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Abstract: Growing season temperatures drive treeline position on a global scale. However, 
environmental factors including wind action may critically modify the position of treeline 
ecotone on a regional or a local scale. The intensity of wind action increases with shortening 
of treeline-summit distance. High intensity of wind action may cause the presence of a 
summit syndrome. This results into the lowering of treeline below its potential limit given 
by temperature conditions. Alpine treeline ecotones occurring in 11 mountain ranges 
including the Harz Mts., the High Sudetes and the Carpathians represented the model areas 
for my research. These mountains are located at the 50th parallel and reflect an increase in 
the gradient of continentality. Moreover, the distance of treeline from the summit is highly 
variable among these mountains. These mountains are moreover characterized by 
differences in mass elevation effect and in the summit syndrome intensity. Treeline position 
in Central Europe is increasing its elevation about 94 m per 100 km towards the east, when 
reflecting rise of elevation isotherms due to increasing continentality. However, thermal 
conditions of the majority of these treelines do not differ significantly from each other as 
well as from similar positions in the Alps. Treelines in the Harz, Králický Sněžník, Hrubý 
Jeseník and Veľká Fatra are, however, an exception. These mountains showed higher radial 
and apical growth when compared to the rest of investigated treelines. We found that 
temperature conditions were strongly correlated to radial growth, correlations were lesser 
for height growth below 2 m and there was no correlation with height growth above 2 m. 
Results of xylogenesis indicated a potential influence of wind action on wood formation in 
high-elevation tree stands. Anyway, the high wind speeds were reflected in higher 
occurrence of clonal tree islands and irregular tree crowns reflecting prevailing wind 
direction in winter. Wind was able to limit only apical growth of trees after they exceed the 
height of 2 m. The approximate rate of this limitation was 0.65 cm per 1 m.s-1 of wind 
increment per year. Nevertheless, the overall wind-induced depression of highest treeline 
positions is probably low, even in windy mountain regions such as the mountainous regions 
of Central Europe, because even in the highest elevations, the wind-sheltered sites 
favourable for tree growth exist. Thus, overall effect of summit syndrome in mountains of 
Central Europe generally manifests in a difference in tree size between wind protected and 
wind affected sites. This might lead to slight treeline depression in mountain ranges such 
as the Králický Sněžník Mts. and Hrubý Jeseník Mts. 
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Abstrakt: Na globální úrovni je poloha horní hranice lesa daná izotermou teploty vegetační 
sezony. Na regionální úrovni, však může být její poloha modifikována dalšími 
environmentálními faktory, jako je například působení větru. Intenzita působení větru roste 
se zkracující se vzdáleností mezi ekotonem horní hrance lesa a vrcholovými oblastmi. 
Vysoká intenzita působení větru může vést k přítomnosti vrcholového fenoménu. Ten může 
vést ke snížení polohy horní hranice lesa pod její potenciální elevaci danou teplotními 
podmínkami. Ekoton horní hranice lesa vyskytující se v jedenácti pohořích Střední Evropy 
v Harzu, Vysokých Sudetech a Karpatech sloužil jako model pro můj výzkum. Tato pohoří 
kopírují 50. rovnoběžku a podél gradientu rostoucí kontinentality. Vzdálenost polohy horní 
hranice lesa od vrcholu je v těchto pohořích značně variabilní. Kromě toho se jednotlivá 
pohoří liší svou hmotnatostí a pravděpodobně také intenzitou vrcholového fenoménu. 
Poloha horní hranice lesa ve Střední Evropě roste o 94 m na 100 km směrem k východu, 
přičemž kopíruje nárůst nadmořské výšky izoterm v důsledku zvyšující se kontinentality a 
hmotnatosti pohoří. Teplotní podmínky na většině horních hranic lesa se vzájemně neliší. 
Stejně tak se neliší od podmínek na podobných stanovištích v Alpách. Výjimku tvoří Harz, 
Králický Sněžník Hrubý Jeseník a Veľká Fatra. V těchto pohořích byl rovněž zaznamenán 
vyšší radiální přírůst. Teplotní poměry silně korelovaly s radiálním růstem, ale pouze slabě 
s výškovým růstem stromů nižších než 2 m a vůbec s výškovým růstem stromů vyšších než 
2 m. Také rozdíly v časování fenologických fází tvorby dřeva napříč ekotonem hranice lesa 
naznačily možný vliv větru na růst stromů v nejvyšších částech ekotonu. Vysoké rychlosti 
větru se odrazily ve vyšším výskytu klonálních stromových skupinek a nepravidelném 
tvaru korun kopírujícím převládající větrné proudění v zimních měsících. Navzdory tomu 
výsledky neprokázaly vliv větrem indukované ztráty biomasy na růst stromů ve 
zkoumaných pohořích. Vítr snižoval výškový přírůst stromu po dosažení výšky 2 m o 
0.65 cm při nárůstu rychlosti větru o 1 m.s-1. Přesto lze říci, že větrem způsobené snížení 
polohy horní hranice lesa je pravděpodobně malé i v větrných pohoří v rámci studované 
části střední Evropy. Vliv vrcholového fenoménu se v pohořích Střední Evropy projevuje 
pouze vytvářením rozdílu ve velikosti stromů mezi návětrnými a závětrnými polohami. 
Vrcholový efekt mohl tímto způsobem přispět ke snížení polohy horní hranice lesa 
v Králickém Sněžníku a Hrubém Jeseníku.  
 

Klíčová slova: horní hranice lesa, vrcholový fenomén, růst stromů, Vysoké Sudety, Harz, 

Karpaty 
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I.  Introduction 
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1 Introduction 

Treeline is a prominent vegetation boundary separating montane or subalpine forest 

from alpine zone (Körner 2012). In fact treeline is a transition zone (ecotone) of varying 

width. Across the treeline ecotone there is a considerable decline in tree size with increasing 

elevation. Steepness and position of this transition zone is controlled by the factors 

influencing tree growth, tree recruitment as well as by geomorphic or soil conditions 

(Holtmeier 2009). 

The main driving factor of treeline position is an insufficient amount of heat during 

the growing season (Körner and Paulsen 2004). Low amount of heat does not allow to form 

tree stature. As a result, treelines are located at positions with very similar temperature 

conditions all over the world (mean air temperature 5 to 7 °C in the growing season, Körner 

and Paulsen 2004). Nevertheless, on a regional or local scales, treeline position may be 

considerably modified by other factors than temperature. This includes snow, wind, soil, 

and geomorphic conditions (Carlson et al 2011, Han et al. 2012a, Takahashi 2014).  

Vegetation boundaries are often located below their potential limit given by 

temperature conditions. This is particularly true in mountains of limited extent or on 

isolated peaks, where vegetation transition zones are near to summits (Cogbill and White 

1991, Carlson et al. 2011). This situation is in literature referred as a summit syndrome 

(Cogbill et al. 1997, Odland 2015). Besides of potentially limiting soil resources, the 

influence of wind seems to play a critical role in presence of summit syndrome (Carlson et 

al. 2011).  

Treelines not reaching their temperature-limited potential positions were reported 

from Rocky Mountains (Holtmeier 1982), Appalachians (Leffler 1981, Cogbill and White 

1991, Carlson et al. 2011), mountain regions of Central Japan (Takahashi 2014), Korean 

peninsula (Han et al. 2012a), Andes of Southern Ecuador (Wagemann et al. 2015), or from 

the Scandes (Kullman and Öberg 2009, Odland 2015). Treelines affected by the summit 

syndrome might represent source of uncertainty, when computing globally valid treeline 

temperature metrics (e.g. Körner and Paulsen 2004, Paulsen and Körner 2014) and when 

predicting responses of treelines to climate change (Cogbill and White 1991, Marcias-

Fauria and Johnson 2013, Schickoff et al. 2015). However, the literature dealing with 

treelines influenced by summit syndrome or by intense wind action is relatively rare (e.g. 

Cogbill and White 1991, Cogbill et al. 1997, Holtmeier and Broll 2011, Odland 2015). 
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Moreover, the potential effect of wind action on treeline depression has not been 

sufficiently quantified. 

Mountain ranges in Central Europe offer a possibility to study treelines differing in 

wind conditions as well as treelines located in varying distances from summits. Treelines 

might be depressed against their potential position due to the wind influence (Jeník 1961). 

The reasons of wind-induced treeline depression might be attributed to e.g. abrasion of 

stems and shoots by ice particles (Han et al. 2012a), weakening of hormonal signal due to 

partial loss of buds (Susiluoto et al 2010), apical breaks (Kajimoto et al 2002), or the need 

for production of reaction wood given, which demands a lot of resources (Du and 

Yamamoto 2007). To describe the influence of wind and summit syndrome on treeline the 

following goals were set: 

i) To calculate temperature metrics for the highest treeline positions in mountain 

ranges of Central Europe and to compare these data among each other and with 

potential treeline temperature values published in literature.  

ii) To compare relationship between growth and temperature metrics of the 

uppermost tree stands in Central Europe. 

iii) To provide an analysis of the growth and morphology of trees growing along 

the wind speed gradient in the treeline ecotone.  

iv) To evaluate differences in the timing of wood phenology at lower compared to 

the upper part of the treeline ecotone.  
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2 Literature review 

This chapter reviews the current state of knowledge on (i) definition of treeline 

ecotone, (ii) hypotheses explaining limits of tree presence in cold environment, (iii) tree 

growth at treeline, (iv) supplementary factors influencing treeline position, and (v) recent 

treeline dynamics. 

 

2.1 Treeline definition 

According definitions of Holtmeier (2009) or Körner (2012), treeline ecotone can 

be delimited by three lines connecting tree species stands with the same or very similar 

characteristics (Figure 1): (i) timberline, the line connecting the uppermost margins of 

closed forest, (ii) treeline, the line connecting the uppermost stands of individuals fulfilling 

the definition of tree, which is usually a minimum height of 2 or 3 m and upright stem, and 

(iii) tree species line connecting upper limit of individuals represented by individuals of 

tree species lower than minimum height, by krummholz or seedlings.  

 

 
Figure 1: A schematic representation of treeline ecotone (Körner and Paulsen 2004) 

The treeline ecotone is defined by minimum canopy cover and minimum tree size. 

The critical value for treeline delimitation according to criteria of canopy cover is variable 

in literature. For example, Roessler et al. (2008) used a threshold of 16 % of canopy cover 

for delimitation of isolated forest patches. Král (2009) defines treeline ecotone as an area 

with canopy cover from 26 to 50 %. On the other hand, Treml and Chuman (2015) define 

minimum canopy cover for treeline 50 % and Szerencsits (2012) applied threshold 60 % 

for delimitation the closed forest. The size of pixel, where the minimum canopy should be 
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achieved to form “forest” varies a lot among authors, usually reflecting data source they 

employed. 

Many authors delimit the upper margin of treeline ecotone as a line connecting 

stands of trees with minimum tree height. Holtmeier (1963 in Holtmeier 2009) defined this 

value as an average height of snow pack. Recently the thresholds of 2 metres (Holtmeier 

and Broll 2010, Kullman 2010) or 3 m (Paulsen et al. 2000, Gehrig-Fasel et al. 2006, Körner 

2012, Szerencsits 2012) are generally accepted. However, the more preferred threshold 

seems to be the tree height of 3 m. Moreover, height of 3 m corresponds very well with 

minimum size of trees recognizable on aerial images (Kašpar and Treml 2016). 

 

2.2 Hypotheses explaining the formation of treeline 

Since the times of pioneer treeline studies, several hypotheses explaining the 

treeline formation had been published. Hypotheses explaining the existence of treeline 

ecotone stem from two basic principles. The first can be described as a global-scale concept 

(Körner 1998), which is characterized by strong focus on ecophysiological perspective of 

tree growth (Körner 2012). Second concept is based on understanding of spatial and 

temporal patterns of trees, facilitation and competition (Holtmeier 2009). Körner (2012) 

summarized hypotheses into five major groups: 

1. The stress hypothesis: tree growth is limited due to repeated damage given by frost 

desiccation, freezing or phototoxic effects. 

2. The disturbance hypothesis: tree growth is limited by biomass loss caused by 

various factors such as mechanical damage by wind, ice blasting, snow breaks, 

avalanches, fungal infections. Trees are then not able to balance such biomass loses 

in longer time scale. 

3. The reproduction hypothesis: pollination, seed development and seedling 

establishment may be limited at treelines due to several factors such as harsh 

meteorological or soil conditions. 

4. The carbon balance hypothesis: either carbon uptake and carbon balance may be 

limiting factor of tree growth at treeline due to low intensity of photosynthesis at 

low temperature. 

5. The growth limitation hypothesis: synthetic processes that lead from sugars and 

amino acids to the complex plant body may not be sufficient for growth or 

replacement of tissue that needs to be renewed. 
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Deviations of treeline position from potential value given by thermal conditions 

might be explained by stress and disturbance hypotheses (Case and Duncan 2014). 

However, some disturbances such as frost desiccation have less negative effect than was 

originally assumed (see review in Körner 2012).  

High seedlings densities have been observed at many treelines, but these seedlings 

are not able to attain tree size (Wang et al. 2016). Successful seedling establishment and 

survival require several successive years with favourable conditions (i.e. sufficient warmth 

and moisture) together with a suitable microsite conditions (Barbeito et al. 2012). Many 

treeline tree species do not exclusively rely on sexual reproduction because of their 

capability to spread via clonal reproduction (Holtmeier and Broll 2017). Therefore, 

recruitment-limiting hypothesis does not allow to explain the treeline presence at a global 

scale and is probably supplementary to other hypotheses (Körner 2012).  

Source limitation hypothesis is probably also not generally valid, because there was 

observed no difference in carbon uptake in comparison with trees growing in lower 

elevations (Hoch and Körner 2012). 

According to sink limitation hypothesis, trees are not able to build new cells and 

finish their complete maturation due to low temperatures. Trees are still able to produce 

sugars and amino acids (Körner 1998) but they are not able to use them to build a new 

tissue. Hoch and Körner (2012). The growth limitation hypothesis relates low growth rates 

to inability of trees to build a new tissue because of too low temperature (Körner 1998). At 

low temperature, secondary growth is restricted despite of sufficient supply of 

carbohydrates (Hoch and Körner 2012). During the process of secondary growth the new 

tracheids are formed (Palardy 2008). Their amount is governed by the rate and duration of 

xylogenesis (Cuny et al. 2014), which is in cold climates controlled mainly by temperature 

conditions (Rossi et al. 2016). This assumption was confirmed by experiments of Gričar et 

al. (2006), during which heated trees produced more cells at locally heated parts of stem in 

comparison to untreated or cooled stems. 

Recently, Petit et al. (2011) suggested that low efficiency of water conductive 

system limits tree growth at cold sites. To grow larger and taller, trees need to wide their 

conduit elements near to stem base (Anfodillo et al. 2006). However, low temperatures 

inhibit a formation of big conduits because the growing season is too short (Petit et al. 2011, 

Anfodillo et al. 2013). Consequently, high trees cannot maintain sufficient water supply 

during entire growing season. 
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On the basis of specific influence of climate factors or disturbances, following types 

of treeline ecotone can be distinguished (Harsch and Bader 2011): (i) diffuse treeline, 

characterized by the gradual transition of forest into alpine grasslands, which corresponds 

with gradual decrease in available heat with increasing altitude. (ii) abrupt treelines, 

characterized by a sharp boundary between forest and alpine zone Abrupt treelines emerge 

at places with strong establishment constraint (drought, strong competition with herbal 

layer, strong radiative cooling, Harsch and Bader 2011) (iii) krummholz treelines, 

characterized by presence of dwarfed and prostrate individuals above treeline and 

(iv) islands treelines, characterized by the presence of tree islands within the treeline 

ecotone.  

Krummholz treelines are characteristic by the strong influence of other modifying 

factors than temperature such as precipitation regime (drought, high snow loads) and wind 

action. However, krummholtz tree form is a result of damage induced by wind actions 

(Harsch and Bader 2011). Island treelines are formed at places where facilitation is 

extremely important (intense wind action, radiative cooling) (Holtmeier and Broll 1992, 

Renard et al 2016). Abrupt, krummholz and island treelines have shown weaker response 

to recent temperature increase than diffuse treelines. 

 

2.3 Tree growth as a main determinant of treeline position 

2.3.1 Primary and secondary growth 

Primary growth is represented by an apical growth and an elongation of shoots, 

whereas secondary growth is manifested in radial increment (Vaganov et al. 2006, Speer et 

al. 2012).  

Shoots elongate as a result of bud opening and expansion of apical meristems 

(Pallardy 2008). Shoot elongation is a very organized process that involves cell division 

followed by cell expansion (Pallardy 2008). Meristematic activity in elongating shoots 

occurs near the shoot apex, the overall activity of apical meristems is correlated with 

duration and the rate of secondary growth (Pallardy 2008).  

Radial increment is caused primarily by meristematic activity in the vascular 

cambium (Vaganov et al. 2006). Cambial zone is a layer of several flattened meristematic 

cells. Two types of cell division occur in cambial zone. Tangential division leads to 

production of new xylem and phloem cells. Multiplicative division leads to production of 

new cambial initials (Pallardy 2008). During the tangential division, cambial cells divide 
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towards the stem centre (to form xylem) and towards bark to form new phloem cells 

(Vaganov et al. 2006). 

 

2.3.2 Anatomy of conifer wood 

Conifer wood is composed of vertical (tracheids, parenchyma cells, resin ducts) and 

horizontal elements (radial rays). Vertical elements form about 90 % of the wood (Vaganov 

et al. 2006). 

Vertical elements, namely tracheids, are dominant element of conifer woods. Their 

length varies usually from 1.5 to 5 mm and is particularly driven by the position within the 

stem. Their diameter varies by the position within the stem in the range from 20 to 80 

microns.  

Tracheids have two main functions: (i) they support tree stature and (ii) they supply 

leaves by water and nutrients. To do so, they are connected by pits in their walls. The overall 

efficiency of the entire system depends on the size of tracheids as well as on the size of pits 

in cell walls (Schulte 2012). New tracheids differentiate from cambial zone where cambial 

cells divide and form to their derivate - xylem and phloem. Following phases of xylem 

formation can be distinguished (Figure 2): cambial zone cells (CZ) characterized by thin 

cell walls and small radial diameters (Rossi et al. 2006a). During the period of dormancy, 

the cambial zone contains usually 4 to 6 cells, however, when cambium is reactivated at 

the beginning of growing season the amount of cells in cambial zone increase up to 40 cells 

within few weeks (Pallardy 2008). Enlarging cells (EN) develop from cambial zone cells 

by progressive extension of cell walls. (Rossi et al. 2007, Pallardy 2008). During this phase, 

the cell grows in length and diameter, while a very thin and plastic cell wall (primary cell 

wall) is created (Pallardy 2008). When cell is big enough, the wall thickening phase 

begins (WT). In this phase the lignin is being stored in cell walls and secondary cell wall is 

created (Pallardy 2008). Finally, each cell reaches maturity (MC) and terminates by its 

programmed death (Pallardy 2008, Gryc et al. 2012). As a result, tree stem is composed 

almost exclusively from dead cells that are predominantly responsible for transport of water 

and minerals from roots to leaves (Pallardy 2008).  

Besides of dead parenchymatic cells, there are also living parenchyma cells in the 

stem, which predominantly serve to store reserves (Pallardy 2008). In response to change 

of stem strain or position caused by mass movements, landslides or long term wind 

pressure, trees start to produce reaction wood (Du and Yamamoto 2007, Tumajer and Treml 
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2013). By production of reaction wood trees compensate the outside pressure and try to 

restore previous stem position (Du and Yeamamoto 2007). In conifers, reaction wood is 

characterized by small cell lumens with thick cell walls of more circular diameters than 

normal wood (Du and Yeamamoto 2007). This is, however, compensated by low 

conductive capacity (Mayr et al. 2006). 

 

 
Figure 2: Microsection of Picea abies wood (cross-section) for analysis of intra-annual 
growth under normal (a) and polarized (b) light. The sample is magnified 400 times. 
Abbreviations: Ph – Phloem; CZ – cambial zone cells; EN – enlarging cells; WT – wall 
thickening cells; MC – mature cells. 

Horizontal elements are represented mainly by radial rays. These mostly 

parenchymatic cells are longer in radial than in vertical direction with considerably longer 

life than tracheids. Their presence along the stem is random but their total volume can 

represent up to 10 % of stem biomass. The main purpose of radial rays is a support of 

conductive system while radial rays connect the inside parts of the stem with cambial zone 

(Wilson and White 1986).  

Wood anatomical properties are changing during the growing season. ‘Earlywood‘ 

is produced at the beginning of the growing season, whereas later in the growing season 

trees start to produce so called ‘Latewood‘ (Pallardy 2008). Earlywood has lower density 

and mechanical strength but higher water conductive potential and water storage capacity 

than latewood (Domec and Gärtner 2002). This is because earlywood tracheids have wider 
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cell lumens than latewood cells (Schulte 2012), a reflection of different demands on water 

supply during the growing season as well as the course of temperature conditions (Domec 

and Gärtner 2002, Pacheco et al. 2015, Castagneri et al. 2015 and 2017, Carrer et al. 2016, 

Ziaco et al. 2016). Latewood increases the mechanical strength of the stem (Vaganov 2001, 

Domec and Gärtner 2002, Pallardy 2008). 

 

2.3.3 Climatic factors of tree growth at treeline 

Temperature and growing season length 

Tree growth lasts in temperate and boreal zones of the northern hemisphere from 

March to October with deviations reflecting temperature and moisture conditions (Rossi et 

al. 2016). Nevertheless, the highest intensity of cell production is observed around summer 

solstice (Rossi et al. 2006a). Rossi et al (2006a) explains the synchronization of maximum 

cell production with day length as an adaptation of trees, which ensures that all newly 

created cells reach maturity before the end of the growing season.  

At treeline, temperature is the main controlling factor of tree growth (Körner 2012). 

Körner and Paulsen (2004) determined mean treeline growing season temperatures by 

direct measurements ranging from 5 to 7 °C. This theoretical concept was later supported 

by studies of intra-annual tree growth. Multiple studies proved that division of cells in 

vascular cambium proceeds when temperature exceed 5 °C (Rossi et al. 2007) and 

secondary cell wall thickening starts when average temperatures exceeds 6 – 8 °C (James 

et al. 1994, Rossi et al. 2006a, 2007).  

However, cells need time to reach maturity. Therefore, the growing season length 

is important for tree growth as well. Common growing season lasts at treeline from 

100 to 140 days (Rossi et al. 2016). The minimum growing season length is approximately 

90 days as suggested by Körner (2012).  

According to Moser et al. (2009) the growing season is shortened about 3 to 4 days 

with every 100 elevation meters due to decreasing temperature and later snowmelt. 

Similarly, Vaganov et al. (1999) observed shortening of the growing season due to late 

snowmelt at Siberia.  

Snow cover 

Snow cover has negative effect on tree growth via shortening of growing season, 

however, some snow-related effects positively influence tree existence at treeline 

(Holtmeier 2009). First, snow cover protects roots from deep soil freezing due to isolation 
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effect (Holtmeier 2009). Second, snow protects needles from frost desiccation and late frost 

periods at the beginning of the spring (Tranquillini 1979). Snow supplies the majority of 

soil moisture in continental areas (Hu et al. 2010). However, the occurrence of frost 

desiccation is higher at wind affected sites than at wind protected sites (Cairns 2001). For 

example, in average 8.68 % of canopy is destroyed in winter in krummholz (Cairns 2001). 

 

Wind action 

Since wind speed generally increases with elevation (Barry 2008), treeline trees are 

significantly affected by wind. Wind is primarily responsible for snow relocation (Jeník 

and Štursa 2003, Mamet and Kershaw 2013, Renard et al. 2016) and related irregular snow 

pack distribution. Snow and ice transported by wind abrades tree stems and shoots (Han et 

al. 2012a). In addition, wind accelerates heat exchange (Grace et al. 1989, Anten et al. 

2010) and increases evaporative cooling (James et al. 1994). This eliminates the effect of 

radiative warming of the tree body during the daytime (James et al. 1994), which is less 

than 1 °C for stem and terminal shoots (Wilson et al. 1986, Wieser 2007) and about 2 °C 

for the canopy (Tranquillini 1963) when considered mean growing season temperatures.  

At treeline trees, several consequences of intense winds wind action were described: 

(i) the change of growth form (e.g. presence of krummholz) (Plesník 1971, 1978, 

Wooldridge 1996, Harsch and Bader 2011); (ii) reduction of needle size (Han et al 2012a); 

(iii) discrepancy in length of branches between wind affected and wind protected side of 

tree (Plesník 1971, Han et al 2012a); (iv) change in biomass allocation in stem and branches 

(Watt et al. 2005); (v) stem eccentricity (Nicoll et al. 2008); (vi) presence of reaction wood 

in tree rings (Schweingruber 1996, Watt et al. 2005, Dean et al. 2013); (vii) reduction in 

tree height (Takahashi et al. 2012).  

 

2.3.4 Internal factors of tree growth 

The majority of treelines at the Northern hemisphere is composed of conifers, which 

are probably better adapted to cold treeline conditions (Holtmeier 2009). However, even at 

conifers, the obvious genetic variability was observed within a specific species. For 

example results of Zubizarretta-Gerendian et al. (2012) showed that seedlings from 

different climatic regions differ in growing strategy in early stage of their live as well as in 

their growth response to July temperatures. At the same localities, trees originated from 

northern areas showed higher primary and secondary growth as well as earlier bud break 
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than individuals originated from southern locations (Beuker 1994a and 1994b, Gömory et 

al. 2012, Westin et al. 2000). 

Among internal growth factors, the effects of age and size play a crucial role 

(Pallardy 2008). Wood production of old trees starts later when compared to younger trees 

(Rossi et al 2007). Consequently, this leads to formation of narrower tree rings in old trees 

compared to juvenile individuals (Schweingruber 1996). The process of tree ageing is 

however not uniform and depends on site conditions. At sites with almost ideal conditions 

(sufficient amount of nutrients, precipitations and heat), the ageing process is considerably 

faster than at sites with restricted resources (Schweingruber 2007).  

As trees are ageing, they also become larger. During the growth, trees are facing 

two major problems connected with water conductivity. First, they need to overcome 

increasing hydraulic resistance given by the friction of water with the cell walls and, 

second, they need to maintain sufficient supply of water to needles (Petit et al. 2011). To 

overcome hydraulic constrains, trees start to create lower amount of larger cells which are 

able to deliver higher amount of water to the apex (Carrer et al 2015). However, maturation 

of larger cells needs more time than the maturation of smaller cells (Anfodillo et al. 2013), 

therefore, big trees need longer period for cell maturation than small trees. As a 

consequence of cell size allowed by growing season length, tree height gradually decreases 

from timberline to tree-species line. 

Besides direct environmental signal, division and differentiation of cells from 

cambial zone are controlled by activity of hormones from families of auxines, giberelines, 

cytokinins and ethylene (Pallardy 2008). Auxin is responsible for division of cells in 

vascular cambium (Pallardy 2008). Auxin is produced in terminal parts of stem (apex, 

shoots) and basipetaly transported towards the stem base (Friml 2003, Pallardy 2008). Its 

concentrations are affected mainly by photoperiod and ambient temperatures (Friml 2003, 

Rossi et al. 2007). 

 

2.4 Supplementary factors influencing treeline position 

2.4.1 Recruitment and seedling survival 

Tree recruitment at treeline is either generative (seed-based reproduction) or 

vegetative (layering) (Holtmeier and Broll 2017). The both reproductive ways are affected 

by heavy losses of newly established individuals/ramets. Seedling mortality is generally 

very high, commonly between 60 and 90 % (Germino and Smith 1999). Mortality of 
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layering branches is about 36 % over 20 years (Vacek et al. 2012). At treeline, a fecundity 

and viability of seeds is sufficient (Hofgaard et al. 2009), the crucial bottleneck is 

represented by seedling survival (Camarero and Gutiérez 1999). Most conifer species 

require suitable establishment microsites (with bare ground or sparse herbal layer) (Batllori 

et al. 2009). On the other hand, for further seedling survival, facilitation of surrounding 

vegetation might be necessary (Smith et al. 2003). The optimal conditions for successful 

seedling establishment are species specific (Gaire et al. 2014), however the most important 

factors of seedling survival are snow cover and temperature regime (Camarero and Gutiérez 

1999, Barbeito et al 2012). The relative importance of environmental factors differs with 

increasing age of individuals (Barbeito et al 2012). For example, the date of snow melt and 

overall radiation is important in early stages of tree life, whereas the influence of the other 

factors (such as wind) starts to be important when an individual reaches certain height 

(Barbeito et al 2012). The most favourable conditions for seedling survival are winters with 

sufficient snow cover preventing soil freeze, followed by early snowmelt together with 

relatively warmer springs and summers (Camarero and Gutiérez 1999, Barbeito et al 2012). 

Protective functions of surrounding tree stands may increase probability of seedling 

survival (Castanha et al. 2013). 

Suitable conditions have to be met over several successive seasons, because all 

seedlings can be destroyed during only one winter or summer with unfavourable conditions 

(Smith et al. 2003). The occurrence of a long favourable period including several seasons 

is relatively rare though. Thus, tree establishment is not a continuous process. For example, 

many of tree islands in the Rocky Mts. were established in medieval climate optimum and 

then persisted via clonal reproduction (Holtmeier and Broll 2017). Regeneration pulses 

related to periods with favourable climate were observed across the majority of treelines 

(Camarero and Gutiérez 1999 and 2007, Wilmking et al. 2004, Dalen and Hofgard 2005, 

Treml et al. 2016).  

 

2.4.2 Relief and topography 

Local topography often plays significant role in modification of treeline position 

because of the influence on soil conditions and snow accumulation patterns (Germino and 

Smith 1999, 2000, Holtmeier 2009). This is particularly true for the long-laying or 

permanent snow fields, which usually depress local treeline (Holtmeier and Broll 2005).  
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Steep rock walls limit the occurrence of trees, slope curvature might affect treeline 

position as well through snow accumulation (concave slopes) or locally accelerated wind 

speed (convex slopes) (Holtmeier 2009, Treml and Chuman 2015). Patchiness of treeline 

ecotone often follows microtopography features such as solifluction risers, block fields, 

debris flow tracks, avalanche tracks etc. (Resler et al. 2005, Treml 2007, Holtmeier and 

Broll 2007, Hofgaard et al. 2009, Czajka et al. 2015a). Very shallow and undeveloped soils 

on resistant unweathered substrates can be limiting factors of treeline position as well 

(Holtmeier and Broll 2005). 

 

2.4.3 The influence of mountain range size on treeline position 

Treeline position generally decreases with increasing latitude, with exception of the 

tropics. Further, treeline position increases along maritime-continental gradients and 

towards the mountain range interiors (Han et al 2012b, Odland 2015, Zhao et al. 2015). The 

latter pattern leads to higher treeline positions in extensive mountain ranges than in small 

isolated massifs, called as the mass elevation effect, originally ‘massenerhebung effect‘ 

(Brockmann-Jerosch 1919 in Wieser and Tausz 2007). The maritime-continental gradients 

occur, for instance, in central Scandinavia, where Kjällgren and Kullman (1998) reported 

an increase of the treeline elevation along the maritime-continental gradient between 

100 to 150 m per 50 km of distance from the sea to inland. Around Tromsø at the coast 

(69 N, 19 E), the treeline is at 200 m ASL, while its elevation rises up to 700 m ASL in the 

Swedish Lapland (Holtmeier 2009); i.e. by ca 290 m per 100 km. Other examples of 

increasing treeline positions along continentality gradients are reported from south-eastern 

Tibet (Han et al 2012b – ca 150 m /100 km) or from north America, where the treeline in 

the Western Cascades is situated at 1500 – 1800 m and reaches 3000 m ASL in the Rocky 

Mountains; i.e. its elevation increases by ca 60 m per 100 km (Holtmeier 2009). Zhao et al. 

(2014) reports that continentality explains 11 % of the variation in timberline position in 

the western part of Eurasia. The low elevation of treelines in maritime regions results from 

high snow loads and intense wind action (Öberg and Kullman 2012; Takahashi 2014). 

Concerning mass-elevation effect, mountains serve as elevated heat island, which 

makes them much warmer than free atmosphere in similar altitude leading to elevated 

treeline (Barry 2008). Central parts of mountain ranges receive more direct solar radiation 

because of less cloudiness compared to outer parts of mountains (Barry 2008). Mass 

elevation effect explains 52.2 % variability in global treeline elevation (Zhao et al. 2015). 
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2.4.4 Summit syndrome  

Simultaneous influence of specific non-thermal factors occurring near to mountain 

ridges and summits can be described as a summit syndrome (Carlson et al. 2011, Körner 

2012, Odland 2015). The expression ‘summit syndrome‘ (or ‘Gipfelphänomen‘ in German) 

was used first by Scharfeter in 1918 (Jeník 1961).  

The summit syndrome manifests by abrupt change in several environmental 

characteristics at and in close vicinity of summits: (i) decrease in near the ground air 

temperature and soil temperature due to intense winds and low (or no) snow cover; (ii) low 

development of soils and (iii) abrupt change in vegetation reflected in locally depressed 

climatically-driven vegetation boundaries (Cogbil et al. 1997, Carlson et al 2011). Summit 

syndrome has been described from low elevated mountain ranges such as the Appalachians 

or High Sudetes (Jeník 1961, Leffler 1981, Cogbill et al. 1997) or from isolated peaks 

(Leuschner 1996). 

In Appalachians, the patches of tundra ecotone are located in relatively low 

elevations at wind affected sites (Carlson et al. 2011). In addition, long lasting snow cover 

on leeward slopes depresses alpine tundra patches far below its climatic lower limit 

(Carlson et al. 2011). Consequently, treeline is depressed against its potential elevation up 

to 400 m (Cogbill et al. 1997), in southern part of Appalachians even about 1 000 m (Leffler 

1981). In central Europe, the summit syndrome was reported from High Sudetes (Jeník 

1961) and from isolated peaks of České Středohoří (Ložek 2011). 

According to Dahl and Birks (2007) or Körner (2012), true climatic treeline cannot 

be formed in low elevated mountain ranges, since it requires several hundred meters of 

mountain terrain above treeline (Körner 2012, Körner et al. 2017). Grabherr et al. (2003) 

describe treeline in low mountains as pseudo-alpine or topographic timberline.  

Isolated mountain massifs are often exposed to high wind speeds near summits 

(Barry 2008. Migała 2005). The acceleration of wind speed near isolated summits results 

from a low frictional effect of the surface on free air flow and from compression and 

subsequent release of air masses flowing over the mountain barrier (Barry 2008). Wind 

action is important particularly in winter, when wind transporting snow and ice abrades tree 

stems and leaves (Han et al. 2012a) and accumulates snow in leeward areas (Mamet and 

Kershaw 2013). Jeník (1961) described this phenomenon as a theory of anemo-orographic 

systems (A-O system). Even though, the presence of A-O system was described long time 

ago it was not sufficiently quantified. This also applies to entire summit syndrome, which 

is usually described as a binary factor which is just present or absent in given area.  
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2.4.5 Human interventions 

Almost all European treelines have been developing under human pressure. The 

first evidence of human activities at treeline in the Alps were documented from the fifth 

millennium BC (Tinner and Theurilat 2003, Kaltenrieder et al 2005, Rey et al. 2013, 

Schwörer et al. 2014).  

Even though, people were not able to reach the highest parts, the first evidence of 

pasture at treeline from the Alps are dated to 4 500 BC (Schworer et al. 2014). However, 

the first significant human interventions are dated from Southeastern Swiss Alps to 

4 900 BC (Kaltenrieder et al. 2005), while from the Northwestern Swiss Alps from 

1 000 BC (Schworer et al. 2014). First significant impacts (extensive erosion events) of 

mountain pasture on alpine landscape in Swiss Alps are dated to 12th century (Schworer et 

al. 2014). However, pasture in Swiss Alps receded considerably from the beginning of the 

19th century (Gehrig-Fasel et al. 2007). In Italian Alps, grazing intensity peaked in the 

middle of the 19th century. In the first decades of the 20th century however, grazing was 

sharply reduced, first after the World War I (which included also the ban of goat pasture) 

and second after the World War II. The highest intensity of forest usage is dated to the 18th 

and 19th century (Motta et al. 2006).  

In the Krkonoše Mts., the first significant human influences in the vicinity of 

treeline are dated to 1 000 AD (Malkiewicz et al. 2016) with substantial amplification of 

human impacts in 12th century (Speranza et al. 2000). Significant deforestation related to 

grazing and logging is dated to 15th and 16th century (Podrázský et al. 2007, Lokvenc 2007). 

In the Hrubý Jeseník and Králický Sněžník, the first human impacts were detected in 8th 

and 9th century, again with significant increase of human pressure from 14th century 

onwards (Novák et al. 2010, Dudová et al. 2013). In Carpathians, the first major human 

activities are dated to the era of Valach colonization, which lasted from 12th until 15th 

century (Plesník 1978, Fleischner and Chmiel 2010, Czajka et al 2015c). In High Tatras, 

treeline ecotone has been significantly affected by pasture and burning since 16th century 

(Obidowicz 1996, Plesník 1978). In 17th century, High Tatras hosted up to 200 000 sheep 

with the highest sheep density in the Belianské Tatry Mt. (up to 

2 000 sheep per square km). Both in Sudetes and Western Carpathians, the intensity of 

mountain agriculture culminated in 18th and the first half of 19th centuries (Lokvenc 2007, 

Czajka et al. 2015c). Human activities in the past resulted in depression of treeline position 

about 200 or 300 m in Tatras (Plesník 1978) and in the same values are estimated from 
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several locations in High Sudetes (Lokvenc 2007). However, in extreme cases the treeline 

was lowered up to 700 m below its original position (Plesník 1978, Czajka et al. 2015c). 

From the second half of 19th century, agricultural land abandonment started to be 

very important (Häufler 1955, Lokvenc 2007, Treml et al. 2016). Grazing and hay making 

in the vicinity of treeline ecotone was completely terminated in 1940s in the High Sudetes 

and in 1970s in Western Carpathians (Häufler 1955, Plesník 1978, Lokvenc 2007).  

In the 1970s and 1980s, mountain forests in Sudetes and Western Carpathians 

underwent the period of high acid pollution load. Foliage loss and nutrient depletion from 

soils led to substantial growth depression (Kolář et al. 2015, Czajka et al. 2015c).  

Despite the obvious human effect on treeline in the past, there is paleoecological 

evidence of naturally driven treeless area trough entire Holocene from the Krkonoše Mts. 

and from High and Low Tatra Mts. (Treml et al 2006, Novák et al. 2010, Obidowicz 1996). 

In the majority of remaining central-european mountains with treelines, alpine areas 

spontaneously developed in upper Holocene (Beug et al.1999, Novák et al. 2010, Kaczka 

et al. 2015), the latest. Since the middle of the 20th century, most treelines in Central 

European mountains have been developing spontaneously (Plesník 1978, Kozak 2003, 

Boltižiar 2007, Solár and Janiga 2013, Treml and Chuman 2015). 

 

2.5 Recent treeline dynamics 

In 20th century, increasing temperatures caused significant responses in 

temperature-limited ecosystems including treelines (Walther et al. 2002, Greenwood and 

Jump 2014). Most treelines revealed an increase in tree growth (Ponocná et al. 2016, Treml 

and Veblen 2017).  

A few studies reported that treelines have been advancing about 0.3 – 0.43 m.yr-1 in 

High Sudetes (Treml and Chuman 2015), 0.1 – 1 m.yr-1 in Alaska (Dial et al. 2016), 

1.15 m.yr-1 in the Alps (Leonelli et al. 2011), or even 3 m.yr-1 in Himalayas (Singh et al. 

2011). On the other hand, some studies described stable treelines, for example Nagy et al. 

(2013) in the Cairngorn Mts. or Shrestha et al. (2015) from Nepal. Moreover, canopy 

densification rather than upward shift of trees has been frequently observed in various 

regions (Gehrig-Fasel et al. 2006, Danby et al. 2007, Singh et al. 2011, Pardo et al. 2013, 

Treml et al. 2016, Wang et al. 2016). This is supported by the study of Harsch et al. (2009) 

who reported that only 52 % of treeline had been advancing, whereas 1 % were retreating 
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and 47 % of treelines had not changed its position. Furthermore, 80 % of advancing 

treelines were classified as diffuse (Harsch et al. 2009). 

Treeline position has been fluctuating troughout entire Holocene. The highest 

recorded treeline positions in Rocky Mountains were from 30 m (Carrara et al. 2015) up to 

100 m (Morgan et al. 2014) higher than present treeline positions. Tinner and Theurilat 

(2003) and Heiri et al. (2006) reported Holocene treeline maxima to be 200 m higher 

compared to present treeline.  

One of the possible reasons for ambiguous response of treeline to warming is a 

considerable time lag in treeline reaction (Körner 2012). Seedlings need some time to reach 

‘tree size‘. Further, seedling establishment and survival is an episodic process (Camarero 

and Gutiérez 1999, Smith et al. 2003, Barbeito et al. 2012) and occurs mostly in 

regeneration waves (Körner 2012, Wilmking et al. 2004, Treml et al. 2016). 

Plausible explanation of differences in treeline response to warming was offered by 

Harsch and Bader (2011) with their concept of treeline form (see above). Krummholz or 

abrupt treelines are relatively stable compared to diffuse treelines, because of other non-

climate factors such as wind conditions, precipitation regime etc. (Harsch and Bader 2011). 

Furthermore, the response to changing climate can be species specific as well (Schwab et 

al. 2017, Treml and Veblen 2017). 
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3 Study area 

Study area was represented by mountainous regions of Central Europe (from 

48 to 51 °N and 10 to 20 °E) with palaeoecological evidence of climate driven forest free 

zones (Beug et al. 1999, Treml et al. 2006, Novák et al. 2010, Obidowicz 1996). 

Geographical position of the High Sudetes as well as Harz makes from these mountains the 

first major barrier for winds of north-western direction (Migała 2005). These mountains 

thus belong among the windiest mountain ranges in Europe (Migała 2005).  

Most of the activities were conducted in the Krkonoše Mountains because of their 

good accessibility (study of xylogenesis). The Krkonoše Mts. belong to the windiest 

mountains in Europe (Migała 2005) and were therefore also suitable for studying the effect 

of wind on tree growth at treeline. The northernmost Central-European treeline ecotone is 

situated in the Harz Mountains (Hertel and Schölling 2011) (Table 1). Eastwards, the 

Sudetes represent an area with well-developed treeline ecotones (Krkonoše, Králický 

Sněžník and Hrubý Jeseník Mountains) (Jeník 1961). Further east, treelines are present on 

the Mt. Babia Góra and the Mt. Plisko in the westernmost flysch Carpathians (Figure.3) 

(Kozak 2003, Czajka et al. 2015b), in the Veľká and Malá Fatra Mountains (Plesník 1999) 

and in the Tatras (Plesník 1971). 

 

 
Figure 3: Location of the mountain ranges studied in Central Europe. Abbreviations in 
alphabetical order: (BG) Babia Góra and Pilsko; (BT) Belianské Tatry; (Jes) Hrubý 
Jeseník; (Kra) Králický Sněžník; (Krk) Krkonoše; (MF) Malá Fatra; (NT) Nízké Tatry; 
(VF) Veľká Fatra; (VT) Vysoké Tatry; (ZT) Západné Tatry. 
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The mountain ranges under study can be divided into two major groups. The 

Hercynian mountains (the Harz, Krkonoše, Králický Sněžník and Hrubý Jeseník Mountain) 

are lower elevated mountain ranges (from 1100 to 1600 m) composed mainly of acidic 

crystalline rocks characterized by flat summit surfaces and moderately steep slopes, with 

treelines located close to summits. The second group is represented by Western Carpatians, 

which vary in rock composition that includes limestone (Velká, Malá Fatra, Nízké and 

Belianské Tatry Mountains), flysh areas (Babia Góra Mountains) and crystalline massifs 

(the Vysoké and Západní Tatry Mountains, and the central part of the Nízké Tatry 

Mountains). In the Western Carpathians, there are mountains with moderate relief (Babia 

Gora or Veľká Fatra) or true alpine mountain ranges (the Vysoké or Západní Tatry 

Mountains). Treeline is located either close to summits at Babia Gora or Veľká Fatra Mts. 

or relatively far below summits (Vysoké Tatry, Západné Tatry). 

The climate in all investigated areas is cold and humid with mean growing season 

temperatures from 9.4 °C (Harz Mts.) to 7.2 °C (Nízké Tatry Mts.) (Kašpar and Treml 

2016) and annual precipitation from 1 200 mm (the Hrubý Jeseník Mountains) to 2 200 mm 

(the Vysoké Tatry Mountains: Migała 2005, Hlavatá et al. 2011). High-elevation tree stands 

are influenced by high wind speeds (Table 1).  

The dominant treeline tree species is Norway spruce (Picea abies [L.] Karst.) 

(Treml and Banaš 2000, Hertel and Schöling 2011, Czajka et al. 2015b). In the Carpathians 

Pinus cembra and Larix decidua occur as well (Czajka et al. 2015b). Prostrate dwarf pine 

Pinus mugo either native or planted often forms extensive closed stands above timberline 

(Wild and Winkler 2008, Švajda et al. 2011). Treeline Picea abies occurs at treeline either 

as seed-based individuals or in the groups (tree islands) formed by vegetative reproduction 

(Šenfeldr et al. 2014). 

The climate conditions together with vegetation and bedrock at Central European 

treelines determined development of soils, classified as podzols, dystric cambisols or 

rankers (on acidic crystalline bedrock and flysch) (Tomášek 1995, Granec and Šurina 1999, 

Hertel and Schöling 2011). Rendzinas are common in mountains composed of limestone 

(Granec and Šurina 1999). 

Treelines in Central Europe have been for a long time under anthropogenic pressure. 

Most of the treelines was affected by long-term cattle grazing (Plesník 1971, Plesník 1978, 

Boltižiar 2007) or hay making (Lokvenc 2007). However, relatively undisturbed treelines 

remained on steep, inaccessible slopes. Furthermore, in areas where cattle grazing ceased 

several decades ago (Table 1), tree stands managed to attain their presumed original 



22 

position (Doležal and Šrůtek 2002, Boltižiar 2007). In the majority of the mountains under 

study, the protected areas were established after World War II and during the second half 

of the 20th century (Table 1). In the second half of 20th century and recently, treelines have 

been developing relatively spontaneously due to the cessation of mountain agriculture and 

nature protection (Kozak 2003, Boltižiar 2007, Solár and Janiga 2013, Treml and Chuman 

2015).
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Table 1: List of selected mountain ranges, with the highest peak elevation, treeline elevation and information about pasture abandonment and 
establishment of protected areas. 

Mountain range Latitude, 
longitude 

Highest peak 
elevation  
(m a.s.l.) 

Published timberline 
elevation 

Pasture abandonment at the treeline 
eccotene 

Time of establishment of protected area 

Harz 51°48'N 
10°37'E 

1141 1100 m 
(Hertel and Schöling 

2011) 

Middle of the 19th century 
(Andreas Marten personal 

communication)  

Eastern part in 1990, western part in 1994, 
Nationalpark Harz in 2006 

(http://www.nationalpark-harz.de) 
Krkonoše 50°44'N 

15°44'E 
1603 1340 m 

(Treml and Migoń 2015) 
End of the 19th century, first half of 20th 

century 
(Lokvenc 2007) 

Karkonoski Park Narodowy 1959 (Polish side), 
Krkonošský národní park 1963 (Czech side) 

(http://www.krnap.cz) 
Králický Sněžník 50°12'N 

16°51'E 
1424 1305 m 

(Treml and Migoń 2015) 
First half of 20th century 

(Treml et al. 2016) 
National nature reservation Králický Sněžník 

1990 (http://www.sneznik.cz) 
Hrubý Jeseník 50°05'N 

17°14'E 
1491 1405 m 

(Treml and Migoń 2015) 
First half of 20th century 

(Treml et al. 2016) 
CHKO Jeseníky 1969 

(http://jeseniky.ochranaprirody.cz) 
Babia Góra 49°35'N 

19°32'E 
1725 1370 m 

(Czajka et al. 2015a) 
Beginning of the 20th century 

(Kaczka et al. 2015b) 
Babiogórski Park Narodowy 1994 

(http://www.bgpn.pl/en) 
Malá Fatra 49°10'N 

19°00'E 
1709 1450 m 

(Plesník 1978) 
After 2nd World War 

(Plesník 1978) 
CHKO Malá Fatra 1967 

(http://www.npmalafatra.sk) 
Veľká Fatra 48°55'N 

19°04'E 
1592 1510 m 

(Vestenický and 
Vološčuk 1983) 

After 2nd World War 
(Plesník 1978) 

CHKO Veľká Fatra 1973 
(http://www.sopsr.sk/velkafatraweb/sk) 

Nízké Tatry 48°57'N 
19°30'E 

2043 1550 m  
(Grodzińska el al. 2004) 

After 2nd World War 
(Plesník 1978) 

Národný park Nízke Tatry 1978 
(http://www.napant.sk) 

Západné Tatry 49°12'N 
19°45'E 

2248 1550 m  
(Švajda et al. 2011) 

Some parts from the 1879, the rest of the 
area after 2nd World War 

(Plesník 1978) 

Tatranský národný park 1948 
(http://spravatanap.sk) 

Vysoké Tatry 49°08'N 
20°13'E 

2655 1715 m  
(Plesník 1971) 

Some parts from the 1879, the rest of the 
area after 2nd World War 

(Plesník 1978) 

Tatranský národný park 1948 
(http://spravatanap.sk) 

Belianské Tatry 49°14'N 
20°13'E 

2152 1475 m  
(Plesník 1978) 

Some parts from the 1879, the rest of the 
area after 2nd World War 

(Plesník 1978) 

Tatranský národný park 1948 
(http://spravatanap.sk) 



24 

4 Materials and Methods 

Three different sets of methods of sample collection and processing were employed. 

First set of methods was used to calculate the thermal regime of treelines in Central Europe. 

Second set of methods was based on retrospective analysis of tree growth and 

morphometric measurements of selected trees. Last set of methods was related to 

monitoring and evaluation of xylogenesis. The number of sampled trees and sampling 

design differed according to the purpose of individual research tasks.  

The comparison of treeline temperature regime was carried out at regional scale. 

Mountain ranges with climatically-driven treeless areas were selected based on literature 

survey (11 mountain ranges in total). Then, the highest positions of treeline were 

determined in each mountain range. To do so, we used Google Earth for availability of 

high-resolution satellite images. Available climate data from nearest mountain 

meteorological observatories (monthly temperature means and monthly sums of 

precipitation) were adjusted to the treeline position.  

To compare thermal regime of treelines we computed mean temperature of the 

warmest month, mean Jun-Sep temperature and sum of temperatures above 0 °C. Further, 

mean growing season temperature and growing season length was calculated after Paulsen 

and Körner (2014). According this method, growing season length is shortened by the 

modelled duration of snow cover accumulated in the previous winter. 

Retrospective analysis of tree growth was used in two studies monitoring interaction 

of tree growth with wind influence (in the Krkonoše Mts.) and other influencing factors (at 

regional scale). For the analysis of treeline position at regional scale, trees from the highest 

treeline positions in 10 mountain ranges were sampled. 15 trees in each highest treeline 

position were cored and measured for various growth parameters and variables describing 

biomass loss (about 150 trees in total). At a local scale, we randomly selected 70 plots in 

the Krkonoše Mts. At each plot, we sampled 3 individuals. For both studies, we measured 

tree height, stem girth, length of branches in four directions, we determined presence of 

apical breaks, stem abrasion, presence of multistems, layering branches and the number of 

trees in tree group. Two tree-ring cores were collected from each tree, at 50 cm and at 

200 cm respectively. Obtained samples were used for analysis of radial growth and for 

calculation of average height increment. Tree ring cores were sanded and measured on 
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TimeTable using Past4 software (SCIEM 2009). The same software was consequently used 

for synchronization of tree ring series. 

To identify the response of wood formation to temperatures in treeline ecotone, 

xylogenesis was analysed at two localities at upper (treeline) and lower (timberline) part of 

treeline ecotone. Both localities were located at southern slope of the Mt. Luční hora in the 

Krkonoše Mts. An altitudinal gradient between sites was about 140 m. From 6 to 10 trees 

were sampled during growing seasons 2010, 2011, 2012. Sampling has been continuing on 

another two sites in 2014 and 2015, however the results from these two sites are not 

published yet. 

To analyse xylogenesis (intra-annual tree growth), microcores were collected each 

week using TREPHOR tool (Rossi et al. 2006b). Microcores were prepared (dehydrated 

and embedded into parafin) for sectioning following the procedure of Rossi et al. (2006b). 

Then, the samples were cut using microtome and attached to microslides (Gryc et al. 2012). 

Finally, the number of cells in each stage of development in three radial files was counted 

under 400x magnification.  

Among statistical methods used in this dissertation, linear models (regression, 

correlation, ANOVA) or mixed-effect models were computed in R (R Development Cote 

Team 2015), multivariate statistics were performed in CANOCO 5 (Šmilauer and Lepš 

2014). 
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Differences in intra-annual 
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abies across the treeline 
ecotone, Giant Mountains, 
Czech Republic. 

35 % 
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Abstract

Key message Picea abies requires warming of both the

above- and belowground parts of the tree for full

resumption of cambial activity.

Abstract Elevation-related decrease in growing season

temperatures is a highly important factor in limiting tree

growth in cold environments such as alpine treeline eco-

tones. In this study, we aimed to identify radial growth

timing differences in Picea abies (L.) Karst. between the

lower (timberline) and upper (treeline) parts of an alpine

treeline ecotone. Over three growing seasons, soil and air

temperatures were measured and phenology of wood for-

mation was analyzed at two sites separated by 140 m of

elevation in the Giant Mountains, Czech Republic. The

results showed that there were two periods with significant

differences in wood phenology between timberline and

treeline. In the early part of the growing season, higher

ambient temperatures at timberline led to higher number of

cambial and enlarging cells here than at treeline. In the

second part of the growing season, the bigger and/or more

numerous tracheids at timberline than at treeline required

more time for maturation. Significant delay in the begin-

ning of wood formation at treeline in comparison to

timberline was observed only in 2011, when soil was fro-

zen markedly longer at treeline. We found that cambial

activity significantly increased when soil temperature

increased from near zero to a threshold temperature of

4–5 �C. We therefore suggest that for P. abies both the

above- and belowground parts of the tree must be suffi-

ciently warm for full resumption of cambial activity.

Keywords Cambium � Xylogenesis � Giant Mountains �
Norway spruce � Tree ring � Elevation gradient

Introduction

Growth of trees at their upper altitudinal limits is limited

by available heat (Körner 2012a). Therefore, trees at cli-

matic treelines are sensitive to temperature oscillations,

with their reactions reflected in changes in radial growth,

height growth or growth form (Holtmeier 2009). Two

competing hypotheses have attempted to explain temper-

ature limitation of tree occurrence in cold environments

(Körner 1998; Wiley and Helliker 2012). The carbon bal-

ance hypothesis attributes low growth rates in cold envi-

ronments to low rates of carbon assimilation (‘‘source’’

limit); the growth limitation hypothesis, in contrast,

explains low growth by temperature limitation of building

new tissues (‘‘growth’’ or ‘‘sink’’ limit; Körner 1998).

Recently, the second seems to have received stronger

support (Hoch and Körner 2012; Simard et al. 2013), but

the exact description of low-temperature limitation of

physiological processes is still missing.

The relationship between temperature and tree growth

has been studied most frequently in terms of radial

growth, both on inter-annual (e.g., Büntgen et al. 2007)

and intra-annual time scales (e.g., Rossi et al. 2013).
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Radial growth is realized mainly by mitotic activity of

cambial cells and subsequent enlargement of cells dif-

ferentiated from the cambial zone. Cambial activity is

induced hormonally particularly by indole-3-acetic acid

(IAA), whose production, in turn, is affected by photo-

period and ambient temperatures (Friml 2003; Rossi et al.

2007). Higher tissue temperatures promote cambial

activity and cell enlargement (Gričar et al. 2006). These

processes are not possible without stem rehydration, since

the cambial water potential modulates cambial activity

(Savidge 2000; Turcotte et al. 2009). Based on these

considerations, complex climatic characteristics might,

therefore, be expected to affect tree growth at treeline

(e.g., Gorsuch and Oberbauer 2002).

Several studies have suggested that thermal limitation of

tree growth at cold sites is closely coupled with tree

architecture (Gruber et al. 2009; Petit et al. 2011; Anfodillo

et al. 2012; Körner 2012b). Larger trees are usually

exposed to lower ambient temperatures surrounding their

tree tops, and their roots are also cooler due to soil shading

by more extensive crowns (Gruber et al. 2009; Körner

2012a). Additionally, tree size and xylem conduit diameter

are strongly, positively related (Anfodillo et al. 2012).

Because tree stature decreases in the upslope direction

across the treeline ecotone, the ambient temperatures and

wood phenology of trees in this ecotone do not have sim-

ple, direct relationships with increasing altitude (Körner

2012a).

Published studies focused on intra-annual growth, con-

ducted along altitudinal transects including treeline eco-

tones have been performed on Pinus cembra (Gruber et al.

2009) and Larix decidua (Moser et al. 2009). However, to

our knowledge no data gathered from the altitudinal gra-

dient in the treeline ecotone are available for Norway

spruce [Picea abies (L.) Karst.]. Intra-annual wood for-

mation of P. abies has been studied particularly in less

extreme temperate environments (e.g., Gričar et al. 2014;

Cuny et al. 2014).

Picea abies is an important treeline species in Central

and Eastern Europe. In the treeline ecotone, the ring width

of P. abies is governed mainly by positive responses to

June–July temperatures (Büntgen et al. 2006; Savva et al.

2006; Büntgen et al. 2007; Hartl-Meier et al. 2014), but

temperatures of the preceding autumn are also important

(Treml et al. 2012). Across the treeline ecotone, the tem-

perature-growth relationship might weaken with increasing

elevation as a result of increasing climatic stress induced

by wind action, irregular distribution of snow or frost-

desiccation (Oberhuber 2004; Treml et al. 2012). One

possible reason for changing climate–growth relations

across the alpine treeline ecotone might be differences in

wood phenology between the lower and upper parts of the

ecotone, as different durations of wood-phenological

phases imply different sensitivities to growing season

temperatures.

In our study, we aimed to find the differences in phe-

nology of wood formation between the lower part of the

treeline ecotone (hereinafter called ‘‘timberline’’) and the

upper part of the treeline ecotone (‘‘treeline’’) in the Giant

Mountains, Czech Republic. Our objective was to discern

temporal differences in: (a) phenological phases and;

(b) the number of cells within the individual phases. We

assumed that the 140 m elevation difference between our

sites should lead to significant delay in onset of wood

formation at the colder, treeline site, which would also be

characterized by significantly fewer formed cells in all

phenological phases in comparison to the warmer timber-

line site. Treeline ecotones in our study area, aside from

having low temperature, are affected by intense wind

action as is rather common characteristic of treelines in a

large number of mountain ranges in the world (Holtmeier

2009). We, therefore, aimed to also determine whether the

temperature thresholds for the onset of wood formation at

our sites are similar to those reported from typical alpine

areas (e.g., Rossi et al. 2007).

To our knowledge, this study is the first examining the

phenology of P. abies wood formation from an altitudinal

transect across the treeline ecotone and, furthermore,

expands the available information on the association

between temperature and onset of wood formation in the

treeline ecotone. In the present study, wood formation (or

xylogenesis) is understood as a suite of phenological pha-

ses beginning with cambial cell division and followed by

cell differentiation (Chaffey 2002).

Materials and methods

Study area

The Giant Mountains in the Czech Republic, with highest

peak Mt. Sněžka (1602 m), are characterized by high

precipitation (approximately 1,400–1,600 mm per year)

and mean annual temperature of 0.3 �C in the uppermost

locations (1901–1995; Glowicki 1998). Strong west winds

(mean wind velocity ca. 10 m s-1 at Mt. Sněžka) are

responsible for irregularly distributed snow pack, with its

minimum depths at summits and maximum depths in the

alpine timberline zone (Štursa et al. 1973; Tolasz et al.

2007). The forests of the upper montane belt and treeline

ecotone are composed of P. abies [L.] Karst. Graminoids

and prostrate dwarf pine (Pinus mugo) stands dominate

alpine and subalpine communities. The treeline ecotone is

situated at altitudes ranging from 1,250 to 1,450 m.

Our two study sites are located along an altitudinal

gradient on the south-facing slope of Mt. Lučnı́ Hora
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(1,555 m). Stands at the ‘‘timberline’’ site (1,310 m,

50�4301900N, 15�4001900E) comprise P. abies with maxi-

mum height about 8–9 m and canopy cover 30 %. The

‘‘treeline’’ site (1,450 m, 50�4302700N, 15�4004200E) is rep-

resented by open P. abies stands (canopy cover ca. 10 %)

commonly consisting of clonally formed tree groups. The

maximum tree height at the latter site is about 4 m. Soils at

both sites are podzols.

Temperature measurements

At each site, air temperatures at the tree top (1 measuring

point) and soil temperatures in the root zone (-10 cm, four

measurement points) were recorded. Temperatures were

measured and stored in 1-h intervals using EMS MicroLog

(soil) and EMS Minikin (air, in radiation shield) loggers

(http://www.emsbrno.cz). The temperature sensors have

±0.2 �C accuracy. Daily temperature means and daily

maximum and minimum air and soil temperatures were

used in subsequent comparisons and analysis.

Wood sampling and evaluation

Wood formation of eight (2010), ten (2011) and six (2012)

P. abies individuals from each site was assessed (see

Table 1 for the overall tree characteristics by site and year).

The average ages of monitored individuals were 72 years

at timberline and 70 years at treeline. Between-site dif-

ferences in age were not statistically significant (Mann–

Whitney U test, p [ 0.05). Differences in age were, how-

ever, statistically significant between the trees sampled in

different years. Mean tree heights were 8.3 m at timberline

and 3.8 m at treeline. Between-site differences in tree

height were significant in each year of monitoring (t test,

p \ 0.05).

Wood microcores were sampled using a Trephor

puncher (Rossi et al. 2006). The distance between adjacent

sampling points on a stem was always larger than 3 cm.

Microcores were sampled at stem height 1 ± 0.2 m.

Sampling intervals ranged from 7 to 8 days at the begin-

ning of the growing season to 10 days in the second half of

the growing season. Sampling was conducted from April

(or May, in 2010) to the end of September or the beginning

of October. Immediately after sampling, the microcores

were immersed in formaldehyde-ethanol-acetic acid fixa-

tive (FAA) and transported in Eppendorf microtubes to the

laboratory. Laboratory procedures followed Gryc et al.

(2012). Microcores were dehydrated using successive ser-

ies of ethanol and xylol and embedded in paraffin; then,

using a sliding microtome, 20-lm thick cross sections were

created. Paraffin was removed using successive series of

xylol and ethanol-solutions with descending ethanol con-

centration. Cross sections were then stained with safranin

and astra blue, and mounted on permanent slides using

Canada balsam.

For each cross section, the number of cells in each

phenological phase was counted under 400–5009 magni-

fication. The following phases were distinguished: cells in

the cambial zone (CZ), enlarging cells (EN), wall-thick-

ening cells (WT) and mature cells (MT). Cambial cells

were radially flattened, with thin cell walls. Enlarging cells

had only primary walls and cell protoplast and ratios of

tangential:radial size smaller than 2. Wall-thickening cells

were characterized by glistening cell walls under polarized

light and the presence of cell protoplast. Mature cells

showed empty cell lumina and red cell walls. The number

of cells in three radial files was counted, and the mean

value from these three files was considered in further

analysis. The number of cells in each cell phase (except

cells in the cambial zone) was standardized for possible

differences attributable to sample position on the stem

(height, eccentricity) using the number of cells in the

preceding year’s tree ring (Rossi et al. 2003).

For each tree, the date (day of the year—DOY) of the

onset of cambial activity was determined as indicated by

the number of cambial cells first being higher than that in

the dormant cambium at the end of the growing season plus

its standard deviation (SD) (Rossi et al. 2007). The end of

cambial activity was indicated by the decrease in the

number of cells in the cambial zone below the mean

number of cells in the dormant cambial zone plus SD. The

onset of cell enlargement was indicated by the occurrence

Table 1 Basic characteristics

of studied trees

Tracheid sizes and tree ring

widths are from rings formed in

the listed year (i.e., 2010, 2011

or 2012). Mean values and

standard deviations are shown

Year Site Age

(years)

Height

(m)

Diameter at breast

height (cm)

Radial size of

tracheids (lm)

Tree ring width

(mm)

2010 Timberline 56 ± 10 7.2 ± 0.6 27.2 ± 5 28.3 ± 8 1.60 ± 0.62

Treeline 49 ± 13 3.5 ± 0.4 12.6 ± 2 21.4 ± 3 1.42 ± 0.72

2011 Timberline 68 ± 21 7.7 ± 0.7 28.9 ± 6 30.8 ± 5 2.17 ± 0.90

Treeline 72 ± 24 3.6 ± 0.4 12.7 ± 2 25.2 ± 10 1.00 ± 0.74

2012 Timberline 92 ± 26 9.9 ± 0.9 39.1 ± 5 46.3 ± 26 2.21 ± 1.17

Treeline 89 ± 22 4.2 ± 0.5 13.3 ± 2 15.9 ± 5 1.44 ± 1.15
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of the first row of enlarging cells, the beginning of cell wall

thickening by the first row of wall-thickening cells, and cell

maturation by the first row of mature cells. The duration of

cell differentiation was defined as the period between the

appearance of the first enlarging cells and the achievement

of the full development of all cells in the growth ring. For

the onset and termination of each cell phase, the differ-

ences in DOY between sites and between years were tested

using a Mann–Whitney U test. In addition, for each sam-

pling date, between-site differences in the number of cells

in individual cell phases were tested, again using a Mann–

Whitney U test.

Radial tracheid size (i.e., the diameter of cell lumen and

cell wall) was measured at three files of tracheids per tree

ring from microcores collected at the end of the last sam-

pling interval (i.e., when all tracheids were mature). Mea-

surement was done using WinCell software (Régent

Instruments 2011). Between-site differences in cell sizes

were tested with t test.

Temperature characteristics of the onset of wood

formation

For each season and each site, the average, maximum and

minimum daily air and soil temperatures were computed.

Additionally, to identify longer warm or cold periods

affecting wood formation (Begum et al. 2013), 6-day

backward means of average, maximum and minimum daily

temperatures were computed.

Because temperature data were collected at the site

level, the onset of wood formation had to also be defined at

the site level, i.e., one date determined to characterize the

onset of each phenological phase for all the trees at the site.

For this purpose, the site level date of the onset of cambial

activity was determined as the day when the mean number

of cells in the cambial zone of all trees, minus half the

standard deviation (SD), exceeded the mean number of

cells in the dormant cambial zone (Rossi et al. 2007). The

onset of cell enlargement at the site level was indicated by

the mean number of enlarging cells being greater than 1

(after subtracting half the SD). Because, we were also

interested in the first significant and pronounced reaction of

the cambial zone to temperature at site level, we also dis-

tinguished statistically significant differences in the num-

ber of cambial cells between two consecutive observations

(hereinafter called ‘‘significant increase in cambial activ-

ity’’). Differences between two consecutive observations

were tested using the Wilcoxon signed rank test.

We assumed that temperature thresholds of the onset of

wood formation should display low variability among the

sites and seasons. Furthermore, if a temperature threshold

is first reached in spring, trees should display a clear and

consistent growth reaction across sites and sampling years

(Fig. 1). For each sampling interval in which one of the

early phenological phases of wood formation was recorded

for the first time, we would identify the highest value of

each temperature variable during that interval. The vari-

ability in these highest temperature values across sites and

years was measured using standard deviations.

Additionally, we examined whether the studied tem-

perature variables actually could have triggered individual

early phenological phases of wood formation (Fig. 1), by

testing whether maximum temperatures (both daily and

6-day air and soil temperatures) were greater during each

given sampling interval in which an early phenological

phase of wood formation was recorded for the first time

than in the late part of dormancy that preceded it. Tem-

perature data from the beginning of April were available

for each year, therefore the period from the beginning of

April to the last week preceding the onset of a given

phenological phase was used for computation of maximum

temperature variables values shown in late dormancy. The

Wilcoxon signed rank test was used to statistically analyze

differences between temperatures characterizing the phase

onset and the late part of dormancy.

Results

Site temperatures

Mean growing season temperatures, expressed as the

average temperature over the May–September period,

ranged from 8.2 �C for air and 6.9 �C for soil at the

treeline site to 10.6 �C (air) and 8.6 �C (soil) at the

Fig. 1 Scheme describing the procedure of temperature threshold

selection. 1D daily temperatures, 6D 6-day backward temperature

means
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timberline site (Fig. 2a). The warmest growing season

was in 2012, whereas the coldest was the 2010 season.

The warmest month of the year was always July both in

terms of air and soil temperatures. Averaging across all

three growing seasons, soil temperatures were lower at

treeline than at timberline by 0.8 �C, and air tempera-

tures were lower by 1.4 �C. The vertical temperature

gradients were thus approximately 0.5 �C/100 m for soil

temperatures and 0.9 �C/100 m for air temperatures. The

highest between-site differences were recorded in May

for soil temperatures and in April for air temperatures

(Fig. 2b).

Mean temperatures for the period between the onset of

cambial activity and the end of cell differentiation were

11.1 ± 0.6 �C for air and 8.7 ± 0.6 �C for soil at timber-

line and 9.9 ± 0.5 �C for air and 8.1 ± 0.6 �C for soil at

treeline. Between-site differences during the period of

cambial activity and cell differentiation were thus smaller

by 0.2 �C for both air and soil temperatures than differ-

ences computed over the May–September period.

The abrupt spring increase in soil temperatures from

near-zero temperatures indicating snow melt and/or soil

thawing were simultaneous across the two sites in 2012,

occurring between May 3 and May 5 (Fig. 2a). In 2010,

snow melt and/or soil thawing was delayed by 20 days at

treeline compared with timberline; however, increase in

soil temperature at timberline was slow, with several

oscillations back to about 2 �C. In 2011, abrupt soil

warming was delayed at treeline in comparison to timber-

line by about 20 days.

Between-site differences in wood formation

The onsets of individual phenological phases of wood

formation tended to be earlier at the timberline site than at

the treeline site (Fig. 3). In contrast, the ending of cell

enlargement and wall thickening was earlier at the treeline

site than at the timberline site (Figs. 2a, 3). However,

statistically significant delays in the onsets of both cambial

activity and cell enlargement at treeline in comparison to

timberline were recorded only in 2011, and significantly

delayed wall thickening at timberline against treeline site

was observed only in 2010 (Mann–Whitney U test,

p \ 0.05). Remaining differences in DOY of onset and

Fig. 2 a Daily means of air and soil temperatures during growing

seasons 2010, 2011 and 2012. Air temperatures are buffered by daily

minima and maxima. Horizontal gray and black stripes indicate

duration of cambial activity and cell differentiation, respectively.

Arrows denote first significant increase in the number of cambial

cells. b Between-site (TTIMBERLINE - TTREELINE) differences in daily

air and soil temperature means
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termination of individual phases of xylogenesis were not

statistically significant (Mann–Whitney U test, p [ 0.05).

Between-site differences in the number of cells found in

each phase of wood formation (Fig. 4) were characterized

particularly by higher number of cambial and enlarging

cells at timberline in comparison to treeline during the first

half of the growing season. Moreover, higher number of

cells in the cell-enlargement and wall-thickening phases at

timberline than at treeline was observed in August, i.e., at

the end of these phases. In 2010 and 2012, greater number

of mature cells was observed at treeline than timberline at

the beginning of cell maturation. In 2011, this difference

was reversed at the end of the growing season, when tim-

berline trees had significantly more mature cells than did

the treeline trees.

At the site level, the onset of cambial activity was

observed in 2011 and 2012 on the same sampling date at

both sites (Table 2). In 2010, cambial activity of most trees

at timberline had started immediately before the first

sampling date (Figs. 2a, 4). The first significant increase in

the number of cambial cells occurred at both sites at the

same time in 2010 and 2012. In 2011, this increase in

cambial activity was delayed at treeline by 1 week com-

pared to timberline. The first enlarging cells at the site level

(i.e., the date when the mean number of enlarging cells for

all trees was bigger than 1) occurred earlier at the tim-

berline site in 2011 and 2012, whereas in 2010 it happened

at both localities at the same time (Table 2; Fig. 4). The

beginning of cell enlargement occurred approximately

2 weeks after the onset of cambial activity.

The duration of cell differentiation ranged from 96 to

121 days at the timberline site and 83–102 days at the

treeline site, and it was always longer at the timberline site

than at the treeline site (Table 2). The between-site dif-

ferences in number of mature cells at the end of the

growing season were statistically significant only in 2011,

with timberline trees forming more cells than treeline trees.

Average radial sizes of tracheids were 33 ± 17 and

21 ± 9 lm at timberline and treeline, respectively, with

significant differences in each year (p \ 0.05) (Table 1). In

each growing season, tree ring widths were significantly

greater at timberline than at treeline (timberline

mean = 1.9 mm, treeline mean = 1.1 mm, t test,

p \ 0.05).

Temperature ranges characterizing onsets of cambial

activity and cell enlargement

The lowest variability among temperature variables char-

acterizing the onset of cambial activity at the site level

(Table 3) was in 6-day minimum air temperatures (3.7 �C

mean ± 1.9 �C SD). During both the first significant

increase in the number of cambial cells and the beginning

of cell enlargement, the lowest variability was again in

6-day minimum air temperatures (4.9 ± 0.9 and

5.2 ± 1.3 �C, respectively). Daily mean and maximum air

temperatures showed greater variability, whereas the

standard deviations of soil temperatures were generally

smaller than those of air temperatures except for air min-

ima (Table 3).

Soil temperatures (4.6 �C for daily and 3.6 �C for 6-day

means) during the first pronounced increase in cambial

activity were significantly higher than those prior to this

period (p \ 0.05, Wilcoxon signed rank test) (Table 3).

During the onset of cell enlargement, the 6-day soil tem-

peratures were also significantly higher than those before

this period (p \ 0.05, Wilcoxon signed rank test). Neither

the temperature variables characterizing the onset of

cambial activity nor the remaining variables (particularly

air temperatures) associated with the periods of significant

Fig. 3 Differences in dates

(day of the year) of the onset

and termination of individual

phases of wood formation.

Middle points denote means,

whiskers indicate standard

deviations. CZ cambial activity,

EN enlarging cells, WT wall-

thickening cells, M mature cells
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increase in cambial activity and cell enlargement were

significantly higher than those in the periods preceding the

given phenological phases of wood formation (Table 3).

Discussion

Given the 140 m altitudinal gradient, we expected differ-

ences between sites in the onset of cambial activity and cell

enlargement. However, the onsets (in early May) of both

cambial activity and cell enlargement were only slightly

delayed at treeline compared to timberline, with only

1 year showing statistically significant differences at the

weekly sampling resolution. That year was 2011, when the

between-site temperature differences, particularly in soil

temperatures, were the greatest. If there was any delay in

cambial reactivation and/or in onset of cell enlargement in

the remaining years, it would have to have been shorter

than 1 week. Indeed, such short delays were reported by

Moser et al. (2009), who found that cambial reactivation of

larch was delayed about 3–4 days per 100 m of elevation.

Later (in the second half of May and in June), we

observed that the between-site differences in the number of

cells were, however, pronounced, with more cells in the

Fig. 4 The number of cells in individual phases of xylogenesis.

Middle points indicate means, whiskers indicate standard deviations.

Asterisks indicate significant differences in the number of cells

between timberline and treeline based on Mann–Whitney U test

(p \ 0.05). Black circles denote timberline, white circles denote

treeline
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cambial zone and more enlarging cells found at timberline

than at the treeline site. Thus, after the onset of cambial

activity, the number of cambial zone cells and enlarging

cells probably react to ambient temperatures more directly

than does the onset of cambial activity itself. A similarly

clear reaction of cambial activity and the number of

enlarging cells to warmer ambient temperatures have been

documented in other studies (e.g., Gričar et al. 2006; Lenz

et al. 2013).

We observed that, during the growing season, cell dif-

ferentiation phases usually finished later at timberline, lead

to longer duration of wood formation there. The differences

in the number of cells between timberline and treeline at

the end of cell enlargement and wall thickening were even

more pronounced than the differences in the early

phenological phases of wood formation. This delay is in

accordance with significantly bigger diameters of tracheids

at timberline requiring more time for their enlargement

(Anfodillo et al. 2012). Our data suggest that the difference

in the number of cells achieved at the end of cell

enlargement is probably retained or even increased during

the wall-thickening phase. Delay in finishing the cell-

enlargement and wall-thickening phases is also in line with

the possible integrative effect of growing season tempera-

tures on the completion of cell maturation (Rossi et al.

2013). In comparison to treeline, the timberline site showed

more intensive cambial activity, followed by production of

greater number and/or larger sizes of enlarging cells which

then needed more time for maturation (Lupi et al. 2010;

Cuny et al. 2014).

Similar dates for the onset and differing dates for the

completion of the enlargement and wall-thickening phases

contrast with the findings of Moser et al. (2009) on larch.

They found that whereas onsets were delayed at higher

elevations, the termination of cell differentiation was

simultaneous. We suggest that this disparity between

spruce and larch might be attributed to the differences in

responses between evergreen and deciduous conifers (Or-

ibe and Kubo 1997). Size-related differences in the dura-

tion of cell differentiation for larch might be smaller than

in spruce leading to termination of cell differentiation at

about the same time at high-elevation site (small trees) and

low-elevation site (big trees).

At our sites, the onset of cambial activity was observed

approximately 2 weeks before the significant increase in

cambial activity. This initial, slight increase in cambial

activity was frequently detected while the soil was still

frozen, but air temperatures were high (6-day

mean = 5.2 �C, maximum daily mean = 12.5 �C), in

accordance with observations by Lenz et al. (2013).

However, air temperatures at our sites prior to the onset of

cambial activity were even higher, but without any

observed reaction in the cambial zone. It is thus ques-

tionable whether they can trigger the onset of cambial

Table 2 Basic characteristics

of wood formation at the site

level: onset and duration of

cambial activity and cell-

enlargement phases, duration of

cell differentiation

Year Site Onset of

cambial

activity

Significant

increase in

cambial

activity

Duration of

cambial

activity

(days)

First

enlarging

cell

End of cell

differentiation

Duration

of cell

differentiation

2010 Timberline Before 19

May

25 May More than

71

3 Jun 6 Sep 95

Treeline 19 May 25 May 71 3 Jun 27 Aug 85

2011 Timberline 10 Apr 5 May 98 25 Apr 15 Aug 112

Treeline 10 Apr 14 May 98 4 May 4 Aug 91

2012 Timberline 18 May 18 May 69 18 May 30 Aug 104

Treeline 18 May 18 May 69 29 May 20 Aug 83

Table 3 Average values and standard deviations of temperature

variables characterizing early stages of wood phenology

Variable Onset of

cambial

activity (�C)

First significant

increase in cambial

activity (�C)

First

enlarging

cells (�C)

Air temperatures

1 day mean 8.3 ± 3.7 11.3 ± 3.3 10.4 ± 3.6

1 day max 12.5 ± 4.1 16.1 ± 3.3 15.1 ± 4.2

1 day min 5.7 ± 3.3 8.3 ± 2.9 7.8 ± 3.2

6 day mean 5.1 ± 1.8 8.0 ± 1.0 8.3 ± 1.7

6 day max 8.7 ± 2.2 12.1 ± 2.1 12.4 ± 2.7

6 day min 2.4 ± 1.6 4.9 ± 1.0 5.3 ± 1.3

Soil temperatures

1 day mean 1.6 ± 2.1 4.6 ± 2.2* 4.6 ± 2.2

1 day max 1.9 ± 2.3 4.9 ± 2.4* 5.0 ± 2.4

1 day min 1.4 ± 2.0 4.2 ± 2.0* 4.3 ± 2.1

6 day mean 1.3 ± 1.6 3.6 ± 1.8* 3.8 ± 1.9*

6 day max 1.5 ± 1.8 4.1 ± 2.0* 4.2 ± 2.1*

6 day min 1.1 ± 1.4 3.2 ± 1.6* 3.5 ± 0.9*

Asterisks mark that temperatures were significantly higher during the

sampling interval of the given phase’s onset than in the preceding

period of late dormancy (p \ 0.05)
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activity. Moreover, temperatures (both air and soil) char-

acterizing the period of the onset of cambial activity

showed relatively large variability. This variation might

stem from the relatively early cambial reactivation some-

times confronting other extrinsic limits of the onset of

wood formation, such as photoperiod (Körner 2012a).

Therefore, if high ambient temperatures are achieved prior

to the potential photoperiod signal, they might not induce

any reaction in the cambial zone.

Whereas the onset of cambial activity at our sites was

not associated with a clear temperature threshold, soil

temperature did seem to present a threshold for the first

significant increase in the number of cells in the cambial

zone. The number of cells in the cambial zone significantly

increased when soils heated rapidly from near-zero tem-

peratures to 4–5 �C (6-day mean = 3.6 �C). Slightly

higher temperature values (6-day mean = 3.8 �C) were

thresholds for cell enlargement at our sites. Air and soil

temperatures associated with the onset of cell enlargement

were within the ranges suggested by Rossi et al. (2007,

2008a, i.e., mean air temperatures of 5.6–8.5 �C, stem

temperatures of 7.2–9 �C, and soil temperatures from 2.6 to

7.5 �C).

Considering the abovementioned findings, our data

indicate that significant increase in cambial activity fol-

lowed by cell enlargement is probably associated with the

thawing and warming of soils, as suggested by, e.g., Kir-

dyanov et al. (2003), Moser et al. (2009), Gruber et al. 2009

and Alvarez-Uria and Körner (2007). Once both the above-

and belowground parts of a tree are sufficiently warm, root

activity is resumed, cambial cells are rehydrated, and

mitotic activity abruptly increases (Savidge 2000). The

increase of activity is not only due to rehydration but also

due to stimulation by cytokinins produced in the root api-

ces, which increases the responsiveness of cambium to

IAA (Friml 2003; Fonti et al. 2007; Ursache et al. 2013).

Moreover, the synthesis of cytokinins is probably affected

by temperature (Aloni et al. 2006). Körner and Hoch

(2006) also argue for decisive effects of soil temperature on

tree growth, based on a natural experiment at a site with

cold soils and warm ambient air. However, exceptions to

the general relationships between growth onset and both

soil temperature (Lupi et al. 2011) and plant rehydration

(Turcotte et al. 2009) have been found, showing the overall

picture to be more complicated. Our finding that soil

temperatures, but not air temperatures served as thresholds

suggests that either: (1) for full resumption of cambial

activity in the stem, both below- and aboveground parts of

trees must be sufficiently warm; or (2) due to their inertia,

soil temperatures might be a surrogate for accumulation of

heat at the site, similar to, e.g., degree-day sums. The

second of these interpretations has, however, been ques-

tioned by Seo et al. (2008).

Because we compared treeline and timberline trees, our

sites differed in tree size. Both size and age of trees prob-

ably affect the onset and duration of wood formation (Rossi

et al. 2008b). Smaller trees might be more responsive to

ambient temperatures both due to closer coupling of stem

temperatures with air temperatures (Mayr et al. 2006) and

shorter distances between stems and shoots, where IAA is

produced (Larson 1969). Therefore, the smaller size of trees

at treeline might decrease their delay in xylogenesis onset

relative to timberline trees. As reported by Anfodillo et al.

(2012), the effect of tree size on duration of cell differen-

tiation is even more pronounced than that on the onset of

wood formation. In the cold and unpredictable environment

of treeline, one could infer that small tree stature is

advantageous, since small trees are capable finishing radial

growth earlier than the big ones. Furthermore, size-related

effect on the period of cell enlargement might explain the

relatively weaker tree ring width-based climate–growth

responses of generally smaller treeline trees in comparison

to timberline trees, as derived by standard dendrochrono-

logical methods (Vittoz et al. 2008; Treml et al. 2012). The

short period of cell enlargement for treeline trees might

encompass only a limited interval during the growing sea-

son, with high temporal variability among growing seasons,

i.e., occurring over different parts of May, June or July.

Therefore, despite the strong temperature limitation of tre-

eline trees, their ring widths, closely related to the period of

cell enlargement (Cuny et al. 2014), may not respond tightly

to simple temperature variables such as June or July means.

Because the Giant Mountains are among the windiest

locations in European mountain regions (Migala 2005), a

comparison of temperatures measured at our wind-affected

treeline ecotone with typical temperature-limited treelines

might reveal the extent to which strong winds depress

treeline position. For example, timberline sites in the

Dolomites, studied by Rossi et al. (2007) between 2002 and

2004, revealed similar June–September soil and air tem-

peratures to those of our sites (soil temperatures from 9.3 to

11.1 �C on south-facing slope in the Dolomites and from

8.4 to 9.6 �C in the Giant Mountains, air temperatures from

8.9 to 11.4 �C in the Dolomites and from 9.2 to 10.9 �C in

the Giant Mountains). However, a comparison between the

growing season soil temperatures reported by Körner and

Paulsen (2004) from treeline in the eastern and central Alps

with identically defined temperatures measured at our tre-

eline site (mean temperature of continuous period with soil

temperatures above 3.2 �C, not shown) reveals that the

Giant Mountains treeline site was 1 �C warmer than similar

locations in the eastern and central Alps (8.4 �C in the

Giant Mountains treeline and 7.4 �C in the warmest loca-

tion in the eastern Alps). The net temperature difference

between treelines in the eastern Alps and the Giant

Mountains is, however, smaller, because, in both regions,
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summer air temperatures have been increasing since the

1980s with the slope of regression curve being 0.04 (based

on CRU TS data set; Mitchell and Jones 2005, updated).

The estimated growing season temperature rise between

1997 and 2001 (when the data of Körner and Paulsen

(2004) were collected) and 2010–2012 was about 0.4 �C

based on CRU TS data set, which is in agreement with data

from climatic stations (Barbosa et al. 2011; Ceppi et al.

2012). Our treeline site in the Giant Mountains was,

therefore, about 0.6 �C warmer than similar sites in the

eastern or central Alps, which could likely be attributed to

the effect of wind. Energy losses due to the formation of

wind-induced reaction wood, repair of browsed or broken

shoots, and weak hormonal stimulation of growth from

damaged apical shoots hamper tree growth at wind-affec-

ted locations (Holtmeier 2009).

Conclusions

The results of our study show that across the alpine treeline

ecotone, differences in seasonal resumption of cambial

activity and onset of individual phases of wood formation

of P. abies were significant only in cases of several weeks

delay in soil warming at the treeline versus the timberline

site. Otherwise, the between-site differences in onsets of

individual wood formation phases were smaller than our

weekly sampling resolution. The first pronounced increase

in cambial activity was associated with the first warming of

the soil from near-zero temperatures to 4–5 �C in the

spring. This might indicate that, in this species, full

resumption of cambial activity at the basal part of the stem

requires all parts of the tree to be sufficiently warm. Irre-

spective of simultaneous or shifted onset of cambial

activity at our study sites, significantly more cambial and

enlarging cells were observed at the warmer, timberline

location than at the colder, treeline site during the early part

of the growing season. Whereas differences in the number

of cells at the beginning of the growing season were likely

due to temperature, timberline trees also displayed greater

duration of the cell-enlargement and wall-thickening pha-

ses, associated with more prolonged enlargement of the

larger tracheids there. Therefore, we suggest that for P.

abies, both temperature and size effects govern differences

in wood phenology across the treeline ecotone.
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1.  INTRODUCTION

The treeline ecotone is a prominent vegetation tran-
sition zone where tree size and density progressively
decrease from the upper margin of closed forest
 towards the treeless alpine zone (Körner 2012). On
the global scale, alpine treelines (i.e. idealized lines
situated approximately in the middle of the alpine
treeline ecotone) are characterized by growing sea-
son air temperatures of approximately 6.7 ± 0.8°C
(Körner & Paulsen 2004). However, on a regional
scale, the highest tree stands are often situated at ele-
vations lower than that of the isotherm that still allows
tree growth (Macias-Fauria & Johnson 2013, Case &

 Duncan 2014). Increased dieback and constraints on
seedling establishment and survival might prevent
trees from reaching their uppermost potential eleva-
tions (Harsch & Bader 2011). Factors locally or region-
ally hampering the advance of trees to thermal growth-
restricted positions (i.e. so-called second-order factors
of treeline position; Harsch & Bader 2011) include
wind action, winter desiccation, irregular distribution
of snow and the effect of drought or various distur-
bances (Holtmeier & Broll 2007). However, differenti-
ation between purely temperature-limited treelines
and uppermost tree stands limited by climatic factors
other than temperatures alone is crucial for predicting
how treelines will react to increasing temperatures.
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Treelines are characterized by very similar thermal
growing season conditions (Körner & Paulsen 2004),
which are determined by multitude of geographical
factors. For example, the position of isotherm that
limits tree stature varies along a latitudinal gradient
and also in the longitudinal direction in response to
changing continentality (Paulsen & Körner 2014,
Zhao et al. 2014). Further variation is attributed to the
mass elevation effect, which suggests treelines are
found at lower elevations in small isolated massifs
compared with extensive mountain ranges (Holt -
meier 1973). Tree limits near mountain summits may
exist at relatively high growing season temperatures
compared with true temperature-limited treelines
(summit syndrome, sensu Körner 2012), because in -
tense wind action and/or unfavourable soil conditions
near summits preclude tree growth irrespective of
thermal conditions (Holtmeier 2009, Takahashi 2014).

In the Central-European mountain ranges north of
the Alps (hereafter CENA), the Western Carpathians,
the Sudetes and the Harz Mountains have well-
developed treeline ecotones (Fig. 1) (Ellenberg 1988,
Grabherr et al. 2003). These mountain ranges differ
by factors that affect the positions of the growing
 season isotherms. For example, they are situated
along a west−east maritime−continental gradient
(Miko lášková 2009), with some small, isolated mas-
sifs (e.g. the Harz Mountains) but also relatively
extensive mountains (the Vysoké Tatry Mountains)

with substantial climatic contrasts
between outer and inner, windward
and leeward parts of the mountain
range (Konc̆ek 1974, Büntgen et al.
2007). And last but not least, the ver-
tical distance between the uppermost
tree stands and summits varies
greatly, simply because summits dif-
fer in elevation.

In this study, we evaluate the ther-
mal characteristics of treelines in
CENA and compare them with pub-
lished or computed temperature data
for treelines in the Alps. The main
objectives of this study are to: (1) find
the uppermost positions of tree
groups and define their climate char-
acteristics; (2) compare temperature
characteristics of CENA treelines and
treelines of the Alps; and (3) deter-
mine the influence of summit syn-
drome and maritime-continental gra-
dients on treeline temperatures. We
hypothesize that if the treelines under

study are particularly influenced by a heat deficiency,
thermal metrics characterizing treeline position should
have approximately the same values irrespective of
the mountain range. Treeline elevation was derived
from the position of the uppermost tree groups in
each mountain range as the best approximation of
what might be a natural (climatic) upper tree limit
(rather than the result of anthropogenic disturbance).

2.  METHODS

2.1.  Study area

This study focuses on treeline ecotones in CENA,
ap proximately 48−51°N and 10−20°E (Fig. 1, Table 1).
Only areas with palaeoecological evidence for cli-
mate-driven forest-free zones have been included
(Beug et al. 1999, Treml et al. 2006, Novák et al.
2010). The mountain ranges under study comprise
Hercynian mountains with elevations ranging from
1100 to 1600 m and the Western Carpathians, which
exceed 2000 m. Hercynian mountain ranges (the
Harz, Krkonoše, Králický Sněžník and Hrubý Je -
seník Mountains) are composed of acidic crystalline
rocks, and their topography is characterized by flat
summit surfaces and adjacent moderately steep
slopes. The Western Carpathians include limestone
lithologies (Velká, Malá Fatra, Nízké and Belianské

2

Fig. 1. Location of the mountain ranges studied in Central Europe. BG: Babia
góra and Pilsko; BT: Belianské Tatry; Jes: Hrubý Jeseník; Kra: Králický
Snĕžník; Krk: Krkonoše; MF: Malá Fatra; NT: Nízké Tatry; VF: Velká Fatra; 

VT: Vysoké Tatry; ZT: Západné Tatry
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Tatry Mountains), flysch areas of predominantly
sandstone bedrock (Babia Góra Mountains) and crys-
talline massifs (the Vysoké and Západní Tatry Moun-
tains, and the central part of the Nízké Tatry Moun-
tains). Their topography ranges from true alpine
mountain ranges (the Tatras) to mountains of moder-
ate relief (the Babia Góra Mountains). The climate of
all the areas is cold and humid, with annual precipi-
tation totals ranging from ca. 1000 mm (the Hrubý
Jeseník Mountains) to 2200 mm (the Vysoké Tatry
Mountains: Migała 2005, Hlavatá et al. 2011). Soils of
treeline ecotones are represented by podzols, acidic
nutrient-poor cambisols and rankers (on acidic crys-
talline bedrock and flysch) (Tomášek 1995, Granec &
Šurina 1999, Hertel & Schöling 2011). Rendzina soils
are common where limestone bedrock is present
(Granec & Šurina 1999).

The northernmost Central-European treeline eco-
tone is situated in the Harz Mountains (Hertel &
Schölling 2011) (Table 1). East of the Harz, the Sudetes
represent an area with well-developed  treeline eco-
tones, namely in the Krkonoše, Králický Snĕžník and
Hrubý Jeseník Mountains (Fig. 1) (Jeník 1961).
Besides low temperatures, high-elevation tree stands
in all areas mentioned above are influenced by high
wind speeds and past human interventions (Jeník
1961, Beug et al. 1999, Hertel & Schöling 2011, Šen-
feldr & Madĕra 2011, Treml & Chuman 2015). Fur-
ther east, treelines are present on Mt. Babia Góra
and Mt. Pilsko in the westernmost flysch Carpathians
(Fig. 1) (Kozak 2003, Czajka et al. 2015a), in the
Velká and Malá Fatra Mountains (Plesník 1999) and
in the broader region of the Tatras (Plesník 1971). In
the majority of Western Carpathian mountain ranges,
the treeline ecotone has been seriously affected by
long-term cattle grazing (Plesník 1971, Plesník 1978,
Boltižiar 2007). However, undisturbed treelines occur
on steep, inaccessible slopes and in areas where
 cattle grazing ceased several decades ago and tree
stands advanced to their original position (Doležal &
Šrůtek 2002, Boltižiar 2007).

Treeline ecotones are formed largely by Norway
spruce (Picea abies [L.] Karst.). Swiss stone pine (Pinus
cembra) occurs in the treeline ecotones of the Vysoké
Tatry Mountains (Plesník 1971). Prostrate dwarf pine
(Pinus mugo), either native or planted, is also common,
often forming extensive closed stands (Wild & Winkler
2008, Švajda et al. 2011). Norway spruce in treeline
ecotones occurs either as seed-based individuals or in
the form of groups formed by vegetative reproduction
(Šenfeldr et al. 2014). Agriculture, namely grazing,
hay making and man- induced fires, depressed tree
stands locally by several tens to hundreds of metres

(Plesník 1978, Speranza et al. 2000, Novák et al.
2010). However, during the second half of the 20th
century, tree stands in most treeline ecotones regen-
erated spontaneously due to the cessation of mountain
agriculture and the establishment of protected areas
(Kozak 2003, Boltižiar 2007, Solár & Janiga 2013,
Treml & Chuman 2015).

2.2.  Identification of uppermost tree groups

In each mountain range, tree groups at the upper-
most position were identified by systematically sur-
veying the slopes of the highest peaks with Google
Earth. Google Earth was chosen for its convenient
visualization capability and the availability of very
high-resolution imagery for the entire region of Cen-
tral Europe. In extensive mountain ranges (e.g. the
Vysoké Tatry or Nízké Tatry Mountains), at least 4
regions with the highest peaks were surveyed. For
each survey, the uppermost position of tree groups
on each aspect was identified using the maximum
available zoom level. A rough estimation of elevation
for each identified tree group was obtained from the
Google Earth terrain model. To obtain precise eleva-
tions, we used detailed digital terrain models (10 m
resolution for the Czech Republic and Slovakia), geo-
referenced topographic maps with the original scale
of 1:10000 and 5 m contour intervals (Poland, Ger-
many), or on-site GPS measurements. For each moun-
tain range, the final treeline elevation was de rived as
a mean value for the highest tree groups on 3 slope
aspects. This discarded lower elevation forest edges
associated with long-laying snow patches and ava-
lanches on leeward or north-facing slopes.

Based on field validation, the identified tree groups
were composed of trees between 3 and 4 m tall, a
height in the range of the trees in the treeline posi-
tion (Körner 2012). Isolated tree groups possibly
affected by the topographic shelter effect were not
considered.

2.3.  Climatic metrics

Temperature data represented by monthly tem -
perature means from the nearest meteorological
 station (covering the reference period of 1961−1990;
Table 1) were adjusted using environmental (i.e.
near-surface) lapse rates to the location of the upper-
most tree groups. The environmental lapse rates
(Barry 2008) were computed based on pairs of mete-
orological stations (Table 1). If available, mean lapse
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Kašpar & Treml: Thermal characteristics of treelines

rates computed from a set of meteorological stations
were used. Climate stations with long-term data
were not available for 3 mountain ranges (Malá
Fatra, Velká Fatra and Babia Góra). In these cases,
temperatures from the nearest 2 or 3 meteorological
stations were lapse-rate-adjusted to the elevation of
the uppermost tree groups and inverse-distance-
weighted interpolation was used to estimate temper-
ature in these areas. Precipitation data were also
necessary for the computation of selected metrics.
We used precipitation sums from meteorological sta-
tions situated in the vicinity of treeline ecotones (the
Harz, Krkonoše, Hrubý Jeseník, Nízké Tatry and
Vysoké Tatry Mountains). For the remaining areas,
we used either data from the nearest high-elevation
meteorological station (Králický Sněžník, Velká Fa -
tra and Belianské Tatry, in each case within a radius
of 15 km), or available interpolated precipitation data
from the Landscape Atlas of the Slovak Republic
(Babia Góra and Velká Fatra; Hrnčiarová 2002). The
duration of snow cover was computed based on a
degree-day model of snow accumulation and snow
melt with the same parameters as those used by
Paulsen & Körner (2014).

Using climatological data, we calculated a set of
thermal metrics selected based on previous studies
on treeline climatology (Schmitt et al. 2004, Rossi et
al. 2007, Gehrig-Fasel et al. 2008, Körner et al. 2011,
Paulsen & Körner 2014). The individual metrics were
strongly correlated, so we applied cluster analysis
and selected only one metric to represent each clus-
ter (Fig. 2). Metrics that correlated less with metrics
representing other clusters were preferred. The sec-
ond selection criterion was the degree of uncertainty
related to the computation of a given metric. The fol-
lowing climatic metrics were finally used: annual
number of days with temperatures above 0.9°C with-
out snow cover (Days>0.9S), degree-days above 0°C
(DD0) and average temperature in the June−Septem-
ber period (TJUN−SEP). Daily temperature values were
necessary to compute the mean temperature of the
continuous period with air temperature higher than
0.9°C and no snow cover (T-Days>0.9S), Days>0.9S
and DD0. We obtained them by cubic spline inter -
polation of monthly temperature means.

Although representing one cluster group (Fig. 2),
degree-days above 5°C showed high uncertainty re -
lated to spline-interpolated daily temperatures. This
metric was therefore discarded from further analysis.
On average, degree-days above 5°C computed from
observed daily mean temperatures differed by 19%
from daily temperatures derived from a spline func-
tion. We also conducted a similar evaluation of un -

certainty for the remaining metrics. Because values
of individual metrics (i.e. mean temperatures, de -
gree-days, number of days) differed greatly, we
scaled them to have a range from 0 to 100. Values
derived from observed daily temperatures were as -
signed the percentage of 100, and 0 was assigned to
the minimum possible value of a given metric (i.e. 0
days, 0 degree-days [°D] and 0°C for mean tempera-
tures). For mean growing season temperatures, the
biologically meaningful temperature of 0°C was cho-
sen because trees do not grow and exhibit almost no
metabolic activity below this point (Rossi et al. 2008,
Körner 2012).

For comparative purposes, the average tempera-
ture of the warmest month (TWARM) was used as a tra-
ditional thermal treeline indicator. The metric T-
Days>0.9S, as the metric probably best matching
treeline position, is also presented (Paulsen & Körner
2014).

5

Fig. 2. Dendrogram expressing the relationships among cal-
culated thermal metrics. The Ward method based on Euclid-
ean distances was applied. Metrics selected for our study
are highlighted by a black frame (cluster representatives
 entering into all analyses) or a grey frame (metrics used only
for comparisons). Abbreviations: DD0 (DD5): degree-days
above 0°C (5°C); T-Days>0.9S: average temperature of con-
tinuous period with air temperature higher than 0.9°C and
no snow cover; TJUN−SEP (TMAY−OCT): average air temperature
from June to September (May to October); Avg temp>0.9:
average air temperature of continuous period with air tem-
perature higher than 0.9°C; Days>0 (5): number of days with
mean air temperature higher than 0°C (5°C); Days>0.9S:
number of days with mean air temperature higher than
0.9°C and no snow cover; TWARM: mean temperature of the 

warmest month
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2.4.  Statistical analysis

To compare treelines based on climatic metrics
(TJUN−SEP, DD0, Days>0.9S, TWARM, T-Days>0.9S),
each metric was z-transformed (i.e. the mean was
equalized to 0 and the standard deviation was set
to 1). For each metric, the mean value and confidence
interval were computed based on a 1-sample t-test.

Applying linear models, we further explained tree-
line temperature metrics (only these representing
clusters from Fig. 2: Days>0.9S, DD0 and TJUN−SEP) us-
ing longitude and the elevation drop between treeline
and the highest summits. A vertical elevation drop be-
tween the treeline and the highest summit is indicative
of the summit syndrome. In Central Europe, longi-

tude — besides a having positive rela-
tionship with thermic continentality
(Plesník 2002, Miko láš ková 2009) — is
also negatively cor related with average
wind speed (Table 1) and rime load
(Błaś et al. 2002). Both of these climatic
characteristics might preclude trees
from growing at their temperature
limit. Because wind speed and rime
data were not available for all moun-
tain ranges under study, longitude was
used as a surrogate for wind speed and
rime load. We used multiple linear re-
gression within the framework of hier-
archical partitioning (Chevan &
Sutherland 1991, Walsh & Mac Nally
2004). All  statistical analyses were
 performed using R statistical software
(R Development Core Team 2015).

3.  RESULTS

Treelines represented by the highest positions of
tree groups in the Tatras were located between
1777 m (the Nízké Tatry Mountains) and 1806 m
above sea level in the Západné Tatry Mountains
(Fig. 3, Table 2). In the remaining Carpathian ranges
(the Malá Fatra, Velká Fatra and Babia Góra Moun-
tains), the elevations of the uppermost tree groups
ranged from 1532 m in the Velká Fatra to 1679 m in
the Babia Góra Mountains. The uppermost position
of tree groups in the Sudetes ranged from 1412 m in
the Králický Sněžník Mountains to 1508 m in the

6

Mountain Highest Standard Jun−Sep Sum of Number of days Temperature Mean 
range tree-group deviation of mean temperatures with mean of warmest temperature 

elevation (m) highest positions temperature >0°C (°D) temperatures month (°C) over the period 
at three (°C) >0.9°C without with temperatures 

different slope snow cover >0.9°C without 
aspects (m) snow cover (°C)

Harz 1134 2.6 9.4 1495 139 10.6 7.4
Krkonoše 1508 2.3 7.7 1136 127 8.9 6.4
Králický Sněžník 1412 1.6 8.8 1336 142 9.9 7.4
Hrubý Jeseník 1478 1.2 8.3 1252 144 9.5 7.1
Babia Góra 1679 27.4 8.5 1293 130 9.7 6.6
Malá Fatra 1645 19.7 8.2 1245 137 9.4 6.4
Velká Fatra 1532 2.6 8.7 1338 141 10.0 7.0
Nízké Tatry 1777 17.9 7.2 1038 121 8.3 6.1
ZápadnéTatry 1806 13.9 8.6 1317 132 9.8 6.4
Vysoké Tatry 1790 10.2 8.5 1302 133 9.6 6.8
Belianské Tatry 1780 14.7 8.2 1237 130 9.3 6.8

Table 2. Temperature metrics characterizing the highest treeline positions in Central European mountain ranges north of the Alps

Fig. 3. Relationship among the elevation of uppermost tree groups, high-
est peak elevation and longitude. BG: Babia Góra and Pilsko; BT: Be -
lianské Tatry; Jes: Hrubý Jeseník; Kra: Králický Snĕžník; Krk: Krkonoše;
MF: Malá Fatra; NT: Nízké Tatry; VF: Velká Fatra; VT: Vysoké Tatry; 

ZT: Západné Tatry
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Krkonoše Mountains. The uppermost position of tree
groups in the Harz Mountains was 1134 m. Identified
highest positions of tree groups show low variability
across aspects (Table 2), and their elevation is thus
representative of the given mountain area. There is a
clear increasing trend in treeline elevation along the
longitudinal gradient (r = 0.93) and with increasing
elevation (r = 0.88) of the mountain ranges under
study (Fig. 3).

TJUN–SEP at treeline was 8.4°C ±0.5 (±SD) in all the
mountain ranges in the study (Table 2). Days>0.9S
was 134±6, and T-Days>0.9S over this period was
6.7 ± 0.4°C. DD0 was 1272 ± 112°D, and TWARM was
9.5 ± 0.5°C.

Based on all climatic variables, the warmest tree-
line is located in the Harz Mountains (Fig. 4), where
the growing season temperatures (TJUN–SEP, T-
Days>0.9S) and DD0 exceed the confidence interval
of the CENA mean. Moreover, the treelines in the
Hrubý Jeseník, Králický Sněžník and Velká Fatra
Mountains are significantly warmer than the mean
for CENA in the context of Days>0.9S and growing
season temperatures represented by T-Days>0.9S
(the Hrubý Jeseník and Králický Sněžník Mountains
only). The coldest treeline positions were found in the
Nízké Tatry and Krkonoše Mountains: both exhibited
low values for all temperature variables that ex -
ceeded the confidence interval of the CENA mean.

Within the framework of hierarchi-
cal partitioning, linear models ex -
plaining the dependence of tempera-
ture variables (Days>0.9S, DD0 and
TJUN−SEP) on longitude and vertical
drop between treeline and highest
summit were not statistically sig -
nificant. The independent effects of
 longitude and vertical drop to highest
summit were not significant either.
How ever, the highest values of
TJUN−SEP and T-Days>0.9S were re -
corded for the 4 mountain ranges
with the lowest vertical drop between
the treeline and the summit (Harz,
Králický Sněžník, Hrubý Jeseník and
Velká Fatra).

Computed thermal variables de -
pend on the lapse rates applied. The
average elevation difference be tween
a meteorological station and the near-
est treeline was 292 m. The estimated
error of lapse rates derived from a
comparison with independent station
data (Table 1) showed that the mean

difference in lapse rates was 0.05°C per 100 m in the
Krkonoše Mountains and 0.02°C in the Tatras for
the June−September period. The mean estimated
error of TJUN–SEP for all mountain ranges was there-
fore 0.05−0.14°C, with the maximum value in the
Velká Fatra Mountains (0.17−0.42°C). The lowest
error was in the Harz and Belianské Tatry Moun-
tains, where meteorological stations are situated at
the treeline elevation.

Additional uncertainty is associated with the use of
daily temperatures derived from spline interpola-
tion of monthly temperature means to compute the
Days>0.9S, DD0 and T-Days>0.9S metrics. Based on
3 treeline regions with available measured daily data
(stations Brocken, Chopok and Säntis; for their loca-
tion, see Tables 1, 3), metrics based on observed and
interpolated daily data differed by 7 and 9% for
Days>0.9S and DD0, respectively, and 13% for the
T-Days>0.9S.

5.  DISCUSSION

Although several studies have been published on
timberlines (i.e. the upper limits of closed forest) in
CENA (e.g. Plesník 1971, Czajka et al. 2015b), our
study presents the first comprehensive overview of
thermal characteristics of the highest treeline po -

7

Fig. 4. Treeline temperature characteristics based on standardized metrics
(DD0: degree-days above 0°C; Days>0.9S: number of days with temperature
above 0.9°C without snow cover; TJUN−SEP: average temperature in the
June−September period; T-Days>0.9S: average temperature of the continu-
ous period with air temperature higher than 0.9°C and no snow cover; TWARM:
mean temperature of the warmest month). All metrics have a mean value of 0
and standard deviation of 1. The grey band denotes the confidence interval of 

mean values derived from a 1-sample t-test
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sitions in Central Europe north of the
Alps. The  highest-elevated treelines
are less affected by the second-order
drivers of treeline position and thus
are more suitable for comparative
studies than timberlines (Körner
2012, Treml & Chuman 2015).

We documented that the maximum
treeline elevation in CENA increased
by approximately 94 m per 100 km
between 10 and 20°E. This increase
in treeline elevations with longitude
is associated with rising isotherms of
growing season temperatures to -
wards the east (Quitt 1971, Květoň
2001), a reflection of both increasing
continentality (Mikolášková 2009) and
the mass elevation effect of mountain
ranges. Considering only the effect of
the continentality and the reference
period 1961−1990, July− September
temperatures at 1000 m elevation le -
vel along 49.5°N were 11.6°C at 13°E
and 12.3°C at 18°E, which means an
increase of 0.16°C per 100 km (Kvě-
toň 2001). The effect of mass ele -
vation is evidenced by the rising ele-
vation of CENA mountain ranges
(correlated with their extent) be -
tween the Harz Mountains and the
Tatras (see Fig. 3).

A majority of the treelines studied
exhibited similar values for each tem-
perature metric, an indication that
treeline positions experience similar
climatic forcing. However, the values
of treeline thermal metrics in CENA
are mostly higher than the minimum
values necessary for tree growth de -
rived from the global dataset of tree-
line locations compiled by Paulsen
& Körner (2014) (minimum Days>
0.9S = 94; T-Days>0.9S = 6.4°C).
Purely temperature-based metrics
showed that except for the Nízké
Tatry and Krkonoše Mountains, the
CENA treelines are warmer than
treelines in the Alps by ca. 1°C when
considering regional mean values
(Table 3). If the growing season is
delimited by snowmelt, growing sea-
son length and growing season mean
temperatures in the CENA and Alps
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are similar (Tables 2, 3). Therefore, in agreement
with a previous study (Paulsen & Körner 2014), we
found that the thermal metrics computed over the
period defined by the real start of the growing season
correlate well with treeline position.

We also suggest that some differences in treeline
temperature metrics between CENA and the Alps
might be explained by different mesoclimatic set-
tings of each of these regions. In comparison with the
Alps, the CENA mountain ranges are relatively small
and thus largely affected by intense wind action,
cloudiness and orographic precipitation (Barry 2008),
which decrease radiative heating of the ground
(Treml & Banaš 2008). This is important, because
radiative heating has a fundamental effect on the
ground temperatures in open treeline stands, and
low ground temperatures limit tree growth (Körner &
Hoch 2006, Treml et al. 2015). Physiologically impor-
tant temperatures such as ground or tree tissue tem-
peratures thus might differ between CENA and the
Alps less than was shown in our analysis.

Four regional treelines (Harz, Králický Sněžník,
Hrubý Jeseník and Velká Fatra) were significantly
warmer than the mean values derived from the entire
CENA area. We observed that: (1) these treelines
were located near summits, suggesting a possible in -
fluence of the summit syndrome; and (2) most of
these mountain ranges were situated in the western
half of CENA (Harz, Králický Sněžník and Hrubý
Jeseník). However, neither the effect of vertical dis-
tance between the treeline and the highest summit
(i.e. the summit syndrome) nor longitude (a proxy for
wind speed and rime load) significantly influenced
treeline temperatures in our study. The small number
of regions examined may be why we did not detect
statistically significant effects. Previous studies have
shown that areas situated in the western half of
CENA exhibit a high frequency of fog and rime (Błaś
& Sobik 2000, Błaś et al. 2002). Additionally, mean
wind speed tends to be higher towards the west (r =
0.79; Table 1). Rime and strong winds are responsible
for breaks of apical shoots and abrasion of foliar
cuticula (Hertel & Schöling 2011, Han et al. 2012).
Hormonal signals stimulating radial and height
growth of damaged trees are then weaker as a conse-
quence of broken shoots (Cairns 2001). One possible
explanation for the location of the uppermost tree
stands that exist below the potential, i.e. tempera-
ture-related, tree limit may be attributed to large bio-
mass loss and related low growth rates due to sheer
forces of wind at such summits. However, it still
remains unclear whether the uppermost tree stands
in the Harz, Králický Sněžník, Hrubý Jeseník and

Velká Fatra Mountains are exclusively climate-
 driven and related to the summit syndrome and/or
maritime influences, or whether past human inter-
ventions played a decisive role here (Beug et al.
1999, Novák et al. 2010). Potential upward advance
of tree stands in the Harz or Králický Sněžník Moun-
tains is, however, also restricted by their very close
location to summit areas, meaning that they have
nowhere to expand.

Comparison between directly measured short-term
treeline temperatures from the Alps (Körner &
Paulsen 2004, Rossi et al. 2007, Gehrig-Fasel et al.
2008) and from CENA (Treml & Banaš 2008, Hertel &
Schöling 2011, Treml et al. 2015) reveals ambiguous
differences between both regions (Table 3). For
example, growing season treeline ground tempera-
ture (defined by the 3.2°C threshold; Körner & Paul -
sen 2004) in the Krkonoše Mountains was 0.5°C
warmer than the same temperature at the maximum
treeline position in the Alps (Treml et al. 2015). This
was not true for the Harz Mountains, where growing
season ground temperature was 6.7°C (2005−2006,
season with slightly above-average air temperatures;
Hertel & Schöling 2011) and matched well with tree-
line temperatures derived from the worldwide data-
set of Körner & Paulsen (2004). In our study, the Harz
treeline was the warmest among the studied moun-
tain ranges, except the metrics deriving the growing
season length from the snow melt threshold. How-
ever, according to soil temperature measurements
conduc ted in the Harz Mountains by Hertel &
Schöling (2011), the growing season was rather long
(180 days) so it also comprised long periods with low
soil temperatures slightly exceeding the threshold of
3.2°C. This could explain the overall low mean grow-
ing season temperature. Similar climatic conditions
ob ser ved at the treeline in the Harz Mountains have
been reported from natural wind-affected treelines
in Central Japan (Takahashi et al. 2012, Takahashi
2014).

Besides areas included in our CENA dataset, there
are several other mountain ranges in this part of
Europe that have been reported to be at or approach-
ing the upper forest limit (e.g. Grosser Arber in the
Bavarian Forest, Mt. Fichtelberg in the Erzgebirge
Mountains and Mt. Lysá hora in the Beskydy Moun-
tains; Jeník 1961). Their temperature metrics were
the following: 157−168 days of the growing season
with a mean temperature between 7.8 and 8.4°C,
a mean temperature of 9.6−10.1°C in the  June−
September period and 1569 to 1599°D above 0°C.
Computed thermal metrics thus revealed that these
areas are substantially warmer than the analysed
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CENA dataset, and therefore far below the climatic
tree limit.

Our analysis revealed that the various commonly
employed temperature metrics have different predic-
tive power for treeline position. They all depend on
reliable lapse rates, unless temperatures are meas-
ured right at the tree limit in a proper way. In our
study, however, the estimated uncertainty attributed
to lapse rates was rather low — 0.14°C (0.42°C at
maximum) — for simple temperature metrics based
exclusively on monthly temperature means. Addi-
tionally, temperature metrics based on daily means
are derived from mean monthly trends as provided
by climate databases by spline approximation, which
is a substantial simplification (Zimmermann & Kie -
nast 1999, Paulsen & Körner 2014). DD0, season
length and T-Days>0.9S showed relatively low devi-
ations from computations based on observed daily
values (between 7 and 13%). Deviations of the tradi-
tionally used metric, degree-days above 5°C, were
high (19%), thus challenging the derivation of this
metric from monthly temperature means.

6.  CONCLUSIONS

Our study presents the first compilation of thermal
treeline indicators in 11 mountain ranges in Central
Europe north of the Alps. Treeline elevation in -
creases along the 50th parallel from 1100 m at 10°E
to 1800 m at 20°E in response to rising growing sea-
son isotherms associated with increasing thermic
continentality and the mass elevation effect. The
treelines we studied exhibited temperatures similar
to those of treelines in the adjacent Alps when tem-
perature metrics for growing season were defined by
absence of snow pack and minimum temperature.
However, temperatures were higher when growing
season was only defined by commonly employed
temperature metrics computed over a fixed period or
based only on minimum temperatures. We identified
4 mountain ranges (Harz, Králický Sněžník, Hrubý
Jeseník and Velká Fatra Mountains) where the
uppermost tree stands are likely influenced by their
proximity to mountain summits and are located
below the potential treeline elevation. Summit areas
in these mountain ranges are affected by intense
winds and high rime loads, which cause large bio-
mass loss and prevent the establishment of fully
grown trees. The comparison of various ways of
expressing temperatures for treelines in CENA and
the Alps revealed a better agreement if growing sea-
son definition takes into consideration snow pack

constraint of season length. Such all-season metrics
match the position of the treeline irrespective of the
regional degree of continentality.
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Hrnčiarová T (2002) Landscape atlas of the Slovak Republic.
Ministerstvo životného prostredia Slovenskej republiky.
Bratislava (in Slovak)

Jeník J (1961) Alpine vegetation of the Krkonoše Mts.,
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wind was able to limit only growth of trees taller than 2 m, 
the overall wind-induced depression of highest treeline 
positions is probably low, even in windy mountain regions.

Keywords  Height increment · Picea abies · Radial 
growth · Thigmomorphogenesis · Tree rings

Introduction

On a global scale, treeline position is determined by mini-
mum available heat during the growing season and mini-
mum growing season length still enabling the formation 
of a tree (Paulsen and Körner 2014; Rossi et  al. 2016). 
However, at local to regional scales, there are plenty of 
examples of uppermost forest margins that are depressed 
below the potential growth-limited position as a result of 
high seedling mortality or dieback induced by secondary 
climatic factors (Harsch and Bader 2011). Among these 
factors, wind has been frequently reported to suppress tree 
growth and seedling establishment in the treeline ecotone 
(Holtmeier and Broll 2010; Takahashi 2014; McIntire et al. 
2016). Nevertheless, the importance of wind action as a 
factor limiting the tree life form in the treeline ecotone is 
uncertain. If wind is a significant agent limiting tree growth 
and establishment, then the effect of the recent temperature 
increase on upward expansion of trees will be weaker than 
expected under consideration of temperatures alone.

Besides coastal regions, areas with high wind speeds 
occur near mountain summits of isolated mountain massifs, 
where wind speed is accelerated because of (1) a low fric-
tional effect of the surface on free air flow and (2) compres-
sion and subsequent release of air masses flowing over the 
mountain barrier (Barry 2008). Wind has been suggested 
to affect the position and shape of the upper forest margins 
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in the Rocky Mountains (Holtmeier 1982), the mountain 
regions of Central Japan (Takahashi 2014), the Andes of 
Southern Ecuador (Wagemann et  al. 2015), the Scandes 
(Kullman and Öberg 2009), the Cairngorm Mts. (Wilson 
et al. 1987) or in the Sudetes in Central Europe (Jeník and 
Štursa 2003).

In many cases, the above-mentioned list contains moun-
tain ranges with treelines located close to their summit 
parts. A prominent example of a mountain range where the 
uppermost forest margins are located close to gently roll-
ing summits are the Appalachian Mts., where local krum-
mholz treelines exist in conditions of relatively high grow-
ing season temperatures but under the influence of strong 
winds (Cogbill and White 1991). Lowering of treelines 
in the vicinity of mountain summits is known as the so-
called summit syndrome (Körner 2012). However, not only 
“warm” treelines, but also some treelines existing within 
temperature range characterizing highest zonal treeline 
positions (e.g. 7 °C for growing season soil temperature in 
the Alps, Körner 2012; 6.3–7.3 °C for growing season air 
temperature; Kašpar and Treml 2016), occur close to sum-
mits (Kašpar and Treml 2016). Therefore, the summit syn-
drome, which is largely related to accelerated wind speed, 
is assumed to affect true temperature-limited treelines as 
well.

The main challenge for treeline trees is to sustain suf-
ficient growth (Smith et al. 2003). Stem growth is affected 
by meristem temperature (Körner 2012; Hoch and Körner 
2012), but also by biomass loss (Harsch and Bader 2011). 
Accelerated air flow cools meristems and needles due to 
enhanced heat exchange (Grace et  al. 1989; Anten et  al. 
2010). Intense winds are supposed to increase evaporative 
cooling of meristems and needles wetted by rain or fog 
(James et  al. 1994). Meristem cooling has a direct effect 
on growth suppression (Gričar et  al. 2006; Lenz et  al. 
2013). Indirect effects of wind are often connected with the 
redistribution of snow (Weisberg and Baker 1995). Snow 
is usually deposited on the leeward side of trees or inside 
tree islands. Accumulated snow shortens the growing sea-
son due to delayed snowmelt (Vaganov et  al. 1999) and 
increases seedling mortality caused by snow fungi (Senn 
1999). On the other hand, seedling survival is enhanced in 
snow-accumulation patches in the regions heavily affected 
by strong winds (Renard et  al. 2016). Windy treelines 
are characterized by the occurrence of tree islands that 
are slowly shifting towards their leeward side because of 
reduced dieback and enhanced seedling survival (Alftine 
and Malanson 2004).

Wind generates mechanical stress due to stem bending 
(Gardiner et  al. 2016). Trees generally tend to counter-
act mechanical stress by reducing their apical growth in 
favour of radial growth (Bonnesoeur et  al. 2016). Stem 
radial growth reflects drag forces affecting the tree crown 

with the growth reaction varying along the stem (Nik-
las and Spatz 2000). Permanent wind stress finally leads 
to increased stem taper (Ennos 1997; Bonnesoeur et  al. 
2016). Furthermore, wind-transported snow and ice par-
ticles abrade tree stems and needles at wind velocities 
greater than 7  m  s−1 (Mamet and Kershaw 2013). Nee-
dles are consequently either destroyed or their cuticula is 
damaged, and needles become vulnerable to winter des-
iccation (Tranquillini 1979), though this mechanism is 
not generally responsible for limiting tree growth at the 
treeline (Grace 1990; Körner 1998). High and irregular 
foliage loss and meristem damage may result in an asym-
metric shape of the tree crown, reflecting the prevailing 
wind direction (Mamet and Kershaw 2013). Moreover, 
browsing on terminal parts is also expected to weaken 
hormonal signalling which controls tree growth and bio-
mass allocation (e.g. Hertel and Schöling 2011; Susiluoto 
et al. 2010).

So far, studies dealing with the effect of wind on tree-
line position have reported biomass loss to be the most 
important agent depressing the position of upper forest 
margins below the potential treeline (e.g. Kullman and 
Öberg 2009; Takahashi 2014). High biomass loss can 
ultimately result in the krummholz growth form of tree 
species (Harsch and Bader 2011). Wind action has also 
been shown to be severely affecting seedling mortality, 
and thus contributing to the formation of island treelines 
(Harsch and Bader 2011; Renard et  al. 2016). Most of 
the studies mentioned above assessed the effect of wind 
assuming that wind speed increases with elevation (Taka-
hashi 2014), did not relate modelled wind speed to tree 
growth (Wagemann et al. 2015) or arbitrarily defined lee-
ward and windward sites (Resler 2006; Han et al. 2012). 
However, these assumptions might not apply to complex 
terrain with wind fields heavily affected by topography 
(Barry 2008). As far as we know, the response of tree 
growth characteristics to a gradient of quantified wind 
speed (be it modelled or measured) has not been studied 
in the treeline ecotone, although this step is necessary 
to estimate the effect of wind speed on the anticipated 
“treeline depression”. In this study, we hypothesized that 
along wind-affected treelines situated near summit areas, 
the variance in tree growth metrics not attributable to 
elevation and tree age should be possible to explain by 
the degree to which the sites under study were exposed to 
wind. Our objective was to test the effect of wind speed 
on various growth metrics and to quantify the effect 
of wind speed on the possible depression of upper for-
est margins below the potential treeline. To address this 
question, we collected data on growth characteristics of 
treeline trees in a treeline ecotone located 50 to 200 m of 
elevation below summits in the Giant Mountains, a part 
of the Sudetes mountain chain (Czech Republic, Poland).
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Materials and methods

Study area

The Giant Mts. (Fig. 1) are among the windiest mountain 
ranges in Europe (Migała 2005) with dominant westerly 
winds, the mean wind velocity being 12 m s−1 on the high-
est peak Mt Sněžka, 1603 m ASL (Fig. 2a; Metelka et al. 
2007). Due to their pronounced relief, rising above the sur-
rounding lowlands by ~1200  m, the Giant Mts. represent 
the first barrier to westerlies flowing from the North Sea. 
Westerly winds in combination with the longitudinal orien-
tation of main ridges are responsible for significant differ-
ences between windward and leeward sites in terms of veg-
etation composition and irregular distribution of snow cover 
(Jeník and Štursa 2003). The Giant Mts. are character-
ized by high precipitation (approximately 1400–1600 mm 

per year) and a mean annual temperature of 0.5 °C at the 
uppermost locations (Migała et al. 2016). There are about 
180 days of continuous snowpack above the timberline 
(Metelka et al. 2007). Snow depth varies depending on the 
topography; however, disregarding cirques and nivation 
hollows, local maxima are usually achieved at the timber-
line; from the timberline towards summit areas, snow depth 
decreases (Štursa et  al. 1973). Mean maximum snowpack 
depth on plateaus above the timberline was 1.8 m (Labská 
bouda station, 1961–1990). The highest situated trees are 
growing around the 1500 m elevation contour, along which 
the growing season lasts 127 days on average (Kašpar and 
Treml 2016). The measured mean growing season ground 
temperature (following the methodology of Körner and 
Paulsen 2004) is 7.1 °C based on six treeline sites and 
growing seasons from 2006 to 2012 (unpublished data of 
V. Treml). The treeline ecotone is situated approximately 

Fig. 1   The Giant Mountains with locations of sampling plots and modelled wind speeds in the treeline ecotone. The ecotone is represented by 
the area covered by trees of heights ranging from 2 to 5 m

Fig. 2   a Histogram of wind 
speeds (based on 3 h measure-
ment intervals) at Mt Sniezka 
(2004–2005); b verification 
of modelled wind speeds by 
wind speeds measured at four 
climatic stations. Abbrevia-
tions for climatic stations: Lab 
Labská bouda; Pec Pec pod 
Sněžkou; Sne Sniezka; Szre 
Szrenicza



	 Alp Botany

1 3

between 1300  m (the upper limit of closed forest) and 
1500 m (Treml and Chuman 2015). Norway spruce (Picea 
abies [L] Karst.) is the dominant treeline tree species. Trees 
with flag-like crowns are common; low spruce mats (lower 
than 0.5  m) occur in locations exposed to strong winds 
(Treml and Migoń 2015). The prostrate shrub dwarf pine 
(Pinus mugo) is also widespread in the treeline ecotone. 
The position of the treeline had been affected by cattle 
grazing and mowing of grass, particularly in the eighteenth 
and nineteenth centuries; however, human impact on the 
treeline gradually decreased in the twentieth century, and 
since the 1940s, the treeline ecotone has been developing 
spontaneously (Lokvenc 1995).

Data collection and processing

We selected 70 plots in the treeline ecotone by stratified 
random sampling with respect to the proportional distribu-
tion of plots at different elevation levels and on slopes of 
eastern (leeward) and western (windward) aspect. Initially, 
the plots were placed randomly along transects across the 
treeline ecotone using GIS. Additional plots were subse-
quently generated in under-represented aspect-elevation 
categories. The plots were then identified in the field, and 
some of them (located inside of fully closed dwarf pine 
stands) were moved to the nearest accessible position. 
The plots covered an elevation range between 1330 and 
1540 m a.s.l. The average nearest neighbour plot distance 
was 263  m; the shortest distance between two plots was 
40  m. Within each plot, three randomly selected patches 
represented by individual trees or tree islands were sam-
pled. Only individuals taller than 2 m were considered. For 
each patch, we determined whether it was represented by 
an individual tree or a tree island. Tree islands were mostly 
formed by ramets with upright stems, but some trees in 
each island originated from seeds. For each individual or 
the tallest specimen of a tree-island, we identified the pres-
ence/absence of apical breaks, presence/absence of layering 
branches (for isolated individuals or trees at margins of tree 
islands) and stem splitting. Not only contemporary, but also 
all earlier apical breaks were determined in the stem section 
above the lower increment core, based on a candelabra-like 
stem morphology (Schweingruber 1996). We measured 
tree height, stem girth, length of the longest and shortest 
stem axis (at 1  m stem height). Furthermore, lengths of 
branches were determined in four directions (north, south, 
west and east) at 2 m above the ground (i.e. approximately 
above the average maximum height of the snowpack). In 
tree islands, maximum branch lengths were measured for 
trees growing at the margins of tree islands. For each patch, 
distance to the nearest barrier (other trees, tree islands, 
rocks, Pinus mugo stands, etc.) in three directions was 
measured. Two perpendicular tree-ring cores were sampled 

from each tree (or from the tallest tree of a tree island) at 
~0.5 m stem height to obtain tree-ring widths (TRW), tree 
age and the number of missing rings. An additional core (or 
cross-section) was sampled from approximately 2 m stem 
height to compute height increment and to ascertain the 
proportion of reaction wood. To compute height increment, 
the exact distance of each core from the stem base and the 
highest internode was measured. The tree-ring cores were 
sanded, ring widths were measured on a positioning table 
and cross-dated (Speer 2012). In cases of off-pith cores, the 
number of missing rings was estimated using a pith-locator 
according to Batllori and Gutiérrez (2008).

For each tree, we computed parameters describing 
allometry, such as crown shape (length of the shortest/long-
est branch) and stem taper (girth divided by tree height). 
Height increment was calculated as (1) height increment 
between 0.5 and 2 m (the number of tree rings at ~0.5 m 
minus the number of tree rings at ~2 m divided by the exact 
distance between cores), and (2) height increment above 
2 m (stem length above the upper core divided by the age 
of the tree at the height of the upper core, current growing 
season increment was not considered). Height increments 
were computed both for the entire sample set and for the 
samples free of apical breaks. The proportion of tree rings 
with reaction wood was determined in the first 15 tree rings 
of the upper core.

Wind speed and other environmental variables

For each plot, we calculated the following variables based 
on a digital terrain model with 10-m resolution: eleva-
tion, curvature, slope, heat load (combination of slope and 
aspect, McCune and Keon 2002) using ArcGIS software. 
Wind fields were computed using the WAsP Engineering 
system version 3 (Mann et al. 2002), which is based on the 
linear model LINCOM (Astrup et  al. 1997). It is broadly 
used for estimating wind speed in windy areas (Rathmann 
et al. 1999; Larsen and Mann 2009). The LINCOM model 
simulates neutrally stable flow over hilly terrain using line-
arized mass and momentum equations. Its outcome yields a 
perturbation of wind speed and pressure that is induced by 
varied terrain in comparison to flat terrain conditions with 
uniform roughness. Without perturbation the model pro-
duces a logarithmic profile of wind speed. For the purpose 
of this study, the model was run in the selected domain at 
20-m horizontal resolution. The wind fields were simulated 
for the generalized wind speed of 7  m  s−1 corresponding 
to the height of 10 metres above flat terrain with a uniform 
roughness of 0.1 m. The resulting wind fields were derived 
as average model outputs for input wind directions of 210, 
240. 270, 300 and 330°, hence corresponding to prevailing 
westerly winds in the Giant Mountains.
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The averaged outputs of the model were verified using 
measured mean wind speed from meteorological stations 
representative of major landforms—two summit stations 
(Sniezka and Szrenicza), one climatic station located on a 
flat high-elevated plateau (Labská bouda) and a deep valley 
station (Pec pod Sněžkou). The measured wind speeds are 
averages from 3-h measurements in the period 2004–2005. 
Since the modelled and measured data matched very well 
(Fig. 2b), we considered the modelled data suitable for fur-
ther analysis. The simulations provided wind speeds com-
parable with wind speeds measured directly at the local 
meteorological station Sniezka (Fig.  2a), considering the 
75th percentile of wind speed distribution. The 75th per-
centile was selected because only high wind speeds effi-
ciently limit tree growth (Bonnesoeur et al. 2016).

Statistical analysis

Growth metrics for each plot were represented either by 
average values (height increment between 0.5 and 2  m, 
height increment above 2 m, proportion of reaction wood, 
age of trees, number of missing tree rings, crown shape 
and stem shape, stem taper) or by sums (presence of tree 
islands, number of apical breaks, layering branches). Prior 
to the averaging, the effects of age and elevation on growth 
metrics were removed for tree height, stem girth and TRW. 
This effect was removed using multiple linear regression 
where the response variable was the growth metric and 
where tree age and elevation were explanatory variables. 
Residuals from the regression models were used in further 
analyses. These variables are hereafter called tree height, 
girth and TRW residuals.

All variables (except count or semi-categorical met-
rics) were visually checked for normality and transformed, 
if necessary, by applying a logarithmic transformation 
(height increment, tree age, distance from the nearest bar-
rier and heat load index), square root transformation (eleva-
tion) or exponential function (stem shape). Finally, all the 
above-mentioned metrics were transformed to unit vari-
ance and zero mean. Basic descriptive analysis of relation-
ships among the response variables (growth metrics) and 
explanatory variables was done using Pearson correlations 
or ANOVA. To identify whether values of growth metrics 
were spatially clustered, we calculated spatial autocorre-
lations. Autocorrelation was measured using Moran’s I as 
implemented in ArcGIS (Wong and Lee 2005).

The growth metrics were correlated, so redundancy 
analysis (RDA) was performed to examine the relation-
ships among all variables and to determine the variance 
in growth metrics explained by environmental variables 
(Šmilauer and Lepš 2014). To explain the effect of environ-
mental variables on each growth metric, we applied general 
linear models assuming a Gaussian distribution of response 

metrics (tree height residuals, girth residuals, TRW residu-
als, height increment below and above 2 m, proportion of 
reaction wood, taper, crown shape). For height increments, 
the environmental variables were supplemented by tree 
height and the presence of apical breaks. Tree age entered 
among environmental variables in all cases, except for 
TRW, stem height and girth residuals. A generalized lin-
ear model with a Poisson distribution of semi-categorical 
response metrics was applied to the presence of tree islands 
and the numbers of layering branches and apical breaks. 
Due to a high proportion of zero values in our samples, 
the same model with negative binomial distribution of the 
response variable was used for the number of missing tree 
rings (Legendre and Legendre 2012). The quality of model 
fit was evaluated using R2. The independent explanatory 
power of each environmental variable was estimated using 
hierarchical partitioning (Chevan and Sutherland 1991; 
Walsh and McNally 2013).

In addition, interactions of wind speed and other vari-
ables were alternatively considered in all models, which 
led to an increase in the overall number of explana-
tory variables. To determine the importance of variables, 
including interactions, we generated a set of models with 
all explanatory variable combinations. The models were 
ranked according to the Akaike information criterion (AIC) 
(Burnham and Anderson 2004). For each explanatory vari-
able and interaction entering to the best model, we further 
estimated its AIC-weighted importance, a unitless metric 
indicating summed AIC across all models in which the 
variable appears. This importance ranges from 0 (variable 
with no explanatory weight) to 1 (variable in all top mod-
els) (R package MuMIn, Bartoń 2015). All statistical analy-
ses were performed in R (R Development Core Team 2008) 
and CANOCO (RDA analysis, Šmilauer and Lepš 2014).

Results

We collected growth data for 210 trees growing in 70 plots. 
Almost 67% of the trees were found in tree islands. Aver-
age tree height was 366 ± 50 (SD) cm, and average girth 
was 34 ± 7.5 cm. Average estimated age was 58 ± 11 years, 
mean  TRW being 1.04 ± 0.16  mm. At least one miss-
ing tree ring was recorded in 60 trees (nearly 30% of all 
trees). The average height increment was 7.3 ± 1.2 and 
11.1 ± 2.1  cm  year−1 below and above 2  m, respectively. 
Considering only trees without detected apical breaks, the 
height increment was 7.5 ± 2.1 (below 2 m) and 11.5 ± 3.0 
(above 2 m). Apical breaks were found in 49% of the trees.

Certain growth metrics were strongly related to eleva-
tion and tree age. Tree height decreased with increasing 
elevation (r = −0.42) and with decreasing age (r = 0.27). 
Significant correlations with age (r = 0.46) and elevation 
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(r = −0.43) were determined for stem girth as well. TRW 
correlated with age and elevation (r = −0.52 and − 0.22, 
respectively). Height increment to 2  m was significantly 
correlated only with tree age (r = −0.49), but not with 
elevation (r = −0.05), and height increment above 2  m 
decreased with increasing age (r = −0.51) as well. Linear 
models explaining tree height, girth and TRW (response 
variables) by tree age and elevation (explanatory variables) 
were statistically significant (p < 0.01), as was the effect of 
both explanatory variables. The models explained 21, 29 
and 35% variability in tree height, girth and TRW, respec-
tively. To discern the effect of wind on tree height, stem 
girth and TRW, we used residuals from these models in fur-
ther analysis.

Growth metrics, such as the proportion of reaction wood 
and height increment below 2  m, did not show any trend 
along the gradient of increasing wind speed (Fig. 3b, c). On 
the other hand, TRW and tree height residuals decreased 
with increasing wind speed with the exception of the high-
est wind speed interval (Fig. 3a, d). Values of the remain-
ing metrics, namely height increment above 2 m, stem taper 
and crown shape, decrease from sites with low wind expo-
sure to highly wind-exposed sites. The steepest decreasing 
slope was observed in the middle of the modelled wind 
speed range (from 9 to 12 m s−1, Fig. 3f, g). The influence 
of wind on crown shape was also obvious, as indicated by 
the length of branches categorized by their aspect. On aver-
age, western branches (length = 44 ± 20  cm) were about 
30 cm shorter than eastern branches (length = 78 ± 22 cm) 
and about 20  cm shorter than southern and northern 
branches (length = 65 ± 23 cm, Fig. 3h). As regards the spa-
tial distribution of growth metrics (Table 1), the strongest 
tendency towards clustering was observed for mean tree 
age, occurrence of apical breaks and the proportion of reac-
tion wood.

The ordination plot (Fig.  4) indicates that high wind 
speed is reflected in an increased frequency of tree islands 
and trees with irregular crowns. At the same time, large 
trees growing at sites influenced by high wind speeds tend 
to have lower average height increments. It is also obvi-
ous that older trees were predominantly situated on south-
west-facing steep slopes (i.e. sites with a high heat load), 
and these trees were characterized by more frequent apical 
breaks. The first four RDA axes explain 15% of variance in 
growth variables, of which 92% is captured by environmen-
tal variables.

Environmental variables, supplemented in relevant cases 
by tree age, tree height and presence of apical breaks, suc-
cessfully predicted the following growth metrics (Table 2): 
height increment below 2 m, height increment above 2 m, 
proportion of reaction wood, crown shape, presence of api-
cal breaks, presence of layering branches and occurrence of 
tree islands. Models for the remaining response variables 

(TRW residuals, taper, tree height residuals and girth resid-
uals) were not statistically significant. Wind speed entered 
with a significant negative effect into models explaining 
height increment of trees above 2  m (regression coeffi-
cient −0.65, interactions of wind speed and heat load were 
important as well), crown shape (together with age, inter-
actions of wind speed and elevation and curvature were 
important), presence of layering branches (together with 
distance from the nearest barrier) (Table  2). Wind speed 
positively affected the presence of clonal groups. Height 
increment below 2 m was explained only by age. The pro-
portion of reaction wood depended on the elevation. The 
presence of apical breaks had a low explanatory power in 
models for radial and height increment. Apical breaks were 
common for old and rather low trees growing on steep 
slopes (Table 2).

Discussion

In this study, we exemplify that only certain growth met-
rics are affected by wind action in treeline ecotones. This 
is especially true for the presence of tree islands and flag-
like tree crowns at wind-exposed sites. The occurrence of 
tree islands, maintained mostly by clonal reproduction, 
is an efficient way to occupy a position at wind-exposed 
sites, where generative regeneration is sparse and occa-
sional (Alftine and Malanson 2004; Holtmeier and Broll 
2010). As regards flag-like crowns, we expected the evi-
dent loss of biomass caused by wind browsing to result in 
decreased radial growth due to the need to compensate for 
biomass loss in branches related to defoliation (e.g. Handa 
et al. 2006; Susiluoto et al. 2010). However, there was no 
straightforward linear trend of TRW decrease along the 
gradient of wind speed. We observed a decrease of TRW in 
the modelled wind speed range of 9 to 14 m s−1; however, 
at the highest wind speeds (14 m s−1 and more), tree rings 
again become wider. We suggest that the observed trend of 
TRW along the wind speed gradient results from interfer-
ence between two types of physiological processes. First, 
processes causing decreased growth, such as limited radia-
tive warming of meristems in windy conditions (James 
et  al. 1994) and weak hormonal signalling from damaged 
buds and foliage (Pallardy 2008; Han et al. 2012) or, alter-
natively, changes in biomass allocation in trees subjected to 
foliage loss (Handa et al. 2006), probably dominate under 
lower wind speeds. Second, under the highest wind speeds, 
thigmomorphogenesis should be considered (Bonne-
soeur et al. 2016), because trees under intense mechanical 
stress tend to increase their radial growth. The increasing 
representation of tree islands towards sites most exposed 
to wind probably does not influence TRW, because when 
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considering exclusively solitary trees, the trend in TRW 
is similar to the trend in the dataset containing all trees 
(Appendix 1).

The limited reaction of radial growth to loss of branch 
biomass attributable to wind abrasion means that trees 
have sufficient reserves in their photosynthetic capacity and 

Fig. 3   Distribution of growth 
variables along the gradient of 
wind speed. Means and standard 
deviations are presented. a Tree 
ring width residuals; b propor-
tion of reaction wood in the 
first 15 tree rings at 2 m above 
the ground; c height increment 
between 0.5 and 2.0 m (full 
circles denote complete dataset, 
empty circles are used for 
dataset free of apical breaks); 
d height increment above 2 m 
(full and empty circles are used 
in the same way as in c); e tree 
height residuals; f stem taper; 
g tree-crown shape; i aver-
age length of branches in four 
aspects
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that the loss of even a substantial proportion of branches 
and needles is not significant. Some studies, however, 
have reported decreases in radial growth after defoliation, 
depending on its extent, from 37 to 84% (Li et  al. 2002; 
Susiluoto et al. 2010; Puri et al. 2015). On the other hand, 

if the defoliation was less extensive, a situation probably 
typical of treeline habitats, radial growth was not affected 
(Puri et  al. 2015). Moreover, it is worth mentioning that 
the average length of the growing season at the treeline in 
the Giant Mts. is 127 days (Kašpar and Treml 2016), which 
is about 30 days more than the minimum growing season 
length necessary for sustainable growth of trees at the tree-
line (Paulsen and Körner 2014).

Along the gradient of modelled wind speed, there was 
no trend in height increment below 2 m. Similar to TRW, 
height increment to 2 m was greater at the highest modelled 
wind speed (more than 14  m  ·  s−1) than in the preceding 
wind speed interval (13–14 m  ·  s−1); however, this differ-
ence was substantially smaller than in the case of TRW. 
This ambiguous course of height increment below 2  m 
results from interfering effects of wind speed and tree age. 
At most wind-exposed (and often high-elevated) sites, juve-
nile specimens with relatively high growth rates prevail. In 
addition, wind-exposed trees usually have extremely wind-
shaped crowns resulting from asymmetric foliage loss and 
bud damage on the windward side of the tree. Debudding 
and foliage loss (if not applied to the apical bud) might 
enhance the growth of unaffected shoots (Polák et al. 2006; 
Susiluoto et  al. 2010). Additionally to the effect of age, 
this mechanism, together with the protective effect of tree 
islands (Šenfeldr et  al. 2014; 82% of trees at most wind-
exposed sites grew within tree islands), might explain the 
slight increase in height growth at extremely wind-exposed 
sites.

Once a tree top sufficiently protrudes above the snow 
surface and the tree is tall enough (in our case taller than 
2 m), wind action becomes an important limiting factor of 
height growth. Based on regression coefficients, we found 
that in the modelled wind speed range of 7–14  m  ·  s−1, 
annual height growth is depressed by about 0.65  cm per 
1 m  ·  s−1 of wind increment, assuming a linear response. 
However, towards the highest modelled wind speed, the 
uncertainty of our modelled growth reduction increases 
due to a low available number of observations and a high 
proportion of tree islands, which have a facilitative effect 
on tree growth. That the reduction of height increment is 
limited to the stem section above 2 m can most probably be 
ascribed to the absence of a protective effect of the snow-
pack against ice and snow blasting above the snow surface 
(Holtmeier 2009; Holtmeier and Broll 2010) and also to 
increasing wind pressure with increasing distance above 
the ground (Aulitzky 1961). The reduced height increment 
at wind-exposed sites corroborates observations of Han 
et  al. (2012) for Picea jezoensis in Korea, indicating that 
it is a general phenomenon. As the mechanism responsible 
for the wind-induced depression of height growth, we sug-
gest direct growth limitation through cooling of apical mer-
istems. Windy conditions eliminate the effect of daytime 

Table 1   Spatial autocorrelation of growth metrics

Moran’s I and z scores are listed. Asterisks denote the statistical sig-
nificance of Moran’s I as follows: p < 0.001 (***), p < 0.01 (**) and 
p < 0.05 (*)

Metric Moran’s I z score

TRW residuals 0.15* 2.10
Height increment between 0.5 and 2 m −0.07 −0.75
Height increment above 2 m 0.09 1.39
Proportion of reaction wood 0.22** 3.12
Number of missing rings 0.12* 2.07
Age 0.36*** 4.88
Tree height residuals 0.09 -0.94
Girth residuals 0.09 1.31
Stem taper 0.08 1.26
Crown shape 0.04 0.76
Tree islands 0.04 0.71
Apical breaks 0.21** 2.97
Layering branches 0.05 0.83

Fig. 4   RDA analysis of growth metrics and environmental variables 
for plots distributed along the gradient of wind speed. Only variables 
with higher fit than 10% on Axis 1 and Axis 2 are depicted. Environ-
mental variables are marked in grey capitals, growth metrics are in 
italics. Age age of trees; Ap.Breaks(0–1) 0–1 tree with apical breaks 
on a plot; Ap.Breaks(2–3) 2–3 trees with apical breaks on a plot; tree 
islands all trees on a plot grow within tree islands; height-incr above 
2  m height increment above 2  m; layer-branch (0–1) 0–1 tree with 
layering branches on a plot; layer-branch (2–3) 2–3 trees with lay-
ering branches on a plot; Rea_Wood proportion of reaction wood; 
CURV terrain curvature; DIST distance from the nearest barrier; 
ELEV plot elevation; HEAT heat load index; SLOPE slope; WIND 
modelled wind speed
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radiative warming of the canopy and meristems (James 
et al. 1994). This warming is estimated to be about 2 K for 
the canopy (Tranquillini 1963) but less than 1 K for stem 
or terminal shoots (Wilson et  al. 1987; Wieser 2007), if 
mean seasonal temperature is considered. The effect of api-
cal breaks can probably be excluded because their presence 
was independent of wind speed.

The reported depression of uppermost tree stands in 
wind-affected mountains ranges from 100 m in the boreal 
central Scandes in Sweden (Kullman and Öberg 2009) to 
about 50 m in the tropical Andes of Equador (Wagemann 
et al. 2015). The results of our study, however, indicate that 
conservative estimates of wind-induced treeline depression 
are probably more realistic. In the Giant Mountains, areas 
with modelled wind speeds greater than 10 m · s−1 (which 
substantially affect height growth) represent 48% of the 
treeline ecotone. We estimate that the wind-induced reduc-
tion of height growth in these areas ranges from a few per 
cent to up to 37% of the average height increment of stem 
sections above 2 m. Still, however, more than 50% of the 
treeline ecotone is not affected by wind, allowing the tree-
line to locally reach its potential position.

In a previous study at the Sudetes treeline, Treml et al. 
(2012) documented a substantial increase in radial growth 
since the 1980s associated with climatic warming. Here, 
we found that height increment below 2 m negatively cor-
relates with tree age. Therefore, similar to ring width, past 
height increments were substantially lower than contempo-
rary height growth. Once trees exceed the height of 2  m, 
the effect of climatic warming is, however, counterbalanced 
by wind action. This could explain the recent advance of 
average treeline position but not of maximum treeline posi-
tion in the Giant Mts. (Treml and Chuman 2015).

Our results also show that high wind speeds are 
reflected in the frequent occurrence of clonal tree islands. 
This means that wind action suppresses generative estab-
lishment in favour of vegetative spreading (Tranquillini 
1979; Šenfeldr et al. 2014 and references therein). On the 
other hand, we observed fewer layering branches at wind-
exposed sites than in leeward areas. Still, germination in 
open stands distant from tree islands is substantially less 
probable at wind-exposed sites than establishment of new 
seedlings or ramets next to tree island margins. In wind-
affected environments, tree establishment is extremely con-
tingent on facilitation by neighbouring trees (Resler et  al. 
2005; McIntire et al. 2016), and vegetative reproduction is 
successful despite the negative influence of wind (Šenfeldr 
and Maděra 2011).

The wind speeds modelled in this study correspond 
with values measured at four climate stations. There-
fore, modelled wind speeds probably well capture topo-
graphically driven differences. For the sake of simplicity, 

modelled wind speeds were represented by mean values, 
which emphasize more intense winds (approximately 
corresponding to the 75th percentile of measured wind 
speed distribution). We, however, cannot draw an exact 
conclusion as to which part of the wind speed distribu-
tion is actually effective at limiting tree growth. In addi-
tion, wind gusts that might be effective at removing entire 
trees or part of their biomass (Gardiner et al. 2016) were 
not considered. We simply assumed that wind-exposed 
sites are more probably affected by wind gusts in com-
parison with wind-protected sites.

To summarize, in the Giant Mountains at one of the 
windiest treelines in Europe, topographically accelerated 
wind speed is manifested in the presence of tree islands 
and flag-like tree crowns. However, the evident loss of 
branch and needle biomass at wind-exposed sites is not 
linked directly to a decrease in radial growth. We suggest 
that an interplay between wind-induced meristem cool-
ing, reduced radial growth in response to foliage loss and 
bud damage, thigmomorphogenesis and the protective 
effect of tree islands result in indistinct trends in radial 
growth along the wind-speed gradient. In contrast to 
radial growth, the effect of wind is significant for height 
increment in trees taller than 2  m, that is, trees suffi-
ciently tall to be exposed to wind. About half of the tree-
line ecotone area is subjected to wind speeds reducing 
height increment. Small trees under 2 m in height exhib-
ited a rapid increase in height growth in the last decades; 
however, when these trees grew over 2 m tall, their height 
increments became limited by wind at wind-exposed 
sites. The observed treeline advance could therefore be 
limited by wind action in exposed mountain massifs of 
restricted elevation. However, considering that wind 
velocities effectively limiting height growth are reached 
only in about half of the treeline area in the Giant Moun-
tains and that wind is able to limit growth only of trees 
taller than 2 m, we propose that the overall wind-induced 
depression of the treeline is relatively low even in windy 
mountain regions.
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Relation between tree growth and temperature explains formation of regional 
treelines 
Jakub Kašpar, Václav Treml 
 
Abstract (276 slov) 
In temperate and boreal zone, treeline growing season temperatures should be ideally the 
same, because of identically temperature-limited tree growth. However at regional scales, 
reported treeline temperatures and growth performances vary a lot suggesting either 
additional limiting factors or differential sensitivity of treelines to ongoing warming. Here 
we present a comparison of tree growth parameters and treeline temperatures across ten 
mountain ranges in Central Europe north of the Alps (51-48°N, 10-20°E). We test if tree 
growth is approximately same across all treelines and less limiting temperatures at warm 
treelines are counterbalanced by other limiting factors, or, if growth varies exclusively as a 
consequence of temperature variability. In all treeline regions, approximately 3 m high 
Picea abies were sampled to measure radial and height growth and to determine symptoms 
of biomass loss. Tree ring width, height increment below 2 m and the height increment 
above 2 m of stem height were modelled using treeline temperature metrics, symptoms of 
biomass loss, reaction wood presence, and site properties. We found that radial growth, 
height growth to 2 m and height growth above 2 m showed high, weak, or almost no 
correlation with temperature, respectively. Certain warm treelines with high radial growth 
rates were characterized by high proportion of reaction wood, frequent symptoms of 
biomass loss and high stem taper. However, the others revealed a limited evidence of 
biomass loss or reaction wood presence indicating that they are either a remnant of past 
disturbances or their response to recent temperature increase is lagged due to anthropogenic 
land-use. We propose that the comparison of growth, temperature metrics and symptoms 
of biomass loss is particularly helpful to discern formation of regional treelines. 
 
Introduction 
Treeline is a prominent vegetation boundary reflecting elevation-driven temperature 
gradient. Above treeline, woody plants are not able to form tree stature because of too low 
temperature of plant body during the growing season and/or due to too short growing season 
(Körner 2012, Rossi et al. 2016). Treeline position is thus driven by air temperature, which 
influences plant body temperature. As a result, treeline positions in seasonal climates are 
characterized by similar temperatures in the growing season irrespective of bioclimatic 
region (Körner and Paulsen 2004, Paulsen and Körner 2014) and treeline positions can be 
used as climatic markers indicating ongoing or past temperature changes (e.g., Tinner and 
Theurillat 2003, Heiri et al. 2006). However, in contrast to assumed uniform temperatures 
across treelines, the ranges of treeline temperature metrics are relatively high even on 
regional scale as has been reported from the Alps (Körner and Paulsen 2004, Gehrig-Fasel 
et al. 2008) or from mountain ranges north of the Alps in Central Europe (Kašpar and Treml 
2016). There are plenty of possible explanations ranging from measurement errors, 
microclimatic variability or varying deviances of plant body temperature from measured 
air or soil temperature. In addition, not only treelines in equilibrium with their temperature 
conditions (i.e. potential treelines) but also “depressed” treelines have been probably 
included in global or regional comparisons. 
Although the ultimate limit of tree existence at its upper distributional margin is low growth 
(Körner 1998), the uppermost tree stands often occur below potential treeline because of 
other limiting factors such as establishment constraints or biomass loss (Harsch and Bader 
2011). Such uppermost tree stands (hereafter also called “treelines”) thus exist in warmer 
environments than potential treelines  and the less negative effect of temperature on tree 
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growth is compensated by, e.g. drought-limited seedling survival (Batllori et al. 2009, Gill 
et al. 2015), competition-driven exclusion of seedlings in dense herbal plant communities 
(Tingstad et al. 2015) or high biomass loss in areas with high wind speeds and/or high snow 
pack (Kajimoto et al. 2003, Han et al. 2012, Takahashi 2014). In addition, recent studies 
from warm-temperate mountain ranges suggest drought-limited growth supplementary to 
the temperature-limited growth at some treelines (Gonzáles de Andrés 2015, Piper et al. 
2016). 
At European temperate treelines, the reported mean growing season ground temperatures 
vary from 6.7 to 8.8 °C (Körner and Paulsen 2004, Gehrig-Fasel et al. 2008, Hertel and 
Schöling 2011, Treml et al. 2015a). The growing season length at European treelines 
indicated by wood formation ranges between 83 and 137 days considering Picea abies, 
Pinus cembra and Larix decidua in the Alps and the Sudetes Mts. (Rossi et al. 2006, 2007, 
2008, Moser et al. 2009, Treml et al. 2015a), however growing season as long as 150 (Rossi 
et al. 2008) or 170 days (Gruber et al. 2009) was observed as well. Modelled growing 
season lengths derived from climatic data span from 106 to 144 days in the broader region 
of Central Europe and the Alps (Kašpar and Treml 2016). 
Similarly to treeline temperature metrics, the broad range has been observed also for growth 
parameters of treeline trees. For example, taking into account single tree species – Picea 
abies – the reported mean tree-ring widths from European treeline areas vary from 0.6 to 
1.9 mm (Bednarz et al. 1998-1999, Paulsen et al.2000, King et al. 2013, Sidor et al. 2015, 
Ponocná et al. 2016). Great variability in TRW is obviously driven by age trends, site 
effects and different sampling positions across treeline ecotones. However, some TRW 
variability might be also ascribed to varying temperature conditions among treelines. 
Since the tree growth is temperature-limited at treeline, the growth should be approximately 
the same at treelines with the same tree species. However, as shown above, there is rather 
a broad range of temperatures and growth parameters reported from treelines, even within 
one macroclimatic region such as temperate zone of Europe. Besides of difficulties to 
capture treeline temperature metrics correctly, another source of uncertainty lies in limited 
knowledge of various factors depressing the uppermost tree stands bellow the potential 
treeline. Within the temperature range characterizing treeline regions, two growth patterns 
might by theoretically possible. First, tree growth will be approximately the same across all 
treeline regions, and higher treeline temperatures will be counterbalanced by the influence 
of other growth-limiting factors (e.g. biomass loss). Second possibility is that the warmer 
the treeline is, the higher tree growth is. In that case, the low and warm position of 
uppermost tree stands might result from the effect of occasionally acting factors like past 
disturbances or from the lag of treeline position behind the recent temperature increase. Our 
goals therefore were: (i) to compare growth parameters with treeline temperature metrics, 
(ii) to compare parameters indicative for biomass loss among treelines, and (ii) to identify 
treeline regions with unusually high tree growth suggesting that these  treelines are situated 
below potential treeline. 
 
Materials and methods 
Study Area 
Study area was represented by ten mountain ranges located at 48-51°N and 10-20°E in 
Central Europe north of the Alps (hereafter CENA; Figure 1) stretching between the Harz 
Mts. in the west and the Vysoké Tatry Mts. in the east. In all mountain ranges there is a 
paleoecological evidence of climate-driven treelines during the upper Holocene (Beug et 
al. 1999, Treml et al. 2006, Novák et al. 2010). Some of these mountain ranges (Harz, 
Krkonoše, Králický Sněžník and Hrubý Jeseník) are represented by a medium relief 
mountains exaggerated against foothills by 800-1000 m, eastern part of the CENA has 
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pronounced alpine relief exaggerated against foothills by more than 1200 m. Lithologies 
range from acidic nutrient poor bedrock (prevailing in the west) to flysch and limestone 
lithologies prevailing in the east. 
Dominant treeline tree species is Norway spruce (Picea abies L. Karst). In West 
Carpathians (Babia Gora, Malá and Veľká Fatra Mts. the Tatras) also European larch (Larix 
decidua) and Swiss stone pine (Pinus cembra) occur (the latter only in the Vysoké Tatry 
Mts.). Except the Harz, Hrubý Jeseník and Králický Sněžník Mts., a shrubby dwarf pine 
(Pinus mugo) is widespread in the treeline ecotones. Treeline elevations range from 1100 
m a.s.l. in Harz to 1770 m a.s.l.  in Tatras (Table 1). The length of the growing season varies 
in CENA from 127 to 144 days and average growing season temperatures range from 6.1 
to 7.4 °C (Kašpar and Treml 2016, Table 1). Precipitation sums range from 1200 mm 
(Hrubý Jeseník Mts.) to 2200 mm in the Vysoké Tatry Mts. (Hlavatá et al. 2011). 
Precipitation in the same elevation generally increases toward the west, however there are 
also pronounced gradients of increasing precipitation along elevation. Mean wind speed in 
summit regions tends to increase toward the west (Kašpar and Treml 2016). Treelines in 
the majority of studied mountain ranges had been locally affected by human action in the 
past, particularly by cattle grazing and hay making (Beug et al. 1999, Plesník 1978, 
Speranza et al. 2000, Novák et al.2010). However, since the 1950s in the west and 1970s 
in the east, treeline ecotones have been developing spontaneously without extensive direct 
human impacts (Kozak 2003, Boltižiar 2007, Solár and Janiga 2013, Treml et al. 2016). 
 
Data sampling and preparation 
In each mountain range we collected growth parameters along the highest local treeline 
elevations identified by Kašpar and Treml (2016). At each local treeline, ~ 15 trees or tree-
islands were sampled in the upper part of treeline ecotone along an elevation contour 
connecting uppermost positions of 3 m high trees in each aspect and in stands having a 
minimum canopy 0.1. Tree height of 3 m did not apply to the Harz Mts. and Velká Fatra 
Mts., where upper limit of tree stands was formed by trees of 4-5 m height and no trees 
higher than 3 m were found above this line.  Elevation contour was divided into 15 regular 
sections and the nearest tree or tree island to each section node was sampled.  Trees (or tree 
islands) were thus regularly distributed in all aspects in each area (Table 1). 
For each sampling point we determined whether it was represented by individual tree or 
clonal tree island. In case of tree-island, we recorded number of trees within the tree-island. 
Presence of apical breaks was determined as well. Not only contemporary, but also earlier 
apical breaks were determined based on candelabra-like stems (Schweingruber 1996). 
Following parameters were further measured for the single highest tree at each sampling 
point: tree height, stem girth (all in 1 m height), lengths of branches at four directions (north, 
south, west and east) at approximately 2 m above the stem base (i.e. approximately above 
the maximum height of snow pack) and a distance to the nearest barrier protecting trees 
against wind (other tree-groups, rock formations, Pinus mugo stands etc.) considering mean 
value of three directions. Tree-ring cores were sampled using Pressler borer from each tree 
(or from the highest tree within tree island). Two cores were extracted at 0.5 m of stem 
height to obtain tree-ring widths (TRW) and tree age. Third core (or cross-section) was 
taken at approximately 2 m stem height to compute mean height increment and to detect 
proportion of reaction wood. In order to compute the height increment, exact distance of 
each core to the stem base and to the uppermost internode was measured. 
Tree-ring cores were sanded, ring widths were measured and cross-dated (Speer 2012). For 
a few tree-ring cores without pith, the number of missing tree-rings was estimated 
according to Batllori and Gutiérrez (2008). Two parameters describing tree allometry were 
computed: crown shape (length of the shortest/longest branch), and stem taper (girth 
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divided by tree height). We calculated two variants of height increments: (i) average height 
increment between 0.5 m and 2 m (number of tree rings at ~0.5 m minus number of tree 
rings at ~2 m divided by exact distance between cores) and (ii) the average height increment 
above 2 m (distance between the upper core and uppermost internode divided by the 
number of rings except the ring from contemporary growing season). Proportion of reaction 
wood was determined as a number of tree-rings with presence of reaction wood in first 15 
tree-rings of the upper core (in 2 m height). 
 
Treeline temperature metrics 
Treeline temperature metrics for each region was computed according to the study of 
Kašpar and Treml (2016) (Table 1). Following temperature metrics was used: mean air 
temperature over June – September period, mean temperature of the period with mean daily 
temperature > 0.9 °C and no snow cover (hereafter called “mean growing season 
temperature”, Paulsen and Körner 2014), length of the growing season delimited by 0.9 °C 
daily temperature threshold and no snow pack (further called as “length of the growing 
season”, Paulsen and Körner 2014), and sum of daily temperatures exceeding 0°C 
(hereafter called as a “degree days above 0°C”). Average temperature metrics were 
computed specifically for each tree considering the period of radial growth or height 
growth. For example, if height growth below 2 m was realized by a given tree in the period 
1970-1985, the temperature metrics were computed over this period.  Source temperature 
and precipitation data came from nearest meteorological stations considering local lapse 
rates. Detailed description of computation of treeline temperature metrics is described in 
Kašpar and Treml (2016). 
 
Statistical analysis 
For each tree we determined its elevation, heat load (a combination of aspect and slope, 
McCune and Keon 2004) and slope from digital elevation model with 30 m resolution using 
ArcGIS software (ESRI 2014). Further, elevation difference between nearest summit and 
the location of a tree was calculated (hereafter called as “peak distance”). Prior to statistical 
analysis, all continuous variables were visually checked for normality and transformed, if 
necessary, applying logarithmic or square root transformation. Finally, all continuous 
variables were z-transformed to have unit variance and zero mean. 
At first step, we looked for the basic pattern in data. Pearson correlations were computed 
to test for possible relations between tree age and field-derived variables describing growth 
and shape of trees in each treeline region. Analysis of variance including Tukey post-hoc 
test was performed in order to determine possible differences in all growth parameters 
among treeline regions. Then, at the level of all treeline regions, the relationship of treeline 
temperature metrics with growth parameters (TRW, both variants of height increment) was 
analyzed using linear regression. 
Second, to explain variance in each growth parameter considering intra-regional variability 
(tree height, girth and taper, TRW and height increment under and above 2 m), linear mixed 
effect models were applied (R package lme4, Bates et al. 2015, and LmerTest, Kuznetsova 
et al. 2015). Explanatory variables were represented by treeline temperature metrics 
(alternatively Jun-Sep temperature, growing season temperature, length of growing season, 
degree days above 0°C), tree age, peak distance, distance from nearest barrier, number of 
trees in tree island, heat load index and parameters indicative for wind-induced bending 
and biomass loss (presence of apical breaks, crown shape and proportion of reaction wood). 
Models for each response variable were computed four times with four different 
temperature metrics. Mountain range was designed as a random variable. We generated a 
set of models with all explanatory variable combinations. The models were ranked by 
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Akaike information criterion (AIC) (Burnham and Anderson 2002). For each explanatory 
variable, we further estimated AIC-weighted importance, a unitless metric indicating 
summed Akaike information across all models in which the variable appears.  Importance 
ranges from 0 (variable with no explanatory weight) to 1 (variable in all top models) (R 
package MuMIn, Barton 2015). The coefficient of determination (marginal R2) was 
computed for the full model as a measure of each model’s explained variance (Nakagawa 
and Schielzeth 2013). All statistical analyses were performed in R (R Development Core 
Team 2016). 
 
Results 
The entire data contains 152 trees with average tree age 49 years. Tree age did not 
significantly differ among the regions (p=0.19). The oldest trees were found in the Harz 
Mts. and in the Hrubý Jeseník Mts. and the youngest in the Nízké Tatry Mts. (Figure 2A). 
Average TRW was 1.1 mm. Trees in the Harz Mts. had significantly wider tree rings than 
trees in the remaining mountain ranges except the Veľká Fatra and Západné Tatry Mts. 
(p=0.00, Figure 2B). The narrowest tree-rings were determined in the Nízké Tatry Mts. 
Average height increment below 2 m was 7.0 cm. Variance in height increment below 2 m 
was usually greater within a given region than between regions with an exception of 
difference between the Harz Mts. (the highest height increment) and the Západné Tatry 
Mts. (the lowest height increment) (p<0.05, Figure 2C). Height increment above 2 m 
attained 11.0 cm in average. No statistically significant differences in height increment 
above 2 m were recorded (p=0.84), nevertheless the highest height increment above 2 m 
was found in the Veľká Fatra Mts. and the smallest in the Vysoké Tatry Mts. (Figure 2D). 
Trees in the Harz Mts. and the Veľká Fatra Mts. were significantly higher (p<0.05) than 
trees in the remaining mountains (Figure 2G). The average tree height was 359 cm Trees 
with the greatest girth were found in the Harz, Hrubý Jeseník and in the Veľká Fatra Mts., 
the smallest girth had trees in the Vysoké Tatry Mts. Similar pattern as for girth was 
observed for stem taper (Figure 2I). Trees with the lowest proportion of reaction wood came 
from the Krkonoše Mts. On the other hand, the highest proportion of reaction wood 
occurred in the Nízké Tatry Mts. and in the Králický Sněžník Mts. (Figure 2F). The most 
symmetric tree crowns characterized trees in the Veľká Fatra Mts. (Figure 2J), significantly 
more symmetric than in the Babia Gora, Hrubý Jeseník and Nízké Tatry Mts. and in the 
Králický Sněžník Mts. (p<0.05). Tree islands in the Babia Góra Mts. were formed by the 
highest number of trees, significantly more than in the remaining mountain ranges except 
Hrubý Jeseník Mts. (p<0.05, Figure 2E). 
Within single regions, TRW correlated negatively with tree age in the Hrubý Jeseník Mts., 
the Babia Gora Mts. and the Západné Tatry Mts. (p<0.1, Figure 3). Height increment to 2 
m was negatively correlated with tree age in all mountain ranges (p<0.1). Significant 
correlation between tree age and height increment above 2 m was found only in the Nízké 
Tatry Mts. (p<0.1) (Figure 3). 
Considering all regions together, TRW significantly correlated with each temperature 
metrics (Figure 4A). Correlations ranged from 0.31 (growing season temperature) to 0.43 
(degree day temperatures). Height increment below 2m revealed significant correlations 
(p<0.05) with temperature metrics between 0.24 (growing season length) and 0.47 (June-
September temperature) (Figure 4B). Correlations between temperature metrics and height 
increment above 2m were weak (Figure 4C). The only significant relation was found 
between height increment and mean June-September temperature. 
Linear mixed effect models explained successfully all growth parameters but height 
increment above 2 m (Figure 5, Appendix S1). Temperature metrics had important 
predictive effect for stem girth, TRW and, to some extent, also for height increment below 
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2 m and tree height. The effect of temperature was always positive. Tree age was important 
to predict tree height, stem girth, stem taper and height increment to 2 m (positive effect). 
Distance to peak was important for taper (negative effect). Distance to barriers affected tree 
height - trees growing close to barriers were more probably smaller. More reaction wood 
occurred at smaller trees with tiny TRW (important negative effects on tree height, stem 
girth and TRW). Apical breaks frequently entered into the models explaining tree taper 
with a positive effect (more apical breaks occurred at trees with higher taper). The effects 
of remaining explanatory variables (heat load index, size of tree island and crown shape) 
were relatively less important. 
Focusing exclusively on temperature metrics, the highest explanatory power for tree height 
revealed growing season temperature and degree days above 0°C (Figure 5, Appendix S1). 
June-September temperature, degree days and growing season length entered into top 
models explaining stem girth and TRW. For height increment below 2 m, only growing 
season temperature and June-September temperature had a significant effect in a part of 
best models (Appendix S1). June-September temperature frequently entered in best models 
explaining height growth above 2m, however the marginal R2 of the full model was very 
low (Appendix S1). 
 
Discussion 
This study introduces the first attempt to link growth parameters and temperature metrics 
for treeline trees in different treeline regions. We assumed two possible scenarios. First, the 
basic growth parameters will be approximately the same in all mountain ranges and higher 
treeline temperatures will be counterbalanced by higher presence of symptoms of biomass 
loss, or, second, that varying temperatures among treelines will be reflected in varying 
growth and growth will be correlated with temperature. Our results showed that a 
combination of both above-mentioned hypotheses is closest to be true. 
Among the growth parameters used in this study (radial growth, height growth to 2 m, 
height increment above 2 m), radial growth represented by TRW revealed the closest link 
to treeline temperature metrics. Warmer treelines were therefore characterized by wider 
tree rings of treeline trees. TRW is probably less affected than height increment by 
facilitation (Šenfeldr et al. 2014) and by environmental factors other than temperature (e.g., 
wind action) and thus retains stronger temperature signal. This finding contrasts to the 
studies of Jalkanen and Tuovinen (2001), McCarrol et al (2003) or Salminen et al. (2009), 
who found better correlations of height rather than radial growth with climate. However, 
these studies were conducted far below the treeline. As opposed to lower elevations, the 
height growth at treeline is much more subjected to biomass loss due to snow loads, wind-
induced abrasion (Autio and Colpaert 2005, Han et al. 2012, Mamet and Kershaw 2013) or 
wind-induced cooling below temperature thresholds allowing growth (James et al. 1994). 
Radial increment and stem girth were closely correlated with all temperature metrics except 
mean growing season temperature. Concerning June-September temperature and growing 
season degree days, the weight of peak growing season conditions is relatively higher than 
for temperature metrics capturing entire growing season. The June-July period is the most 
influential part of the growing season for radial growth at treelines in temperate and boreal 
Europe (Linderholm 2002, Frank and Esper 2005, Ponocná et al. 2016). The importance of 
growing season length can be probably attributed to the spring timing of growth onset – the 
earlier wood formation is started the more wood is formed during the growing season (Rossi 
et al. 2006). Poor performance of mean growing season temperature for prediction of radial 
growth might be explained by the fact that the entire growing season delimited by the 0.9 
°C threshold and absence of snow includes long period from August to October without 
direct influence on tree ring width (Rossi et al. 2006, Cuny et al. 2014). 
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As opposite to TRW, height growth below 2 m was correlated the best with the mean 
growing season temperature. Warmer growing seasons led to higher height increment to 2 
m of tree height. However, the effect of mean growing season temperature can be indirect. 
High entire growing season temperature could be the consequence of late growing season 
start (straight away with high air temperature) because of delayed snow melt in areas with 
high snow pack. High snow pack is protective against ice and snow blasting above snow 
surface (Mamet and Kershaw 2013). Alternatively, sufficiently high temperature over the 
entire growing season enables intense formation of reserves in autumnal periods with no 
sink activity (i.e. no growth) and these reserves can be utilized at the beginning of 
subsequent growing season. Similarly, Gamache and Payette (2004) showed that height 
growth of treeline Picea mariana was correlated to temperature of preceding growing 
season. Reserves might be necessary for height growth to repair meristems damaged from 
various agents effective in winter like wind action, rime and snow loads (e.g., Hertel and 
Schölling 2011). 
Considering height growth above 2 m, we found only very weak relation with temperature 
metrics. At the same time, the intra-regional variability in height growth was high 
suggesting that site-specific effects are important. We propose that factors other than 
temperature such as facilitation within tree islands, wind abrasion, snow and rime load 
might be responsible for not determined relation of height growth above 2 m to temperature 
(Kašpar et al. 2016). Once trees sufficiently protrude above the snowpack, various 
abrasion-causing factors become important. Furthermore, higher trees are also exposed to 
stronger wind pressure leading to decrease in height growth (Gamache and Payette 2004, 
Kharuk et al 2010, Barbeito et al. 2012). However, none of our explanatory variables 
indicative for wind-induced abrasion or biomass-loss explained any variability in height 
growth above 2 m.  
While we observed stratification of some treeline growth parameters according temperature 
metrics, there were also treeline regions with obvious symptoms of biomass loss.  For 
example, we found a gradual decrease in stem taper from the westernmost area (the Harz 
Mts.) to the east. At the same time, stem taper was explained by treeline distance to the 
nearest peak - the shorter distance, the more pronounced taper. Distance of treeline to peak 
is generally increasing toward the east indicating that western treelines are more prone to 
be affected by summit effect (sensu Aulitzky 1967). Stem tapering is a result of limitation 
of apical growth, while radial growth remains more or less the same (Bonnesoeur et al. 
2016). Additionally, apical breaks also increased stem taper. As a consequence, basal stem 
diameters of trees growing in windy areas near summits become after some time much 
wider than expected according to tree height. In investigated treelines, TRW well correlated 
with treeline temperature, while the relation between apical growth of stems above 2 m and 
temperature was weak. This combination finally resulted in higher stem taper in warmer 
than in colder treelines. The observation of tapered trees at warm treelines might indicate 
the retarded advance of local treelines, because of summit climatic conditions preventing 
unambiguous response of trees to warming (Gamache and Payette 2004, Kašpar et al. 
2016). 
As an indicator of mechanical effect of wind on stems, we used the proportion of reaction 
wood at 2 m stem height. We believe that reaction wood in stem sections distant from the 
base is indicative for stem bending triggered by wind action rather than bending from 
creeping snow as typical at stem base (Schweingruber 1996). Formation of the reaction 
wood is demanding particularly for lignin deposited in thick secondary cell walls (Du and 
Yamamoto 2007). The related change in allocation of carbon into cell wall thickening might 
result in depressed radial growth in other part of stem or in depressed height growth 
(Coutand et al. 2008), which is in line with our findings. 
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Height growth below 2m was negatively influenced by tree age, i.e. contemporary 
individuals reach 2 m height faster than individuals few decades ago. There was weak 
collinearity of age and temperature trends (temperatures in all areas have been increasing 
since 1980s), however there are probably more important reasons for temporal trend in 
height growth below 2 m. First, stand densities at treelines have been increasing (Treml et 
al. 2016, Czajka et al. 2015), which enforces facilitative effect on growth of newly 
established individuals (Šenfeldr et al. 2014). Second, trends in pollution fallout including 
decreasing sulphur deposition since 1990s and continuing nitrogen deposition might be 
supportive for the recent height growth increase (Kolář et al. 2015). 
At two treelines with relatively high treeline temperatures (Králický Sněžník, Hrubý 
Jeseník Mts.), the effect of high temperature was counterbalanced by biomass loss 
evidenced by irregular crowns (Králický Sněžník, Hrubý Jeseník Mts.) and high proportion 
or reaction wood (Králický Sněžník Mts. only). At the remaining treelines with high 
temperature (the Harz Mts., the Veľká Fatra Mts.), warm temperatures were not 
compensated by any symptom of biomass loss or other wind-induced growth anomalies. 
These two treelines are thus not driven by current temperature conditions but they are either 
the remnant of past disturbances or their lag behind the warming since the Little Ice Age is 
substantially greater than in the remaining treeline areas. Treml et al. (2015b) reported 
decades during the Little Ice Age that were about 3 °C cooler than reference period (1961-
1990) in the Sudetes (Krkonoše, Králický Sněžník and Hrubý Jeseník Mts.), which could 
be reflected in depressed treeline position. Because the spatial temperature variability is 
relatively low over Central Europe, the same might be anticipated for the Harz and Veľká 
Fatra Mts. Subsequent human use of these treeline areas during the period of warming 
might prevent treeline advance. 
 
Conclusions 
At ten temperate European treelines, the variability in radial growth was primarily governed 
by temperature, while the effect of temperature on apical growth decreased with increasing 
tree height. Height increment of stem sections above 2 m was highly variable with minor 
effect of temperature suggesting importance of site-specific factors. Temperature-sensitive 
radial growth and limited effect of temperature on height growth above 2 m result in higher 
stem taper at warm compared to cold treelines. In addition, warm treelines were typically 
located close to mountain summits and trees had highly tapered stems due summit climatic 
conditions. Warm treelines with high radial growth rates were characterized by formation 
of reaction wood and frequent symptoms of biomass loss - the factors counterbalancing 
warmer conditions. However, we determined also warm treelines with high growth rates 
and limited presence of symptoms of biomass loss. We suggest that these treelines are 
remnants of past human-induced disturbances or, alternatively, their response to recent 
temperature increase is lagged due to past human land-use. 
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Figures and tables 
 
Figure 1: Central Europe with location of mountain ranges under study. Abbreviations: 
BG – Babia Góra Mts.; Hrz - Harz Mts.; Jes – Hrubý Jeseník Mts.; Kra – Králický Sněžník 
Mts.; Krk – Krkonoše Mts.; MF – Malá Fata Mts.; NT – Nízké Tatry Mts.; VF – Veľká 
Fatra Mts.; VT – Vysoké Tatry Mts.; ZT – Západné Tatry Mts. 
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Figure 2: Tree growth and shape parameters stratified according to mountain ranges. For 
mountain range abbreviations see Figure 1. 
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Figure 3: Correlations between main growth parameters and tree age. Full bars denote 
significant correlations (p<0.1). For mountain range abbreviations see Figure 1. 

 
 
 
Figure 4: Relation between basic growth parameters (tree ring width, height growth below 
2 m, height growth above 2 m) and treeline temperature metrics. Points represent individual 
trees. Linear fit is buffered by standard error. Regression line is not drawn when linear fit 
is not statistically significant (p<0.05). 
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Figure 5: Estimates of fixed effects (points) with confidence intervals (whiskers). 

 
 
 
Table 1: Descriptive characteristics of treelines in the study area. Climate variables refer 
to study Kašpar and Treml (2016). 

Mountain 
range 

Mountain 
range 
elevation 
(m ASL) 

Treeline 
elevation 
[m ASL] 

Growing 
season 
length 

Growing 
season 
temperature 

Jun-Sep 
temperature 

Sum of 
temperatures 
above 0 °C 

Harz 1141 1110.6 
±4.8 

139 7.4 9.4 1495 

Krkonoše 1603 1490 
±10.7 

127 6.4 7.7 1136 

Králický 
Sněžník 

1424 1405.8 
±2.1 

142 7.4 8.8 1336 

Hrubý 
Jeseník 

1491 1466.2 
±2.5 

144 7.1 8.3 1252 

Malá 
Fatra 

1709 1632.6 
±11 

137 6.4 8.2 1245 

Velká 
Fatra 

1552 1513.6 
±10.4 

141 7.0 8.7 1338 

Babia 
Góra 

1725 1615.7 
±18.7 

130 6.6 8.5 1293 

Západné 
Tatry 

2248 1716.1 
±34.7 

132 6.4 7.6 1317 

Vysoké 
Tatry 

2655 1717.2 
±42.2 

133 6.8 8.5 1302 

Nízké 
Tatry 

2152 1773.1 
±19.5 

121 6.1 7.2 1038 
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Appendix 1: Explanation of response variables (tree height, girth, taper, TRW, height increment below and above 2 m of tree height) using 
explanatory variables in linear mixed effect models. Mountain range was designed as a random variable. For each variable with fixed effect, a 
variable importance is indicated. Plus or minus signs in brackets denote direction of a fixed effect coefficient. Marginal R2 refers to the full model. 

    Variable importance 

Response Temperature metrics included R2m Random 
variable 
significance (p) 

Temperature 
metrics 

Crown 
shape 

Reaction 
wood 

Age Tree 
islands 

Apical 
breaks 

Distance to 
barriers 

Peak distance Heat load 

Height Degree days 0.39 0.00 0.59 0.06 0.99 1.00 0.05 0.18 0.38 0.11 0.05 

Jun-Sep temp. 0.36 0.00 0.45 0.06 0.99 1.00 0.05 0.17 0.41 0.12 0.05 

Growing season length 0.31 0.00 0.38 0.06 0.99 1.00 0.05 0.18 0.43 0.11 0.05 

Growing season temp. 0.26 0.00 0.16 0.06 0.99 1.00 0.05 0.18 0.46 0.11 0.05 

Girth Degree days 0.52 0.00 0.92 0.07 0.98 1.00 0.12 0.12 0.19 0.18 0.06 

Jun-Sep temp. 0.49 0.00 0.80 0.07 0.98 1.00 0.13 0.13 0.23 0.22 0.06 

Growing season length 0.48 0.00 0.84 0.07 1.00 1.00 0.14 0.12 0.24 0.21 0.07 

Growing season temp. 0.42 0.00 0.22 0.08 0.98 1.00 0.14 0.14 0.38 0.32 0.06 

Taper Degree days 0.37 0.01 0.17 0.08 0.25 0.54 0.17 0.71 0.09 0.89 0.13 

Jun-Sep temp. 0.36 0.01 0.15 0.08 0.25 0.52 0.18 0.72 0.09 0.91 0.13 

Growing season length 0.37 0.01 0.17 0.08 0.25 0.54 0.18 0.72 0.09 0.90 0.14 

Growing season temp. 0.35 0.01 0.11 0.08 0.25 0.50 0.18 0.73 0.09 0.92 0.13 

TRW Degree days 0.24 0.60 0.99 0.13 0.68 0.07 0.06 0.16 0.20 0.11 0.06 

Jun-Sep temp. 0.23 0.40 0.97 0.14 0.70 0.08 0.06 0.15 0.23 0.11 0.07 

Growing season length 0.24 0.60 0.99 0.13 0.91 0.06 0.06 0.13 0.25 0.08 0.07 

Growing season temp. 0.19 0.01 0.47 0.37 0.51 0.17 0.07 0.14 0.30 0.23 0.08 

Height 
increment 
below 2m 

Degree days 0.49 0.01 0.25 0.06 0.27 1.00 0.06 0.12 0.22 0.11 0.06 

Jun-Sep temp. 0.49 0.00 0.31 0.06 0.29 1.00 0.06 0.12 0.22 0.11 0.06 

Growing season length 0.45 0.00 0.13 0.06 0.25 1.00 0.06 0.12 0.26 0.12 0.06 

Growing season temp. 0.51 0.00 0.57 0.06 0.22 1.00 0.06 0.12 0.19 0.10 0.06 

Height 
increment 
above 2m 

Degree days 0.08 0.70 0.26 0.09 0.11 0.20 0.11 0.14 0.08 0.11 0.11 

Jun-Sep temp. 0.16 0.40 0.74 0.08 0.11 0.18 0.15 0.14 0.08 0.15 0.10 

Growing season length 0.05 1.00 0.08 0.09 0.11 0.20 0.10 0.14 0.08 0.11 0.12 

Growing season temp. 0.05 1.00 0.14 0.09 0.10 0.21 0.10 0.14 0.08 0.11 0.12 
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VI.  Conclusions
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6 Conclusions 

Treeline position is generally predetermined by temperature conditions. However, 

at regional or local scales, treeline position is modified by various other factors, from which 

the influence of wind is of high importance. Depression of treeline below its potential limit 

near summits with high wind speeds is called a summit syndrome. At natural treelines, tree 

growth rates should be similar because of their identical temperature limit. If the negative 

influence of temperature on tree growth is less limiting, then the tree growth at treeline 

should be governed by other factors, particularly by biomass loss or wind-induced growth 

decrease. If neither of above-mentioned assumptions is met, trees are not growth-limited 

anymore and the influence of past disturbances, anthropogenic interventions or recruitment 

limits should be taken into account. 

Treeline elevation in Central Europe generally increases towards the east along the 

gradients of increasing continentality and mass-elevation effect. The mean treeline 

elevation ascent along the 50th parallel is about 94 m per 100 km. Treeline positions in 

Central Europe reflect an increase in temperature isotherms, which is attributed to 

increasing continentality as well as increasing mass elevation effect from west to east. 

Calculated climate metrics of uppermost tree stands from the Krkonoše Mts., the Babia 

Góra Mts., the Malá Fatra Mts., the Západné Tatry Mts., the Vysoké Tatry Mts., the 

Belianské Tatry Mts. and the Nízké Tatry Mts. were very similar (mean Jun-Sep 

temperature = 8.1 ±0.2 °C, mean sum of degree days above 0 °C = 122 ±47 °d, mean 

growing season length = 130 ±2 days, mean growing season temperature = 6.5 ±0.1 °C) 

indicating that the uppermost trees are located at their temperature limits. Furthermore, 

temperature metrics were similar to the temperature metrics of the uppermost tree stands in 

the Alps such as areas of Mt. Pascherkofel, Andermat or Säntis. However, based on 

temperature metrics we also determined that the uppermost tree stands in Harz Mts., 

Králický Sněžník Mts., Hrubý Jeseník Mts and Veľká Fatra Mts. are likely situated below 

the temperature limit (mean Jun-Sep temperature 7.5 ±0.2 °C, mean sum of degree days 

above 0 °C 1097 ±49 °d, mean growing season length 130 ±9 days, mean growing season 

temperature 6.8 ±0. °C). 

To further test above-mentioned hypotheses, we compiled growth and 

morphometric measurements from the uppermost tree stands. We found that radial growth, 

height growth below 2 m and height growth above 2 m showed high, weak, or almost no 
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correlation with temperature, respectively. Certain warm treelines with high radial growth 

rates were characterized by high proportions of reaction wood, frequent symptoms of 

biomass loss and high stem taper (apply to Králický Sněžník and Hrubý Jeseník). However, 

other treelines provided limited evidence of biomass loss or presence of reaction wood, 

indicating that they are either a remnant of past disturbances, or their response to the recent 

temperature increase is delayed because of anthropogenic land use (apply to Harz and 

Veľká Fatra). 

These results were further elaborated in extensive study focused on the effect of 

wind on tree growth in treeline ecotone in the Krkonoše Mts. Across a set of sites distributed 

along the gradient of wind speed, we exemplified that high wind speeds are reflected in the 

presence of clonal tree islands and irregular tree crowns. Despite evident wind-induced 

biomass loss, radial growth was not significantly affected, and the effect of wind on height 

increment was limited only to parts of the stem from 2 m above ground. This limitation 

attains approximately 0.65 cm.year-1 per 1 m.s-1 increment of wind speed. Considering that 

the height growth was substantially reduced by wind in about half of the treeline area, and 

wind was able to limit only growth of trees taller than 2 m, the overall wind-induced 

depression of highest treeline positions is probably low, even in windy mountain regions. 

Wind could be thus significant agent at local scale, where it can maintain local treelines 

below summits, however at global scale its influence might be probably neglected. 

While wind influences height growth of the trees high enough to be exposed to wind 

action, the radial growth is governed by soil and stem temperature. Across alpine treeline 

ecotone in the Krkonoše Mts. the difference in mean growing season air and soil 

temperature between upper and lower part of treeline ecotone was unexpectedly high. This 

was most likely caused by higher exposure to wind at treeline than at timberline, which 

increased environmental lapse rate. Based on three seasons of wood formation monitoring 

in treeline ecotone (2010 – 2012), the differences in onset of individual phases of wood 

formation of Picea abies between treeline and timberline were significant only in cases of 

several-weeks delay in soil warming at the treeline versus the timberline site. Otherwise, 

the treeline/timberline differences in onsets of individual wood formation phases were 

smaller than our weekly sampling resolution. The first pronounced increase in cambial 

activity was associated with the first warming of the soil from near-zero temperatures to 

4 – 5 °C in the spring. This might indicate that in Picea abies, full resumption of cambial 

activity at the basal part of the stem requires all parts of the tree to be sufficiently warm. 

Irrespective of simultaneous or shifted onset of cambial activity at our study sites, 
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significantly more cambial and enlarging cells were observed at the warmer, timberline 

location than at the colder, treeline site during the early part of the growing season. Whereas 

differences in the number of cells at the beginning of the growing season were likely due 

to temperature, timberline trees also displayed greater duration of the cell-enlargement and 

wall-thickening phases, associated with more prolonged enlargement of the larger tracheids 

there. Therefore, we conclude that for Picea abies, both temperature and size effects govern 

differences in wood phenology across the treeline ecotone. 

In conclusion, this dissertation thesis brings evidence that the uppermost tree stands 

of the major mountain ranges of Central Europe (Vysoké, Západné, Nízké Tatry, Malá 

Fatra, Babia Góra, Krkonoše) are located near their temperature limit. However, as 

exemplified on the example of the Krkonoše Mts., apical growth of trees reaching tree 

height (2 – 3 m) might be limited by wind at wind-exposed stands. Remaining treelines 

located close to summits can be divided into two groups. In the first group (Králický 

Sněžník, Hrubý Jeseník), less limiting temperature conditions are outweighed by a 

substantial wind influence on biomass loss and depressed height growth. In the second 

group (Harz, Veľká Fatra), tree growth at treeline is limited neither by temperature nor by 

biomass loss from wind action. Summit syndrome affects treeline trees through wind-

limited height growth and through increase in environmental lapse rate. 
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