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Abstrakt

Zraly pyl tabaku obsahuje sdmlehydratovanou cytoplazmu a je metabolicky neaktiv
Po rehydrataci cytoplazmy je jeho metabolizmusaréstan a po doka@eni aktivace vyista
pylovou aperturou pylova d¢&a. Zmeny v zavodgni cytoplazmy spolu s nastartovanim
metabolizmu jsou doprovazeny regulaci translacest-franslanich modifikaci (zejména
fosforylace) pitomnych proteifi. V této disertani praci jsou prezentovany fosfopeptidy ze
zralého pylu tabéku virginskétgblicotiana tabacum), pylu aktivovanéhaon vitro 5 min a pylu
aktivovanéhan vitro 30 min. Z kazdého stadia byl ziskan celkovy praiey extrakt, jenz byl
nasStpen trypsinem a ziskana peptidovaésnbyla obohacena metodou MOAC (afinitni
chromatografie s vyuZzitim kovového oxidu/hydroxidg) matrici z oxidu titagitého.
Fosfopeptidy v obohaceném eluatu byly identifikoyarkapalinovou chromatografii
v kombinaci s tandemovou hmotnostni spektromdt@~MS/MS).

Celkem bylo identifikovano 471 fosfopepiidnesoucich 432ipsreé lokalizovanych
fosforylainich mist. Ziskané fosfopeptidy pochazely z 30Xofm®teini, které spadaly do
tiinacti funkénich kategorii. Revladajicimi funkcemi se staly transkripce, syntprateini,
cileni a skladovani proteira genos signélu. Mnohé fosfopeptidy podléhaly kon@nim
zménam mezi ftemi studovanymi stadii safiino gametofytu; 209 regulovanych
fosforylovanych pepti@l vykadzalo sedm regulaich trend, z nichz ¥tSina paitila do skupiny
zahrnujici fosfopeptidy identifikované exkluzivive zralém pylu. Navic bylo v ziskaném
fosfoproteomickém datovém souboru nalezen& [gindzovych motiv obsahujicich
fosforylovany serin a jeden fosfothreoninovy motw pylovém proteomu a v sekretomu
pylovych |&ek tabaku pak byly vyhledany kinazy, jez maji pogkedikce rozpoznavat
nalezené sekveéni motivy.

Souhrng vzato se jedna o prvni fosfoprotemickou studii ivaktaného pylu
krytosemennych rostlin (Angiospermae) a o studé&cmd rozsiujici identifikovanoucast

fosfoproteomu zralého pylu tabaku virginskéhlbcotiana tabacum).

Kli éova slova: santi gametofyt, aktivace pylu, oxid titafitly, obohacovani o fosfopeptidy,

fosfoproteomika, kindza, fosforyai motiv







Abstrakt v anglictiné (English abstract)

Tobacco male gametophyte has a strongly dehydmaytmplasm and represents a
metabolically inactive stage. Upon cytoplasm rehtidn, pollen grain becomes metabolically
active and after the activation is finished, thdlgmotube growth through a selected pollen
aperture starts. The rehydration together with bwia activation are accompanied by the
regulation of translation and post-translationaldifications (mainly phosphorylation) of the
existing proteins. In this Ph.D. thesis, there weentified phosphopeptides from tobacco
(Nicotiana tabacum) mature pollen, pollen activat@dvitro 5 min and pollen activated vitro
30 min. The total proteins from the above male gapig/te stages were extracted. The protein
extract was trypsinized and the acquired peptideture was enriched by MOAC (metal
oxide/hydroxide affinity chromatography) with tilam dioxide matrix. The enriched fraction
was subjected to liquid chromatography coupled w#hdem mass spectrometry (LC—
MS/MS).

Totally, there were identified 471 phosphopeptidesrying 432 exactly localized
phosphorylation sites. The acquired peptide ideatibns were mapped to 301
phosphoproteins that were placed into 13 functiaakgories, dominant of which were
transcription, protein synthesis, protein destoratand storage, and signal transduction.
Notable part of phosphorylated peptides were shimare regulated during pollen activation;
209 regulated phosphorylated peptides were listexilseven groups based on their regulatory
trends, majority of which were identified excludivén mature pollen. Moreover, there were
found five phosphorylation motifs with a centralogbhoserine and one phosphothreonine
motif, which were predicted to be recognized byesalkinase families. The members of these
kinase families were then found in tobacco pollestgome and pollen tube secretome.

Collectively, this Ph.D. thesis represents thet fshosphoproteomic study of any
angiosperm (Angiospermae) activated pollen, andbiptbroadens the identified part of

tobacco(Nicotiana tabacum) male gametophyte phosphoproteome.

Key words. male gametophyte, pollen activation, titanium diex phosphopeptide

enrichment, phosphoproteomics, kinase, phospharglatotif
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Seznam poutzitych zkratek

2D DIGE — dvojroznirnd difererni gelova elektroforéza

2D IEF-PAGE - dvojrozirn& proteinova elektroforéza kombinujici isoelei#tau fokusaci
a polyakrylamidovou gelovou elektroforézu

CAMK2 — Cé&*/kalmodulin-dependentni proteinova kinaza 2

CDK — cyklin-dependentni proteinova kinaza

CDPK-SnRK — C&-dependentni proteinové kinazyimzné kinazam nefermentujicim
sacharézu (angl. adependent protein kinase—sucrose-non-fermenting-

related kinase)

CK2 — kaseinova kinaza 2

EDTA — kyselina ethylendiamintetraoctova

EPP — EDTA/puromycin-rezistentéstice

EST —angl. expressed sequence tag

HILIC — chromatografie s hydrofilnimi interakcemi
IDA — kyselina iminodioctovéa

IMAC — chelat&ni afinitni chromatografie

MAPK — mitogenem aktivovana proteinova kinaza
MOAC — afinitni chromatografie s vyuzitim kovovébwridu/hydroxidu
NTA — kyselina nitrilotrioctova

PMI — pylova mitéza |

PMII — pylova mitéza |l

SAX — aniontova ionexova chromatografie

SCX — kationtova ionexova chromatografie

SDS-PAGE - polyakrylamidova gelova elektroforéz#itomnosti dodecylsiranu
sodného

SIMAC — postupna eluce metody IMA@ngl. sequentional elution from IMAC)
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1. Uvod do problematiky

1.1. Evoluce Zivotniho cyklu rostlin (Archaeplastida)

RozmnoZovani je jednou z vyzZmgch vlastnosti Zivych organiZmna Zemi. Pro
rozmnozovani rostlin (Archaeplastida) je typickiédgtni pohlavni a nepohlavni generace, tzv.
rodozména (metageneze). Tato kapitola se bude daeowat zelenym rostlinam
(Viridiplantae), mezi &z seiadi klasické zelenfasy (Chlorophyta) a vyssi rostliny spaié
s paroznatkami affbuznymi zelenymfasami (Streptophyta).aRodre nejspisSe travily zelené
fasy (nap. paroznatky — Charales; viz Haig, 2010), kteréujgwedky vysSich rostlin
(Embryophyta), ¥tSinu svého Zivotniho cyklu v poddlnaploidniho gametofytu (viz Qiu et
al., 2012). Dosgla fasa (tedy gametofyt) tviomitotickym ctlenim haploidni gamety, na rozdil
od zivaiichu, u kterych se vyti@ji gamety meiotickymdenim. Splynutim rostlinnych gamet
vznika diploidni zygota. Vifppact paroznatek nepodléha zygota Zzadnému mitotickéstani
ale naopak ihned dava vzniknout meioticky&éredim ctyfem haploidnim sporam. Ze spor pak
vyrasta dalSi generace haploidniho gametofytu (zalninojimo jiné dosglou fasu) a cely
Zivotni cyklus se opakuje. Diploidni vicelidnd generace pak v evoluci nejspiSe vznikla

sporofyt (2n)

gamety

(n)

gametofyt (n)

Obr. 1.1 — Porovnani zivotniho cyklu zelenych Fas ze skupiny paroZnatek (Charales — A) a vysSich
rostlin (Embryophyta — B). Mnohobunécna diploidni generace (sporofyt) vySSich rostlin vznikla
oddalenim meidzy od splyvani gamet (u paroznatek totiz zygota prodélava meiotické déleni vzapéti
po svém vzniku oplozenim) a vloZzenim fady mitotickych déleni zygoty do zivotniho cyklu. Upraveno
podle Balaz et al. (2012).
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oddalenim meidzy od splyvani gamet, zygota tak fupadge fadu mitotickych dleni a takto
vzniklé diploidni buiky pak spolén¢ davaji vzniknout diploidnimu mnohob¢imému
sporofytu (viz Qiu et al., 2012; Obr. 1.1).

V piipact mechi (Bryophyta sensu stricto), jatrovek (Marchantiophyta) a hlevik
(Anthocerotophyta) istava gametofyt dominujici generaci Zivotniho cykha remz je
vyZzivou zavisly diploidni sporofyt. Sporofyt hlevilse vSak od nezeleného sporofytu niegh
jatrovek liSi. Za povSimnuti stoji samotna velikgporofytu hlevik, ktery dosahuje té#h
takové velikosti jako jejich gametofyt. Kramtoho jsou sporofyty hlevik zelené a
fotosyntetizuji, dokonce byl prokazarepos asimildt ze sporofytu do gametofytu (Stewart a
Rodgers, 1977). Hleviky by se tak s jistograu nadsazky daly ozt za prvni rostlinnou
skupinu, kde dochazi k jisté redukci gametofytu abyvani velikosti a Zivotaschopnosti
sporofytu. S touto hypotézou by krésouzrily evolueni stromy, z nichz plyne, Ze hleviky by
mely byt sesterskou skupinou cévnatych rostlin (Temghyta) (Qiu et al., 2006; Chang a
Graham, 2011). Nicméntakovéto pibuzenské vztahy mezi hleviky a cévnatymi byly
nékterymi autory recenthzpochybgny (Liu et al., 2014; Wickett et al., 2014), takida
definitivni rozuzleni pibuzenskych vztahmezi mechy, jatrovkami a hleviky si jgiudeme
muset pokat (viz Villarreal a Renzaglia, 2015).

Sporofyt se deékal své samostatnosti az u cévnatych rostlin (Teephyta). U peslicek
a kapradin (Monilophyta) spolu s plavumi (Lycophyta) jiz sporofyt v Zivotnim cyklu
dominuje, nicmé& gametofyt zpravidla istava zachovan jako samostatna generéasp
byva zeleny, autotrofni, i kdyz wkterych skupin je mykotrofni (viz Qiu et al., 2012a
zminku stoji vrangy (Selaginella), kde doSlo ke zZm& redukci sagiho i saméiho
gametofytu; vrangy totiz maji gametofyty odfieného pohlavi na rozdil od ostatnich plavuni,
jeZz maji oboupohlavny gametofyt. Gametofyty vrgiiese zpravidla vyvijeji uvnitspory, jejiz
obal praska az v débzralosti gametofyt (viz Schulz et al.,, 2010). U semennych rostlin
(Spermatophyta) se gametofyt jiz stava zcela zawisia sporofytu a postupmochazi k jeho
znané redukci. Zatimco u nahosemennych (Gymnospermsagjti gametofyt sestava
z rekolika tisic burk a sandi ze 4-40, u krytosemennych (Angiospermaegasdiji zbylo ze
samtiho gametofytu pouhych osm hikna ti bunky ze samiho gametofytu (viz Qiu et al.,
2012).
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1.2. Zivotni cyklus krytosemennych rostlin (Angiospermae)

V této kapitole bude detaiji rozebrdn Zivotni cyklus krytosemennych rostlin
(Angiospermae), protoZze se mezi fadi mimo jiné modelovy tabék virginskiNicotiana
tabacum), na Emz byla provedenag&iSina experimerit zahrnutych do této disetta prace
(Obr. 1.2).

Zacnéme dosplymi rostlinami, které nalezi k diploidnimu sporafy Generativnim
organem rostlin je ki, jenz byva tvéen kwtnimi obaly spolu s tiinkami a pestiky.
Krytosemenné rostliny maji obvykle jak spory, taagetofyty a potazmo gamety adiehého
pohlavi.

Nejprve se zagfme na vyvogamikich spor a gametofyty podivejme se tedy do nitra
semeniku, spodniasti pestiku, v niz jsou uloZzena ¥&a (Obr. 1.3). Na uvod je vhodné

MEIOZA 9
SPORY 6\
megaspora mlkrospora

SPOROFYT

2n

I I
i GAMETOFYT $

¢ 4
zarode€ny vak pylové zrno

Q)9
| |
< <+

9 GAMETY 6\

vajeéna bufka spermaticka bunka
n n

\ zygota V
2n ¥ OPLOZENI

Obr. 1.2 — Schéma zivotniho cyklu krytosemennych rostlin (Angiospermae). Diploidni faze

gametofytu je oznacena jako 2n, zatimco haploidni faze nese oznaceni n. Prekreslila Anna

Vosolsobé podle Smith et al. (2010). Z pfipravované knihy Balazové et al. (2016).
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piipomenout, Ze rostlinné vaéko neni samotnou gametou, jak je tomu u dishmi, nybrz
mnohobugénou strukturou, z niz samotna gameta (u rostlimaveaj€éna buka) teprve
vznikne. Vajéko, vyplniné zakladnim pletivem (zvanym nucellus), je obkiapdwma obaly,
integumenty (viz Huang a Russell, 1992). Integuiyeriak vajéko neobaluji po celém
obvodu, na jednom polu vakia byva otvor klovy (mikropyle). Viane se ale k samotnému
vzniku vajitka; z buiky nucellu se diferencuje stale jggliploidni megasporocyt ¢hdy také
ozna&ovany jako matieska butka zarodeného vaku), ktery je podroben mei6z# nz vznikaji
¢tyii haploidni megaspory (viz Christensen et al., }9%pravidla ti z nich prochazeji
apoptézou a dale se vyviji jen jedina. Vyvolena aspgra se dale vyviji za vzniku s&rmb
gametofytu; prochazi mitotickymietenimi, ktera nejsou bezpréstire nasledovana vznikem
burg¢nych stn. Dojde tedy nejprve k roZkkni pivodniho jadra na osm a az naskedochazi
k odckleni jednotlivych budk, jichZ je ale pouze sedm (viz Christensen etl&98; Drews a
Yadegari, 2002). Tato sedmibisma struktura s osmi jadry je satngametofyt, jenz se u
krytosemennycltasgji nazyva zarodény vak. Uvnit zarodéného vaku nalezneme saiii
gametu (vajénou buiku), obklopenou ddma synergidami. Protéinto buikam jsou umishy
tii antipody a uprosgéd se nachazi centralni jadro zakeeho vaku, jez vznika splynutim dvou
puvodreé haploidnich jader, tudiz je diploidni (viz Drews Yadegari, 2002). Tento typ
zarodeéného vaku se nazyva Polygonum, n&qsh rdesna, ushoz byl prvié objeven. Jedna
rostlinnych druld, véetné tabaku virginského (Enaleeva, 1997). Existuje v$gkolik
alternativnich typ vyvoje zarodéeneho vaku, které vedou k jinémugbo a uspeéadani jader ve
zralém zarodsém vaku (viz Reiser a Fischer, 1993).

Ponechme nyni zraly zaraggy vak i s pipravenou sandi gametou (vaj@ou buikou)
stranou a podivejme se do nitra pradnikde dochazi k vyvojsantich spor a posléze
gametofytu (viz McCormick, 1993; Obr. 1.3). Ze sporofytnihtefva se diferencuji dv
inicialy — tapetélni iniciala, jejizalenim vznika vyZivovaci pletivo pylovych zrn (tapet) a
mikrosporycyt (téZz zvany pylova maskd buka; viz McCormick, 1993). Diploidni
mikrosporocyty se meiotickyétl za vzniku tetrady mikrospor (viz Borg a TwellQTD).
Tetrady jsou zprvu propojeny kalézou a k jejich lm¢ai napomahaji enzymy uvainé
z tapeta (viz McCormick, 1993). Uvainé mikrospory se 2¥Suji, utv&eji se v nich vakuoly a
jejich jadro putuje k periferii hiky. Nastav&as na prvni mitotickéaeni, zvané pylova mitéza
| (PMI). Toto ctleni je typické svoji asymetrii — dochazi ke vznilalké buiky vegetativni a
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mensSi biiky generativni (viz Borg a Twell, 2010). Pro vzhikkenich pylovych zrn je spravny
prabéh pylové mitézy | kikovy, pi jejim naruSeni u husatkiu rolniho, nagiklad u mutant
gemini pollen 1 (Park et al., 1998) neliwo-in-one (Oh et al., 2005), dochazi k vdznym feno-

¥

megasporangium

= megasporocyt
mikrosporangium
(prasné pouzdro) '\
pylové \ integumenty
© || matefska otvor klovy
buiika meioza
lmeic’)za '

A _ A7 prezivajici
mikrospora megaspora

lpylové mitéza 1 mitéza

tfi protistojné
bufiky

zralé

dvé centralni
pylové zrno :

jadra
lp ylova mitéza 2
zraly g\ .
zarodeény vak \__ o7 vajeéna
' burika

dve

A podplrné integumenty
. Jadro buriky
i spermatické vegetativni
lacka buriky buiiky

Obr. 1.3 — Schéma vyvoje samciho a samic¢iho gametofytu krytosemennych rostlin (Angiospermae).
V pfipadé samé&iho gametofytu je nakreslen vyvoj dvojbunééného pylu. BlizsSi popis v hlavnim textu.

Prekreslila Anna Vosolsobé podle Smith et al. (2010). Z pfipravované knihy Balazova et al. (2016).

21



zraly

pylova

lacka zarodecény
centralni
jadro (2n)
vajedna
bunka (n)
vegetativni

jadro (n) — ]

spermatické
bufiky (n) j
0 o o @:
zygota endosperm
(2m) (3m)

Obr. 1.4 — Schéma dvojitého oplozeni krytosemennych rostlin (Angiospermae) s naznac¢enou ploidif
splyvajicich bunék. Prekreslila Anna Vosolsobé podle Smith et al. (2010). Z pfipravované knihy
BalaZova et al. (2016).
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typovym projewim. Mald generativni hika je po PMI naslednobklopena ¥tSi buikou
vegetativni a dostavéa se do jejiho nitra. Jadretagiyni buiky obsahuje rozvoliny chromatin
a buréény cyklus opousti v G1 fazi, oproti tomu generatibuika s kondenzovanym
chromatinem prochazi j&Sgednim mitotickym dlenim (zvanym pylova mitéza II; PMII) za
vzniku dvou butk spermatickych, které jsou sami gametami. Pylova mitéza Il iwe
probihat je&t pied vznikem zralych pylovych zrn, pak bude zraly pgjburs¢ny, nebo k ni
muze dochazet aZz po vykéini pylu na blizé a zraly byl tak bude t¥en pouhymi déma
bunkami. Dvojburgény pyl je uvohovan zastupci asi 70 % rostlinnyceledi, mimo jiné
tabakem virginskyn{Nicotiana tabacum) a ostatnimi lilkovitymi(Solanaceae) a liliovitymi
(Liliaceae; Brewbaker, 1967). Naopak trojotimy pyl nalezneme u zbyvajicich zastiipc
krytosemennych, fikladre u huseniku rolniho (Arabidopsis thaliana) a ostatnich
brukvovitych (Brassicaceae) a lipnicovitych (Poaceae; Brewbaker, 1967). Za eval
puvodni znak krytosemennych byva povazovan dvajbay pyl stim, Ze ke vzniku
trojburgcného pylu doslo ¢kolikrat nezavisle na sebNedavno bylo ale zji&ho, Ze se wité
rostlinné druhy navratily od tvorby trojbé&tného pylu zpt k dvojburécnému pylu (Williams
et al., 2014). Cytoplazma zralého pylu je &illehydratovana a pyl je v metabolicky klidovém
stadiu. Zpravidla obsahuje vice dehydratovanoupigtonu dvojbuaény pyl, diky éemuz je
mére pripraveny k nastartovaniistu pylové léky nez trojbugcny pyl. Naopak trojbuktna
pylova zrna jsou méndehydratovana a rychleji z nich wugtaji pylové léky (Brewbaker,
1967).

Po dopadu na papilarni fiky blizny (tedy opyleni) se pylova cytoplazma zauae a
dochazi k aktivaci pylu, v prasdi in vitro trvaly tyto procesy miniméath 21 minut od
vystaveni pyluistovému médiu. &hem této doby je§thedochéazelo kistu pylové léky, ale
dochéazelo pouze k rehydrataci a aktivaci pylu (ogit al., 2015). Po aktivaci @& pylova
lacka Klicit jednou z pylovych apertur a pf@ta bliznou dale k semeniku. Kgadku kliceni
dochazi po 24 minutdch odda&iku pylové aktivace (Vogler et al., 2015). Pyldé&ka vznika
z vegetativni bilkky a them svéhotstu oboustranhkomunikuje s vodicimi pletivgnélky
(Hafidh et al., 2014). Ukolem pylovécky je dopravit ob spermatické hiky (tedy santi
gamety) do zarodeého vaku. Zde dochazi ke splynuti jedné spermatickky s vaj€nou
bunkou, ¢imz vznika diploidni zygota, jeZi@dstavuje peatek dalSi sporofytické generace
(Obr. 1.4). Druh& spermatickd ika splyva s centralnim jadrem zaréadého vakugimz je
utvoren zaklad triploidniho vyZivovaciho pletiva (endespu, Obr. 1.4). Vzhledem k tomu, Ze

23



pro zdarny vznik zygoty a vyzivovaciho pletiva jsrapotebi dv splynuti bugk, hovaime u
krytosemennych o tzv. dvojitém oplozeni (viz Ragig\2003).

Po oplozeni se z véla s oplozenym zarodeym vakem vyviji semeno, uvhit¢hoz
dochéazi k vyvoji embrya a vyZivovaciho pletiva (esgermu) a u ¢kterych rostlin navic
zastavaji zachovany lslky nucellu, jez se také podileji na vy&iembrya. Vyzivovaci pletivo
odvozené z nucellu se pak nazyvéa perispettinzrdni semene je embryo v klidovém stavu a
vyckava na pilhodné podminky, aby mohlo vykii a dat vzniknout nové dosig rostlirg, tedy

dalSi generaci sporofytu, v jehoZ&ech se cely cyklus opakuje.

1.3. Aktivace pylu a jeji regulace

Vratme se nyni k aktivaci pylu a pétesni fazi mistu pylové léky. Jak jiz bylo zmigno
vyse, zraly pyl je klidovym stadiem vyvoje s&itmo gametofytu. Vzhledem k tomu, Ze je jeho
Ukolem penést genetickou informaci &8im prostedim (mnohdy nefliS piiznivym),
obsahuje dehydratovanou cytoplazmu, je obklopem@eburénou stnou a je metabolicky
neaktivni.

Po dopadu na bliznu dochazi k rehydrataci pylouépisizmy, aktivaci pylu a posléze
k ristu pylové léky. Dvojbureény a trojburtcny pyl se liSi v rychlosti nastartovanistu
ve zralém pylu (Mulcahy a Mulcahy, 1988).tRR pylové |&ky u rostlin se zralym
dvojbureénym pylem sestava ze dvou fazi: pre¢ast fistu je pomalejSi a netiiose g ni
kalozové zatky. Naopak druh& faze zahrnuje tvorbldaovych zatek aist pylove léky

probiha rychleji (Obr. 1.5). V prvni fazi byly kstu vyuZzity Ziviny z pylového zrna, zatimco

\/
sperrﬁatické jadro
bunky vegetativni
bunky

kal6zova
zatka

Obr. 1.5 — Kal6zové zatky u dvanactihodinovych pylovych lacek tabaku virginského (Nicotiana
tabacum) kultivovanych in vitro. Kaléza byla obarvena anilinovou modfi. Upraveno podle Hafidh et
al. (2016a).
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druha faze vyuziva vyzivy enélky. Oproti tomu trojbusény pyl zane nedlouho po dopadu
na bliznu tist rychleji, kcemuz vyuziva Zivin Znélky od samotného patku svéhotstu.

Rast pylové l&ky neni isodiametricky, ale podabrjako u kdenovych viask,
houbovych hyf a obratlaich neuroi je vrcholovy (viz Palanivelu a Preuss, 2000; Sagtaj
al., 2006). Dochazi tedy pouze k prodluzovani \eggeti buiky, k jejimu dalSimu busgtnému
déleni v piibéhu rastu pylové léky nedochazi. NejdelSi pylovécky dosahuji Uctyhodnych
50 centimett (Mascarenhas, 1993). Vrcholovyist zavisi na nasledujicich hignych
mechanizmech: spravné orientaci cytoskeletalniékerl, transportu sekretorickychckd,
signalizaci pomoci malych GTPaz a tvdrbntovych gradierit (viz Palanivelu a Preuss, 2000;
Samaj et al., 2006).

Kromé toho je aktivace zralého pylu modelem pro studisamsla&nich regulaci. U
tabaku byla transkripce detekovana pougeem reékolika prvnich hodinistu pylové léky,
tudiz se fpivodre doslo k zavru, Ze st pylove I&ky je Zivotre zavisly na translaci, ale té&n
nezavisly na transkripcClapkova et al., 1988). Nedavno v3ak byly objeveaggkripty, které
byly now syntetizovany i pd@tyiiadvacetihodinové kultivaci pylovychdék in vitro (Hafidh
et al., 2012a; 2012b; 2016a). £né& mnozstvi regulovanych transkiipktere jsou v pylovych
zrnech skladovany, jsou usklaghy v translén¢ neaktivnich EDTA/puromycin-rezistentnich
¢asticich (angl. EDTA/puromycine-resistant particl&PPs; Honys et al., 2000). V EPP
komplexech byly nalezeny mRNA, rRNA i celé ribosdmigodjednotky spolu s celdadou
proteini regulujicich translaci fitomnych transkrigi (Honys et al., 2009). Skladované
transkripty jsou fipraveny ve zralém pylu, aby v rostouci pylovéck byla ukogena jejich
represe a mohlo dojit k jejich translaci. Regulgerové exprese ve stadiu translace umjg?
pruzZreji reagovat natrstove signaly v souvislosti s nastartovaniistu pylové léky. Krome
spravného nsmsovani startu translace skladovanych mRNA, je &utapravna lokalizace
syntézy &chto proteitd, a tou je vrchol pylové tky. EPP komplexy jsou tudiz vig€hu ristu
dopravovany nejspiSe prasmirem k vrcholu pylové kky (Honys et al., 2009). Podobné
¢astice obsahujici skladované transkripty byly objgvnapiklad v embryich jeZovky (Spirin
a Nemer, 1965) nebo v sagh neuronech (Carson a Barbarese, 2005).

Translace vSak neni jedinou uUrovni genové exprp8eniz dochazi v rostoucich
pylovych |&kach kregulaci. Proteiny jsou regulovany mimo jirgosttranslénimi
modifikacemi. K nejdynandtéjSim modifikacim vyuzZivanym k regulaci funkce piiatepati

fosforylace proteif, jeZz se uplaiuje mimo jiné pi regulaci rehydratace a aktivace s#mo
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gametofytu (Fila et al., 2012; Mayank et al., 20B9dobs jako v gipac pylu, dochazi i u
jinych rostlinnych modéi k rehydrataci. Poustni xerof@raterostigma plantagineum pieziva
nepizeir podminek v dehydratovaném stadiu. V obdobit@lefchazi k jeho rehydrataci a
obnoveni dstu. | v gipadt této rostliny je rehydratace doprovazenazau ve fosforylaci
proteini (Rohrig et al., 2006; 2008). Jenze k fosforylamteini v souvislosti s rehydrataci
nedochazi jen u vysychajicich xerdfyale i u BZnych drult rostlin, napiklad u kukdice seté
(Zea mays), kde byly zkoumany fosforylované proteiny hrajigiohu @ vysychani a

rehydratacilistové zony lisi (Bonhomme et al., 2012).

1.4. Fosforylace proteind

K fosforylaci proteiri zpravidla dochazi posttransté. Fosfatova skupina je navdzana
na postranniettzec utitych aminokyselin, a to hlipies atom kysliku, neba'@s atom dusiku.
Fosforylaci proteifi obstaravaji proteiny zvané kinazy, naopak za defgsci cilovych
proteini zodpovidaji fosfatazy (viz Krebs a Beavo, 1979niAokyseliny nesouci fosfatovou
skupinu na atomu kysliku jsou serin, threonin agyr (Obr. 1.6). Na atomech dusiku je pak
fosforylovan histidin, ficemz existuji d¥ jeho fosforylované isoformy, 1-fosfohistidin a 3—
fosfohistidin (Obr. 1.6). Dvojité fosforylace jediho histidinu je mozné v labor#tdosahnout,

avSak v Zivych organizmech doposud objevena n€Bgsant a Attwood, 2009). Konvé&arimi

0
0 CHy; O
OH
&O/ﬁ)LOH Q—O/H/U\OH
NH
NH, NH, [P e} 2

fosfoserin fosfothreonin fosfotyrosin

O

C{ 0
\ | OH <F:IF/A\T/JL\OH
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’ é
1-fosfohistidin 3-fosfohistidin

Obr. 1.6 — Vzorce fosforylovanych aminokyselin. ,P* v éerném kruhu znaci navédzanou fosfoskupinu

—PO3s?%, tedy fosforylaci aminokyseliny.
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fosfoproteomickymi  technikami se obvykle dogp Kk identifikaci aminokyselin
fosforylovanych na atomech kysliku, coz jeigpbené odliSnymi chemickymi vliastnostmi
(Attwood et al., 2007) a odliSnou stabilitou obeaforem fosfohistidinu &®—-fosforylovanych
aminokyselin v kyselém prasdi, jemuz zpravidla byvaji vzorky vystaveny dkierém

z krokii konvergnich fosfoproteomickych technik (Dunn et al., 20Ela a Honys, 2012).
Zatimco fosfoserin, fosfothreonin a fosfotyrosinkyselém prosedi 1 M Kkyseliny
chlorovodikové (HCI) dosahuji hodinovych p&dai rozpadu — fosfoserin a fosfothreonin 18 h,
fosfotyrosin 5 h (Plimmer, 1941), &hbisoformy histidinu dosahuji v1 M HClip49 °C
nékolikasekundového potasu rozpadu — 1-fosfohistidin 18 s a 3—fosfohistidi4,5 s
(Hultquist, 1968).

Aminokyseliny maji d¥ ionizovatelné skupiny navazané sauhliku, karboxylovou a
amino skupinu (viz Wagner a Musso, 1983). Tyto #kyse spolu propojuji za vzniku
peptidické vazby (viz Bashan et al., 2003). Vlastngostrannich skupin jednotlivych
aminokyselin se lisi. Postranni polarni skupin&nsethreoninu a tyrosinu se za fyziologického
pH meni fosforylaci ve skupinu zapafmabitou. Kysela disociai konstanta fosfatu je asi 2,1
(Kokubu et al., 2005), takzgigyziologickém pH 7,2 (Roos a Boron, 1981) je mrotz fosfatu
odSepen a skupina tak nabyva zaporného naboje. Dikytimréapornému naboji se posouva
isoelektricky bod celého fosforylovaného proteina KyselejSich hodnot nez vipadt
nefosforylovaného proteinu (Darewicz et al., 20Qden protein f¥e byt fosforylovan i
vicekrat, takze ziskany zaporny naboj je o toégin Fosforylace proteinproto mize nenit
interakce jednotlivych polypeptidovydeizci téhoz proteinu (Lapko et al., 1996; Groban et
al., 2006), nebo dokonce meziproteinové interal®auér et al., 2003; Kim et al., 2004).
Alternativni moznosti vlivu fosforylované skupinya naktivitu proteinu je zablokovani
aktivniho mista enzymu, dikyemuz je znemozZm vstup substratu do aktivnibo mista.
Prikladem enzymu s timto #pobem regulace je isocitrat dehydrogenaza (Garriakexes,
1979), kterd katalyzuje druhou reakci citratovehdle, tedy geménu isocitratu nao—
ketoglutarat.

1.5. Metody studia fosforylace protein(

Fosforylace proteinpiedstavuje velmi dynamickou posttrarisiamodifikaci. Studium
role fosforylace se da zagibbud’ od odhalovani role jednotlivych kindz a fosfat&bm od

odhalovani lokalizace fosforydaich mist na cilovych proteinech.
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Prvni pristup je vyhodny zejména v situacich, kdy byla fasahalena kinaza nebo
fosfataza zodpasdna za pislusny bugény proces, pap aktivni v ugitych pletivech.

Z pylovych studii stoji za zminku nidklad pokusy dokazujici Klovou roli dvou AGC kinaz
(AGC 1.5 a AGC 1.7; Zhang et al., 2009) &Gdependentrkinazy (CPK32; Zhou et al., 2014)
potrebnych pro polarizovanyist pylové l&ky husendku rolniho nebo prace odhalujici roli
serin/threonin proteinové kindzy v s&m gametofytu tabaku (Dissanayake et al., 2004).
Vytipovavani kinaz hrajicich tdezitou signalizani ulohu v sarim gametofytu po¥kud
komplikuje fakt, Ze v pylovém transkriptomu a patau huseriku rolniho byla detekovana
celarada proteinovych kinaz (Hafidh et al., 2016a). Otpomu tabaku je navic situace mén
piehlednd, protoZze genomické sekvence tabaku neliydygmotovany (Sierro et al., 2014),
ackoli i v pylovém proteomu (Ischebeck et al., 20B4iranskriptomu (Hafidh et al., 2012b)
bylo identifikovano mnozstvi proteinovych kinaz.

Druhym pristupem je odhalovani fosforytaich mist v cilovych proteinech, kterého
se nejastji dosahuje fosfoproteomickymifistupy. Prvni krok fosfoproteomickych studii
predstavuje dkladna homogenizace a extrakce pratéBheoran et al., 2009; Fila et al., 2011).
Zejména zrald pylova zrna jsou @&od obtizgji homogenizovatelnda, protoZze jejich
dehydratovana cytoplazma je obklopena tvrdowtnou sétnou. Homogenizaci je tak feba
vénovat paticnou pozornost. Extr&ki ¢inidlo aplikované v nasledném exttatm protokolu
uréuje, jaké spektrum proteomu bude z pletiva izolovéBheoran et al., 2009). Zejména
v pfipadech, kdy se uZzivaji extkak pufry bez silného extrékiho ¢inidla, byva nutné
zablokovat aktivitu fitomnych proteadz patnymi inhibitory (nap. leupeptin, pepstatin A a
fenylmethansulfonyl fluorid; Sabdéta Kos, 2012) a vifpad studia fosfoproteilje zapoitebi
jeSe pridat inhibitory fosfataz a kinaz (Edmead et al.99pP Je dobré fipomenout, Ze
pritomnost inhibitol ve vzorku pi obohaceni ize znateld sniZzovat specifitu obohacovaciho
protokolu (Aryal a Ross, 2010).

V pribéhu fosfoproteomického experimentu byva nevyhnutedpikovat rektery
obohacovaci protokol, psgkombinaci gkolika z nich (Dunn et al., 2010; Fila a Honys, 2)1
a to ze i hlavnich divoda: (1) Mnohé fosfoproteiny nejsou vice @ilis hojrné zastoupeny,
takze je jejich detekce mé&pravdpodobna nez vifpadt abundantgSich proteiri. (2) Jeden
protein nemusi byt Uupénfosforylovany nebo defosforylovany, ale v jedingide Ize najit
nekolik forem liSicich se ve stupni fosforylace (Ohay Sedivy, 2002). (3) Detekce
fosfopeptidi ve snési s nefosforylovanymi peptidy nardzi na technitikétace hmotnostni
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spektrometrie — fosfopeptidy se ve &ins nefosforylovanymi peptidyake ionizuji, tudiz
zastavaji v pozitivnim skenovacim modu obtiZzrdetekovatelné a ¢hteré dokonce
nedetekovatelné (Janek et al., 2001). Po fosfopeyptim obohaceni, ip némZ jsou

nefosforylované peptidy odstramy, pak mohou byt fosforylované peptidy snaze dmetaky

(Jensen a Larsen, 2007).

OBOHACENI O OBOHACENI O .
FOSFOPROTEINY FOSFOPEPTIDY Obohacovaci krok ve
- fosfoproteomickych protokolech
proteinové extrakce proteinové extrakce . , . ,
muze byt aplikovan ve dvou
stadiich  (Obr. 1.7). Bl
obohaceni o fosfoproteiny Stépeni proteazou k obohaceni dochazi na udrovni
intaktnich fosfoproteih  a
separace proteinG (napf. prefrakcionace (napf. SAX, k prOtEOIytiCkému épenl'
2D-GE, SDS-PAGE) SCX, HILIC) o o .
N (neastji trypsinem) se
p pristupuje az po rozdieni celych
vyfezavani tecek z geld a obohaceni o fosfopeptid ] /
$t&peni proteazou peptidy proteini, nebo naopak, celkovy

-

proteinovy extrakt je podroben

proteolytickému  &peni za

MS a identifikace proteint [MS a identifikace proteinu

vzniku  sngsi peptidi a
Obr. 1.7 — Porovnani jednotlivych kroki obohaceni o | Obohacovaci protokol tak

fosfoproteiny a obohaceni o fosfopeptidy. Obohacovaci krok vychytava fosforylované peptidy
je zvyraznén modre. Pfekresleno podle Fila a Honys (2012). (Fila a Honys, 2012)

Oba istupy, tedy obohacovani o fosfoproteiny i o fosfolidy, Finaseji jisté vyhody,

zatimco jinde nardzeji nadité limity. Protokol spoléhajici nabohacovani o fosfoproteiny
(Obr. 1.7) je obvykle nasledovan jednora@znou polyakrylamidovou gelovou elektroforézou
v pfitomnosti dodecylsiranu sodného (SDS-PAGE; Collets al., 2005; Wolschin a
Weckwerth, 2005; Wolschin et al., 2005) nebo dvajérnou proteinovou elektroforézou
(kombinujici isoelektrickou fokusaci a SDS-PAGHIWRD IEF-PAGE; Rohrig et al., 2008;
Fila et al., 2012; Rocchetti et al., 2014). Namigtavergni dvojroznérné elektroforézy Ize
vyuzit dvojroznérnou diferedni gelovou elektroforézu (2D DIGE; Machida et 2D07; Tian
et al., 2014). Diky tomu je mozné na gelu @ddednotlivé isoformy daného proteinu,
popipad: také fizné formy téhoz fosfoproteinu liSici se stépnfosforylace. Z gelu je mozno
urcit molekularni hmotnost daného proteinu ar\ppc dvojroznerné separace také jeho
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isoelektricky bod. Pozitivem je takeérigpeni nefosforylovanych peptidk urceni identity
pii uréovani gresné lokalizace fosforytaich mist daného proteinu (Réhrig et al., 200& Eil
Honys, 2012). Bezipsného uteni mista fosforylaceistava bilkovina pouhym kandidatem na
fosforylaci a pi naslednych analyzach se dakio usuzovat, kolik fosforytanich mist protein
obsahuje a v jakém motivu se fosforylovana aminelwya vyskytuje. Tato nevyhoda souvisi
s dalSi komplikaci, a tou je nespecifita. Stav&ea,protokoly obohacujici o fosfopeptidy trpi
jistou merou nespecifity, celé fosfoproteiny jsou vSak timtmkem postizeny mnohem vice,
neba’ intaktni bilkovina niZze zachovavatasti sveé trojrozrérné struktury, diky nimz seiiwe
snadgji nespecificky vazat na chromatografickou matpigiobohacovacim kroku.

NejcasgjSim protokolem uzivanym pro obohaceni fosfoprateife afinitni
chromatografie s vyuzitim kovoveho oxidu/hydroxi¢angl. metal-oxide/hydroxide affinity
chromatography, zkr. MOAC). N&gstji jako matrice slouzil hydroxid hlinity (Wolschiat
al., 2005) nebo oxid titaity (Lenman et al., 2008). DalSi moZnosegstavuje chelatai
afinitni chromatografie (angl. immobilized metafimity chromatography, zkr. IMAC), kter4
na rozdil od metody MOAC uZziva v matrici ngsia r¢jZ jsou navazany kovove ionty (Collins
et al., 2005) — u metody MOAC se jedna pouze o saynkovovy oxid/hydroxid. Posledni
zminovanou metodou je imunoprecipitace probeagbsahujicich fosfotyrosin (Pandey et al.,
2000).

Naopak obohaceni o fosfopeptidy(Obr. 1.7) se provadi az po¢@éni celkového
extraktu na peptidy, @b se konvedtné uzivaji specifické proteazy (rajstji trypsin). Vzorek,
se kterym se pracuje, je tudiz kompl&sna vSechny peptidy ve vzorku jsou smichany. iggpt
se v8ak snadii neZ intakini proteiny &i chromatografickymi metodami. Aby se
fosfopeptidovému obohaceni podroboval #ékomplexni vzorek, casto se provadi
prefrakcionace  chromatografickymi  metodami, c¢aegji aniontovou ionexovou
chromatografii (angl. strong anionic ion-exchanigematography, SAX; Niuhse et al., 2004),
kationtovou ionexovou chromatografii (angl. straragionic ion-exchange chromatography,
SCX; Beausoleil et al., 2004) nebo chromatogrdiiydrofilnimi interakcemi (HILIC; McNulty
a Annan, 2008). Krom toho jsou peptidy kratSi a zpravidla nenabyvajmgtexnich
trojrozmernych struktur, jako je tomu vifpadt intaktnich proteil. Nespecifita obohaceni o
fosfopeptidy je tak mensi, i kdyZ f&a jisté riziko nespecifity hrozi (Negroni et &012).
Casto se v3ak stava, ze vy3si specifita obohacedamzch podminek je doprovazena nizsi
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senzitivitou, takZe slaiji se vazajici fosfopeptidy jsou za takovychto abatvacich podminek
ztraceny. TudiZ ip optimalizaci protokolu zalezi na tom, zda chceatetekovat také slap se
vazajici fosfopeptidy a jakou miru nespecifity sizmme dovolit (Tsai et al., 2008). Velkou
vyhodou obohacovani o fosfopeptidy je identifikgtesného mista fosforylace, k niz se ve
vétsing pripadh dosggje. Na druhou stranu, nefosforylované peptidy neploon s identifikaci
fosforylovaného proteinu, protoze byly odsthiay v pribéhu obohacovaciho kroku &kdy je
nemozné fosfopeptid jednozimg priradit k jednomu proteinu, protoZe je sdileréma nebo
vice proteiny.

Hlavni principy metod uzivanych pro fosfopeptidoviéohaceni jsou obdobné jako
v piipact obohaceni o fosfoproteinyCasto se uZivaji zejména afinitni chromatografie
s vyuzitim kovového oxidu/hydroxidu (MOAC) a chelati afinitni chromatografie (IMAC).
Nejcastji uzivanymi matricemi f metod MOAC se staly oxid titadity (Pinkse et al., 2004)

a oxid zirkongity (Kweon a Hakansson, 2006). Metoda IMAC uziv@asgji jako noste
kovovych oxidi kyselinu iminodioctovou (IDA) a kyselinu nitrilatrctovou (NTA) (Neville et
al., 1997). Nesenymi kovovymi kationty se staly ildpd F€* (Neville et al., 1997), G4
(Posewitz a Tempst, 1999), “Zr(Feng et al., 2007) a “i (Zhou et al., 2008). Z dalSich
protokoli stoji za zminku imunoprecipitace fosfopeptabsahujicich fosfotyrosin (Rush et al.,
2005) a metody obohacujici fosfopeptidy na zaklettemickych modifikaci, jez byly shrnuty
v Dunnow prehledovéntlanku (Dunn et al., 2010).

Razné obohacovaci protokoly odhaluji jindést fosfoproteomu, takze pro pokryti co
nej\etsi casti fosfoproteomu je zapgebi aplikovat Bkolik paralelnich fosfoproteomickych
obohacovacich technik (Bodenmiller et al., 200%; dt al., 2009). Kombinaceékolika
fosfoproteomickych Pstupi nemusi byt pouze paralelni, ale Ize ji provésistppr — takze
prvni obohaceni slouzi spiSe jako prefrakcionackuaé obohaceni pak navysSuje specifitu
metody.

Prvni moZnosti je kombinovat obohaceni na obouniobv Nejprve dojde k obohaceni
o fosfoproteiny a posléze je obohaceny eluatépast specifickou protedzou a na peptidové
smesi je proveden dalSi obohacovaci krok, tentokratroani fosfopeptid. Takto byla vyuzita
kombinace metody MOAC s matrici z hydroxidu hlihiképro obohaceni fosfoprotéira
metody MOAC s matrici z oxidu titahiého pro obohaceni fosfopepiid naspeného eluatu

ziskaného prvni metodou obohaceni (Hoehenwartdr, &013; Beckers et al., 2014).
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Kombinaci protokal vSak neni nutné provéicbouze na obou Urovnich, Ize kombinovat
protokoly pouze na urovni fosfopepiidPrvni moznosti je opakované obohaceni supernatant
pochazejiciho z obohaceni, stejnym protokolem. ddkyla aplikovana metoda IMAC.
V prvnim kole obohaceni se zachytily zejména pegptidekrat fosforylované (a tedy vazajici
se k chromatografické matrici s#ii), zatimco jednou fosforylované (a s#ibse vazajici
k matrici) kortily také v supernatantu a az druhym obohacenim bghbhyceny (Ye et al.,
2010). Tandemova aplikace metody IMAC tedy zvySavalenzitivitu, takZze doSlo
k identifikaci fosfopeptid, které by jinak nebyly matrici zachyceny, a dd$jotak k jejich
nenavratné ztrdt Druhou moznosti je kombinace dvaizmych protokal obohacujicich o
fosfopeptidy, protokolu séka SIMAC (z angl. zkratky sequentional elutionnfrdMAC,;
Thingholm et al., 2008). V prvnim kole se obohadcugtodou IMAC s tim, Ze se vytigi dva
eluaty — prvni se ziskava kyselym @&im cinidlem a druhy zasaditym alnim roztokem.

V kyselém pufru jsou uvolimy zejména jednou fosforylované peptidy, zatimcoekiat
fosforylované peptidy se dostanoiegevsSim do zasaditého pufru. Kysely eluat spolu se
supernatantem s nezachycenymi peptidy pak by¢ jeStiroben druhému kolu obohaceni,
tentokrat metodou MOAC s matrici temou oxidem titaditym. Spektrum identifikovanych

fosfopeptidi se diky dvojimu obohaceni rogki.

1.6. Studie pylového fosfoproteomu

Prvni publikovanou fosfoproteomemickou studii Znalgylu krytosemennych rostlin
(Angiospermae) se stal fosfoproteom huseamirolniho(Arabidopsis thaliana; Mayank et al.,
2012). Tato prace doplnila dostupna proteomicka,ddera byla v fipads husentku nejprve
ziskana konvemimi gelovymi technikami (Holmes-Davis et al., 2008%oir et al., 2005;
Sheoran et al.,, 2006) a az poté byl negelovyistypem poet identifikovanych proteiin
znatel® rozsfen (Grobei et al.,, 2009). Mayankova studie vyudlambinaci istupi
obohacujicich o fosfopeptidy — IMAC, MOAC a SIMAC a vedla k identifikaci 962
fosfopeptidi, které nalezely k 598 fosfoprotéim. Z hlediska funkce fosforylovanych protéin
pirevladaly nasledujici kategorie: regulace metabalianfunkce proteiin metabolizmus, osud
proteini, vazba dalSich protein prenos signalu a bgbny transport. TaktéZz byly mezi
identifikovanymi fosfoproteiny tzné kinazy, hlava AGC proteinové kinazy, Cé&
dependentni proteinové kinazy a sacharézu nefeujiein{angl. sucrose non-fermenting)

proteinové kinazy 1.
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DalSim krytosemennym druhem s publikovanym fosftgmmem zralého pylu se stal
tabak virginsky(Nicotiana tabacum; Fila et al., 2012). Neni bez zajimavosti, Ze pylproteom
tabaku (publikovany spolu s proteomy dalSich sesdtadii vyvoje sakiho gametofytu od
mikrosporocyli po pylové lé&ky) byl publikovan pozéi, tentokrat byl vSak odhalentipno
pomoci negelovych technik (Ischebeck et al., 2064)dhaleni fosfoproteomu zralého pylu a
pylu aktivovanéhain vitro 30 min byla nejprve aplikovana metoda MOAC oboljiatlo
fosfoproteiny, uZivajici matrici z hydroxidu hliého. Eluat obohaceny o fosfoproteiny byl
podroben jednak &eni na dvojrozrrné gelové elektroforéze, fignuti te&ek (angl.spot)

z gelu a jejich na8peni trypsinem, jednakifmému SEpeni trypsinem a negelovéemdlehi
peptidi bez dalSiho obohaceni. Celkem bylo identifikovaB6 fosfoproteinovych kandidat
jenze pesnou pozici se potib identifikovat u pouhého jednoho fosforyldho mista.

Z tohoto divodu byl na zralém pylu proveden paralelni expenine nemz byl celkovy
proteinovy extrakt imo nastpen trypsinem a ziskana peptidovaésnbyla obohacena o
fosfopeptidy metodou MOAC s matrici tsemou oxidem titaitym. Timto gistupem se
poddilo urcit pozici dalSich 51 fosforytamich mist v jiz identifikovanych fosfoproteinovych
kandidatech. DetailfjSi studie odhalujicifiesnou pozici Siho mnozstvi fosforytaich mist

ze zralého pylu a regulaci fosforylace vlpthu aktivace pylu tak u tabaku doposud provedena
nebyla.

Treti fosfoproteomicka studie provedena nagemgametofytu se odedchozich dvou
odliSuje ve dvou hlavnich ohledech (Chen et all,2Y0Prvig byl zkoumanym druhem smrk
Wilsonav (Picea wilsonii), zastupce skupiny nahosemennych (Gymnospermdafcoatabak
i husenéek pati mezi krytosemenné (Angiospermae). Druhou odlines Ze proteom a
fosfoproteom tohoto druhu byl zkoumén z odliSnébbledu. Zatimco u husetkiu i tabdku se
melo jednat o proteiny, jejichz fosforylace zodpovidia spravny vyvoj satiho gametofytu,
smrkovy fosfoproteom se zabyval fosforylaci pradeinpylovych l&kach kultivovanych na
rastovém médiu s nedostatkem sachardozy a vapenatyth (C&*), jednalo se tedy o
fosforylaci proteiti v odpo¥di na nedostatek Zivin v médiu. Celkem v této stumjilo
identifikovano 166 proteiina 42 fosfoproteiin.

U zralého pylu tabaku a pylu aktivovanéha vitro tak doposud chyia
fosfoproteomicka studie, ktera by odhalileegna mista fosforylace. V naSerfeqichozim
fosfoproteomickém vyzkumu (Fila et al., 2012), ktéroril podstatnoucast mé diplomové
prace, byla identifikovanaresna pozice fosforyaich mist pouze uskolika kandidat, a to
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vyhradré v kandidatnich proteinech identifikovanych po o#odni o fosfoproteiny
z proteinového extraktu zralého pylu. Navic jsme $&to praci ubec nezabyvali dynamikou
fosforylace v pitbéhu pylové aktivace. Z tohotaidodu byla mezi stadia sa&ifho gametofytu

zkoumana v této disettai praci gidana také pylova zrna aktivovamavitro 5 min. Tato prace

tak zcela logicky navazuje na naggchozi vyzkum a velmi podstatnonou jej dophuje a

rozskuje.
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2. Cile prace

Tato disertani prace sestava z nasledujiciciidh cili:

(1) Presna lokalizace fosforytaich mist u fosfoproteinidentifikovanych ze zralého pylu
tabaku virginskéhdNicotiana tabacum), pylu aktivovanéhdn vitro 5 min a pylu
aktivovanéhan vitro 30 min.

(2) Zachyceni zrén ve fosforylaci proteit v praibéhu aktivace pylu tabaku virginského
(Nicotiana tabacum).

(3) Vyhledani hojg zastoupenych kindzovych maiiw ziskaném datovém souboru a
porovnani nalezenych motivse zastoupenymi kindzovymi motivy v pylovém
fosfopeoteomu huseikiu rolniho(Arabidopsis thaliana).

(4) Vyhledéani kinaz rozpoznéavajicich nalezené seéwemotivy v pylovém proteomu a
fosfoproteomu husetku rolniho (Arabidopsis thaliana) a tabaku virginského
(Nicotiana tabacum).

(5) Vyhledani proteinovych kinaz v publikovaném soubsekretomickych dat tabaku
virginského (Nicotiana tabacum), ato v sekretomu pylovych dék kultivovanych

24 hodinsemi in vivo ain vitro.
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3. Souhrn publikovanych vysledk

Vysledky napihujici vySe vytgené cile byly publikovany celkem vétyiech
publikacich, z toho dv publikace jsou fwodnimi wdeckymi ¢lanky a d¥ publikace
piehledovymiclanky.

Fosfoproteom zralého pylu tabaku virginskécotiana tabacum) spolu se studii
dynamiky fosforylace &hem aktivace pylu tabaku pétpa tiiceti minutach aktivacen vitro
byl publikovan wasopise Molecular & Cellular Proteomics sollz= 6,564 (Fila et al., 2016).
Celkem bylo identifikovano 471 fosfopepiickteré odhalily pesnou pozici 432 fosforydaich
mist. Identifikované fosfoproteiny nalezely dinécti funicnich kategorii, z nichZz nejvice
fosforylovanych bilkovin spadalo do nasledujicichtdgorii: transkripce, proteosyntéza,
skladovani a cileni protdina g'enos signalu. Navic kvantitativni data umoznilantidfikaci
fosfopeptidi reagujicich na aktivaci pylu. Regulované fosfobpbyly rozcleny do sedmi
skupin podle regutmiho trendu, icemz nejvice fosfopeptidbylo identifikovano exkluzivé
ve zralém pylu.

Ziskana fosfoproteomickd data byla dale analyzovawekze jiz v fivodnim
fosfoproteomickém ¢lanku (Fila et al.,, 2016) byly vyhledany kindzoveé otiwy.
Fosfoproteomicka data ziskana u tabaku virginsk@hootiana tabacum) byla porovnana
s fosfoproteomem husekii rolniho (Arabidopsis thaliana; Mayank et al., 2012). Protoze
tehdy je&t nebyl nejno¥jsi fosfoproteom tabaku virginského publikovan, fpdfoproteom
husenéku porovnan s naSimifpdchozimi daty, ziskanymi v rdmci mé diplomové préfEila
et al., 2014). Tento iphledovy ¢lanek byl publikovan wasopise Biochemical Society
Transactions s Ho14= 3,194. Dale byly dosavadni poznatky o fosforyja@teini v pribéhu
vyvoje sandiho gametofytu shrnuty ehledovémélanku publikovaném vasopise Plant
Reproduction s lo14= 2,607 (Hafidh et al., 2016a). S@sti této publikace je tabulka
s kinazami identifikovanymi v transkriptomu, proteo a fosfoproteomu huseéki rolniho
(Arabidopsis thaliana).

V neposlednfack jsem se podilel na klonovani konstriukt analyze dat tykajicich se
sekretomu pylovych t&ek tabaku virginskéh@Nicotiana tabacum) kultivovanych metodou
semi in vivo ain vitro, publikovaném asopise Genome Biology s>tz = 10,810 (Hafidh et
al., 2016b).
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4. Diskuse

4.1. Tabakovy pylovy fosfoproteom

V publikovaném fosfoproteomu zralého pylu, pyluiatanémin vitro 5 min a pylu
aktivovanémin vitro 30 min ziskaném po fosfopeptidovém obohaceni noetddOAC
S matrici z oxidu titaditého bylo celkem nelezeno 471 fosfopeptikiteré vedly k identifikaci
432 fosforyl&nich mist (Fila et al., 2016; Tab. 4.1). Tyto fagfované peptidy byly itomny
v 301 fiznych proteinech. Ret proteiri je o réco nizSi nez piet identifikovanych
fosfopeptidi, protoZe jeden protein mohl byt reprezentovan faséopeptidy s #tSim pa&tem
fosforylatnich mist. Takovyto pet identifikovanych fosfoproteini fosforylatnich mist
piedstavuje znmé roz&ieni fosfoproteomu ziskaného po obohacovani o fosfeiny
metodou MOAC s matrici z hydroxidu hlinitého, kdyld identifikovano pouhych 139
fosfoproteinovych kandidats jednim fosforylénim mistem a dalSich 51 fosfor§tdch mist
bylo odhaleno po obohaceni fosfopeptakidem titantitym ze zralého pylu (Fila et al., 2012;
Tab. 4.1). Fosfoproteom tabaku tak byl rée8io no¥¢ identifikovana fosforylani mista a
poctem znamych fosfopeptidse tak piblizil pylovému fosfoproteomu huseskiu rolniho,

v némzZ bylo identifikovano &kolika metodami fosfopeptidového obohaceni celkef2 9
fosfopeptidi odhalujicich 609 fosforytaich mist v 598 fosfoproteinech (Mayank et al.,201
Tab. 4.1).

Niz8i paet fosfopeptid identifikovanych v tabdkovém fosfoproteomuize byt
zpasoben deéma gicinami: (1) Pro identifikaci tabakovych fosfoprotéibyly vyuzity EST
sekvence tabaku (ziskané veésmze sporofytickych pletiv), kde nemusi byt obsgzen
transkripty specifické pro satihgametofyt. Tabakovy genom je sice osekvenova@mei plg
anotovan (Sierro et al.,, 2014), tudiZz genomové eseé® tabdku byly pro identifikaci
fosfopeptiadi mére vhodné nez EST sekvence. Diky cjjgim sekvencim tak nemusela byt
nektera identifikovana spektraiipazena k fosfoprotetrm. Oproti tomu genomové sekvence
husenéku rolniho jsou k dispozici jiz od roku 2000 (Ardbpsis Genome Initiative, 2000) a
od té doby byly jeho anotace postamylepSovany. (2) V naSentipadt byl aplikovan jediny
protokol obohacujici o fosfopeptidy, zatimco Mayasmkolektivem vyuZili kombinaciit
protokoli. Casto se totiz stava, e aplikacetkaolika riznych protokal rozsiuje
identifikovanou ¢ast fosfoproteomu, protoZeuzné obohacovaci protokoly odhaluji
nepgrekryvajici setasti fosfoproteomu (Bodenmiller et al., 2007; Itak, 2009).
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Tab. 4.1 — Srovnani fosfoproteomickych studii saméiho gametofytu tabaku virginského (Nicotiana
tabacum) a huseni¢ku rolniho (Arabidopsis thaliana). Pomér jednotlivych fosforylovanych
aminokyselin v pfipadé prvniho tabakového fosfoprotemu neni pfili§ vypovidajici, protoze byl uréen

jen na zékladé 52 fosforylacnich mist.

; o Druhy pylovy tabakovy | Pylovy fosfoproteom
Prvni pylovy tabakovy

Parametr ) fosfoproteom (Fila et husenicku (Mayank et
fosfoproteom (Fila et al., 2012)
al., 2016) al., 2012)
Studie zahrnovala aktivovany
Ano Ano Ne

pyl

Al(OH)3-MOAC obohaceni o

" ) . fosfoproteiny + TiO--MOAC TiO2-MOAC obohaceni .
Uzita obohacovaci technika S . o fosfopeptidy: IMAC,
obohaceni o fosfopeptidy u jiz o fosfopeptidy .

TiO2-MOAC a SIMAC

3 metody obohacovani

identifikovanych protein(

Pocet identifikovanych

. 139 301 598
fosfoproteind
Pocet identifikovanych
1+ 51 471 962
fosfopeptidd
Pocet presné identifikovanych
1+ 51 432 609
fosforylaCnich mist
Pomér fosforylaénich mist na
67,3%:32.7%:0% 86,4 %:134%:02% | 86%:14%:0,16%

serinu : threoninu : tyrosinu

S prvré jmenovanou ficinou nizSiho pétu fosforylanich mist identifikovanych
v pylovém tabakovém fosfoproteomu souvisi i dakiitenost. Asi g@tina identifikovanych
fosfopeptidi byla z&azena do kategorii ,nejasna klasifikace” (angl.leac classification) a
»-neznama funkce” (angl. unknown). Mnohé&kglito proteid budou nejspise pyléwspecificke
nebo zastoupeny v pylu h@jnnez ve sporofytickych pletivech, zatimco jejitinkce Zistava
neznama. V tabadkovém proteomu bylo 837 z celkovgtB5 identifikovanych protein
gametofyticky specifickych (nebo tfipejmenSim v satim gametofytu signifikanth
abundantgSich; Ischebeck et al., 2014). &hto 837 proteif jich 120 n¢lo nejasnou funkci.
Z tohoto je tejmé, Ze mnoho pyl@specifickych proteit stleceka na odhaleni své funkce.
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4.2. Zastoupeni jednotlivych fosforylovanych aminokyselin

Vzhledem ktomu, Ze konvéni fosfoproteomické techniky vedou k odhaled+
fosforylovanych aminokyselin, jsme nasli v pylovétabakovém fosfoproteomu pouze
fosforylovany serin, threonin a tyrosin, ale Zadosforylovany histidin (Fila et al., 2016). Ve
vétsing  fosfoproteomickych studii, které zahrnuji dostafe paiet identifikovanych
fosfoproteini, dosahovalo zastoupeni fosforylovaného serinu @049 zatimco na
fosforylovany threonin fpadalo asi 10-15 %. Fosfotyrosinovych fosfotpi@h mist je
nejmért, obvykle maximala pouhych gkolik jednotek procent.

V pylovém fosfoproteomu tabakuiipadalo 86,4 % na fosfoserin, 13,4 % na
fosforylovany threonin a jediné fosforgld misto na tyrosinu odpovidalo 0,2 % (Fila et al.,
2016). Ponsr fosforylatnich mist ve fosfoproteomu zralého pylu hugkairolniho byl velmi
podobny: bylo zde identifikovano 86 % mist na fesfionu, 14 % na fosfothreoninu a 0,16 %
na fosfotyrosinu. V fipact ZivociSnych buwénych kultur dosahoval podil fosfotyrosinu
n¢kolika jednotek procent, 1,8 % (Olsen et al., 20@63 % (Molina et al., 2007) nebo 3,8 %
(Beausoleil et al., 2004). Je ale fstta gihlédnout k faktu, Ze se zpravidla jednalo o lidské
nadorove bugné linie s celko¥ vysokou ndrou fosforylace. V rostlinnych fosfoproteomech
byval podil fosfotyrosinu zpravidla vyrazrmensi, a tak poén pS : pT : pY v bu&nych
kulturach huserku rolniho dosahoval 91,8:7,5:0,7 (van Bentemak, 2008) nebo
83,81 :16,18: 0,01 (Benschop et al., 2007). Niwoln stranu existuji i studie s vy5Sim podilem
fosfotyrosinu — 4,3 % (Sugiyama et al., 2008) a%,2 burgcénych kultur huserku rolniho
(Nakagami et al., 2010) a 2,9 % u bémych kultur ryZe set€Oryza sativa; Nakagami et al.,
2010). Z ¢chto dat je #ejmé, Ze doposud neni j&sryieSeno, jakasto se u rostlin fosforylace
tyrosinu vyskytuje (van Bentem a Hirt, 2009; Mitr@®&lenke, 2011).

Fosforylace tyrosinu hrajeitkéZitou roli v klicovych procesech&em Zivota rostliny,
nagiklad byla objevena fosforylace brassinosteroidovédcteptoru BRI1 (Oh et al., 2009)
nebo ve fytochromové signaliga draze (Nito et al., 2013). Wipad® pylovych l&ek je
fosforylace tyrosinu k&iova pro spravnyist, protoZze pylové tky pod vlivem inhibitof
fosforylace tyrosinu (fenylarsin oxidu a genistgisignifikantré zpomalily fistovou rychlost.
Presné cilové proteiny fosforylované na tyrosinu v@agosud identifikovany nebyly, i kdyz
byla prav@podobrg naruSena dynamika aktinového cytoskeletu (Zi et 2007). Jediné

fosforylatni misto na tyrosinu v pylovém fosfoproteomu tabdkyglo neseno peptidem
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GVSY*GGGQSSLGYLFGGGEAPK v proteinu podobnému SPIRAL (angl. SPIRAL1-like
1 protein; Fila et al., 2016).

4.3. Nalezené kinazové motivy v pylovém fosfoproteomu husenicku a tabaku

Jak v pylovéem fosfoproteomu tabaku (Fila et al16)Qtak v pylovém fosfoproteomu
husendku (Mayank et al., 2012) byly vyhledany kinazové timp programem Motif-X
(Schwartz a Gygi, 2005; Chou a Schwartz, 2011)d&hé spoivalo v porovnani ziskaného
souboru dat s kontrolnimi daty, dikgmuz se vybraly motivy, kde se vyskytovala fosfacg
castji, nez by odpovidalo ndheédzZnalost fosforylanich motivi rostlin je pokkud omezena,
tudiz mnohé motivy byly odvozeny z dat ziskanychostatnich modelovych organizmech,
hlavre nac¢lovéku (Lee et al., 2011a). iipad: pylového fosfoproteomu tabaku bylo objeveno
pét kinazovych motiu s centralnim serinem a jeden motiv s centralniigboabsazenou
threoninem (Fila et al., 2016). Pylovy fosfoprotebaosentku rolniho obsahoval pouhé dva
kindzové motivy, oba s centralnim serinem (Mayatrid.¢ 2012).

Prvnim fosforylgénim motivem sdilenym pylovymi fosfoproteomy obouwlir byl
XXXXXXS*Pxxxxx (Tab. 4.2), tedy motiv, kde je fosjtovany serin nasledovan prolinem
(pismeno nasledované dadickou symbolizuje fosforylovanou aminokyselinu). Wa&u byl
jese identifikovan obdobny motiv s centralnim threommeedy xxxxxxT*Pxxxxx (Tab. 4.2).
Fosforyla&ni misto (nerozhoduje, zdali na serinu nebo thragnnasledované prolinem je
rozpoznavano dima velkymi skupinami kinaz — mitogenem aktivovanypmoteinovymi
kindzami (MAPK) a cyklin-dependentnimi proteinovykinazami (CDK; Lee et al., 2011b).
Zastupci MAP kindz byli identifikovani jak v pylow@ proteomu huseéku (Grobei et al.,
2009; Hafidh et al., 2016a; Tab. 4.4), tak v pylovgroteomu tabéku (Ischebeck et al., 2014;
Tab. 4.3). MAP kinazy hrajitdezitou ulohu pi rehydrataci pylovych zrn (Wilson et al., 1997),
zatimco cyklin-dependentni proteinove kinazy jsnamy pro svoji regulaci béaného cyklu.
Jejich gfitomnost v sakim gametofytu by mohla bytutezita pro regulaci v @ibéhu obou
pylovych mitotickych dleni (PMI a PMII; Hafidh et al., 2012b). Alternatiivilohou cyklin-
dependentni proteinové kinazy G1 specifickou ployyl&ky je regulace seshu pre-mRNA

kodujici kaldéza syntazéjmz reguluje syntézu bgéné stny (Huang et al., 2013).

40



Tab. 4.2 — Fosforylaéni motivy identifikované v pylovém fosfoproteomu tabaku virginského (Nicotiana

tabacum). Tabulka pfipravena s vyuzitim dat z publikace Fila et al. (2016).
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DalSim fosfoserinovym motivem sdilenym fosfoprotgonmobou drufi je
XXXRXxS*xxxxxx (Tab. 4.2), tedy arginin nasledovdvema jakymikoliv aminokyselinami a
fosforylovanym serinem. Tento alkalicky motiwhv tabakovém fosfoproteomu jé§ednu
obdobu: na pozici argininu byl navazan lysin, tegyKxxS*xxxxxx (Tab. 4.2). Oba alkalické
motivy jsou rozpoznavany &4kalmodulin-dependentnimi proteinovymi kindzami (GK2;

Lee et al., 2011b). Chimericka CAMK seddva doménami, jednou reagujici na volné vapenate

ionty a druhou véazajici kalmodulin s navazanym*Qayla exprimovana v safim gametofytu
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lilie (Lilium longiflorum) a tabaku virginskéh¢Nicotiana tabacum) (Poovaiah et al., 1999) —
exprese této kindzy ¢imala v mateské buice saniiho gametofytu a pak pokfavala v dalSich
stadiich s tim, Ze vrcholila ve stadiu tetrady mgépor. Druhou skupinou kindz rozeznévajici
vy$e zmhované alkalické motivy jsou Eadependentni proteinové kinazyfguzné kinazam
nefermentujicim sacharézu (angl. 2Gdependent protein kinase—sucrose-non-fermenting-
related kinase; CDPK-SnRK; Lee et al., 2011b) Kinazy z rodin rozeznavajicich tento mo-

Tab. 4.3 — Kindzy rozpoznavajici nalezené kinazové motivy, které byly identifikovany v proteomu

(Ischebeck et al., 2014) a fosfoproteomu (Fila et al., 2016) sam¢&iho gametofytu tabaku virginského.

5
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S 5 ==
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(3] @ > [
3 =1 g = ©
S = > c 3
£ 3 o Ty =
2 S = 3 g
o [=3 = o o
= g s | | B
0 \© = o o
x = S~ o o
Mitogenem aktivované proteinové kinazy (motivy xxxxxxS*Pxxxxx a xXxxxxT*Pxxxxx)
EH665702 MAP kinaza (Nicotiana tabacum) 1743 |1 1(1)
TC122915 MAP kinaza Ntf4-2 (Nicotiana tabacum) 16,81 | 31 2(1)
TC145219 MAP kinaza 9 (Arabidopsis thaliana) 14,17 3(3)
TC145276 MAP kinaza 8 (Arabidopsis thaliana) 21,719 | 2 2(1)
A5H7H4 MAP kinaza 4 (Nicotiana attenuata) 10,53 | 18 2(1)
TC139884 MAP kinaza 15 (Oryza sativa) 3212 |7 4(1)
AM782478 serin/threonin proteinova kinaza (Medicago truncatula) 8,67 1 1(1)
TC142329 CDK-aktivaéni kindza (Nicotiana tabacum) 3,78 2 1(1)
NT_TC90910 MAP kinaza - 1 1(1)
NT_TC92460 MAP kinaza - 1 1(1)
Cyklin-dependentni proteinové kinazy (motivy XxxxxxS*Pxxxxx a XXXXXXT*PXXXxX)
TC144307 cyklin-dependentni kindza B1-1 (Nicotiana tabacum) 9,35 6 2(2)
TC135847 cyklin-dependentni kindza B2 (Solanum lycopersicum) 4,55 3 1(1)
NP917540; Q40483 cyklin-dependentni kinaza A (Nicotiana tabacum) 512 4 1(1)
Ca?*-dependentni proteinové kinazy (motivy xxxRxxS*xxxxxx a xxxKxxS*xxxxxx)
NT_TC96252 | Ca?-dependentni kinaza 4 (Solanum tuberosum) E K [10)
Ca?*-dependentni proteinové kindzy—pfibuzné kindzam nefermentujicim sacharézu; CDPK-SnRK (motivy
XXXRXXS*XxxXXX @ XXXKXXS*XXXXXX)
TC155405 serin/threonin kinaza SAPK8-like (Solanum tuberosum) 8,70 14 1(1)
TC123960 kinaza pribuzna SNF1 (Nicotiana benthamiana) 517 3 1(1)
Kaseinové kinazy (motivy xxxxxxS*DxExxx a xxxxxxS*xDDxxx)
TC122922 kaseinova kinaza 2 alfa (Nicotiana tabacum) 1447 | 17 3(1)
TC161480 kaseinova kinaza 2 (Nicotiana tabacum) 7,41 7 1(1)
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tiv byly identifikovany v pylovém proteomu tabakirginského (Ischebeck et al., 2014; Tab.
4.3) actyii homology byly nalezeny v proteomu husswi rolniho (Grobei et al., 2009; Hafidh
et al.,, 2016a; Tab. 4.4). Taktéz ve fosfoproteomasmiku ryZze byly SnRK nejhajj$imi
kindzami, u nichz se potilo predikovat cilovy protein (Ye et al., 2015).

Zbyvajici dva fosforylani motivy byly identifikovany pouze v pylovém fogfimteomu
tabaku virginského. Oba jsou kyselé a obsahuji mstpedni pozici fosfoserin, ktery je
nasledovan (1) kyselinou asparagovou, jakoukolivnakyselinou a kyselinou glutamovou
nebo (2) libovolnou aminokyselinou a&iva molekulami kyseliny asparagové. Jedna se tedy
0 Motivy XXXXXXS*DXEXxx a xxxxxxS*xDDxxx (Tab 4.2které se daji shrnout do jediného
motivu, xxxxxxS*(D/E)(D/E)(D/E)xxx, kde je fosforglany serin nasledovaremi kyselymi
aminokyselinami (vzdy kil kyselinou asparagovou, nebo kyselinou glutamov@n?z je
rozpoznavan kaseinovou kinazou 2 (CK2; Lee et24l11b). V pylovém proteomu tabaku

virginského byly identifikovany dvkaseinové kinazy (Ischebeck et al., 2014; Tab. 4.3

Tab. 4.4 — Kinazy rozpoznavajici nalezené kinazové motivy z pylového proteomu (Grobei et al., 2009)

a fosfoproteomu (Mayank et al., 2012) huseni¢ku rolniho (Arabidopsis thaliana).

o S E
o £ o 0
o) = > 2 S s
= 3 2 g Q > E
£ o = > N 20
T Q —~ o S s « > 0
° = o o > 2 c s 9o
MR- Z a S a z 8
AT1G18150 MAP kinaza 8 Ano Ne Ano
AT1G73670 MAP kinaza 15 Ano Ne Ano
AT2G43790 MAP kinaza 6 Ano Ne Ne
AT3G18040 MAP kindza 9 Ano Ne Ne
AT4G28980 cyklin-dependentni kindza F1 Ano Ne Ano
AT1G35670 Ca?*-dependentni kindza 2 Ano Ne Ano
AT2G38910 Ca?*-dependentni kinaza 20 Ano Ne Ne
AT4G09570 Ca?*-dependentni kinaza 4 Ano Ne Ano
AT5G19360 Ca?*-dependentni kindza 34 Ano Ne Ne

Ve vSech uvedenychripadech se jednaian silico data a ne experimentélprokazané
piitazeni jednotlivych proteinovych kinaz k jejich eijon proteirim. Nadale tedy ustava
spekulaci, ktera konkrétni kinaza zodpovida za k&nk fosforylaci daného proteinu. Ke
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zjisteni takovychto informaci by bylo zagebi provést dalSi experimenty studujici vztahy mezi

jednotlivymi fosforyl&nimi udalostmi cilovych proteina kindzami.

4.4, Dynamika fosforylace mezi jednotlivymi stadii samc¢iho gametofytu

Regulované fosfopeptidy nalezené ve fosfoproteorancifio gametofytu tabaku
virginského byly roz8leny do sedmi skupin podle svého reguaiao trendu. Skupiny I, Il a Il
zahrnovaly fosfopeptidyiftomné vylene v piislusném stadiu — tedy ve zralém pylu, pylu
aktivovanémnvitro 5 min a pylu aktivovanénm vitro 30 min. Skupiny IV, V a VI obsahovaly
fosfopeptidy, které byly identifikovany ve dvou diigh a veitetim chylgly, ve skupir IV tak
byly fosfopeptidy ze zralého pylu a pylu aktivovené5 min, skupina V zahrnovala
vyhradé

stadii a nakonec skupina VI obsahova

fosfopeptidy z aktivovanych

fosfopeptidy s nejdynariijSi  zmEnou

fosforylace — byly fitomny ve zralém pylu,

po
nedetekovatelnymi a znovu se objevily f

pstiminutové  aktivaci se  staly

y

tiiceti minutach aktivace. V posledni, sedn
pyl aktivovany pyl aktivovany

byly ; X
5 min 30 min
fosfopeptidy identifikované ve vSecteth 5 .

_

skupirg zdazeny regulovan€g

studovanych stadiich. Z celkovych 2(

regulovanych fosfopeptidjiich bylo nejvice
(135),
nasledovaly skupiny IV a VI s 21, resp. 1]

zarazeno do skupiny | ktero

fosfopeptidy (Obr. 4.1). Ve zbyvajicic

Obr.

zastoupeni

41 - Vennav diagram znazoriujici

regulovanych fosfopeptidd mezi
jednotlivymi zkoumanymi stadii — zraly pyl, pyl

aktivovany in vitro 5 min a pyl aktivovany in vitro

10| 30 min. Upraveno podle Fila et al. (2016).

fosfopeptidi, shodi po deviti peptidech

uz mén nez

skupinach bylo

bylo zaazeno do skupin Il, Il a V. Posledni skupina Vdkmpbsahovala nejméifosfopeptidi,
konkrétré sedm.

I u regulovanych fosfopeptid byly ureny gevazujici funkce protein Nejvice
zastoupenymi kategoriemi se staly transkripce steme a také syntéza a skladovani prdtein
Do téchto ¥i kategorii paila obvykle dohromady asidtina aZ polovina fosfopepfids dané
regula&ni skupirg. Casté dy podobre souboru

zastoupeni jako v celkovém
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fosfoproteomickych dat proteiny s nejistou klasafik (angl. unclear classification), n&zn

piipadala ve ¥tSin¢ regul&nich skupin asétvrtina identifikovanych fosfopeptid(skupiny |,

A — komplex PAN1-like
zraly pyl

5298 5301 S310 S326 S335 S360

pyl aktivovany 5 min

5293 5301 S310 5325 S335 5360

pyl aktivovany 30 min

5298 S301 S310 S325 S335 5360

B — protein obsahuijici PB1

zraly pyl

S1615162 5165 3 S204 3 %
pyl aktivovany 5 min o

S1615162 SIGS S197 52[14 SZDB 5215
pyl aktivovany 30 min

51515162 SIGE s197 526 3 S215

Obr. 4.2 — Diagram fosforylaGnich mist neseny dvéma

vybranymi proteiny v jednotlivych zkoumanych stadiich
saméiho gametofytu. A — komplex regulujici aktinovy
cytoskelet PAN1-like; B — protein obsahujici doménu

octicosapeptid/PHOX/BEM1p. Upraveno podle Fila et al.
(20186).

I, 11, 1V), pticemz ve skupi&
VI dosahovala dokonce téih
poloviny. V posledni skupin

Vil byly fosfopeptidy

s nejasnou klasifikaci funkce
zastoupeny fosfopeptidy
s neznamou  funkci, které

dosahovaly asictvrtiny vSech
fosfopeptiai skupiny VII. Pra¢
mezi  proteiny S nedenou
funkci mohou spadat zajimavi
kandidati, kt&i zodpovidaji za
regulaci rehydratace a aktivace
pylovych zrn a zaslouzi si tedy
pozornost v dalSim vyzkumu.
Zmeny fosforylace mezi
jednotlivymi studovanymi stadii

santiho gametofytu mohou byt

znané komplexni, protoZze kazdé z fosfor§tach mist nize podléhat z&nam ve fosforylaci

nezavisle, ficemz rektera fosforyl&ni mista mohou byt fosforylovana konstitugéiwwang et

al., 2001; McCoy et al., 2005).fiRlady proteirii s WtSim pdtem Gzné regulovanych

fosforylainich mist jsou komplex regulujici aktinovy cytoskd? AN 1-like a protein obsahujici
doménu octicosapeptid/ PHOX/BEM1p. PAN1-like komplelsahoval Sest fosforyaich
mist (Obr. 4.2A). Fosfopeptidy NSPFGFEDSVPGS*PLSARNSPFGFEDSVPGSPLS*R

(hvézdicka zn&i fosforylovanou aminokyselinu) byly identifikovanyhradré ve zralém pylu.

Na zaklad téchto dat nizeme spekulovat, Ze prvni fosforylovany atom seligjumohl byt

fosforylovan ve zralém pylu, po¢pminutové aktivaci dosahnout vrcholu své aktivacpo

tiiceti minutach uz byt defosforylovan. Je dale mozeéve zralém pylu koexistoval protein ve

dvou formach, jednou a dvakrat fosforylované. Drufyprany kandidat, protein obsahuijici

doménu octicosapeptid/PHOX/BEM1p nesl v prezentémasouboru dat sedm fosfor§tach
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mist (Obr. 4.2B). Fosfopeptidy FVDALNSGPIHASPAGAVABAGSADFLFGS*EK a
FVDALNSGPIHAS*PAGAVASPAGS*ADFLFGSEK byly spolng piitomny vyhradi ve
zralém pylu, zatimco peptid FVDALNSGPIHASPAGAVAS*I#S*ADFLFGSEK byl
identifikovan jak ve zralém pylu, tak v pylu pacetiminutové aktivaci. Prawghodobr je tedy
ve zralém pylu fosforylovan na vSedtlyiech zmhovanych serinech, pap minutach aktivace
pylu dochazi k defosforylaci vSech fosforyméch mist, ale poficeti minutach k ogtovné
fosforylaci dvou vybranych fosforyaich mist. Defosforylace posfp minutach aktivace by
tak mohla byt spjata s rehydrataci a aktivaci pytbvzrn. Navic byly u tohoto proteinu
identifikovany fosfopeptidy LFLFPANPPS*S*VGSGVPQSR LFLFPANPPSS*VGS*G-
VPQSR, které se objevily vyhra&nv pylu aktivovaném 30 min, zatimco fosfopeptid
LFLFPANPPSSVGS*GVPQSR byl identifikovan také veléma pylu. Je tak mozné, Zieti
serin byl fosforylovan ve zralém pylu, po aktivagfosforylovan a afi fosforylovan az po
tiiceti minutach aktivace. Oproti tomu prvni &dvosforylatni mista (ob na serinu) byla
detekovana exkluzivnv pylu aktivovaném 30 min. VSechny tyto mozné dogllacni zmeny
vS8ak Zistavaji spekulacemi. Navic nelze vydu Ze rekterd fosforylgni mista se mohla
vyskytovat i v dalSich stadiich, jen byla pod détekni limity pouzitych metod. Z uvedenych
piikladia plyne, Ze jeden proteiniie byt fosforylovan na vice mistech, a ta mohouéiad

raznym regulacim.

4.5. Sekretované proteinové kinazy

Vzhledem k tomu, Ze je fosforylace protiipravéépodobré dulezita i @i vzajemné
komunikaci pylové &y s vodicimi pletivy¢nélky, byly vyhledany proteinové kinazy v
sekretomu pylovych t&ek kultivovanychsemi invivo po dobu 24 hodin a v sekretomu pylovych
lacek kultivovanychn vitro 24 hodin (Hafidh et al., 2016b).

V néasledujici podkapitole bud@c o kazdé proteinové skugirjako o jednotlivém
proteinu. Proteinova skupina slie homologické proteiny, které se hledacim alguein
nepodéilo od sebe odliSit (Tab. 4.5). 8mi in vivo sekretomu byly identifikovany d\kinazy,

Z nichz jedna proteinova skupina byla nalezenavaéirein vitro sekretomu (Tab. 4.5). Kraim
toho byly exkluzivi v in vitro sekretomu nalezeny dal8yii proteinové kinazy.

Prvé d¥ kindzy zesemi in vivo sekretomu jsou homology geAt4g39110 a At2g21480
z huseniku rolniho (Arabidopsis thaliana), jez koduji proteinové kinazy z rodiny

malectin/receptorovych proteinovych kinadz. Proteinyéto kinazové rodiny jsou sén
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exprimovany pra¥ v kvétech a pylu, kde hrajiudezitou ulohu pi navadni pylové l&ky
smérem k zarodénému vaku (Lindner et al., 2012). Do této kindzowdiny pati nagiklad
FERONIA, ktera reguluje prasknuti pylove&k§ zarodéném vaku a uvokni spermatickych
burgk (Huck et al., 2003) nebo ANXUR1 (ANX1) a ANXURANX?2), které naopak blokuji
piredcasné prasknuti pylové d&y a uvolréni spermatickych jader (Boisson-Dernier et al.,
2009). Funkce homoldgidentifikovanych proteifh a divod jejich sekrece je vSak doposud

neznamy, zatim byla prokdzana pouze fosforylactepno At2g21480 (Mayank et al., 2012).

Tab. 4.5 — Proteinové kinazy identifikované v sekretomu pylovych la¢ek tabaku virginského (Nicotiana
tabacum) kultivovanych semi in vivo a in vitro (Hafidh et al., 2016b). Do tabulky byly umistény pouze

proteiny identifikované miniméalné ve tfech ze ¢tyr replikatd na zakladé alespon dvou peptidu.
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1. | K4D103 Necharakterizovany protein (Solanum lycopersicum) 88 [ 6,5 |3(1) | Ano | Ano
1| UPI0002BCB164 Kinaza podobna re'ceptorove kindze At4g39110 % |65 |3(1) | Ano | Ano
(Solanum lycopersicum)
2. | M0zv21 Necharakterizovany protein (Solanum tuberosum) 97 [ 64 | 3(1) | Ano | Ne
3. | V7IBAK9 Necharakterizovany protein (Phaseolus vulgaris) 59 |59 | 2(1) | Ne Ano
3. | 1JIw4 Necharakterizovany protein (Glycine max) 5 [ 58 |2(1) | Ne | Ano
3. | MKMJ1 Necharakterizovany protein (Glycine max) 60 |56 |2(1) | Ne | Ano
3. | 11M756 Necharakterizovany protein (Glycine max) 5 [ 6,0 | 2(1) | Ne | Ano
3. | I1INDX2 Necharakterizovany protein (Glycine max) 61 |58 |2(1) | Ne | Ano
3. | UPI0002336CEB | Ca?*-dependentni kinaza 17-like (Glycine max) 60 [ 6,0 |2(1) | Ne | Ano
3. | UPIO0032A7548 | Ca?*-dependentni kinaza 17-like (Cicer arietinum) 60 | 58 |2(1) | Ne | Ano
3. | VIBM70 Necharakterizovany protein (Phaseolus vulgaris) 61 (52 |2(1) | Ne | Ano
4. | Q6KC53 Ca?*-dependentni kinaza (Nicotiana plumbaginifolia) 60 [ 6,1 | 2(1) | Ne | Ano
5. | HBUM40 Ca?*-dependentni kinaza (Nicotiana tabacum) 57 | 57 |4(4) | Ne | Ano
6. | MICGN1 Necharakterizovany protein (Solanum tuberosum) 56 | 6,1 |4(1) | Ne | Ano
6. | K4C7G7 Necharakterizovany protein (Solanum lycopersicum) 57 [ 6,1 | 4(1) | Ne | Ano
6. | UPIO002BC828F | Ca?*-dependentni kinaza 4-like (Solanum lycopersicum) | 56 | 6,0 | 4(1) | Ne | Ano

Zbyvajici kinazy identifikované in vitro sekretomu nalezi do rodiny €a
dependentnich proteinovych kinadz. Proteinové skupia 4 jsou homology genu At5g12180
z huseniku rolniho, zatimco proteinové skupiny 5 a 6 jsammblogy gef At4g09570 a
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At1g35670, picemz nebylo mozné odlisit identitu jednotlivych hdogh. C&*-dependentni
kindzy reaguji na zémy v gradientu vapenatych idntkteré byly popsany mimo jiné u
pylovych l&ek (Holdaway-Clarke et al., 1997; Holdaway-ClarkeHapler, 2003). Gen
At5g12180 koduje CGa-dependentni kindzu 17, ktera ma zasadni Gleimigtu a cileni pylové
lacky smerem k zarodénym vakim (Myers et al., 2009). Druhé dva lokusy kédujisdah
Ca*-dependentni proteinové kinazy, konkegtBa*-dependentni kindzu 4 (At4g09570) a
Ca*-dependentni kinazu 11 (At1g35670).&to kindzy se &astni signalizace reagujici na
piitomnost kyseliny abscisove, protoZe fosforylovaanskrigni faktory spougjici odpowd’

na kyselinu abscisovou (Zhu et al.,, 2007). Kéomoho fosforyluji syntdzu l-amino-
cyklopropan—1-karboxylové kyselingimz zvysuji stabilitu tohoto enzymu, dikemuz
podporuji syntézu ethylenu (Luo et al., 2014). Yawednirad byl popsan interaktongéthto
kindz (Uno et al., 2009). @bbyly identifikovany v pylovém proteomu huseéku rolniho
(Grobei et al., 2009) a €adependentni kindza 11 spolu SGdependentni kinazou 24
regulovala aktivitu draselnych kaal pylové l&ce (Zhao et al., 2013). Studium funkce?Ca
dependentnich proteinovych kinaz spolu s jejichresgkpylovymi l&kami by mohlo pinést

dalSi dilezité informace o jejich funkci v satim gametofytu.

4.6. Planované budouci experimenty

Ziskany fosfoproteom zralého pylu tabaku, pylu\astanéhoin vitro 5 min a pylu
aktivovaneho in vitro 30 min vedl kidentifikaci zramého mnoZzstvi fosfopeptid
V prezentovaném datovém souboru byly nalezeny kw&znotivy a skteré fosfopeptidy
predvedly dynamickou povahu svoji fosforylace. Tatad/Sak neprozrazuiji, jakou funkci maji
jednotliva fosforyl&ni mista. K odhaleni ipsné funkce identifikovanych fosfoprotéira
k jejich provazani s kinazami zodgalnymi za dané fosforytmi udalosti bude zap@bi
provest dalSi experimenty.

Ze ziskaného datového souboru budou vybrany fosfeiny z kategorie s neznamou
nebo nejasnou klasifikaci, popac proteiny zodpo#dné za regulaci syntézy prot&in
K vybranym kandidd@m budou nalezeny homology u husdwi rolniho a poté budou ke
genim nalezeny T-DNA inzeéni linie v dostupnych internetovych databazich. {@amty
budou provaghy fenotypické analyzy, aby se odhalilo, zdéazgeni genu z funkce vykazuje u
zkoumanych rostlin zemu fenotypu, ZehoZ zvlastni wtaz bude kladen na fenotyp obou

gametofyti. Krome¢ toho bude ufena lokalizace proteinu, bude provedena analyzaspeikiée
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exprese (angl. overexpression) a také promotornayza. Po ziskani zakladnich informaci o

daném fosfoproteinu ségjde k analyze funkce konkrétnich fosfotylech mist.
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5. Zavéry prace

Experimenty v rdmci této disettai prace vedly k identifikaci fosforylovanych peiti
ze i stadii saniiho gametofytu tabaku virginskéKidi cotiana tabacum): ze zralého pylu, pylu
aktivovanéhadn vitro 5 minut a pylu aktivovanéhim vitro 30 minut. Tabak virginsky se tak
stal prvni krytosemennou rostlinou (Angiospermaeayestifikovanym fosfoproteomem
z aktivovaného pylu; u prvniho fosfoproteomu gdm gametofytu ziskaného z hussoi
rolniho byl analyzdm podroben pouze zraly pyl (Mdyat al., 2012). Jedinymi dalSimi
pylovymi I&kami, jeZ byly podrobeny fosfoproteomickym expenntien, byly pylové léky
smrku WilsonovdPicea wilsonii; Chen et al., 2012), ktery ale fianezi nahosemenné rostliny
(Gymnospermae). Fosfopeptidy s reguiani trendy v pitbéhu pylové aktivace byly rozteny
do sedmi skupin v zavislosti na vykdzaném refpita trendu, s tim, Ze nejpetrgjSi skupina
zahrnovala fosfopeptidy identifikované vyhradre zralém pylu.

Celkow bylo identifikovano 471 fosforylovanych penpiidv jejichZz sekvencich byla
uréena piesna pozice 432 fosforgaich mist. Znatekhse tak rozsil pocet fosfopeptid oproti
piedchozi fosfoproteomické studii, jez fita znanou ¢ast mé diplomové prace a v niz bylo
piesre lokalizovano pouhych 52 fosforgaich mist (Fila et al., 2012). Identifikované pdpti
pochazely z 301 fosforylovanych protejikteré byly rozdleny do tinacti funkénich kategorii.
Nejhojrgji zastoupenymi kategoriemi se staly transkripganglace, cileni a skladovani
proteimi a grenos signalu. Za zminku ro¥n stoji fosfoproteiny s nezndmou funkci nebo
nejasnou Klasifikaci, které souhendosahly gtiny identifikovanych fosfoprotein Znany
podil €chto proteiri poukazuje na fakt, Ze mnohé pyaspecifické proteiny doposud nejsou
prozkoumany. Pravtyto proteiny by v budoucnu mohly byt Zhavymi katé&dy zastavajicimi
Zivotrg dulezité funkce pi vyvoji santiho gametofytu.

Kromé toho byly identifikované fosfopeptidy podrobenyhlgdavani fosforyknich
sekvernich motivi. V prabéhu €chto analyz bylo nalezenoétp sekverknich motivi
s centralnim fosfoserinem (tedy XXXXXXS*PXXXXX, RBKS*XXXXXX, XXXKXXS*XXXXXX,
XXXXXXS*DXEXxXx a xxxxxxS*xDDxxx), z nichz dva motywbyly spol&né s fosfoproteomem
pylového fosfoproteomu huseéki rolniho, konkrété XxxxxxS*PXXXXX a XXXRXXS*XXXXXX.
Jeden motiv pak nesl v centralni pozici fosfothre@rxxxxxT*Pxxxxx), ale byl nalezen pouze
v pylovém fosfoproteomu tabaku virginského. K nalegm sekvetnim motivim byly

predikci vytipovany proteinové kindzy, které mapdpovidat za fosforylaci ffslusnych
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motivi. Clenové &chto kindzovych rodin byli vyhledani v pylovém peotu tabaku
virginského a husetku rolniho. Jednalo se o mitogenem aktivované prow kinazy a
cyklin-dependentni proteinové kindzy (rozpoznavajimotivy XXXXXXS*PXXXxX a
xxxxxxT*Pxxxxx), C&*-dependentni proteinové kinazy a “Gdependentni proteinové
kindzy—gibuzné kindzam nefermentujicim sacharézu (s cilovgiotivy XXXRXXS*XXXXXX a
XXXKxxS*xxxxxx) a kaseinové kindzy (fosforylujici ativy XXXXXXS*DXExxx a
XXxXxxxS*xDDxxx). Krom¢ kindz nalezenych ve fosfoproteomu byl prohledambso
sekretomickych dat pylovych dék tabaku virginského (Hafidh et al., 2016b), kdgyb
nalezeny kinazy ze dvou rodin — malectin/receptérproteinové kinazy a €adependentni
proteinové kinazy.

Tato prace takifspela k odhaleni novych fosforydaich mist ze zralého pylu tabaku
virginského(Nicotiana tabacum), ktera doposud nebyla identifikovana a jako ppwodrobila
fosfoproteomickym technikam dwstadia aktivovaného pylu tabaku, coby prvni krgtosnné
rostliny. | kdyZ provazani jednotlivych substré kindz nebylo experiment&lpodloZeno,
jedna se o zajimavy startovaci soubor dat, dékyuz se snadiji budou vybirat fosfoproteinovi

kandidati i samotné proteinové kindzy pro naslddn&cni studie.
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6. Zavéry prace v anglictiné (English summary)

The experiments presented within the scope ofthi®. thesis led to the identification
of phosphorylated peptides from three stages ofadod (Nicotiana tabacum) male
gametophyte: mature pollen grains, pollen activatettro 5 min, and pollen activated vitro
30 min. Tobacco became the first angiosperm spéamgiospermae) with phosphoproteome
identified from activated pollen since the firsiggssperm phosphoproteomic studies on male
gametophyte were carried out exclusively on mapaigen (Mayank et al., 2012). The only
alternative study performed on activated pollepaten tubes is the analysis Bifcea wilsonii
(Chen et al., 2012), which belongs to gymnosper@gninospermae). Phosphopeptides
regulated during pollen activation were put inteese groups according to their regulatory
trend, making the mature pollen-specific phosphtigep the most abundant category.

In total, there were identified 471 phosphorylapegtides with 432 unambiguously
positioned phosphorylation sites. The number ofnimiguous phosphorylation sites identified
in mature pollen increased notably since in theipres tobacco phosphoproteomic study that
represented a notable part of my diploma thesesetlwere identified only 52 phosphosites
(Fila etal., 2012). The identified phosphopeptiniéginated from 301 phosphorylated proteins,
which were divided into 13 functional categorieieTmost prominent categories were
transcription, translation, protein destination atmtage, and signal transduction. The proteins
with unknown or unclear classification were alsortivamentioning since they collectively
occupied nearly one fifth of the presented phospttepme. It tends to speculate that these
candidates represent the pollen-specific protdinsstion of which remains still unknown.
These proteins might represent hot candidates rgayin essential role during male
gametophyte development.

Furthermore, the identified phosphopeptides weerched for the phosphorylation
motifs. There were identified five motifs with a nteal phosphoserine (namely
XXXXXXSFPXXXXX,  XXXRXXSFXXXXXX,  XXXKXXS*XXXXXX,  XX¥XXS*DxExxx, and
XXXXxxS*xDDxxx), two of which were common witliArabidopsis thaliana mature pollen
phosphoproteome (XXXXXXS*PxxxxX, and XXXRxxS*xxxx¥x particular). Only one motif
carried in its central position a phosphorylatededimine (XxxxxXT*Pxxxxx) but it was
identified exclusively in tobacco male gametophyt@sphoproteome. There were predicted

kinases that should recognize these sequence mdefsibers of these kinase families were
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then found in pollen proteomes blicotiana tabacum and Arabidopsis thaliana: mitogen-
activated protein kinases, and cyclin-dependenttepro kinases (recognizing motifs
XXXXXXS*Pxxxxx, and xxxxxxT*Pxxxxx), C&-dependent protein kinases, and?€a
dependent protein kinase—sucrose-non-fermentirsgectl kinases (with target motifs
XXXRXXS*Xxxxxx, and xxxKxxS*xxxxxx), and casein lases (phosphorylating motifs
XXXXXXS*DXExxx, and xxxxxxS*xDDxxx). The other datet subjected to kinase search was
tobacco pollen tube secretome (Hafidh et al., 2Dtéiere two kinase families were identified,
namely malectin/receptor protein kinases, antf-@apendent protein kinases.

This thesis presents data that strongly contributedhe identification of novel
phosphorylation sites from tobacco mature polledd moreover it subjected two activated
stages of tobacco male gametophyte as the firsbsimerm species to the phosphoproteomics
studies. Although the associations of kinases & substrates was not experimentally
proven, it represents an interesting data set, lwhidl assist in selection of proper

phosphoprotein candidates and protein kinasehé&stbsequent functional studies.
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7. Publikované ¢lanky

Souwasti této disertani prace jsou vysledky publikované celkem vgiech
impaktovanych publikacich, a to ve dvowpdnichélancich (z nichZ na jednom jsem prvnim

autorem) a dvouighledovychilancich (z nichz jsem @pna jednom prvnim autorem).

7.1. Fosfoproteom samciho gametofytu tabaku virginského

Fila, J., Radau, S., Matros, A., Hartmann, A., Scholz, Récikova, J., Mock, H.-P.,
Capkova, V., Zahedi, R. P., Honys, D. (2016). Phogpbteomics profiling of tobacco mature
pollen and pollen activateih vitro. Molecular & Cellular Proteomics 15, 1338-1350i: do
10.1074/mcp.M115.051672. 414 = 6,564

V této publikaci jsem se podilel na samotnych expentech — séru pylu, aktivaci pylu
a extrakci proteifr. Posléze jsem analyzoval dodanéa fosfoproteomieka € vyhledaval jsem
kindzové motivy,itidil proteiny do funknich kategorii a vyraznoudrou jsem dotvigel finalni

tabulky. TaktéZ jsem se podilel na psani manusktgto publikace.
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Phosphoproteomics Profiling of Tobacco
Mature Pollen and Pollen Activated in vitro*s
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Tobacco mature pollen has extremely desiccated cyto-
plasm, and is metabolically quiescent. Upon re-hydration
it becomes metabolically active and that results in later
emergence of rapidly growing pollen tube. These changes
in cytoplasm hydration and metabolic activity are ac-
companied by protein phosphorylation. In this study, we
subjected mature pollen, 5-min-activated pollen, and 30-
min-activated pollen to TCA/acetone protein extraction,
trypsin digestion and phosphopeptide enrichment by tita-
nium dioxide. The enriched fraction was subjected to
nLC-MS/MS. We identified 471 phosphopeptides that car-
ried 432 phosphorylation sites, position of which was ex-
actly matched by mass spectrometry. These 471 phos-
phopeptides were assigned to 301 phosphoproteins,
because some proteins carried more phosphorylation
sites. Of the 13 functional groups, the majority of proteins
were put into these categories: transcription, protein syn-
thesis, protein destination and storage, and signal trans-
duction. Many proteins were of unknown function, reflect-
ing the fact that male gametophyte contains many
specific proteins that have not been fully functionally an-
notated. The quantitative data highlighted the dynamics of
protein phosphorylation during pollen activation; the iden-
tified phosphopeptides were divided into seven groups
based on the regulatory trends. The major group com-
prised mature pollen-specific phosphopeptides that were
dephosphorylated during pollen activation. Several phos-
phopeptides representing the same phosphoprotein had
different regulation, which pinpointed the complexity of
protein phosphorylation and its clear functional context.
Collectively, we showed the first phosphoproteomics data
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on activated pollen where the position of phosphorylation
sites was clearly demonstrated and regulatory kinetics
was resolved. Molecular & Cellular Proteomics 15:
10.1074/mcp.M115.051672, 1338-1350, 2016.

Tobacco mature pollen represents an extremely resistant
structure filled with a desiccated cytoplasm that is surrounded
by an extremely tough cell wall. This metabolically quiescent
stage of male gametophyte has to reach stigma tissue in a
viable state. After pollination, the rehydration and metabolic
activation of a pollen grain starts. The pollen activation is
represented by a time period when there is no pollen tube
growth, and only metabolic processes within the original vol-
ume of cytoplasm occur together with cytoplasm hydration
(1). Within this period, the pollen aperture later used for pollen
tube outgrowth is selected. After that, a rapid pollen tube tip
growth starts in order to deliver the genetic information car-
ried by two sperm cells to the ovaries. Desiccated mature
pollen of many angiosperm species can be also rehydrated
and activated in vitro (2). Here we aim to elucidate the regu-
lation processes of pollen grain re-hydration and activation
mediated by protein phosphorylation.

Protein phosphorylation, representing one of the most
frequent regulatory mechanisms, was shown to control a
number of cellular processes, such as signal transduction,
regulation of transcription and translation, regulation of cyto-
skeleton dynamics, cell cycle regulation, metabolism regula-
tion, regulation of protein stability, and protein targeting (3-5).
Similar to pollen activation, the rehydration of African xero-
phyte Craterostigma plantagineum was accompanied by
changes in protein phosphorylation (6). Attachment of a phos-
phate group to the polypeptide chain shifts the pl of a protein
to more acidic range (7). Such pl shift usually causes changes
of protein conformation within a single domain (8) or even
influences domain-domain interactions (9). In case of en-
zymes, phosphorylation sometimes inhibits activity by occu-
pying the active site of the protein, as was documented for
instance for isocitrate dehydrogenase (10).

In order to be able to identify phosphorylated proteins, it is
inevitable to apply some of the various enrichment protocols
(11, 12) because of several reasons: () Phosphoproteins are
mostly low abundant so they are overwhelmed by the excess
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of nonphosphorylated proteins. (i) A given protein is ex-
pressed in many copies and contains many potential phos-
phorylation sites (Ser/Thr/Tyr residues), but individual phos-
phorylation sites are usually only partly phosphorylated— i.e.
only a small share of the present protein molecules will be
phosphorylated at a given position whereas the majority will
be nonphosphorylated. (iii) The identification of phosphopep-
tides by mass spectrometry is still challenging from the tech-
nical point of view. The enrichment can be performed at two
levels. The first possibility is to fish the intact phosphoproteins
out of a protein mixture whereas the second approach relies
on the enrichment of phosphorylated peptides of the pro-
tease-digested protein sample. A plethora of protocols are
meanwhile available for both approaches, whereas for both
advantages as well as disadvantages have been reported (11).
In order to broaden the phosphoproteome coverage, a tan-
dem procedure applying first the former approach and then
after protease cleavage also the latter one was suggested (13,
14).

The first angiosperm pollen phosphoproteome published
was that of Arabidopsis thaliana (15), which completed the
pollen proteomic data because before that, three Arabidopsis
pollen proteomic data sets achieved by the conventional in-
gel approach (16-18) and one high-throughput proteomic
study (19) were published. Mayank and colleagues identified
many phosphopeptides, notable number of which played their
roles in regulation of metabolism and protein function, metab-
olism, protein fate, binding other proteins, signal transduction,
and cellular transport. Many kinases were identified in the
data set, showing that these were indeed subject to phos-
phorylation, for instance AGC protein kinases, calcium-de-
pendent protein kinases, and sucrose non-fermenting 1-related
protein kinases (15).

The tobacco pollen proteome was studied directly by a
high-throughput approach but appeared only recently (20). In
this study, Ischebeck and colleagues compared the proteome
of eight male gametophyte stages ranging from diploid mi-
crosporocytes to pollen tubes. Interestingly, the first tobacco
pollen phosphoproteomic paper appeared earlier than the
whole proteome was published (21). In order to identify phos-
phoproteins in tobacco mature pollen and pollen activated in
vitro for 30 min, metal oxide/hydroxide affinity chromatogra-
phy phosphoprotein enrichment employing an aluminum hy-
droxide matrix (Al(OH);) was carried out (22). This approach
led to the identification of only one phosphorylation site, so
that additionally titanium dioxide (TiO,)' enrichment was ap-

" The abbreviations used are: page: TiO,, titanium dioxide; Al(OH)s,
aluminium hydroxide; bZIP, basic leucine zipper; CAMK2, Ca?*/cal-
modulin-dependent protein kinase; CDK, cyclin-dependent protein
kinase; CDPK—SnRK, Ca?*-dependent protein kinase-sucrose-non-
fermenting-related kinase; CK2, casein kinase 2; Cys, cysteine;
DCN1, defective in cullin neddylation protein 1; DHB, 2,5-dihy-
droxybenzoic acid; EPP, EDTA/puromycine-resistant particle; GO,
gene ontology; IMAC, immobilized metal affinity chromatography;

plied, identifying 51 more phosphorylation sites in the already-
identified proteins from mature pollen. Among those proteins
were for instance various translation initiation and elongation
factors, metabolic proteins (for instance fructose bisphos-
phate-aldolase, glyceraldehyde-3-phosphate dehydrogenase,
and alcohol dehydrogenase), Rho guanine nucleotide disso-
ciation inhibitor, and several ribosomal proteins. However, not
many signaling proteins were identified in this study. The third
male gametophyte phosphoproteome revealed to date was
that of a gymnosperm Picea wilsonii. However, the proteome
of this species was studied from the perspective of deficient
growth media, and several phosphoproteins linked to Ca®*
and sucrose deficiency were identified (23).

The present study is a continuation of our male gameto-
phyte phosphoproteomic studies. Herein, we employed phos-
phopeptide enrichment by metal oxide/hydroxide affinity
chromatography with TiO, matrix (24) on three stages of male
gametophyte, this time including two stages of activated pol-
len (5 min and 30 min) as well as mature pollen. Collectively,
471 phosphopeptides carrying 432 phosphorylation sites
(phosphoRS probabilities >90%) have been identified in the
three stages of male gametophyte. These phosphorylation
sites belonged to 301 phosphoproteins that were classified
into 13 functional categories; with transcription, protein syn-
thesis, destination and storage, as well as signal transduction
being the dominant functional groups. A phosphorylation mo-
tif search revealed 5 motifs with a central phosphoserine and
one motif with a central phosphothreonine. Quantitative data
led to the discovery of regulated phosphopeptides, which
were grouped into seven categories based on their regulatory
trends throughout the studied developmental stages.

EXPERIMENTAL PROCEDURES

Plant Material and Pollen Activation In Vitro—Tobacco plants (Nico-
tiana tabacum cv. Samsun) were grown in a greenhouse from April to
September. Flower buds shortly before anthesis were collected be-
tween June and September. Anthers were removed from the buds
and let dehisce at room temperature on a filtration paper overnight.
Then, mature pollen was sieved by a stocking and stored at —20 °C
(25) until it was further used. The collected pollen represented bulk
samples originating from three groups of 15 plants that were grown in
separate parts of the greenhouse. These bulk samples were further
referred to as the three biological replicates.

Mature pollen was activated in vitro as a shaken suspension for 5
min, and 30 min, respectively, each stage in three biological replicates

LEA, late embryogenesis abundant; MAPK, mitogen-activated protein
kinase; Met, methionine; MS/MS, tandem mass spectrometry; nLC,
nano liquid chromatography; PB1, octicosapeptide/PHOX/BEM1p;
PPI1, peptidyl-prolyl cis-trans isomerase 1; Rho GAP, Rho GTPase
activation protein; Rho GDI2, Rho guanine nucleotide dissociation
inhibitor 2; RNF4, RING FINGER PROTEIN 4; Ser, serine; SIMAC,
sequential elution from IMAC; SMM-MES, sucrose-mineral medium
buffered with MES; SNC1, SUPRESSOR OF NPR1-1, CONSTITU-
TIVE 1; Thr, threonine; Tyr, tyrosine; UBA, ubiquitin-associated; UBX,
ubiquitin-like; UNC-89, UNCOORDINATED-89; WVD2, WAVE-
DAMPENED 2.
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Fic. 1. A schematic workflow of the performed experiments. The
three stages of tobacco male gametophyte (particularly mature pollen,
pollen activated in vitro for 5 min and pollen activated in vitro for 30 min)
were subjected to TCA/acetone protein extraction, trypsin digest and
phosphopeptide enrichment by TiO,. The obtained phosphopeptide-
enriched eluate was fractionated by nLC and measured by MS/MS.
The present phosphopeptides were identified (if possible with the
unambiguous position of the phosphosite) and the results further
analyzed.

| raw data matrix

data analysis
and comparison

as mentioned above, at 27 °C in sucrose-mineral medium buffered
with MES (SMM-MES; 175 mm sucrose, 1.6 mm boric acid, 3 mm
Ca(NO;),*4H,0, 0.8 mm MgSO,-H,O, 1 mm KNO3, 25 mm MES, pH
5.9) (26). The activated pollen was then harvested by filtration on a
vacuum pump-driven apparatus, and immediately frozen in liquid
nitrogen. The three stages differ from each other as follows: mature
pollen represents an oval-shaped structure with a desiccated cyto-
plasm. Upon re-hydration, 5-min activated pollen becomes round-
shaped with a hydrated cytoplasm. Furthermore, one pollen aperture
is usually chosen for pollen tube outgrowth after 30-min imbibition
(see supplemental Fig. S1).

Protein Extraction and Phosphopeptide Enrichment—The total pro-
teins were extracted from all the above stages by TCA/acetone pre-
cipitation (27) with slight modifications (21) in three biological repli-
cates as mentioned above (see Fig. 1 for workflow overview). In detail,
mature or activated pollen was homogenized by a pestle in a mortar.
The acquired fine powder was resuspended in 10 volumes of 10%
w/v TCA in acetone supplemented with 1% w/v DTT. After 5 min
sonication in an ultrasonic bath, the samples were briefly frozen in
liquid nitrogen, incubated at —20 °C for 45 min, and centrifuged
(23,000 X g, 15 min, 4 °C). After the removal of the supernatant, the
samples were washed by 1.5 ml acetone with 1% w/v DTT, sonicated
for 5 min, briefly frozen in liquid nitrogen, and kept at —20 °C for 30
min. After the centrifugation under the above conditions, the washing
step was repeated. Finally, the pellet was dried and stored at —20 °C.

The total protein extracts from all stages were resuspended in 0.2
M guanidinium chloride and 50 mm ammonium bicarbonate supple-
mented with PhosStop phosphatase inhibitor mixture (Roche, Penz-
berg, Germany), carbamidomethylated as described elsewhere (28)

and subsequently trypsin-digested (trypsin-to-protein ratio 1:50;
37 °C, 12 h).

There were three biological replicates for each studied stage. For
each of the ftriplicates, 500 ng peptides were dissolved in loading
buffer (80% v/v ACN, 6% v/v TFA, saturated with phthalic acid) and
subjected to phosphopeptide enrichment by TiO,. Seven synthetic
peptides were spiked to the peptide mixture in order to check the
reproducibility of the replicates. The phosphopeptides bound to TiO,
beads were washed and eluted as described previously (21, 29).

nLC-MS/MS Measurement and Phosphopeptide Identification—
The phosphopeptide-enriched samples were analyzed by nLC-
MS/MS on an LTQ Orbitrap Elite (Thermo Fisher Scientific, Bremen,
Germany) mass spectrometer coupled to an Ultimate 3000 nLC
(Thermo Fisher Scientific). Peptides were pre-concentrated on a self-
packed Synergi HydroRP trapping column (100 um ID,4 um particle
size, 10 nm pore size, 2 cm length) and separated on a self-packed
Synergi HydroRP main column (75 um ID, 2.5 um particle size, 10 nm
pore size, 30 cm length) at 60 °C and a flow rate of 270 nl-min~ " using
a binary gradient (A: 0.1% formic acid, B: 0.1% formic acid, 84%
ACN) ranging from 3% to 45% B in 240 min.

MS survey scans were acquired from 350-2000 m/z in the Orbitrap
at a resolution of 60,000 using the polysiloxane m/z 445.120030 as
lock mass. The ten most intense ions were subjected to collision-
induced dissociation and MS/MS using normalized collision energy of
35% and an activation time of 30 ms and MS/MS were acquired in the
LTQ. AGC values were set to 10° for MS and 10* for MS/MS scans.

The acquired spectra were searched against the TIGR EST se-
quence database for Tobacco (ftp://occams.dfci.harvard.edu/pub/
bio/tgi/data/; release version 10/04/2011, 48961 entries) using Pro-
teome Discoverer 1.3 with Mascot. Quantification, false discovery
assessment and phosphorylation site localization were performed
using the following nodes: Precursor lons Area Detector, Peptide
Validator, and phoshoRS (30). Searches were conducted with the
following settings: 10 ppm MS tolerance, 0.5 Da MS/MS tolerance,
trypsin as a cleaving enzyme with max. two missed cleavage sites,
carbamidomethylation (Cys) as fixed, and oxidation (Met) together
with phosphorylation (Ser, Thr, Tyr) as variable modifications. Finally,
the results were subjected to the filtering criteria of mass deviation =
4 ppm and high confidence (corresponding to a false discovery rate
<1% on the peptide-spectrum match level). The standard deviation
of the peak areas of the synthetic peptides was below 25% so the
results were considered reproducible. Peak areas were considered
per peptide, i.e. different charge states were combined. Of all identi-
fied phosphopeptides, only the ones that showed a standard devia-
tion <30% of the abundance between the biological replicates of the
same stage, and that were identified in all of the replicates were listed
in the result tables. Moreover, only phosphopeptides with an unam-
biguously assigned phosphorylation site with a probability higher than
90% (phoshoRS) were considered. All raw data and search results
have been deposited in proteomeXchange (31) with the accession
PXD003042.

nLC-MS/MS of the Trypsinized Crude Protein Extract—For each
sample ~1 pg of the trypsin digest was analyzed by nLC-MS/MS
prior to TiO, enrichment, using the same conditions as above. Data
analysis was also conducted as above, however, omitting phosphor-
ylation as variable modification. Only proteins meeting the following
criteria were quantified: (1) at least 2 unique peptides quantified in at
least 2 out of 3 biological replicates, (2) for all conditions standard
deviations between biological replicates had to be <40%. Proteins
that differed among any of two studied stages at least twofold in
abundance were considered as regulated.

Protein Categories and Motif Search—The gene ontology (GO) and
enzyme codes were originally acquired by Blast2GO ver 2.7.2 (https://
www.blast2go.com); the identified tobacco ESTs translated in the
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Fic. 2. The statistics of identified phosphopeptides. A, Column
diagram showing the number of phosphopeptides according to the
number of unambiguously identified phosphorylation sites in a single
peptide. If a phosphorylation site was identified in more than one
peptide, it was counted repeatedly every time on every peptide. B,
Number of phosphorylation sites according to the phosphorylated
amino acid (serine, threonine, or tyrosine) identified. If a phosphory-
lation site was identified in more than one peptide, it was counted only
once.

longest reading frame were searched against the Arabidopsis pro-
teome. For many of the sequences, the GO terms (divided into three
groups: molecular function, biological process, and cellular compart-
ment) together with the EC enzyme codes were assigned according
to the homologous Arabidopsis sequences. However, some of the
tobacco sequences lacked their Arabidopsis homologue in the pro-
teome database and/or the gene ontology was not informative
enough. So finally, the acquired GO terms were manually converted
to protein categories and subcategories according to Bevan et al. (32)
to enable better categorization of the data. In case a protein had more
functions, it was catalogued according to the prevailing function.

All unambiguous phosphopeptides (supplemental Table S2) were
analyzed for the significant phosphorylation motifs by Motif-X soft-
ware (33, 34). Two searches were performed, one looking up phos-
phorylated serine and the other one searching for phosphorylated
threonine (phosphotyrosine motifs were not searched because there
was only one phosphorylated tyrosine in the phosphopeptide data
set). The width of a phosphorylation motif was set to 13 (where the
phosphoamino acid was placed into the central position), number of
occurrences to 15, and significance score to 0.000001. As a back-
ground, data set of tobacco Uniprot sequences was uploaded.

The regulated phosphopeptides were manually divided into seven
categories according to their regulatory trends. The motif search was
not performed on the regulated phosphopeptide data set because it
contained only a limited number of phosphopeptides. The graphical
representation of the peptide abundances in the various stages was
performed by the VANTED software package (http://www.vanted.org,
ref. 35).

RESULTS

Phosphopeptide Enrichment and Identification—In this
study, 471 phosphopeptides were identified with an unam-
biguously assigned position of the phosphorylation site (sup-
plemental Tables S1 and S2). The vast majority of the identi-
fied phosphopeptides was singly phosphorylated (437),
whereas only a minority was doubly (32) or triply phosphory-
lated (2), see Fig. 2A. These 471 identified phosphopeptides

contained collectively 432 unique unambiguous phosphoryl-
ation sites. The number of unique phosphorylation sites is
lower than the number of phosphosites identified in all phos-
phopeptides because some of the identified phosphorylation
sites were redundant. Such a redundancy was observed for
instance in case of couples of peptides, where one of which
was completely cleaved whereas the other carried one
missed-cleaved trypsin site (e.g. represented by the peptides
KQLVSVAS*AVK and QLVSVAS*AVK from adenine nucleo-
tide a hydrolases-like protein or peptides S*"WDDADLK and
S*WDDADLKLPGK from eukaryotic translation initiation fac-
tor 5B-like protein; an asterisk represents the phosphorylation
site) or alternatively in case of two peptides, one of which was
oxidized on a methionine whereas the other was not modified
in that way (e.g. peptides KENVGPMVNLENPTS*PK and
KENVGPmMVNLENPTS*PK from low-temperature-induced 65
kDa protein or peptides EES*DDDMGFSLFD and EES*DDDm-
GFSLFD from acidic ribosomal protein P1a-like protein; an
asterisk represents phosphorylation site, and lowercase “m”
represents an oxidized methionine).

Because conventional phosphoproteomic workflows were
applied, only O-phosphorylated amino acids were identified,
particularly serine, threonine, and tyrosine (Fig. 2B). The dom-
inant phosphorylated amino acid was phosphoserine with 373
phosphorylation sites (86.4%), followed by phosphothreonine
represented by 58 phosphorylation sites (13.4%). Only one
phosphorylation site (corresponding to 0.2%) was detected
on a tyrosine making it the rarest phosphorylated amino acid
in the data set.

Identified Phosphoprotein Categories—The 471 identified
phosphopeptides revealing 432 unique phosphorylation sites
were assigned to 301 proteins as several proteins contained
more than one phosphorylation site. A protein was defined
throughout the article as a sequence identified either with a
single accession number or with a unique combination of
accession numbers. The combination of accession numbers
was applied in case of one peptide being assigned to two or
more identifiers, e.g. the couple NT_TC85822_1 and NT_
TC87771_1 or the pair NT_TC82971_1 and NT_TC77872_1).
Also, some accession numbers were assigned to more than
one peptide, either as an exclusive number (e.g. NT_TC95936_
1 or NT_TC83486_1), or in combination with another acces-
sion (e.g. NT_TC95936_1 and NT_FG166442_1, or NT_TC83486_
1 and NT_FG175056_1). Thus, a row in supplemental Table
S1 represents a single protein; the phosphopeptides belong-
ing to one phosphoprotein are put together into one cell. The
proteins were annotated according to the original TIGR pro-
tein descriptions. However, many of these annotations were
not explanatory enough so in case of some phosphoproteins,
the annotation was improved using the homologues found by
tblastx in the GenBank database (http://blast.ncbi.nim.nih.
gov).

The annotated proteins were sorted according to their pre-
vailing function. The GO search was performed by blast2GO
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Fic. 3. Pie chart showing the percentage of the individual phos-
phoprotein categories.

software (https://www.blast2go.com). Because the obtained
results did not allow an easy categorization according to
protein function, the gene ontology assignment was further
performed manually into the categories according to Bevan et
al. (32). Every protein was catalogued into just one category.
In case one protein had more distinct functions, it was sorted
into the category with the dominant function. The difference
between “unclear classification” and “unknown” was as fol-
lows: the proteins with a known homologue and/or annotation
(characterizing them only to some extent) with an unclear
function were catalogued as “unclear classification” whereas
the proteins without a known homologue and/or functional
annotation were classified as “unknown.” The protein catego-
ries are summarized by a pie chart in Fig. 3. The main cate-
gory cataloguing almost one fifth of the phosphoproteins was
represented by species with “unclear classification.” Over one
quarter of proteins (falling into two separate categories, pro-
tein synthesis, and protein destination and storage) was con-
nected with translation. More than 10% belonged also to
transcription (17%), and exactly 10% to signal transduction.
Cell structure and intracellular traffic reached 8% or 7%,
respectively. The other categories were represented only by a
few percent: metabolism, energy, cell growth/division, dis-
ease/defense, unknown, and transporters. For enzymes, the
EC numbers are given in supplemental Table S2.

Motif Analysis—Protein phosphorylation occurs usually on
particular short amino acid motifs rather than on random
sequences. Some of these motifs can be kinase-specific so
their knowledge can reveal cellular regulatory networks in
more detail. The dominant phosphorylation motifs in our data
set compared with the random background based on the
tobacco sequences from Uniprot protein (http://www.uniprot.
org) database were identified by Motif-X software (supple-

mental Fig. S2). Two independent searches were performed -
one focused on phosphoserine motifs and the other one
looking up phosphothreonine motifs. The phosphotyrosine
was not subjected to this analysis because only one phos-
phorylated tyrosine was present in the entire data set. The
phosphorylation motifs had to be found at least 15 times in
the experimental data set to be considered. The most abun-
dant phosphoserine motif and the only phosphothreonine
motif were represented by the phosphorylation site that was
followed by a prolin: XxxxxxS*Pxxxxx, and XxxxxxT*Pxxxxx
(where phosphorylation site is marked by an asterisk and the
position that can be occupied by any amino acid is shown as
“x”). The proline motif with a serine was detected 118 times,
whereas proline following a threonine was found only 31
times. The remaining phosphoserine motifs were two basic
and two acidic ones. The basic motifs were represented by a
phosphorylated serine, preceded by a lysine or an arginine
followed by any two amino acids. In particular, the motif
xxXRxxS*xxxxxx was detected 37 times, whereas the slightly
less abundant xxxKxxS*xxxxxx was carried by 30 phospho-
rylated peptides. The acidic motifs were composed of a serine
followed either by a glutamic acid, one any amino acid, and a
glutamic acid or by one any amino acid with two glutamic
acids. The motif xxxxxxS*DxExxx was found 23 times
whereas the second acidic motif xxxxxxS*xDDxxx was pres-
ent in 15 phosphopeptides (supplemental Fig. S2). The kinase
families that usually recognize such motifs are referred to
more in detail in the discussion.

Regulated Phosphopeptides—In order to determine whether
substantial changes on the level of protein expression oc-
curred between the different time points, additional nLC-
MS/MS measurements were performed on the complex pep-
tide mixture without prior TiO, enrichment.

The concentration of the nonphosphorylated peptides
from this analysis served as a reference (protein abun-
dance), and the abundance of the phosphopeptides was
compared with this reference. Some of the phosphorylated
peptides changed their concentration in accordance with the
abundance changes of the whole protein. The global abun-
dance ratios of these phosphoproteins are shown in supple-
mental Table S3 in red. The concentration of such phosphor-
ylated peptides changed likely because of the synthesis or
degradation of the whole proteins rather than as a conse-
quence of the sole phosphorylation or dephosphorylation. On
the other hand, other phosphorylated peptides did not reflect
the concentration changes of the corresponding proteins and
showed either opposite abundance change or showed a
changed abundance exclusively at the phosphopeptide level
(and not on the level of the whole protein). The concentration
ratio of such proteins is shown in supplemental Table S3 in
black. Such changes in phosphopeptide abundance that were
not reflected by the concentration of the whole protein are
likely to be caused exclusively by protein phosphorylation or
dephosphorylation processes.

1342

Molecular & Cellular Proteomics 15.4


https://www.blast2go.com
http://www.mcponline.org/cgi/content/full/M115.051672/DC1
http://www.uniprot.org
http://www.uniprot.org
http://www.mcponline.org/cgi/content/full/M115.051672/DC1
http://www.mcponline.org/cgi/content/full/M115.051672/DC1
http://www.mcponline.org/cgi/content/full/M115.051672/DC1
http://www.mcponline.org/cgi/content/full/M115.051672/DC1
http://www.mcponline.org/cgi/content/full/M115.051672/DC1
http://www.mcponline.org/cgi/content/full/M115.051672/DC1

SBMB

A

—~
—~

MOLECULAR & CELLULAR PROTEOMICS

P

MC

Tobacco Male Gametophyte Phosphoproteome

Because proteins were quantified based on at least two
unique peptides leading to a reduced precision compared
with single peptide-based phosphopeptide quantification,
here the maximum standard deviation allowed among biolog-
ical replicates was 40%, compared to 30% for phosphopep-
tides. Moreover, because of the increased complexity of the
samples the identification in two out of three candidates was
considered sufficient.

The proteins considered to be of a different abundance had
to show twofold difference between at least two stages. If we
consider these proteins and the phosphopeptides that be-
longed to them, we counted 209 phosphopeptides, which
were sorted into seven regulatory groups (see Fig. 4 and
supplemental Fig. S3). The first three groups presented phos-
phopeptides that were identified exclusively in one of the
three studied stages. The highest number of phosphorylated
peptides fell into the category unique for mature pollen—135
phosphopeptides (group I). Nine phosphopeptides were iden-
tified exclusively in both 5-min (group Il), and 30-min activated
pollen (group lll). The other three groups contained phospho-
rylated peptides that were detected in two stages out of three.
Twenty-one common phosphorylated peptides were de-
tected in 5-min and 30-min activated pollen (group 1V), and 19
common phosphopeptides were detected in mature pollen
and 30-min activated pollen (group VI). Only nine phospho-
peptides fell into the group that was missing in 30-min acti-
vated pollen (group V). The last regulation group was repre-
sented by the phosphopeptides common to all three stages,
represented by seven phosphopeptides (group VII).

The main protein categories where the regulated phospho-
peptides belong to were transcription, translation, and protein
synthesis and storage (please refer to the pie charts in Fig. 4).
These categories collectively accounted for one third to one
half of phosphopeptides in the respective regulation group.
Quite common were also phosphopeptides with “unclear
classification” that accounted for about a quarter of the phos-
phopeptides in the regulatory groups exclusive to any of the
stages (group I, I, and Ill), and in the group IV with the
common regulation to the 5-min and the 30-min activated
stage. Furthermore, it represented almost a half in the group
VI (i.e. peptides that were absent from 5-min activated pollen).
In the regulation group VII (common to all studied stages), the
functional category “unclear classification” was supple-
mented with “unknown,” which represented over a quarter of
identified phosphopeptides.

Group 1, and group V represented the phosphopeptides
that were phosphorylated in mature pollen, and then were
dephosphorylated upon pollen activation. Exclusive phospho-
sites in mature pollen, concentration changes of which were
not reflected by changes on the protein level were repre-
sented for instance by eukaryotic initiation factor 4B, various
RNA binding proteins, mini zinc finger protein, C2 domain-
containing protein, ubiquitin-activating enzyme 2, vesicle-as-
sociated protein 25, MODIFIER OF SNC1 (SUPRESSOR OF

NPR1-1, CONSTITUTIVE 1) 1-like protein, and a variety of
proteins with unclear classification, such as muscle M-line
assembly protein UNCOORDINATED-89-like (UNC-89-like),
dentin sialophosphoprotein-like protein, and glycine-rich pro-
tein 2. The phosphosites that were shared by 5-min activated
pollen and mature pollen were found for example in eukary-
otic translation initiation factor 4v-like protein, nucleic acid
binding protein, UBA (ubiquitin associating) and UBX (ubiqui-
tin-like) domain-containing protein At4g15410-like, auxilin-re-
lated protein 2-like, and pollen tube Rho guanine nucleotide
dissociation inhibitor 2 (Rho GDI2). The groups I, lll, and IV
were composed of phosphorylation sites that appeared only
upon pollen activation. There were detected for instance zinc
finger CCCH domain-containing protein 31-like protein, ribo-
somal protein S6-like, protein phosphatase inhibitor 2-like
protein, serine/arginine-rich splicing factor RS2732-like, E3
ubiquitin-protein ligase RING FINGER PROTEIN 4 (RNF4)-like,
WD repeat-containing protein 24 homolog, cytochrome ¢ ox-
idase subunit 5b-1 protein, methyl-CpG-binding domain 10
protein, histone deacetylase 1 (HDT 1). The most dynamic
regulatory trend was documented by group VI, peptides of
which showed phosphorylation in mature pollen, then tempo-
rary dephosphorylation immediately upon pollen activation
and a re-phosphorylation later during pollen activation (30
min). Such a dynamic regulation was detected in these phos-
phoproteins: phospholipase A2/esterase, bZIP transcription
factor bZIP100, acidic ribosomal protein P1a-like protein, late
embryogenesis abundant (LEA) proteins, RNA binding proteins
and transcription initiation factor IIF subunit a-like protein. Fi-
nally, group VIl collected the proteins that were present in all
stages and showed significant abundance changes throughout
the development. These species were for example represented
by serine/threonine-protein kinase DST2-like, calreticulin pre-
cursor, 2-phosphoglycerate kinase-related family protein, and
RNA polymerase-associated protein LEO1-like.

Multiple Phosphorylation—A single protein can carry sev-
eral phosphorylation sites that show different regulatory
trends (36, 37). Examples of such proteins identified in our
study were actin cytoskeleton-regulatory complex PAN1-like
protein, and octicosapeptide/PHOX/BEM1p-domain-contain-
ing protein (PB1-containing protein). The former is character-
ized by six phosphorylation sites that showed three regulatory
trends (Fig. 5A, and supplemental Table S4). The phospho-
peptides NSPFGFEDSVPGS*PLS*R and NSPFGFEDSVPG-
SPLS*R were identified exclusively in mature pollen whereas
the phosphopeptide NSPFGFEDSVPGS*PLSR was present in
mature pollen and 5-min activated pollen. We can speculate
that the first serine became phosphorylated in mature pollen,
peaked in 5-min activated pollen, and in 30-min activated
pollen remained undetectable. On the other hand, the second
serine dominated in mature pollen whereas later on was un-
detectable. Furthermore, it is likely that in mature pollen both
phosphorylation forms (a singly and a doubly phosphorylated)
coexisted possibly each showing a different regulatory activ-
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GRPYS*PNQGPLVK NT_TC83479_1 NSPFGFEDSVPGS*PLSR NT_TC86986_1

EQLLGS*"VDINAVGESLDPEVK NT_TC93883_1 [} GVS*'YGGGQSSLGYLFGGGEAPK NT_TC88106_1

S*VEDAFESR NT_TC78379_1 | GVSYGGGQSS'LGYLFGSGEAPK NT_TC89729_1

KAGESIPPTTGS'PR NT_TC107689_1 - GIIVGDS"DPEIENENVGNNNDNR NT_TC93883_1

ESSAS*STSGIFGSIFPPPSK NT_TC89275_1; NT_TC116014_1

SDDIDDNT*PISEVK NT_FG642192_1

AIGTIT*PISEAR NT_FS389237_1 | SLS*QITEAMS*PR NT_TC119549_1

RTS*SLSPSPIPLS'PR NT_TC100480_1 | TSGDEDEGNGS'DHGDEDEEEEAAR NT_TC90956_1

RTSSLS*PSPIPLS'PR NT_TC100480_1 | TSSESCLIEEQPSWLDDLLNEPET'PVRR ~ NT_TC89816_1; NT_TC93222_1; ...

T*SSLSPSPIPLS'PR NT_TC100480_1 AEQLITEVLSEADSGGS'GLVNR NT_TC92904_1

NTTPDTGAGAGAGGLNS*PQS'R NT_TC101855_1 VI | Il | KEEPKEES*DDDMGFSLFD NT_TC82730_1

NTTPDTGAGAGAGGLNS'PQSR NT_TC101855_1 TASLPVELEQISPAELMK NT_TC122664_1

ASSSS'LDTNFSSK NT_TC106098_1 [ | | S*SDDIFIK NT_TC78922_1

ASSSSLDTNFS*SK NT_TC106098_1 - S*INEFLKPADGESSYYR NT_ Tcsms 1

SPLSSEIS*VEK NT_TC106098_1 - [0 | KAPLSSES'VSSGK NT_EB425827_1

VIANGS'VVPGADNVFQSLEK NT_TC107945_1 AVAES*IGGQVLGQDK NT_EB425827_1

IEDDKKIS*DGEADEK NT_TC77475_1 | GAASSTDAPTLSGGGSASAHSQLS'ATDTINR NT_EB678400_1

LQS'VEVAIDK S*PNPFSLLDPNFTR NT_FG645176_1

SNEASDSDPKVS*DVQLNNAEASK — & VQNPGLTSPGS'GVILDQK NT_TC113598_1

FVDALNSGPIHASPAGAVAS'PAGSADFLFGS'EK  NT_TC85738_1 FVDALNSGPIHAS*PAAGAVAS*PSGSADFLFGSEK NT_TC81359_1

FVDALNSGPIHAS'PAGAVASPAGS'ADFLFGSEK  NT_TC85738_1 FVDALNSGPIHASPAAGAVAS'PS'GSADFLFGSEK NT_TC81359_1

GYGGGDGGYGGGGGYGGGS'R NT_TC88719_1 LFLFPANPPSSVGS*GVPQSR NT_TC81359_1; NT_TC85738_1
Y GeFK NT_TC88719_1 VVDFSSLEGEGS'FGLR NT_TC84601_1

GDLVTVNS*VGSDQR NT TC90310_1 FVDALNSGPIHASPAGAVAS'PAGS*ADFLFGSEK NT_TC85738_1

S*LVGPGALPFPR TC90310_1 ADELLS*PQYLPEVSK NT_TC89277_1

SSLPSSDDTLS'SSIIDDIGLR  NT_TC90310_1; NT FG157322_1

ELS*GNDIFGPPPEVPTR NT_TC91731_1 VIl

VFS'GQITTEEAESLNIR NT_TC91731_1 SNS*IPTLGK NT_TC99120_1

EGTVGSLS*FNVIDTS*PR NT_TC95208_1 VRPEDIIPEDDGGYES*EEEQVESK NT_TC97506_1; NT TC121742 1

TLAALPDVQS*GSNLPEFNLNFNQK NT_EB425722_1 FPS*KPLPPSEAVR n )

NNDFQVDPVSSQVSSS*LEK NT_TC103514_1 AAPADS*DAEEDDDADDDADDADDKLESK N'rjcsoassj

NNDFQVDPVSSQVS*SSLEK NT_TC103514_1 GYS'FDDSDPFGSSGPFK NT_TC86986_1

NLS'SPLPPLIDVSR NT_TC88207_1 SST'FQEETIFR NT_FS412535_1

NLSS*PLPPLIDVSR NT_TC88207 1 SS'TFQEDSIFR NT_FS412535_1

Fic. 4. Expression profiles of the selected phosphopeptides with a different abundance in the studied male gametophyte stages. The
phosphopeptides were sorted into seven regulation groups based on their abundance differences in the three analyzed male gametophyte
stages (group | - left panel; groups II-VII - right panel). The relative peptide abundance in each group is shown based on a gray scale (light
gray - not detected; black - the highest concentration). Each column represents the average peptide abundance of the three independent
LC-MS experiments. In the rows, the normalized abundance of peptides as extracted from the Proteome discoverer LC-MS software is
presented. Peptides assigned to one and the same identifier are highlighted in gray. Gene ontology (GO) categories are presented for each
group as a pie chart. The full presentation of the data set is provided in the supplemental Table S3.
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A - actin cytoskeleton-regulatory complex protein PAN1-like

mature pollen

‘ S298 s301 S310 S326 S335

S360

S326 S335 360

S360

5-min activated pollen

‘ 5298 S301 S310

o

30-min activated pollen

I S298 S301 S310 S326 S335

B — PB1-containing protein

mature pollen

S197 SZO4 SZOS S215
) O O ¢

S161 S162 S165

5-min activated pollen

‘ S1615162 S165 S197 S204 SZOB S215 |

30-min activated pollen

l S1615162 S165 S197 S204 SZO8 S215 |

Fic. 5. Phosphorylation patterns of two selected phosphopro-
teins identified in our data set in three stages of male gameto-
phyte. A, Actin cytoskeleton-regulatory complex protein PAN1-like.
B, PB1-containing protein. “S” stands for serine, the number indi-
cates the position of the amino acid in the polypeptide chain, and
phosphorylation site is depicted as a “P” in the black circle.

ity. The latter, PB1-containing protein is characterized by
seven phosphorylation sites showing three regulatory trends
(Fig. 5B, and supplemental Table S4). The phosphopeptides
FVDALNSGPIHASPAGAVAS*PAGSADFLFGS*EK, and FVDA-
LNSGPIHAS*PAGAVASPAGS*ADFLFGSEK coexisted exclu-
sively in mature pollen, whereas the phosphopeptide FVDA-
LNSGPIHASPAGAVAS*PAGS*ADFLFGSEK was present only
in mature pollen and 30-min activated pollen. It is likely that
phosphorylation of all these four serines occurs in mature
pollen, it vanishes in 5-min activated pollen, and that two of
the phosphorylation sites re-appear after 30 min of pollen
activation. The dephosphorylation after 5 min of activation
might be directly related to pollen activation/hydration. On the
other hand, the phosphopeptides LFLFPANPPS*S*VGSG-
VPQSR, and LFLFPANPPSS*VGS*GVPQSR were identified
exclusively in 30-min activated pollen, whereas the phospho-
peptide LFLFPANPPSSVGS*GVPQSR was found also in ma-
ture pollen. Possibly, the third phosphorylated serine ap-
peared in mature pollen, vanished and re-appeared in 30-min
activated pollen whereas the other two phosphoserines ap-
peared only after 30 min of pollen activation. Collectively our
results showed differential phosphorylation patterns for a
large number of proteins likely involved in the early processes
during tobacco pollen activation.

DISCUSSION

In the presented data set, 471 phosphopeptides have been
identified in three stages of male gametophyte (mature pollen,
pollen activated for 5 min and pollen activated for 30 min),
which carried 432 unambiguous phosphorylation sites. The

observed redundancy was caused by couples of phospho-
peptides, one of which was “normal”, and the other one was
either missed-cleaved by trypsin or came from chemical mod-
ifications, such as methionine oxidation. These 432 unique
phosphorylation sites have been assigned to 301 individual
proteins. The number of phosphorylation sites identified rep-
resents a great improvement in comparison to our previous
tobacco male gametophyte phosphoproteomic study that
identified 52 unambiguous phosphorylation sites (21). In that
study we applied Al(OH)5- metal oxide/hydroxide affinity chro-
matography for phosphoprotein enrichment (allowing the an-
notation of only one phosphorylation site), and TiO, phospho-
peptide enrichment for the analysis of phosphorylation sites
of selected candidate proteins from mature pollen. Such im-
provement in the number of phosphorylation sites after phos-
phopeptide enrichment in the actual study compared with the
phosphoprotein enrichment in the previous study is in accor-
dance with several previous studies where phosphoprotein
enrichment revealed only a limited number of phosphorylation
sites (6, 38, 39). Moreover, a tandem approach enriching first
for phosphoproteins and then after trypsin digest also for
phosphopeptides was shown beneficial (13, 14).

The Proportion of the Phosphorylated Amino Acids in the
Presented Phosphoproteome—The conventional phospho-
proteomic techniques lead to the identification of O-phosphor-
ylated amino acids: serine, threonine, and tyrosine because
phosphorylated histidine (that carries phosphate attached to a
nitrogen atom in its imidazole ring) is labile under acidic pH
(that is usually applied during the conventional enrichment
protocols and during conventional LC-MS; ref. 40). In most
phosphoproteomics studies, the dominant phosphoamino
acid is serine with 80-90%, followed by threonine occupying
around 10-15%, and tyrosine reaching few percent. In our
study, we observed the pSer/pThr/pTyr ratio of 86.4:13.4:0.2 that
was astonishingly similar to the Arabidopsis mature pollen
phosphoproteome with a ratio of 86:14:0.16 (15). In case of
various human cell cultures, around 2-4% of phosphoty-
rosine were reported—particularly 1.8% (41), 2.3% (42), or
3.8% (43). Usually, there was less phosphotyrosine (<1%)
observed in plants than in human cell cultures, although the
human phosphoproteomic research was often conducted on
cancer cell lines that have a huge phosphorylation level. The
pSer/pThr/pTyr ratios in various Arabidopsis cell cultures ranged
from 91.8:7.5:0.7 (44) to 83.81:16.18:0.01 (45). On the con-
trary, other studies reported a phosphotyrosine content com-
parable to the animal phosphoproteomes, such as 85:10.7:
4.3 (46), and 82.7:13.1:4.2 (47) in Arabidopsis cell cultures,
and 84.8:12.3:2.9 in a rice cell culture (47). From the differing
contents of phosphotyrosine in the presented data sets, it is
obvious that it still remains speculative how abundant phos-
photyrosine phosphorylation in plants actually is (48, 49).
Furthermore, the inhibitors of tyrosine phosphorylation (phe-
nylarsine oxide and genistein) applied to the lily cultivated
pollen strongly affected its growth rate, likely influencing the
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dynamics of actin cytoskeleton (50). However, the exact po-
sition of phosphotyrosine phosphorylation in pollen proteins
remains to be elucidated as well as any further possible role of
tyrosine phosphorylation during pollen tube growth. Phos-
photyrosine was shown to be carried by proteins playing an
essential role throughout the life of a plant, such as brassi-
nosteroid receptor BRI1 (51), or proteins involved in phyto-
chrome signaling (52). The only phosphorylated tyrosine in our
data set was identified in the peptide GVSY*GGGQSSLGYLF-
GGGEAPK of the SPIRAL1-like 1 protein.

Phosphoproteins with Unknown Function—Among the
identified phosphoproteins, the dominant functional category
was “unclear classification.” Collectively with “unknown,” it
counted for one fifth of the identified phosphoproteome (Fig.
3). It is likely that some of these “unknown” proteins are
pollen-specific or pollen-enriched compared with sporophyte
tissues, and that their role is still unknown. In tobacco pro-
teome, it was clearly shown that gametophytic tissues con-
tained specific proteins (837 out of 2135 proteins) that were
not shared by sporophyte tissues, particularly leaves and
roots (or were at least not as abundant as in gametophyte,
and so remained below the detection limit of the proteomic
techniques; ref. 20). Out of these 837 proteins, 120 fell into the
GO category “not assigned”, that represented approx. 14% of
all pollen-specific proteins reported by Ischebeck and col-
leagues (20). From this point of view, our phosphoproteomic
data set is consistent with the published tobacco male ga-
metophyte proteome.

Phosphoproteins Involved in Translation and Protein Fate—
Almost a quarter of the identified phosphoproteins have a
likely role in translation; either in protein synthesis, or in pro-
tein destination and storage. Tobacco pollen activation and
subsequent pollen tube growth was originally shown to be
vitally dependent on translation but almost independent of
transcription (53). Although our recent microarray transcrip-
tomic analyses revealed a number of mMRNAs being synthe-
sized during pollen tube growth even after 24 h of cultivation
(54, 55), many of the transcripts in the desiccated mature
pollen are stored in EDTA/puromycine-resistant particles
(EPPs). These particles contain parts of ribosomes and trans-
lation apparatus together with mRNAs (56, 57) and the trans-
lation of EPP-stored mRNAs starts after pollen activation.
Translation initiation was shown to be regulated by protein
phosphorylation of initiation factors and other regulatory pro-
teins (5) so the presence of the translation initiation factors
such as various forms of eukaryotic translation initiation factor
2, and eukaryotic translation initiation factors 3B, 4A-9, 4B,
4G, iso4F, 5B-like in our data set indicates ongoing translation
regulation. The fate of proteins during cellular processes is
also determined by their degradation via proteasome path-
way, to which proteins labeled by polyubiquitine chain are
subjected. Protein degradation is likely to have a key role
during male gametophyte development. Recently, it was

demonstrated that defective in cullin neddylation protein 1
(DCN1) was crucial for proper pollen tube development (58).

Phosphoproteins Role During Transcription—We detected
a remarkable proportion of phosphoproteins involved in tran-
scription (17% in particular). On the contrary, there was no
phosphoprotein candidate connected to transcription in our
previous phosphoprotein-enriched data set (21), probably be-
cause of their generally low abundance and the limited dy-
namic range of protein visualization techniques used. Such a
fact was already demonstrated for Arabidopsis mitochondrial
phosphoproteome where phosphopeptide enrichment led to
the identification of novel phosphorylation sites that were not
previously identified by the alternative approaches (38). As
mentioned above, active transcription in activated pollen grain
as long as 24 h of pollen tube growth has been shown (54, 55).
Here, we identified several transcription factors, most of
which contained a zinc finger motif. One of them, ZAT10, was
shown to be phosphorylated by two mitogen-activated pro-
tein kinases (MAPK3 and MAPKG®) (59). Interestingly, most of
our zinc finger transcription factors showed also prolyl-di-
rected phosphorylation motif making them likely substrates of
MAP kinases (60). Some MAP kinases were already identified
in tobacco male gametophyte (20, 61, 62). However, experi-
mental data directly linking these MAP kinases to their targets
have yet to be established.

Signaling Phosphoproteins—Compared with the data
achieved before (21), herein, we identified almost a twofold
number of proteins connected with signaling (10% in this
study compared to 6% after phosphoprotein enrichment).
Some of the signaling molecules are of a low abundance and
therefore likely below the detection limits of the phosphopro-
tein enrichment. From our data the pollen-specific Rho gua-
nine nucleotide dissociation inhibitors (Rho GDIs) should be
mentioned. Small GTPases from the Rho family play an es-
sential role in a polarized tip cell growth of pollen tubes, and
their activity is regulated by other interacting proteins, includ-
ing Rho GDI among others. Rho GDI removes the prenylated
Rho GTPase from the membrane and helps to maintain the
cytoplasmic pool of this protein. Its activity was shown to be
essential for pollen tube growth (63). The other signaling pro-
teins from our data set were various protein kinases and
phosphatases. Their presence was expected because the
precise regulation accompanying the switch from the meta-
bolically quiescent pollen grain to the rapidly-growing pollen
tube is likely to involve the activity of kinases and phospha-
tases, phosphorylation of which was shown to regulate their
activity (64). Many of the identified kinases showed low ho-
mology to the known sequences in the database making the
specification of the appropriate kinase family hard or even
impossible. This might be caused by the fact that they repre-
sented pollen-specific and/or tobacco-specific proteins, ho-
mologues of which were absent in recent databases.

Kinase Motifs—Many protein kinases show phosphoryla-
tion motif specificity or at least phosphorylation motif prefer-
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ence. In order to find any possible up-regulated kinase motifs,
we searched the presented data set using Motif-X algorithm.
It should be noted that the information about linking a partic-
ular kinase to a phosphorylation motif is limited in plants and
consequently the information is often extrapolated from other
model organisms, mostly human (65). Two searches were
performed looking up either for phosphoserine or for phos-
phothreonine (supplemental Fig. S2). Phosphorylated serine
was shown to be present in five phosphorylation motifs
whereas phosphothreonine occupied the central position of
only one phosphorylation motif.

The first motif to be discussed is the prolyl-directed phos-
phorylation, i.e. a phosphorylated amino acid followed by a
proline, regardless of the presence of phosphoserine (xxxx-
xxXS*Pxxxxx) or phosphothreonine (xxxxxxT*Pxxxxx). The
prolyl-directed phosphorylation is typical for two big groups of
protein kinases - mitogen-activated protein kinases (MAPK), and
cyclin-dependent protein kinases (CDK; ref. 60). Both these
large kinase families were identified in the tobacco male ga-
metophyte proteome (20), supplemental Table S5. MAPKs
play a key regulatory role in many physiological processes
including stress reactions and pollen hydration (62). CDKs
were originally shown to regulate cell cycle and their activity in
male gametophyte was expected because both pollen mito-
ses are precisely regulated (54). The alternative function of
CDKs is for example the regulation of pre-mRNA splicing of
callose synthase in pollen tube that influences cell wall for-
mation (66). Alkaline phosphorylation motifs XxxXxRXXS*Xxxxxx,
and xxxKxxS*xxxxxx are recognized by Ca®"/calmodulin-de-
pendent protein kinase (CAMK2; ref. 60). A chimeric CAMK
with two distinct domains, one of which reacts to free Ca®*
and the other to Ca®*/calmodulin, was shown to be ex-
pressed in male gametophyte of lily and tobacco (67). Its
expression started in pollen mother cell and then continued to
peak in the tetrad stage. Such an expression profile tends us
to speculate that the expression of this kinase reacts to Ca®™"
oscillations, and that precisely regulates the synchronous
events during microsporogenesis. Besides, this alkaline motif
is in plants also recognized by the Ca®*-dependent protein
kinase-sucrose-nonfermenting-related kinase (CDPK-SnRK)
superfamily of protein kinases (68). Two kinases of this family
were actually identified in tobacco male gametophyte pro-
teome (Supplemental Table 5, and ref. 20). Last but not least,
we identified two acidic kinase motifs with a central phospho-
serine - XxxXxxxxS*DxExxx, and xxxxxxS*xDDxxx - corre-
sponding in principle to the motif xxxxxxS*(D/E)(D/E)(D/E)xxx
that is recognized by casein kinase 2 (CK2; ref. 60). Casein
kinase 2 was shown to be activated by salicylic acid in to-
bacco (69), and two casein kinases were identified in tobacco
male gametophyte proteome (supplemental Table S4, and ref.
20). We have to point out that although the corresponding
kinases were identified in our data set, it still remains un-
proven whether they really interact with the phosphoproteins

containing the corresponding motifs, and which of the kinases
is actually responsible for a particular phosphorylation event.

Regulated Phosphopeptides and Their Function—There
were established seven groups collecting the regulated phos-
phopeptides according to their regulatory trends. As men-
tioned above the groups | and V collected phosphopeptides
that were phosphorylated in mature pollen. Because the
phosphopeptides included in both group | and group V de-
creased in abundance after pollen activation, we assumed
that the role of their phosphorylation is mainly required in dry
mature pollen and/or their dephosphorylation represents the
actual activation/de-repression. The dominant categories
were protein synthesis and protein destination and storage,
represented by many proteins for example by various trans-
lation initiation factors, LA-related protein like, among others.
There was also identified protein Rho GDI that regulates the
activity of Rho GTPases that are essential for tip growth of
pollen tube (63). However, to our knowledge, the role of its
phosphorylation site was not reported yet. According to our
results, it can be assumed that its activity is switched on by
dephosphorylation (at least of the particular phosphopeptide
found in this regulatory group V) because the phosphates
were attached to the protein exclusively in mature pollen and
the concentration of the only phosphopeptide in group V
decreased in pollen activated in vitro for 5 min. The other
candidate specific to mature pollen was MAP kinase. MAP
kinases were reported to play their roles upon pollen rehydra-
tion (62) so this phosphorylation might again be switching off
the MAP kinase ready for pollen grain activation.

The groups I, Ill, and IV collected proteins phosphorylated
strictly upon pollen activation. There appeared for example E3
ubiquitin-protein ligase RING FINGER 4 (RNF4)-like, the a-
subunit of a nascent polypeptide-associated complex, protein
phosphatase inhibitor 2, cytochrome oxidase c, histone
deacetylase HDT1, villin and peptidyl-prolyl cis-trans isomer-
ase 1 (PPI1), among others. Protein ubiquitination is likely to
be initiated upon pollen activation in order to degrade the
present proteins and to replace them with the newly synthe-
sized species. Another E3 ubiquitin-protein ligase in Arabi-
dopsis was reported to bind its target 14-3-3-proteins only
upon phosphorylation of its particular amino acids (70). If the
E3 ligase identified in our data set acts also after phosphor-
ylation, we might speculate that this phosphorylation event
represents an activation phosphorylation. The phosphory-
lated peptides from phosphatase inhibitor 2 appeared only
upon protein phosphorylation. However, we might only spec-
ulate whether their phosphorylation promotes their activity or
rather blocks it. Villin plays a role in actin cytoskeleton dy-
namics and it was shown to be phosphorylated on a tyrosine
(71). The role of tyrosine phosphorylation during pollen tube
growth was deduced from the pollen tube treatment by drugs
influencing tyrosine phosphorylation that caused lower pollen
germination rate and shorter pollen tubes (50). Because the
treated pollen tubes showed a different arrangement of actin
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filaments, it might be possible that not only actin itself but also
actin-binding proteins (such as villin) have to be precisely
tyrosine-phosphorylated.

The most dynamic regulation was shown for the group VI
phosphopeptides. This category grouped phosphopeptides
that were phosphorylated in mature pollen, then dephospho-
rylated in 5-min activated pollen and later after 30-min acti-
vation re-appeared again among phosphopeptides. Phos-
phopeptides of the following proteins were put exclusively to
this category (i.e. they did not show any other phosphopep-
tides belonging to any other group of regulated phospho-
peptides): transcription initiation factor IIF, acidic ribosomal
protein P1a-like, LEA protein D34, and ARA4-interacting pro-
tein. The other phosphoproteins had their corresponding
phosphopeptides also in other regulation groups. These
phosphorylation sites might represent phosphoproteins that
reflect with their phosphorylation/dephosphorylation cycles
the ion signal pulses during pollen tube growth (72). However,
we do not have the phosphoproteomics data regarding longer
periods of pollen tube growth in vitro, so making any bold
conclusion is beyond the scope of this article.

Group VIl comprised the regulated phosphopeptides that
appeared in all studied stages. There were only three proteins
that fell with their phosphopeptides exclusively into this cat-
egory—2-phosphoglycerate kinase-related family protein, nu-
clear RNA binding protein-like, and calreticulin precursor. The
other proteins were identified by peptides that fell not only
into this group but also in at least another one (mostly group
I, see supplemental Table S3, and Fig. 4).

CONCLUSION

Collectively, we purified and identified phosphopeptides
from mature pollen, 5-min activated pollen, and 30-min acti-
vated pollen, the three stages covering an early phase of male
gametophyte activation. This study presents the first devel-
opmental phosphoproteomics data from angiosperm acti-
vated pollen including the dynamics of very early phosphory-
lation events during pollen re-hydration and activation (i.e.
5-min activated pollen). The only other studied pollen tubes
were these of Picea wilsonii, a gymnosperm (23). We identified
471 phosphopeptides carrying 432 phosphorylation sites that
were assigned to 301 phosphoproteins. Moreover, the quan-
titative data highlighted the dynamics of protein phosphoryl-
ation during pollen activation and the differential regulation of
several phosphopeptides of the same phosphoprotein pin-
pointed the complexity of protein phosphorylation in its func-
tional context. Such list of phosphorylated proteins also rep-
resents a good starting point for the selection of the most
interesting candidates for subsequent studies revealing the
function of their phosphorylation and its integration into the
molecular processes underlying pollen tube growth and de-
velopment. Thus, this study brought new insights into the
activation of pollen because highlighted the phosphorylated

proteins that are very likely candidates, which would take part
in the regulation and processes of pollen tube activation.
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Abstract

Mature pollen represents an extremely resistant quiescent structure surrounded by a tough cell wall. After its
hydration on stigma papillary cells, pollen tube growth starts rapidly. Massive metabolic changes are likely
to be accompanied by changes in protein phosphorylation. Protein phosphorylation belongs among the most
rapid post-translational modifications. To date, only Arabidopsis thaliana and tobacco (Nicotiana tabacum)
mature pollen have been subjected to phosphoproteomic studies in order to identify the phosphoproteins
present. In the present mini-review, Arabidopsis and tobacco datasets were compared with each other. The
representation of the 0-phosphorylated amino acids was compared between these two datasets, and
the putative pollen-specific or pollen-abundant phosphopeptides were highlighted. Finally, the
phosphorylation sites common for both Arabidopsis and tobacco phosphoproteins are listed as well as

the phosphorylation motifs identified.

Introduction

Angiosperm mature pollen represents an extremely resistant
tissue. Its desiccated cytoplasm is enveloped by a resistant
cell wall. Mature pollen represents a quiescent stage that
carries the genetic information of the donor plant, so it has to
reach the stigma in a viable state. After the arrival on to the
papillary cells on the stigma, the pollen cytoplasm rehydrates
and pollen grain activates [1]. After a series of communication
processes, rapid growth of a pollen tube starts.

To enable metabolic changes associated with the rapid
growth of a pollen tube, the synthesis of novel proteins
as well as post-translational modifications of the existing
ones is of crucial importance. A number of transcripts is
stored in complex mRNA storage granules called EPPs
(EDTA/puromycin-resistant particles) [2,3]. Upon pollen
rehydration, these transcripts are gradually activated and
translated, and novel proteins are produced. After all, protein
synthesis could not be flexible enough to enable rapid
signalling, so post-translational modifications of proteins are
performed, especially phosphorylation.

Protein phosphorylation represents one of the most
dynamic post-translational modifications. It plays a key
role in numerous cellular processes, such as protein
synthesis, transcription regulation, cell cycle regulation,
signal transduction, cytoskeleton dynamics and protein
targeting to the nucleus [4-7]. Protein phosphorylation
changes the properties of a modified protein. Because of its
negative charge, the attachment of a phosphate group leads to

Key words: Arabidopsis thaliana, male gametophyte, mature pollen, Nicotiana tabacum,
phosphoprotein.

Abbreviations: CaMK, Ca** /calmodulin-dependent protein kinase; GDI, guanine-nucleotide-
dissociation inhibitor; IMAC, immobilized metal-ion-affinity chromatography; MAPK, mitogen-
activated protein kinase; MOAC, metal-oxide-affinity chromatography.

"To whom correspondence should be addressed (email david@ueb.cas.cz).

Biochem. Soc. Trans. (2014) 42, 383-387; doi:10.1042/B5T20130249

a decrease in the protein’s pI [8]. Such pI changes are likely to
change intramolecular and intermolecular interactions among
individual domains. Alternatively, the attached phosphate can
engage the active site of an enzyme and thus can block its
activity (an example of this mechanism was discovered in
isocitrate dehydrogenase [9]).

The male gametophyte and
phosphoproteomics

Although pollen development, pollen activation and pollen
tube growth are likely to be (co-)regulated by protein
phosphorylation, only two large-scale pollen phosphop-
roteomic studies have been published to date. The first
phosphoproteome published originated from Arabidopsis
thaliana mature pollen [10], whereas the second study
characterized phosphoproteins present in two time points in
tobacco (Nicotiana tabacum cv. Samsun), mature pollen and
germinating pollen after 30 min of activation in vitro [11].

To study the phosphorylated proteins on a large scale,
the application of various enrichment techniques is of key
importance since phosphoproteins represent only part of the
cellular proteins and therefore are difficult to be detected in
the mixture with the non-phosphorylated species (reviewed
in [12,13]).

Each of the pollen phosphoproteomic studies applied a dif-
ferent set of methods for the identification of phosphorylated
proteins present. In tobacco experiments, phosphoprotein
enrichment was performed. The total proteins were extracted
by TCA (trichloroacetic acid)/acetone, and enriched by
MOAC (metal-oxide-affinity chromatography) with an
AI(OH); (aluminium hydroxide) matrix. The resulting
phosphoprotein-enriched fraction was separated in two

©The Authors Journal compilation ©2014 Biochemical Society
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distinct ways: by 2D gel electrophoresis and nano-LC-
ESI-quadrupole TOE. Collectively, these two approaches
led to the identification of 139 phosphoprotein candidates.
The phosphoprotein enrichment led to the identification of
only a limited number of phosphorylation sites; particularly
one. Similar results were obtained in other studies applying
phosphoprotein enrichment [14,15] and such results could
be considered a disadvantage of phosphoprotein-enriching
strategies (recently reviewed in [12]). To enable the identific-
ation of more phosphorylation sites, TiO, (titanium dioxide)
phosphopeptide enrichment was performed on mature pollen
protein crude extract in parallel. Such enrichment revealed the
exact position of another 51 phosphosites, giving a total of 52
phosphorylation sites identified.

On the other hand, Mayank et al. [10] applied a
combination of various phosphopeptide-enriching strategies:
IMAC (immobilized metal-ion-affinity chromatography)
[16], TiO,-MOAC [17] and SIMAC (sequential elution from
IMAC) [18]. Since direct phosphopeptide enrichment usually
leads to a higher number of identified phosphopeptides with
their exact phosphorylation sites, it is not surprising that
962 phosphopeptides corresponding to 598 phosphoproteins
were identified.

Although the phosphopeptide enrichment usually res-
ults in a higher number of identified peptides, it was
disadvantageous in the particular case of tobacco pollen
since tobacco genomic sequences were not fully available
in the public databases. The non-phosphorylated peptides
identified upon phosphoprotein enrichment assisted in the
proper identification of the phosphorylated proteins that very
often relied on non-tobacco homologous sequences.

The conventional enrichment techniques led to the iden-
tification of phosphorylated serine, threonine and tyrosine
residues. The proportion of all three phosphorylated amino
acids was quite similar in both published male gametophyte
phosphoproteomes. In Arabidopsis, there was 86% serine,
14% threonine and 0.16% tyrosine residues (represented by
one phosphorylation site only) [10] (Figure 1A). In the less
complex tobacco phosphoproteome, 67% phosphoserine and
33% phosphothreonine residues were identified. No phos-
photyrosine was presented in this dataset [11] (Figure 1B).
Tyrosine phosphorylation seems to be less abundantin plants,
giving a phosphoserine/phosphothreonine/phosphotyrosine
ratio of 91.8:7.5:0.7 [19] or 83.81:16.18:0.01 [20], depending
on the material studied. This is likely to be caused by
the absence of tyrosine-specific kinases from plants, where
tyrosine phosphorylation appears to be carried out by dual-
specificity kinases instead [21].

Although in most studies, phosphotyrosine was less
abundant in plants compared with in animals, in some
cases its proportion was comparable; for instance 4.3%
phosphotyrosine in the study by Sugiyama et al. [22]. Thus
it remains speculative whether tyrosine phosphorylation is
really less abundant in plants compared with animals [23].

Phosphorylated histidine remains undetectable when
the conventional phosphoproteomic techniques are applied
since it is very labile under acidic pH. Thus special

©The Authors Journal compilation ©2014 Biochemical Society

Figure 1| The proportion of 0-phosphorylated amino acids in the
published pollen phosphoproteomics data
(A) Arabidopsis thaliana. (B) Nicotiana tabacum.
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phosphoproteomic methods are required for studies of
histidine phosphorylation [24].

Pollen-specific and unknown proteins
identified

The phosphoprotemic data from both studies gave the
number of phosphorylated proteins and, for some of them,
the exact position of phosphorylation site was assigned. The
most interesting candidates playing their roles in signalling
were likely to be pollen-specific or with higher abundance in
pollen. The intriguing unknown proteins can also play such
arole.

The Arabidopsis phosphoproteome data were searched
against the PhosPhAt database that summarizes phos-
phorylation sites identified in Arabidopsis [25,26]. The pollen
phosphoproteome presented 240 novel phosphoproteins
absent from the database at that time [10], because pollen
had never been used as an experimental material for a
phosphoproteomic study before. Thus the newly identified
proteins were likely to be pollen-specific or at least
to be phosphorylated in a pollen-specific manner. This
hypothesis was supported at the transcriptomic level. The
proteins already present in the database did not show any
tissue-specific expression profile. On the contrary, most
of the newly identified phosphoproteins showed high or
enriched expression in the male gametophyte. Among these



pollen-specific or pollen-enriched proteins, there were several
signalling proteins identified, such as protein kinases (e.g.
AT1G16760, AT1G78940, AT2G24370 and AT4G31230)
or protein phosphatases (e.g. AT1G17720, AT2G33700,
AT3G15260 and AT5G10740). Moreover, there were also
proteins identified that played a role during exocytosis, such
as the members of the EXO70 family (AT5G13150 and
AT5G13990). All of these proteins represent candidates for
proteins with regulated expression in the male gametophyte.
Furthermore, 18 proteins were classified as unknowns, for in-
stance AT1G20770, AT1G30050, AT1G42480, AT2G32980,
AT3G30320, AT4G31430, AT5G37550 and AT5G62750.

In contrast, similar information about pollen-specific
and/or pollen-enriched proteins was less accessible for to-
bacco. The data published by Fila et al. [11] presented the first
tobacco phosphorylation sites to be deposited into the P3DB
database [27,28], and they still represent the only tobacco
data listed in this database. Consequently, on the basis of the
P3DB data, it was not possible to distinguish whether there
were pollen-specific phosphopeptides among the identified
phosphoprotein candidates. Similar difficulties arose when
searching for tobacco homologues since its genome sequence
was not available in the public databases. It was necessary
to identify the phosphopeptides according to homologous
sequences from other species. Consequently, the identity of
more protein isoforms remained often unclear since it could
not be unambiguously stated whether distinctly identified
isoforms reflected real isoforms also in tobacco. Moreover,
many tobacco pollen-specific proteins may still be unknown
and therefore not present in sequence databases. Eight
phosphoprotein candidates played a signalling role: several
isoforms of 14-3-3 proteins (which regulate many cellular
processes [29]) and GDIs (guanine-nucleotide-dissociation
inhibitors) of both Rab and Rho GTPases. Surprisingly, no
phosphorylated kinases and/or phosphatases were detected.
Furthermore, four uncharacterized proteins were identified
among the tobacco phosphoprotein candidates.

Phosphorylation sites common to both
tobacco and Arabidopsis

The intriguing question remained whether the two male gam-
etophyte phosphoproteomic studies led to the identification
of phosphorylation sites shared by both species. Again, it
has to be kept in mind that both datasets were acquired by
different sets of methods and that tobacco proteins were
less successfully identified owing to the lack of tobacco
sequences in public databases. Therefore the identification
mostly relied on non-tobacco homologous sequences present
in the database.

The phosphorylated peptides with a homologous phos-
phorylation site detected in both species are listed in Table 1.
They were mostly associated with metabolism such as 2,3-
bisphosphoglycerate-independent phosphoglycerate mutase,
fructose-bisphosphate aldolase and plasma membrane AT-
Pase. The other abundant category was translation regulation
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represented by translation elongation factor EF1B/ripening-
regulated protein and 60S acidic ribosomal protein. Last, but
not least, homologous phosphorylation sites were identified
in -tubulin.

The phosphorylation sites shared in both published
datasets did not belong to signalling proteins. This occurrence
could be due to several reasons: (i) tobacco signalling proteins
were not known and/or their degree of homology with
known proteins was not high enough, (ii) many signalling
proteins become phosphorylated only after pollen activation,
but there was no phosphoproteomic study revealing exact
phosphorylation sites in activated pollen, (iii) the homology
of some tobacco and Arabidopsis signalling proteins could be
quite low, so they do not share the conserved amino acids to
be phosphorylated.

Phosphorylation motifs and kinases

The mature pollen phosphoproteomes were analysed for
the phosphorylation motifs identified. The presence of
particular motifs should highlight kinases responsible for the
phosphorylation at given phosphosites.

The first set of motifs to be mentioned in both Ara-
bidopsis and tobacco are MAPK (mitogen-activated protein
kinase) or cyclin-dependent kinase motifs XXXS*PXXX
and XXXT*PXXX. MAPKs were shown to play key
regulatory roles during male gametophyte development [30].
These proline-directed phosphorylation sites were detected,
for instance, in 60S ribosomal protein L12-2, eukaryotic
initiation factor 4B, ripening-regulated protein, pollen tube
RhoGDI2 in tobacco and, for example, RING/U-box
superfamily protein, exocyst subunit EXO70 family protein
HS5 and ribosomal protein L19e in Arabidopsis.

The other kinase motifs common to both tobacco
and Arabidopsis phosphoproteomes were basophilic mo-
tuf RXXS*XX that is typical for non-plant CaMK2
(Ca**/calmodulin-dependent protein kinase 2) or 14-3-3
proteins. In Arabidopsis, this motif is recognized by other
members of the CDPK (Ca®* -dependent protein kinase)-
SnRK (sucrose-non-fermenting-related kinase) superfamily
since a typical CaMK is lacking [31]. Furthermore, in tobacco,
a casein kinase motif S*XXD/E was detected.

Conclusion

The two phosphoproteomic studies presented provided
an insight into the post-translational modifications in the
male gametophyte. In tobacco, the phosphoproteomic study
was limited by the fact that tobacco sequences were not
fully available in public databases. So, the assembly of the
sequenced contigs into annotated gene sequences will enable
the identification of additional proteins from existing data.
When the tobacco genome sequence becomes available in the
databases, the identification of phosphopeptides will be easier
and a combination of enrichment techniques could be applied
in order to identify a broader spectrum of phosphorylated
peptides [17].

©The Authors Journal compilation ©2014 Biochemical Society
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Table 1 | List of homologous phosphopeptides identified in both A. thaliana and tobacco phosphoproteomes

After the protein name identified in tobacco, the species name of the sequence is given. The superscript after the accession number in tobacco
indicates the database: a, TIGR EST Nicotiana tabacum; b, UniProt, 90% homology clusters, Viridiplantae. The asterisk (*) in the peptide sequences
indicates the position of phosphorylation site. In cases where no amino acid with an asterisk is given, the exact position of the phosphorylation site

could not be assigned.

Protein name: Arabidopsis

Protein name: tobacco

Accession number: Peptide sequence:
AGI: Arabidopsis tobacco

Arabidopsis

Peptide sequence:
tobacco

H+ -ATPase 6

Phosphoglycerate mutase,
2,3-bisphosphoglycerate-
independent

Translation elongation factor
EF1B/ribosomal protein
S6 family protein

Glutathione transferase,
C-terminal-like;
translation elongation
factor EF1B/ribosomal
protein S6

Tubulin a3

Tubulin a4 chain

Tubulin a1

Tubulin/Ftsz family protein

Aldolase superfamily protein

Aldolase superfamily protein

60S acidic ribosomal protein
family

Plasma membrane ATPase
4 (Nicotiana
plumbaginifolia)

2,3-Bisphosphoglycerate-
independent
phosphoglycerate mutase
(Nicotiana tabacum)

Ripening-requlated protein
DDTFR10-like (Solanum
tuberosum)

Ripening-regulated protein
DDTFR10-like (Solanum
tuberosum)

a-Tubulin, fragment
(Gossypium hirsutum)

a-Tubulin (Nicotiana
tabacum)

a-Tubulin (Nicotiana
tabacum)

a-Tubulin (Nicotiana
tabacum)

Fructose-bisphosphate
aldolase (Solanum
tuberosum)

Fructose-bisphosphate
aldolase (Solanum
tuberosum)

605 acidic ribosomal
protein-like protein
(Solanum tuberosum)

AT2G07560.1

AT1G09780.1

AT2G18110.1

AT1G30230.1

AT5G19770.1

AT1G04820.1

AT1G64740.1

AT4G14960.2

AT3G52930.1

AT5G03690.1

AT2G27720.1

NT_TC82708_1°

GLDIDNLNQHYT*V

GLDIETIQQHYT*V

NT TC77653 12 AHGTAVGLPSEDDMG- AHGNAVGLPTEDDM-

NT_TC80529 1 NS*EVGHNALGA- GNS*EVGHNALGA-
GR GR

NT_TC77461 12 ISGVSAEGSGVIVEGSS-  ISGVSGEGAGVTVEGS-
PITEEAVATPPAAD-  APITEEAVAT*P-
SK PAADTK

NT TC77461_1 ISGVSAEGSGVIVEGSA-  ISGVSGEGAGVTVEGS-
PITEEAVATPPAA APITEEAVAT*PP-
DSK AADTK

Q95Q71 TVQFVDWCPTGFK TVQFVDWCPT*GFK

NT TC77583 1% TIQFVDWCPTGFK RTIQFVDWCPT*GFK

NT_TC77710_1°

NT_TC78231_1°

NT_TC80038_1°

NT TC77583 1% TIQFVDWCPT*GFK  RTIQFVDWCPT*GFK

NT_TC77710_1°
NT_TC78231_1°
NT_TC80038_1°
NT_TC77583_1°
NT_TC77710_1°
NT_TC78231_1°
NT_TC80038_1°
NT TC78239_1°
NT TC118911 1

NT_TC78239_1°
NT TC118911 1

TIQFVDWCPT*GFK

LAS*INVENVETNR

FVS*INVENVESNR

RTIQFVDWCPT*GFK

RFS*SINVENVESNR

RFS*SINVENVESNR

NT_TC91479_1° LASVPSGGGGGVAVA-  LASVPCGGGGGGVA-
SATSGGGGGGGAP- VAAPAGGAAAA-
AAESK AS*AAEEKK

After the tobacco phosphoproteomic dataset is broadened,
it will be possible to also compare the regulatory pho-
sphoproteins present. Possibly, the differences could reflect
different regulatory strategies in bicellular pollen (rep-
resented by tobacco) and tricellular pollen (represented
by Arabidopsis [32]). However, in order to reveal such
differences in a more general way, it will be necessary
to perform phosphoprotein identification in other species

©The Authors Journal compilation ©2014 Biochemical Society

(ideally with sequenced genome) shedding both bicellular and
tricellular pollen as well.

Finally, “-omic’ techniques can bring high-throughput
data without knowing function and other details about
any single identified protein. So, in order to reveal
the function of the proteins themselves and of their
phosphorylation sites, more detailed studies will be
required.
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7.3. Souhrnny ¢lanek o vyvoji sam¢iho gametofytu

Hafidh, S.Fila, J., Honys, D. (2016). Male gametophyte developmedtfanction in
angiosperms: a general concept. Plant Reprodugtidniikovano v rezimu ,on-line first“doi:
10.1007/s00497-015-0272-4 >b4 = 2,607

V tomto grehledovémilanku jsem analyzoval data pethna pro tvorbu tabulky kindz
identifikovanych v transkriptomu, proteomu a fosfaeomu husetiku rolniho. Krong toho
jsem psal manuskript vybranych kapitol (,Progantiage: Catch me if you can“ a ,Reserves

storage and mobilization: Shop till you drop*).
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Key message Overview of pollen development.

Abstract Male gametophyte development of angiosperms
is a complex process that requires coordinated activity of
different cell types and tissues of both gametophytic and
sporophytic origin and the appropriate specific gene
expression. Pollen ontogeny is also an excellent model for
the dissection of cellular networks that control cell growth,
polarity, cellular differentiation and cell signaling. This
article describes two sequential phases of angiosperm
pollen ontogenesis—developmental phase leading to the
formation of mature pollen grains, and a functional or
progamic phase, beginning with the impact of the grains on
the stigma surface and ending at double fertilization. Here
we present an overview of important cellular processes in
pollen development and explosive pollen tube growth
stressing the importance of reserves accumulation and
mobilization and also the mutual activation of pollen tube
and pistil tissues, pollen tube guidance and the communi-
cation between male and female gametophytes. We further
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describe the recent advances in regulatory mechanisms
involved such as posttranscriptional regulation (including
mass transcript storage) and posttranslational modifications
to modulate protein function, intracellular metabolic sig-
naling, ionic gradients such as Ca>™ and H" ions, cell wall
synthesis, protein secretion and intercellular signaling
within the reproductive tissues.

Keywords Pollen development - Male gametophyte -
Pollen tube growth - Flowering plants

Introduction

Reproduction is a characteristic feature of living organisms
ensuring the continuity of life on earth through a series of
successive generations. In plants, there is an alternation of
sexual and asexual generations, sporophyte and gameto-
phyte. In the sporophyte, the individuals consist of diploid
cells and reproduce asexually through haploid spores gen-
erated by the meiotic division in sporogenous tissue. The
spores germinate into the gametophyte, where specialized
reproductive organs, female archegonia and male antheridia
are formed in which haploid gametes of separate sexes arise.
The fusion of male and female gametes leads to the forma-
tion of a diploid zygote, the first cell of the next sporophyte
generation. In the evolutionary line of vascular plants
(Tracheophyta), gametophytic reduction and increased
functional dependence on the sporophyte is apparent.
Angiosperms, which currently account for more than
280,000 species (reviewed by Scotland and Worltey 2003),
constitute the overwhelming majority of plant species with
maximum reduction of the gametophyte. This reduction
together with protection of the reproductive organs within a
flower and stringent selection of the fittest pollen to
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reproduce is considered to be the main cause of the evolu-
tionary success of angiosperms (Mulcahy 1979; Mulcahy
et al. 1996). Most angiosperms form bisexual flowers con-
taining anthers and pistils, where both male and female
gametophytes develop. Both structures—pollen grain and
ovule—are microscopic, consisting of only a few cells fully
supported by the surrounding sporophytic tissues and organs
for their development. The only time, when gametophytes of
flowering plants exist independently of the sporophyte, is
when mature pollen is shed from the anther and is carried to
the stigma to undergo reproduction with female gametes.
In the past, the small size of the male gametophyte made
its exploration—and even its discovery—very complicated.
Therefore, the external appearance of pollen grains stood at
the beginning of pollen research (Malpighi 1675, 1679;
Purkyné 1830). Further knowledge of the pollen and pollen
tube structure and function was gradually acquired together
with the other basic phenomena associated with the sexual
reproduction of angiosperms, such as the existence of bi-
and tri-cellular pollen (Elfving 1879), differentiation of
vegetative and generative cells (Strasburger 1884) and the
double fertilization (Nawaschin 1898). Subsequent con-
siderable progress in pollen research has been driven by the
rapid development of cytological and molecular methods.
Equally important was the introduction of in vitro, semi
in vivo and in vivo techniques and in particular the onset of
“high-throughput” technologies in the recent 20 years.

Male gametophyte

Male gametophyte development of angiosperms is a com-
plex process that requires coordinated activity of different
cell types and tissues of both gametophytic and sporophytic
origin underlaid by specific gene expression patterns. Male
gametophyte development is comprised of two consecutive
phases, developmental and functional.

The developmental phase takes place in anther loculi
and leads to the release of mature pollen grains from the
anthers. It is characterized by the functional specialization
of two cell types—vegetative cells and male gametes, the
sperm cells, which together represent the male germline
(reviewed by Berger and Twell 2011). This process is
underpined by two successive cell divisions accompanied
by remarkable morphological and physiological differen-
tiation of both cell types including the synthesis of spe-
cialised pollen cell wall and the storage of protective
substances and metabolic reserves.

The functional or progamic phase is initiated after the
pollen grain lands on the stigma. Pollen is activated by
rehydration, germinates and produces a long pollen tube
that grows into the pistil tissues. Its growth ends with a
double fertilization after reaching the ovule. It is not only

@ Springer

the pollen tubes explosive growth that makes the progamic
phase interesting but also the mutual activation of pollen
tube and pistil tissues, pollen tube guidance and the com-
munication between the two gametophytes (reviewed by
Dresselhaus and Franklin-Tong 2013).

Unlike the sporophyte, the male gametophyte represents
highly reduced, two- or three-celled model system provid-
ing a unique opportunity to study the developmental regu-
lation of cell morphogenesis and differentiation at many
levels as well as the functional interactions between dif-
ferent cell types (Berger and Twell 2011; Borg et al. 2009;
Dresselhaus and Franklin-Tong 2013; Dresselhaus and
Sprunck 2012; Hafidh et al. 2014; Kessler and Grossniklaus
2011; Ma 2005; Rutley and Twell 2015; Twell 2011).

Pollen maturation: get ready for the race!

Diploid microspore mother cells (microsporocytes) are
encapsulated in the young anther loculi surrounded by four
cell layers—tapetum, middle layer, endothecium and epi-
dermis. The microsporocytes secrete cell wall materials
consisting of B-1,3-glucan and callose. After two meiotic
divisions, the microsporocytes divide into four haploid
microspores forming a tetrad (Fig. 1). In Avena sativa,
microspore mother cells communicate via cytoplasmic
bridges enabling the synchronization of meiotic divisions
throughout the loculus (Brett and Waldron 1990). The
second meiotic division is followed by the synthesis of
callose walls between the individual microspores within a
tetrad. However, the timing of callose wall formation dif-
fers between different plant species (Chen and Kim 2009;
De Storme and Geelen 2013; Lu et al. 2014).

During meiosis, the secretory tapetal cells differentiate
into binuclear polar cells lacking the primary cell wall,
especially at the loculi-facing side. These cells contain
abundant ribosomes, mitochondria, endoplasmic reticulum,
Golgi apparatus and specialized lipid-rich organelles,
tapetosomes (Bedinger 1992; Hsieh and Huang 2005; Ting
et al. 1998), close to the plasma membrane facing the
anther loculi. The tapetal cells are interconnected by
cytoplasmic bridges allowing the coordination of their
activities. Transcriptomic studies of anther tissues in vari-
ous plant species demonstrated the precise control of the
activity and subsequent programmed cell death of tapetal
cells and the tight coordination of these processes with
pollen development (Huang et al. 2011).

Young microspores in tetrads undergo rapid develop-
ment accompanied by synthesis of the cell wall consisting
of an inner intine and outer exine. After the emergence of
partially formed exine, microspores are released from tet-
rads in a synchronised manner (Fig. 1). The release of the
microspores is prompted by the activity of an enzyme
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Fig. 1 Schematic diagram describing pollen development (adapted and simplified from Honys et al. 2006)

mixture secreted by tapetal cells, with callase (B-1,3-glu-
canase) being its essential component responsible for the
callose degradation (Lu et al. 2014; Scott et al. 2004).
Callase synthesis was shown to be controlled by MYB-
family transcription factor AtMYBS80 that links pollen
maturation with tapetum development resulting in pro-
grammed cell death of tapetal cells (Phan et al. 2011;
Zhang et al. 2007). Proper timing of callase secretion is one
of the critical moments in microsporogenesis and its dis-
tortion causes male sterility (Worrall et al. 1992). Free
microspores rapidly enlarge and numerous small vacuoles
eventually merge into one large vacuole pushing the
microspore nucleus from its central position to the cell
periphery. The actual microspore polarisation is not just a
passive event caused by the growth of vacuoles but a
highly dynamic process requiring the active participation
of microtubules (Oh et al. 2010; Park et al. 1998; Twell
2011). During microsporogenesis, the tapetal cells remain
highly metabolically active. They secrete proteins, lipids,
carbohydrates and secondary metabolites to the loculi to be
used by developing microspores to synthesize membranes,
for exine formation and as a source of energy (Pacini
1990). Despite the obvious importance of tapetum, it is
possible to achieve the proper maturation of functional
pollen in vitro from uninuclear microspores in the presence
of essential nutrients (Tupy et al. 1991).

The highly specialised biological role of angiosperm
pollen is reflected by the unique composition of the sur-
rounding cell wall. The sculptured pollen wall not only
protects the male gametophyte and its precious cargo but
facilitates the broad communication with the stigma surface
(Scott et al. 2004). Its inner layer, intine, is of gametophytic
origin whereas the outer layer, exine, is mostly sporophytic.
The synthesis of pollen wall begins already in tetrads,
immediately after the completion of meiosis. Microspores
in tetrads first synthesize the pectin-cellulose primexine
functioning as a matrix for the deposition of sporopollenin
precursors preceding their subsequent polymerization. As a
complex compound of fatty acids and phenylpropanoids,
sporopollenin belongs among the toughest known

biopolymers and its role is the protection of the pollen
internal environment (including genetic information) after
pollen shedding from the anthers. Although the biochemical
pathway of sporopollenin synthesis remains elusive, its
synthesis requires close cooperation between microspores
and tapetum (Ariizumi and Toriyama 2011; Dobritsa et al.
2009, 2010; Quilichini et al. 2015). The recalcitrant exine is
not distributed evenly around pollen grains; it is not
deposited or it is reduced in the apertures, where pollen
tubes emerge (Furness and Rudall 2004). The number, size
and distribution of apertures are an important classification
factor that is under strict sporophytic control. In Ara-
bidopsis, aperture marking depends on the prior localisation
of INAPERTURATE POLLENI protein (Dobritsa and
Coerper 2012; Dobritsa et al. 2011).

Formation of the pollen coat is completed in the later
stages of microgametogenesis when the residues of the
degenerating tapetum are deposited on the surface of pollen
grains (Quilichini et al. 2015). Pollen coat determines the
pollen adhesiveness, colour, taste and aroma. These prop-
erties as well as the often highly elaborated structure of the
pollen wall are species-specific. This is of key importance
not only for pollen interaction with papillary cells on the
stigma but also to facilitate its recognition by pollinators.
Insect- and other animal-pollinated species shed pollen that
can be decorated with extremely complex surface struc-
tures facilitating its adhesion to the pollinators whereas in
wind-pollinated species these structures are often absent
(Fellenberg and Vogt 2015).

Polarised microspores undergo an asymmetric division
during pollen mitosis I (PMI, Fig. 1) resulting in the for-
mation of two unequal daughter cells with distinct cell
fates, a large vegetative cell and a small generative cell.
Both cells are present in the space bound by the microspore
cell wall. The generative cell soon migrates into the veg-
etative cell to form a unique “cell-within-a-cell” structure
(Russell and Jones 2015; Russell et al. 1996). PMI repre-
sents another critical moment in the male gametophyte
development; it ensures the fixation of the ongoing male
gametophytic developmental program, as demonstrated in
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various plant species by transcriptomic (Bokvaj et al. 2015;
Honys and Twell 2004; Wei et al. 2010) and proteomic
studies (Chaturvedi et al. 2013; Grobei et al. 2009;
Holmes-Davis et al. 2005; Ischebeck et al. 2014; Noir et al.
2005; Sheoran et al. 2006). Therefore the reversal from the
gametophytic to the sporophytic development is achievable
only with unicellular microspores but not with bicellular
pollen grains (Gaillard et al. 1991). PMI also results in the
initiation of the male germline; the generative cell retains
its proliferative activity and divides once more during
pollen mitosis II (PMII) to produce two male gametes, the
sperm cells (Berger and Twell 2011; Twell 2011). The
disruption of the asymmetry of PMI either by centrifuga-
tion (Terasaka and Niitsu 1987), by the application of
microtubule-destabilizing agents, e.g. colchicine (Eady
et al. 1995; Zaki and Dickinson 1991), or in particular
pollen mutants, e.g. MOR1/GEMI1 (Park et al. 1998), leads
to the formation of two similar cells with the vegetative
cell fate. Arabidopsis MORI/GEMI (Park et al. 1998;
Twell et al. 2002) and its tobacco ortholog TMBP200 (Oh
et al. 2010) encode microtubule-associated proteins, plant
orthologs of the MAP215/Disl protein family. Phenotype
defects resulting from the knock-out of the above genes
clearly demonstrated the importance of microtubules in the
establishment of cellular polarity preceding PMI, asym-
metry of which is the key factor in the initiation of male
germline (Twell 2011).

The generative cell undergoes yet another mitotic divi-
sion—PMII—resulting in the formation of two sperm cells.
The vegetative nucleus remains in a close physical con-
nection with the two sperm cells after PMII forming the
male germ unit (MGU). It plays the vital role not only in
the delivery of sperm cells to the female gametophyte, but
especially in direct communication between the cells and
their nuclei of somatic origin and the germline (McCue
et al. 2011) perhaps including the modulation of their gene
expression (Slotkin et al. 2009).

The PMII can occur before or after pollen maturation
and therefore the mature pollen grain can be shed as
bicellular (in which the vegetative cell engulfs a single
undivided generative cell) or as tricellular (where the
vegetative cell is associated with two sperm cells) (Brew-
baker 1967). From an evolutionary point of view, the
bicellular pollen is a plesiomorphy trait whereas the tri-
cellular pollen represents an advanced trait. However, it
was postulated recently that a reverse transition from tri-
cellular to bicellular pollen has also occurred (Williams
et al. 2014). Thus, some species sheding bicellular pollen
underwent two evolutionary changes rather than keeping
the original trait permanently (Williams et al. 2014). The
mature pollen grain has a dehydrated cytoplasm; bicellular
pollen was usually shown to be in a more dehydrated and
quiescent state than tricellular pollen. This assumption was
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based on the observation that tricellular pollen was usually
quicker in the onset of pollen germination and subsequent
tube growth (Brewbaker 1967). Furthermore, the basal
angiosperm Annona cherimola was shown to shed both
bicellular and tricellular pollen in different ratios according
to the surrounding air temperature (Lora et al. 2009). In a
higher temperature (30 °C), almost half of the pollen grains
were tricellular whereas at lower temperature (20 °C), the
bicellular pollen grains strongly prevailed. It was specu-
lated that in warmer weather, a higher proportion of tri-
cellular pollen was biologically relevant since it allowed
faster germination and fertilization that was beneficial
since stigma tissues were shorter-lived in a warmer climate.
On the other hand, at lower temperature a higher propor-
tion of bicellular pollen can successfully be more widely
dispersed due to its higher dehydration and longer life span.
This effect is further supported by a longer life span of
pistils under milder temperatures around 20 °C (Lora et al.
2009).

Progamic phase: catch me if you can

As pollen grain reaches the papillary cells of the stigma, it
is rehydrated and activated (Firon et al. 2012). Under
in vitro conditions, Arabidopsis pollen does not increase in
volume during the first 21 min of activation (Vogler et al.
2015). The period of no apparent pollen grain enlargement
is even longer in more dehydrated bicellular pollen
(Barnabas and Fridvalszky 1984). Then, the pollen tube
emerges and starts growing with gradually increasing speed
(Vogler et al. 2015). The pollen tubes growth rate reaches
up to 1 cm per hour, placing them among the fastest-
growing plant cells (Lim and Gumpil 1984). The pollen
tube growth dynamics and its dependence on stored
nutrition reserves differs between studied bicellular and
tricellular pollen species (Mulcahy and Mulcahy 1988).
Bicellular pollen tube growth consists of two phases—the
first growth period is relatively slow with no formation of
callose plugs. The second growth period showed more
rapid growth characteristics accompanied by callose plugs
formation (Fig. 2¢). Growth during the first period con-
sumed the reserves carried by the pollen grain itself
whereas the second phase mostly relied on nutrition from
the style. On the other hand, tricellular pollen started to
grow quickly together with callose plug formation that
relied on stylar nutrition from the beginning (Mulcahy and
Mulcahy 1988).

Pollen tube growth is not isodiametric but together with
root hairs, fungal hyphae and vertebrate axons represents
an example of tip growth (Palanivelu and Preuss 2000;
Samaj et al. 2006). It is characterized by continuous
elongation at one tip of the cell without any further
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Fig. 2 Pollen tube apical
region. a Scheme of the lily
pollen tube tip showing actin
cytoskeleton dynamics and
pollen tube zonation (adapted
from Hepler and Winship
2015); individual structures are
not drawn to scale). b Ca®* and
H™ gradients in lily pollen tube
apex (adapted from Hepler and
Winship 2015); individual
structures are not drawn to
scale). ¢ Distribution of callose
(arrow) in activated tobacco
pollen grains and during pollen
tube germination observed by
aniline blue staining. Callose
plugs are only visible >4 h post
germination (Hafidh et al.
unpublished data)
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divisions of the vegetative cell. Pollen tubes can reach a
maximum of 50 cm (Mascarenhas 1993) in plant species
with long styles, for example maize. Tip growth requires
several mechanisms that are evolutionary conserved in
various tip-growing tissues of different organisms:
cytoskeleton organization, vesicular trafficking, small
GTPases signalling and ion gradient formation (Palanivelu
and Preuss 2000; §amaj et al. 2006). Moreover, novel
formation of cell wall is required in the growing pollen
tubes since they usually outgrow the diameter of the pollen
grain several-fold. This is achieved by the formation of
callose plugs in regular distances to maintain constant
amount of cytoplasm required for filling the inside space of
the pollen tube (Ferguson et al. 1998; Mogami et al. 2006).

From this point of view, pollen tube contains several
zones. The tip-most zone is called clear zone as it looks
“clear” under the microscope because the organelles pre-
sent there have quite low refractivity—in particular, the
starch-containing amyloplasts are missing from this part of
pollen tube (Hepler and Winship 2015; Vidali et al. 2001).
This clear zone comprises two distinct regions, apical and
subapical (Fig. 2a). The apical region is typical for its
inverted cone-shape, in which endoplasmic reticulum ele-
ments and vesicles are present. On the other hand, the
subapical region of the clear zone contains also Golgi
apparatus and mitochondria. Behind the clear zone, there
are also larger organelles, such as amyloplasts and vacuoles
(Lancelle and Hepler 1992). The refractivity of this region
is also higher than that of the clear zone so its appearance is
quite different in both light and electron microscopes
(Hepler and Winship 2015).

Fast pollen tube growth and overall morphology is
underlaid by the organization and function of the
cytoskeleton. Starting behind the subapical zone of lily
pollen, actin filaments are organized in parallel bundles
(Staiger et al. 2010; Wilsen et al. 2006). The cortical fila-
ments transport vesicles towards the tip whereas the central
filaments are dedicated for the basipetal vesicular transport
(Fig. 2a). Thus, the vesicular flow resembles a reversed
fountain. Myosins, the motor molecules along the actin
filaments, move towards the barbed ends of microfilaments.
In order to allow the transport in the desired direction, the
cortical and central filaments are oriented the opposite way:
the central ones have their barbed ends facing the tube tip
whereas the cortical filaments face the tip by their pointed
ends (Lenartowska and Michalska 2008). Near the border
between pollen tube apical and subapical regions an actin
collar is formed and its position is likely to be regulated by
a higher pH 7.5 and Ca®*" gradient. In comparison, pH at
the very tip of the pollen tube reaches 6.5 (Feijo et al.
2004). These two factors (pH and Ca’** concentration)
control actin polymerization together with actin-binding
proteins activity (see below). In the apical region, actin
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filaments are randomly oriented so they are organized into
a net structure. This tip-most region is shaped as a reversed
cone and beside the net structure of actin filaments; it
typically contains vesicles (Hepler and Winship 2015). The
vital importance of this actin net structure in the apical
zone was demonstrated by the application of latrunculin B
that strongly impaired pollen tube growth and morphology
(Vidali et al. 2001). Latrunculin B binds to the actin
monomers and blocks them from polymerization whilst the
stable actin filaments remain unimpaired by latrunculin B
treatment. The role of microtubules in the growing pollen
tubes was thought to be less important and originally it
seemed that the organelles and vesicles were mainly
transported along actin filaments since the colchicine
application did not stop pollen tube growth (Heslop-Har-
rison et al. 1988). However, later, mitochondria were
reported to be transported along microtubules in pollen
tubes grown in vitro (Romagnoli et al. 2007) and tubulin
was shown to be part of RNA storage particles (Honys
et al. 2009). Recently, a more prominent role of micro-
tubules in pollen tubes (for instance in vesicular transport)
was reported (Onelli et al. 2015). Microtubules are there-
fore likely to attract more attention in the future pollen tube
studies.

The distribution of pollen tube organelles as well as the
organization of pollen tube growth rely also on ion fluxes
and gradients. Among them, calcium ions (Ca’") and
protons (H") are of a key importance (Michard et al. 2009).
Ca’" ions show a gradually increasing concentration
towards the pollen tube tip, a distribution usually called
“tip-focused gradient” (Fig. 2b). In the pollen tube apex,
the Ca®" concentration reaches 1-10 UM concentration,
ten- to hundredfold higher than in the pollen tube shank
with Ca®* concentration ranging between 0.1 and 0.3 pM
(Holdaway-Clarke et al. 1997). An increased Ca** con-
centration in the pollen tube apex can serve as a signal for
Ca**/calmodulin protein kinases, some of which were
identified in pollen trancriptome and/or proteome (Sup-
plementary Table 1 and the section below). The Ca®"
gradient is also crucial for the regulation of actin
cytoskeleton dynamics since Ca”" ions activate villin/gel-
solin, which promotes the destabilization of actin filaments
(Ren and Xiang 2007). Moreover, the activity of profilin in
monomer actin sequestration is promoted by Ca** (Kovar
et al. 2000). Thus, these two proteins collectively desta-
bilize actin filaments and prevent its re-polymerization in
the tip-most region of the pollen tube. It should be stressed
once more that the increased Ca®" concentration is only at
the pollen tube tip since further from the tip, the excessive
Ca*" ions are sequestered by endoplasmic reticulum and
mitochondria and the Ca®' concentration is kept at the
normal physiological values (reviewed in Hepler and
Winship 2015). Another process that is promoted by an
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elevated Ca®" concentration is exocytosis (Camacho and
Malho 2003).

The proton gradient is formed in a similar way—protons
enter the pollen tube cytoplasm via proton pumps at the tip
where there is a slightly acidic pH (pH 6.5). The distal band
in the clear zone remains, on the other hand, slightly
alkaline (pH 7.5; Feijo et al. 2004) (Fig. 2b). Interestingly,
this apical acidic pH area resembles the reverse-cone shape
discussed above (Michard et al. 2008). Similar to calcium
ions gradient, the pH variation contributes to the actin
cytoskeleton dynamics via actin-binding proteins. The
slightly alkaline pH in the subapical region promotes
ADF/cofilin complex that cuts the actin filaments to more
parts (Allwood et al. 2002; Chen et al. 2002; Lovy-Wheeler
et al. 2006; Staiger et al. 2010) and thus promotes actin
dynamics in the cortical region of pollen tube. In the shank
and at the pollen tube tip, there is neutral pH 7.0 or slightly
acidic pH 6.5, respectively, under which ADF/cofilin is
inactive.

Taken together, the ion fluxes and gradients are not
static in a growing pollen tube but exhibit regular oscilla-
tions (Feijo et al. 1999; Holdaway-Clarke et al. 1997; Shi
et al. 2009). These gradient oscillations together with
cytoskeleton dynamics are reflected in pollen tube growth.
For example, growth rate of in vitro cultivated lily pollen
tubes oscillates between 0.1 and 0.4 pms~' within
15-50 s (Pierson et al. 1996). All of the above mentioned
factors seem to be coordinated but a general pacemaker is
still not known (Michard et al. 2009).

Both cytoskeleton dynamics and ion gradient oscilla-
tions tightly co-operate with the activity of small GTPases
from the Rab, Arf and Rop/Rac families that play a key
role during vesicular transport and other processes in the
growing pollen tube (§amaj et al. 2006). These small
G-proteins have two states, the active form binding GTP
and the inactive form bound to GDP (Bishop and Hall
2000). Moreover, the activity of the small GTPases is
regulated by three main classes of protein factors—guanine
nucleotide exchange factors (GEFs), GAFs and GDlIs.
GEFs promote the activity of small GTPases by exchang-
ing GDP for GTP. The GTPases inactivate themselves by
their GTPase activity, and this inactivation can be accel-
erated by GTPase accelerating factors (GAFs) that promote
the GTPase activity of G-proteins. Finally, guanine
nucleotide dissociation inhibitors (GDIs) conserve the
G-protein in the GDP-bound form and thus block GTPase
reactivation (Feher and Lajko 2015).

Arf GTPases are involved in the vesicular transport and
localize to both endosomes and Golgi apparatus. Mutations
directly affecting Arf GTPases themselves were not
described in pollen tube functional studies. However,
several experiments showed their roles during pollen tube
growth by analysing gnom (Arf GEF) mutants or by

application of brefeldin A that acts as a GNOM inhibitor
(Zhang and McCormick 2010). Rab proteins are associated
with endomembranes and show usual specificity to par-
ticular parts of the endomembrane system (Woollard and
Moore 2008). RAB11B in tobacco and RABA4D in Ara-
bidopsis were shown to be required for a correct pollen
tube growth (de Graaf et al. 2005; Szumlanski and Nielsen
2009). Not surprisingly, these small GTPases were
important for pollen tube growth since they are vital for
exocytosis of various compounds such as cell wall pre-
cursors, membrane components and signalling molecules
which promote pollen tube growth (Qin and Yang 2011).
Rop GTPases with bound GTP are usually localized in the
apical plasma membrane. They execute several important
functions such as organization of the actin cytoskeleton.
They generate reactive oxygen species, and mediate cal-
cium-dependent signaling (Zheng and Yang 2000; Samaj
et al. 2006). ROP1 was discovered in apical membranes of
tobacco and lily pollen tubes (Fu et al. 2001; Zhao and Ren
2006). Not only the GTPases themselves but also their
regulating proteins such as RhoGDI were shown to play
important roles in pollen tube growth (Klahre et al. 2006);
they are integrated into the cellular signalling network of
kinases acting both upstream and downstream the Rop
GTPases (Feher and Lajko 2015).

Reserves storage and mobilization: shop till you
drop

The vegetative cell of the immature pollen grain contains a
dense cytoplasm with numerous organelles. The maturing
pollen grain shows considerable metabolic activity and the
vegetative cell accumulates a considerable amount of
various metabolic reserves including carbohydrates, pro-
teins and lipids necessary for the rapid growth of the pollen
tube (Pacini 1996; Pacini et al. 2006). A specific portion of
reserves comprises osmoprotectants, e.g. disaccharides,
proline and glycinebetaine, protecting cellular membranes
and proteins from damage caused by dehydration
(Schwacke et al. 1999). The generative cell inherits from
the microspore a very small portion of the cytoplasm and
organelles. Whereas the generative nucleus contains highly
condensed chromatin, the larger vegetative nucleus with
numerous pores exits the cell cycle in G1 phase and con-
tains decondensed chromatin. Therefore higher transcrip-
tional activity of the vegetative nucleus in comparison to
the generative cell can be assumed; however, that is not
negligible either (Borges et al. 2008).

From PMI to the maturity, pollen accumulates both
mRNA and proteins (Hafidh et al. 2011; Honys et al. 2009).
In this period, pollen volume doubles, the amount of total
RNA increases seven times and mRNA content increases
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thirteen to twenty times (Schrauwen et al. 1990; Tupy
1982). Pioneering experiments using transcription and
translation inhibitors in tobacco pollen tubes showed that
transcription was detected only during the first several
hours of the pollen tube growth, which led to the conclu-
sion that pollen tube growth was mainly dependent on
translation but virtually independent of transcription
(éapkové et al. 1988). However, the introduction of high-
throughput technologies led to the identification of
numerous genes transcribed specifically after pollen ger-
mination in vitro in all species studied—Arabidopsis (Qin
et al. 2009; Wang et al. 2008), rice (Wei et al. 2010) and
tobacco (Hafidh et al. 2012a, b). Moreover, many tran-
scripts were de novo synthesized even in the tobacco pollen
tubes cultivated as long as 24 h (Hafidh et al. 2012a).
Interestingly, the interaction of the pollen tube with the
pistil tissues, during which pollen tubes gained the com-
petence for fertilization (Higashiyama et al. 1998; Palani-
velu and Preuss 2006), activated a specific set of 1254
genes that were not detected in in vitro cultivated pollen
tubes (Qin et al. 2009). Moreover, 383 of these genes were
pollen-enriched. De novo expression of genes involved
predominantly in signal transduction, transcription and
pollen tube growth in pistil-activated pollen tubes sug-
gested the possibility of a female-responsive regulatory
network orchestrating pollen tube gene expression upon
growth through the pistil (Qin et al. 2009). A set of pistil-
activated genes required for pollen tube differentiation and
sperm cells release was later found to be controlled by
three SIV pollen-tube expressed related MYB transcription
factors—MYB97, MYB101 and MYB120 (Leydon et al.
2013).

In tobacco, stored transcripts were shown to be associ-
ated with large translationally silent ribonucleoprotein
particles (EPP complexes; Honys et al. 2000). EPP com-
plexes are associated with the cytoskeleton and contain
small and large ribosomal subunits (Honys et al. 2009).
Upon pollen activation and during subsequent pollen tube
growth, the transcripts stored in EPPs are de-repressed and
translated (Honys et al. 2009). Furthermore, EPP particles
are likely to be transported towards the tip of the growing
pollen tube and could represent a transport form of the
transcripts originating from mature pollen. The translation
itself leads to production of native polypeptides that
undergo a plethora of possible post-translational modifi-
cations (PTMs) to form a functional mature protein prod-
uct. These include phosphorylation, methylation,
glycosylation, myristoylation, acetylation etc. (Knorre
et al. 2009) that are usually essential for the proper protein
structure and function. Here we will focus in more detail on
protein glycosylation and phosphorylation since these
modifications have been studied most intensely in the male
gametophyte.
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Protein glycosylation is a co-translational or post-
translational covalent attachment of carbohydrate chains
(glycans) to the polypeptide backbone. According to the
atom, by which the carbohydrate residues are bound to the
peptide, three types of glycosylation are recognized. N-
glycosylated proteins bear the glycans on nitrogen atoms of
asparagin in the Asn-X-Ser/Thr consensus sequence, where
X is any amino acid except proline, serine, and threonine
(Lerouge et al. 1998). O-glycosylation is executed on the
oxygen atom of serine, threonine or hydroxyproline
(Hanisch 2001). Finally, rare S-glycosylated proteins carry
their glycan moiety on the sulphur atom of cysteine
(Stepper et al. 2011).

Protein glycosylation usually increases protein stability
and plays a role in protein—protein interactions (Ueda et al.
1996). Likewise, many pollen allergens are glycosylated
(reviewed by Puc 2003). Glycoproteins or more heavily
glycosylated proteoglycans are important components of
cell walls and they are often found in association with
membranes or as secreted proteins. In all these compart-
ments, numerous members of a large family of the proline/
hydroxyproline-rich glycoproteins are prominent. This
family was originally classified into three separate classes:
none or subtly glycosylated proline-rich proteins (PRPs),
moderately glycosylated extensins and heavily glycosy-
lated arabinogalactan-proteins (AGPs) (for review see Ellis
et al. 2010; Wu et al. 2001). The latter two classes are
defined by the presence of O-glycosylated hydroxyproline
as hydroxyproline-rich glycoproteins (HRGPs) and their
heterogeneity and abundance attributed them to multiple
functions in plant growth and development, plant defence
and signalling (Ellis et al. 2010). Recently, HRGPs were
identified as a component of calcium signalling pathway
(Lamport and Varnai 2013).

In Arabidopsis, a specific subset of AGPs was shown to
be expressed in reproductive tissues with the majority of
them being present in female tissues along the path taken
by the growing pollen tube (Pereira et al. 2014). However,
four AGPs, namely two classical AGPs (AGP6, AGP11)
and two AG-peptides (AGP23 and AGP40) were specifi-
cally expressed in pollen and pollen tubes (Nguema-Ona
et al. 2012). A subset of AGPs, namely those expressed in
the male gametophyte, are attached to the plasma mem-
brane by glycosylphosphatidylinositol (GPI) anchor
(Lalanne et al. 2004). One function of these proteoglycans
is the control of nexine formation (Jia et al. 2014) and
subsequent pollen germination. Higher number of early
germinating pollen tubes within the anthers was observed
in agl6/aglil double and agl6/aglli/agl40 triple mutants
(Nguema-Ona et al. 2012). Accordingly, the knockout of
pollen-expressed AGPs resulted in a reduced seed set. The
expression pattern of male gametophytic AGPs is supposed
to be balanced since the up-regulation of AGP40 and
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AGP23 was observed in agl6/agllil double null mutant
pollen tubes (Nguema-Ona et al. 2012). Recently it was
reported that the expression of all four pollen-specific
AGPs is directly controlled by the AT-hook nuclear
localized (AHL) family DNA-binding TEK protein (Jia
et al. 2014), which therefore indirectly controls nexine
formation in the pollen wall (Lou et al. 2014).

Extensins (EXTs), the second large class of HRGPs, are
also present in the cell wall where they are involved in the
formation of crosslinking networks. Therefore their activity
is predominantly observed in fast growing cells like root
hairs and pollen tubes (Cannon et al. 2008; Lamport et al.
2011). Unlike AGPs, extensins do not show strict pollen-
specific expression patterns and their co-expression in
pollen tubes and root hairs was observed (Dupl’dkova et al.
2007; Hruz et al. 2008). This is also the case for EXT18, a
classical extensin required for vegetative growth, repro-
ductive development, pollen viability and fertility. Among
other phenotypic defects, ext/8 mutants show significantly
slower pollen tube growth and reduced seed set (Choud-
hary et al. 2015).

Although prominent, O-glycosylated HRGPs are not the
only glycoproteins associated with male gametophyte
function. In tobacco pollen tubes, two highly abundant cell
wall N-glycoproteins of 66 and 69 kDa were identified
(Capkovi et al. 1997). The block of their N-glycosylation
by tunicamycin caused reduction of the callose deposition
into pollen tube cell wall and consequently impaired pollen
tube growth. Glycoproteins of similar sizes were found also
in several other angiosperm species (Fidlerova et al. 2001).
In spite of the abundance and apparent important function
of these N-glycoproteins, their exact molecular activity is
still unknown. Moreover, protein N-glycosylation was
demonstrated to be of vital importance in pollen tube per-
ception (Lindner et al. 2015). The EVAN and TURAN genes
encode putative uridine diphosphate (UDP)-glycosyltrans-
ferase superfamily protein and dolichol kinase, respec-
tively. It is likely that proteins responsible for pollen tube
perception in female organs are strongly glycosylated since
mutations of these genes taking part in N-glycosylation
pathway caused premature pollen tube burst (Lindner et al.
2015). Therefore membrane- and cell wall-associated gly-
coproteins are not only important for pollen tube growth
through the pistil but are also good candidates to mediate
male—female cross-talk during double fertilization.

Protein phosphorylation is rather fast, dynamic and
transient PTM, and its reversible nature predestines it for a
regulatory role. The switch from a metabolically quiescent
pollen grain to a rapidly growing pollen tube has to be
precisely regulated by several mechanisms including pro-
tein phosphorylation. In the past decade, plant phospho-
proteomics evolved rapidly and nowadays, several
protocols are available (Dunn et al. 2010; Fila and Honys

2012). Some of these protocols deal with the challenges of
protein extraction and phosphoprotein/phosphopeptide
enrichment from very tough tissues such as mature pollen
grain (Fila et al. 2011, 2012; Mayank et al. 2012; Sheoran
et al. 2009). Many phosphoproteomics studies have been
performed in plants (Li et al. 2015; Meyer et al. 2012; van
Bentem et al. 2008; Wolschin and Weckwerth 2005),
however, none of these studies focused on pollen
phosphoproteome.

The first male gametophytic phosphoproteomics study
identified 962 phosphopeptides corresponding to 598
phosphoproteins in Arabidopsis mature pollen (Mayank
et al. 2012). Notably, a high number of phosphoproteins
(240 in particular) were newly identified. The most
prevalent phosphoprotein categories were regulation of
metabolism and protein function, signal transduction and
cellular transport. Many kinases were identified, implying
that kinases themselves were phosphorylated, for instance
AGC protein kinases, calcium-dependent protein kinases,
and SNF1-related protein kinases.

In tobacco, the protein phosphorylation dynamics during
pollen activation was studied (Fila et al. 2012). There, dry
mature pollen grains and pollen suspension activated
in vitro for 30 min were compared. In total, 139 phos-
phoprotein candidates carrying 52 phosphorylation sites
were identified (Fila et al. 2012). Most phosphoprotein
candidates were associated with energy metabolism, a
category that has to be precisely regulated after the pollen
tube hydration. Other meaningful overrepresented protein
categories were protein destination and storage, metabo-
lism, cell structure and protein synthesis. Several phos-
phopeptides were found to be shared by both Arabidopsis
and tobacco pollen (Fila et al. 2014) pointing to the com-
mon nature of pollen activation in angiosperms. Pollen
phosphoproteomics studies also significantly contributed to
the public PhosPhAt database of Arabidopsis thaliana
phosphorylation sites (Durek et al. 2010; Heazlewood et al.
2008). Many newly identified phosphorylated proteins
were likely to be pollen-specific or -enriched as demon-
strated by their transcription profiles (Dupl’dkova et al.
2007; Hruz et al. 2008; Mayank et al. 2012).

Interestingly, changes of the phosphoproteome in a
gymnosperm Picea wilsonii pollen and pollen tubes were
studied in response to nutrient depletion from pollen tube
cultivation media (Chen et al. 2012). 42 phosphoproteins
were found to be differentially regulated. Of them, phos-
phorylation of proteins involved in cytoskeleton dynamics
was found to be specifically responsive to Ca’" and
sucrose deficiency (Chen et al. 2012). These three studies
applied different phosphoproteomic approaches, and thus
the data sets between them are not comparable since every
protocol biases towards a different segment of phospho-
proteome (Bodenmiller et al. 2007). However, together
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they provided interesting input in the regulatory processes
in male gametophyte.

Protein phosphorylation can be studied directly by
phosphoproteomic approaches as mentioned above or
alternatively, from the perspective of protein kinases
(Supplementary Table 1). Several kinase motifs were
reported amongst the phosphorylation sites both in Ara-
bidopsis and tobacco male gametophytes (Fila et al. 2012;
Mayank et al. 2012) and few of them were shared by both
species (Fila et al. 2014). However, this in silico approach
only revealed the presence of individual motifs but the
actual link between a particular protein kinase and target
proteins is still missing. To study the protein kinases
activity themselves, several pollen-specific kinases were
studied including mitogen-activated protein kinases (MAP
kinases). MAP kinases represent a large family of Ser/Thr
protein kinases common for all eukaryotes (Kultz 1998).
They mediate the prolyl-directed phosphorylation on
xxxxxxS*¥Pxxxxx, and xxxxxxT*Pxxxxx peptide motifs
(Lee et al. 2011). However, a subset of these motifs is also
recognized by cyclin-dependent protein kinases. Different
MAP kinases play their roles in various phases of tobacco
male gametophyte development. MAP kinase NTF4 was
activated after pollen hydration but before the actual pollen
tube emerged. Its role is likely in the activation of pollen
metabolism (Wilson et al. 1997). In Arabidopsis, four MAP
kinases were identified in the pollen shotgun proteome
dataset—MPK6, MPKS8, MPK9, and MPK15 (Grobei et al.
2009). Two of these (MPK8, and MPK15) were shown to
be phosphorylated at the TDY motif (Mayank et al. 2012).
However, their exact roles during male gametophyte
development are not yet clear. The other motif over-rep-
resented in the Arabidopsis phosphoproteomic data set was
a basophilic motif RxxS*xx, that is recognized by CaM-
dependent protein kinase family (Lee et al. 2011). In pol-
len, three calmodulin protein kinases were identified
(Honys and Twell 2003), one of which was present also in
the pollen proteome and phosphoproteome (Grobei et al.
2009; Mayank et al. 2012). The kinases can also be func-
tionally studied but this is intricate due to the complexity of
protein kinases. However, a double homozygous mutant of
two AGC protein kinases showed defects in pollen tube
growth and their competitiveness but not in a full pene-
trance (Zhang et al. 2009); however, the connecting link
with the signaling pathways is still missing.

Pollen tube guidance: show me the way
As the pollen tube grows through the pistil tissues, it is

guided towards ovules to ensure delivery of two non-motile
sperm cells for double fertilization. The guidance process
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involves both mechanical/physical orientation and che-
motropic guidance of the pollen tube by the female
reproductive tissues. The physical guidance is attributed to
the organization of transmitting tract tissues (TT) as well as
its secreted compounds. Some of the identified secreted
compounds include sulfinylated azadecalin (S-azadecalin;
Qin et al. 2011), y-aminobutyric acid (GABA; Ling et al.
2013; Palanivelu et al. 2003; Yu et al. 2014), brassinos-
teroids (Vogler et al. 2014), as well as other hormones and
metabolites that direct pollen tube growth towards the
ovule. Whereas the chemotropic guidance is associated
with secreted signals by the attractant (the ovules) either
pre-laid along the pollen tube path towards micropylar
entry or intensively secreted as diffusible signals ensuring
successful ovule targeting by the pollen tube (Heslop-
Harrison 1987; Heslop-Harrison and Heslop-Harrison
1986; Mascarenhas and Machlis 1962). The majority of
these signals constitute small secreted peptides predomi-
nantly of the defensin-like cysteine rich subfamily (DEFL)
secreted from the egg apparatus (reviewed by Bleckmann
et al. 2014; Higashiyama 2015). Additionally, fail-safe
mechanisms exist whereby undegenerated female synergid
cell persist to attract additional pollen tube in a case of
failed fertilization by the first pollen tube and ensure
double fertilization of the female gametes (Kasahara et al.
2012).

This chapter will discuss (1) secreted peptides by the
female reproductive tissues with role in pollen tube
attraction, (2) factors of the pollen tube that could perceive
female guidance signals directly or indirectly, (3) a brief
discussion and transcriptomic analysis of the Arabidopsis
DEFL subfamily, cysteine-rich receptor protein kinases
(CRKs) and GPI-anchored proteins in Arabidopsis as
potential factors likely to be involved in ovular attraction,
signal perception and pollen tube guidance. Recent com-
prehensive reviews on pollen tube guidance are available,
see Bleckmann et al. (2014) and Higashiyama (2015).

Ovular secreted peptides for pollen tube attraction

After successful pollination and penetration through the
stigma, a compatible pollen tube grows through the
extracellular matrix of the transmitting tract tissues with
the aid of female guidance signals to reach and fertilize the
female gametes (Maheshwari 1950; Yadegari and Drews
2004). This cell-cell communication has emerged as an
important bottleneck for unfavourable fertilization and as a
pre-zygotic barrier for interspecies hybridization. Tech-
niques involving the use of single-cell laser ablation, use of
genetic mutants and high-throughput genomic approaches
such as tissue-specific transcriptomic studies have identi-
fied various transmitting tract and ovular secreted peptides
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involved in pollen-pistil interactions and as ovular attrac-
tants with conserved roles across plant species (Marton
et al. 2012; Okuda et al. 2009; Takeuchi and Higashiyama
2011). Among them are Arabinogalactan proteins, cys-
teine-rich polypeptides (CRP), defensin-like proteins
(DEFL), S-RNases, transmitting tissue-specific proteins
(TTS), class III pistil extensin-like proteins (PELPIII) and
lipid transfer proteins (LTP) (Chae and Lord 2011; Dres-
selhaus and Franklin-Tong 2013; Hamamura et al. 2011).
Characterisation and the continuous search for ovular
secreted pollen tube attractants have spearheaded better
understanding of the molecular dialogue during pollen
tube-ovular attraction and successful fertilization.

To exit the transmitting tract and reorient towards target
ovules, pollen tubes are attracted by secreted signals
directly derived from the ovules. Genetic evidence have
shown that functional female gametophyte plays an
essential role in pollen tube attraction towards the ovule
(Hulskamp et al. 1995; Ray et al. 1997; Shimizu and Okada
2000) by the secretion of ovular attractants (reviewed in
Bleckmann et al. 2014; Higashiyama 2015). The ovular
attractants for pollen tube guidance identified so far include
LURE proteins from Torenia and Arabidopsis and ZmEA1
from maize. LURE proteins are short antifungal/antimi-
crobial polypeptides (typically 50-100 amino acids)
belonging to the defensin-like subfamily of cysteine rich
proteins first identified as secreted in Torenia fourieri
synergid cells and termed LUREI and LURE2 (Okuda
et al. 2009). Through orthologous protein searches, other
LURE proteins were identified in Torenia concolor,
TcCRPI1 (Kanaoka et al. 2011) and in Arabidopsis thaliana
(AtLUREL.1-1.6) and Arabidopsis lyrata (AILUREIL.1—
1.10) (Takeuchi and Higashiyama 2012). All LURE pro-
teins were shown to be expressed and secreted by the
synergid cells. Using semi in vitro assay and microfluidic
device techniques (Agudelo et al. 2013; Arata and Higa-
shiyama 2014; Horade et al. 2013; Sanati Nezhad et al.
2014), TfLURE1/2 and AtLUREI proteins were confirmed
as pollen tube attractants with long-range activities in a
species-preferential manner (Horade et al. 2013). Antisense
knockdown of TfLUREI1 or TfLURE2 abolished pollen
tube attraction and fertilization in Torenia fourieri (Okuda
et al. 2009). Intriguingly, these identified LURE proteins
are capable of cross-species activities and are sufficient to
attract pollen tubes of distantly related species. This was
elegantly demonstrated by the successful attraction and
embryo sac entry of Arabidopsis pollen tubes by Torenia
fourieri ovules expressing AtLURE1.2 peptides (Takeuchi
and Higashiyama 2012). The range at which the LURE
proteins are perceived by the approaching pollen tube is
still unclear (see below).

Similar to LURE proteins, Zea mays egg apparatus 1
protein (ZmEA1), plays an essential role in pollen tube

ovular attraction (Fig. 3a) (Marton et al. 2005, 2012).
ZmEA1 belongs to EAL family and is expressed in the egg
apparatus predominantly in the synergid cells. ZmEAL is
specific to monocots. Heterologous expression of ZmEA1
in Arabidopsis ovules is sufficient to attract maize pollen
tubes to the micropylar entry (Marton et al. 2005). These
findings demonstrate that ovular secreted attractants are
likely candidates to impose interspecific prezygotic barriers
during pollen tube guidance.

One unresolved aspect of this cell—cell crosstalk event is
the range at which the ovular attractants travel and are
perceived by the pollen tubes. Clearly, the intercellular
growth of the pollen tubes in transmitting tract happens
basipetally and predominantly involves mechanical guid-
ance by the female sporophytic tissues (Heslop-Harrison
1987; Heslop-Harrison and Heslop-Harrison 1986). Later,
Sanders and Lord proposed the model that the pollen tubes
are effectively dragged down the transmitting tract through
interaction with the extracellular matrix of the transmitting
tract tissues (Hulskamp et al. 1995; Sanders and Lord 1989,
1992). In lily and Torenia species, germinating pollen
tubes emerge from opposite ends of the cut style (distal or
proximal) or at both ends of cut style when germinated
from a cut slit at the middle of the style (Higashiyama
2015). All above findings emphasise that mechanical
guidance predominate intercellular pollen tube growth
within the transmitting tract. Thereafter, deviation of the
pollen tubes from the transmitting tract tissues onto the
surface of the septum towards the target ovule requires
additional independent signals (Schwemmie 1968). Pre-
cisely, this turning point marks the end of mechanical
guidance and the beginning of ovular chemotropic attrac-
tion. Isolated sporophytic genetic mutations specifically
affecting female gametogenesis (but not the sporophytic
tissues) at various developmental stages are known to
significantly reduce pollen tube-ovule targeting success
including pollen tube emergence onto the surface of the
septum (Hulskamp et al. 1995; Ray et al. 1997; Shimizu
and Okada 2000). In support, secreted AtLURE]1 peptides
are detectable beyond the micropylar, at the surface of
funiculus and septum (Higashiyama 2010, 2015), sug-
gesting their likely involvement in pre-ovular guidance.
Together, these results support the notion that ovular
secreted peptides could have a long attraction/guidance
range. Intuitively, it could be predicted that mutants
affecting protein secretion in ovules would consequently
impact on pollen tube guidance and attraction. Therefore, it
is of great importance to further resolve the range through
which ovular attraction signals operate and whether the
transport of these signals involves diffusion or specific
carrier molecules such as nanovesicles, carbohydrates
moieties and/or encapsulated lipid molecules to reach their
target cells, the pollen tube.
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Perception of female guidance signals by the pollen
tube

Although to date there has not been a direct demonstration
of female-secreted ligands binding to pollen tube surface
receptors, with the exception of AtLUREI that is indirectly
perceived by LIP1/2 receptor kinases (Liu et al. 2013), the
continuous efforts (including innovated techniques) are
edging closer to reach such resolution of understanding.
Several male mutants have been isolated that are defective
in pollen tube-ovule targeting (reviewed in Bleckmann
et al. 2014; Higashiyama 2015). Intriguingly, they include
genes involved in cellular homeostasis, actin dynamics and
those encoding membrane- and surface-anchored receptors.
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anchored proteins outsourced from the UniProtKB and UniRef100
databases. LSP’s are pollen tube Leaderless secreted proteins (without
N-terminal signal peptide) that could be secreted via nanovesicles
exosomes

Among them is Arabidopsis LOST IN POLLEN TUBE
GUIDANCE 1 (LIP1) and LIP2. LIP1 and LIP2 are pollen-
expressed membrane-anchored receptor-like kinases with-
out extracellular domains and localize beneath the mem-
brane at the pollen tube tip (Liu et al. 2013). Simultaneous
knockdown of LIP1 and LIP2 results in reduced pollen
tube ovule targeting ability and reduced attraction towards
synthetic AtLURE1.2 peptides. This observation suggests
an indirect perception of LURE ovular attractants by LIP1
and LIP2 pollen tube surface receptor proteins (Liu et al.
2013). Another pollen tube receptor identified is COBRA-
LIKE 10 (COBL10). COBLI10 is a GPI-anchored protein
that localizes at the pollen tube tip through its C-terminal
GPI-anchor sequence and is involved in the deposition of
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apical pectin cap, cellulose microfibrils and functions in
pollen tube guidance (Li et al. 2013). Its knock-out results
in defects in ovule targeting that mimics those of abnormal
pollen tube guidancel (aptgl), sethl and seth2 knockdown
mutants which all are involved in GPI biosynthetic path-
way. These results suggest that GPI-mediated membrane
anchoring of COBL10 is essential for pollen tube guidance
(Li et al. 2013). Perception of ovular attraction signals by
the pollen tube also involved proteins with a structural role.
MICROTUBULE ASSOCIATE PROTEIN 18 (MAP18)
and MICROTUBULE-DESTABILIZING PROTEIN 25
(MDP25), both possess actin filament severing activity and
their mutants lack competence in perceiving ovule attrac-
tion signals but show normal pollen tube growth (Qin et al.
2014; Zhu et al. 2013). It is surprising that mapl8 and
mdp25 mutants do not show defects in pollen tube growth
as previously reported for other proteins involved in actin
organization (Guan et al. 2013). Here they demonstrate that
actin dynamics plays an exclusive role in directing the
pollen tube towards the ovules (Higashiyama 2015). Two
pollen tube potassium transporters, CHX21 and CHX23,
were also identified as essential factors for pollen tube
competence in ovule targeting (Lu et al. 2011). They are
likely to regulate cytosolic cation dynamics rendering
pollen tube competence in response to ovular attractants.
Similar to secretion of ovular attractant peptides, pollen
tube protein secretion and protein folding are also likely to
play an important role in pollen tube competence to per-
ceive ovular attractants (Hafidh, Potésil, Fila, éapkové,
Zdrahal and Honys, unpublished). This was demonstrated
for ER-localized POLLEN DEFECTIVE IN GUIDANCE
1 (POD1) protein, since podl mutant pollen tubes were
incompetent in ovular attraction response (Li et al. 2011).
These findings suggests that ER-protein folding and likely
secretion of membrane-associated and extracellular pro-
teins from the ER are critical for pollen tube responsive-
ness towards female guidance signals. Moreover, genes
involved in regulating secretory pathways are also likely to
be essential in pollen tube guidance.

Similar to ovule-secreted peptides, the range of activi-
ties for pollen tube-secreted peptides also needs to be
addressed. Cysteine-rich family protein LAT52 and Lipid
transfer family protein LTP5 are the only known pollen
tube-secreted ligand proteins that are perceived by pollen
tube receptor like kinase, PRK2 (Zhao et al. 2013). Once
secreted, LAT52 and LTPS are believed to participate in an
autocrine signalling involving RopGEFs to control polar
tip growth of the pollen tube (Fig. 3a). It is not known
whether LATS52 and LTP5 act as ligands to female recep-
tors during pollen tube-pistil interaction. Furthermore,
discovery of other pollen tube secreted proteins/peptides
was hampered by the inaccessibility of the pollen tube
“secretome” within the transmitting tract, however, current

developed techniques offer a compromised access to such
molecules and have a potential to speed up the discovery of
the pollen tube “peptidome” (Hafidh et al. 2014). The
challenge ahead is to demonstrate the range of activities for
LATS52, LTP5 and other pollen tube secreted peptides/
proteins and how these secreted peptides reach their target
receptors. An empirical model would be that short range
intercellular signals might reach their targets by diffusion
whereas long-range intercellular signals could be encap-
sulated within “carrier organelles/molecules” such as lipid
bilayer capsules or secreted nanovesicles/exosomes (Prado
et al. 2014) and either taken up or released by endocytosis
upon contact with the target cell (Fig. 3a). With application
of techniques such as microfluidic devices with live cell
imaging capabilities (Cheung et al. 2010; Horade et al.
2013; Rotman et al. 2003; Uebler and Dresselhaus 2014),
the intercellular dialogue between pollen tube ovular signal
perception and ovular attraction will gain resolution to the
molecular level and increase better understanding of the
fertilization process and prezygotic interspecific barriers of
flowering plants.

Cysteine-rich polypeptides and GPI-anchored
proteins predicted as secreted in Arabidopsis

Ovular attractants that have been identified to date belong
to the defensin-like DEFL subfamily of the cysteine-rich
polypeptide group of proteins. The CRP proteins are pre-
sent as isoforms and paralogs across species, whereas
others are species-specific defensin-like proteins (Marton
et al. 2005, 2012; Takeuchi and Higashiyama 2012). It is
likely that other members of this family play an essential
role in pollen tube guidance. We have surveyed the Ara-
bidopsis genome using the proteome data from UniProt
repository (http://www.uniprot.org/) and selected annotated
CRP family peptides of <150 amino acids that were pre-
dicted as secreted (Supplementary Table 2). Transcrip-
tomic analysis of publicly deposited dataset (Duplakova
et al. 2007; Hruz et al. 2008) followed by phylogenic
classification using Eucledian distance algorithms and
optimal leaf ordering based on co-expression and similar
vector branching, highlighted two main groups of DEFL-
like proteins and a small subset of “plant cysteine-rich
small secretory family” of proteins (Fig. 3b). DEFL-like
group I consisted of defensin-like peptides that showed
consistent expression in male and female reproductive
tissues but more strongly in pollen grains than in ovary
(Fig. 3b). The DEFL-like group II on the other hand, dis-
played more variable expression patterns with much
stronger expression in the female gametophyte and in
dissected endospem (Fig. 3b). The subgroup of plant cys-
teine-rich small secretory family constituted exclusively of
EPIDERMAL patterning factor-like proteins (EPFL).
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EPFL ‘s are <50 aa secreted peptides within the mesophyll
cells and are known to increase stomatal formation through
positive and negative protein—protein interaction and likely
through their interaction with receptor-like proteins such as
TMM receptor kinases (Lee et al. 2015). Their expression
is uniform throughout plant development (Fig. 3b). Whe-
ther EPFL plays role also in pollen tube guidance remains
to be demonstrated.

Another noteworthy subfamily is CRKs, cysteine-rich
receptor-like kinases. CRKs are not secreted to the extra-
cellular matrix but reside on the membrane with a single-
pass transmembrane helix (Supplementary Table 2) and are
likely to function as receptors for secreted ligands during
pollen tube guidance. For majority, their expression in
several plant tissues is also constitutive and shows no
prominent specificity in particular tissues (Supplementary
Fig.S1). However, five CRK genes showed exceptional
profile; CRK42 (AT5G40380), CRK17 (AT4G23250),
CRK33 (AT4G11490), CRK43 (AT4G28670) and CRK1
(AT1G19090), all appeared to be exclusively enriched in
pollen and in sperm cells compared to any other tissues
(Fig. S1). Their pattern hint towards possible role in
kinase-mediated signalling in pollen tubes and in sperm
cells during pollen-pistil interaction and during fertiliza-
tion. To date, only one example of possible ligand-receptor
interaction, LIP1/2-LURESs, has been reported (Li et al.
2013). Embedment of CRKs within the membrane places
them as potential receptors that could link and transduce
signals from cell surface receptors (such as GPI-anchored
proteins, example COBL10) to inner receptors such as
LIP1 and LIP2 (Fig. 3a). Therefore, understanding the role
of these CRKs will pave way in the understanding the
cascades of signal transduction during male—female cross-
talk.

Similarly, GPI-anchored proteins are among the gene
families identified as regulators of pollen tube guidance and
reception. LLG1, a Lorelei-like GPI-anchored protein is
expressed exclusively in synergid cells and could perceive
signals secreted by the approaching pollen tube (Capron
et al. 2008). Knockdown of LLGI1 severely perturbs pollen
tube reception resulting in pollen tube overgrowth, defec-
tive sperm cell release and embryo development (Capron
et al. 2008; Tsukamoto et al. 2010). In pollen tubes,
COBRA-like 10, is expressed and localized at the pollen
tube tip through its C-terminal GPI-anchor (Li et al. 2013).
Knockdown of CBLI10 results in defects in pollen tube
growth and ovule targeting. In mammals, GPI-anchored
proteins are commonly deployed as cell sensors during cell-
cell communications including during egg-sperm cell
recognition. We have analysed expression of annotated
secreted Arabidopsis GPI-anchored proteins in several tis-
sues as potential candidate transient receptors during pol-
len-pistil interaction and pollen tube-ovule targeting
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(Supplementary Table 3). The majority showed a general
widespread expression pattern in all tissues including the
gametophytes with the exception of COBL9 (AT5G49270),
COBLS8 (AT3G16860), COBL10 (AT3G20580), LLG3
(AT4G28280) and COBL11 (AT4G27110), which showed
significantly higher expression levels in stamens, pollen
grains and in sperm cells (Fig. 3c). Of them, only COBL10
has been reported to play critical role in pollen tube growth
and in cell—cell crosstalk during pollen-pistil interaction and
fertilization (Li et al. 2013). GPI-anchored proteins are
likely to function as primary receptors in pollen tube and in
synergid cell and the female gametophyte to perceive
secreted signals. The aforementioned genes (as well as
others on Table 3) are worth a detailed investigation to
establish their role in pollen tube signal perception during
male—female signaling and fertilization.

Termination of pollen tube guidance and attraction

Once the pollen tube successfully entered the embryo sac
and released the two sperm cells, gamete fusions (both
plasmogamy and karyogamy) of sperm cells with the egg
cell and the central cells mark the end of pollen tube
guidance and an ovule stops attracting any additional pol-
len tubes. This is preceeded with induced programme cell
death of the persistent synergid cell approximately 20 h
post pollination (Beale et al. 2012). If plasmogamy or
karyogamy fails with the first pollen tube, the persistent
synergid cell is reactivated to attract additional pollen tubes
and ensure double fertilization of both female gametes. Up
to three pollen tubes can be attracted by a single ovule
(Kasahara et al. 2012; Williams 2009). This phenomena is
termed polytubey and ensures fertilization recovery.
Polytubey can also lead to hetero-fertilization where male
gametes involved in the fertilization are delivered by dif-
ferent pollen tubes (Maruyama et al. 2013). Ovule mutants
defective in micropylar guidance such as myb98 (Kasahara
et al. 2005), magatama (Shimizu and Okada 2000), and
central cell guidance (Chen et al. 2007), or those defective
in pollen tube reception, such as feronia/sirene (Huck et al.
2003; Rotman et al. 2003) and lorelei (Capron et al. 2008;
Tsukamoto et al. 2010), all show the polytubey phenotype.
Similarly, male components that are required for gamete
fusion and fertilization such as GENERATIVE CELL
SPECIFIC I/HAPLESS 2 (GCS1/HAP2) which encodes a
sperm cell plasma membrane protein and required for
gamete fusion (Mori et al. 2005; von Besser et al. 2006),
cdka;1 (Hamamura et al. 2012), duol, duo3 (Beale et al.
2012; Kasahara et al. 2012) and kokopeli (Hamamura et al.
2012), which are all defective in producing two competent
sperm cells, also display polytubey phenotypes suggesting
that a cessation of pollen tube attraction is a direct con-
sequence of the double fertilization event. For ovules that
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have undergone successful fertilization, ethylene signalling
is induced by ER localized ETHYLENE-INSENSITIVE 2
and 3 (EIN2 and EIN3) and perceived by the remaining
synergid cell (Volz et al. 2013). Ethylene perception
induces programmed cell death of the synergid cell and
marks the end of pollen tube attraction and beginning of
embryogenesis.

Conclusion

Unlike animals, the specification of specialized cells that
give rise to gametes (the germline) happens much later and
repeatedly during plant development. In angiosperms, the
male gametogenesis takes place through coordinated
activities of both gametophytic and sporophytic tissues and
involves widespread dynamic changes in gene expression.
Shed pollen grains constitute a vegetative cell (that forms a
pollen tube and delivers two sperm cells for fertilization)
and either undivided germ cell (bicellular species) or with
two sperm cells (tricellular species). This process is
underpinned by two successive cell divisions accompanied
by morphological and physiological differentiation of both
cell types (reviewed by Berger and Twell 2011). Tremen-
dous efforts including genetic and transcriptomic approa-
ches has led to the isolation of several mutants whose gene
function regulates several steps of the male gametogenesis
(reviewed by Borg et al. 2011). This has provided better
understanding of male sterility and can be used to manip-
ulate and improve male fitness.

A plethora of processes also regulates pollen tube
growth, guidance competence and reception by the target
ovule. They include posttranscriptional regulation (in-
cluding mass transcript storage) and posttranslational
modifications such as phosphorylation to modulate protein
function, intracellular metabolic signalling, ionic gradients
such as Ca’" and H" ions, cell wall synthesis, protein
secretion and intercellular signalling with the female
reproductive tissues. Mechanisms regulating many of the
above mentioned processes are being unravelled (re-
viewed by Dresselhaus and Franklin-Tong 2013). Current
efforts have seen a big leap in the understanding of pollen
tube guidance and ovular attraction with potential in
understanding interspecies hybridization barriers (re-
viewed by Higashiyama 2015). Future challenges include
the identification of other pollen tube guidance factors
secreted from the female reproductive tissues, particularly
those involved in ovular guidance. Equally critical, male
factors involved in perceiving female guidance signals,
including secreted receptors and ligands, will pave the
way to better understanding of cell-cell communication
between male and female gametophytes during pollen
tube guidance and fertilization. Innovative techniques

including microfluidic devices and live cell imaging will
spearhead the discovery of molecules critical for fertil-
ization, understanding pollen tube response towards
female attraction signals as well as establish the range of
activities through which female and male signalling
molecules can be perceived by their target cell. Not to be
underestimated, transcriptional approaches still offer a
powerful tool to isolate such molecules and aid in the
breakthroughs to understand mechanisms governing
gametogenesis, fertilization and seed set.
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sekretomickych dat.
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Abstract

Background: As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant
sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards
ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly
from the male perspective.

Results: We performed genome-wide quantitative liquid chromatography—tandem mass spectrometry analysis of a
pistil-stimulated pollen tube secretome and identified 801 pollen tube-secreted proteins. Interestingly, in silico
analysis reveals that the pollen tube secretome is dominated by proteins that are secreted unconventionally,
representing 57 % of the total secretome. In support, we show that an unconventionally secreted protein,
translationally controlled tumor protein, is secreted to the apoplast. Remarkably, we discovered that this protein
could be secreted by infiltrating through the initial phases of the conventional secretory pathway and could
reach the apoplast via exosomes, as demonstrated by co-localization with Oleisin1 exosome marker. We demonstrate
that translationally controlled tumor protein-knockdown Arabidopsis thaliana plants produce pollen tubes that navigate
poorly to the target ovule and that the mutant allele is poorly transmitted through the male. Further, we show that
regulators of the endoplasmic reticulum-trans-Golgi network protein secretory pathway control secretion of
Nicotiana tabacum Pollen tube-secreted cysteine-rich protein 2 and Lorelei-like GPl-anchor protein 3 and that a
regulator of endoplasmic reticulum-trans-Golgi protein translocation is essential for pollen tube growth, pollen
tube guidance and ovule-targeting competence.

Conclusions: This work, the first study on the pollen tube secretome, identifies novel genome-wide pollen
tube-secreted proteins with potential functions in pollen tube guidance towards ovules for sexual
reproduction. Functional analysis highlights a potential mechanism for unconventional secretion of pollen tube
proteins and reveals likely regulators of conventional pollen tube protein secretion. The association of pollen
tube-secreted proteins with marker proteins shown to be secreted via exosomes in other species suggests
exosome secretion is a possible mechanism for cell-cell communication between the pollen tube and female
reproductive cells.
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Background

The cell apoplast and the extracellular matrix provide a
hub for cell-cell communication in plants. These inter-
spaces relay secreted peptide-mediated signals to neigh-
boring cells. In flowering plant reproduction, the pollen
tubes carrying two non-motile sperm cells (male gam-
etes) grow through the extracellular matrix of the
transmitting tract tissues (TT) with the aid of female
guidance signals to reach and fertilize deeply embedded
female gametes [1, 2]. This molecular dialog between
the pollen tube and pollen tube attractants has emerged
as an important bottleneck for unfavorable fertilization
and a pre-zygotic barrier for interspecies hybridization;
however, its mechanism has so far remained unknown.
Studies using single-cell laser ablation and genetic tech-
niques have identified various female secreted peptides in-
volved in pollen—pistil interactions with conserved roles
across plant species [3—5]. Predominantly, they are arabino-
galactan proteins, cysteine-rich polypeptides, defensin-like
(DEFL) proteins, S-RNases, hydroxyproline-rich proteins,
transmitting tissue-specific (TTS) proteins, class III pistil
extensin-like proteins (PELPIII) and lipid transfer proteins
(LTPs) [6-8]. Recently, CENTRAL CELL GUIDANCE
(CCQ) protein together with its interacting partners, CCG
BINDING PROTEIN1 (CBP1), mediator complex (MED),
and central cell-specific AGAMOUS-transcription factors,
was shown to co-regulate a subset of cysteine-rich proteins
(CRPs), including pollen tube attractant LURE], that medi-
ate pollen tube attraction [9].

A handful of proteins are known to be secreted by
the male gametophyte. They include LAT52, a pollen
tube-secreted ligand from tomato [10, 11]; lipid transfer
protein 5 (LTP5), a homolog of Lily SCA protein [9];
thionin [12]; and HAP2 as a sperm-specific factor re-
quired for gamete fusion and blocking polytubey [13].

The discovery of pollen tube-secreted proteins that
perceive female-secreted signals has been hampered by
the inaccessibility of the pollen tubes within pistils and
the likelihood of contamination from surrounding
female tissues. We have therefore improvised a semi-in
vivo technique (SIV) for tobacco pollen tube growth
through the pistil to allow capture and detection of
proteins secreted by the pollen tube following its pene-
tration through the stigma and style [14]. In contrast to
in vitro grown pollen tubes, SIV pollen tubes have been
shown to have unique transcriptomes [15] as well as
the ability to respond to synthetic pollen tube attractant
peptides (LUREs) secreted by female synergid cells of
Torenia fournieri [3, 16]. These findings emphasize the
necessity for research into pollen tube-pistil inter-
action, specifically on the mechanisms of protein secre-
tion and the identity of secreted factors that render
pollen tubes competent for ovule-targeting, pollen tube
reception, and fertilization. We used a high-throughput
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gel-free and label-free workflow utilizing nanoscale li-
quid chromatography (LC) and tandem mass spectrom-
etry (MS/MS) to identify proteins of the Nicotiana
tabacum semi-in vivo pollen tube secretome (SIV-PS).
We observed an unprecedented bias towards uncon-
ventional protein secretion by the pollen tube. This
type of secretion could be partly mediated by secreted
nanovesicles (exosomes), suggesting for the first time a
possible mechanism for long distance signaling by the
pollen tube. Further, our results revealed a critical role
for the endoplasmic reticulum (ER)-trans-Golgi net-
work (TGN)-plasma membrane secretory components
YIP4a,b and ECHIDNA on protein secretion, pollen
tube growth, and competence of pollen tube targeting
to the ovule, as well as fertilization. We show that this
pathway can be hijacked by unconventionally secreted
pollen tube proteins such as Translationally controlled
tumor protein (TCTP), which could eventually be secreted
to the extracellular matrix via exosomes and play a critical
role in pollen tube—pistil signaling, fertilization, and seed
production.

Results

A SIV method for high-throughput detection of pollen
tube-secreted proteins following penetration through

the pistil

Previously, we optimized a technique for tobacco pollen
tube growth through the female stylar explant to detect
pollen tube-secreted proteins following penetration
through the female reproductive tissues. We termed
this technique the semi-in vivo pollen tube-secretome
(SIV-PS) assay [14]. In this study, we have coupled the
SIV-PS assay with a gel-free and label-free semi-
quantitative LC-MS/MS workflow to detect and quan-
tify pollen tube-secreted proteins using minimum
quantities of 2 pg of the pollen tube total secretome
(Additional file 1: Figure S1). Our gel- and label-free
strategy maximized detection of naturally low-abundant
small secreted proteins by more than four orders of mag-
nitude (relative to in-gel protein detection) and enabled us
to detect proteins at concentrations as low as 0.45 parts
per million (ppm), demonstrating the feasibility of the
SIV-PS technique coupled with gel-free LC-MS/MS.
Using the SIV-PS method, we have observed remark-
able reproducibility with regard to pollen tube physi-
ology, including growth, viability and intactness,
cytoplasmic streaming, uniform tip morphology, callose
wall and callose plug formation, and sperm cell produc-
tion (Additional file 1: Figure S1). To test the purity of
the secretome samples, we used alcohol dehydrogenase
(ADH) as the most abundant cytosolic protein and
performed an ADH assay to estimate cytosolic contamin-
ation (Additional file 1: Figure S1 and Additional file 2:
Figure S2). Our results show that SIV-PS samples are pure
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with minimal cytosolic contamination relative to whole
protein extracts from pollen tubes (15-fold less ADH ac-
tivity in SIV-PS samples relative to control). The SIV-PS
modifications maximized the identification of pistil-
dependent pollen tube-secreted proteins induced following
crosstalk with the female reproductive tissues compared
with those secreted by in vitro germinated pollen tubes.

Quantification of pollen tube-secreted proteins

To detect pollen tube-secreted proteins, we used label-
free LC-MS/MS on two control samples (excised,
unpollinated pistils, C1 and C2), four SIV-PS samples
(SIV-PS1-4), four in vitro germinated pollen tube
secretome samples after 24 h growth (PT24-PS1-4),
four semi-in vivo whole proteome (SIV-PP1-4) samples,
and four in vitro germinated pollen tube whole prote-
ome samples (PT24-PP1-4). We used the Top3 label-
free algorithm [17, 18] to determine approximate rela-
tive and absolute protein abundances from LC-MS/MS
data, which allowed categorization of true secreted pro-
teins over false positives for the SIV-PS samples as well
as comparison of secretion dynamics across sample
replicates and sample types. We identified an average of
1003 (2916 protein accessions) and 339 (1173 protein
accessions) protein groups in individual SIV-PS and
control samples, respectively. Protein relative quantifi-
cation using the Top3 algorithm (up-regulated three-
fold or more and up-regulated in at least two SIV-PS
samples and at the same time identified using three or
more peptides) showed an average of 341 protein
groups (801 protein accessions) to be likely pollen
tube-secreted proteins following penetration through
stigma and style (Additional file 3: Table S1). Our re-
sults show that quantitative LC-MS/MS can distinguish
between secreted proteins and false negatives, particu-
larly in cases where the same protein accessions were
also detected in control unpollinated pistils. We pro-
vide three examples to demonstrate the resolution of
our quantitative data with regard to determining true
protein secretion (Additional file 4: Figure S3).

Raw peptide counts revealed that protein identifica-
tion was predominantly based on two to ten peptides
(65 %), followed by singletons (20 %) and those with
more than ten total peptide counts (15 %) (Fig. la).
Comparison of pollen tube secretome replicates based
on absolute quantification of protein abundances in
parts per million (see “Methods”) revealed that pollen
tube protein secretion is consistent but also relatively
dynamic, as observed from limited overlap of protein
accessions between SIV-PS sample replicates (Fig. 1b).
Protein size distribution showed a high frequency of se-
creted proteins of <20 kDa (Fig. 1c and Additional file 5:
Table S2). Classification of protein families and domains
highlighted glycoside-hydrolase family 16, proteinase

Page 3 of 29

inhibitor II, Cu-oxidase, LRR 1/4/6/8, and fasciclin as
among the most overrepresented conventionally se-
creted proteins (Fig. 1d and Additional file 6: Table S3).
In the unconventionally secreted protein group, his-
tone, RNA-binding (RRM_1), HSP70, and proteasome
families were the most frequent activities (Fig. 1d and
Additional file 6: Table S3). Using the Top3 algorithm,
the absolute abundance of pollen tube-secreted pro-
teins was comparable regardless of the pathway of se-
cretion utilized (Fig. le). Mapping of the identified
pollen tube-secreted proteins to a tobacco microarray
[19, 20] revealed a significant enrichment in gameto-
phytic expression and, in some instances, specificity to
the gametophyte (Fig. 1f). We conclude that: (1) the
sensitivity of the gel-free sample preparation coupled
with label-free LC-MS/MS analysis readily allowed
quantitative evaluation and determination of pollen
tube-secreted protein abundances; and (2) the pollen
tube secretome is dominated by small secreted proteins
with elevated hydrolase activities.

The secretome of pollen tubes grown through the pistil is
unique from that of in vitro cultured pollen tubes

To establish the unique physiology of the SIV pollen
tube secretome following growth through the pistil, we
compared it (SIV-PS) and the SIV proteome (SIV-PP)
with the 24 h in vitro pollen tube secretome (PT24-PS)
and its proteome (PT24-PP). Three-dimensional princi-
pal component analysis distinctively separated the sam-
ples into two groups, “secretome” and “proteome”, and
spatially sub-grouped them further into “semi in vivo”
and “in vitro” (Fig. 2a). These results clearly demonstrate
that the pollen tube secretome is distinct from its prote-
ome and that the SIV-PS is unique compared with
PT24-PS. Comparison of protein supergroups (see mate-
rials and methods) from each sample type further em-
phasized the limited overlap between SIV and in vitro
sample types (Fig. 2b). Pairwise comparison between the
SIV-PS and PT24-PS using protein supergroups that
constitute only accessions identified with three or more
peptides and present in at least one replicate identified
414 protein supergroups that are unique to the SIV-PS
(Fig. 2¢, Additional file 7: Table S4). We observed only
36.3 % (586 protein groups) overlap between the SIV-PS
and PT24-PS (Fig. 2c). Gene Ontology (GO) analysis re-
vealed that the most overrepresented GO categories in the
SIV-PS included ATP binding, defense response, and cel-
lulase activities (Fig. 2c), all of which have been previ-
ously implicated in pollen tube growth and fertilization
[4, 6]. The unique set of SIV-PS proteins secreted by
pollen tubes grown through the pistil (Additional file 7:
Table S4) represent some of the potential factors respon-
sible for pollen tube guidance and ovule-targeting compe-
tence. They are candidates for further understanding how
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the pollen tube communicates with and is guided through
the female reproductive tissues to achieve successful
double fertilization.

Quantitative analysis of protein groups revealed
that, despite the pollen tube secretome being domi-
nated by unconventionally secreted proteins, both
conventionally and unconventionally secreted proteins
were secreted at comparable abundances (Fig. 1f). To
establish whether the presence of a large number of
unconventionally secreted proteins in the SIV-PS is a
result of regulated secretion or is a consequence of a
non-selective extrusion of cytoplasmic proteins due to
extremely dynamic exocytosis and endocytosis in
pollen tubes, a phenomena observed in tip growing
cell types (Additional file 2: Figure S2) [21, 22], we
compared the SIV-PS and PT24-PS samples with their
respective total proteomes. Our results showed a lim-
ited overlap (16.7 % and 18.6 %, respectively) between
the secretome and total proteome, suggesting that the
observed dominant unconventional protein secretion

of the SIV-PS is a result of a regulated process and
not a consequence of extreme exocytosis and endo-
cytosis (Fig. 2b, c).

More interestingly, the pollen tube proteomes from
SIV and in vitro grown pollen tubes showed a much big-
ger overlap (67.6 %) than their respective secretomes
(Fig. 2¢). These results suggest that distinct pistil factors
(for instance, the female-secreted pollen tube guidance
signals) might affect the pollen tube secretome inde-
pendently of other pistil factors that influence the SIV
pollen tube proteome or transcriptome.

Correlation of the tobacco SIV-PS with the Arabidopsis SIV
transcriptome

To understand tobacco pollen tube secretion dynamics,
we studied the correlation between the tobacco SIV-PS
and transcript profiles from Arabidopsis SIV microarray
data [15]. Mapping of a subset of the tobacco pollen
tube-secreted proteins (only those identified in the Uni-
Prot database) to close homologs from the Arabidopsis
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SIV pollen tube transcriptome revealed an astonishing
90.65 % (681/739) overlap, of which 372 genes (50.34 %)
showed reliable expression in all three microarray repli-
cates (Additional file 8: Table S5). These results suggest
that the 681 genes expressed in Arabidopsis SIV pollen
tubes are also detected in the tobacco SIV-PS. The near-
complete overlap between the two datasets also suggests
that the physiological response of pollen tubes following
growth through the stigma and style is strongly conserved
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at the transcriptome level as well as at the secretome level
in both plant species.

When we compared transcript profiles with the corre-
sponding secreted protein abundances, we found that, for
the bulk of the dataset, the pollen tube protein secretion
was uncoupled from gene expression profiles (Fig. 3). The
relative abundances of secreted proteins showed no linear
correlations with the transcript levels, although we did ob-
serve moderate positive (R1 =0.375, p =0.013; R2 = 0.486,
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p =0.00001) and negative (R1 =-0.239, p =0.102; R2 =
-0.364, p =0.132) correlations based on Pearson cor-
relation coefficient scores (Fig. 3a, b). These data suggest
that the pollen tube secretome is a specialized subset of
the male gametophyte signaling repertoire and cannot be
predicted from transcriptional profiling alone.

Moreover, two previous studies by Leydon et al. [12]
and Liang et al. [23] have shown that simultaneous
knockdown of pollen-expressed MYB transcription fac-
tors (MYB97, MYBI01, and MYBI120) in SIV pollen
tubes led to the down-regulation of target genes, some
of which were essential for pollen tube guidance, recep-
tion, and fertility [12, 23]. Comparison of these MYB97/
101/120 targets, 48 genes from Leydon et al. and 25
genes from Liang et al., with the tobacco SIV-PS identified
overlaps of 3/48 (6 %) and 6/25 (24 %), respectively
(Fig. 3¢). These overlapping proteins include galactokinase
2 (ATGALK?2), cellulase 3 (CEL3) with hydrolase activity,
and myo-inositol-1-phosphate synthase 2 (MIPS) from the
Leydon et al. study and CC (carboxylate clamp)-TPR
(tetratricopeptide repeat) protein (AT5G48570), similar
to endo-xyloglucan transferase (AT4G30270), histone
H2A protein (AT1G51060), HSP70B (HEAT SHOCK
PROTEIN 70B; AT1G16030), HSP20-like chaperones
superfamily protein (AT1G07400) and HSP70 (DG4;
AT3G12580) from the Liang et al. study. The minimum
overlap observed between the tobacco SIV-PS and poten-
tial downstream targets of MYB97/101/120 transcription
factors could be due to tobacco genes encoding pollen
tube-secreted proteins not being predominant targets of
the MYB97;MYBI101;MYB120 transcription unit. This im-
plies possible activities of multiple transcriptional path-
ways are involved in coordinating pollen tube-secreted
protein transcriptional activation in tobacco. It is also pos-
sible that MYB97/101/120 transcriptional regulation of
pollen tube-secreted proteins could be species-specific.
The lack of positive correlation between secreted protein
abundance and their corresponding transcripts could
imply that transcriptional activation and protein secretion
are regulated independently, which might influence pro-
tein/transcript detection and hence lack of correlation.

Further, a comparison with the protein families of the
MYB97/101/120 downstream target genes classified as po-
tentially secreted proteins [12] identified that three-quarters
of them were in common with the tobacco SIV-PS. These
include alpha carbonic anhydrase (in tobacco we identified
beta carbonic anhydrase, Nt_000566), thionin (in tobacco
cysteine-rich family proteins Nt 017951, Q9SDN7-NtPs
CRP2 (characterized in this study), Nt_013502) and GDSL-
motif lipase/hydrolase (in tobacco we also identified GDSL-
motif lipase/hydrolases Nt_021542, Nt_066702, Nt_015437,
and Nt 001237). We did not detect a self-incompatibility
(SI)-related protein identified in Arabidopsis but instead
we identified two highly abundant secreted RNases
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(discussed in section "SP-containing proteins secreted fol-
lowing pollen tube— pistil interaction) that are also involved
in self-incompatibility during pollen tube growth through
the pistil. The identification of these common protein fam-
ilies between the tobacco pollen tube secretome and the
downstream targets of Arabidopsis MYB97/101/120 in
SIV pollen tubes suggests that pollen tube perception of
female guidance signals, recognition of pollen tube arrival
by the female, and the ability of pollen tubes to respond to
these signals is likely conserved in both species.

In silico classification of pollen tube-secreted proteins

and their post-translational modifications

Conventionally secreted proteins contain a short N-
terminal signal peptide (SP) [24] and are secreted
through the ER-Golgi—TGN pathway. In silico analysis
using the SignalP-TM prediction database [25] of protein
groups with three or more peptides and up-regulated by
threefold or more relative to the median of the two con-
trol samples, revealed that 15.69 % of the pollen tube-
secreted proteins possessed an N-terminal SP (Add-
itional file 9: Figure S4a). Analysis using the SecretomeP
server [26] further supported that >85 % of the SIV
secretome likely constitutes true secreted proteins (Add-
itional file 9: Figure S4a). To rule out their possible re-
tention on the ER membrane system, we manually
scanned for the presence of ER-retention motifs (HDEL/
KDEL) using ProSite scan [27]. None of the accessions
were found to possess likely functional HDEL/KDEL
core motifs, signifying their secretion towards the
plasma membrane and the extracellular matrix. Analysis
of the remaining non-SP-containing proteins intriguingly
highlighted >57.18 % as potential unconventionally se-
creted pollen tube proteins (Additional file 9: Figure
S4a) [28]. This high proportion of unconventionally se-
creted proteins suggests that the unconventional protein
secretion pathways could be the predominant mechan-
ism for pollen tube protein secretion.

Next, we assessed the possibility of post-translational
modifications of the identified secreted proteins. ER—
Golgi—-TGN-secreted proteins are known to commonly
undergo post-translational N-linked glycosylation within
the tripeptide Asp-Xaa-Ser/Thr sequon [29]. Using the
NetNGlyc v1.0 [29] and GPP [30] databases, we revealed
that 81.33 % of the conventionally secreted proteins and,
unexpectedly, 41.30 % of the unconventionally secreted
proteins were predicted to be N-glycosylated (Additional
file 9: Figure S4a). We confirmed glycosylation of pollen
tube secreted proteins by concavalin A glycoprotein
staining, which demonstrated that a subset of the pollen
tube secretome underwent N-glycosylation (Additional
file 9: Figure S4e).

We then investigated post-translational palmitoylation
of the pollen tube-secreted proteins. Palmitoylation is the
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covalent attachment of palmitic acid, most frequently at a
cysteine residue, to enhance protein hydrophobicity and
affinity for the plasma membrane. Interestingly, 71.76 % of
conventionally and 40.12 % of unconventionally se-
creted proteins were predicted to be palmitoylated
(Additional file 9: Figure S4a). Additionally, 14.75 % of
the conventionally secreted proteins were predicted to
be post-translationally modified at the C-terminal w-site
for glycophosphatidylinositol (GPI)-anchoring (Additional
file 9: Figure S4b). Surprisingly, the majority (61 %) of the
predicted GPI-anchored proteins (GAPs) were also pre-
dicted to undergo palmitoylation. One possible explan-
ation for this unexpected observation is that a subset of
proteins destined to the plasma membrane but lack trans-
membrane helices (TMHs) could be palmitoylated to en-
hance their affinity for the lateral plasma membrane and
thereafter anchored to the plasma membrane potentially
with the GPI motif. We therefore investigated whether
pollen tube-secreted proteins possess class I or class II
TMHs. Using TMHMM v2.0 algorithms, our analysis re-
vealed no reliable prediction for the presence of TMHs in
both conventionally (average of 11.03 amino acids in
TMHs) and unconventionally secreted proteins (average
of 1.23 amino acids in TMHs) (Additional file 10: Figure
S5a). In comparison, TMH prediction with known pollen
tube plasma membrane signaling proteins (ACA9, PRK2,
PRK4, ANX1, and ANX2) revealed an average score of
70.49, verifying confidence in the algorithms used for pre-
diction of TMHs (Additional file 10: Figure S5a). A similar
test with LIP1/2 (Loss in pollen tube guidance 1/2 recep-
tor kinases) [31], which localizes to the pollen tube plasma
membrane only through palmitoylation, showed an aver-
age score of zero (Additional file 10: Figure S5a). We con-
cluded that pollen tube-secreted proteins are less likely to
posses TMHs; instead, putative pollen tube receptor pro-
teins could function through transient anchors on the
plasma membrane following post-translational modifica-
tion and secretion.

Subcellular localization of pollen tube-secreted proteins

We used LocTree2 prediction algorithms with a pre-
computed kernel matrix in support vector machine
learning (SVM) and implemented tree-like hierarchy
subcellular protein sorting to assess the subcellular
localization of the pollen tube-secreted proteins [32].
Approximately 68.5 % of SP-containing proteins were
classified as secreted and a further 16.5 % as localizing
in secretory compartments, including the ER lumen,
Golgi apparatus, vacuole, and plasma membrane, ac-
counting for a total of 85 % as secreted with a reliability
index score of 60.1 (Additional file 9: Figure S4c). Intri-
guingly, LocTree2 predicted 13.7 % of the unconvention-
ally secreted proteins as secreted and an additional 7.1 %
that were destined to be in or transported through
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secretory compartments (Additional file 9: Figure S4c).
The majority of the unconventionally secreted proteins
(>42.9 %) were predicted to localize to the cytoplasm
(Additional file 9: Figure S4). However, the term “cyto-
plasm” was secondarily associated with GO terms
secretory granules, extracellular space, Golgi intermedi-
ate, membrane bound vesicles, mitochondrion, nucleus,
and protein complexes, among others. Independent ana-
lysis using TargetP1.1 [33] showed that over 94 % of the
SP-containing proteins were predicted as secreted (p >
0.95; Additional file 10: Figure S5b). Only 6.5 % of
unconventionally secreted proteins were classified as se-
creted. Nonetheless, 58.5 % of the unconventionally se-
creted proteins were classified as “ambiguous localization”
(Additional file 10: Figure S5b). The “ambiguous” domain
is derived from the lack of significant differences between
the specificity scores for different subcellular compart-
ments [33]. Therefore, our observation suggests that the
identified unconventionally secreted proteins are less
likely to be truly retained cytosolic proteins; instead, they
could utilize as yet unknown features for their secretion.

Analysis of enriched GO terms associated with the
predicted subcellular localization revealed predominant
protein secretion by the pollen tube to the extracellular
space and less frequently protein retention in secretory
pathways, the ER, and vacuoles (Additional file 10: Fig-
ure S5c). These results support our earlier observations
that the identified secreted proteins lack ER-retention
signals and transmembrane domains (Additional file 10:
Figure S5a).

GO-slim term enrichment analysis revealed the terms
signaling, post-translational protein modification, re-
sponse to stimulus, small molecule metabolic process,
GTPase activity, calcium and copper ion binding, endo-
peptidase activity, hydrolase and redox activities, as well
as intracellular membrane transport to be enriched in the
pollen tube secretome (Additional file 11: Figure S6a).
Interestingly, the categories “proteins anchored to mem-
brane” and “serine-type endopeptidase inhibitor activity”
were the most enriched in conventionally secreted pro-
teins, whereas defense response, L-ascorbate peroxidase
activity, cell redox homeostasis, and calcium ion binding
were the most enriched terms of the unconventionally se-
creted protein subgroup. A full list of pollen tube secre-
tome enriched GO terms is presented in Additional file 8:
Table S5.

Identification of predicted palmitoylated and
GPl-anchored secreted proteins as potential pollen tube
transient receptors

We searched our pollen tube secretome for putative
pollen tube-secreted receptors. Since secreted proteins
should not possess transmembrane helices, we searched
for secreted proteins predicted to be palmitoylated and
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those with a plasma membrane GPI anchor and w-site
with a cutoff false discovery rate (FDR) of 0.1 %; 14.75 %
were predicted to be bona fide GAPs (Additional file 9:
Figure S4b). Among the reliably predicted secreted GAPs
were LORELEI-like GPI anchored protein 3 (LLG3,
97 ppm), lipid transfer protein (18 kDa LTP, Nt_005942,
4590 ppm), a 24 kDa unknown protein (Nt 002352,
24 ppm), 19 kDa nsGRP-2 (Nt_058890, 198 ppm), 29 kDa
plasmodesmata callose-binding protein 3 (29 kDa
PDCB3, Nt_004725, 258 ppm), 26 kDa glycosyl hydro-
lase family 17 protein (Nt_031990, 954 ppm), glycosyl
phosphatidylinositol-anchored lipid protein transfer 1
(LTPG1, Nt_003387-2, 397 ppm) and 20 kDa NtEPc-
like protein (Nt_051987, 578 ppm). Notably, NtEPa—c
were previously purified as markers for the embryo-
genic dedifferentiation of immature tobacco pollen
grains cultivated in vitro [34].

Intriguingly, we observed that 61.7 % of the predicted
GAPs were also predicted to be palmitoylated. The pal-
mitoylation could increase affinity for the plasma mem-
brane and the GPI modification is likely to mediate
anchoring to the outer face of the plasma membrane.
We cautiously propose that some of these predicted pal-
mitoylated GAPs are potential pollen tube transient re-
ceptors that could facilitate signal perception by binding
ligands secreted by female reproductive tissues.

Pollen tube-secreted kinases and cysteine-rich proteins as
putative carbohydrate modifiers and signal transducers
We searched for kinases among the pollen tube-
secreted proteins as putative modifiers of carbohydrates
in the extracellular matrix. Modified carbohydrates
could function as ligands for some protein receptors.
The most abundant kinases identified were phospho-
glycerate kinases, hexokinases, fructokinases, adenylate
kinases, and pyruvate kinases. Three phosphoglycerate
kinases, Q42962 (2354 ppm), Nt_011032 (2130 ppm)
and Nt_008716 (1948 ppm) containing the phosphoglyc-
erate kinase domain at the C-terminus were predicted to
be secreted through the unconventional secretion path-
way. Other kinases included a PfkB-type carbohydrate
kinase family protein (Nt_054946, 498 ppm), UMP-CMP
cytidylate kinase (PYR6; Nt_001852; 497 ppm), SHV3-like
4 glycerolphosphodiester kinase (Nt_053416, 162 ppm)
and adenosine kinase (Nt_046116, 24 ppm). The PfkB kin-
ase contains the PfkB domain and ribokinase domain
whereas PYR6 contains a P-loop NTPase domain and
cytidylate kinase domain.

Cysteine-rich proteins (CRPs) have also been discovered
to function as ligands during signal transduction. Some of
the CRPs detected in SIV-PS samples included OTU-like
cysteine protease family protein (Nt_006421, 104 ppm),
cysteine-rich proteins (Nt_017951, 396 ppm and
Nt_013502, 57 ppm), NRCL4 (Nt_029302, 76 ppm), and a
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cysteine proteinase inhibitor (Nt 051779, 97 ppm). The
full list is searchable in Additional file 3: Table S1.

SP-containing proteins secreted following pollen
tube-pistil interaction

Approximately 16 % of the pollen tube secretome is
comprised of SP-containing proteins (Additional file 9:
Figure S4a). These include two highly abundant RNases
belonging to the RNase T2 family. The T2 family S-
RNases are female determinants of self-incompatibility in
the Solanaceae, Rosaceae, and Scrophulariaceae, whereas
S-locus F-box (SLF)/S-haplotype-specific F-box proteins
are male determinants of self-incompatibility within these
families [35]. Pollen tube-secreted RNase NE (Q40382,
234 ppm) and RNasel (QIMB71, 317 ppm) were both
detected in both pollinated and unpollinated pistils but
convincingly absent in SIV pollen tube total proteomes.
More interestingly, both RNases were not present in the
in vitro pollen tube secretome or total pollen tube pro-
teomes (Additional file 3: Table S1 and Additional file 7:
Table S4). NtRNasel shares 99.53 % identity with Nicoti-
ana tomentosiformis extracellular ribonuclease LE-like
(XM_009627901.1) and RNase NE shares 83.5 % identity
with Solanum lycopersicum extracellular ribonuclease LE
of the T2 family. Moreover, NtRNasel and RNase EN
show 62.3 % similarity with PD1, an S-like ribonuclease
from Prunus dulcis (Additional file 12: Figure S7a). To
establish the origin of the detected pollen tube-secreted
RNases, we performed semi-quantitative RT-PCR analysis
and observed that both NtRNasel and RNase EN were
specifically expressed in unpollinated and pollinated stig-
mas and style of N. tabacum (14 h post-pollination) but
absent in in vitro grown pollen tubes 24 h after germin-
ation (Additional file 12: Figure S7b). Since N. tabacum is
a self-compatible species, our results indicate that pollen
tubes grown through the pistil uptake secreted RNases
[36, 37] from transmitting tract extracellular matrix and
secrete them out in cases of matching S-allele haplotypes,
supporting the inhibitory model of self-compatibility/in-
compatibility [36, 37].

Another conventionally secreted protein identified was
11.7 kDa tobacco cysteine-rich defensin-like protein,
here annotated as N. tabacum Pollen tube-secreted cyst-
eine rich protein 1 (NtPsCRP1). NtPsCRP1 belongs to
the subgroup of the DEFL family with CSaf and y-core
motifs, similar to TfCRP1 (LURE1), TfCRP2, and TfCRP3
(LURE 2) identified in T. fournieri [3]. NtPsCRP1 is
closely related to TfCRP1 and TfCRP3, with eight
conserved cysteine residues and an N-terminal signal
peptide (Additional file 12: Figure S7c, d). Moreover,
NtPsCRP1 was only detected in the SIV-PS samples
and not in unpollinated pistil controls. Further,
NtPsCRP1 expression is enriched in SIV pollen tubes
but also occurs in unfertilized ovules as verified by
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semi-quantitative RT-PCR analysis (Fig. 1g). We also de-
tected secretion of another CRP of 8.3 kDa (Q9SDN?7,
295 ppm) that possessed six conserved cysteine residues
in its mature form and was specifically secreted in pol-
linated pistils. It belongs to the pollen allergen Ole-e-6
superfamily and has 98.6 % homology to NtP-CysR, a
N. tabacum pollen CRP corresponding to a 63 amino
acid secreted protein precursor enriched in olive pollen
[38]. We annotated this protein as N. tabacum Pollen
tube-secreted cysteine rich protein 2 (NtPsCRP2).
Semi-quantitative RT-PCR analysis revealed a slightly
higher expression of NtPsCRP2 in pollen tubes relative
to unfertilized ovules (Fig. 1g).

Other conventionally secreted proteins detected were
enzymes involved in carbohydrate metabolism predicted
to be involved in cell wall modification. These include
beta-expansin-like protein (Nt_065866 422 ppm), pectin-
esterase (K4AAWN9, 1084 ppm), and P18 with putative
pectinesterase activity (065849, 1769 ppm). Detected cell
wall proteoglycans, arabinogalactan proteins (AGPs), in-
cluded fasciclin-like arabinogalactan protein 14 (FLA14;
Nt_005615; 3478 ppm), FLA3 (Nt 016813, 3115 ppm),
FLA2 (Nt_002342, 116 ppm), FLA8 (Nt_002342, 257 ppm),
and UDP-arabinopyranose mutase 2-like (UPIO0032A5
7BC, 590 ppm) as unconventionally secreted proteins.
Several extensin-like proteins were also identified, in-
cluding pollen-specific leucine-repeats extensin-like
protein (UPI0002339BC6, 155 ppm) and 120 kDa pistil-
extensin-like proteins (PELP, Q49134, 115 ppm). Pistils-
extensin-like proteins were classified as major components
of the transmitting tract extracellular matrix [39, 40].
PELPIII was recently demonstrated to be essential for
interspecific incompatibility in N. tabacum by inhibit-
ing interspecific pollen tube growth [41], whereas Pex1
was identified as a pollen-specific extensin in Zea mays
that is secreted and glycosylated [42] and functions as a
male factor in pollen tube growth through the transmit-
ting tract [43].

Conventionally secreted proteins predicted to function
in pollen tube guidance and directional growth were also
detected, in particular members of the plant lipid trans-
fer protein (LTP) family. These include non-specific
lipid-transfer proteins NtLTP1 (Q42952, 660 ppm),
NtLTP3 (F2ZAMO, 142 ppm), and NtLTP5 (Q6E0U9,
142 ppm) (Additional file 3: Table S1). Plant LTPs and
LTP-like proteins were implicated in diverse extracellular
functions, including anti-fungal and anti-microbial activ-
ities, cuticular wax deposition, and cell wall loosening
[44]. We have also detected lipid-binding proteins such
as the annexin calcium-dependent phospholipid binding
protein AN2 (Nt_004158, 134 ppm). Other novel con-
ventionally secreted proteins with potential roles as
pollen tube-guidance proteins included luminal binding
protein 5 (Q03685, 525 ppm), peptidyl-prolyl cis-trans
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isomerase (B2BF99, 227 ppm), endoplasmic reticulum
HSC70-cognate binding protein (685 ppm), proteinase
inhibitor (Q84L56, 58 ppm), and tobacco NTS1 protein
(Q9FV64, 1405 ppm).

The LAT52-PRK2/PRK4 receptor kinase module could
function late in pollen tube signal perception

We detected secretion of the CRP LAT52 (Nt_005952;
21394 ppm; a representative accession) from the Ole e I
family in SIV-PS samples 48 h post-pollination and
LbLAT52-like small protein (H6VN37, 88 ppm) from
Lycium barbarum (91 % identity) in the unpollinated pistil
control (Additional file 3: Table S1 and Additional file 13:
Figure S8e—g). The detection of LHLAT52-like small pro-
tein in unpollinated pistils is likely due to peptide homology
(detected as a single unique peptide that shared homology
with LAT52 from S. lycopersicum) rather than true secre-
tion from the pistil tissues. The interaction of LAT52 with
its plasma membrane receptor kinases, the PRK2 and
PRK4 ligand-receptor complex, is known as an essential
endocrine module that promotes pollen germination and
pollen tube growth [10]. LAT52 was detected in all four
replicates of both SIV and in vitro pollen tube secretomes
as well as in their respective total proteomes (Additional file
3: Table S1 and Additional file 7: Table S4). Contrarily,
PRK2 and PRK4 were not detected in any of the secretome
samples nor in the total proteome samples, verifying the
high purity of the secretome samples. Lack of their detec-
tion in the total proteomes is likely due to a generic proto-
col used for total protein extraction rather than a
membrane protein enrichment protocol. Analysis of their
expression using microarray data and by RT-PCR revealed
abundant expression of PRK2 and PRK4 receptor kinases
specifically in mature pollen grains, in vitro cultivated
pollen tubes after 4 h and 24 h, as well as SIV pollen tubes
of Arabidopsis and tobacco (Additional file 13: Figure
S8f,g). We could not detect expression of PRK2 or PRK4 in
unfertilized ovules of N. tabacum, implying conserved male
gametophyte-specific expression (Additional file 13: Figure
S8g); both genes were also not expressed in the sporophyte
(Additional file 13: Figure SS8EG). We propose that the de-
tection of pollen tube-secreted LAT52 ligands and expres-
sion of PRK2/4 receptors (Additional file 13: Figure S8h)
late during tobacco pollen tube growth suggests a likely
continuous function of the LAT52—-PRK2/4 complex mod-
ule, either to quench or to establish homeostasis with PRK-
RopGEF-promoted activities or to perform an as yet
unknown role in male—female signal perception.

Hindrance of the N-terminal SP impairs secretion of
pollen tube EIG-E80 protein to the apoplast of leaf
epidermal cells

To demonstrate utilization of the N-terminal SP motif
for the conventional secretion of pollen tube proteins in
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a heterologous system, we selected NtPsCRP2 and
elicitor-induced protein E80 (EIG-E80) to assess their
subcellular localization with a blocked N-terminal SP
(Fig. 4). Transient expression in tobacco leaf epidermal
cells revealed unambiguous secretion of NtPsCRP2 to
the proximity of the plasma membrane and EIG-E80 to
the apoplast (Fig. 4a, b, g, h). We verified their respect-
ive localizations by plasmolysis and co-expression of
viral apoplastic protein AVR2-mCherry (Fig. 4c—f, 1-o).
We then restructured the EIG-E80 protein conform-
ation by masking its N-terminal SP through C-terminal
green fluorescent protein (GFP) fusion (Fig. 4i). Protein
topology analysis predicted extracellular localization for
both conformations of the EIG-E80 protein (Fig. 4g, i).
Remarkably, the restructured GFP-EIG-E80 chimeric
protein failed to be secreted effectively to the apoplast,
instead predominantly accumulated into the nucleus
(Fig. 4j, k). These results demonstrate the significance
of the SP position in directing protein entry into the
secretory pathway. A weak signal was still observed in
the apoplast, suggesting partial secretion. The ectopic
expression of selected pollen tube-secreted proteins in
leaves of Nicotiana benthamiana was verified by west-
ern blot analysis (Fig. 4t). We concluded that these
identified proteins posses functional SP and are likely
to utilize the ER-TGN secretion pathway, providing in-
direct evidence for their secretion from the pollen tubes
during a crosstalk with the female reproductive tissues.

NtPsCRP2 is associated with dynamic Golgi-derived

vesicles in close proximity of the plasma membrane

The near-plasma membrane localization of NtPsCRP2-
GFP in leaf epidermal cells prompted us to investigate
the exact pathway for its secretion. We co-expressed
NtPsCRP2-GFP in leaf epidermal cells with an ER reten-
tion marker, HDEL-mCherry, under the CaMV 35S pro-
moter. NtPsCRP2-GFP distinctly decorated the ER
lumen and co-localized with the HDEL-mCherry, sup-
porting NtPsCRP2 ER localization (Fig. 5a, a-i). Add-
itionally, NtPsCRP2-GFP formed GFP foci that did not
co-localize with the ER retention marker (Fig. 5a a-ii, ).
When we co-expressed NtPsCRP2-GFP with an early
ER-Golgi marker, GmManl-mCherry derived from soy-
bean [45], a clear overlap of 77 % (n =340 confocal
slices) was observed, suggesting NtPsCRP2 is translo-
cated from the ER to the Golgi and TGN (Fig. 5b, b-i).
Furthermore, NtPsCRP2-GFP;GmManl-mCherry-asso-
ciated Golgi-derived vesicles showed stop-and-go, uni-
directional, non-zigzag, cycling movements along the
proximity of the plasma membrane (Fig. 5f). We ob-
served dynamic GmManl-labeled vesicles alone as well
as NtPsCRP2-GFP-loaded GmManl-mCherry vesicles
(Fig. 5f). Our observations suggest a common route for
NtPsCRP2 delivery via Golgi-derived vesicles to the
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plasma membrane and recycling of unloaded vesicles.
We have identified similar NtPsCRP2 stop-and-go cycling
movements in root epidermal cells of Arabidopsis thali-
ana (Additional file 14: Figure S9a, b, Additional file 15:
Movie S1, and Additional file 16: Movie S2). The ration-
ale for such NtPsCRP2-GFP;GmManl-mCherry vesicle
movements is still unclear, and whether actin and
microtubule dynamics are involved in implementing
such movements.

Unconventionally secreted proteins are the dominant
class of pollen tube-secreted proteins following pollen
tube-pistil interaction

In our SIV-PS, 57 % of the secreted proteins identified
were predicted to be unconventionally secreted proteins.
Secreted proteins without the canonical N-terminal SP
have been identified in animals and yeast but very few
have been reported in plants [28, 46, 47]. In Arabidopsis,
18 % of its total proteome is predicted to be secreted
and 40-70 % of the proteins identified in secretome
studies do not contain the N-terminal SP [48]. We iden-
tified unconventionally secreted pollen tube proteins
with sizes ranging between 5.4 and 138 kDa, with the
most predominant class being 20-50 kDa (50.2 %),
followed by proteins of <20 kDa (24 %) (Additional file
3: Table S1, Additional file 8: Table S5, and Additional
file 17: Table S6). In comparison, the size of convention-
ally secreted proteins ranged between 8.4 and 105 kDa
and were also predominately 20-50 kDa (40.1 %) and
those <20 kDa (9.1 %) (Additional file 3: Table S1, Add-
itional file 8: Table S5, and Additional file 17: Table S6).
Some selected unconventionally secreted pollen tube
proteins identified included glyceraldehyde 3-phosphate
dehydrogenase (H9U034, 312 ppm), dihydrolipoyl dehydro-
genase from S. lycopersicum (Q6QJL7, 2401 ppm), elicitor
inducible (EIG-124) tobacco gene (Q9FXS7, 235 ppm), ubi-
quitin fold-modifier (G7K8X5, 237 ppm), and pollen-
specific actin-depolymerizing factor 1 (Q8H2B7, 104 ppm);
for the complete list see Additional file 3: Table S1 and
Additional file 8: Table S5. Our observations imply that un-
conventional secretion might be a default or dominant
secretory pathway in growing pollen tubes. We hypothesize
that some of the major pathways for unconventional pro-
tein secretion (including soluble cytosolic proteins) in
pollen tubes is through multivesicular bodies and transloca-
tion into exosomes to reach the plasma membrane, apo-
plast, and the extracellular matrix.

Unconventionally secreted pollen tube protein TCTP
remarkably finds entry into the ER and Golgi and
co-localizes with the Ole1 exosome marker

The multiple pathways for unconventional protein secre-
tion have largely remained undefined. To demonstrate
unconventional protein secretion and define the pathway
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Fig. 4 Interference of the N-terminal signal peptide compromises apoplastic localization of the EIG-E80 pollen tube-secreted protein. Secretion of
pollen tube-secreted proteins to the proximity of the plasma membrane and the apoplast of tobacco leaf epidermal cells is signal peptide-dependent.
a, b Chimeric construct of pollen tube-secreted cysteine-rich polypeptide protein 2 (NtPsCRP2) and its predicted topology showing extracellular
localization. c—e Verification of NtPsCRP2 localization near the plasma membrane (PM) by plasmolysis of tobacco epidermal cells co-infiltrated
with apoplastic viral AVR2-mCherry. The arrow shows plasmolyzed regions with detached plasma membrane and apoplastic localized
PR1a-AVR2-mCherry. f Two-channel confocal laser scan profile during co-localization of NtPsCRP2 with apoplastic marker AVR2-mCherry
following plasmolysis. AU arbitrary units. g, h Chimeric construct of elicitor-induced protein E80 (EIG-E80) and its predicted topology showing
apoplastic/extracellular localization. i, j Reconstituted GFP:EIG-E80 chimeric construct with blocked signal peptide resulted in partial apoplastic
localization and predominant nuclear localization instead. k Subcellular quantification of the modified GFP:EIG-E80 expression. Error bars represent +
standard deviation. I-o Verification of EIG-E80:GFP apoplastic localization by plasmolysis with viral AVR2 apoplastic marker. Arrows indicate
plasmolysed regions. p Localization of the unconventionally secreted tobacco pollen tube protein Translationally controlled tumor protein
(TCTP) showing nucleoplasm, cytosol, and apoplastic localization. gq-s Verification of TCTP apoplastic localization. t Immunodetection verification of
ectopically expressed GFP chimeric pollen tube-secreted proteins with rat anti-GFP monoclonal antibodies in tobacco epidermal cells. Commassie
(G250 stain of total protein extract (left) and immunoblot (right) 48 h post-infiltration. Scale bars = 10 uM. N.b untransformed Nicotiana benthamiana

of secretion, we chose a leaderless secreted protein,
translationally controlled tumor protein (NtTCTP),
based on its lack of a predicted N-terminal SP, its am-
biguous localization prediction, the prediction that it is
secreted by secretomeP (neural network (NN) score =
0.6), its absence of transmembrane helices, and the pre-
diction that it resides “outside” with highly hydrophobic
residues (Additional file 13: Figure S8). NtTCTP is an
18.7 kDa protein containing a pfam TCTP domain that
is similar to Arabidopsis TCTP/TCTP2 (Additional file
13: Figure S8). Using an in silico approach, TCTP was
predicted to localize in the cytosol and be associated
with the GO terms multivesicular bodies and extracellu-
lar space. We expressed NtTCTP-GFP under the CaMV
35S promoter and observed that NtTCTP localizes to
the apoplast as well as the cytosol and the nucleoplasm
of tobacco leaf epidermal cells (Fig. 4p—s). We verified
the apoplastic localization by plasmolysis and co-
expression with viral AVR2-RFP apoplastic protein
(Fig. 4p-s). Next, we co-expressed NtTCTP with ER
and ER-TGN markers. Remarkably, we observed that
NtTCTP partially co-localized with the ER retention
marker HDEL-mCherry in the ER lumen and ER lamina
(Fig. 5¢, c-i, d). Subsequently, NtTCTP co-expression with
the soybean Golgi vesicle marker GmManl-mCherry
showed over 89 % co-localization (# = 296 confocal slices),
suggesting that NtTCTP is translocated from the ER to
Golgi vesicles (Fig. 5e, ei). These unexpected observations
imply the existence of a non-canonical motif within the
NtTCTP sequence (or the presence of an ER TCTP chap-
eron protein) that enables TCTP to enter the ER and pro-
gress through the Golgi and TGN secretory pathway.

We then assessed how NtTCTP could reach the apo-
plast. In mammals, TCTP accumulation is regulated at
the transcriptional and translational levels through re-
ciprocal repression with p53 [49]. In humans, TSAP6
facilitates the unconventional secretion of TCTP out-
side the cell to participate in inflammatory responses

[50]. Its secretion was not affected by brefeldin A (BFA)
or monesin treatment and it localized in secreted nano-
vesicle exosomes [50]. We have used the Oleisin 1
(Olel) protein from Arabidopsis as an exosome marker,
a homolog of which was detected in secreted exosomes
of olive pollen tubes [51]. Co-expression of NtTCTP-GFP
with Olel-mRFP in N. benthamiana leaf epidermal cells
revealed a remarkable average overlap of >75 % be-
tween NtTCTP-GFP-labeled granules and Olel-mRFP-
labeled granules (Fig. 5g, h). The identified exosome-
like aggregates showed diverse morphological features,
suggesting several levels of likely aggregation (Fig. 5g).
Although independent verification of the NtTCTP asso-
ciation with exosomes will be necessary, our initial
results nevertheless imply that NtTCTP could reach the
apoplast via secreted nanovesicle exosomes. Remark-
ably, when we compared the proteome of secreted exo-
somes from olive pollen tubes [51] with our tobacco
SIV secretome, we observed a significant 68.8 % (35/51)
overlap, of which 94.3 % were unconventionally se-
creted proteins (Additional file 18: Table S7). It will be
critical to confirm whether NtTCTP secretion to the
apoplast is indeed mediated by nanovesicles and
whether its infiltration into the conventional secretion
pathway is a phenomenon shared with other unconven-
tionally secreted proteins.

Secretion of NtPsCRP2 is partially compromised in TGN
yip4a-1;4b double mutants

To provide genetic evidence of the pathway for NtPsCRP2
secretion as well as establish whether conventionally se-
creted pollen tube proteins follow a conserved pathway of
secretion in the sporophyte, we ectopically expressed
NtPsCRP2-GFP in Arabidopsis yip4a-1;4b double mu-
tant plants. YIP4A and YIP4B are conserved YPT/RAB
GTPase-interacting proteins that form a complex with
ECHIDNA (ECH) at the TGN and participate in the re-
cycling of RAB-GDP during retrograde vesicle assembly
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and plasma membrane vesicle tethering [52]. Knock-
down of both isoforms perturbs ER-TGN protein se-
cretion and causes severe defects in plant development
[52]. At the root-hair maturation zone, NtPsCRP2-GFP lo-
calized in mature root hairs and rarely in root hair initials,
both in wild type and in yip4a-1;yip4b seedlings
(Fig. 6a—c). In hypocotyl epidermal cells of 4-day-old
etiolated wild-type seedlings, secreted NtPsCRP2-GFP
formed uniform spherically shaped aggregates likely
derived from endomembrane compartments that were
restricted at the stem-root junction (Fig. 6d, e). Con-
versely, in yip4a-1;yip4b double mutants, NtPsCRP2-GFP
was localized in deformed, rod-shaped endomembrane
compartments instead of the spherical endomembrane ag-
gregates observed in the wild type (Fig. 6f—h). Further, at
the stem-root junction, NtPsCRP2-GFP showed diffuse
localization and non-uniform protein aggregates (Fig. 6g,
arrowheads) that were not observed in wild-type seedlings.
In roots, NtPsCRP2-GFP localized predominantly in the
epidermal cell layer in uniform endomembrane/secretory
vesicles at the root apex, root elongation zone, and root
hair zone (Fig. 6i, j). Interestingly, in the epidermal cell
layer at the root apical zone, NtPsCRP2-GFP localized in
spindle-shaped ER-body-like structures (Fig. 6j, inset). Live
cell imaging of epidermal cells at the root elongation zone
at 16.7 and 2.7 seconds per frame revealed that
NtPsCRP2-GFP-labeled vesicles displayed three main
types of dynamic behaviour: (1) quiescent or permanently
membrane-tethered vesicles; (2) membrane-tethered vesi-
cles that re-initiated mobility; and (3) mobile vesicles
followed by membrane tethering (Additional file 14: Fig-
ure S9). In yip4a-1;yip4b roots, NtPsCRP2-GFP local-
ized in endomembrane aggregates that were not
uniformly distributed and formed larger aggregates in
epidermal cells that resembled BFA compartments
(Fig. 6k, 1). However, the NtPsCRP2 localization in
spindle ER-body-like structures (Fig. 6k, arrow) was
maintained. We independently observed similar secre-
tion defects of NtPsCRP2-GFP in roots following 2-h
treatment of 4—5-day-old seedlings with BFA or wort-
mannin drugs (Fig. 6m—o). Our observations emphasize
that NtPsCRP2-GEP is secreted through the ER-TGN
pathway in vegetative tissues and that the recycling of
NtPsCRP2 secretion to the proximity of the plasma
membrane and endocytic secretory vesicles is per-
turbed in yip4a-1,4b double mutant plants. Since
NtPsCRP2 posses an N-terminal SP and is secreted by
the pollen tubes, this suggests that the conventional
pathway is conserved between the gametophytic and
sporophytic tissues. Further, it is likely that NtPsCRP2
is maintained in the secretory pathway until the
appropriate signal (likely derived from the female re-
productive tissues) is perceived for its secretion to the
extracellular matrix.
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Secretion of LORELEI-like GPl-anchored protein 3 (LLG3) is
perturbed in yip4a-1;yip4b pollen tubes

To provide evidence for pollen tube protein secretion
among the identified candidate secreted proteins, we ana-
lyzed the subcellular localization of GPI-anchor pro-
tein LLG3 and its likely secretion pathway. We fused a
genomic fragment (AT4G28280) of the Arabidopsis ortho-
log of N. tabacum LLG3, including its putative promoter,
with red fluorescent protein (RFP) inserted 12 amino acids
upstream of the predicted GPI-anchor site. Microarray ana-
lysis [53] identified Arabidopsis LLG3 to be predominantly
expressed in pollen and pollen tubes with elevated expres-
sion in pistils 8 h after pollination (Additional file 19: Figure
S10). Semi-quantitative RT-PCR results showed tobacco
LLG3 to be expressed in SIV pollen tubes as well as in
unfertilized ovules of N. tabacum (Fig. 1g). It is not clear if
this differential expression of LLG3 between the two species
is significant. Expression of chimeric proLLG3-LLG3:RFP-
GPI anchor in Arabidopsis showed localization in distinct
compartments in the cytosol of mature Arabidopsis pollen
grains partially resembling the ER network (Fig. 7a). In
yip4a-1;4b mature pollen grains, LLG3-RFP distribution
showed a distinct vegetative cell “bird cage-like” polarised
localization, suggesting perturbed secretion or localization
of LLG3 (Fig. 7b). After 12 h of in vitro wild type pollen
tube growth, LLG3-RFP-GPI localized in secretory vesicles,
in the vegetative cell cytosol, and partially in the likely ER
network (Fig. 7c). In contrast, in yip4a-1;4b mutant pollen
tubes, LLG3-RFP-GPI distinctively localized in non-
uniform, aggregated endomembrane-derived vesicles of
variable sizes (Fig. 7c). However, the ER localization was
not affected in the mutant background (Fig. 7c). Further,
LLG3-RFP-GPI accumulated at the sub-apical domain, both
in wild-type and in yip4a-1;4b mutant pollen tubes, but we
could not observe localization at the pollen tube tip and the
plasma membrane (Fig. 7d). In tobacco pollen tubes, LLG3-
RFP-GPI as well as LLG3-GFP-GPI occasionally showed
exclusive tip localization as well as granular formation in
likely secretory vesicles (Fig. 7e). In the Arabidopsis female
gametophyte, we could not detect LLG3-RFP-GPI expres-
sion in unfertilized ovules, although we rarely observed
weak signal at the embryo-proper region approximately
18 h after pollination. Our results verify secretion by the
pollen tube of candidate pollen tube-secreted proteins iden-
tified in this study and provide evidence for the require-
ment for YIP4A/4B isoforms for proper LLG3 secretion
through the ER-TGN pathway during pollen tube growth.

The ER-TGN secretory mutant echidna is severely infertile,
partly attributable to a lack ovule-targeting competence
in the pollen tube

Since 15.95 % of the pollen tube secretome comprises pro-
teins secreted through a conventional ER-TGN pathway,
we investigated whether loss of ECHIDNA function, an
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Fig. 6 Simultaneous knockdown of YIP4A/B perturbed NtPsCRP2 secretion in seedlings. a An Arabidopsis seedling showing regions analyzed in
this study. b, ¢ NtPsCRP2-GFP localized less frequently in young root hairs but more frequently in mature root hairs, both in the wild type and in
the yip4a-1,yip4b double mutant. d NtPsCRP2 secretion in 4-day-old etiolated wild-type seedlings showing localization in epidermal cells of the
hypocotyl. The secretion was restricted at the hypocotyl-root junction. Propidium iodide (red) marks the beginning of the root. e Close-up of
NtPsCRP2-GFP in elongated epidermal cells of the hypocotyl showing accumulation in spherical, aggregated endosomal-like vesicles. f, g
Conversely, in yip4a-1,yip4b seedlings, NtPsCRP2 secretion was severely distorted, showing diffuse localization and non-uniform protein aggregates
(arrowheads). h The spherical marked endosomal aggregates observed in the wild type were substituted with rod-like labeled organelles in
yip4a-1,yip4b hypocotyl. i NtPsCRP2 localization at the root tip of wild-type seedlings marking secretory organelles. EPI epidermis, CX cortex.
j Magnified root epidermal cells from wild type showing NtPsCRP2-marked organelles constrained to the vicinity of the plasma membrane
(white rectangle) and also localized in ER-body-like organelles (inset). k, I In yip4a-1,yip4b, NtPsCRP2-GFP localization in secretory organelles
at the root apical meristem appeared largely disorganized, showing severe organelle aggregations resembling BFA-like compartments (arrowheads).
The ER-body-like localization (arrow) was maintained, suggesting no effect on ER-body biogenesis in yip4a-1,yip4b mutants. m-o Perturbed secretion
of NtPsCRP2-GFP was also recapitulated following BFA or wortmannin treatment. Arrowheads show NtPsCRP2-GFP BFA compartments, arrows point to
diffusely aggregated NtPsCRP2-GFP aberrant secretion. RC lateral root cap Pl propidium iodide stain, WT wild type. Scale bars =10 uM
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Fig. 7 LLG3 secretion is compromised in yip4a-1,yip4b mutant pollen and pollen tubes. a Subcellular localization of LLG3-mRFP under native
promoter showing cytosolic foci-like aggregates. vn vegetative cell nucleus, sn sperm cell nuclei. b Top: in the yip4a-1,yip4b mutant, the majority of the
pollen grains displayed distinct cytosolic aggregates different from those observed in the wild type. Bottom: z-stack projection of 25 confocal
slices showing distinct vegetative cell “bird cage-like” localization that was not observed in wild-type pollen grains. ¢ Localization of LLG3-
mRFP in wild-type pollen tubes grown in vitro for 16 h showing localization in likely secretory vesicles of uniform size and partially in the
pollen tube ER (top three panels). In contrast, yip4a-1,yip4b mutant pollen tubes displayed a significantly higher frequency of LLG3-mRFP-
marked endomembrane aggregated vesicles of variable sizes (bottom three panels). However, the ER localization was not greatly affected.
d LLG3-mRFP also specifically accumulated at the subapical domain (top panel, arrow). This accumulation was also not significantly affected
in yip4a-1,yip4b mutant pollen tubes (bottom panel). e In tobacco pollen tubes, similar localization in secretory vesicles was also observed
(top panel, arrows) and occasionally LLG3-mRFP as well as LLG3-sGFP showed pollen tube tip-specific localization (bottom panels, arrowheads). f Absence
of LLG3-mRFP protein in Arabidopsis unfertilized ovules and embryos soon after fertilization (18 h after pollination). Rarely, LLG3-mRFP could
be detected at the embryo proper (EP) zone in some fertilized ovules. MC micropylar, EP endosperm proper, CE chalaza end endosperm. Scale
bars for a and b =30 uM and for c-e =10 pM
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interaction partner of YIP4A/4B [54], would also comprom-
ise pollen tube—ovule crosstalk and ovule-targeting compe-
tence. Earlier observations revealed that ech-/- plants are
male semi-sterile, producing only a handful of pollen grains
with reduced viability and ability to grow pollen tubes [55].
Despite this, the study showed that >42 % of the tetrads
from ech-/- plants had three to four viable pollen grains.
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Moreover, echidna mutation can be propagated as homozy-
gous, indicating that some echidna pollen grains can ger-
minate a pollen tube and undergo fertilization with echidna
mutant ovules. Here, we have also shown that eck-/- pollen
grains can germinate pollen tubes in vitro as well as semi-in
vivo, although at a reduced growth rate compared with
wild-type pollen tubes (Fig. 8a, b). We have independently
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Fig. 8 TCTP- and ECHIDNA-deficient pollen tubes consistently fail to target ovules. a The SIV ovule-targeting assay. Pollen tube targeting competence
was assessed using a single pollen genotype or in a one-to-one genotype competition assay. b ech-/- pollen grains showed reduced but adequate
pollen tube germination in vitro as well as semi-in vivo but showed significantly reduced ovule-targeting competence semi-in vivo. ¢ Quantification of
pollen tube ovule-targeting competence semi-in vivo of ech-/- plants in a single genotype or mixed genotype competition assay. n is the number of
pistil explants assessed, asterisks denote significant differences assessed with Student’s t-test (p < 0.01). d Aniline blue stain of wild-type and
ech-/- pollinated wild-type pistils 18 h after pollination (HAP) showing near complete lack of ovule targeting in ech-/- pollinated pistils (red
arrow) compared with wild type-pollinated pistils (yellow arrows), verifying the semi-in vivo observations in c. e Frequency of ovule targeting
by pollen tubes in aniline blue-stained pistils. All score variances (asterisk) are statistically significant (Student's t-test, p < 0.01). Error bars
represent standard deviation (stdv). f Blue dot assay by GUS-staining of ms1 pistils pollinated with wild-type pollen grains homozygous or
heterozygous for Lat52-GUS and Lat52-GUS;tctp-1/+ 18 HAP. Red arrows point to tctp-1 mutant pollen tubes targeting ovules at the bottom of
the pistil, suggesting tctp-1 pollen tube growth is not greatly impaired. Insets: variable mistargeting phenotypes observed in tctp-1/+ pollinated
pistils. g Counts of “blue dots” revealed ovule targeting was greatly impaired in tctp-deficient pollen tubes
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shown that pollination of wild-type pistils by eck-/- pollen
grains produced adequate amounts of viable seeds that are
able to germinate into plantlets; these amounts were greater
than from ech-/- selfing plants, suggesting that the echidna
mutant has reduced fertility in both gametophytes. These
results provide evidence that echidna mutation can be
transmitted through the male (albeit at very low fre-
quency), supporting the ability of ech-/- pollen grains to
grow a pollen tube and occasionally target ovules for suc-
cessful fertilization.

To emphasize the fertility defects of ech-/- plants, we in-
vestigated the guidance and ovule-targeting ability of the
viable echidna pollen tubes. We used ech-/- pollen grains to
hand-pollinate pistils and score their ovule-targeting compe-
tence 18 h after pollination (HAP) (Fig. 8a—e). Critically, we
used the SIV assay to score only pollen tubes that emerged
from the cut pistils on their ability to target wild-type ovules
(Fig. 8a, b). This way, we eliminated the non-viable popula-
tion of ech-/- pollen grains and dealt only with the pollen
grains that could germinate and grow pollen tubes through
the cut pistil (Fig. 8b). Of the handful of viable ech-/- pollen
grains produced and able to germinate, we noticed that they
were vastly outcompeted by wild-type pollen tubes labeled
with LAT52-GFP in targeting ovules for fertilization in a
mixed genotype competition assay or were poorly targeting
in self-pollinated ech-/- pistils (Fig. 8c—e). The ech-/- pollen
tube ovule-targeting incompetence was further emphasized
by the fertility defects and lack of ovule fertilization ob-
served in dissected mature ech-/- siliques (Fig. 9¢). On aver-
age, only 10 % of the ovules in ech-/- plants were fertilized
and able to develop into “wild-type-like” seeds (Fig. 9e—g).
Moreover, nearly 50 % of the self-fertilized ech-/- ovules
showed embryo developmental defects, the majority of the
embryos arresting at the heart and torpedo stages (Fig. Sh).
The penetrance of this infertility was greatly variable be-
tween siliques as well as between individual plants,
with some siliques producing almost no seeds (Fig. 9h).
ECHIDNA protein is required for the secretion of secGFP
but not BR11 or PIN2 auxin efflux carrier and the ech-/-
mutant effect phenocopied concanamycin A defective secre-
tion [54]. Earlier, we showed that the secretion of both the
pollen tube proteins NtPsCRP2 and LLG3 was perturbed in
yip4a-1;4b double mutants (Figs. 6 and 7). Since ECH forms
a complex with YIP4A/B in the TGN, both ech and yip4a/
yip4b double mutants could widely affect secretion of
several pollen tube-secreted proteins essential for pollen
tube growth, pollen tube—ovule crosstalk, fertilization, as
well as embryogenesis in flowering plants, contributing to
the infertility observed in echidna mutant plants.

Secreted TCTP protein is required for pollen tube
guidance and ovule targeting

Loss of function of TCTP was previously reported to im-
pact on pollen tube growth [56] and plant fertility [57]
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in Arabidopsis. Here, we have incorporated our findings
on NtTCTP secretion by the pollen tube following stylar
penetration and independently investigated the phase of
TCTP function during fertilization. We analyzed a T-
DNA knockout line of the tobacco TCTP homolog
(74 % identity, e-value 2.0E-85; Additional file 13: Figure
S8) from Arabidopsis (AT3G16640, SAIL_28_CO03, tctp-
1) and investigated the ovule-targeting ability of its
pollen tube and its seed production. Surprisingly, we
did not observe the pollen tube growth defects reported
by Berkowitz et al. [56] (Additional file 13: Figure S8).
We exploited the GUS marker that co-segregates with
the T-DNA insertion and performed a blue dot assay by
GUS staining in pistils 18 HAP. We observed that tctp-
1 mutant pollen tubes from +/fctp-1 plants poorly tar-
get ovules for fertilization (Fig. 8f). We noticed that
tctp-1 mutant pollen tubes can grow normally to the
bottom of the pistil and occasionally target ovules, sug-
gesting pollen tube growth in the tctp-1 mutant is nor-
mal (Fig. 8f, arrow) Up to 35 % targeting variability was
observed between pistils and between individual plants,
suggesting variable tctp-1 phenotypic penetrance (Fig. 8g).
Transmission analysis confirmed that fctp-1 mutation is
poorly transmitted through the male (8.9 % transmission
efficiency) but is normally transmitted through the female
(Fig. 9a). Further, reciprocal pollination revealed that the
mutant embryo lethal phenotype is exclusively induced by
mutant pollen tubes at low penetrance (two weeks post-
pollination) but not by the tctp-1 mutant ovules (Fig. 9).
Collectively, these results suggest that TCTP is essential
for proper pollen tube guidance and ovule targeting as
well as embryogenesis.

Dissected mature siliques from self-fertilized +/tctp-1
plants revealed severe infertility and reduced seed set
(Fig. 9b—d). The appearance of mutant seeds was ran-
domized in siliques, suggesting equal competitiveness
between the mutant and wild-type pollen tube growth
(Fig. 9c). We observed an average of 12.3 % aborted
ovules early post-fertilization and additionally 10.9 % of
seeds were aberrantly chlorotic (Fig. 9d). In total, 44.5 %
of the embryos with chlorotic seeds were arrested at the
heart stage, with 37 % terminating at the torpedo stage
and 18.5 % at the premature cotyledon stage (Fig. 9d).
Our results suggest a critical role of TCTP in pollen
tube guidance, ovule targeting, the events leading to
fertilization, and the early stages of embryogenesis.

Discussion

Navigation of the pollen tube through several female
sporophytic tissues to reach the ovule for fertilization
(pre-ovular guidance) relies on guidance mediated by
proteins, peptides, and other chemoattractants secreted
by the female reproductive tissues [58]. This molecular
dialog has emerged as an important bottleneck for
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Fig. 9 Loss of TCTP and ECHIDNA functions also impairs post-fertilization events. a Reciprocal test crosses of the tctp-1 mutation showing low
penetrance male-specific phenotypic induction in F1 siliques as well as significantly reduced male transmission efficiency scored by PCR genotyping as
well as GUS-staining of LAT52-GUS-tagged T-DNA insertion. The micrograph on the far right shows seedling segregation of self-fertilized
+/tctp-1 plants, supporting the near complete block of tctp-1 allele transmission through the male. b Dissected siliques of wild-type and
self-fertilized +/tctp-1 plants. Asterisks indicate wild-type-like seeds, black arrowheads indicate underdeveloped chlorotic mutant seeds, red
arrowheads and yellow arrows show arrested embryos with failed embryogenesis soon after fertilization as well as unfertilized ovules.

¢ Frequency and positioning of mutant seeds within dissected siliques. The random distribution of mutant seeds within +/tctp-1 siliques
suggests tctp-1 mutant pollen tube growth is competent. d Frequency of tctp-1 mutant seed phenotypic classes observed (n = 25 siliques
per line). Error bars represent standard deviation (stdv). e Dissected siliques of self-fertilized ech-/- plants showing the high frequency of
failed fertilization, defective embryogenesis, as well as “wild-type-like"” seeds (asterisks). f Frequency and random positioning of ech mutant
embryos/unfertilized ovules within ech-/- self-fertilized siliques implying ech pollen tubes can grow to the base of the pistil and target ovules for
fertilization. g Frequency of mutant seed phenotypic classes observed (n =25 siliques per line). Error bars represent standard deviation (stdv).

h Embryogenesis lethality in ECHIDNA-deficient embryos showing stages and frequency of embryo arrest. Scale bars =10 uM. gn germ cell
nuclei, na not applicable, sn sperm cell nuclei, vn vegetative cell nuclei, wt wild type

unfavorable fertilization and as a pre-zygotic barrier for
interspecies hybridization. A compendium of recent
studies have identified a handful of secreted peptides
from female synergid cells of T. fournieri, Z. mays, and
Arabidopsis as pollen tube attractants [3-5, 59]. Another
recent study also reported that CENTRAL CELL GUID-
ANCE protein (CCQ) together with its interaction part-
ners, CCG BINDING PROTEIN 1 (CBP1), mediator
complex (MED), and central cell-specific AGAMOUS-
transcription factors, co-regulate a subset of cysteine-
rich proteins (CRPs), including pollen tube attractant
LURE1 [9]. Only two pollen tube receptor proteins have
been identified so far as playing a role in pollen tube
guidance, LIP1 and COBL10 [31, 60]. Such slow pro-
gress has been attributed to the lack of accessibility of
the pollen tubes within the pistil to capture and identify
proteins secreted by the pollen tubes during their inter-
action with pistil tissues. In vitro approaches are feasible
but pollen tubes grown in vitro do not acquire the com-
petence to respond to female guidance signals [16] and
develop different pollen tube physiology [12, 15, 61-63].
In this study we have successfully demonstrated the ap-
plication of a previously developed pollen tube semi-in
vivo technique (SIV-PS) [14] combined with gel- and
label-free quantitative LC-MS/MS as a powerful assay
for the genome-wide characterization of pollen tube-
secreted proteins following its penetration through
stigma and style. The SIV-PS tool offers access to pistil-
stimulated pollen tube-secreted proteins with minimal
contamination. We show that by coupling SIV-PS with
gel- and label-free LC-MS/MS together with a struc-
tured bioinformatics workflow, one could quantitatively
identify known pollen tube-secreted proteins as well as
establish novel proteins with previously unknown extra-
cellular functions. Using this technique, we demonstrate
that the SIV-PS is unique from that of in vitro germi-
nated pollen tubes (36.3 % overlap), emphasizing the re-
quirement of pistil factors in rendering pollen tubes
competent to target the ovule.

We have demonstrated the efficacy of the SIV-PS-
identified proteins through subcellular localization
prediction and in planta demonstration and investi-
gated the undertaken secretory pathways and the in-
volvement of key regulators of secretory pathways and
pollen tube-secreted proteins in plant fertility and
seed setting (Figs. 8 and 9). Among the identified se-
creted proteins are supposed ligands and receptors of
the pollen tube that could facilitate cell-cell commu-
nication with the female reproductive and gameto-
phytic tissues during ovule targeting by the pollen
tube and fertilization. These include the plant defensin
subfamily, CRPs, LORELEI-like GPI-anchored 3
(LLG3), thionin-like protein, RNases, lipid transfer
proteins (LTPs), pollen Ole-e-allergen, arabinogalac-
tans, pectinases, and invertases. Correlation analysis
between the pollen tube secretome and transcript
abundance revealed the two processes are uncoupled,
as shown by the lack of linearity (Fig. 3). These obser-
vations clearly indicate that secreted proteins are sub-
jected to multiple regulatory mechanisms at the post-
transcriptional level prior to their secretion to the
extracellular matrix. This lack of correlation has been
reported in secretome studies of various human can-
cer types that deploy secretome techniques in search
of biomarkers and cancer therapeutic targets ([64]
and references therein). Therefore, in silico predic-
tion alone for protein secretion provides only a rough
guideline; instead, direct quantitative proteomic ana-
lysis of secreted proteins is necessary to identify and
evaluate true protein secretion.

Further, we have demonstrated that conventional path-
ways play an essential role in pollen tube protein secre-
tion. This was underscored by the defective secretion of
the pollen tube proteins NtPsCRP2 and LLG3 in yip4a-
Lyip4b double mutants, lack of pollen tube guidance
and ovule-targeting competence in an echidna loss-of-
function mutant, and the broader expression of several
conventional pathway regulatory genes in tobacco SIV
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pollen tubes (Additional file 10: Figure S5). A similar
role was previously demonstrated for the POD1 protein
involved in ER protein folding [65] as well as CHX21
and CHX23, which maintain ER potassium homeostasis
[66], both exclusively affecting pollen tube guidance.

We have shown that, despite the significance of
conventional protein secretion (Additional file 20:
supplementary text), the bulk of pollen tube-secreted pro-
teins utilize unconventional secretory pathways [48, 67].
We propose that one pathway for unconventional secre-
tion of pollen tube proteins is via bioactive nanovesicle
exosomes. In animals, several cell types secrete exosomes
and other types of vesicles (ectosomes and shedding
microvesicles) for intercellular communication with
neighboring cells, affecting gene expression and overall
cell physiology [68, 69]. Similarly, exosome secretion was
recently reported in olive pollen tubes [51]. Of great inter-
est, our comparison of the proteome from the secreted
exosome of olive pollen tubes with the tobacco pollen
tube secretome revealed a significant 68.6 % (35/51) over-
lap (Additional file 18: Table S7). Astonishingly, 94.3 % of
these shared proteins are secreted unconventionally and
only 5.7 % were signal peptide (SP)-containing proteins.
These include proteins involved in cell wall expansion,
stress/defense, membrane transport, metabolism, signal-
ing, and protein synthesis and processing. In support, we
have demonstrated that TCTP is secreted to the apoplast
and strongly co-localized with the exosome marker Olel
from Arabidopsis (Figs. 4p—s and 5g—h). Our results sug-
gest that pollen tube-secreted exosomes could account for
the secretion of the majority of unconventionally secreted
pollen tube proteins to the extracellular matrix. In ani-
mals, Notch ligand Delta-like 4 is secreted via exosomes
and was shown to impact on neighboring cells without
the conventional cell—cell contact and potentially at a lon-
ger range [70]. We propose that pollen tube-secreted exo-
somes could facilitate a latent mechanism for pollen tube
long-distance signaling with the female reproductive tis-
sues, possibly including crosstalk with ovules. We have
shown that secretion of NtTCTP seems to follow the ER—
TGN route, as shown by co-localization with ER and
Golgi markers (Fig. 5c—e). This phenomenon has so far
not been reported for unconventionally secreted proteins
[28]. Secretion of unconventional proteins is known to be
insensitive to BFA treatments, suggesting a Golgi appar-
atus bypass [71]. Perhaps it is questionable to base the ab-
solute localization of NtTCTP in Golgi on co-localization
with the Golgi marker GmManl alone. In Arabidopsis, the
secretion of the unconventionally secreted protein hygro-
mycin phosphotransferase (HYG) is BFA-insensitive; how-
ever, it still requires the participation of a Golgi-
localized synaptotagmin homolog, SYT2 [72]. More-
over, SYT2’s role in HYG® unconventional secretion
has been compared with the Golgi-localized GRASP
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function in the unconventional secretion of AcbA in Dic-
tyostelium and alpha-integrin in Drosophila [71]. There-
fore, the co-localization of NtTCTP with GmMan1 could
suggest either that NtTCTP is not strictly localized in the
Golgi apparatus or that GmManl is instead involved in
the unconventional secretion of NtTCTP. Alternatively,
NtTCTP could be truly localized in the Golgi apparatus
and its unconventional secretion does not bypass the
Golgi as in other examples of unconventionally secreted
plant proteins. Future experiments will confirm precisely
which route NtTCTP follows for its final phase of secre-
tion to the apoplast.

A parallel pathway that could also facilitate unconven-
tional protein secretion, particularly of soluble cytosolic
proteins, is via secretory lysosomes [73]. Cofactors such
as plant orthologs of animal caspases could facilitate se-
cretion through lysosome membrane fusion and micro-
vesicle shedding [73]. Another exciting proposal for an
unconventional protein secretion pathway in plants is
via a recently discovered exocyst positive organelle,
EXPO [74]. Although EXPO co-localized with Exo70E2,
a marker of the exocyst complex, its role in conventional
protein secretion was ruled out based on the fact that
EXPOs are not influenced by BFA or wortmannin and
are unable to uptake the endocytotic marker FM4-64
[28]. EXPOs role in mediating unconventional protein
secretion was demonstrated in the secretion of SAMS2
(S-adenosyl methionine synthetase 2) from the cytosol
to punctate organelles that co-localized with Exo70E2 in
the protoplast [74]. Further, EXPOs have been identified
as double membrane organelles and fuse with plasma
membrane to expel a single membrane vesicle to the
apoplast [74]. It will be of great interest to establish
whether EXPOs are also involved in unconventional se-
cretion of pollen tube proteins alongside exosomes dur-
ing male—female communication.

The bioinformatics analysis of the SIV-PS dataset also
revealed unexpected phenomena. Proteins predicted to
be palmitoylated at cysteine residues showed an exten-
sive overlap with proteins predicted to undergo GPI-
anchoring modification. This might be explained by the
fact that cysteine palmitoylation of putative GPI-
anchored proteins (GAPs) could facilitate increased af-
finity of GAPs for the plasma membrane prior to their
secretion. Indeed, both COBRA-like 10, a pollen tube re-
ceptor protein, and Lorelei-like GPI-anchored 3 (LLG3,
this study) were predicted to be palmitoylated at amino
acids Cys206, 336, 337, and 433 for COBRA-like 10 and
amino acids Cys7, 74, and 75 for LLG3. Furthermore, in
animals, cysteine palmitoylation was shown to regulate
raft affinity for the majority of the raft integral proteins,
including GAPs [75, 76]. Because of the low proportion
(14 %) and very low abundance of GAPs identified in
this study, it will be important to perform GPI-protein
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enrichment of the pollen tube fractions to identify other
potential pollen tube GPI-anchored receptors.

Using gel- and label-free quantitative LC-MS/MS at
the genome-wide scale, our study has revealed for the
first time the pollen tube proteins secreted in re-
sponse to pollen tube interaction with the female re-
productive tissues. These secreted proteins represent
potential ligands and receptors for cell-cell signaling
during pollen tube—pistil interaction. Most signifi-
cantly, we speculate that pollen tubes might deploy exo-
some nanovesicles as a mechanism to facilitate long
distance cell-cell communication with the female repro-
ductive tissues. We have shown the utilization of ER-
TGN pathways by pollen tube-secreted proteins in both
the sporophyte and male gametophyte and demonstrated
that perturbation of this pathway is detrimental for their
secretion. Using the unconventionally secreted pollen tube
protein NtTCTP, we have demonstrated that pollen tube
secreted proteins are indispensable for pollen tube guid-
ance and ovule targeting as well as for embryogenesis. We
have emphasized the significance of pollen tube protein
secretion activities by showing defective pollen tube guid-
ance and ovule targeting ability and near-complete sterility
following the knockdown of ECHIDNA. Identified se-
creted proteins from this study offer a direct demonstra-
tion of species-specific candidate ligand-receptor
interaction partners with an emphasis on cell—cell signal-
ing mechanisms during successful plant reproduction.

Conclusions

We have identified 801 genome-wide pollen tube se-
creted proteins following pollen tube penetration
through female reproductive tissues. Bioinformatics
analysis revealed that the vast majority of the pollen
tube secretome comprises unconventionally secreted
proteins, predominantly small proteins of <20 kDa.
They are predominantly expressed in the male gam-
etophyte and include glycoside-hydrolase, copper
binding, RNA-binding, and proteolysis among the
most frequent associated activities. Tagging of selected
candidate proteins with fluorophores verified localization
in secretory pathways and secretion to the extracellular
matrix. Further functional analysis revealed pollen
tube-secreted proteins as well as regulators of ER-
TGN protein translocation as crucial players for
proper pollen tube protein secretion, guidance of
pollen tubes to the ovule, and embryogenesis. Our
study has provided new insights into alternative path-
ways for unconventional protein secretion involving
nanovesicle exosomes and for the first time provided
access to newly identified pollen tube secreted pro-
teins that could perceive guidance signals from the fe-
male reproductive tissues during cell-cell communication
and plant sexual reproduction.

Page 23 of 29

Methods

Preparation of tobacco pollen tube secretome using the
SIV-PS approach

To capture pollen tube-secreted proteins following pene-
tration through the pistil, we developed the following
procedure. On day 1, flowers were emasculated one day
before anthesis and netted for 24 h. On day 2, pollen
grains stored at -20 °C were acclimatized to room
temperature for 5 min and used for limited pollination
of half of the emasculated flowers. On day 3, both polli-
nated and unpollinated (control) pistils were collected
and excised at approximately 22 mm from the stigma
shoulders (Additional file 1: Figure S1). Pistils were ar-
ranged in a “germination cup” (5 x4 cm radius x height)
filled with SMM-MES pollen germination media (0.175 M
sucrose, 1.6 mM H3BO;, 3 M Ca(NOs),.4H,0, 0.8 mM
MgSO,.7H,0, 1 M KNO3, 23 mM MES, pH 5.9). Pollen
tube germination was performed at 28 °C in a 70 % humid
chamber for 24 h (Additional file 1: Figure S1). Proteins
secreted into media were concentrated using a Millipore
filter (Amicon, USA Ultra-2 Pre-Launch 10 K and 3 K),
and final samples were stored at —80 °C. Final protein
concentrations were measured by 2D-Quant kit (GE
Healthcare, USA). Pistils with protruding pollen tubes
were used for viability tests and microscopic analysis
and the remaining pollen tubes were excised for RNA
extraction. For a stepwise description, see [14]. A list of
primers used for semi quantitative RT-PCR analysis is
provided in Additional file 21: Table S8.

FASP processing

Biological replicates of concentrated SIV-PS media (includ-
ing negative controls from unpollinated pistils) were sub-
jected to filter-aided sample preparation (FASP) [77, 78].
Samples containing about 5 pg of total protein were mixed
with UA buffer (8 M urea in 100 mM Tris-HCl, pH 8.5),
loaded onto the Vivacon 500 device with MWCO 10 kDa
(Sartorius Stedim Biotech, Germany), and centrifuged at
14,000x g for 30 min at 20 °C. Before sample application,
5 ul of 1 % (w/v) polyethylene glycol 20,000 (PEG) was
added onto the membrane. The retained proteins were
washed with 400 pl UA buffer. The final protein concen-
trates kept in the Vivacon 500 device were mixed with
100 pl of UA buffer containing 50 mM dithiothreitol and
incubated for 30 min at room temperature. After add-
itional centrifugation, the samples were mixed with 100 pl
of UA buffer containing 50 mM iodoacetamide and incu-
bated in the dark for 30 min. After the next centrifugation
step, the samples were washed three times with 400 pl UA
buffer and three times with 200 pl of 50 mM NaHCOs.
Trypsin (sequencing grade, Promega, USA) was added
onto the filter and the mixture (total volume about 50 pl,
PEG concentration about 0.1 % (w/v)) was incubated for
14 h at 37 °C. The tryptic peptides were finally eluted by
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centrifugation followed by two additional elutions with
50 pl of 50 mM NaHCOs. The final eluate was concen-
trated using a SpeedVac concentrator (Thermo Fisher Sci-
entific) down to about 20 ul and transferred into a LC-MS
vial containing 2.5 ul of 0.01 % PEG, with additional acidic
“extraction” of peptides from FASP eluate test tube walls
by 50 % acetonitrile (ACN) containing 2.5 % formic acid
(v/v) and by 100 pl of 100 % ACN (each extraction step
was done twice with 50 and 100 pl of the solution, respect-
ively). The final solution was concentrated in a SpeedVac
concentrator to < 25 pl and refilled to 25 ul with water.

LC-MS/MS analysis of peptides from FASP

LC-MS/MS analyses of the peptide mixture were done
using a RSLCnano system connected to an Orbitrap
Elite hybrid spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA). Prior to LC separation, tryptic di-
gests were online concentrated and desalted using a
trapping column (100 pm x 30 mm) filled with 3.5 um
X-Bridge BEH 130 C18 sorbent (Waters, Milford, MA,
USA). After washing the trapping column with 0.1 %
formic acid , the peptides were eluted (flow 300 nl/min)
from the trapping column onto an Acclaim Pepmap100
C18 column (2 pm particles, 75 pm x 250 mm; Thermo
Fisher Scientific, Waltham, MA, USA) using the follow-
ing gradient program (mobile phase A, 0.1 % FA in
water; mobile phase B, ACN:methanol:2,2,2-trifluor-
oethanol (6:3:1; v/v/v) containing 0.1 % FA). The gradi-
ent elution started at 1 % of mobile phase B and
increased from 1 to 56 % during the first 100 min (1 %
in the first, 14 % in the 30th, 30 % in the 60th, and 56 %
in 100th min), then increased linearly to 80 % of mobile
phase B in the next 5 min, remaining at this state for the
next 15 min. Equilibration of the trapping column and
the column was done prior to sample injection into the
sample loop. The analytical column outlet was directly
connected to the Nanospray Flex Ion Source (Thermo
Fisher Scientific, Waltham, MA, USA).

MS data were acquired in a data-dependent strategy
selecting up to the top 20 precursors based on precursor
abundance in the survey scan (350 -1700 m/z). The
resolution of the survey scan was 120,000 (400 m/z) with
a target value of 1 x 10° ions, one microscan and max-
imum injection time of 200 ms. Low resolution CID
MS/MS spectra were acquired with a target value of
10,000 in rapid CID scan mode with the m/z range ad-
justed according to actual precursor mass and charge.
MS/MS acquisition in the linear ion trap was carried out
in parallel to the survey scan in the Orbitrap analyzer by
using the preview mode. The maximum injection time
for MS/MS was 150 ms. Dynamic exclusion was enabled
for 45 s after one MS/MS spectra acquisition and early
expiration was disabled. The isolation window for MS/
MS fragmentation was set to 2 m/z.
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Two LC-MS/MS analyses in total were done for each
sample (using 10 out of the 25 pl of the final solution).
The second LC-MS/MS analysis was done with exclu-
sion of m/z masses already assigned to peptides from
the target database (FDR<1 %) based on the first LC-
MS/MS analysis. Mass tolerance for m/z exclusion was
set to 10 ppm and the retention time window to 2 min.
The two resulting raw files for each sample were
searched as a single data set to obtain complete identifi-
cation results for each sample.

The analysis of the mass spectrometric RAW data
files was carried out using the Proteome Discoverer
software (Thermo Fisher Scientific; version 1.4) with
in-house Mascot (Matrixscience, London, UK; version
2.4.1) and Sequest search engines. Mascot MS/MS ion
searches were done against the concatenated UniRef100
protein database for Solanaceae, Brassicaceae, and
Fabaceae taxonomies (downloaded on 2014-02-26 from
http://www.uniprot.org/) and an in-house tobacco pro-
tein database based on sequencing data (total number
of protein sequences 624,436). A modified cRAP data-
base (downloaded from http://www.thegpm.org/crap/)
was searched in parallel for detection of contaminants.
Mass tolerance for peptides and MS/MS fragments was
5 ppm and 0.5 Da, respectively. Oxidation of methionine
and deamidation (N, Q) as an optional modification, car-
bamidomethylation of C as a fixed modification, and two
enzyme miscleavages were set for all searches. Percolator
was used for post-processing of database search results.
Peptides with a FDR (g-value) <1 %, rank 1, and with at
least six amino acids were considered. Label-free quan-
tification using protein group area calculation in Prote-
ome Discoverer was used (Top3 protein quantification)
[17, 18]. Parts per million (ppm) values for all or poten-
tially secreted proteins were calculated as protein group
area divided by the sum of areas of all or potentially se-
creted protein groups (molar ratio; expected to be dir-
ectly proportional to protein amount in the original
samples) multiplied by 10°, respectively.

Following label-free quantitative LC-MS/MS, protein
groups were considered secreted based on Top3 protein
algorithms stipulating that (1) the ratio of the calculated
median of a protein group in a sample to the average
median of the two control unpollinated samples was >3
(cell “CP1” of Additional file 3: Table S1) and (2) the
number of peptides was, at a minimum, 3 and that the
protein group must be up-regulated in at least two SIV-
PS samples (column “CS, U>2). For comparison, indi-
vidual protein accessions from replicates of all sample
types were combined into supergroups (SGs) and re-
ported in SG column Additional file 7: Table S4. Pro-
teins were put into the same SG if they were reported in
sample type replicate report as alternative proteins. For
more information see actual reports and comments
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within tabs. To compare in vitro secreted proteins
and the respective in vitro total proteomes, only pro-
tein groups with a minimum of three peptides and
present in at least one replicate were used. All acces-
sions from the respective groups that fulfill the above
criteria are provided in Additional file 7: Table S4
with separate group columns for each pairwise com-
parison and accessions that are unique or intersect
with the paired sample.

Alcohol dehydrogenase enzyme assay

Endogenous ADH activity was measured in unpollinated
controls, SIV-PS samples and in SIV pollen tubes total
extract (SIV-PP) to estimate the extent of cytosolic pro-
tein contamination. As a control, the total soluble pro-
tein fraction from the respective pollen tubes was
extracted using RIPA extraction buffer (Tris 50 mM,
pH 8.0, 150 mM NaCl, 0.1 % SDS, 0.5 % sodium deoxy-
cholate, Triton X-100, 1 mM PMSF) and protein con-
centrations were quantified using a 2D-Quant kit (GE
Healthcare, USA). The reaction mixture for the ADH
assay was composed of 50 mM Tris, pH 9.0, 0.867 mM
NADD, 20 % ethanol (Sigma, USA), and equal aliquots of
protein extracts from each samples. The assay was re-
peated with three biological replicates. The increase in ab-
sorbance at 450 nm was monitored every 5 min for
45 min. The ADH activity was expressed as nmole/min/
ml (milliunits/ml) for 1.0 pmole NAD" to NADH reduc-
tion per minute at pH 8.0 and 37 °C, per aliquot of
protein.

Immunoblot protein detection

Total proteins from transiently transformed N. benthami-
ana leaves 48 h post-transfection or those from SIV and
in vitro tobacco pollen tubes were extracted using RIPA
extraction buffer (50 mM Tris pH7.4, 150 mM NaCl,
0.5 % Na-deoxycholate, 1.0 % Triton X-100). Protein sam-
ples were quantified using a 2D-Quant kit (GE Healthcare,
USA), resolved by one-dimensional SDS-PAGE and blot-
ted using the semi dry technique (e-blot, GeneScript) onto
nitrocellulose membranes (GE Healthcare, USA). After
30 min blocking, blots were probed with a 1:1000 dilution
of rabbit monoclonal anti-GFP antibody raised against
sGFP (ChromoTek, Germany) overnight at 4 °C followed
by a 1:30,000 dilution of rat anti-rabbit IgG conjugated to
alkaline phosphatase (Sigma USA). Chemiluminescence
was developed using BCIP (5-bromo-4-chloro-3-indolyl-
phosphate, final concentration 165 ng/ml) and NBT (nitro
blue tetrazolium chloride, final concentration 33 ng/ml)
developing solutions in AP buffer (100 mM Tris-Cl
pH 9.5, 100 mM NaCl, 5 mM MgCl,). Blot images were
captured and analyzed using a Syngene G:Box EF imaging
system (Syngene, UK).
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Concavalin A-coupled horseradish-peroxidase
N-glycosylation test

Total proteins (40 ug per sample) were resolved by one-
dimensional SDS-PAGE in quadruple replicates. Proteins
were transferred onto nitrocellulose membrane and stained
with Ponceau Red stain (Sigma, USA) for visualizing pro-
tein loading control. Membranes were de-stained, washed
in TTBS buffer (500 mM NaCl, 80 mM Tris.HCI, pH 7.6,
0.1 % Tween 20) for 1 h and incubated in TTBS buffer
supplemented with 25 pg/ml concavalin A for 1 h. Mem-
branes were then washed for 30 min in TTBS and incu-
bated for 30 min in TTBS with 50 pg/ml horseradish
peroxidase before being washed again in TTBS for 45 min.
N-glycosylated protein bands were visualized with detec-
tion buffer (45 mg 4-chloro-1-naftol, 15 ml methyalcohol,
and 60 ml 10 mM Tris-HCI pH 6.8) by drop-wise addition
of a 25 pl aliquot of hydrogen peroxide (H,O,, up to
100 pl) until membrane saturation.

Microscopy

Pollen tube bundles from excised pistils were mounted
directly on a glass slide and visualized by bright field mi-
croscopy with Hoffman modulation contrast (Nikon,
Japan). For aniline blue staining (callose stain), pistils
were collected 18 HAP and fixed in 9:1 ethanol:acetic
acid (v/v) for 24 h. Samples were washed in an ethanol
series and then alkaline-treated in 1.0 M NaOH for
~16 h. Samples were stained in aniline blue stain solu-
tion (0.1 % (w/v) aniline blue, 108 mM K3PO, (pH 11))
for 12 h. To investigate the competence of pollen tubes
to target the ovule by blue dot GUS-staining assay, pis-
tils pollinated with +/tctp-1 SAIL_28_C03 or Lat52-
GUS-marked wild-type control pollen were collected at
18 HAP and dissected along the septum to remove
carpel walls. Exposed fertilized ovules were stained for
GUS activity with a solution containing 50 mM sodium
phosphate buffer, pH 7, 0.2 % Triton X-100, 10 mM po-
tassium ferrocyanide, 10 mM potassium ferricyanide,
and 1 mM X-Gluc (5-bromo-4-chloro-3-indolyl-D-glu-
coronic acid). Samples were vacuum-infiltrated for
10 min and stained overnight at 37 °C.

For the pollen tube viability test using Alexander stain-
ing, pollen tubes were placed on a microscopic slide
with a few drops of Alexander stain solution (10 ml
95 % ethanol, 1 ml Malachite green (1 % in 95 % etha-
nol), 5 ml Fuchsin acid (1 % in water), 0.5 ml Orange G
(1 % in water), 5 g phenol, 5 g chloral hydrate, 2 ml gla-
cial acetic acid, 25 ml glycerol, and distilled water to
50 ml). Stained samples were visualized by bright field
microscopy with Hoffman modulation contrast (Nikon,
Japan). Callose stain distribution was analyzed with NIS-
Element software following fixed UV exposure under
cyan filter (460 — 500 nm bandwidth, Nikon, Japan). For
propidium iodide staining, tissues were incubated in
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10 pg/ml propidium iodide for 20 s, rinsed in deionized
water, and visualized under a RFP filter (560-615 nm,
Nikon, Japan).

For protein subcellular localization, samples were visual-
ized with a Zeiss LSM 5 DUO laser scanning confocal
microscope (CLSM) equipped with an argon laser and a
Zeiss C-Apochromat x 40 9/1.2 water-corrected objective.
For co-localization, dual fluorescence channels and differ-
ential interference contrast (DIC) were used simultaneously
for live cell imaging. A Nikon Eclipse Ti confocal micro-
scope with a CSU-X1 spinning disk module and Andor
iXon3 EMCCD camera was used to verify vesicle dynamics
as well as subcellular localization in pollen tubes. Images
were analyzed and assembled with Image] (http://imagej.
net), Adobe Photoshop CS6 (http://www.adobe.com/) and
Ink-scape (https://inkscape.org/en/) software.

Availability of supporting raw data

The mass spectrometry proteomics data sets supporting
the results of this article are available at the Proteo-
meXchange Consortium via the PRIDE partner reposi-
tory with the dataset identifier PXD002215 (http://
www.ebi.ac.uk/pride/archive/projects/PXD002215).

Additional files

Additional file 1: Figure S1. Semi-in vivo pollen tube secretome
(SIV-PS) approach for identification and quantification of pollen tube-secreted
proteins. a An improvised SIV-PS technique setup from in planta (steps 1-3) to
in vitro incubation of the pollen tubes (step 4-5). The inset shows
emerging pollen tubes from excised pistils. Scale bars =2 mm. b
Schematic representation of the SIV-PS workflow. ¢ Micrographs of
SIV pollen tubes showing normal pollen tube growth in bright field
with streaming organelles (top panel), sperm cell formation (second
panel), callose deposition and callose plugs (asterisk, third panel), and
pollen tube viability assessed by Alexander stain (bottom panel). sn
sperm cell nucleus, VN vegetative cell nucleus. Scale bar =40 uM. d A
tobacco pollinated pistil showing the site of stylar excision and the presumed
peptide signaling flow from male and female gametophytes. (TIF 714 kb)

Additional file 2: Figure S2. Assessment of pollen tube integrity,
secretome purity using an alcohol-dehydrogenase (ADH) assay, and
secretion activities in pollen tubes. a Top panels: pollen tube penetration
(left) and exit (right) through the transmitting tract of the style visualized
with aniline blue. Bottom panels: excised stylar ends visualized by DAPI
stain marking cell nuclei (asterisk, left) and by toluidine blue (right) outlining
cell wall boundaries. Excised ends of pistils are marked with the dashed line;
red and white arrowheads mark the upper border of pistil broken cells
following excision; and yellow arrowheads mark the upper and lower
borders of intact cells. Scale bars =5 pM. b Frequency of viable and
non-viable semi-in vivo pollen tubes as well as integrity following 48 h
growth through stylar tissues and in vitro. Error bars represent + standard
error; asterisks indicate statistical significance by Student's t-test with p values
indicated. c Purity assessment using an ADH assay of the secretome
samples. ADH activities were calculated as nmole/min/ml. SIV-PST-3
SIV-pollen tube secretome samples 1-3. d—f Live-cell imaging of endo-
cytic tracer FM4-64 uptake and recycling in tobacco in vitro germinated
pollen tubes co-localized with ER tracer in the absence (d) or presence
(e, f) of brefeldin A (BFA), an inhibitor of protein secretion. Addition of
BFA resulted in aggregation of endocytic vesicles and formation of BFA
compartments (arrows), evidence of a defective conventional protein
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secretion pathway. BFA-treated pollen tubes showed specific defects only in

FM4-64 labeled vesicles and not in the ER network. Scale bars=5 puM.
(TIF 1554 kb)

Additional file 3: Table S1. List of protein accessions identified from
semi-in vivo pollen tube secretome and semi-in vivo total proteomes by
gel-free LC/MS/MS. (XLSX 53714 kb)

Additional file 4: Figure S3. Evaluation of true pollen tube-secreted
proteins using quantitative LC-MS/MS. Depicted are three examples of
proteins categorized as pollen tube-secreted proteins or predominantly
secreted by the pollen tube following peptide mapping and quantitative
peptide area evaluation to compute protein abundances relative to
control. With subtractive approaches, these proteins would normally be
eliminated from analysis as they were also identified in unpollinated
pistil controls (most likely due to peptide homology with pistil proteins);
however, using absolute quantitative analysis, their true source of secretion
could clearly be demonstrated. (TIF 415 kb)

Additional file 5: Table S2. Tobacco semi-in vivo pollen tube secreted
proteins of <20 kDa. (XLSX 306 kb)

Additional file 6: Table S3. Identified protein families and domains of
semi-in vivo pollen tube-secreted proteins. (XLSX 515 kb)

Additional file 7: Table S4. List of protein accessions derived from
protein supergroup (see materials and methods) pairwise comparison
listing unique and common protein accessions between SIV-PS and in
vitro pollen tube secretomes and proteomes. The data file also includes
individual replicates of in vitro pollen tube-secreted proteins and identified
total proteomes. (XLSX 30434 kb)

Additional file 8: Table S5. Pollen tube secretome protein accessions
mapped to the Arabidopsis semi-in vivo transcriptome. (XLSX 178 kb)

Additional file 9: Figure S4. Bioinformatic workflow and detection of
N-glycosylation of secreted proteins by concavalin A staining. a In silico
classification of secreted proteins into conventionally and unconventionally
secreted proteins based on the presence or absence of an N-terminal signal
peptide (SP) using SignalP v4.1 prediction algorithms. Each protein class was
further analyzed for its potential secretion using the secretomeP database
and putative post-translational modifications as indicated. b Prediction of
plasma membrane GPl-anchoring using FragAnchor. The reliability of the
implemented prediction algorithms was tested by independently analyzing
Uniprot-derived accessions (upper column) and in-house Nicotiana tabacum
protein sequences (lower column) with limited sequence annotation. ¢
Subcellular localization prediction using the LocTree prediction data-
base. Independent prediction with the targetP database (Additional file
10: Figure S5) emphasized secretion of SP-containing proteins and
largely ambiguous localization of unconventionally secreted pollen tube
proteins. d One-dimensional SDS-PAGE profiling of pollen tube-secreted
proteins. Right: banding patterns show the distinct profile of SIV secreted
proteins (SIV-PS1, SIV-PS3) relative to unpollinated pistil control. e Concavalin
A glycosylated protein detection of pollen tube-secreted proteins. A
subfraction of SIV-PS is postranslationally glycosylated (red rectangle).
(TIF 896 kb)

Additional file 10: Figure S5. Prediction of transmembrane helices
(TMHSs) in pollen tube-secreted proteins and LocTree-associated GO
terms. a Analysis of TMHs of pollen tube-secreted proteins using TMHMM
algorithms. Right: validation of TMHMM algorithms using sequences from
known Arabidopsis pollen tube plasma membrane proteins (ACA9, ANXT,
ANX2, KRP2, KRP4) and non-TMH-containing pollen tube palmitoylated
plasma membrane proteins LIP1 and LIP2 as controls. The absence of
TMHs in pollen tube-secreted proteins also supports their potential
secretion to the apoplast and extracellular matrix. b Independent
prediction of pollen tube-secreted protein subcellular localization
using the TargetP database. ¢ Representative GO terms associated
with the corresponding LocTree-predicted localization (Additional file
9: Figure S4) derived from PSI-Blast of pollen tube-secreted proteins.
(TIF 780 kb)

Additional file 11: Figure S6. Pollen tube secretome GO-slim term
enrichment and expression profiling of secretory pathway genes. a
Enriched GO-slim term comparison. The color scale indicates comparative
enrichment and overlaid bar charts show GO term enrichment within
protein subgroups; numbers represent associated accessions (p < 0.05).
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b Unique GO-slim terms of the unconventionally secreted pollen tube
protein subset. A full list of GO terms is provided in Additional file 8:
Table S5. c Plant secretory pathways with annotated genes derived from
genetic studies [79-81]. d Microarray profiling of secretory pathway genes
during tobacco pollen tube growth. e Semi-RT-PCR validation of selected
secretory pathway genes in tobacco semi-in vivo pollen tubes and unfertilized
owvules. A list of primers is provided in Additional file 20: Table S8. (TIF 610 kb)

Additional file 12: Figure S7. Assessment of pollen tube secreted
RNases and defensin subgroup protein homology. a PD1 RNase family
protein alignment with tobacco-derived NtRNasel and RNase NE
proteins. b RT-PCR analysis of pollen tube-secreted RNases showing
specific expression in female reproductive tissues alone in unpollinated as
well as pollinated samples (14 hours post-pollination). PT24 24 h cultivated
in vitro pollen tubes. ¢ Alignment of Torenia fournieri CRP1-3 with NtPsCRP1.
Pink highlighting indicates the predicted signal peptide of NtPsCRP1 and the
green highlighting shows the six conserved cysteine residues of the defensin
subfamily. Amino acids conserved in at least two sequences are shaded. d
Neighbor-joining phylogenetic tree using percentage identity and node
values showing closer association of NtPsCRP1 with TfCRP1 and TfCRP3. A
list of primers used is provided in Additional file 20: Table S8. (TIF 546 kb)

Additional file 13: Figure S8. Pairwise alignment of Arabidopsis and
tobacco TCTP proteins and expression profile of LAT52 and PRK2/4
receptor kinases. a Amino acid conservation between the Arabidopsis and
N. tabacum TCTP protein. Blue highlighting indicates mismatches. b A
hydropathy plot of NtTCTP hydrophobicity prediction based on the Kyte
Doolitle method showing GRAVY score (red line) and overall hydrophobic
nature of NtTCTP. ¢ In vitro pollen tube growth assay of +/Attctp-1 tetrad
pollen showing normal pollen tube germination. d Aniline blue staining
of self-fertilized +/Attctp-1 pistils 18 h after pollination, independently
verifying normal pollen tube growth in planta. e Pairwise alignment of
pollen tube-secreted L. barbarum LAT52-like and S. lycopersicum LAT52
proteins. Alignment showing the predicted 23 amino acid N-terminal
signal peptide (blue highlighting), the conserved eight cysteine residues
(boxed), and N-glycosylation sites (grey highlighting). f Expression profiles
of pollen receptor kinase 2 (PRK2) and pollen receptor kinase 4 (PRK4)
derived from Agilent 44 K Tobacco Genome Array [19] and Arabidopsis
Affymetrix ATH1 microarray [53] data. g Semi-RT-PCR verification of PRK2
and PRK4 expression in tobacco mature pollen (MP), 4 h (PT4) and 24 h
(PT24) in vitro pollen tubes, leaves (LF), roots (RT), SIV pollen tubes, and
unfertilized ovules. h Topology of the receptor modules, PRK2 and PRK4,
and the ligand module LAT52. We speculate that detection of both
modules after 24 h of pollen tube growth implies a later function of the
complex leading to successful fertilization. (TIF 953 kb)

Additional file 14: Figure S9. Secreted NtPsCRP2 displays “stop-and-go”
movements in root epidermal cells. a A 2'30” span confocal time-series and
b a close-up 0'55" of the junction of two root epidermal cells showing

NtPsCRP2-GFP localized activities at the root elongation zone. Three classes
of activities could be deduced: “a”, plasma membrane tethered or dormant
(static) vesicles; "b", tethered at first followed by active movements; and “c”,

mobile at first followed by tethering. Scale bars =5 puM. (TIF 1515 kb)

Additional file 15: Movie 1. The “stop-and-go” cycling movements of
NtPsCRP2-GFP in Arabidopsis roots. (AVI 17600 kb)

Additional file 16: Movie 2. A close-up of NtPsCRP2-GFP “stop-and-go”
movements at the junction of two epidermal cells at the root elongation
zone. (AVI 3679 kb)

Additional file 17: Table S6. GO terms enriched in the semi-in vivo
pollen tube secretome. (XLSX 472 kb)

Additional file 18: Table S7. Overlap between the tobacco semi-in
vivo pollen tube secretome and the proteome of olive pollen tube-
secreted nanovesicle exosomes. (XLSX 17 kb)

Additional file 19: Figure S10. Microarray expression profiling of
AtLLG3 pre- and post-pollination. a High abundance of AtLLG3 in mature
pollen relative to whole flower expression. b A near twofold increase of
AtLLG3 expression in pollinated pistils 8 h after pollination relative to

3.5 h post-pollination. Expression data were derived from the Affymetrix
Arabidopsis ATH1 Genome Array at Genevestigator [53]. ¢ Predicted
NtLLG3 25 amino acid N-terminal signal peptide motif (red) as well as
protease cleavage site (arrow). At the C-terminus is the predicted

GPl-anchor site (blue) and cleavage site (serine, red underlined S) for
anchor release. (TIF 402 kb)

Additional file 20. Supplementary text. Expression profiling of core
genes of the classic secretory pathways in semi-in vivo pollen tubes and
unfertilized ovules. (DOC 23 kb)

Additional file 21: Table S8. List of primers used in this study.
(XLSX 12 kb)
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