatory pathway plays dominant role 

in control of cell cycle regulation. 

6.3.3 Spatio-temporal organization of cell cycle regulators’ circadian rhythms within 
colonic crypts 

Cell division of stem cells occurs at the base of the crypt from where the cells move up to 

the mouth, while continuously progress in differentiation. As these differentiation processes 

Figure 6.10 The effect of restricted feeding schedule on the daily expression profiles of cell cycle regulatory genes  

cyclin A, B1, kinase Wee1, and CDK-inhibitor p27 in distal colon mucosa. Rats were kept on a 12:12-h light-dark 

schedule fed ad libitum (○), or subjected to restricted feeding regime (●) from CT3 to CT9 for 14 days. On the day 

of sampling, animals were released into constant darkness. Data are expressed as a percentage of the maximum mean 

level for each transcript and represent means ± SEM (4 animals for each time point). Significant differences between 

normal and restricted feeding are indicated by *P<0.05. 
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might impact clock and cell cycle regulation, therefore we have studied circadian expression of 

selected cell cycle regulators in the colonic crypt base and crypt mouth respectively, using laser 

capture microdissection and real time RT-PCR. Circadian expression profiles of particular genes 

are presented in Fig 6.11.  

 

Two-way ANOVA revealed significant effect of both factors (circadian time, P<0.001; 

tissue position, P<0.01) for cyclin B1 expression profile. Cosinor analysis confirmed periodic 

expression in crypt base (P<0.05), while no significant fitting was achieved in crypt mouth 

(P>0.05). Post-hoc analysis showed differences in expression during 24 hours within crypt base 

with the highest expression level reaching maximum at CT0 – CT4, then declining to minimum 

at CT16 (with statistical values of P<0.001 for both CT0 vs. CT16 and CT4 vs. CT16). 

Moreover, interaction of the factors reached significant value (P<0.01). Similarly, the significant 

effect of both circadian time (P<0.01), and tissue localization (P<0.001) was identified for Wee1 

gene.  

Cosinor analysis confirmed the cyclic expression in both compartments (crypt base, 

P<0.05; crypt mouth P<0.01). In the crypt base, where post-hoc test revealed significant 

differences, the expression of Wee1 raised from minimal values at CT4 – CT8 to maximum 

reached at CT16. Both time comparisons of CT4 vs. CT16 and CT8 vs. CT16 respectively, 

reached significance (P<0.001). In case of c-Myc, no effect of circadian time was observed, 

Figure 6.11 Spatio-temporal organization of mRNA expression of cell cycle regulatory genes in rat colonic crypt 

base,  and crypt mouth. The mRNA levels of c-myc, cyclin B1, and Wee1 genes were determined by qunatitative RT-

PCR in microsamples of colonic crypt base (●) and crypt mouth/surface (○) colonocytes harvested by laser 

microdissection. Data are expressed as percentage of maximum mean levels for each transcript, and presented as 

means ± SEM of 4 animals per each time point. 2-way ANOVA analysis revealed the effect of colonocyte position 

along crypt axis in all three genes, and the effect of circadian time in Wee1 and cyclin B1. For details see the text. 
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however colonocytes position displayed significant effect with greater level in the crypt base 

(P<0.001).  

In summary, all studied genes showed substantially higher expression in crypt base, where 

intensive proliferation is going on. Circadian profiles of genes were in concordance to the results 

obtained from scrapped mucosa samples.  

6.4 Role of circadian clock in tumourigenesis 

6.4.1 Expression of clock genes in colorectal neoplastic tissue 

Though we found some evidence of putative interplay between peripheral clock and a few 

cell cycle regulators in the intestinal epithelium, it remains unclear whether there is any 

contribution of circadian clock to disturbance of cell cycle regulation. Therefore, in the next 

experiments we examined the role and the contribution of clock and its alteration in process of 

neoplastic transformation and tumourigenesis. We have worked with the mouse model of  

azoxymethane (AOM) induced carcinogenesis associated with dextran sodium sulfate (DSS) 

induced colitis. AOM in combination with DSS induces multiple nodular and polypoid tumours 

in the distal part of colon that display characteristics of intraepithelial neoplasia ranging from 

low-grade dysplasia (usually located at the periphery of polyps, next to non-dysplastic colonic 

epithelium) to high-grade dysplasia/intramucosal carcinoma forming the central part of the 

tumour (Švec et al., 2010). In this model we studied expression of core clock genes in tumour and 

surrounding healthy looking tissue in mice bearing induced colorectal tumour. Simultaneously, 

we analyzed scrapped colonic mucosa and whole-thick colon tissue from corresponding intact 

control animals of the same age.  

As shown in Fig. 6.12, we have observed substantially suppressed oscillations of clock 

genes in tumour tissue. One-way ANOVA revealed diurnal variation in mRNA expression of 

Bmal1, Per1, Per2 and RevErb in all studied tissues (tumour and surroundings from induced 

tumour bearing mice, and mucosa and whole colon from intact mice). Highly significant effect of 

time was found in all tissues and genes. In most of the time points, the post-hoc analysis showed 

strong down-regulation of clock genes expression in tumour tissue in comparison with the 

surroundings of the same colon and in mucosa and colon of intact animals. For details see Fig. 

6.12.  
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Figure 6.12 The daily profiles of mRNA expression levels of clock genes in mice bearing colorectal tumors and in 

healthy counterparts. The expression levels of the genes Bmal1, Per1, Per2, and Rev-erb, were measured in 

intraepithelial neoplasia, and in the surrounding colonic tissue of mice with induced colorectal tumours 

(AOM/DSS) and in the whole colon and colonic mucosa of control animals of the same age (CTRL). The mice 

were maintained under a 12:12-h light-dark schedule; on the day of sampling, they were released into constant 

darkness. The points represent the mean ± SEM (5 animals for each time point). One-way ANOVA revealed 

significant effects of time for all four genes and tissues (the P value is given in each figure). Significant differences 

from tumours are indicated by *P<0.05, **P<0.01 or ***P<0.001.   

In addition, cosinor analysis was employed in order to characterize and compare 

circadian parameters of clock gene expression patterns. Expression of Per1, Per2 and RevErb 

significantly fitted the 24h sinusoidal curve in all studied tissues (P<0.001, except of Per1 in 

surrounding tissue, where P<0.01). For Bmal1, no rhythm was detected in tumour or 

surrounding tissue of tumour bearing mice (P>0.05), however, significant rhythm of this gene 
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was observed in mucosa (P<0.001) and whole colon (P<0.01) of intact controls. Moreover, 

parameters of mesor, amplitude and acrophase were determined with confidence intervals. As 

shown in Fig. 6.13, we revealed in tumour substantially lowered value of mesor in all studied 

clock genes and reduced amplitude of Per2 and RevErb. In addition, the phase-delay of  

acrophase of RevErb in tumour suggests that disturbances in circadian organization are 

associated with modulation of the phase of clock gene expression. 

 

 

 

 

Figure 6.13 Cosinor analysis parameters of the circadian rhythmicity of the clock genes in tumours and surroundings 

of induced tumour bearing mice, and mucosa and whole-thick colon tissue of control mice of the same age. Data are 

given as the calculated values of mesor (rhythm-adjusted mean), amplitude of the rhythm, acrophase (time of day 

when the maximum values are reached), and the estimated 95 % confidence intervals. AOM/DSS – mice with 

colorectal tumor, CTRL – healthy controls of the same age. aAcrophase is given in hours after the subjective dark-to-

light transition; b, not given if P>0.05. 
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In summary, we found strong deregulation of circadian clock in tumour. The amplitude 

of circadian rhythmicity of clock gene expression was substantially damped and mRNA 

abundance was lowered. Likewise, in surrounding tissue of tumour bearing mice we found 

reduction of mesor and amplitude of RevErb circadian rhythm, which together with absence of 

significant rhythm of Bmal1 indicates clock alteration also in tumour adjacent healthy tissue. 

6.4.2 Expression of clock-controlled genes in tumours and associated tissues 

Although clock genes constitute the core clock system, the clock-controlled genes are 

outputs, which spread the information about timing to regulatory networks. Therefore, we 

analyzed transcription factor Dbp, which is directly regulated by CLOCK/BMAL1 heterodimer, 

and Wee1, which regulates cell cycle progression and exhibits rhythmic expression in rat 

intestinal epithelium (Fig. 6.14). Furthermore we measured expression of c-Myc and p21 as 

representatives of cell cycle regulators, which might be rhythmically expressed in mouse intestine.  

We compared expression profiles of particular mRNA levels in tumour of AOM/DSS 

mice and colonic mucosa of intact controls and determined robust rhythmic expression of Dbp in 

control mucosa (ANOVA P<0.001; cosinor analysis P<0.001), whereas strongly reduced rhythm 

in tumour (as defined by amplitude, P<0.001). Moreover, maximal daily level of expression was 

phase delayed approximately 4 hours in tumour (acrophase: 12.07; 95 % CI = 10.49-13.64) 

compared to mucosa of healthy animals (acrophase: 8.71; 95 % CI = 7.49-9.92).  

 

Although one-way ANOVA analysis revealed significant changes in Wee1 expression in 

tumours as factor of time (P<0.05), cosinor analysis did not detect any significant rhythm 

Figure 6.14 The daily profiles of clock-controlled genes in colorectal tumours of AOM/DSS mice (●) and in the 

colonic mucosa of healthy mice of the same age (○). One-way ANOVA revealed a significant effect of time on Dbp 

expression in both tissues (P<0.001) and Wee1 expression in tumours (P<0.01), but no effects were observed in the 

cases of c-myc, and p21. Significant differences from healthy controls are indicated by *P<0.05, **P<0.01 or 

***P<0.001.    
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(cosinor analysis P>0.05), and so was considered as non-rhythmic. Furthermore, we failed to 

observe significant circadian rhythm of Wee1 expression in control mucosa (both ANOVA and 

cosinor analysis P>0.05). Similarly, in case of genes c-Myc and p21 there was no significant 

rhythm in expression either in healthy mucosa or tumour samples. However, analysis of overall 

average expression within 24 hours revealed significant differences between tumour an mucosa 

samples. In particular, there was increased expression of Wee1 and c-Myc in tumour samples 

compared to healthy mucosa (28.8 ± 1.7 vs. 12.2 ± 0.6, P<0.001; 7.7 ± 1.0 vs. 3.6 ± 0.3, P<0.01) 

and reduced expression of p21 (2.7 ± 0.4 vs. 6.8 ± 0.3; P<0.001). 

6.4.3 Expression of clock and clock-controlled genes in young animals 

The results obtained for clock-controlled gene Wee1 were in conflict with our previous 

findings, where we observed rhythmic expression of Wee1 in rat colonic mucosa (Fig. 6.9). To 

rule out the possibility that the loss of rhythmicity is associated with ageing (aged mice had been 

used in experiments with induced tumours), we determined circadian expression of selected core 

clock and clock-controlled genes in 10 weeks old mice, which are typically used in experimental 

studies. All measured clock genes, particularly Bmal1 and Per1, were rhythmically expressed in 

colonic mucosa of young animals as detected by both one-way ANOVA (P<0.001) and cosinor 

analysis (P<0.01). Expression profiles (Fig. 6.15) corresponded to that obtained from aged 

animals and cosinor analysis displayed similar parameters (acrophases: Bmal1: 22.2, 95 % CI = 

21.6-22.8; Per1: 11.7, 95 % CI = 9.4-14.0).  

Furthermore, the expression of clock-controlled gene Wee1 fluctuated in a circadian 

manner (one-way ANOVA: P<0.001; cosinor analyses: P<0.01) in young animals with profile 

resembling our previous findings, and the rhythm of p21 reached borderline significance (one-

way ANOVA: P=0.048; cosinor analysis: P<0.01). The acrophases of Wee1 and p21 were 

reached at 14.9 (95 % CI = 13.0-16.8) and 4.4 (95 % CI = 1.7-7.1), respectively. In contrast to 

these genes, c-Myc did not display any diurnal rhythmicity. Moreover, two-way ANOVA revealed 

a significant effect of ageing on circadian rhythmicity for Bmal1 (P<0.05), Per1 (P<0.01), and 

Wee1 (P<0.01). 
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6.4.4 Clock gene expression in the liver of colorectal tumour bearing mice 

To test the possibility that other peripheral organs might be affected by colorectal 

tumourigenesis, we studied expression of clock genes in liver, where AOM is metabolized. As 

shown in Fig. 6.16,  mRNA levels of clock genes Bmal1, Per1, Per2, Rev-Erbα, and clock-

controlled genes Dbp, and Wee1 exhibited circadian rhythms that were statistically validated with 

both one-way ANOVA (P<0.001; P<0.01 for Dbp and Wee1 in control mice) and cosinor 

analysis (P<0.0001; P<0.005 for Dbp in control mice). Parameters of fitted cosine curves 

revealed increased amplitude of Per1 and Per2 rhythms in AOM/DSS mice (Per1: 0.27, 95 % CI 

= 0.17-0.37 vs. 0.73, 95 % CI = 0.53-0.94; Per2: 1.04, 95 % CI = 0.79-1.29 vs. 1.73, 95 % CI = 

1.39-2.08) but the amplitudes of Bmal1, Rev-Erbα, Dbp and Wee1 did not vary.  

 

Figure 6.15 The effect of ageing on the daily expression profiles of Bmal1, Per1, Wee1, c-myc, and p21 in the colonic 

mucosa of healthy young (10-week-old; ●) and aged (52-week-old; ○) mice. The values are the mean ± SEM for 5 

mice. One-way ANOVA revealed significant effects of time for Bmal1, Per1, Wee1, c-myc (P<0.001) and p21 

(P<0.05) in young mice but only for Bmal1 (P<0.001) and Per1 (P<0.01) in aged animals. 
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On the contrary, AOM treatment significantly affected the phase of expression of Bmal1, 

Rev-Erbα, Dbp and Wee1 but not Per1 and Per2 (Fig 6.17). Two-way ANOVA showed 

significant differences in the expression of Bmal1, Rev-Erbα, Per1, Dbp and Wee1 between the 

liver of healthy and tumour-bearing mice. The circadian expression of Per2 did not vary between 

both groups (Fig 6.17). 

 

Figure 6.16 The expression levels of clock and clock-controlled genes in liver of tumour-bearing mice (AOM/DSS; ●) 

and in healthy mice of the same age (CTRL; ○). The mice were maintained under a 12:12-h light-dark schedule and 

on the day of sampling, they were released into constant darkness. The points represent the mean ± SEM (5 animals 

for each time point). For details see the text. 

 

Figure 6.17 The shift of the acrophase of clock 

genes and clock-controlled genes in liver of 

healthy control mice (CTRL; ○) and in 

tumour-bearing mice (AOM/DSS; ●) mice. 

Data were obtained by cosinor analysis and the 

values are given in hours after dark/light 

transition. The horizontal bars represent 95% 

confidence interval. Differences were considered 

as significant in cases where confidence intervals 

did not overlap. 
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77  DDIISSCCUUSSSSIIOONN  
 

 

Our objective was to determine whether particular parts of the gastrointestinal tract 

possess functional peripheral clockwork system and to show whether it is involved in regulation 

of enterocyte proliferation and electrolyte transport.  

7.1 Intestinal circadian clock 

 
We documented molecular clock in epithelium of rat duodenum, jejunum, ileum and 

colon by detecting circadian oscillations in mRNA expression of core clock genes Bmal1, Per1, 

Per2, and RevErb The findings are in concordance with general basic clock transcriptional-

translational feedback loop mechanism previously described  (Ko & Takahashi, 2006; Reppert & 

Weaver, 2001). Further, the expression profile patterns resemble those observed previously in rat 

colon (Sládek et al., 2007), and in mouse stomach, colon (Hoogerwerf et al., 2007), and jejunum 

(Froy & Chapnik, 2007), with the phase of Bmal1 opposite, and RevErb phase-advanced 

comparing to Per genes. In addition, colonic epithelium is known to be the site of rhythmic clock 

gene expression as detected by quantitative PCR, hybridization technique, and 

immunohistochemistry (Sládek et al., 2007). These findings implicate that oscillating mRNA 

represents functional clock in all segments of gastrointestinal tract along the cranio-caudal axis. 

Furthermore, the profiles of clock genes in gut were very similar to those observed in rat liver, 

which points to the importance of synchronization of physiologically related metabolic processes 

between liver and intestine, and to the substantial role of peripheral clock in governing this 

synchronization. Similar to our findings in rats, the expression of clock genes was shown also in 

human colonocytes (Pardini et al., 2005) and the experiments of Yang et al. (2009a) confirmed 

also the existence of clock gene fluctuations in small intestine.  

As intestinal epithelium is highly diversified in cellular and physiological functions, we 

investigated whether circadian clock differs in distinct parts of the epithelium. We focused on 

colonic crypts, where at least two different cell populations can be found. The area at the bottom 

of the crypts contains stem cells which are the source of undifferentiated sister cells. These cells 

move along the crypt-surface axis to the mouth of the crypt, while simultaneously differentiate 

into mature colonocytes and finally undergo apoptosis and exfoliation; i.e. the surface 

colonocytes represent the fully differentiated cells without any proliferation potential. To our 

"Our love of being right is best understood 
as our fear of being wrong." 

 
-Kathryn Schulz, 2010- 
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knowledge, we showed for the first time that the circadian clock is present in both functionally 

distinct crypt compartments. The phases of expression of all studied genes (Per1, Per2, and 

Bmal1) were identical in both compartments, which implicates full coordination of epithelial 

clock between different crypt regions. Moreover, the phases of expression were in concordance 

with our previous observations in scrapped colonic mucosa (Fig 6.1). However, we detected 

differences in amplitudes between crypt base and crypt mouth in Per1 and Per2 profiles what 

might be linked to distinct differentiation phases of colonocytes in both compartments. Whether 

these dissimilarities could have functional significance is not clear, and further experiments would 

be needed to clarify this hypothesis. 

7.2 Role of the circadian clock in intestinal transport 

 
Colonic epithelium is the site of intensive water and electrolyte transport mediated by 

transcellular secretion and absorption of main electrolytes Cl-, Na+ and K+. Previously Sládek et 

al. (2007) demonstrated circadian expression of Nhe3 mRNA in rat colon epithelia. Similarly, in 

this study, we confirmed rhythmic Nhe3 mRNA and furthermore extended this observations for 

novel demonstration of circadian regulation of other genes (i.e. Dra, Ae1, Nherf1, ENaC, 

Atp1a1) coding proteins participating in intestinal NaCl and KCl transport. Our findings are in 

concordance with several microarray studies, which revealed that a lot of genes are rhythmically 

expressed in various tissues including brain, liver, muscle, and colon including various members 

of transporter, channel and associated protein families such as Nhe3, Nherf1, Atp1a1 (Hughes et 

al., 2009; Panda et al., 2002; Ueda et al., 2002; Zuber et al., 2009).  

The rhythmicity of transporters is likely due to circadian clock operating in the intestinal 

epithelia. This hypothesis is supported by experiments showing Nhe3 rhythmicity at both mRNA 

and protein level in kidney, other important epithelial tissue. In this tissue, a direct binding of 

clock gene products CLOCK/BMAL1 heterodimer was observed in E-box sequences of 

promoter region of Nhe3 gene (Nishinaga et al., 2009; Saifur Rohman et al., 2005). This 

observation strongly suggests similar mechanism of direct circadian regulation of colonic Nhe3. 

The same mechanism seems to control other transporters, although direct evidence is lacking and 

we cannot exclude the possibility of the regulation via other promoter regions like D-boxes or 

involvement of other rhythmically expressed transcription factors. However, the phases of the 

genes studied in our experiments are similar to the expression patterns of Per genes, which 

suggests regulation by CLOCK/BMAL1 heterodimer. Simultaneously synchronized regulation 
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of genes coding absorption would be of particular importance as it is known that DRA exchanger 

is functionally coupled to NHE3 (Walker et al., 2008) and Nherf1-deficient mice exhibit 

defective sodium absorption in intestinal epithelium (Broere et al., 2009). 

Previous studies demonstrated circadian regulation of some intestinal nutrient 

transporters coupled with electrolyte transport. For example, the SGLT1 protein cotransporting 

Na+ and glucose has been shown to exhibit diurnal rhythmicity at the level of mRNA, protein and 

activity (Pan et al., 2004; Rhoads, 1998; Tavakkolizadeh et al., 2001). Mice with mutated Clock 

gene lost rhythmic expression of Sglt1 and feeding regime was unable to induce or entrain it. 

Similarly, diurnal changes in transport capacity were lost (Pan & Hussain, 2009). Furthermore, 

binding of BMAL1 to promoter region of Sglt1 gene was demonstrated (Iwashina et al., 2011). 

These findings support direct role of clock genes in circadian regulation of transporters.  

Other small intestinal transporters, such H+/peptide cotransporter PEPT1 and hexose 

transporters GLUT2, and GLUT5 were shown to be under similar circadian regulation 

associated with the regulatory role of CLOCK and BMAL1 proteins (Iwashina et al., 2011; Pan & 

Hussain, 2009). Furthermore, several members of multidrug resistance protein family were 

demonstrated to exhibit rhythmicity in small intestine (Stearns et al., 2008), while the source of 

the rhythm were determined to be the protein products of clock-regulated genes Hlf, and E4bp4 

(Murakami et al., 2008). Thus, these experiments and our finding of rhythmic expression of 

transporters indicate that colonic electrolyte transporters are controlled by circadian clockwork 

system. 

Whereas electroneutral sodium transport is active during standard sodium intake 

conditions, electrogenic sodium transport mediated by sodium channel ENaC is mostly active 

during sodium deprivation (Pácha & Pohlová, 1995). Surprisingly, we detected rhythmic 

expression of ENaC in animals kept on standard diet while we observed no rhythms in 

expression of  or  subunits. Although, this transport system does not significantly participate in 

overall sodium absorption during standard conditions, circadian regulation of ENaC, which is 

the main regulatory subunit of colonic ENaC, may be redundant due to described Per1 

regulatory effect on expression of renal ENaC main regulatory subunit (Gumz et al., 2009) or due 

to circadian oscillation of aldosterone (Fig 6.6). However, it is functionally relevant during 

sodium deprivation, when ENaC expression and activity are up-regulated (Asher et al., 1996; 

Stokes & Sigmund, 1998). Our results confirm this fact – the expressions of  and  subunits of 

ENaC in distal colon were up-regulated during low-salt diet. In concordance with the literature 
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(Kunzelmann & Mall, 2002), we identified simultaneously elevated plasma level of aldosterone, 

which stimulates channel activity.  

Our analysis revealed alterations in colonic circadian clock during secondary 

hyperaldosteronism induced by low-salt diet. Whereas Bmal1 expression remained unaltered 

with increased expression during subjective day independent of dietary salt intake, Per1 varied 

according to the expectation only in the case of rats kept on standard conditions. Interestingly, 

the expression of Per1 did not vary between day and night in colon of rats kept on low-salt diet 

and reached similar values in both day and night. The day-time value of Per1 in rats kept on low-

salt diet was elevated comparing to the day-time values in rats kept on standard diet  and reached 

values similar to the night-time levels found in both groups of animals. These observations are in 

accordance with the study of Gumz et al. (2009), who found that ENaC, the main regulatory 

subunit of renal sodium channels, exhibits circadian pattern of expression and the rhythm 

diminishes in mice lacking functional Per1 gene. Moreover, they showed involvement of PER1 

protein in channel activation in response to aldosterone, and conversely, altered stimulation by 

aldosterone when Per1 was silenced. Therefore, we suggest that the same mechanism might 

operate in colon and the elevated plasma aldosterone during secondary hyperaldosteronism 

might alter Per1 gene expression.  

Since we do not know the whole day expression profile of clock genes in animals with 

secondary hyperaldosteronism, we cannot exclude other changes in different time points. 

Nonetheless, we detected strong diurnal changes in ENaC and ENaC expression under 

conditions of low-salt diet – expression of both subunits was significantly higher during night. 

Secondly, our functional study of transepithelial electrogenic sodium transport via ENaC channel 

confirmed rhythmic activity of electrogenic transport during low-salt diet condition with 

increased transport capacity during the dark phase of the day. This increase was observed in the 

same period of the day as we detected up-regulation of ENaC and ENaC mRNA expression. 

The detected diurnal differences of electrogenic sodium transport was found only in the group 

fed low-salt diet, while no differences were detected in animals kept on standard diet. This finding 

demonstrates that circadian rhythmicity of electrogenic sodium absorption in colon is dominant 

in physiologically relevant condition, i.e. secondary hyperaldosteronism. Some other authors also 

confirm the role of aldosterone in control of rhythmic changes of electrogenic sodium transport. 

In rabbit colon, Clauss and co-workers showed rhythmic transmural electrical potential 

difference (PD) and diminished rhythm after treatment with spironolactone, an aldosterone 

antagonist (Clauss et al., 1988). Experiments of Wang et al. (2000) showed diurnal changes in 
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amiloride-sensitive rectal PD in mice with more negative PD in the afternoon compared to the 

morning values. Afternoon values were even greater, when angiotensin II inhibitor was applied 

what indicates time dependent role of renin-angiotensin system. Similarly, Gumz with co-workers 

demonstrated aldosterone participation in circadian regulation of ENaC channel regulatory 

subunit in the rat kidney (Gumz et al., 2009), where aldosterone was able to stimulate Per1 

expression and ENaC mRNA expression was PER1 dependent. Interestingly, plasma 

aldosterone did not vary significantly between day and night values in our experiment. As there 

are only two time points (CT4 and CT16) measurements, we cannot exclude the possibility that 

aldosterone concentration rose in earlier or later time points, especially, if we take into account 

the daily profile of aldosterone level in intact rats where sharp peak was detected only in CT12 

(Fig. 6.6) and the same pattern of aldosterone oscillation was found in rats kept on low-salt diet 

(Hilfenhaus, 1976). Moreover, aldosterone effect is known to be mediated by additional proteins 

(Lee et al., 2008) and the peak of maximal transmural potential difference in rabbit colon is 

delayed by 4 hours compared to the peak of plasma aldosterone (Clauss et al., 1988). It is 

noteworthy, that the peaks of both rabbit and rat plasma aldosterone reach maximum in the late 

day and middle day, respectively, and plasma levels of aldosterone reach equal values in 

timepoints used in our experimental schedule (Clauss et al., 1988; Hilfenhaus, 1976). Although, 

it is possible, that aldosterone fluctuation is not the primary force that drives oscillation of 

electrogenic sodium transport and ENaC expression, the observations in kidney and our results 

support hypothesis that aldosterone mediates oscillations of both ENaC expression and function. 

Taking together, we found diurnal rhythmicity of genes participating in sodium 

absorption in rat distal colon. Furthermore, we showed that times phases of transporter and 

channel transcripts are in accordance with colonic clock gene expression under both normal and 

restricted feeding conditions, which implies significant role of colonic clock in anticipation of 

food load. In contrast, we did not find significant 24-hour rhythm of genes coding transporters 

and channels operating in chloride secretion.  

7.3 Role of the circadian clock in epithelial cell cycle regulation 

 
The intestinal epithelium as the dominant absorptive and secretory tissue requires regular 

renewal and thus total turnover of epithelial cells is enormously frequent. Strict balance between 

cell division and apoptosis is essential to maintain cellular replenishment. As there is some 

evidence for circadian timing of cell proliferation from a few experiments in vitro as well as in vivo 
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(Al-Nafussi & Wright, 1982; Buchi et al., 1991; Neal & Potten, 1981) we examined possible role 

of clock and circadian timing in basic cell cycle regulation of colonic epithelial cells. Firstly, we 

examined circadian mRNA expression of genes involved in different phases of cell cycle with both 

activatory and inhibitory functions. Using ANOVA and cosinor analysis we found that some of 

the studied genes showed circadian changes within 24 hours. Interestingly, the oscillating genes 

were members of various families; cyclin A and B are activatory units of CDKs promoting cell 

cycle, while WEE1 kinase prevents G2/M progression and p27 is CDK inhibitor. Similarly, non-

rhythmic genes were both activatory and inhibitory. From cell cycle progression point of view, 

dominant presence/activity of rhythmic genes was condensed to G2 and M phases, as cyclin A is 

present in complex with CDK2 in S/G2 progression and in complex with CDK1 during G2 

phase. Further, cyclin B1 is in active complex with CDK1 in G2/M transition and this complex is 

inhibited by WEE1 kinase, a protein product of rhythmically expressed gene (Arellano & 

Moreno, 1997; Ekholm & Reed, 2000; McGowan & Russell, 1995). Moreover, mRNA 

expression phases of these genes were in accordance with cell cycle progression, as expression of 

the gene coding cyclin A reached maximum level at CT8, while the gene coding cyclin B 

exhibited increased expression between CT0 and CT12. Wee1 reached maximal values at CT12 

– CT16, which is the latest peak from rhythmic genes. These observations suggest that the phases 

of cell cycle progression correspond to the circadian clock rhythm. However, gating of cell cycle 

may be clock-independent under particular conditions, especially in tissues that do not undergo 

intensive proliferation (Johnson, 2010).  

As the matter of fact, other regulatory factors enter to regulatory check-points of cell cycle 

progression, especially as response to specific ambient stimuli (DNA damage, apoptotic signals 

etc.). Furthermore, cell cycle is not completely altered in animals or cell lines bearing mutant or 

lacking any of clock genes. In these animals, embryogenesis and organogenesis occur normally 

and they live to adulthood, however, their cell cycles can be partially altered. For example, 

impaired cell cycle progression from S to M phase and the loss of mitotic wave during hepatic 

regeneration were detected in Cry deficient mice (Matsuo et al., 2003). In addition, there is the 

evidence that clock genes are able to interact with cell cycle regulators (Borgs et al., 2009).  

Our findings of Wee1 oscillations are in perfect concordance with the study of Matsuo et 

al. (2003), who found circadian regulation of Wee1 expression in mouse liver, where regenerating 

hepatocytes were gating their cell division according to rhythmically expressed Wee1, a gene that 

is directly regulated by CLOCK/BMAL1 complex via E-box promoter sequence. Hence we 

propose that Wee1 might represent direct link between molecular clock and cell cycle 



 

 

 
64 

progression in colonocytes. The hypothesis is supported also by findings of elevated WEE1 

protein in spleen of Cry1/Cry2 double knockouts (Hashiramoto et al., 2010) and diminished 

rhythm of Wee1 expression in the liver of Bmal1 knockout mice (Gréchez-Cassiau et al., 2008). It 

is of considerable importance, that one of the most important points of cell life, the entry to 

mitosis, is directly linked to circadian clock and timely synchronized with other processes within 

the organism and ambient environmental cues. This conclusion is supported by studies 

documenting that circadian gene expression persists in daughter cells after division, however, cell 

division can shift the phases of circadian cycle (Nagoshi et al., 2004). Furthermore, gating of 

cytokinesis to specific time spans was described in individual fibroblasts and interestingly, mitosis 

was able to induce phase shift in these cells (Nagoshi et al., 2004). Circadian rhythmic gating of 

the S phase, when DNA is doubled, was observed in several experiments in human oral and 

gastrointestinal mucosa, skin (Bjarnason & Jordan, 2002; Bjarnason et al., 1999), and human and 

mouse bone marrow (Smaaland et al., 2002; Sothern et al., 1995). 

In case of rhythmic cyclins, our results are also in concordance with described cyclin A 

and cyclin B rhythms of expression in human oral mucosa (Bjarnason et al., 1999), which 

functionally resembles intestinal epithelium. Although the study of Bjarnason et al. (1999) and 

our experiments were conducted on distinct species and different part of alimentary tract, the 

phases of the rhythms are similar and maximal levels are reached during light phase in both cases. 

We can speculate about mechanism how cyclins are maintained in rhythmic expression, however 

indirect evidence implies the role of clock genes. Knockdown of Csnk1e, a gene coding CK1, 

was demonstrated to down-regulate substantially mRNA expression of cyclin A and cyclin B in 

human fibrosarcoma cell line (Yang & Stockwell, 2008). In contrast, investigation using 

luminescence reporters in Rat-1 fibroblasts revealed that while the period of Bmal1 expression in 

free running synchronized cell line is temperature compensated (period length is the same 

regardless ambient temperature), the expression of cyclin B1 is not temperature compensated 

and thus period length is temperature dependent (Yeom et al., 2010). This inconsistence shows 

uncoupling of circadian cycle and cell cycle in particular mammalian cell lines, what could be due 

to fact that Rat-1 is an immortalized cell line and possibly differs from other cell lines or in vivo 

status.  

Another member of cyclin family, cyclin D, did not reach the border of significance, 

although indication of the rhythm is noticeable. Previous studies documented cyclin D as 

rhythmically expressed in human intestinal mucosa (Griniatsos et al., 2006). Furthermore, 

markedly decreased expression of mRNA was observed in liver of Cry-deficient mice (Matsuo et 
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al., 2003) and in hair follicle of Bmal1 knockout mice (Lin et al., 2009). However, conflicting 

results were also found. While other cell cycle regulators were affected by Per2 mutation in 

mouse embryonic fibroblast cell line, the expression of cyclin D was not affected (Gu et al., 

2012). Similarly, knockdown of Csnk1e, whose protein product CK is circadian clock regulator, 

did not affect cyclin D expression in human sarcoma cell line (Yang & Stockwell, 2008). 

Moreover, the role of microRNA in modulation of translational activity of cyclins D was 

documented in the rat intestine – only rhythmic expression of cyclin D1 protein but not mRNA 

was detected (Balakrishnan et al., 2010). These findings suggest that other regulatory pathways 

might also play a substantial role in the regulation of cyclin D expression and that it can be tissue 

specific. 

Surprisingly, c-Myc did not exhibit circadian variation in our experiments even if it is 

considered to be clock-controlled gene as its promoter contains E-box sequence and P1 site, 

which are known to mediate c-Myc repression by binding of CLOCK/BMAL1 (Wierstra & 

Alves, 2008). Previously there was demonstrated rhythmic expression of c-Myc in liver and cell 

lines (Filipski et al., 2009; Hua et al., 2006), and within whole transcriptome in circadian 

microarray studies of SCN and liver (Akhtar et al., 2002; Duffield et al., 2002; Panda et al., 2002). 

However, the amplitude of the rhythm has never been extremely robust and moreover, absence 

of the rhythm in mouse liver was also reported (Wu et al., 2004). In another study, strong 

rhythms of cell cycle associated genes including c-Myc were revealed in the liver, while no or 

weak rhythms appeared in kidney, suggesting tissue specific distribution of the rhythmicity (Kita 

et al., 2002). Similarly, no circadian rhythm of c-Myc was detected in whole transcriptome 

microarray study in mouse colon but the gene Mycbp coding c-MYC binding protein exhibited 

circadian variation (Hoogerwerf et al., 2008), i.e. circadian changes could alter c-MYC activity on 

functional level. Furthermore, c-MYC regulates cyclin D expression (Pelengaris et al., 2002) and 

thus the absence of its rhythm in our experiments might contribute to insignificant rhythmicity of 

cyclin D transcription observed in our study. 

p21, the cell cycle inhibitor induced by p53 pathway and decelerating G1/S transition by 

repressing activity of CDK complexes, is induced in intestinal epithelium mainly by 

environmental insults like radiation (Wilson et al., 1998). According to earlier experiments of 

other groups in mouse liver (Gréchez-Cassiau et al., 2008; Gu et al., 2012) or human intestinal 

mucosa (Griniatsos et al., 2006) we expected rhythmic expression of p21. In contrast, we 

observed no significant rhythm in colonic epithelium. Direct connection of p21 expression to 

molecular clock was proposed, as Bmal1 knockouts exhibited altered cell proliferation and 
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diminished p21 rhythm. Subsequently, functional RORE binding site in p21 promoter region was 

identified and orphan receptors REVERBs and RORs were able to bind actively to this region 

(Gréchez-Cassiau et al., 2008). In addition, p21 phase shift was detected in mouse embryonic 

fibroblasts of Per2 mutants comparing with wild type (Gu et al., 2012). Nonetheless, multiple 

signals and factors are able to regulate transcription from the p21 gene promoter (Abbas & Dutta, 

2009) and thus putative clock regulation may only participate in complex regulatory network. 

We detected rhythmic expression of the CDK inhibitor p27, which is another member of 

CIP family and functionally similar to p21. Though it partially substitutes function of p21, its role 

in cell cycle withholding and suppressing of malignancy is generally less extensive than p21. p27 

plays an important role in homeostasis of intestinal epithelium. It binds to CDK2 and CDK4, 

suppresses their activities in proliferating zone of crypts and gates cell cycle progression (Smartt 

et al., 2007). In the view of this fact, circadian rhythmicity of p27 could play a substantial 

regulatory role particularly in crypt proliferation zone and functionally participate in circadian 

orchestration of intestinal cell proliferation. 

Although, oscillatory expression of CDK inhibitor p16 in human intestinal mucosa has 

been observed (Griniatsos et al., 2006), the abundance of detected mRNA was extremely low in 

our experiments and standard deviations of particular measurements were too high to reach 

statistically significant level.  

From the expression profiles of cell cycle regulators under standard conditions it seems 

that circadian orchestration has only partial impact on intestinal epithelial proliferation and that 

this influence might be species and tissue specific. 

As the peripheral circadian clocks, including the intestinal one, are robustly affected by 

feeding regime (Sládek et al., 2007; Stokkan et al., 2001), and circadian variation in proliferation 

was documented in rodent, and human intestinal epithelium (Buchi et al., 1991; Burholt et al., 

1985; Burns et al., 1972; Marra et al., 1994; Scheving, 2000), we studied the effect of reverse 

feeding regime on above mentioned genes of cell cycle.  

In contrast to rhythmically expressed genes detected under standard condition, only the 

gene cyclin B1 showed significant effect of both factors (feeding regime and circadian time) using 

two-way ANOVA. All other genes, in particular Wee1, cyclin A, and p27 did not show any main 

effects or interaction between time and feeding regime, suggesting rather partial uncoupling or 

misbalancing of cell cycle regulator rhythm under time-restricted feeding. However, it is 

documented that kinetics of cell proliferation in mouse colon measured as [3H]-thymidine 

incorporation into DNA exhibit circadian rhythm and is governed by feeding time rather than 
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light regime (Burholt et al., 1985; Lakatua et al., 1983). Inconsistency of these results with our 

data could be attributed to the use of different animal experimental model or to the fact that 

epithelium of colon crypts is comprised of functionally diverse cell types with particularly 

different cellular functions. These cell types might be unequally affected by feeding regime and 

potential changes in particular compartment might be difficult to see in the whole epithelium 

harvested as one sample. We confirmed such heterogeneity using histological laser 

microsdissection approach as we found substantially higher expression of cell cycle regulators in 

crypt base than in crypt mouth/surface cells. Furthermore, in spite of homogenous circadian 

clock distribution along the crypt axis, the rhythmicity of cell cycle regulators was distributed 

differentially. In addition, previous experiments showed that circadian variation in proliferation of 

rectal mucosa cells was detected in the lower parts of crypt, while no rhythm was observed in the 

upper parts (Marra et al., 1994), which supports again the hypothesis of different rhythm 

distribution. In overall, although suggestions and some evidence for linking circadian clock and 

cell cycle have been claimed, our study documents, that colonic intestinal epithelium exhibits at 

least partially uncoupled clock and cell cycle. These results indicate additional strong stimuli and 

regulators, which can interfere and alter clock-cell cycle link.  

Speculatively, an important role in the putative circadian orchestration of epithelial cells 

proliferation could be played also by Wnt pathway, which is very active in regulation of epithelial 

proliferation in the intestine. Interestingly, it was found that CK acts on the -catenin 

degradation complex and directly participates in canonical Wnt and noncanonical Wnt/JNK 

pathways (Schwarz-Romond et al., 2002). In addition, -catenin was able to regulate expression 

of cyclin D1 (Tetsu & McCormick, 1999) and was increased in Per2-knockdown intestinal cell 

lines (Wood et al., 2008). Moreover, increased -catenin was able to destabilize PER2 by 

inducing -TrCP, an F-box protein of SCF ubiquitin E3 ligase, in the intestinal mucosa of the 

Apc(Min/)(+) mouse and decrease of PER2 levels was associated with altered circadian rhythms of 

clock-controlled genes Dbp and Wee1 (Yang et al., 2009a). Thus Wnt pathway is other possible 

way how clock might affect intestinal epithelial proliferation. 

7.4 Role of the clock in tumourigenesis 

 
Supportive evidence for linking circadian clock and regulation of cell proliferation 

emerged from the experiments documenting significant role of clock disruption or its deficiency 

in carcinogenesis of various cancers in experimental models as well as in human epidemiological 
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studies (Greene, 2012). Numerous experimental investigations show that alteration or 

dysfunction of circadian clock at molecular lever may lead to cancer development or tumour 

growth acceleration (Fu et al., 2002; Gu et al., 2012; Yang et al., 2009b; Zhang et al., 2008). 

Similarly, increased polyp formation was detected in the small intestine of mice with Apc/Min 

phenotype combined with Per2 mutation (Wood et al., 2008) and the increased -catenin was 

shown to modulate PER2 protein stability (Yang et al., 2009a). In the present study, we show 

significantly altered circadian machinery during tumourigenesis in the model of colitis-associated 

colorectal cancer. This model was previously characterized as high-grade dysplasia or 

intramucosal carcinoma (Švec et al., 2010) that accurately recapitulates the phases of initiation 

and progression of human tumour (De Robertis et al., 2011). 

 To our knowledge, we show for the first time comprehensive examination of local 

circadian clock and its output (clock-controlled) in induced colorectal tumour and 

simultaneously in adjacent healthy-looking colonic tissue. Our results demonstrate disruption of 

colonic clock in tumour associated with strongly dampened expression of most clock genes. The 

impaired amplitude of clock gene rhythms in tumour tissue was not due to clock 

desynchronisation among tumour cells, as average expression represented by mesor was rapidly 

decreased in all studied genes. Moreover, rhythm of clock-controlled gene Dbp was depressed 

but other putative clock-controlled genes were either down-regulated (p21) or up-regulated 

(Wee1, c-Myc). Most interestingly, we detected clock gene expression alterations also in 

surrounding healthy-appearing tissue, and in liver of tumour-bearing mice. These tissues 

exhibited phase delay of clock gene or clock-controlled gene expression, respectively, which 

implicates that molecular circadian disruption might precede tissue malformation.  

Putative involvement of circadian clock in tumourigenesis was reported in animal studies, 

where higher incidence of spontaneous and -radiation induced tumour incidence was observed 

in animals with clock gene deficiency (Fu et al., 2002; Lee et al., 2010; Wood et al., 2008; Yang et 

al., 2009b). Altered expression of clock genes was reported in malignant tissue of several human 

cancer types detected in patients at single time point (Chen et al., 2005; Lin et al., 2008; Yeh et 

al., 2005; Zeman et al., 2008). In addition, chronodisruption caused by jet-lag or shiftwork 

negatively affected tumour incidence, tumour growth progression or survival rate in both humans 

and animal models (Erren et al., 2008; Filipski et al., 2004, 2005; Schernhammer et al., 2003; 

Yasuniwa et al., 2010). Further experiments from cancer cell lines demonstrated more or less the 

involvement of clock genes in regulation of cell proliferation and/or apoptosis (Gery et al., 2006; 

Hua et al., 2006; Yang et al., 2009b). However, to date only a few studies report detailed analysis 
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of mouse tumour molecular clock. The expression of clock genes was attenuated or completely 

diminished in implanted tumours (Li et al., 2010; You et al., 2005) and in intestinal polyps of 

ApcMin/+ mice (Yang et al., 2009a).  

To our knowledge, the present study shows for the first time the evidence of endogenous 

rhythmicity in primary tumour compared with its adjacent surrounding tissue in colorectal 

tumourigenesis. Our results obtained from control animals are in concordance with our 

determination of rat intestinal clockwork system (Fig. 6.1) and with other observations 

(Hoogerwerf et al., 2008, 2007; Sládek et al., 2007). Comparison of colonic tissue in control 

animals and in tissue surrounding the tumour showed the damping of Per1, Per2, and RevErb 

expression and complete loss of Bmal1 rhythmicity in neoplastic tissue. Thus, we confirmed the 

hypothesis of disrupted clock in neoplastic tissue and extended it to mouse carcinogen-induced 

colorectal primary tumour. In support of this hypothesis, we also detected down-regulation of 

rhythmic expression of clock-controlled gene Dbp, whose altered expression pattern was found in 

intestinal polyps of ApcMin/+ mice (Yang et al., 2009a).  

Interestingly, we observed that clock genes were partially affected also in surrounding 

tissue of tumour bearing mice. Whereas Per1 and Per2 expression did not differ compared to 

mucosa and whole colon of control mice, the expression profile of RevErb was depressed and 

Bmal1 rhythm was abolished. These findings suggest that in carcinogen-induced model of 

tumourigenesis, clock disruption might precede the malignant transformation. Such hypothesis is 

supported by observed changes of peripheral circadian clock in liver of tumour bearing mice, 

where precancerous lesions were found (Nishihara et al., 2008; Nozaki et al., 2003). 

Alternatively, clock in surrounding tissue could be affected by factors secreted by tumour cells. 

Treatment with AOM is associated with up-regulation of COX-2, a key enzyme of prostaglandin 

synthesis, and prostaglandins are able to shift the peripheral circadian rhythms (Tsuchiya et al., 

2005). Similarly, tumour cells secrete TGFβ that is able to modulate the circadian clock (Kon et 

al., 2008). 

Our results demonstrate altered regulation of key cell cycle regulators Wee1, c-Myc, and 

p21, which are putatively under circadian clock control. Wee1, a candidate for linking element 

between clock and cell cycle, was demonstrated to be directly regulated by CLOCK/BMAL1 

binding to its E-box promoter sequence (Matsuo et al., 2003). Its overexpression was detected in 

various cancer types (Vriend et al., 2013). Furthermore, c-Myc is a well known proto-oncogene 

stimulating G0/G1 transition by enhancing expression of numerous cell cycle promoting factors. 

In opposite, p21 is one of the main CDK inhibitors, which withhold cell cycle progression and 
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REVERB/ROR are able to regulate expression of p21 protein (Gréchez-Cassiau et al., 2008). 

Thus clock disruption in tumour tissue might be causally involved in the changes of Wee1, 

c-Myc, and p21 expression. Although involvement of other regulatory pathways in these changes 

cannot be ruled out, the observed gene specific changes suggest that they might be related to 

clock disruption. Suppressed rhythms of Per1 and Per2 expression in tumour might up-regulate 

Wee1 and c-Myc expression, because PER/CRY heterodimer is not able to suppress sufficiently 

the transcription of clock genes and other E-box regulated genes including Wee1 and c-Myc. 

Similarly, disruption of REVERB-mediated transcription due to suppression of Rev-Erb might 

lead to impaired regulation of p21 expression. 

The absence of Wee1 expression rhythm in murine colon samples was in contrary to our 

previous findings in rat colon as well as observations of other authors (Hoogerwerf et al., 2007; 

Polidarová et al., 2009; Sládek et al., 2007). We demonstrate that this lack of rhythm was due to 

aging, as tumours bearing mice, as well as parallel controls, were 52-weeks-old. In contrast, we 

detected rhythmic expression of Wee1 in younger 10-week-old animals. Beside Wee1, also the 

rhythm of p21 was suppressed in aged animals. Importantly, all studied clock genes were 

permanently rhythmic in aged animals even if the amplitude of these rhythms was reduced. 

Others authors described increased proliferation rate of colonic epithelium (Holt & Yeh, 1988) 

and altered expression of cell cycle regulators like p21, Cdk2, and cyclin E (Xiao et al., 1999) in 

aged animals. Together these findings indicate partial uncoupling and disruption of output genes 

downstream the basic circadian clock transcriptional loop in aged animals. 

The exact mechanism of AOM-induced disruption of molecular circadian clock remains 

uncovered. However, several pathways might be theoretically involved. The gene mutations or 

increased activation of -catenin, K-ras, and TGF signalling pathways were reported in 

AOM-induced colorectal cancer (De Robertis et al., 2011; Takahashi & Wakabayashi, 2004). 

Furthermore, increased activity of iNOS, and COX-2 was detected in adenocarcinomas (Tanaka 

et al., 2003, 2005) and prostaglandins as well as TGF have been previously demonstrated to 

shift and reset the phase of clock genes (Kon et al., 2008; Tsuchiya et al., 2005). 

-catenin is a key co-transcriptional activator in Wnt signalling, the essential pathway in 

intestinal proliferation homeostasis (Fevr et al., 2007). Activation of Wnt inhibits GSK3 and 

leads to releasing of previously bound -catenin. This protein is translocated to nucleus where it 

acts as a co-activator of target genes. Mutations of -catenin prevents its binding to GSK3 and 

so -catenin is not phosphorylated and degraded in proteasome and thus it activates 
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exaggeratedly the target genes, which results in extended proliferation. Knockdown of PER2 

protein in colon cancer cell lines or Per2 mutation in transgenic mice leads to increased -catenin 

and enhanced cell proliferation (Wood et al., 2008). Mutually, -catenin is able to decrease PER2 

protein stability (Yang et al., 2009a), thus mutation can affect clock function. Alternatively, the 

mutation can also modulate phosphorylation of BMAL1 by GSK3 resulting in altered stability 

and circadian output of the clock gene (Sahar et al., 2010). Furthermore, GSK3 exhibits 

rhythmic catalytic activity (Harada et al., 2005) and is required for the entry of PER2 into 

nucleus, allowing the repression of CLOCK/BMAL1-mediated gene transcription (Iitaka et al., 

2005). In other experiments, NHERF1, rhythmically expressed adaptor protein interacting with 

-catenin, was shown to undergo consecutive alterations during colorectal tumourigenesis 

(Hayashi et al., 2010). These findings indicate another possible link between clock disruption 

and neoplastic state of colon epithelium.  Furthermore, the elevated -catenin may be involved in 

iNOS up-regulation resulting in increased synthesis of NO, which seems to play a role in clock 

function regulation (Menger et al., 2007). Simultaneously, iNOS mRNA regulation is postulated 

to be clock regulatory target mediated by circadian deadenylase nocturnin (Niu et al., 2011). In 

addition, histone deacetylase SIRT1, which is expressed in a circadian manner (Asher et al., 

2008), suppresses intestinal tumourigenesis and colon cancer growth in the -catenin-driven 

mouse model of colon cancer as it deacetylates -catenin and suppresses its ability to activate 

transcription of target genes and drive cell proliferation (Firestein et al., 2008). 

K-ras mutation leads to constitutive activation of its downstream targets in 

Raf/MEK/MAPK and PI3K/Akt/PKB signalling pathways. MAPK kinases cascade is known to 

be involved in inducing circadian expression in culture cells (de Paula et al., 2008) and in 

phosphorylating of CRY1 and CRY2 (Sanada et al., 2004). Moreover, some of these kinases, 

particularly Mapk10 and Map3k2, are markedly reduced in scrapped colonic mucosa after 

AOM/DSS treated mice (Suzuki et al., 2007), while other isoforms are rhythmically expressed as 

detected by microarray studies (Hughes et al., 2009). Interconnected signalling pathway induced 

by IGF-1R and mediated by PI3K/PDK1/Akt has been shown to be substantially involved in 

tumour growth acceleration after light-at-night exposure (Wu et al., 2011). 

TGF pathway was found to be deregulated in AOM-treated mice (Chen & Huang, 

2009; Takahashi & Wakabayashi, 2004) where the active form of TGF is decreased and TGF 

pathway is attenuated. TGF binds to its receptor, consequently, the protein product of 

rhythmically expressed Smad3 gene (Sato et al., 2012), the protein SMAD3, is phosphorylated 
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and forms dimer with SMAD4. Subsequently the dimer activates transcription of Dec1, whose 

protein product DEC1 is a potent clock regulator. Via this mechanism, TGF seems to play a role 

in clock resetting and in induction of phase-shifting of peripheral clock via Dec1 induction (Kon 

et al., 2008). In parallel, DEC2 is able to inhibit TGF-induced tumour progression in human 

pancreatic cancer cell line (Sato et al., 2012). Moreover, TGF inhibits expression of the majority 

of clock genes as was shown in murine fibroblasts (Gast et al., 2012). 

Considerable role in clock-related tumourigenesis may play also melatonin, as its 

inhibitory actions have been demonstrated in various cancer cell lines and animal models (Reiter 

et al., 2007). Melatonin was shown to inhibit dose-dependently the development of colonic 

adenocarcinoma in rat AOM/DSS model (Tanaka et al., 2009) and its rhythm was depressed in 

patients with colorectal cancer (Kos-Kudla et al., 2002). Exogenous administration of melatonin 

increased survival rate and decreased tumour growth in experimental mouse model (Otálora et 

al., 2008). Furthermore, its ability to increase Per2 and Clock expression and to decrease Bmal1 

expression was demonstrated in prostate cancer cells (Jung-Hynes et al., 2010). These data 

suggest possible interaction between peripheral melatonin and clock even if the mechanism is not 

clear. The possible link could be via sirtuin signalization, as melatonin is able to inhibit SIRT1 

expression and activity and thus to decrease cell proliferation (Jung-Hynes et al., 2011). 

Another possible candidate for mediating clock function disruption during neoplastic 

transformation is adiponectin, a hormone of adipose tissue, which enhances insulin sensitivity, 

suppresses inflammatory processes and affects metabolism (Kadowaki et al., 2006). Adiponectin 

deficiency enhances colorectal carcinogenesis in murine AOM-induced cancer model, specifically 

the tumour size and incidence (Nishihara et al., 2008). Compared to its deficiency, adiponectin is 

able to suppress carcinogenesis in mice under specific dietary condition (Fujisawa et al., 2008) 

and has anti-proliferative effect on cancer cell lines (Jardé et al., 2011). Diurnal variations of 

plasma concentration of adiponectin and its receptors (AdipoR1 and AdipoR2) have been 

observed both in human and mice (Blüher et al., 2005; Gavrila et al., 2003; Gómez-Abellán et al., 

2010). Adiponectin has been show to modulate some clock-related pathways. It blocks 

phosphorylation of Akt and GSK3 thus suppressing intracellular accumulation of -catenin. 

Furthermore, it modulates the expression of c-Myc, and cyclin D1 and represses MAPK pathway 

(Jardé et al., 2011). Adiponectin gene transcription is enhanced by PPAR, C/EBP, and 

SIRT1/FOXO1, all of which have been shown to exhibit circadian regulation and to be involved 
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in linkage between the clock and metabolism (Phillips & Kung, 2010). Together these findings 

imply a possible role of adiponectin in clock-related tumourigenesis. 

In summary, all mentioned mechanism could play a partial role in the development of 

circadian clock-related tumourigenesis. However, we also cannot exclude the known mutagenic 

effect of AOM directly on DNA of clock genes. Significant number of mutations was detected in 

Clock gene in human colorectal cancer (Alhopuro et al., 2010). In rats, AOM administered in 

morning hours caused twice as many foci aberrant crypts in comparison with administration in 

the afternoon (Pereira et al., 1994). The demonstration of time-dependent cytotoxicity points to 

importance of local subjective clock setting in susceptibility of colon epithelium to carcinogenic 

cues. In addition, methylazoxymethanol (MAM) acetate, the downstream metabolite of AOM, 

showed circadian rhythmicity in the apoptotic incidence both in the small and large intestine 

(Ijiri, 1989). 
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88  CCOONNCCLLUUSSIIOONN  
 

In summary, we demonstrated functional peripheral clock in the epithelial cells of distinct 

intestinal segments and its involvement in the regulation of epithelial transport, cell cycle 

regulation and neoplastic transformation. 

The epithelium exhibited homogenous expression pattern in colonic crypt cells 

independently of the cell position along the crypt-villus(surface) axis despite of distinct cellular 

function of enterocytes along the crypt axis, which documents universal role of the clock 

independent of cellular function. Furthermore, we documented circadian regulation of colonic 

sodium absorption. We showed that genes coding proteins which mediate sodium chloride 

absorption (Nhe3, Dra, Atp1a1, Nherf1, ENaC) exhibited rhythmic expression that was affected 

by feeding regime. Moreover, we demonstrated that rats kept under condition of low-salt diet 

exhibit diurnal variation in electrogenic sodium absorption mediating by ENaC channel. We 

suppose that this variation is mediated by plasma aldosterone and clock gene Per1. 

We also demonstrated that cell cycle regulation of colonic epithelial cells was partially 

under circadian regulation. Some of the regulatory genes exhibited rhythmic expression (Wee1, 

p27, cyclin A, cyclin B1), while others did not vary significantly in time (c-Myc, cyclin D1, p21). 

The feeding regime influenced only cyclin B1 expression. These data indicate a partial role of the 

clock in colonic epithelium proliferation, while other regulatory factors seem to be involved.  

We showed substantial disruption of cellular clockwork during neoplastic transformation 

of colonic epithelium. This disruption was most prominent in tumour tissue, where main clock 

genes were severely dampened. However, the healthy-looking adjacent colonic tissue also 

exhibited marked changes in expression of clock genes comparing to control animals. These 

findings suggest that clock disruption might contribute to the tissue malformation and this 

conclusion is supported by findings of altered liver clock in colorectal tumour-bearing animals. 

Furthermore, we observed changes in expression of cell-cycle regulators in tumour tissue. 

However, their circadian rhythms were lost not only in tumour tissue, but also in the colonic 

epithelium of control animals. This loss of rhythm was associated with ageing, which suggests 

partial uncoupling of clock and cellular functions during ageing. 

In overall, we have shown substantial participation of peripheral clock in regulation of key 

intestinal functions. The intestinal circadian clock governs colonic absorption of sodium chloride. 

Furthermore, it participates in cell cycle regulation of colonic enterocyte proliferation and its 

disruption contributes to tissue malformation and colorectal tumourigenesis.  
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ATP adenosine-5'-triphosphate 
ABC ATP-binding cassette  
Abcb1a ATP-binding cassette, sub-family B, member 1a 
AdipoR1/R2 adiponectin receptor 1/2 
Ae1 anion exchanger 1 
Akt v-akt murine thymoma viral oncogene homolog; known as protein kinase B 
ANOVA analysis of variance 
AOM azoxymethane 
APC adenomatous polyposis coli  
ATM ataxia telangiectasia mutated 
Atp1a ATPase, Na+/K+ transporting, alpha 1 polypeptide 
Atp1b ATPase, Na+/K+ transporting, beta 1 polypeptide 
ATR ataxia telangiectasia and Rad3-related protein 
Avp arginine vasopressin 
B2m beta-2-microglobulin 
Bcl2 B-cell CLL/lymphoma 2 
Bcl-XL B-cell lymphoma-extra large 
beta-TrCP beta-transducin repeat containing 
Bmal brain and muscle Arnt-like protein-1 
Bmp bone morphogenetic factor 
BW body weight 
C/EBP a CCAAT-enhancer-binding protein alpha 
C57BL/6  C57 black 6 
CDC cell division cycle 
CDK cyclin dependent kinase 
cDNA copy DNA 
Cftr cystic fibrosis transmembrane conductance regulator 
CI confidence interval 
Cip1 CDK-interaction protein 1 
CK casein kinase 
Clock circadian locomotor output cycles kaput 
c-Myc myelocytomatosis oncogene 
Cox-2 cyclooxygenase-2 
Cry1/2 cryptochrome 1/2 
Csnk1e casein kinase 1, epsilon 
CT ciradian time 
CTRL control 
Dbp D-box binding protein 
Dec1/2 differentially expressed in chondrocytes 1/2 
DHM dorsomedial hypothalamus 
DNA deoxyribonucleic acid 
Dra downregulated in adenoma 
DSS dextran sodium sulfate 
E4bp4 E4 promoter binding protein 4; known as Nfil3 (Nuclear Factor, 

Interleukin 3 Regulated) 
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ENaC epithelial sodium channel 
FAA food-anticipatory activity 
Fbxl3 F-box and leucine-rich repeat protein 3 
FEO food-entrainable oscillator 
Foxo1 forkhead box protein O1 
Gadd45a growth arrest and DNA-damage-inducible, alpha 
Gapd glyceraldehyde-3-phosphate dehydrogenase 
Glut2/5 glucose transporter 2/5 
GSK3 glycogen synthase kinase 3  
Hlf hepatic leukemia factor 
HMG CoA 3 hydroxy 3 methylglutaryl coenzyme A 
Hsd3b6 3 b-hydroxysteroid dehydrogenase VI 
Chk1/2 serine/threonine-protein kinase Chk1/2 
IGF-1R insulin-like growth factor 1 (IGF-1) receptor 
IGL intergeniculate leaflets  
iNOS nitric oxide synthase, inducible isoform 
Isc short-circuit current 
JNK c-Jun N-terminal kinase 
Kcc1 potassium/chloride cotransporter 1 
Kip1 cyclin-dependent kinase inhibitor 1 
Klf10 Krüppel-like factor 10 
LD light/dark 
LMD laser capture microdissection 
LSD least-significance difference  
MAM methylazoxymethanol  
Mapk mitogen-activated protein kinase 
Mct1 monocarboxylate transporter 1 
Mdm2 double inute 2 protein 
Mdr multidrug resistance protein 
MEK mitogen-activated protein kinase kinase 
mesor midline estimating statistic of rhythm 
Min multiple intestinal neoplasia 
mRNA messenger ribonucleic acid 
Mrp2 multidrug resistance protein 2 
Myt1 protein kinase, membrane associated tyrosine/threonine 1 
Nhe2/3 sodium/hydrogen exchanger, member 3 
Nherf1 sodium-hydrogen exchanger regulatory factor 1 
Nherf1 Nhe3 regulatory factor 1 
Nkcc1 sodium/potassium/chloride transporter 
Npas2 neuronal PAS domain-containing protein 2 
Oatp-b organic anion transporter B 
OCT optimum cutting temperature 
Octn2 organic cation transporter 2 
PAS Period-Arnt-Single-minded 
Pat1 putative anion transporter-1 
Pbef pre-B cell-enhancing factor; known as Nampt (nicotinamide 

phosphoribosyltransferase) 
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PD potential difference 
Pept1 peptide transporter 1 
Per1/2/3 period gene 1/2/3 
PH partial hepactomy 
PI3K phosphatidylinositide 3-kinases 
PKB protein kinase B 
Ppar a/g peroxisome proliferator-activated receptor alpha/gama 
Raf Raf/MEK/MAPK and PI3K/Akt/PKB  
RAR retinoic acid receptor 
RAS rat sarcoma protein 
RevErb known as Nr1d1 (nuclear receptor subfamily 1, group D, member 1) 
RF restricted feeding 
RHT retino hypothalamic tract  
RNA ribonucleic acid 
ROR RAR-related orphan receptor 
RRE Rev response element 
RT-PCR reverse transcription polymerase chain reaction 
SCC short-circuit current 
SCF Skp, cullin, F-box containing complex 
SCN suprachiasmatic nuclei of hypothalamus 
SE standard error of the mean 
Sglt sodium-glucose linked transporter 
Sirt1 sirtuin (silent mating type information regulation 2 homolog) 1 
Slc solute carrier family 
Smad mothers against decapentaplegic homolog 
SREBP sterol regulatory element-binding protein 
Tcf T cell factor  
Tef thyrotroph embryonic factor 
Tgf-beta Transforming growth factor beta 
Waf1 wild-type p53-activated fragment 1 
Wee1 Wee1 homolog (Schizosaccharomyces pombe) 
Wif1 Wnt inhibitory factor 1 
Wnt wingless-type MMTV (mouse mammary tumor virus) integration site 

family 
Ywhaz tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 

protein, zeta (14-3-3-zeta) 
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