
 

Charles University in Prague 

Faculty of Mathematics and Physics 

 

MASTER THESIS 

 

 

Michal Brabec 

 

 

Analýza paralelizovatelnosti programů na základě jejich bytecode 

 

 

Department of Software Engineering 

 

 

Supervisor of the master thesis: RNDr. David Bednárek, Ph.D. 

 

Study programme: Informatics 

Specialization: Software Systems 

 

Prague 2013 

 

  



  



 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a výhradně s použitím 

citovaných pramenů, literatury a dalších odborných zdrojů. 

 

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 

121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova v 

Praze má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 

odst. 1 autorského zákona. 

 

V Praze dne ............       ........................ 

  



Název práce: Analýza paralelizovatelnosti programů na základě jejich bytecode 

Autor: Michal Brabec 

Katedra / Ústav: Katedra softwarového inženýrství 

Vedoucí diplomové práce: RNDr. David Bednárek, Ph.D., Katedra softwarového inženýrství 

Abstrakt: Práce se zabývá analýzou možností aplikace algoritmů pro automatickou paralelizaci 

na programy, u kterých máme k dispozici jejich bytecode, nebo podobný mezikód. 

Nejdůležitějším vstupem těchto algoritmů je identifikace částí kódu, které by mohly být 

spuštěny zároveň, tyto části se nazývají nezávislé a právě testování závislostí v kódu je nejtěžší 

problém automatické paralelizace. Tento problém je v úplně obecném případě algoritmicky 

neřešitelný a práce se snaží zjistit, jestli je možné najít nezávislosti v bytecode alespoň 

v nějakém omezeném případě.  Prvním krokem analýzy kódu funkce je integrace volaných 

funkcí, které umožní analyzovat výsledný kód najednou a získat tak přesnější informace. Dále je 

třeba identifikovat podmíněné skoky a cykly, až pak je teprve možné hledat nezávislosti v kódu 

a ty potom použít při aplikace paralelizačních algoritmů. Součástí práce je implementace 

integrace funkcí a analýzy kódu pro platformu Microsoft .NET Framework. 

Klíčová slova: paralelizmus, testování závislostí, automatická paralelizace, inlinování funkcí, 

rozpoznávání konstruktů 

 

Title: Analysis of automatic program parallelization based on bytecode 

Author: Michal Brabec 

Department / Institute: Department of Software Engineering 

Supervisor: RNDr. David Bednárek, Ph.D., Department of Software Engineering 

Abstract: There are many algorithms for automatic parallelization and this work explores the 

possible application of these algorithms to programs based on their bytecode or similar 

intermediate code. All these algorithms require the identification of independent code segments, 

because if two parts of code do not interfere with one another then they can be run in parallel 

without any danger of data corruption. Dependence testing is an extremely complicated problem 

and in general application, it is not algorithmically solvable. However, independences can be 

discovered in special cases and then they can be used as a basis for application of automatic 

parallelization, like the use of vector instructions. The first step is function inlining that allows 

the compiler to analyze the code more precisely, without unnecessary dependences caused by 

unknown functions. Next, it is necessary to identify all control flow constructs, like loops, and 

after that the compiler can attempt to locate dependences between the statements or instructions. 

Parallelization can be achieved only if the analysis discovered some independent parts in the 

code. This work is accompanied by an implementation of function inlining and code analysis for 

the .NET framework. 

Keywords: parallelism, dependence testing, automatic parallelization, function inlining, 

construct recognition 

  



Table of Contents 

1 Introduction ............................................................................................................. 1 

1.1 Modern technologies and their challenges ...................................................... 1 

1.1.1 Computer design ........................................................................................ 1 

1.1.2 Parallelization strategies ............................................................................ 1 

1.1.3 Automatic parallelization .......................................................................... 2 

1.2 Motivations ...................................................................................................... 2 

1.3 Goals ................................................................................................................ 3 

1.4 Types of parallelism ........................................................................................ 4 

1.4.1 Fine-grained parallelism ............................................................................ 4 

1.4.2 Coarse-grained parallelism ........................................................................ 5 

1.4.3 Instruction-level parallelism ...................................................................... 6 

1.5 Preparation for parallelization ......................................................................... 6 

1.5.1 Function inlining ........................................................................................ 6 

1.5.2 Dependence testing .................................................................................... 7 

1.6 Java and C# ...................................................................................................... 8 

1.7 C# restrictions .................................................................................................. 9 

1.8 Basic Assumptions .......................................................................................... 9 

1.9 Structure of the thesis .................................................................................... 10 

2 Related work ......................................................................................................... 11 

2.1 Automatic parallelization .............................................................................. 11 

2.1.1 Basic definitions ...................................................................................... 11 

2.1.2 Problems of automatic parallelization ..................................................... 12 

2.2 Parallelization of Java applications ............................................................... 13 

2.3 Parallelization of C# applications .................................................................. 15 

2.4 Java and .NET comparison ............................................................................ 16 

2.4.1 Java and C# virtual machine .................................................................... 16 

2.4.2 Intermediate code comparison ................................................................. 17 



2.4.3 Summary .................................................................................................. 19 

2.5 .NET execution environment ......................................................................... 19 

2.5.1 Basic instructions ..................................................................................... 20 

2.6 Parallel execution in .NET Framework ......................................................... 21 

2.7 Intermediate code .......................................................................................... 22 

3 Architecture ........................................................................................................... 23 

3.1 Structure of the optimizer .............................................................................. 23 

3.2 Optimization steps ......................................................................................... 24 

3.2.1 Code preparation ...................................................................................... 25 

3.2.2 Preliminary transformations .................................................................... 25 

3.2.3 Preliminary code analysis ........................................................................ 27 

3.2.4 Dependence testing .................................................................................. 27 

3.2.5 Transformations enhancing parallelism ................................................... 28 

3.2.6 Automatic parallelization ........................................................................ 29 

4 Code preparation ................................................................................................... 30 

4.1 Inlining ........................................................................................................... 30 

4.1.1 Inlining in depth ....................................................................................... 32 

4.1.2 Data types and inlining ............................................................................ 42 

4.1.3 Summary .................................................................................................. 43 

4.2 Code verification ........................................................................................... 43 

4.3 Summary ........................................................................................................ 44 

5 Preliminary code analysis ..................................................................................... 45 

5.1 Construct recognition .................................................................................... 45 

5.1.1 Construct recognition in depth ................................................................ 46 

5.1.2 Summary .................................................................................................. 50 

5.2 Variable recognition ...................................................................................... 51 

5.2.1 Variable recognition in depth .................................................................. 52 

5.2.2 Summary .................................................................................................. 54 



6 Dependence testing ............................................................................................... 55 

6.1 Introduction ................................................................................................... 55 

6.2 Definitions ..................................................................................................... 56 

6.3 Variable dependence and aliasing ................................................................. 57 

6.4 Induction variables ........................................................................................ 59 

6.5 Aliasing .......................................................................................................... 61 

6.5.1 Parameter aliasing .................................................................................... 62 

6.5.2 Variable aliasing ...................................................................................... 63 

6.5.3 Summary .................................................................................................. 66 

6.6 Stack dependence .......................................................................................... 66 

6.7 Array subscript analysis ................................................................................. 67 

6.7.1 Subscript reconstruction .......................................................................... 67 

6.7.2 Multidimensional arrays .......................................................................... 69 

6.7.3 Subscript analysis .................................................................................... 70 

6.7.4 Summary .................................................................................................. 71 

6.8 Dependence testing ........................................................................................ 71 

6.9 Example analysis ........................................................................................... 71 

6.9.1 Matrix multiplication ............................................................................... 71 

6.9.2 Vector addition ........................................................................................ 74 

6.10 Summary .................................................................................................... 75 

7 Conclusions ........................................................................................................... 77 

7.1 Inlining ........................................................................................................... 77 

7.2 Preliminary code analysis .............................................................................. 78 

7.3 Dependence testing ........................................................................................ 78 

7.4 Status of the work .......................................................................................... 79 

7.5 Further work .................................................................................................. 80 

Bibliography ................................................................................................................ 82 

Table of figures ........................................................................................................... 84 



List of Abbreviations ................................................................................................... 86 

Appendix A - DVD content ........................................................................................ 87 

Appendix B - ParallaX optimizer ................................................................................ 88 

Optimization framework ......................................................................................... 89 

Framework capabilities ....................................................................................... 89 

Optimizer modules .................................................................................................. 90 

Used libraries and tools ........................................................................................... 90 

 



 

 



1 

 

1 Introduction 

1.1 Modern technologies and their challenges 

1.1.1 Computer design 

Computer design and construction experienced significant changes in the past 

decade and one of the most important is the use of multicore processors. This seems to 

be the easiest way to increase computational power of modern computers, since 

increasing clock rate proved to be impractical, because it causes problems like 

overheating and increased power consumption. Even though multicore processors are 

nothing new; in the past ten years, personal computers and even mobile phones started to 

use such processors massively and practically every contemporary computer contains 

multiple processor cores or even multiple processors. This presents a new problem for 

modern applications, which did not have to use parallel programming in the past, unlike 

scientific applications that have used parallel machines since the 1960
th

. Today, it is 

necessary to make even commercial applications run in parallel, to fully utilize the power 

of modern computers and that requires new techniques of programming and compiler 

design. 

1.1.2 Parallelization strategies 

There are basically two ways an application can run its code in parallel, first way 

is to design it manually to take advantage of multiple threads or vector instructions and 

the second possibility is to use a compiler that is able to recognize parts of code that can 

be executed simultaneously and compile the application to utilize parallelism. 

Writing parallel application by hand requires more complicated architecture and 

their designers and programmers must solve complicated problems, like data sharing, 

resource management and user input. However, even difficulties encountered during 

design and creation of these applications can be overshadowed by problems that become 

apparent when the application must be test, verified, ported to a different platform or 

even executed on newer version of CPU. 

The best way to use multicore processors is to use a compiler that can transform 

the application automatically with minimal or no help from programmers. Such a 

compiler must analyze the application and locate its parts that can run at the same time 



2 

 

without interfering with one another. This task is extremely difficult in general situation, 

but it can be done for specific applications or code fragments. For example, there are 

many compilers capable of using vector instructions to optimize numerical applications 

written in FORTRAN, which is one of the reasons why is it used for high performance 

computing.  

1.1.3 Automatic parallelization 

Automatic parallelization has been studied for many years and it is well 

implemented for FORTRAN and many optimizations are developed for C, but it is not 

commonly implemented in languages with reference semantics, like Java or C#. One of 

the possible reasons can be the fact that those languages are designed for business or web 

applications and these applications do not take advantage of parallelization techniques 

developed for older languages, since they are mostly designed for high-performance 

computing. 

FORTRAN compilers can achieve very impressive increase in execution speed 

thanks to the simplicity of the language, which simplifies its analysis and allows the 

compiler to make more drastic transformations safely. The situation is much worse when 

the same techniques are used on other, more complex languages, like C++ or other 

languages inspired by C, like Java or C#, because their structure is much more 

complicated and the use of pointers or references can make it even more difficult to find 

any parts that could be executed simultaneously. Using FORTRAN may seem like a 

logical solution, but modern languages are much better suited for team development and 

common programmers are familiar with them, unlike FORTRAN. 

Automatic parallelization is very complicated optimization but it could mean a 

great improvement for many applications and it would be even better, if it was possible 

to transform applications without recompilation which can be achieved when the 

transformation is performed on their bytecode
1
. 

1.2 Motivations 

This work is motivated by the fact that automatic parallelization is not commonly 

used among the languages with reference semantics and its application could improve 

                                                 
1
 Intermediate code generated by a compiler that is later executed by a virtual execution engine or a virtual 

machine; a technique commonly used by modern interpreted languages, like C# or Java. 



3 

 

their performance or it could allow these languages to be used for more specialized 

applications. 

First motivation for this work is to allow the development of specialized 

applications in modern languages because that would make it possible for common 

programmers to implement these applications with familiar language and development 

environment. Specialized applications, like complex numerical calculation, are 

traditionally developed in old structured languages, FORTRAN most prominently, and 

many programmers do not know these languages. The reason languages like FORTRAN 

are used for numerical applications is that it can be very effectively parallelized and the 

implementation of similar features for languages like C# can make it usable for similar 

purposes. 

Another possibility is to use the C# as a frontend and transform its parallelized 

CIL code to another specialized code or language. This is a good way to provide a 

familiar programming environment to some complex system, which requires very 

specific parallel code, without forcing programmers to use some obscure language.  

There is one great opportunity that any application created for the .NET 

Framework could be optimized by parallelizing its CIL code and it could be done 

without new compilation. This way, it would be possible to optimize every application 

written in an appropriate language, even without the knowledge of its source code and 

multiple languages could be supported when it is applied on platforms such as the 

Microsoft .NET framework
2
. This is not a goal of this work, but it may be a great 

motivation for the future work. 

1.3 Goals 

The main goal of this work is to find out if it is possible to apply existing 

parallelization algorithms on languages with reference semantics, like Java or C#. The 

actual parallelization is not the goal here, because it is very difficult and this work is 

meant mostly as a proof of concept. This work is based on the idea, that if the code can 

be transformed to a structure supported by the existing algorithms then the application 

could be parallelized using these efficient and well tested algorithms and the actual 

parallelization would be very similar to other languages, like C. 

                                                 
2
 The .NET Framework is a software framework developed by Microsoft that runs primarily on Microsoft 

Windows. 



4 

 

The goal is to show, at least theoretically, that it is feasible to perform automatic 

parallelization on the selected bytecode at least in some special cases. Used 

transformations will be presented on a couple of selected, well-known problems, that 

offer good opportunity for parallel execution and they are commonly used in many 

application. This approach may not be very ambitious, but the amount of work necessary 

to perform even the most basic parallelization is immense. This work is meant as a proof 

of concept; it tries to find out, if it is possible to apply existing parallelization algorithms 

to languages with reference semantics. The actual parallelization is discussed only 

theoretically, because this concentrates mostly on the steps necessary to the 

parallelization. The problems studied in this work are specified in section 1.5.2. 

1.4 Types of parallelism 

There are three main types of parallel execution: fine-grained parallelism, coarse 

grained parallelism and instruction-level parallelism. Each type requires different 

structure of code and each type uses a different part of the processor. 

1.4.1 Fine-grained parallelism 

Fine-grained parallelism is based on vector instructions and it produces the best 

results when the code contains arrays processed in loops. Vector instructions apply a 

single operation on vector of values and they are usually called SIMD
3
, which means 

single operation on multiple data. Their most important characteristic is that each 

instruction performs a single operation on a vector of values that has to be as long as 

possible for the instruction to be efficient and it is not possible to use different 

transformation on parts of the vector. That is the reason, why loops are the best 

opportunity for this type of parallelism. 

Loops must have specific structure to allow vectorization to be used. The 

statements in the loop must not depend on any other statements including themselves, 

because then it is not possible to reduce the loop to a vector instruction, one possible 

problem is shown in the following example. 

                                                 
3
 SIMD is term that refers to instructions that apply a single operation on multiple data, usually a vector. 



5 

 

    for (int k = 0; k < A[0].Length; k++) 
    { 
S1:     C[i][j] += A[i][k] * B[k][j]; 
    } 

 
Figure 1 - Internal loop from matrix multiplication algorithm. 

This example shows the internal loop of the most basic algorithm implementing 

matrix multiplication. The problem here is that the statement S1 cannot be optimized 

using vector instructions, because it always changes the same element C[i][j] in the 

loop, and therefore there is a loop carried dependence from S1 to itself. This type of 

parallelism optimizes the internal loops because they contain the actual statements that 

can be vectorized.  

The main advantage of fine-grained parallelism is the fact that it is very stable 

and its application produces predictable increase of speed. Its stability relies on the 

known structure of vector instructions and their execution that does not require any 

scheduling or load-balancing. 

1.4.2 Coarse-grained parallelism 

Coarse-grained parallelism relies on threads and processes which are more 

flexible because they can execute any code concurrently, not just a single operation on 

vectors, but they are much more difficult to use. Threads can consume significant system 

resources and their use must be well justified. Coarse-grained parallelism produces best 

results, when the code contains long complicated code segments, which do not depend 

on one another and this is most common when there is a complex loop and its body is 

independent, because then it is possible to run the body in multiple threads. The type of 

parallelism optimizes outer loops, unlike vectorization.  

    for (int j = 0; j < B[0].Length; j++) 
S1:     for (int k = 0; k < A[0].Length; k++) 
        { 
S2:         C[i][j] += A[i][k] * B[k][j]; 
        } 

 
Figure 2 - Matrix multiplication for threads. 

This example shows the same matrix multiplication as Figure 1, but this time, it 

does not matter that the statement S2 depends on itself in the internal loop S1, because it 

is independent in the outer loop (C[i][j] is different in every iteration of the outer loop 

because the variable j changes). Therefore, the loop S1 does not depend on any other 

code and it can be run in parallel threads without conflicts.  



6 

 

Coarse-grained parallelism is more difficult to use, because it can be very 

unpredictable and it can even slow down the optimized application. The unpredictable 

results are caused by the unknown behavior of the tasks run in separate threads since the 

parallelism can be efficient only when the compiler can keep all the threads occupied. 

The application can be slowed when the initialization of the threads is longer that the 

time saved by parallel execution, which is usually caused by short tasks. 

1.4.3 Instruction-level parallelism 

Instruction-level parallelism is based on the fact that several instructions can be 

run at the same time by the CPU which strongly depends on the architecture of the actual 

platform. This parallelism is not discussed in this work, because it must be performed by 

the execution environment and this work concentrates on bytecode that cannot contain 

any platform dependent code. 

1.5 Preparation for parallelization 

This work mostly concentrates on the steps necessary to parallelization, because 

their successful completion decides if it is possible to apply any parallelization 

algorithms. The most important analysis is dependence testing, because it identifies 

independent code segments that can be run concurrently. Dependence testing is a very 

complicated process and the most important complication, it must face, is the analysis of 

methods called in the optimized method. Calling an unknown method can cause almost 

anything and it can ruin the entire analysis. There are two possible solutions: inter-

procedural analysis and method inlining. Method inlining has been selected because it is 

easier and more precise, even though it has certain limits that make it less suitable for 

general application, but this project is only theoretical proof of concept and this 

simplification does not interfere with specified goals. 

1.5.1 Function inlining 

Inlining is a process where the body of a called function is integrated into the 

body of the function that called it which allows more precise analysis of the entire code. 

This transformation eliminates the necessity to perform inter-procedural analysis but it 

has some limitations that may be problematic in general application. The main problem 

is that inlining cannot be used on recursive methods, since it would try to inline the 

method in itself and it would do it infinitely. Another problem is the fact that the 

analyzed method might call many methods and they in turn can call other methods and 



7 

 

the final method can become too big and it can even run out of local variables since their 

number is limited. 

Goals for this step are to analyze the possibility and difficulty of inlining in the 

bytecode and implement it, at least for a restricted version of the programming language. 

Restrictions should forbid unnecessary or dangerous features of the language, like unsafe 

code
4
 in C#. The inlining is not perfect and it is possible that it might not be able to 

handle long methods or complex series of calls. To overcome some of these limitations, 

this work proposes the use of special method attributes that identify methods that should 

be parallelized (this process is discussed in Appendix B). Methods should not be inlined 

by default, but the programmer should be able to identify the methods for inlining. 

1.5.2 Dependence testing 

This is the most difficult part of the entire process, because the optimizer must 

understand the behavior of an application and it must recognize what variables occupy 

the same memory locations since changing the value of such variables does influence the 

content of others. The problem is that the analysis is very difficult in many situations 

which are very common. For example, if a function has two reference parameters of the 

same type then it is generally impossible to decide, during static analysis
5
, if these 

parameters represent the same object or not, because the optimizer knows nothing about 

them. 

public double[][] Multiply(double[][] A, double[][] B) { } 

 

This short example shows a simple interface for matrix multiplication function 

and the problem here is that the compiler is unable to decide if the parameters reference 

different objects or not. It depends on the way the function is called, but it can be called 

multiple times with different parameters, some that are different and some that are the 

same and even the inter-procedural analysis might not be able to separate the parameters. 

This work does not make it its goal to solve dependence testing in general 

situation, because it is an algorithmically unsolvable problem. Even proving 

independence between two statements modifying an array indexed by variables can be 

                                                 
4
 Code that contains pointer types and pointer arithmetic, it is considered unverifiable because the 

unmanaged pointers can cause memory corruption, or security breach. 
5
 Static analysis is performed during the compilation or optimization. The opposite if runtime analysis, 

performed by the virtual machine when the application is running. 



8 

 

problematic. The goal is to examine possible solutions for the most common situations in 

the context of the selected language. Examined situations should include the following:  

1)   Simple array accessed using single loop induction variable
6
 (vector addition). 

2)   Multidimensional array accessed using an induction variable (matrix 

multiplication). 

3)   Array accessed using an induction variable increased by a constant. 

4)   Analysis of relations between local variables initialized by a new object and 

method parameters. 

5)   Analyze relationship between local variables based on the way they were 

initialized. 

These examples are very common in many applications and solving them, at least 

theoretically, would prove that it is possible to parallelize some applications with the 

knowledge of their bytecode. 

1.6 Java and C# 

This work is aimed at the most common languages with reference semantics, Java 

and C#. However, the actual analysis and implementation is done only for C# as the 

main language of the .NET Framework, because its intermediate language is compatible 

with the international standard Ecma [1] and because the author is more familiar with 

C#. Important fact is that both languages have a similar intermediate code, even though 

Java bytecode is not the same as C# CIL, but they share many common features and 

principles. Their similarities are the reason why it could be possible to apply most of the 

presented transformations on both languages without drastic changes. Even though both 

platforms are similar, it is difficult to implement all algorithms for both platforms, 

because there are many technical details that have to be solved before the 

implementation can be completed. More detailed comparison is presented in section 2.4. 

Another reason is that the parallelization of .NET CIL code is less explored and its 

analysis may open new possibilities for the platform.  

This work is meant as a theoretical proof of concept and its goal is to analyze 

possible parallelization of languages with reference semantics, while the implementation 

                                                 
6
 Induction variable is a variable used control the number of iterations of a loop; it is updated in every 

iteration. The loop runs until the variable reaches certain value. 



9 

 

for both platforms would most likely provide no additional understanding of the 

parallelism.  

 

1.7 C# restrictions 

It is very complicated to implement inlining and dependence testing for a general 

application, but the original language can be reasonably restricted to simplify the entire 

process. Restrictions can be used, because this work is meant as a proof of concept and 

not as a general implementation. 

Restrictions used in this work include the following:  

1)   Unsafe code cannot be used, it is not necessary for programming in C# and it 

significantly complicates the dependence testing since it introduces pointers. 

2)   Exception management and protected blocks are supported, but their use should be 

limited. 

3)   Switch construct is not supported, because it can be replaced by a few if/else 

branches and even the compiler does it in simple cases. 

4)   Generic types are not supported, because their use leads to a great number of 

generated types and methods and their analysis can be very difficult 

1.8 Basic Assumptions 

The first assumption taken by this project is that the optimizer works with a 

correct code produced by Visual Studio 2010 .NET compiler. This is very important, 

because any incorrect manipulation with the code prior to the optimization may lead to a 

corrupted program. The project also expects the program to be written in restricted C#, 

because many operations depend on standard program structure, like the identification of 

essential C# control flow constructs. The optimizer can be used on assemblies compiled 

from other languages, but their structure may prevent the optimization to locate any 

possibilities for parallelization and using very different languages, like F#, may lead to 

incorrect code. 

There is an important assumption that the stack is empty before and after every 

statement in the original C# code. This is true, since the stack is used to store temporary 

values and results and every statement ends when all the values are written to variables 

and fields. This is true for the modified code as well, with the only exception of inlined 

methods. The statements of the inlined method may not satisfy this condition, because 



10 

 

there may be something on the stack that has been left there before the method has been 

called (and inlined). The problem is caused by the fact that the call itself is a part of a 

statement and the stack is not empty, because that statement has yet to be completed. 

This is a problematic situation and it is discussed thoroughly the section 4.1.1.3. 

1.9 Structure of the thesis 

This thesis is divided into multiple chapters that present studied problems and 

their solutions and the following list describes their content. 

 Related work – The second chapter contains additional information about studied 

topics and its main purpose is to introduce the most important terms and facts used in 

the following chapters. There are presented other works that focus on similar topics. 

 Architecture – The third chapter discusses the proposed architecture of the optimizer 

created as part of this work. This work is mostly theoretical and it is possible that 

some parts of the optimizer will not be implemented, but the architecture specifies 

their potential function. 

 Code preparation – The fourth chapter discusses the implementation of method 

inlining in CIL code. 

 Preliminary code analysis – The fifth chapter is aimed at the recognition of control 

flow constructs and variables. This information is crucial for dependence testing and 

it is important to analyze the code thoroughly. 

 Dependence testing – The sixth chapter presents many transformations that can be 

used to prepare the code so it can be analyzed by existing algorithms for dependence 

testing. This approach is more efficient then creating new algorithms, because the 

existing algorithms are well tested and documented. 

 Results – The seventh chapter sums the achieved results of the entire work. 

 Conclusions – The eighth chapter presents the collected information and it compares 

the goals of this work and its results. 

 Appendix – The appendix contains the information about the actual implementation 

and there is the table of contents of the DVD distributed with this work. 



11 

 

2 Related work 

2.1 Automatic parallelization 

Automatic parallelization is a process that has been studied for many years and it 

has been successfully implemented for many programming languages and computer 

systems. There are many implementations for domain specific languages, which are 

widely used for specific tasks, like high performance computing and scientific 

calculations. Many books and papers about general compiler design study dependences 

for general optimizations and some of them cover even automatic parallelization or 

vectorization. 

There are three types of automatic parallelism, fine-grained parallelism, coarse-

grained parallelism and instruction-level parallelism. This work concentrates on the first 

two types, because they can be used in a bytecode, while the instruction-level parallelism 

can be exploited only by the execution environment, since it is heavily platform 

dependent. All the types of parallel execution are described in more detail in section 1.4. 

2.1.1 Basic definitions 

This section contains definition of the most common terms used in this work and 

more detailed description can be found in [2]. 

Definition Dependence between statements S1 and S2 can exist only if both statements 

access the same memory location and there is a feasible execution path from S1 

to S2. 

 

Definition Loop-carried dependence between statements S1 and S2 in a loop body can exist 

only if there exist indices i and j, such that i <= j, and S1 accesses the same 

memory in iteration i as statement S2 in iteration j. 

 

Definition Induction variables value in a loop is defined solely by the number of the actual 

iteration and the initial value of the variable assigned before the loop. 

 



12 

 

Definition Array subscript is an expression used to identify the accessed element in an array. 

For example in A[i+1] = 5; the expression i+1 is a subscript. 

 

Definition Aliasing is an effect encountered when a single memory location can be accessed 

via multiple separate symbols, usually pointers or references. 

2.1.2 Problems of automatic parallelization 

Automatic parallelization is very difficult to implement and it must be supported 

by the architecture of the compiler, because it requires a lot of additional information 

about the optimized application. The compiler must be able to analyze the structure of 

the application and it must locate dependences between statements before any 

parallelization can be used. The general structure of compilers is well documented and 

many books about compiler design introduce basic parallelization. 

The most important step before automatic parallelization is dependence testing, 

responsible for the analysis of relationship between statements, which is thoroughly 

discussed in [3]. The dependence analysis can be used to perform other advanced 

optimization, like scheduling and loop optimizations, and that is the main reason why it 

is studied in [3], because the book presents only very simple low level parallelization. 

Vectorization is most commonly used type of automatic parallelism, because it 

offers very good improvement of speed for many specialized applications and it is more 

stable than coarse-grained parallelism. Vectorization requires many special 

transformations that prepare the optimized code for vector instructions and these 

transformations strongly influence the final efficiency of the compiler. Many 

transformations enhancing fine-grained parallelism are discussed in [4] in chapter 11 and 

the book describes most important transformations, like loop exchange or index splitting. 

Loop exchange swaps loops in a loop nest to remove loop-carried dependences from the 

internal loop, which can be later parallelized, and index splitting divides a single loop in 

two that contain less dependences.  

While vectorization is an optimization used in scientific for decades, coarse-

grained parallelism has been considered to be too expensive and unpredictable. There are 

some papers that explore coarse-grained parallelism and its application in modern 

environment. One possible approach is to extract long running threads from pipeline 

parallelism, which means decomposing pipeline parallelism to multiple threads and 

executing these threads in parallel. This technique is presented in [5] along with 



13 

 

implemented compiler. Another way is to use speculative parallelization based on 

transactions [6]. 

Important book about automatic parallelization is [2], because it concentrates 

only on parallelization and it presents many transformations necessary for real 

application of vector instructions or parallel tasks. The book contains detailed analysis of 

dependences including dependence testing in loops and conditional branches and much 

attention is devoted to analysis of array subscripts
7
, because arrays along with loops 

represent the best opportunities for parallelization and it is necessary to know what 

elements are accessed. This thesis is mostly based on this book and the optimization 

steps presented in section 3.2 are inspired by the transformations discussed there, but this 

thesis adapts the concepts to the environment of the .NET Framework. 

All these books are very thorough and they are usually based on successfully 

implemented compilers, but their main problem is that they concentrate on old structured 

language and they do not address challenges presented by OOP
8
. The book [3] is based 

mostly on FORTRAN and [4] is based on C, while [2] discusses both. Both FORTRAN 

and C are languages with strong support for automatic parallelization and they are 

traditionally used for domain specific tasks, like high performance computing. This work 

tries to find out if it is possible to use similar algorithms and transformations to optimize 

applications written in C# or Java.  

2.2 Parallelization of Java applications 

FORTRAN and C are traditional languages for automatic parallelization, but 

there are many projects trying to implement similar optimizations for Java and similar 

languages. Java is one of the most common programming languages in the world, but it 

is more complex than FORTRAN and that is one of the reasons, why is the automatic 

parallelization usually unavailable. 

Java is very effective for common applications, but it is not well suited for high 

performance computing and multimedia applications [7] and one way to improve that is 

to use vector instructions available on most modern platforms. Vectorization is a prime 

example of fine-grained parallelism and it is has been studied for many years. Automatic 

vectorization is not the only way to use vector instructions in Java applications because it 

is possible to provide the user with a library containing vector operations, which can be 

                                                 
7
 Expression used to access array elements, be it a single integral variable or a calculated value. 

8
 Object oriented programming is based on classes that implement separate parts of application. 



14 

 

translated to vector instructions if they are available. Both approaches are discussed in 

[7]. Vectorization usually requires many loop transformations, because the best 

opportunities for vector instructions is array processing in a loop. There are many loop 

transformations described for languages like FORTRAN, but Java and other reference 

languages may require a different approach [8].  

Main problem of vectorization is that it is strongly platform dependent and Java 

applications should be portable, but this can be solved with the help of the runtime 

environment. One solution is to generate SIMD instructions with a retargetable compiler, 

based on tree-pattern matching [9]. 

Very interesting work is [10], because it studies automatic parallelization based 

on the analysis of Java bytecode and that is very close to the techniques presented in this 

work. It presents tools that can parse and analyze bytecode and optimize the applications 

even without their source code, but the main presented parallelization technique is 

method parallelization and the work does not specialize on coarse-grained 

parallelization. 

Parallelization of Java code or bytecode is not the only option. It is possible to 

implement virtual machine that can execute sequential bytecode and transform it at 

runtime to take advantage of vector instructions or other forms of parallelism. Even 

though the most common implementation of Java runtime, the Oracle JRE
9
, supports 

basic automatic parallelization, there are systems that are able to perform more advanced 

parallelization. One example is system JAPS presented in [11], which is a system able to 

compile Java based applications and execute them concurrently on a NOW
10

 distributed 

system. The environment has been improved in second version JAPS-II, which is able to 

exploit even data parallelism, unlike its predecessor, which was able to use only function 

parallelism. Another runtime environment supporting automatic parallelization is JRPM 

[12] which uses thread level speculation to parallelize sequential Java programs. 

Even though vectorization is most common way to optimize many applications, 

Java is much better suited for coarse-grained parallelism thanks to its native support of 

threads and multithreaded execution is completely portable. Threads represent more 

difficult challenge, because they are more expensive to execute and they can be very 

unpredictable in their execution time, which introduces a complicated load-balancing. 

                                                 
9
 Java runtime environment is virtual execution machine used to run Java applications. 

10
 Network of workstations is a basic distributed system based on simple workstations, usually common 

PC. 



15 

 

Possible solution is to use method parallelism based on inter-procedural analysis, which 

produces an instrumented code used by a specialized environment [13]. 

2.3 Parallelization of C# applications 

Microsoft implementation of .NET Framework supports basic automatic 

parallelization thanks to its TJIT
11

, similar to Java JRE and it shares most of the 

problems encountered in Java applications, because both environments are very similar. 

Problem of the parallelization implemented by the CLR is the fact that it is done at 

runtime according to the trace information collected during current execution and it does 

not perform any advanced dependence testing [14]. There is simply no time for extensive 

analysis of the code, because the code must be executed as quickly as possible and 

dependence testing is a complicated process. 

It is necessary to transform the C# code or the CIL code to apply automatic 

parallelization during compilation, but the problem is that the CLR does not support any 

explicit parallelization constructs. One possible solution is to use meta-data annotations 

to identify independent code ready for parallelization [15]. This technique had the 

problem that the execution of an annotated program would require a specific 

implementation of CLR and that can be difficult to implement. However, this idea can be 

slightly modified and the attributes can be used by a special source-to-source compiler to 

automatically generate code that explicitly uses threads [16]. The generated code can be 

simply compiled with Visual studio and executed by standard .NET. 

There is one very interesting option available in .NET, because it supports 

functional programming and lazy calls. Lazy call is a special type of method call, which 

is executed only when its result is needed. Lazy calls can be used to generate infinite data 

structures, because the actual values are generated when they are needed and the 

application can use safely use finite parts of the infinite data structure. Lazy evaluation is 

an evaluation strategy commonly used by functional languages. Pure functional 

programs can be parallelized very simply, because their functions must depend only on 

their parameters and they cannot modify any global state. Therefore, functional program 

contains only independent functions that can be run in parallel without any additional 

transformations. Problem is that the compiler must recognize lazy calls and it must be 

                                                 
11

 Tracing just-in-time compiler is a JIT compiler with the additional tracing that collects the information 

about executed code, which is used for optimization including parallelization. 



16 

 

able to verify that the called function is really independent, but that can be accomplished 

according to [17]. 

The automatic parallelization is not the only way to develop parallel applications 

in modern C#, because .NET offers a wide support for parallelization, aside from basic 

threads. There are many libraries for explicit parallel programming, including parallel 

loops, library for task parallelism and parallel LINQ
12

 [18]. 

Other possibilities are described in section 2.6. 

2.4 Java and .NET comparison 

The intention of this work is to examine the possible application of automatic 

parallelization on applications written using modern languages with reference semantics, 

Java and C# most prominently, but it proved too difficult to implement the discussed 

algorithms for both platforms. Therefore, only one language has been chosen for deeper 

analysis. C# and the .NET platform have been selected, because the structure of CLI
13

 is 

based on an international standard Ecma [1] and the author is much more familiar with 

the .NET platform then with Java. There are many useful tools available for analysis and 

verification of .NET applications that proved to be absolutely necessary for low-level 

tasks such as inlining. 

Even though only .NET have been selected, it may be possible to modify 

proposed solutions and algorithms to work on the other platform, because both platforms 

are based on similar concepts and most of the work may be used for both languages and 

their bytecode. 

2.4.1 Java and C# virtual machine 

This section is dedicated to the exploration of similarities between Java bytecode 

and .NET CIL
14

, these similarities are very important, because the solutions are 

presented for .NET and their potential application on Java would require that both 

platforms share at least some basic concepts. 

                                                 
12

 Language-Integrated Query is a set of methods that implement query similar to SQL; the library contains 

special syntax for the queries. 
13

 Common language infrastructure is a software platform specified by an Ecma standard [1] and its most 

used implementation is Microsoft .NET framework. 
14

 Common intermediate language is an intermediate language used in platforms compatible with the 

standard Ecma-335 [1]. 



17 

 

Both JVM
15

 and .NET CLR
16

 are stack-based virtual machines designed to 

execute applications compiled to appropriate intermediate code, bytecode for Java and 

MSIL
17

/CIL for .NET. The execution stack is used to pass parameters and return values 

from one instruction to another and completed statements usually leave the stack empty 

because the final value is stored in local variable or it is passed as a parameter to a 

method. Aside from the execution stack, both platforms use a call stack to handle method 

calls and exception management. Methods have access to two kinds of memory, the 

execution stack and local variables, which can be accessed only by the method. .NET 

methods have parameters as a separate type of memory, but they are used almost the 

same way as local variables and they can be considered to be a special type of local 

variables.  

2.4.2 Intermediate code comparison 

The instruction sets of JVM and CLR are very similar as well, since both use 

load/store instructions to move values between the memory and the stack and all the 

instructions, that perform some actual computation, use the execution stack to obtain 

their parameters and they return results back on the stack. The next example shows a 

simple method that is later compiled to both bytecode and MSIL to present similarities in 

the instructions and code structure.  

static int factorial(int n) 
{ 
    int res; 
    for (res = 1; n > 0; n--) res = res * n; 
    return res; 
} 

 
Figure 3 - Sample code used to produce bytecode and CIL 

The source code is the same for both java and C# and it has been taken from [19] 

as well as the Java bytecode presented next. 

                                                 
15

 Java virtual machine is an execution environment able to run programs written in Java and many other 

languages compiled to bytecode. 
16

 Common language runtime is en execution engine able to run applications compiled to an intermediate 

language compatible with Ecma CIL. 
17

 Microsoft intermediate language is a company specific implementation of Ecma CIL. 



18 

 

method static int factorial(int), 2 registers, 2 stack slots 
0: iconst_1  // push the integer constant 1 
1: istore_1  // store it in register 1 (the res variable) 
2: iload_0 // push register 0 (the n parameter) 
3: ifle 14  // if negative or null, go to PC 14 
6: iload_1  // push register 1 (res) 
7: iload_0  // push register 0 (n) 
8: imul   // multiply the two integers at top of stack 
9: istore_1  // pop result and store it in register 1 
10: iinc 0, -1  // decrement register 0 (n) by 1 
11: goto 2  // go to PC 2 
14: iload_1  // load register 1 (res) 
15: ireturn  // return its value to caller 

 
Figure 4 - Example bytecode generated from the code shown in Figure 3 

First, it is necessary to note that local variables are called registers in the Java 

bytecode. The bytecode shows the use of stack to perform multiplication (blue colored 

instructions), first both operands are loaded, then the result is calculated and the result is 

stored in a local variable (register). The code contains a conditional jump (3: ifle 14) 

and an unconditional jump (11: goto 2) to implement the for-loop and the code is 

closed by the ireturn instruction that terminates the method and leaves its result on the 

stack. 

.method private hidebysig static int32  factorial(int32 n) cil managed 

{ 

  // Code size       19 (0x13) 

  .maxstack  2 

  .locals init ([0] int32 res) 

  IL_0000:  ldc.i4.1  // load constant 1 on the stack 

  IL_0001:  stloc.0   // store constant in local variable 

  IL_0002:  br.s       IL_000d // jump at the start of loop condition 

  IL_0004:  ldloc.0   // load local variable 

  IL_0005:  ldarg.0   // load parameter value 

  IL_0006:  mul   // multiply argument with loop index 

  IL_0007:  stloc.0   // store the result of multiplication 

  IL_0008:  ldarg.0   // load parameter 

  IL_0009:  ldc.i4.1  // load constant 1 

  IL_000a:  sub   // subtract the (parameter – 1) 

  IL_000b:  starg.s    n  // store the result in the parameter 

  IL_000d:  ldarg.0   // load the parameter 

  IL_000e:  ldc.i4.0  // load constant 0 

  IL_000f:  bgt.s      IL_0004 // jump back if (argument > 0) 

  IL_0011:  ldloc.0   // load result on the stack 

  IL_0012:  ret   // return the control to the caller 

} // end of method Program::factorial 

 
Figure 5 - MSIL code generated from the code shown in Figure 3 

This is the MSIL code generated from the exact same code as the byte code in the 

Figure 4; it was compiled by Visual studio 2010 for .NET 4.0 and decompiled by the 

ILDasm utility. The code bears many similarities to the bytecode shown in Figure 4, for 

example, the multiplication is identical (blue colored instructions). The code shows how 



19 

 

the code works with method parameters (red colored instructions); they are used as local 

variables, which is similar to Java that accesses parameters as local variables. Even 

MSIL leaves the return value on the stack prior to calling the ret instructions. Both code 

samples contain almost the same number of instructions. 

2.4.3 Summary 

The example codes presented in Figure 4 and Figure 5 show that the structure of 

both intermediate codes is very similar, they both use stack to pass values between 

instructions and even the instructions are very similar. Detailed description of JVM 

instruction set can found in [20] and the CIL instructions are specified by Ecma standard 

[1]. This similarity implies that most of the algorithms designed for the MSIL/CIL code 

can be ported for the Java bytecode without major changes and the paper is mostly valid 

for JVM, even if it is presented written the .NET platform. Chapters and sections that 

discuss topics valid only for the .NET platform are clearly marked and they can be 

skipped by readers interested only in Java.  

2.5 .NET execution environment 

The .NET virtual machine called CLR is a stack-based execution environment 

that uses the execution stack to pass values between consecutive instructions. It is able to 

execute applications compiled to an intermediate code compatible with CIL, like the 

MSIL used by applications written in C#. It is very similar to the Load/store architectures 

used by many RISC
18

 processors, like the MIPS
19

 processor family, because only 

load/store instruction can access local variables or method parameters and all other 

instructions work only with the values pushed on the stack. Most common structure is 

that load instructions prepare values on the stack, then some arithmetic instruction 

processes these values and its result is stored in memory or used as input for another 

calculation. The stack remains empty after a statement is completed, because all the 

values are stored in memory. 

The code is divided into classes and their methods that contain all the actual 

instructions and the application starts by executing the static main function. Classes are 

stored in modules called assemblies and one application can contain many assemblies 

                                                 
18

 Reduced instruction set computing is a CPU design strategy based on the insight that simplified 

instructions can provide higher performance. 
19

 MIPS is a reduced instruction set computer (RISC) instruction set architecture (ISA) developed by MIPS 

Technologies. 



20 

 

where one assembly can use classes defined in another as along as it is able to locate the 

actual assembly file. Assemblies are stored as a specific version of DLL
20

 with the 

exception of the main file, which is an executable file. 

Detailed description of the infrastructure and principles of CLI compatible 

platforms, which include .NET framework, can be found in Partition I in [1]. 

2.5.1 Basic instructions 

This section describes some basic instructions to allow better understanding of 

the following examples, because the MSIL code is used to present many concepts and 

operations discussed in the following text. Most instructions exist in many versions that 

share the same basic mnemonic name and the version is specified by it suffix, but to 

understand the code, it is necessary to know only the base name. The instructions use 

simple mnemonics to identify the type of object they work with, the following list shows 

the most common: 

 loc – local variables 

 arg – method parameters 

 fld, sfld – class fields and static fields 

 elem – array elements 

 c, str – numeric or string constant 

The next list describes basic instruction groups used in the examples presented in 

this paper. 

 ldloc, ldarg, ldc, ldstr, ldfld, ldelem – loading instructions used to read 

memory available to the analyzed method; this is the only way to read memory, 

excluding unsafe code that is not allowed in this paper. Values are pushed on the 

execution stack and later used by other instructions.  

 ldloca, ldarga, ldflda, ldelema – instructions used to access the memory 

address of specified variables, which can be later used for indirect writing or reading, 

which is very common in the code produce by Visual studio. 

 stloc, starg, stfld, stelem – storing instructions used to modify local variables, 

parameters, fields and arrays. 

                                                 
20

 A dynamic-link library is an executable file that acts as a shared library of functions. 



21 

 

 br, bgt, ble … – conditional and unconditional jumps, br is unconditional and the 

others are conditional and they change jump, if the values on the stack satisfy their 

condition. 

 call, calli, callvirt – instructions for calling different types of methods, 

callvirt is used to call virtual methods 

 mul, add, sub … - standard arithmetic instructions 

This list contains most common instructions used in examples in the following 

chapters and their detailed description can be found in Partition III in [1]. 

2.6 Parallel execution in .NET Framework 

The actual implementation of automatic parallelism is problematic in .NET 

applications, because there are no vector instructions in CIL and the introduction of 

threads to sequential code requires drastic changes to the structure of the code, because 

the parallel tasks must be exported as new methods and then they can be executed in 

separate threads. 

Possible solution is to use code instrumentation to specify which code can be 

parallelized and the execution environment then decides what will be parallelized and 

how [15]. This is a good approach but it requires a special execution environment, 

because standard .NET CLR does not support any parallelization meta-data information, 

and that can be problematic because implementation of an entire CLR is very difficult 

and the new implementation would have to be ported to all required platforms. One 

positive fact is that meta-data can be ignored by CLR and the program can be executed 

even under standard implementation of .NET, even though it would run without any 

parallelism. 

Another possibility is to use a special library that provides vector operations as 

simple functions. If the actual platform supports then these functions would use them and 

if the platform offers no support for vector parallelism then they would implement the 

operation using standard CIL instructions. These functions can be easily inlined to 

increase execution speed. This solution would most likely require new or modified CLR, 

because the CLI instruction set does not support vector instructions, and that makes it 

impractical for general use. 

One of the best solutions is to use method parallelism along with a thread pool, 

because it does not require major restructuring of the code and it does not need a special 

implementation of CLR. The thread pool and its management can be implemented in C# 



22 

 

and its CIL code can be inserted in the optimized application without changing its 

existing code, with the exception of some initialization that must be added to the main 

function. The actual parallelization would require only the analysis of the dependences 

between separate methods and independent methods can be executed in parallel threads 

obtained from the pool. Main problem of this method is that is can parallelize only entire 

methods and it is not able to parallelize loops that do not call methods. Another problem 

is that it would require runtime load-balancing, since it is not possible to determine 

method run time during compilation. 

The actual parallelization technique is not discussed in much detail in this work 

because its main motivation is to use C# as a front-end for some parallel system. The 

CIL produced by the compiler / optimizer would be transformed to a specific language 

that supports parallelism natively and this problem would not be encountered at all. 

2.7 Intermediate code 

The optimizations and transformations cannot be performed on the raw bytecode, 

because it is designed for quick execution and it is not well suited for transformation. 

Therefore, it is necessary to parse the actual byte code to an intermediate code that can 

be easier transformed and analyzed. This work uses the Cecil library to parse the code 

and the internal format produced by the library is used as an intermediate code. This 

approach has been chosen, because Cecil is a well-known library and its format is well 

suited for transformations. Another benefit is the fact that it is much simpler for other 

developers to extend the project without the necessity to learn some obscure intermediate 

language. The only problem of the Cecil library is the lack of detailed documentation, 

which caused some problems during the implementation. 



23 

 

3 Architecture 

This chapter describes the general structure of the optimizer designed as part of 

this work. It is not a thorough documentation of software architecture, because this is a 

theoretical work and the optimizer is designed as a theoretical concept. The architecture 

of the actual implementation is documented in Enterprise architect and it can be found in 

the Architecture module of the project, the exact location is specified in Appendix A. 

3.1 Structure of the optimizer 

The structure of the optimizer closely follows the series of transformations and 

analyses used to prepare the code for parallelization. Following sections discuss every 

step and its problems. These steps prepare information for automatic parallelization and 

their order is very important, because every step depends on the previous steps, with the 

exception of transformations that are applied to simplify next steps.  

Each step provides input for the next step and every step is implemented in a 

separate module, because modules can be later replaced by better implementation. The 

construction is similar to a network stack, because each module provides input for the 

next and it can communicate only with its neighbors. The optimization steps and their 

order are as follows: 

1)   Code preparation 

2)   Preliminary transformations 

3)   Preliminary code analysis 

4)   Dependence testing 

5)   Transformations enhancing parallelism 

6)   Automatic parallelization 

This work concentrates on the steps that are absolutely necessary for 

parallelization of .NET CIL because the other steps are used to simplify the analysis and 

their application is not a necessity for simple applications. The necessary steps are Code 

preparation, Preliminary code analysis and Dependence testing. The other steps are 

discussed in some detail in this chapter, unlike the main steps which are discussed in 

separate chapters, and they are described here only briefly. These steps are described, 

because they are part of the architecture and they would be necessary for a complete 

implementation to be efficient. 



24 

 

The main steps are Code preparation, Preliminary analysis and Dependence 

testing. Automatic parallelization is very important as well, but this work tries to prove 

that it is possible to gather required information and the actual application is discussed 

mainly in section 2.6. This work solves problems specific for languages with reference 

semantics and the parallelization process might be similar to any other language, once 

the dependences are identified. 

Aside from the main modules, the optimizer must contain other modules that 

manage communication with users or configuration. They provide a general framework 

for the optimizer and they are not discussed in this chapter, because they do not 

implement any optimizations. These modules are described in Appendix B. 

3.2 Optimization steps 

The optimization steps presented in the previous section have been inspired by 

the transformations presented in [2] and their order is defined by the information require 

in each step. The order can be reconstructed from the last step according to the input of 

each step. Parallelization requires the knowledge of dependences, because they identify 

the code that can be executed concurrently. Dependence testing must understand the 

structure of the code and it must be able to identify separate memory locations and that 

information is provided by the analyses in the second step. The entire analysis must 

know as much as possible about the code which is the main motivation for inlining. 

These steps represent only one possible solution, but they should provide the information 

necessary for automatic parallelization. 

Algorithms for automatic parallelization are not too complicated, but they require 

the knowledge of dependences between statements or instructions and dependence 

testing, on the other hand, is an extremely complicated problem that needs to know a lot 

about the code, before it can be even attempted. Because of that, there are many steps, 

which must be completed, before performing the dependence testing and ultimately, the 

automatic parallelization. Not all these steps are absolutely necessary but they must be 

performed in the specified order since the next steps might not work otherwise. 



25 

 

3.2.1 Code preparation 

Code preparation module provides two operations that should be done before the 

code can be analyzed. First is a transformation called function inlining
21

 and second is 

called code verification (this is not the verification of CIL code performed by the 

execution environment). Inlining means that the body of a called function is copied into 

the body of the function that called it, this allows for more precise analysis and 

understanding of the code. Code verification simply checks if the code does not contain 

any instructions or constructs, which are not supported by the optimizer. 

3.2.2 Preliminary transformations 

Preliminary transformations are basic optimization performed before dependence 

testing, because they simplify the code and the analysis can be done faster. These 

transformations are very general and they may be even performed by the compiler, 

which created the analyzed bytecode. They include transformations, like dead code 

removal (deletion of unreachable code) or constant propagation (removal of variables 

with constant values). The book [2] contains many examples of useful transformations in 

the chapter 4. 

Next sections discuss two important transformations, which should be 

implemented by a complete optimizer, but they are not implemented in this project, 

because they are not necessary. All of them are explained in more detail in [2], in 

Chapter 4, and in [3]. Dead code analysis and elimination is explained very thoroughly in 

[4], in Chapter 8. These optimizations are very common and they are well documented in 

many scientific books and papers, but this section discusses their possible 

implementation in the .NET environment. 

3.2.2.1 Constant propagation 

Dependence testing examines the relationship between separate memory accesses 

and it is more difficult when there are many variables mixed together and constant 

propagation is a process that can be used to reduce the number of variables, mainly those 

introduced by inlining. Constant propagation locates instructions that read a variable, 

which has a known constant value, and it replaces those instructions with instructions 

that load the constant directly, thus instead of reading the value from a variable, it is 

                                                 
21

 Function inlining is a process where the body of a function is included in the body of the function that 

called it and the call instruction is removed. The resulting code produces the same results, but it may be 

more efficient and I can be analyzed more precisely. 



26 

 

loaded directly and the variable is not accessed in the statement. This transformation can 

remove many variable accesses and thus it can remove a lot of dependences, because 

unlike variable, constant is stored in the program code and then it is loaded to the stack 

(at least in .NET). 

Sadly, this optimization is not implemented in the Visual studio compiler for C#. 

One of the possible reasons it the fact that instructions loading constants can have more 

than 1 byte and the constant have to be moved from the instruction on the stack, which is 

usually implemented in registers, while instructions reading local variables are 1 byte 

long and the variables are usually allocated in a register. The optimization is discussed 

thoroughly in Chapter 4 in [2]. 

3.2.2.2 Dead code elimination 

Definition Dead code is a code that does not contribute to the final value of any output 

variable or it does not produce any visible output (like writing to a console). 

Basically, dead code is a code fragment that can be removed from the application 

without changing its results or behavior. Removing a useless code can help dependence 

testing, because it does not have to test code that does not do anything or it will never be 

executed 

This transformation can be very complicated and it is strongly platform 

dependent, but luckily, the Visual studio C# compiler contains a fair implementation, 

that can remove unreachable code as well as code that does not contribute to any result. 

The example shows how the compiler transforms the following method, which contains 

three useless statements. 

    static int deadCode() 
    { 
        var y = 10; 
S1:     int x = y * 2; 
        return y; 
S2:     y = x * x; 
S3:     return x + y; 
    } 

 

Statements S1, S2 and S3 are useless, because S1 does not change the returned 

value and S2, S3 will be never executed, because there is a return statement just before 

them. The final code generated by the C# compiler is shown in the next example. 



27 

 

  IL_0000:  ldc.i4.s   10 

  IL_0002:  stloc.0 

  IL_0003:  ldloc.0 

  IL_0004:  ret 

 

The final code contains only the initialization of a single local variable and its 

value is then returned as the result of the method. All three useless statements have been 

removed. 

3.2.2.3 Summary 

This step is not implemented, because it is not necessary for parallelization, but it 

would be important for the efficiency of the final optimizer and that is the reason why it 

is discussed in this section. 

3.2.3 Preliminary code analysis 

Preliminary analysis is responsible for recognition of basic code constructs and 

variables and its results are later used in dependence testing. It is necessary to locate all 

control flow constructs and mainly loops, because they offer the best opportunities for 

parallelization and the execution order strongly influence relations between parts of the 

code. On the other hand, variable recognition must locate all the variables used in the 

code and categorize them according to their type and usage. 

3.2.4 Dependence testing 

Dependence testing is a process that located dependences between statements (or 

instructions) that can be used to locate code which can be executed in parallel. This is the 

most difficult part of the entire parallelization process, because the optimizer must 

understand the behavior of the application and it must recognize what variables occupy 

separate memory locations since changing the value of such variables does influence the 

value of the others. The problem is that this is impossible to do in many cases and that 

these cases are very common, for example, if a function has two reference parameters of 

the same type then it is generally impossible to decide during static analysis
22

 if these 

parameters represent the same object or not, because the optimizer knows nothing about 

them. One possible solution is an inter-procedural analysis, but the method can be called 

many times and its caller can use its own parameters and that adds another method that 

                                                 
22

 Static analysis is performed during the compilation or optimization. The opposite is runtime analysis, 

performed by the virtual machine when the application is running. 



28 

 

must be analyzed. Inter-procedural analysis can solve some situations, but it is not a 

universal solution. 

3.2.5 Transformations enhancing parallelism 

This step is very similar to preliminary transformations (section 3.2.2), but the 

transformations used here require very deep knowledge of the code and they can 

significantly improve the code for later optimization. The transformations are usually 

used as a response to specific problem and the quality of the compiler is strongly 

influenced by the number of transformations it can perform, because every 

transformation allows it to optimize different type of application. 

This project tries to solve only simple cases and it does not have to implement 

any of these transformations do that, but the final optimizer would have to implement a 

lot of these transformations to be efficient and some transformations are presented in the 

next chapter to elucidate the function of this step. 

3.2.5.1 Transformations 

It is necessary to select what type of parallelism would be used to optimize the 

application before any transformations can be used because all these transformations are 

designed for specific type of parallelism. 

Fine-grained parallelism is mostly improved by eliminating loop carried 

dependences from internal loops in a nest, because the internal loop can be transformed 

to use vector instructions. Examples of these transformations are loop interchange, scalar 

expansion or loop skewing. Loop interchange swaps loops in a loop nest to remove loop-

carried dependences from the internal loop, which can be vectorized, while the 

dependence is carried by some outer loop in the nest. Scalar expansion transforms a 

scalar variable, used in a loop, to a vector that can be processed by vector instruction and 

the vector is transformed back to a scalar after the loop ends. Loop skewing is an 

advanced transformation that modifies the loop induction variables to change the 

iterations space, which can be divided into parallel iterations. All these transformations 

are explained in detail in chapter 5 in [2]. 

Transformations that improve coarse-grained parallelism are more complicated, 

because it is more difficult to use and it can be very unpredictable. Simple 

transformations are loop distribution and loop interchange (different version then in the 

case of fine-grained parallelism). Loop distribution splits a complex loop into multiple 

simpler loops that can be run in separate thread. Loop interchange used for parallel 



29 

 

threads is similar to the interchange used for vectorization, but in this case it removes the 

dependences carried by the outer loops, because the internal loops can be run in separate 

threads regardless of the loop-carried dependences. Many transformations for coarse-

grained parallelism are discussed in chapter 6 in [2]. 

3.2.6 Automatic parallelization 

There are basically two types of parallel execution discussed in this work, fine-

grained parallelism (vectorization) and coarse-grained parallelism (threads or processes). 

Contemporary computers are usually able to combine both these approaches together 

using multiple cores for multiple threads and SIMD instructions for vectorization. More 

precise analysis of available parallelization techniques is in section 1.4 and in section 

2.6. 

This is the last step and it is the ultimate goal of this work, but it is discussed only 

theoretically because the main goal is to find out if it is even possible to perform some 

automatic parallelization and the actual implementation is very complicated. 



30 

 

4 Code preparation 

This step includes method inlining and code verification. Both are very low level 

operations that must be performed, before the code is analyzed, to make sure the actual 

analysis is as simple as possible. The following steps can work with the resulting code 

safely and it allows the following analyses to be much more precise and detailed. 

4.1 Inlining 

The main idea of method inlining is to remove unnecessary dependencies caused 

by calling an unknown method that can change almost anything. The called method is 

included in the calling method and the resulting code can be analyzed more precisely, 

since it is now clear how the parameters are used and what static data is changed, if any. 

Even though the inlined method can be analyzed independently, the flow of data can 

only be accurately analyzed after it is inlined, since then it is clear where are the 

parameters obtained and where are they used and how. 

    for (int i = 0; i < arr.Length; i++) 
    { 
S1:     func(arr, i); 
    } 
 
    void func(int[] arr, int i) 
    { 
S2:     arr[i] = arr[i] * 2; 
    } 

 

Figure 6 - Simple inlining example. 

Inlining the function func in the loop would replace the statement S1 with the 

statement S2 and then the loop can be easily optimized using threads or vector 

instructions, since the loop simply multiplies each element of an array by 2 and it does 

no modify any element more than once. This kind of analysis requires either inter-

procedural analysis or inlining. Inlining has been chosen, because it is easier to 

implement and it is sufficient, with respect to the motivation. 

Second important effect is that the inlined code can be optimized along with the 

code of the calling method and that can improve performance or it can even make certain 

optimizations applicable. 



31 

 

    for (int i = 0; i < arr.Length; i++) 
    { 
        func(arr, i); 
    } 
 
    private void func(int[] arr, int i) 
    { 
        for (int j = 0; j < i; j++) 
        { 
            arr[j] = arr[j] * 2; 
        } 
    } 

 
Figure 7 - More complex inlining example. 

This is a more complicated version of the previous code and there is no 

parallelization available before the function func is inlined, because the calling method 

contains a function call and we do not know what it can do. The func cannot be 

optimized because we do not know anything about the arguments and one is used to 

control the main loop. The situation becomes simpler after inlining. 

    for (int i = 0; i < arr.Length; i++) 
    { 
        for (int j = 0; j < i; j++) 
        { 
S1:         arr[j] = arr[j] * 2; 
        } 
    } 

 
Figure 8 - Inlined loop nest. 

After inlining it can be proven that there is no dependence carried by the internal 

loop involving statement S1 and the internal loop can be parallelized. 

One positive side effect of code inlining is the analysis of the used types and 

methods. All the following transformations can work only with the body of the calling 

method and they can rely only on its instructions and data. The inlining process makes 

sure all the used types, methods and fields are imported to the optimized module and 

they can be used safely, this is necessary for the CLR to work correctly. 

Problem is that not all the methods are available for inlining, like library 

functions written in native code, like Windows API functions. These functions or 

methods are left in the code and they work like dependence barriers, since everything 

depends on them and they in turn depend on everything because their code cannot be 

analyzed. This problem is not important for this work, because the optimization of 

libraries is not its goal. This work concentrates on parallelization of calculations. 



32 

 

4.1.1 Inlining in depth 

Following sections describe the inlining process in more detail. It is important to 

point out that all the operations are necessary and must be executed in exact order, 

because they depend closely on one another. Most of them are not .NET dependent, but 

there are transformations that may not be necessary on other platforms, they are clearly 

marked. The examples present the transformations on the MSIL code produced by C# 

compiler that is part of Visual studio 2010. 

To inline a method completely and safely, it is necessary to perform following 

steps in this exact order: 

1) Jump target backup 

2) Parameter and call elimination 

3) Protected block patch 

4) Local variable reference patch 

5) Parameter reference patch 

6) Code inlining 

7) Entry and exit point patch 

8) Jump patch 

9) Protected block registration 

10) Maximal stack size calculation 

4.1.1.1 Jump target backup 

The very first step is to save important information about jump instructions. The 

target instruction must be detected for all jumps in both calling and called method and 

the jump distance is then stored as the number of instructions from the jump to its target 

(negative number means backward jump). This is necessary, because the inlining 

changes the instruction stream and some jumps can become invalid. The eighth step 

restores invalid jumps according to the information collected in this step; the process is 

explained in the section 4.1.1.8. 

This problem is more complicated in the MSIL by the fact that all the jump 

instructions identify their target distance by the number of bytes; they do not use the 

number of instructions because they vary in size and the necessary calculation would 

hurt performance. Luckily, this problem is solved by almost every reflection library 

available for .NET of Mono platform. 

There is the same problem with the protected blocks of the calling method that 

has to be addressed as well, because the protected blocks that span over the call 



33 

 

instruction has to be extended to correctly include all the instructions added during the 

inlining process. This problem can be solved the same way as the jumps; all the 

dimensions of all the protected blocks are stored before any code is changed and they are 

updated after the code is complete. The update is described in the section 4.1.1.8. 

4.1.1.2 Parameter and call elimination 

Next step of the inlining process is parameter elimination. It means that the 

parameters, stored on the stack prior to the call, must be stored to local variables, this 

way the inlined code can access them the same way as local variables and it can work 

with them as if they were parameters. This approach is a bit crude, but the parameters 

can be placed on the stack in many ways, they can be a result of an inlined method, and it 

is not possible to simply replace parameter load with the instruction that placed it on the 

stack before the call, at least not always. Some optimization may be possible with stack 

simulator because it can identify the point where a specific parameter is placed on the 

stack and thus the specific instruction can directly replace parameter load without the 

need to create a new local variable, but this instruction must be a simple load of either 

local variable or a parameter. 

    var = Called(2.4f, "hello", fltVar, 2.4f, 2.4f, s); 

 

This statement is translated by the .NET compiler to the following code. 

  IL_0041:  ldarg.0 

  IL_0042:  ldc.r4   2.4000001 

  IL_0047:  ldstr    "hello" 

  IL_004c:  ldarg.0 

  IL_004d:  ldfld    float32 ParallaXExample1.InlinerTest::fltVar 

  IL_005c:  ldloc.1 

  IL_005d:  call     instance int32 InlinerTest::Called( 

float32, 
string, 
float32, 
valuetype ParallaXExample1.str) 

  IL_0062:  stloc.0 

 
Figure 9 - Method call in CIL. 

The instructions responsible for parameter preparation are colored cyan. 



34 

 

  IL_0096:  ldarg.0 

  IL_0097:  ldc.r4     2.4000001 

  IL_009c:  ldstr      "hello" 

  IL_00a1:  ldarg.0 

  IL_00a2:  ldfld      float32 ParallaXExample1.InlinerTest::fltVar 

  IL_00b1:  ldloc.1 

  IL_00b2:  stloc.s    V_25 

  IL_00b4:  stloc.s    V_26 

  IL_00b6:  stloc.s    V_27 

  IL_00b8:  stloc.s    V_28 

  IL_00ba:  stloc.s    V_29 
 

Figure 10 - Parameters stored to local variables before inlining. 

The green colored instructions store the parameter values from the stack to local 

variables. This process can be wasteful in cases like this, but most methods have just a 

few parameters. Not to mention that the actual call instruction stores the parameter 

values as well. 

The call instruction is removed afterwards, because it is no longer needed. 

Finally, two lists are created for simple removal of parameter references - load 

replacements, store replacements. These lists are used to eliminate parameter references, 

system simply calculates the index of the referenced parameter and then it takes 

replacement instruction from the list. The lists contain load / store instructions and they 

reference the appropriate local variable so the elimination process does not have to know 

which variable contains which parameter and it allows the parameter elimination process 

to optimize and load the parameter value from some other place by providing a different 

replacement. This process is discussed in the section 4.1.1.5. 

// Load replacements 

  ldloc.s    V_25 

  ldloc.s    V_26 

  ldloc.s    V_27 

  ldloc.s    V_28 

  ldloc.s    V_29 
// Store replacements 

  stloc.s    V_25 

  stloc.s    V_26 

  stloc.s    V_27 

  stloc.s    V_28 

  stloc.s    V_29 
 

Figure 11 - Lists of replacements for access to parameters. 

 These are the two lists that would be created for the previous example after this 

step is completed. When a parameter zero is read by the instruction Ldarg.0 in the inlined 

method, this instruction can be simply replaced by the first instruction in the load 

replacement list, based on the parameter index. 

 



35 

 

4.1.1.3 Protected block patch (.NET specific transformation) 

After the call instruction is eliminated and all parameters are stored in local 

variables, it is finally possible to find out if there is something remaining on the stack. 

This can be a problem, if the inlined method contains protected blocks, because the 

program can enter protected blocks with non-empty stack and that is forbidden. 

Therefore these remaining values must be stored in temporary local variables before the 

call and then they must be restored after the call. These values are restored to the stack 

after the inlined method is completed; the only problem that remains is to return these 

values under return value of the inlined method. The return value is stored a local 

variable and then it is placed on the top of the stack, once it is restored to the state it has 

been just before the call. A stack simulator is necessary to analyze the stack and it must 

be used to find out if there is something remaining on the stack. The situation when there 

is a non-empty stack prior to a call may be very problematic and the following example 

shows that such a situation is very common and it must be addressed. 

    var = 1 + ExceptionCall(var, 5.6f); 

 

In this example, an integral number will remain on the stack when the inlined 

code of the method ExceptionCall is invoked. The reason is that the compiler loads 

the constant and then it calls the method, which must provide the other value for the add 

instruction called last. Using a method call as a parameter has the same effect as shown 

in the following example. 

    var = ExceptionCall(ExceptionCall(var, 8.4f), 5.6f); 

 

However, this step has to be performed only when the called method contains at 

least one protected block, because that is the only time the stack can be non-empty prior 

to a protected block.  

Observation  If we assume that the stack is consistent in the main method as well as in the 

inlined method then the stack can remain non-empty before entering a protected 

block is in the code of an inlined method.  

Discussion All the protected blocks in the calling method are correct based on the 

assumption. Called method is not changed; therefore, there cannot be error in it. 

Only place where a protected block is added to a function is inlining and it is the 

only place where can the stack state create an error. At the same time, if the 



36 

 

inlined method does not contain any protected blocks then there cannot be any 

errors caused by the stack. 

According to the observation, the inlined method is the only place where the 

stack must be cleared and it is necessary only when there are any protected blocks in the 

inlined method. Using the local variables is a correct solution for this problem, it may 

look wasteful, but it is necessary to empty the stack and this is the only option, because 

local variables are the only private memory available to a method. 

4.1.1.4 Local variable reference patch 

Next, it is necessary to add local variables of the called method to the calling 

method and redirect all the references to local variables in the inlined method code to 

these new variables. The code of the inlined method must be cloned at this point, since 

the original code must not be affected by any changes made during the inlining process. 

The redirection is applied to the cloned code, which will be later copied directly to code 

of the calling method. 

// Original variables of the calling method  

 .locals init ([0] int32 var 

  ) 

// Original code of the inlined method 

  IL_0000:  ldc.i4.0 

  IL_0001:  stloc.0 

  IL_0002:  ldloc.0 

  IL_0003:  ret 

 
Figure 12 - Local variables accessed in an inlined method. 

  

This example shows local variables of the calling method and the code of the 

inlined method and the next shows the code after the patch. 

// Modified variables of the calling method  

 .locals init ([0] int32 var, 

                [1] int32 newVar 

  ) 

// Patched code of the inlined method 

  IL_0000:  ldc.i4.0 

  IL_0001:  stloc.s newVar 

  IL_0003:  ldloc.s newVar 

  IL_0005:  ret 

 
Figure 13 - Local variables after patch. 

The basic store and load instructions have been replaced with more general 

version and they target the new variable created in the calling method. The general 



37 

 

version is used because the shortest instructions (i.e. stloc.0) can target only the first 

four variables which are usually used by the main method (this example presents a very 

short method). The implementation is able to use both versions of these instructions 

(short and long) and it generates the short version if it is able to access the variable. 

4.1.1.5 Parameter reference patch 

The inlined code still contains references to the parameters of the inlined method 

and they must be redirected to the local variables created to store the parameter values in 

the step two (section 4.1.1.2). This can only be done after all the local variable references 

have been patched, since the previous transformation would not know which references 

must be patched. 

All parameter references are replaced by references to the local variables created 

in the step two, this replacement maintains the reference form (by-value or by-reference). 

The replacement does not work directly with local variables or their indices, instead it 

gets list of replacement instructions and uses them, so it is possible to pass it any 

instructions that can obtain given parameter. This way, it is possible to provide different 

replacements to optimize the inlining process for special cases. The replacement lists are 

created in the second step and their construction and function is explained in the section 

4.1.1.2. 

// All three lists are passed as parameters created in the previous steps 
List LoadReplacements; 
List AddressLoadReplacements; 
List StoreReplacements; 
Foreach(instruction in ClonedInstructions) 
{ 
    Int index = 0; 
    If(IsParameterReference(intruction))  
        index = GetParameterIndex(instruction);  // must work even for Ldarg.0 etc. 
 
    If(IsParameterLoad(instruction)) 
    { 
        ClonedInstructions .ReplaceInstruction(instruction, LoadReplacements[index]); 
    } 
   Else  If(IsParameterAddressLoad(instruction)) 
    { 
        ClonedInstructions .ReplaceInstruction (instruction, AddressLoadReplacements [index]); 
    } 
    Else If(IsParameterStore(instruction)) 
    { 
        ClonedInstructions .ReplaceInstruction (instruction, StoreReplacements [index]); 
    } 
} 
 

Figure 14 – Algorithm used to patch parameter references 



38 

 

4.1.1.6 Code inlining 

The code of called method is now completely modified and it does not reference 

any private data of the called method, it references only local variables of the calling 

method and static data, because all the parameter and local variable references have been 

patched. The code is simply copied in the calling method, in the place where the call 

instruction used to be and result of this operation is an interval that indicates where the 

code has been inserted (index of the first and the last inserted instruction). This example 

shows inlined code colored green. 

// Code before inlining 

  IL_0003:  brtrue.s   IL_000d 

  IL_0005:  ldarg.0 

  IL_0006:  ldloca.s   var 

  IL_0008:  call       instance void InlinerTest::RefCall(int32&) 

  IL_000d:  ldc.i4.2 

// Code after inlining 

  IL_0003:  brtrue     IL_001c 

  IL_0008:  ldarg.0 

  IL_0009:  ldloca.s   V_0 

  IL_000b:  stloc.s    V_9 

  IL_000d:  stloc.s    V_10 

  IL_000f:  ldloc.s    V_9 

  IL_0011:  dup 

  IL_0012:  ldind.i4 

  IL_0013:  ldc.i4.s   10 

  IL_0015:  add 

  IL_0016:  stind.i4 

  IL_0017:  br         IL_001c 

  IL_001c:  ldc.i4.2 

 
Figure 15 - Code inlined in a method. 

4.1.1.7 Entry and exit point patch 

Entry point to the inlined method is the place where it has been inlined and it 

does not need any special attention. The exit point is any RET instruction included in the 

inlined method, all the RET instruction are therefore replaced with jump instructions that 

transfer the control to the instruction that is immediately after the inlined code. 

4.1.1.8 Jump patch 

This is a very important step, because without it the code would be completely 

broken, since most of the jump would target invalid instructions and their execution 

would cause a fatal error. This step relies on the information collected in the first step, 

discussed in the section 4.1.1.1 and it finishes all the code transformations, since after 



39 

 

this is done, the code should be valid and equivalent to the original. Only thing that 

remains are the protected block discussed in the next section. 

Restoring jumps in the inlined code is simple, because it just requires to find the 

instruction on the position indicated by the stored offset and register it as the target of the 

jump, this is a correct operation since no instructions has been added to the inserted code, 

some may have been replaced. Therefore, the jumps distance is still valid it just has to be 

added to the new position of the jump in the code and the new target can be registered. 

Restore the main method jumps can be a little trickier, because the inlined 

method code has been inserted in it. Therefore, all the jumps that jump over the inlined 

code have extended offset according to the number of added instruction. Inserted code 

includes instruction of the inlined method, storage of the parameters and management of 

the stack required by the protected block patch. After the offset is corrected, then the 

target can be recovered and the jump can be patched and everything is correct again. 

  IL_0000:  ldc.i4.0 

  IL_0001:  stloc.0 

  IL_0002:  ldloc.0 

  IL_0003:  brtrue.s   IL_000d // Jump distance is 4 instructions 

  IL_0005:  ldarg.0 

  IL_0006:  ldloca.s   var 

  IL_0008:  call       instance void InlinerTest::RefCall(int32&) 

  IL_000d:  ldc.i4.2 

 
Figure 16 - Jump before patch. 

The example shows a jump instruction with a distance calculated in the first step 

as four instructions forward. The next example shows the same code fragment after the 

RefCall method is inlined and the jump distance is patched. 



40 

 

  IL_0000:  ldc.i4.0 

  IL_0001:  stloc.0 

  IL_0002:  ldloc.0 

  IL_0003:  brtrue     IL_001c // Jump distance is 12 

  IL_0008:  ldarg.0 

  IL_0009:  ldloca.s   V_0 

  IL_000b:  stloc.s    V_9 

  IL_000d:  stloc.s    V_10 

  IL_000f:  ldloc.s    V_9 

  IL_0011:  dup 

  IL_0012:  ldind.i4 

  IL_0013:  ldc.i4.s   10 

  IL_0015:  add 

  IL_0016:  stind.i4 

  IL_0017:  br         IL_001c 

  IL_001c:  ldc.i4.2 

 
Figure 17 - Patched jump. 

The jump distance has been updated according to the number of inlined 

instructions (colored red) the ne jump distance is calculated according to the following 

formula, where the JmpOffset represents the number of instructions added to the 

calling instruction. 

int JmpOffset = (InlineInterval.last - InlineInterval.first) +  // Number of inlined instructions 
(InlinedMethod.Parameters.Count – 1) + // Instructions added to store parameters 

                 (!InlinedMethod.IsStatic ? 1 : 0) +   // Instruction for storing this argument 
(BlockPatchInstrCount + (swap ? 2 : 0));  // Instructions used to patch protected block 
     // swap indicated if the result had to be swapped 

int newJumpDistance = OldJumpDistance +  
Math.Sign(OldJumpDistance) * JmpOffset;  
// Signum function makes sure that even backward jump are updated correctly 
 

 
Figure 18 - Formula for computing new jump distance after inlining is complete. 

The same update must be done for the protected blocks of the calling method 

since they may have been changed by adding instruction to the method. The process is 

very similar to the restoration of jump instructions. When a block contains the call 

instruction that have been inlined then it must be extended to contain all the newly added 

instructions. This means, that the block end must be moved according to the formula 

presented in the Figure 18, only the new end is equal to the following. 

int NewBlockEnd = OldJumpDistance + JmpOffset; 
 

Figure 19 - Update of the protected blocks after inlining. 

Where the JmpOffset is the same value as in the Figure 18 and it represents the 

total number of instructions inserted during the inlining process. 



41 

 

4.1.1.9 Protected block registration 

One of the last required transformations is to register all the protected block of 

the inlined method to the main method. This is necessary, since the code would not be 

correct otherwise, not to speak of instructions like Leave or Endfinally that would 

remain in the code unattended. The solution is very simple, all the protected blocks are 

added to the main method and their start and end is updated according to the interval 

returned by the Code inlining operation, discussed in section 4.1.1.6, the interval start is 

simply added to the start and the end of each block. 

4.1.1.10 Maximal stack size calculation (.NET specific transformation) 

The very last step is to calculate the maximal size the stack could have when the 

new method is called. This is important only in the case when there is an inlined method 

that requires deeper stack then the main method or when there is a nonempty stack when 

an inlined method is called, in which case the maximal size would be: stack size before 

call + maximal stack size of the inlined method. The stack simulator is used to compute 

the maximal size and the result is the maximal size of the stack in the simulator that is 

encountered during the simulation. 

Observation The only reason why the new method would require a deeper stack is the inlined 

code and if the depth is changed then the new maximal required depth is equal to: 

stack size before the call + maximal stack size of the inlined method. 

Discussion The required depth cannot be changed anywhere else then in the inlined code, 

since no other code has been changed. If the depth is changed by the inlining then 

it is due to the inlined code and depth is stack size before call + maximal stack 

size of the inlined method, because the code of the inlined method is the only 

reason the depth can change and the state of the stack before must be included as 

well. The depth cannot be influenced by any other instructions added during the 

inlining process, because parameter storage just removes the parameters from the 

stack and they used to be there even in the original code. The instructions used to 

manage inlined protected blocks cannot influence the depth, because they remove 

everything from the stack prior to the call and then they return it to the stack 

along with the return value, but all the values has to be there even in the original 

code. If the blocks have been patched then the new size is only: maximal stack 

size of the inlined method (if the inlined method requires a deeper stack). 



42 

 

4.1.2 Data types and inlining  

This section is .NET specific because the type system used Ecma-335 compatible 

environment is very strict and it requires careful manipulation.  

It is very important to note that all the new local variables and any temporary 

variables must have a correct data type and that type must be imported to the module 

containing the calling method, otherwise the resulting code would be invalid and it could 

not be executed. This means, that whenever a new local variable is added, it must have 

the same type as the value it stored in it and that type must added to the module via an 

import function provided by the used reflection library. This is done by every 

transformation that adds any instructions to the code, like the section 4.1.1.4 for 

example. 

There may be some complications present, when determining the data type of the 

value that should be stored in a new local variable because the value may have been 

added on the stack by another method or a complicated calculation. The most important 

and complicated case is present during the protected block patch presented in the section 

4.1.1.3, because the values, present on the stack prior to the inlined call, must be stored 

in temporary, local variables and these variable must have a correct data type. The best 

way to find the data type of these values is to use a stack simulator and find out what 

instruction produced the value and what type it may have. 

Type GetDataType(Instruction instr) 
{ 

// ConstantType method determines the type of constant loaded by instruction 
If(IsConstantLoad(instr)) 
    return ConstantType(instr); 
 
// Operand references the object accessed by the instruction. 
// Its type is determined accordint to what it is, based on the instruction. 
Else If(IsParameterAccess(instr)) 
    return instr.Operand.ParameterType; 
 
Else If(IsLocalVarAccess(instr)) 
    return instr.Operand.VariableType; 
 
Else If(IsFieldAccess(instr)) 
    return instr.Operand.FieldType; 
 
// Recursion used on the parameters passed to the instruction 
// this solves the problem with data type of instructions like add, mul 
Else return GetDataType(GetParameters(instr)); 

} 

 
Figure 20- Algorithm used to determine data type returned by an instruction. 



43 

 

4.1.3 Summary 

The calling method should be now a complete valid method and its execution 

should yield the same results as the original. The following analysis and transformations 

can work with the code easily and safely, because all the data types have been imported 

to the methods module and the code can be analyzed in much greater depth, because the 

called method has been inlined and its code has been added to the calling method. This 

can help remove some dependencies which would not have been possible without the 

knowledge of the code inside the called method, since the optimizer cannot assume 

anything about a called method and it must make it dependent on everything as well as 

the method has to depend on everything else. 

The inlining process is very complicated in the ECMA CIL compatible 

environment, because there are many things that must be taken care of for the code to 

work correctly. Most important is to keep the jump instructions valid and to use correct 

types for temporary local variables. Many problems arise thanks to the fact that it is very 

difficult to manually control the produced code or to verify it automatically, ILDasm and 

PEVerify proved to be essential tools for this task and even then it was not easy at all to 

resolve all the problems. The implemented inlining process that is part of this project 

works with all the constructs of the C# language considered safe code; it is not prepared 

to handle unsafe code, because it has been designed to optimize numerical computations 

written in standard C#. 

One disadvantage of inlining is the inability to handle virtual methods, because 

the virtual methods are selected at runtime according to the used class and the specific 

method is not known during the compilation. Virtual methods can be partially handled 

by inter-procedural analysis, but even then, this remains an algorithmically unsolvable 

problem very similar to aliasing discussed in section 6.5. 

4.2 Code verification 

Code verification is a process designed to check if the code follows the 

restrictions discussed in section 1.7 and it is not a verification of the code validity. It is 

performed after inlining and it must make sure that the final code does not contain any 

forbidden instructions or constructs. Verifying that there are no forbidden instructions is 

very easy and it is solved by the following algorithm, where the filter is hash table 

containing all forbidden instructions. 



44 

 

    foreach (Instruction instr in method.Instructions) 
    { 
        if (filter.Contains(instr.OpCode.Code)) 
            return false; 
    } 
    return true; 

 
Figure 21 - Instruction verification 

The verification can check for things other than instructions; it can check the 

presence of protected blocks or calls to certain methods, which have not been inlined. 

There are many other things that may not be supported by the transformations performed 

after this step and the verifier must make sure the code will not cause any failure due to 

some unsupported features.  

The verification does not have to check if the inlined code is valid, because it 

assumes, that the inlining was done correctly and valid code inlined correctly must be 

valid. It would be possible to verify the resulting code using the PEVerify tool that could 

be run separately and its results would indicate if the code is valid or not. 

The implemented verifier checks if the analyzed method is not part of a module 

that may contain unsafe code. A module containing an unsafe code has to be compiled 

with the /unsafe option and the resulting assembly has the 

UnverifiableCodeAttribute attribute indicating, that there might be unsafe code 

and the verifier checks the presence of that attribute. It is not a perfect method, but 

according to the assumptions in Chapter 1.7, the analyzed code must have been produced 

by the Visual studio compiler and therefore it must have the custom attribute.  

4.3 Summary 

Both parts of code preparation have been successfully implemented, but the 

inlining proved to be much more complicated the expected and its implementation 

extremely slowed the entire project. There were many problems that were not initially 

anticipated and they were very difficult to solve, because corrupted CIL applications 

does not report any specific errors, it just crashes. Finally, the problems were solved 

using tools like PEVerify and ILDasm, which proved invaluable for analyzing CIL code. 



45 

 

5 Preliminary code analysis 

The code has been has been optimized and verified and it is almost ready for 

dependence testing but first, it is necessary to gather information about the control-flow 

constructs and then it the optimizer must create a list of all variables used in the method. 

Both types of information are later used during dependence detection, since dependence 

can be based on data or control-flow, and both types can be transformed to data 

dependences. This is explained later in the chapter about dependence testing. This step 

does not contain any transformations or optimizations and the code is not modified here. 

5.1 Construct recognition 

Definition A control-flow construct is a code segment that changes the standard execution 

order. The constructs are divided in two groups: conditional and unconditional. 

Unconditional constructs work always the same way, unlike the conditional 

constructs, whose behavior changes based on a condition. 

This analysis must recognize all control-flow constructs present in the analyzed 

method and because this project assumes, that the method was written in C#, there can be 

up to five different types of construct: loops, if/else branches, switch statements, 

protected blocks and return statements. This analysis is performed first because it 

gives an important insight into the behavior of the optimized method and its aptitude for 

parallelization. The information gathered here is important for two main reasons: 

1)   If the method does not contain loops then it is probable that it would not be feasible 

to use any parallelism to increase its performance, because it is not be possible to use 

SIMD instructions since they require a single operation applied on various data and 

most common construct compatible with that pattern is an array transformed inside a 

loop. Threads are a little more flexible but more expensive and it is not efficient to 

launch separate thread just to perform a few simple instructions concurrently and 

without loops there is usually not enough instructions to justify the use of threads. 

There is one rare exception, if the method is very long and there are big sets of 

mutually independent instruction then each set can be run in parallel, but such a 

situation is very rare. 

2)   Another very important effect is the analysis of control flow and data transfer, this is 

very important for dependence testing, because if there is no path from one 



46 

 

instruction to another then there cannot possibly be dependence between them (only 

one of them can be executed in a single call to the method). The situation can be 

illustrated on the following example, where the statements S1 and S2 can never be 

executed together when the method is called and there cannot be dependence 

between them. 

    int IfElse() 
    { 
        int var = 1; 
        if (var > 0) 
S1:         val += 1; 
        else 
S2:         val -= 1; 
        return var; 
    } 

 
Figure 22 - Execution path modified by control-flow. 

5.1.1 Construct recognition in depth 

Assuming that the optimized method was written in C# and compiled by MS 

.NET compiler, there are three groups of constructs that can influence the order of 

execution of the method: 

1)   Loops – including while, for and foreach loop, where the foreach loop is 

transformed to a while loop, when working with a collection (IEnumerable<T>), 

or to for loop, when working with arrays. 

2)   Branches – conditional and unconditional jumps including the conditional branches 

if, if/else and switch and the unconditional return statements. The method 

calls are not considered here since they are either inlined or they are executed as a 

single instruction in the context of the method (call jumps somewhere, does 

something and then jumps back, but it does not change the instructions of the 

method). 

3)   Exception management – including try, catch and finally blocks, along with 

the instructions that can jump to and from those blocks, like throw, leave and 

finally. All the protected blocks can change execution order and this change can 

be very unpredictable. There are many problems with exceptions, since the exception 

handling can depend on the order of execution inside the protected block and this 

dependence may be impossible to recognize.  



47 

 

    try 
    { 
S1:     File a = File.Open("test1.txt"); 
S2:     File b = File.Open("test2.txt"); 
    } 
    catch (System.Exception ex) 
    { 
        File.Close(a); 
    } 

 
Figure 23 - Protected block and dependence testing. 

The example shows the problems with protected blocks. The protected block is 

designed to close the first file, if the second throws an exception, but that would fail in 

case these files were being opened in parallel and the second was opened first. If may be 

necessary to execute everything in a protected block without any parallelism; therefore, 

using any protected blocks and exceptions is strongly discouraged unless it is completely 

necessary. Best way to handle this is to create a protected block, then call the optimized 

method in it and handle all the exceptions there, not in the method. 

5.1.1.1 Possible solutions 

Most precise and universal way to identify all control-flow constructs is to 

construct a graph of all the basic blocks and then study the relationship between them via 

connections based on possible execution order. Loops are recognized as cycles, 

conditional jumps transfer the control to one of two following blocks and protected 

blocks would require a special treatment. But since this project assumes that the method 

has been written in C# and compiled by Visual studio compiler, there is a simpler way to 

identify the constructs. 

Recognition method presented in this work is based on categorization of all 

jumps according to their direction and target. The constructs are detected in a specific 

order, and the order is very important and it must be followed or the recognition might 

fail. Protected blocks do not have to be identified since they are already recorded in the 

method metadata and any jumps related to them are easy to find. 

5.1.1.2 Jump recognition 

All jumps are gathered to a list at the beginning of the analysis to allow the 

operations to quickly recognize jumps and remove them to simplify following 

operations. Only jumps related to exception management are omitted, because they 

cannot be part of any construct other than a protected block and they are located in the 

last step. 



48 

 

5.1.1.3 Loop recognition 

There are two ways to compile loops and one is better than the other. The worse 

option is to place the termination condition at the start and jump away, once the 

condition is not satisfied. The solution is shown in the Figure 24. 

 
Figure 24 - Less effective implementation of loops. 

The second version is to place the termination condition at the end and jump to it 

from the beginning. The loop ends when the condition is not satisfied and the backward 

jump is not executed. This solution is better, because it saves one jump instruction per 

iteration. This is the solution used by the Visual studio compiler and Figure 25 shows its 

schema. 

 
Figure 25 - Better implementation of loops. 

In MSIL, loops consist of two jumps, a forward jump that goes from the 

beginning to the termination condition (placed at the end) and a backward jump executed 

when the termination condition is not satisfied. Loops are the only source of backward 

jumps and that is the way to find them, the forward jump is just before the target of the 

backward jump. Both jumps are then excluded from further recognition so they are not 

mistaken for conditional jumps. 

The difference between while-loop and for-loop is the fact that the for-loop 

should contain an induction variable. This Variable is updated at the end of its body and 

a new value is stored just before the start of the termination condition. Generally, the 

recognition of the induction variables is an unsolvable problem and the Figure 26 shows 

a loop that does not have a single obvious induction variable. 



49 

 

    int j = 0; 
    for (int i = 0; j < 100 && i < j; i--, j++) 
    { 
        i = func(j) + i; 
        arr[j] = 2 * arr[i]; 
    } 

 
Figure 26 - Complicated for loop. 

It is impossible to decide what is the induction variable in this loop and what 

exactly does it do, since the func function is unknown. There is a solution, that does not 

rely on the structure of the for-loop and it is discussed in the section 6.4. For now, it is 

just necessary to locate all loops even if their type cannot be identified. 

5.1.1.4 Conditional jump recognition 

Now, all the remaining conditional jumps belong to either if or if/else, 

because all the jumps belonging to the loops have been eliminated. The analysis of the 

jumps must start at the beginning of the method and continue to the end and the structure 

of the jumps can be used to separate simple if and more complex if/else constructs. 

Simple if contains a simple jump that goes just behind the block (jump is taken when 

condition is not satisfied), shown in next example. 

 
Figure 27 - Basic if statement. 

if/else is constructed from two jumps, conditional jump that targets the start of 

the else-block and a basic jump that goes from end of the if-block behind the else-

block. The second jump is just before the target of the first. Following example shows 

the structure of the if/else construct, where the red arrow represents the conditional 

jump and the green arrow represents the unconditional jump. 

 
Figure 28 - if/else construct. 



50 

 

Both construct can be recognized by the fact that they contain a forward 

conditional jump, and there is no other construct that contains conditional jumps, since 

all the jumps belonging to loops have been removed from the jumps register. The 

switch construct uses a special instruction of the same name and it is easily recognized. 

All the jumps, that belong to some if or if/else construct, are removed from 

the jump register at the end of this step. 

5.1.1.5 Switch recognition 

switch is very easy to find since it has its own instruction of the same name, but 

it is not supported by this project because it is not that common and it can be replaced by 

a few if/else constructs chained together. 

 

5.1.1.6 Protected block recognition 

Protected blocks themselves are already recorded in the methods metadata, but it 

is necessary to find all the special instructions that work with exceptions and can change 

execution order. These instructions include throw, leave and endfinally and finding 

them is very simple. The algorithm just goes through the code and it notes all the 

instances of those instructions. It may be a good idea to perform a simple check if all the 

special instructions are used in appropriate places, for example endfinally cannot be 

used outside of a finally handler block. 

5.1.1.7 Return statement recognition 

Locating the return statements is about locating all the ret instructions, because 

there may have been return statements introduced by inlined methods; even though, they 

have been converted to unconditional jumps. The jump register can be used to locate the 

additional return statements. All the jumps that remain in the register now are simple 

jumps that replaced ret instructions present in inlined methods and they can be easily 

added to the ret instructions. 

5.1.2  Summary 

At this point it is known if the method contains any loops and what kind. All 

control flow constructs are now recorded and only two problems can remain. 

Recognition of induction variable is extremely difficult and it may not be done at all, but 

that is solved by dependence testing. And all the problems of exception handling remain 

but with a little luck, the programmer is wise enough not to use them here (with the 



51 

 

possible exception of throw instruction that can be handled as ret if it is not in a 

protected block). 

5.2 Variable recognition 

This step is extremely important because all the variables considered for 

dependence testing must be identified now, because the dependence testing must know 

all the variables so it can explore their relationship. It is not simple to decide what is a 

variable since a variable can be an object as a whole or its fields can be considered 

separate variables, the same can be said about arrays but it is essential to consider all 

elements as independent variables since arrays are the main source of opportunities for 

parallelization.  

There are also special temporary variables created on the stack as a result of some 

operation and they are later consumed by some other instruction. These variables can be 

recognized by a stack simulator and they represent the relationship between instructions 

that constitute separate commands, because a command usually contains three phases: 

reading parameters, performing some operation and storing the result. The stack is empty 

prior to a command and it should be empty after the command is completed, with a few 

exceptions like exception management (the exception object is on the stack when 

entering the handler block).  

The fields and array elements are considered separate variables even though they 

have a special relationship to the object they belong to and that must be considered, but 

this way, it is possible to find more opportunities for parallelism, because there are more 

variables that can be independent. 

It is not enough to just recognize the variables, it is very important to identify all 

the places where the variable is accessed - written or read. This is pretty simple to find 

out for temporary variables, the stack simulator reports when a value is added and 

removed. It is a little trickier for local variables because they can be accessed by value or 

by reference. The same can be said about fields and array elements, but there is another 

problem, because when a field is accessed, it is necessary to find the object it belongs to 

as well. 

The next section discusses how different types of variables can be identified and 

locate. 



52 

 

5.2.1 Variable recognition in depth 

This step requires two important decisions, what is a variable and how to find and 

recognize it? This section tries to find answer to the second question. There are two types 

of variables that must be recognized, temporary stack variables, local variables, 

parameters, object fields, array elements and static fields. 

5.2.1.1 Stack variables 

 Stack variables can be located using the stack simulator, a variable is created 

when a value is added to the stack and that variable ceases to exist when that value is 

removed from the stack. These variables are defined as return values of some operation 

and the best way to identify them is by this operation (instruction). Therefore, stack 

variable must know the instruction that created it and that is at the same time the only 

place this variable is changed, and it must know the instruction that reads it, which is the 

only place it is read. After a temporary variable is read, it is removed from the stack and 

thus it is destroyed. 

5.2.1.2 Local variables and parameters 

Local variables and parameters can be processed together, because they are used 

the same way. Static variables could be counted to this category as well since they exist 

the entire time the method is executed and they can be accessed more than once, but they 

are resolved separately, because they need to know the class they belong to. Locating 

these variables is very simple, all the local variables must be listed along with all the 

parameters in the metadata of the analyzed method and they just have to be collected. As 

simple as it is to find and identify these variables, it is more complicated to find all the 

places they are read or changed. The code must be analyzed instruction by instruction 

and when any access to a variable is found, than that place is recorded and added to the 

variable. As a result, the local variables are identified by a reference to the parameter / 

variable they represent and then they contain a list of instructions that read or change 

them. 

5.2.1.3 Fields 

Field variables represent field objects accessed in the method and they can be 

easily located by spotting ldfld and stfld instructions. More important problem is to 

find out the object this field belongs to and that can be done by analyzing the stack just 

before the instruction is executed. The object in question must be on the top of the stack 

and a stack variable can be used to locate the variable that references the object. The 



53 

 

Figure 29 shows variables used to find the object that is later used to identify the field 

along with its name that is part of the ldfld instruction. The instruction consumes the 

object reference placed on the stack. 

  // reading parameter dat, writing to a stack variable 

  IL_000a:  ldarga.s   dat 

  // reading the stack variable that contains the object 

  IL_000c:  ldfld      int32 ParallaXExample1.str::var // name of field 

  // stack variable is used to find parameter dat containing the object 

 

Figure 29 - Stack and instructions used to access field variables. 

Following algorithm is used to locate the object variable using the stack variable 

that represents the object on the stack. It is important to note, that only one variable can 

be read by a single instruction (with the exception of stack variables), because the MSIL 

has a load/store architecture and all. 

public var FindVariable(int fieldAccess) 
{ 
    // find stack variable, based on the instruction where it is read 
    var stackVar = stackVariable.FindByReadIndex(fieldAccess);  
    // find where it was created 
    int objectIndex = stackVar.FirstWriteIndex;      
    // find the object variable 
    // only one variable can be read by one instruction  
    var objectVar = varables.FindByReadIndex(objectIndex);    
    return objectVar; 
} 

 
Figure 30 - Algorithm used to locate object containing a field. 

5.2.1.4 Elements 

Array elements are very similar to fields, but they are located by finding the 

ldelem or stelem instructions and they are identified by the array they belong to and 

by the stack variable used as index to the array, both these variables can be found using 

the stack variables and the algorithm shown in the Figure 30. 

5.2.1.5 Static fields 

Static fields are accessed by ldsfld and stsfld instructions and they can be 

identified by their name and class, both of which are part of the instruction used to access 

them (it is an operand). 

5.2.1.6 Reference variables 

The reference variables are special variable type used to manage the situation, 

when a variable is accessed by a reference. This variable is created when an address is 

read using instructions like ldloca and it is identified by the variable whose address it 



54 

 

contains. Locating and managing these variables is similar to field variables, because 

they are tied to a variable as well. These variables are located by finding instructions that 

read address and they are identified by the variable whose address was been read. 

However, they are not treated as normal variables, instead all accesses are registered in 

the variable they reference, and this way the reference just represents the variable 

without creating an actual new variable and all accesses are still controlled. 

5.2.2 Summary 

Locating variables is not that difficult, unlike dependence testing, which must 

decide what variables are independent and it must be done precisely or the resulting code 

may be incorrect. The only tricky part is recognition of accessed fields, since they are 

accessed through a stack variable created by reading a local variable and it is necessary 

to record that relationship. The same problem is presented by the array elements, but 

they are even more problematic, because the index used to access them can be even 

impossible to analyze. 



55 

 

6 Dependence testing 

6.1 Introduction 

Dependence testing is the most difficult part of this project and there are many 

problems that must be solved before the actual dependence testing can be performed. 

Since dependence testing is an algorithmically unsolvable problem and its approximation 

can be arbitrarily complex, this work follows a different path. It presents algorithms that 

transform the CIL code to a structure that can be analyzed by algorithms described in 

literature, because there are algorithms for similar languages like C that can be used on 

the transformed code. 

 This work is meant as proof of concept and it focuses on simple applications to 

analyze potential parallelization of specific .NET applications. This chapter presents 

transformations necessary to analyze the algorithms discussed in section 1.5.2: matrix 

multiplication and vector addition. The section 6.9 shows the application of these 

transformations to prepare the code for dependence testing and the actual testing is taken 

from [2]. The last two problems described in section 1.5.2, relationship between local 

variables and parameters, are discussed in section 6.5, which offers several solutions 

available in .NET applications. This chapter does not present any algorithms for 

dependence testing; instead it focuses on transformations that prepare the code so it can 

be analyzed by algorithms presented in other books, namely [2]. 

The construction of CIL/MSIL and CLR engine can help with parts of this task, 

but there are some problems that make the dependence testing more difficult than it is in 

FORTRAN or C. The most prominent difficulty is the array access analysis, because the 

index subscripts are computed using the stack which makes their analysis complicated. 

Not to mention the fact that the identification of loop induction variables very difficult in 

the CIL.  

There are two important facts that help dependence testing in CIL code. First, 

there are no pointers allowed and there are no arbitrary addresses, because everything 

must represent valid, allocated objects. Second, local variables are completely private 

and they cannot be modified anywhere outside the method, with the only exception of 

reference parameters and it is possible to check if a local variable have been passed by 

reference or not. 



56 

 

The first part of this chapter contains general discussion about aliasing and 

dependences in CIL applications, and then follows the description of techniques used in 

this work to locate dependences in studied algorithms. 

6.2 Definitions 

This section contains the definition of basic terms used in this chapter and the 

definition of general terms used in the entire work can be found in the section 2.1.1. This 

work refers to the method parameters as either arguments of parameters and both terms 

mean the same here.  

Definition Variables based on a value type contain a value directly and they do not reference 

a memory. These variables cannot cause any aliasing, because they do not 

represent a memory location. 

 

Definition Variables based on reference types represent an address of a memory location 

that contains an object and they may lead to aliasing. These variables can 

reference only a valid object or null, because C# is language with reference 

semantics and the reference cannot represent an arbitrary memory location. 

 

Definition Reference parameter is a parameter that can be modified by the method and the 

modification is apparent in the calling method. These parameters are technically a 

reference to a reference. 

 

Following definitions specify different types of variables used in this chapter, 

because the terminology used here is specific. 

Definition Variable is a term used in this chapter to identify any memory location; it does 

not have to be a local variable or other variable type used in C# 

 

Definition Local variables are typical C# local variables that belong to a method.  

 



57 

 

Definition Parameter variables represent the parameters of a method and their usage is very 

similar to local variables. 

 

Definition Stack variables represent the values added on the execution stack during the 

computation. These values represent inputs and outputs of instructions. 

 

Definition Field variables represent the fields of objects and these objects can be represented 

by any type of variable, even another field variable for composited objects. 

 

Definition Static field variables represent the static fields of classes. 

 

Definition Array variables represent the elements of arrays and they are very important for 

automatic parallelization. The array can be represented by any variable type, 

similar to the field variables. 

6.3 Variable dependence and aliasing 

This section contains general discussion about aliasing and dependences between 

different types of variables encountered in CIL code. This section ignores variables 

based on value types, because they cannot cause aliasing. 

 Parameters and local variables – parameters and local variables both represent 

independent memory locations that can be accessed only by the method itself. The 

only exceptions are reference parameters of methods called by the optimized method, 

but it is possible to spot any place where a local variable or argument is passed by a 

reference, since the address is read using Ldloca or Ldarga instructions. Therefore, 

all reads and writes to different local variables or arguments are independent 

operations that do not collide with each other, because local variable is just an 

address of an object and assignment simply rewrites the address. However, there may 

be collisions when a field is accessed using two local variables referring to a single 

object. Using the reads and writes (explained in section 5.2), it may be possible to 

keep track of some variables that refer to the same object, but the aliasing is an 

algorithmically unsolvable problem. 



58 

 

 Stack variables – stack variables represent values added and removed from the stack 

and every variable is written and read just once, since value cannot remain on the 

stack after it has been used. The value on the stack is independent of its source since 

it is placed in the memory assigned to the stack. Every stack variable simply 

represents a single true dependence with a source in the instruction that created the 

variable and the sink is in the instruction that consumes it. It does not matter if the 

stack variable is a reference or a value, because the CLR treats all values on the stack 

as 32 bit or 64 bit numbers [1]. 

 Field variables – fields bring many difficulties, because they depend on the actual 

object that is used to access them, and it is necessary to keep track of the local 

variable writes since it is important to know what variables refer the same object. 

Two field variables can access the same memory, only when they access the same 

field in the same object, otherwise they are independent. There is a problem, when an 

object is passed as an argument to some called method because its fields may be 

changed by the called method, even though it is a normal argument (not a reference 

argument). To prove independence between fields, it is necessary to keep track of the 

object they belong to and all possible dependences must be considered when this 

object cannot be properly monitored. 

 Static fields – static fields introduce many complex relations between object that can 

significantly complicate the architecture of the project and their usage is discouraged 

by many C# textbooks. The use of static fields in in parallel applications should be 

limited, because they introduce many dependences which are very difficult to 

eliminate. Therefore, any static field is considered to depend on everything and 

everything depends on it. 

 Array elements - the most important type of variable is array element, because 

arrays represent the best opportunity for parallelization, but their analysis is the most 

difficult. Two elements represent the same memory location only if they are in the 

same array and if they are accessed with the same index. Techniques used to handle 

field variables can be used here to compare two arrays, but it may difficult to identify 

the difference between used indices. Another problem is that the indices are 

calculated using the execution stack which makes their analysis even more difficult. 

First step towards solution is to use stack variables to locate all the instructions used 

to calculate the actual subscripts, this may be a simple variable reading or a complex 

computation and both can be problematic. The first concern must be correctness and 



59 

 

the implementation must simply assume that all the indices may be the same except 

those that can be proved different with an absolute certainty. The subscript analysis is 

a very complex problem and there are many techniques presented in [2], in chapter 3, 

that can be used in CIL applications after special transformations presented in section 

6.7. 

6.4 Induction variables 

Induction variables are defined by loop iterations and they are essential to 

understand the behavior of a loop. There can be many induction variables used in a 

single loop since every variable that depends on its iterations can be considered an 

induction variable.  

This analysis is simplified in FORTRAN, because its loops contain the definition 

of a variable used to manage loops iterations and that is usually the main induction 

variable. This variable is very good for analysis, because it has a known behavior since 

the loop defines its initial and maximal value and both values can be usually calculated 

during compilation. There may be other induction variables in the loop, but the main 

variable is usually used to access arrays since its step and boundaries can be defined 

according to the processed array. 

The situation is more complicated in languages similar to C, because they have 

more complex structure of for-loops and there may be no main induction variable and 

even if the loop is simple, it may not be possible to find the variable in the analyzed 

bytecode. It may be possible to analyze the loop structure in more detail, but it is more 

reliable to analyze the behavior of the variables regardless of their presence in the loop 

definition. This analysis can be very complicated, but the simple implementation 

presented in the following figure can be sufficient for many common applications. 



60 

 

    InductionVariables(int loopStart, int loopEnd) 
    { 
        // list of all arrays accessed in the loop body, written or read 
        arrays = ArrayAccessedIn(loopStart, loopEnd); 
        // analyze array subscripts and extract variables 
        List InductionVariables; 
        foreach(array in arrays) 
        { 
            // reconstruct the statement used to access the array 
            tree = ReconstructSubscriptTree(array); 
            // if the subscript is simple then extract the induction variable 
            if( (tree.root == loadVariable) || 
                (tree.root == operator &&  
                    tree.child == IsVariableLoad() &&  
                    tree.otherChild == IsConstLoad()) ) 
            { 
                InductionVariables.Add(loadedVariable); 
            } 
        } 
        // analyze the behavior of the variables used to access arrays 
        foreach (var in InductionVariables) 
        { 
            // if the variable is not modified just once, remove it 
            if(GetAllWrites(var, loopStart, loopEnd).Count() != 1) 
                InductionVariables.Remove(var); 
            // analyze the only change performed in the body of the loop 
            access = GetAllWrites(var, loopStart, loopEnd); 
            // reconstruct the value assigned to the variable 
            tree = ReconstructTree(access); 
            // if the assigned value is not a modification of the previous  
            // value then the variable is removed from the list 
            if( tree.root != operator ||  
                tree.child != IsVariableLoad (var) ||  
                tree.otherChild != IsConstLoad() ) 
            { 
                InductionVariables.Remove(var); 
            } 
        } 
        // return all induction variables used to access arrays. 
        return InductionVariables; 
    } 

 
Figure 31 - Induction variable analysis. 

The algorithm presented in the Figure 31 is able to locate only simple induction 

variables, but it can be safely used to analyze common vector and matrix calculation. 

The algorithm analyzes the array subscripts and if the subscript contains a variable then 

the variable is tested as an induction variable. The subscript can contain only a single 

variable or a variable modified by a constant, for example arr[i] or arr[i+1]. The 

selected variables are analyzed according to the value that is assigned to them in the 

loop. A variable is considered to be an induction variable, when it is changed just once in 

every iteration and the new value is the old value modified by a constant, for example 

i++ or i=i*2. All the variables selected by this algorithm are induction variables and 

they are easy to analyze, because their behavior is very simple. Other induction variables 



61 

 

are ignored because they are not used to access arrays, or because their behavior is too 

complicated. 

Theorem A variable that is modified once in every iteration of a loop is an induction 

variable, if the modification is a simple addition of a constant, or a multiplication 

by a constant value. 

Proof Let i be the number of iteration and x is a variable modified once in iteration. If 

x is changed according to the formula x=x+const then the value of x is 

equivalent to initial+i*const and that value depends only on the initial 

value of x and on the number of the actual iteration. If x=x*const then its value 

is equivalent to initial+(const)i and that is based on the iterations as well. 

The following example shows a basic implementation of matrix multiplication 

that can be easily analyzed by the algorithm presented in this section, because it would 

find all the induction variables. 

    for (int i = 0; i < A.Length; i++) // M 
        for (int j = 0; j < B[0].Length; j++) // N 
            for (int k = 0; k < A[0].Length; k++) // K 
            { 
                C[i][j] += A[i][k] * B[k][j]; 
            } 

 
Figure 32 - Simple matrix multiplication. 

6.5 Aliasing 

Aliasing is an effect present only in languages that support pointers or references, 

because both these constructs represent a memory address that is usually unknown 

during the compilation and it may be impossible to determine which pointers address the 

same memory. The aliasing is caused by the fact that multiple symbols can represent the 

same memory location. This effect makes dependence testing very difficult, because the 

dependences are caused by modifying the same memory location, which can be 

identified by different symbols. If the compiler is not able to determine what pointers 

reference the same memory then it must consider that they can reference the same 

memory, since it is a possibility. The aliasing is caused by reference types and any 

variables with value type cannot cause it and they can be ignored in this entire analysis. 

Aliasing in .NET is simplified by two important facts. There are no pointers and 

the references are controlled by the type system which forbids certain references to 

address the same object. Another important fact is that the reference must always address 



62 

 

a valid object; it cannot be assigned some random address. Still, aliasing is an 

algorithmically unsolvable problem, because there are many situations that cannot be 

analyzed due to the lack of information. The most common example is the unknown 

relationship between parameters of a method, because the parameters can reference the 

same value objects and there is no way of knowing what value they may contain. The 

following sections present algorithms that can solve aliasing in simple applications 

which are the main focus of this work, like matrix multiplication. 

The aliasing between parameters and static variables can be partially solved by 

inter-procedural analysis, but even this analysis is not able to solve similar problems 

completely. Inlining used in this work is more limited, but it can solve parameter aliasing 

for the inlined methods, because the values passed as their parameters are known after 

the method is inlined. 

6.5.1 Parameter aliasing 

It is possible to solve the aliasing between some parameters without inter-

procedural analysis, but it is expensive and it should be used only when it can 

significantly improve the dependence analysis. The parameters can be safely separated 

using code duplication. The original code of a method can be duplicated and both 

versions can be separated by a conditional jump. The following figure shows the general 

structure of the method after the parameter separation. 

    void Method(Parameter param1, Parameter param2) 
    { 
        if(param1 != param2)  
        { 
            Code // copy of the original body 
        } 
        else 
        { 
            Body // the original body of the method 
        } 
        // the first branch can consider the parameters  
        // to represent separate memory locations 
    } 

 
Figure 33 - Parameter aliasing solution. 

This algorithm duplicates the entire body of the method and the new body is 

constructed from the original body and its duplicate and a conditional jump is used to 

decide what code will be executed. The original code is executed when the parameters 

reference the same memory and the cloned code is executed when the parameters are 

different. The cloned code can be optimized because it is certain that the parameters 

reference different memory. This transformation can be used for more than two 



63 

 

parameters, but it can quickly create a huge method and it should be only used when its 

application can help significantly with parallelization, like in the following example, 

where the separation of parameters allows the method to be completely parallel. 

    void CopyVector(double[] A, double[] B) 
    { 
        int copyCount = Math.Min(A.Length, B.Length); 
        for (int i = 0; i < copyCount; i++) 
        { 
            B[i] = A[i]; 
        } 
    } 
 
    // method after parameter separation 
    void CopyVector(double[] A, double[] B) 
    { 
        if (A != B) 
        { 

     // the code can be parallelized in this branch 
            int copyCount = Math.Min(A.Length, B.Length); 
            for (int i = 0; i < copyCount; i++) 
            { 
                B[i] = A[i]; 
            } 
        } 
        else 
        { 
            int copyCount = Math.Min(A.Length, B.Length); 
            for (int i = 0; i < copyCount; i++) 
            { 
                B[i] = A[i]; 
            } 
        } 
    } 

 
Figure 34 - Copy vector function before and after parameter separation. 

This transformation is not necessary when the parameters are based on a value 

type, because those types cannot cause aliasing. This algorithm does not help much when 

the parameters are changed in the method and it is reasonable to omit its application in 

such case. 

6.5.2 Variable aliasing 

Code duplication can solve the aliasing between parameters at the beginning of 

the method, but it is possible that the aliasing can occur again since it is possible to 

assign a reference to a new object to a parameter. The same is true for all local variables 

and their fields or elements. However, there is one aspect that can help the analysis of 

aliasing: many languages, that use garbage collection, allocate results in the method that 

produced theme, because it is safe and efficient. This programming technique may help, 

since the result is not passed as a parameter, which could be difficult to analyze. 



64 

 

Observation Aliasing is possible only between variables with a reference or pointer type. All 

variables with value type are unaffected by aliasing, because they do not address 

a memory. Stack variables can be excluded as well, because they are never 

modified. Stack variables are treated as a number and they are destroyed when 

they are read. 

Aliasing between local variables can happen only when a variable is assigned a 

value, because they are uninitialized at the beginning of the method. It is possible to trace 

the assignments to construct the dependence sets based on the assigned values. The 

following example presents a skeleton implementation of an algorithm that works with 

basic blocks. 

void BlockVariableAliasing(BasicBlock, PreviousVariables) 
{ 
    // update variable dependences according to the previous block 
    BasicBlock.Variables.Merge(PreviousVariables); 
    // the aliasing can change in every instruction and it is necessary  
    // to store the dependence sets for every instruction in the block 
    for (instr in BasicBlock.Instruction) 
    { 
        // find out if a variable has been modified 
        // only one variable can be modified by a single isntruction 
        var = BasicBlock.Variables.ModifiedVariable(instr); 
        if(var != null) 
        { 
            // find the value assigned to the variable 
            source = GetAssignedValue(instr); 
            // if it is the value of another variable  
            // then the sets are merged and assigned to both variables 
            if(source.IsVariable()) 
                var.DependenceSet =  

source.DependenceSet.Join(var.DependenceSet); 
            else 
            { 
                // new set is created if the assigned value is  
                // a new object or the result of some calculation 
S1:             var.DependenceSet = new Set(var); 
            } 
        } 
        // current state of variables is assigned to the instruction 
        CloneAndAssign(instr, BasicBlock.Variables); 
    } 
 
    // follow recursion only if the block has changed in this pass 
    // this is necessary to prevent infinite recursion caused by loops 
    if(BasicBlock.HasChanged()) 
        // update the variables for the following blocks 
        foreach (block in BasicBlock.Children) 
        { 
            BlockVariableAliasing(block, BasicBlock.Variables); 
        } 
} 

 
Figure 35 - Aliasing analysis algorithm. 



65 

 

This algorithm uses recursion to go through all the basic blocks and a set of 

dependences is calculated for every instruction in the method. The recursion can process 

some blocks multiple times, because the conditional jumps may create different 

dependences and the recursion must merge all these possibilities. The most important 

step is the statement S1, because the aliasing is solved when a variable is assigned a new 

object created in the method, which cannot be referenced by anything else, until the 

variable is assigned to another variable. 

The algorithm presented in Figure 35 is very complicated and it may need a lot of 

time to analyze a complex method, while it can produce only very conservative results. 

But many numerical applications written in C# can have a very specific structure similar 

to the method shown in Figure 41, where the result is allocated in the method and then it 

is filled with the calculated values. This situation can be easily analyzed by the following 

algorithm. 

    void VariableAliasing() 
    { 
        foreach (var in Variables) 
        { 
            // the variable is not aliased unless proved otherwise 
            var.NoAliasing = true; 
            // if the variable has value type then it is not aliased 
            if(var.HasReferenceType() || var.IsStackVaraible()) 
                continue;  
            // only local variables or their elements are allowed 
            if(var.IsLocalVaraible() || var.IsLocalArrayElement()) 
                // analyzing all the assigned values 
                foreach (write in var.GetAllWrites()) 
                { 
                    // get the value actually assigned to the variable 
                    value = GetWrittenValue(write); 
                    // if the assigned value is another variable 
                    // then the variable can be aliased 
S1:                 if(value.IsVariable() || value.IsMethodResult()) 
                        var.NoAliasing = false; 
                } 
                // analyzing all reads 
                foreach (read in var.GetAllReads()) 
                { 
                    // get the instruction that consumed the variable 
                    instruction = GetConsumerOfValue(read); 
                    // the aliasing is possible if the consumer writes to 

      // another variable 
S2:                 if(Variables.GetWittenVariable(instruction) != null) 
                        var.NoAliasing = false; 
                } 
 
            else var.NoAliasing = false; 
        } 
    } 

 
Figure 36 - Simple algorithm for aliasing analysis. 



66 

 

This algorithm is very simple and it is very conservative, because it solves 

aliasing only for two types of variables: variables with value type and variables 

initialized by a newly allocated objects. Value types and stack variables are never subject 

to aliasing and their elimination is always correct. Variables that have been assigned only 

new objects created in the method cannot be affected by aliasing either, because each 

new object is placed in a newly allocated memory. It is also important to analyze all the 

places where variables are read, because their content can be stored in other variables 

which can cause aliasing. The modified variables can be located by the writes, explained 

in the section 5.2, according to the instruction that consumed the value placed on the 

stack when the analyzed variable was read. 

Problem is that the fields of newly created objects can be aliased, because their 

constructor can access static variables and parameters, but this is not a problem for 

arrays, since they do not use constructor. New arrays must be initialized by hand and the 

initialization can be easily analyzed by the same algorithm because the elements are not 

aliased, when they are initialized by a new object or array. This algorithm does not have 

problem with conditional branches, because it relies on the fact that the analyzed code is 

correct and the selected variables are never assigned anything else then new objects, 

regardless of control-flow. 

6.5.3 Summary 

Aliasing is an algorithmically unsolvable problem in most modern languages 

which support either reference or pointers and presented solutions are designed to work 

only for simple applications studied in this work. This work is meant as a proof of 

concept and provided solutions suggest that it is possible to analyze at least simple 

applications. Even though the presented solutions are very conservative, they could be 

sufficient for specific applications and they can be further improved. 

6.6 Stack dependence 

Stack dependences are caused by the fact that the instructions communicate 

through the stack and this type of dependence usually represents the dependence between 

the instructions that implement a single C# statement. These dependences can be solved 

very easily using the stack variables; their identification is explained in section 5.2.1.1. 

Each stack variable represents a value pushed on the stack by an instruction that 

is later removed by another instruction. Important is that each stack variable is created 



67 

 

when it is first modified and it is destroyed when it is first read. Each stack variable 

represents a single true dependence with the source in the instruction that created the 

variable and the sink is in the instruction that consumes the variable. The stack semantics 

can be treated this way as any other dependences and it simplifies the entire analysis, 

because there is no special analysis required. 

6.7 Array subscript analysis 

Array subscripts can be very complicated and their analysis has to address many 

special situations, but it is not necessary to understand every subscript to optimize 

special applications. Following sections present an algorithm that can reconstruct 

subscripts from the CIL code and then there is a discussion about allowed subscripts and 

their structure. 

6.7.1 Subscript reconstruction 

Array access can be recognized by used instructions, like Ldelem or Stelem, 

and these instructions require the address of the accessed array and an index. Both these 

parameters are stored in the array variable identified during the code analysis (section 

5.2.1.4) and in this step it is necessary to reconstruct the entire subscript based on the 

stack variable stored as the index. Subscript is technically an expression that leaves one 

integral number on the stack and that number is represented by the stack variable. The 

reconstruction process can use stack variables to rebuild the entire calculation tree 

containing all the instructions used to calculate the actual index. The following figure 

shows the algorithm. 



68 

 

    public Tree ReconstructStatement(StackVariable var) 
    { 
        // create new tree that represents the statement 
        // that produced the stack variable 
        Tree statement = new Tree(); 
        // get the index of the instruction that created the  
        // variable; each stack variable can be changed only once 
        int sourceIndex = var.GetAllWrites().First(); 
        // locate the instruction among the method instructions 
        Instruction source = body.instructions[sourceIndex]; 
        // set the instruction as root to this sub-tree 
        statement.Root = source; 
        // analyze all other stack instructions to find 
        // potential operands of the source instruction 
        foreach (var in StackVariables) 
            // if the variable is read by the source instruction 
            if(var.GetAllReads().First() == sourceIndex) 
            { 
                // it is analyzed as the root of a sub-statement 
                statement.AddChild(ReconstructStatement(var)); 
            } 
    } 

 
Figure 37 - Index reconstruction algorithm. 

This recursive algorithm uses stack variables to track the instruction that 

produced the index. If the instruction has any parameters, then there must be stack 

variables that represent these operands and they are used to reconstruct the statements 

that produced them. The entire tree contains all the instructions that were used to 

calculate the actual index and its leaves contain instructions without operands, which 

usually load variables or constants. The following code shows an example 

reconstruction. 

    // colored subscript will be reconstructed 
    C[i] = A[i+i*2] + B[i]; 
 
    // colored instructions represent the index calculation 
   IL_0006:  ldarg.1 

   IL_0007:  ldloc.0  // 0 operands 

   IL_0008:  ldloc.0  // 0 operands 

   IL_0009:  ldc.i4.2  // 0 operands 

   IL_000a:  mul   // 2 operands 

   IL_000b:  add   // 2 operands 

   IL_000c:  ldelem.r8 

 
Figure 38 - Array subscript. 

 The array access is show in the CIL code and the index calculation is colored 

red. The instructions follow closely the calculation and there are five stack variables 

created during the calculation of the index. Three stack variables are created by the load 

instructions; two of them are consumed by the multiplication and third is consumed by 

the addition, along with the variable created by the multiplication. Fifth variable is 



69 

 

produced by the addition and that is the actual index used to access the array. The 

reconstructed tree is shown in Figure 1 and the red arrows represent the stack variables 

produced by the instructions. 

 
Figure 39 - Array subscript calculation tree. 

6.7.2 Multidimensional arrays 

Multidimensional arrays in .NET applications are problematic, because they are 

represented as an array of arrays, rather than as a multidimensional array used in 

FORTRAN. It is necessary to analyze all array accesses for possible multidimensional 

arrays, because it is necessary to analyze them as a single array access. It is necessary, 

because the algorithms taken from [2] expect multidimensional arrays to be analyzed as a 

single access to a single data structure; the algorithms do not work with consequent 

accesses to a series of arrays. This can be solved by the following algorithm. 

    public List MultidimensionalArrays(ArrayVariable arrayVar) 
    { 
        // list of arrays composing the multidimensional array 
        List dimensions = new List(); 
        // the studied array is added to the list as the last dimension 
        dimensions.Add(arrayVar); 
        // variable that contains the array accessed by the statement 
        Variable array = arrayVar.sourceArray; 
        // decide if the accessed array is an element in another array 
S1:     while (array.IsArrayVariable()) 
        { 
            // when the array is in another array then the source is 
            // extracted from the variable 
            array = array.sourceArray; 
            // the the array is added at the beginning of the list 
            dimensions.AddFirst(array); 
        } 
        // the list is returned with the outside array first 
        return dimensions; 
    } 

 
Figure 40 - Multidimensional array identification algorithm. 



70 

 

This algorithm simply follows the accessed array and it looks if the array is an 

element in another array and if that array is an element and so forth. The critical 

statement in the algorithm is S1, because that is the point where is determined if the array 

is inside another array or not. It is important to note that the array variable does not 

represent the actual array but rather the accessed element (the definition is in section 

6.2). The algorithm stops once the array accessed by the last array variable is not an 

array variable itself and that means that it is not an array element. 

Another possibility is to use multidimensional arrays supported by the .NET 

Framework, but they are not well implemented and they are not used as standard arrays, 

even though they look similar in C# code. The multidimensional arrays are accessed 

using methods that extract the required elements, unlike the standard arrays that use 

special instructions. This is problematic, because method calls can ruin dependence 

analysis and it is not easy to separate normal methods from those that access these 

arrays, not to mention the fact that method call is slower than simple instruction. 

6.7.3 Subscript analysis 

The algorithm presented in the previous section can reconstruct any subscript 

encountered in the CIL code, but many subscripts can be too complex for further 

analysis. The subscript can contain a method call or a very complex calculation and such 

a subscript is usually impossible to analyze, since they can contain unknown code. There 

are many techniques that can be used to compare subscripts and they are discussed very 

thoroughly in [2] in chapter 3. It is possible to use most of them, because the 

reconstruction algorithm rebuilt the subscripts to a tree that can be analyzed in a similar 

way as the FORTRAN code used in [2] and simple C# calculations are very similar to 

FORTRAN. 

It is not necessary to copy the algorithms and they are not needed to optimize the 

applications analyzed in this work. This work focuses on applications that use very 

simple subscripts and they can be recognized based on their tree constructed in the 

previous section. This work recognizes only subscripts that contain a single variable load 

or a variable modified by a constant. Examples can be A[x] or A[x+5]. These 

subscripts can be easily analyzed and their analysis is strong enough to optimize many 

applications that work with matrices or vectors. Two array accesses are analyzed 

together only when they are both in the same loop and if they both contain the same 

variable.  



71 

 

6.7.4 Summary 

Now that all the subscripts have been reconstructed and the multidimensional 

arrays can be addressed as a single data structure, it is possible to use the algorithms 

presented in [2]. This work focuses on simple applications which require only the 

simplest algorithms to optimize them and the section 6.9 shows the use of these 

algorithms to prepare the code for dependence testing. 

6.8 Dependence testing 

The dependence testing can use the algorithms presented in [2], because the loops 

and their induction variables have been identified and array subscripts have been 

reconstructed, along with multidimensional arrays. The analysis of aliasing should 

provide some help for the testing and all the variables which have not been separated 

may be treated as a single variable for the purposes of this analysis. It is not necessary to 

create new algorithms for dependence testing, because the code have been analyzed and 

transformed so the existing algorithms can be used. The following section shows the 

application of all presented techniques to analyze the applications studied by this work. 

6.9 Example analysis 

This section presents the application of the presented transformations on simple 

applications that were selected as the main focus of this work. They are used to illustrate 

the fact that it may possible to parallelize special C# application in a similar way as C or 

FORTRAN applications.   

6.9.1 Matrix multiplication 

Matric multiplication is a traditional problem for automatic parallelization and 

any parallelizing compiler must be able to optimize some basic implementation of matrix 

multiplication. The following listing shows a simple implementation of matrix 

multiplication that omits safety check and it relies on the fact that the parameters are 

correct, because the safety checks would pollute the code and they are not important for 

parallelization. 



72 

 

    public double[][] Multiply(double[][] A, double[][] B) 
    { 

 // allocate new output matrix, this helps eliminate aliasing 
        double[][] C = new double[A.Length][]; 
        for (int i = 0; i < A.Length; i++) 
            C[i] = new double[B[0].Length]; 
 
  // Simple multiplication using three nested loops 
        for (int i = 0; i < A.Length; i++) // M 
        { 
            for (int j = 0; j < B[0].Length; j++) // N 
            { 
                for (int k = 0; k < A[0].Length; k++) // K 
                { 
S1:                 C[i][j] += A[i][k] * B[k][j]; 
                } 
            } 
        } 
        return C; 
    } 

 
Figure 41 - Simple matrix multiplication. 

Frist step to parallelization is to locate the induction variables used in all the 

loops and analyze their behavior. It is possible to use the algorithm presented in the 

section 6.4, because all the induction variables are assigned only once in every iteration 

and they are always increased by one. The following example shows the CIL code of the 

loop used to initialize the output matrix. 

  IL_000b:  br.s       IL_001e 

  IL_000d:  ldloc.0 

  IL_000e:  ldloc.1 

  IL_000f:  ldarg.2 

  IL_0010:  ldc.i4.0 

  IL_0011:  ldelem.ref 

  IL_0012:  ldlen 

  IL_0013:  conv.i4 

  IL_0014:  newarr     [mscorlib]System.Double 

  IL_0019:  stelem.ref 

  IL_001a:  ldloc.1 

  IL_001b:  ldc.i4.1 

  IL_001c:  add 

  IL_001d:  stloc.1 

  IL_001e:  ldloc.1 

  IL_001f:  ldarg.1 

  IL_0020:  ldlen 

  IL_0021:  conv.i4 

  IL_0022:  blt.s      IL_000d 

 
Figure 42 - Initialization loop. 

This is the entire loop and the induction variable is changed only once and it is 

increased by one. This is performed by the red colored instructions and the blue 

instructions implement the termination condition that reads the variable. The other loops 



73 

 

are very similar and their induction variables are located the same way. All the induction 

variables are located after the analysis is completed and there are three: i, j, k.  

Next step is the aliasing analysis and the simple algorithm, presented in Figure 

36, can be used to separate the result matrix from both parameters, because the array is 

assigned only once and the assigned value is a new array, which can be seen in the 

Figure 42. There are no other assignments to the output matrix with the exception of the 

matrix elements, but they have a value type, namely double. The algorithm is not able 

to separate the parameters, but they are only read in this algorithm and only writes can 

cause dependences. 

Next step is subscript reconstruction, which is very simple, because all the 

subscripts contain only a simple variable loads, and all the subscripts of a single array 

can be analyzed because they all contain the same variable. More complex is the analysis 

of multidimensional arrays, because all the matrices are basically two-dimensional. The 

algorithm, presented in section 6.7.2, is able to locate all multidimensional arrays in the 

code, because they are accessed one dimension after another. 

  IL_0031:  ldloc.0 

  IL_0032:  ldloc.2 

  IL_0033:  ldelem.ref 

  IL_0034:  ldloc.3 

  IL_0035:  ldelema    [mscorlib]System.Double 

  IL_003a:  dup 

  IL_003b:  ldobj      [mscorlib]System.Double 

  IL_0040:  ldarg.1 

  IL_0041:  ldloc.2 

  IL_0042:  ldelem.ref 

  IL_0043:  ldloc.s    k 

  IL_0045:  ldelem.r8 

  IL_0046:  ldarg.2  // first dimension is in an argument 

  IL_0047:  ldloc.s    k 

  IL_0049:  ldelem.ref  // second dimension 

  IL_004a:  ldloc.3 

  IL_004b:  ldelem.r8  // the actual element 

  IL_004c:  mul 

  IL_004d:  add 

  IL_004e:  stobj      [mscorlib]System.Double 

 
Figure 43 - Main statement in matrix multiplication. 

This example shows the CIL code of the statement S1 in the Figure 41, which is 

the main statement that performs the actual multiplication. The red colored instructions 

are used to read a value from the matrix B. When the instruction 4b is analyzed then the 

instruction 49 is located as its source array and the instruction 46 is located as the next 

source. The last array is in parameter B and that is the main array. All the red instructions 



74 

 

are recognized as a single array access to multidimensional array with the main array 

stored in the parameter B. 

The dependence testing can use algorithms from the [2] to analyze the main loop 

nest, because all the arrays and their indices have been analyzed. When the dependence 

testing is applied on the main loop nest, then there is only a single dependence from S1 

to S1 with the direction vector [=,=,*] (explained in chapter 2 in [2]), which means 

that there is a loop-carried dependence from S1 to itself in the internal loop, but it is 

independent in both outer loops. This information can be directly used to parallelize this 

method, because every iteration of the two outer loops can be run in parallel which leads 

to the coarse grained parallelism – if the matrices are big enough then every iteration of 

the outer loop can be run a separate thread. Other possibility is to use loop interchange 

(chapter 5 in [2]) to move the internal loop outside, because then the dependence would 

change to [*,=,=] and the internal loop can be parallelized using vector instructions.  

This is a simple algorithm, but it is used by many applications and the fact that it 

can be automatically parallelized in CIL code suggests that C# can be potentially used 

for high performance computing. The entire CIL code of the multiplication algorithm is 

on the DVD and Appendix A provides the table of content. 

6.9.2 Vector addition 

The vector addition is simpler than the matrix multiplication, because it does not 

use multidimensional arrays, but the implementation shown in Figure 44 passes all the 

vectors as parameters and that make any parallelization impossible without inter-

procedural analysis, since the parameters are the main source of aliasing. 

    public void Add(double[] A, double[] B, double[] C) 
    { 
        for (int i = 0; i < C.Length; i++) 
            C[i] = A[i] + B[i]; 
    } 

 
Figure 44 - Vector addition. 

This algorithm contains only one simple loop and it is not difficult to locate its 

induction variable, because it is increase by one once in every iteration. This is the same 

situation as in the matrix multiplication presented in the previous section. 

Aliasing is a much bigger problem in this algorithm, because all the vectors are 

passed as parameters and there is no indication if they can be aliased or not. But since the 

method is short it is possible to use the algorithm presented in section 6.5.1 to separate 



75 

 

the output vector C from the others. This transformation uses code duplication and the 

following example shows the method after the code has been duplicated. 

    public void AddNew(double[] A, double[] B, double[] C) 
    { 
        if (C != A && C != B) 
        { 
            // C represents an array different from A and B 
            for (int i = 0; i < C.Length; i++) 
S1:             C[i] = A[i] + B[i]; 
        } 
        else 
        { 
            for (int i = 0; i < C.Length; i++) 
                C[i] = A[i] + B[i]; 
        } 
    } 

 
Figure 45 - Vector addition after parameter separation. 

The code in the first branch can be optimized, because C must be a different array 

then A and B. This optimization can be wasteful, but it can help tremendously in this 

case, because the method (or at least its first part) can be completely parallelized 

afterwards, using vector instructions or threads. 

The following steps are very similar to the matrix multiplication and the only 

exception is that this algorithm does not contain multidimensional arrays. After 

dependence testing is completed, there is a single dependence in the first part of the 

method and it is from the statement S1 to itself with the direction vector [=], which 

means that the statement depends on itself in the same iteration. This basically means 

that the statement is independent and the first part can be completely parallelized with 

vector instructions, which are ideal for this task, because they usually provide a single 

instruction for vector addition (at least for vectors of limited size). 

6.10 Summary 

The studied applications can be successfully analyzed using the transformations, 

presented in this chapter, for code preparation and existing algorithms for dependence 

testing. This suggests that it might be possible to parallelize .NET applications based on 

their CIL code, even though there are many problems that can complicate similar 

optimizations for general applications. It might be possible to parallelize special .NET 

applications and that may allow programmers to develop these types of applications in 

C#. For example, high performance applications might even be optimized in .NET with a 

similar efficiency as in C or FORTRAN, at least when they are written without some 

advanced features that can ruin the dependence testing, like unsafe code.  



76 

 

It is unfortunate that it was not possible to implement the dependence testing, but 

there are many technical details that have to be solved, before it is possible to use the 

testing algorithms presented in literature. The main problem is that it is not possible to 

omit anything, because then it would not be possible to prove any independence. 



77 

 

7 Conclusions 

Automatic parallelization discussed in this work is a very difficult optimization, 

but most of the encountered problems were successfully solved and many presented 

solutions were implemented. The first steps necessary to parallelization have been 

successfully implemented and dependence testing has been analyzed in much detail, but 

the implementation of dependence tester and the actual parallelization proved to be too 

difficult, because it would be necessary to solve many technical details to use the 

algorithms presented in the literature. Another problem is that even the simplest 

parallelization requires most of the dependence testing to be implemented, because 

otherwise, it is impossible to prove any independence and the parallelization cannot be 

used at all.  

Following recapitulation sums the achieved results in relation to separate steps 

presented in section 3.2. 

7.1 Inlining 

Method inlining has been successfully analyzed and implemented, but it proved 

to be very complicated even for simple C# programs that do not contain advanced 

features, like unsafe code or lambda functions. The final implementation is able to 

successfully inline more than fifteen calls into a single method and it can handle even 

very complicated code, for example: inline a method called in an inlined method, inline 

methods containing protected blocks (exception handling), inline method with 

parameters passed by reference or inline method that changes the maximal size of the 

execution stack. But it was mainly the complications connected with the implementation 

of inlining, that significantly slowed the entire project and that may have caused the fact 

that the dependence testing have not been implemented. 

The optimizer, that is part of this work, is able to inline methods in an 

application, based on custom attributes assigned by programmers and the optimization is 

controlled by a special file that is used as a parameter for the optimizer. Further 

information can be found in Appendix B. 



78 

 

7.2 Preliminary code analysis 

This step contains recognition of variables and control flow construct and both 

have been analyzed and implemented successfully. This analysis can be run using the 

unit tests (distributed with the project) and it is not used in the optimizer, because the 

optimizer does not need it since it does not implement dependence testing. Further 

information can be found in Appendix B or in the technical documentation of the project 

located on the DVD. 

7.3 Dependence testing 

Dependence testing is the most difficult step of the entire parallelization process. 

The problem with the dependence testing is that it must be implemented very extensively 

or it is not able to analyze even very simple programs, like matrix multiplication. The 

potential implementation must recognize if the result matrix does not depend on the 

parameters (if it is not a parameter). Then it must be able to analyze the behavior of 

induction variables in loops and it must be able to analyze array accesses with multiple 

subscripts, just to analyze a simple matrix multiplication and that is not all. The analysis 

of matrix multiplication is not possible without either one of the presented analyses. It is 

not possible to use incremental development for dependence testing, because it is a 

complex that requires most of the presented algorithms to be complete before it can be 

used.  

The analysis of dependence testing concentrates on the specific features of CIL 

and the work presents many transformations that prepare the code so it can be analyzed 

by algorithms described in literature. The transformations were designed for special 

applications and they may not be efficient for general applications, but their analysis 

suggests, that is might be possible to parallelize C# applications (at least some specific 

applications).  

The algorithms described in literature were not implemented, because there are 

many technical details that have to be addressed, before these algorithms can be ported 

for .NET Framework, but the transformations presented in chapter 6 are able to prepare 

the CIL code so the algorithms can be used without significant modifications. 



79 

 

7.4 Status of the work 

The final implementation is divided in two parts, first part is a framework 

designed to control the optimizations and the second part is the implementation of the 

transformations that prepare the code for parallelization. 

The optimization framework is based on special attributes that identify optimized 

methods and the optimization is controlled by a special XML file. Its usage is similar to a 

makefile. The framework is able to inline selected methods and it is described in the 

Appendix B. 

The second part contains the implementation the algorithms presented in this 

work and the correctness of these algorithms is checked by unit tests. The 

implementation contains method inlining and then there is the detection of control-flow 

constructs and variables. The dependence testing was not implemented, because there are 

many technical details that must be solved, before it is possible to use the algorithms 

presented in literature. The algorithms for dependence testing are usually designed for 

older languages, like FORTRAN, and their application on languages with reference 

semantics requires small modifications, because they must be able to work with the code 

including many special constructs introduced to the .NET by more complicated 

languages, like F#. The optimizer cannot be used for practical applications, because there 

are many technical details that must be solved before the dependence testing can be 

completed and parallelization is impossible without the dependence analysis. 

The functionality and correctness of the implemented algorithms is controlled by 

a series of unit tests designed to check all algorithms and even their separate parts. These 

tests are not based on some well-known applications, like benchmarks, but they were 

developed along with the project, because the implementation has not been completed, 

so it could be tested on general applications. The tests are distributed along with the 

project and they can be run directly from the Visual studio. Detailed information about 

tests can be found in the readme file on the DVD (Appendix A described the DVD 

contents). 

Even though this work is aimed mostly on the .NET platform, it should be 

possible to apply most of the presented solutions on Java as well, thanks to the similarity 

of their bytecode and runtime architecture. 



80 

 

7.5 Further work 

The main step that has to be completed is the dependence testing, because it is the 

necessary step before the actual parallelization. The analysis of dependences has been 

performed, but the implementation proved to be too complicated, because there are many 

technical details that have to be solved before the parallelization algorithms can be used. 

The algorithms described in literature must be modified for the .NET platform and these 

modifications, while small, would require a lot of work. 

The parallelization was the ultimate goal of this project, even though it was not 

expected that there would be a working implementation, because the main purpose of 

this work was only to explore the possible approaches to automatic parallelization of 

.NET applications. The project did never make it its goal to actual implement the 

parallelization, but we were hoping it would be possible, at least for some simple 

program. It was not possible to implement any actual parallelization algorithm because 

the dependence analysis proved to be too difficult to implement even though it has been 

thoroughly analyzed. Even though the implementation was not possible, the analysis of 

the dependence testing showed that it should be possible to parallelize at least specific 

applications based on loops and arrays, both of which represent the most common 

opportunity for parallelization. Another reason why the parallelization was not 

implemented is the fact that it is very difficult to parallelize a .NET application, because 

CIL does not contain any vector instructions and threads are difficult to use. 

The results are not at all negative, even though they did not meet our initial 

expectations. There are many things that must be completed, before the presented 

implementation would be able to actually parallelize an application, but the results of the 

analysis of dependences suggests that it should be possible. The most important part that 

has to be implemented is dependence testing along with some transformations enhancing 

the final parallelism. Basic dependence testing is complicated, but it is possible to 

implement and then it has to be continually improved to optimize wider array of 

applications. The improvements usually entail implementing more enhancing 

transformations and it is necessary to improve the analysis of array subscripts and loops. 

The overall study of parallelism and other complex transformations and 

programing technique shows that there will most likely always be a place for parallel 

programming performed by a human programmer, because even the best compilers are 

able to find independences only between short code fragments and even that is extremely 

difficult. Humans however can design application to run many different tasks 



81 

 

concurrently or even distribute the application across multiple computers, which is most 

likely impossible to do automatically, at least in a general case. 

 



82 

 

Bibliography 

1. Ecma-335. [Online] 2012. http://www.ecma-international.org/publications/files/ECMA-

ST/ECMA-335.pdf. 

2. Allen, Randy and Kennedy, Ken. Optimizing Compilers for Modern Architectures. San 

Francisco : Morgan Kaufmann Publishers, 2001. 

3. Muchnick, Steven S. Advanced Compiler Design Implementation. San Francisco : 

Morgan Kaufmann Publishers, 1997. 

4. Aho, Alfred V. and Lam, Monica S. Compilers: principles, techniques, & tools. Boston : 

Pearson/Addison Wesley, 2006. 

5. Ottoni, Guilherme, et al. Automatic thread extraction with decoupled software pipelining. 

In Proceedings of the 38th IEEE/ACM International Symposium on Microarchitecture. 

s.l. : IEEE Computer Society, 2005, pp. 105--118. 

6. Raman, Arun, et al. Speculative Parallelization Using Software Multi-threaded 

Transactions. [Online] 2010. [Cited: 3 25, 2013.] 

http://liberty.princeton.edu/Publications/asplos15_smtx.pdf. 

7. Nie, Jiutao, et al. Vectorization for Java. Network and Parallel Computing. Berlin : 

Springer Berlin Heidelberg, 2010, pp. 3-17. 

8. Artigas, Pedro V., et al. Automatic loop transformations and parallelization for Java. 

Proceedings of the 14th international conference on Supercomputing. New York : s.n., 

2000, pp. 1-10. 

9. El-Shobaky, Sara, El-Mahdy, Ahmed and El-Nahas, Ahmed. Automatic vectorization 

using dynamic compilation and tree pattern matching technique in Jikes RVM. 

Proceedings of the 4th workshop on the Implementation, Compilation, Optimization of 

Object-Oriented Languages and Programming Systems. New York, NY : s.n., 2009, pp. 

63-69. 

10. Felber, Pascal A. Semi-automatic Parallelization of Java Applications. On The Move to 

Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Berlin : Springer Berlin 

Heidelberg, 2003, pp. 1369-1383. 

11. JAPS: an automatic parallelizing system based on JAVA. Du, Jiancheng, Chen, Daoxu 

and Xie, Li. 4, 1999, Science in China Series E: Technological Sciences, Vol. 42, pp. 396-

406. 

12. Chen, M.K. and Olukotun, K. The Jrpm system for dynamically parallelizing Java 

programs. Computer Architecture, 2003. Proceedings. 30th Annual International 



83 

 

Symposium on}, title={The Jrpm system for dynamically parallelizing Java programs. 

s.l. : IEEE Computer Society, 2003, pp. 434-445. 

13. Run-Time Support for the Automatic Parallelization of Java Programs. Chan, Bryan 

and Abdelrahman, Tarek S. 1, 2004, The Journal of Supercomputing, Vol. 28, pp. 91-

117. 

14. Schulte, Wolfram, et al. Automatic Parallelization in a Tracing Just-in-Time Compiler 

System. 20110265067 United States, 4 21, 2010. 

15. Dittamo, Cristian, Cisternino, Antonio and Danelutto, Marco. Parallelization of C# 

Programs Through Annotations. Computational Science – ICCS 2007. Berlin : Springer 

Berlin Heidelberg, 2007, pp. 585-592. 

16. Freely Annotating C#. Cazzola, Walter, Cisternino, Antonio and Colombo, Diego. 10, 

2005, Journal of Object Technology, Vol. 4, pp. 31-48. 

17. Chatterjee, Soumya S. and Gururaj, R. Lazy-Parallel Function Calls for Automatic 

Parallelization. Computational Intelligence and Information Technology. Berlin : Springer 

Berlin Heidelberg, 2011, pp. 811-816. 

18. Freeman, Adam. Pro .NET 4.0 Parallel Programming in C#. New York : apress, 2010. 

19. Leroy, Xavier. Java bytecode verification: algorithms and formalizations. [Online] 

http://gallium.inria.fr/~xleroy/publi/bytecode-verification-JAR.pdf. 

20. Lindholm, Tim and Yellin, Frank. The JavaTM Virtual Machine Specification. 

[Online] 1999. 

http://docs.oracle.com/javase/specs/jvms/se5.0/html/VMSpecTOC.doc.html. 

 

 

  



84 

 

Table of figures 

Figure 1 - Internal loop from matrix multiplication algorithm. .................................... 5 

Figure 2 - Matrix multiplication for threads. ................................................................. 5 

Figure 3 - Sample code used to produce bytecode and CIL ........................................ 17 

Figure 4 - Example bytecode generated from the code shown in Figure 3 ................. 18 

Figure 5 - MSIL code generated from the code shown in Figure 3 ............................ 18 

Figure 6 - Simple inlining example. ............................................................................ 30 

Figure 7 - More complex inlining example. ................................................................ 31 

Figure 8 - Inlined loop nest. ........................................................................................ 31 

Figure 9 - Method call in CIL. .................................................................................... 33 

Figure 10 - Parameters stored to local variables before inlining. ................................ 34 

Figure 11 - Lists of replacements for access to parameters. ....................................... 34 

Figure 12 - Local variables accessed in an inlined method. ........................................ 36 

Figure 13 - Local variables after patch. ....................................................................... 36 

Figure 14 – Algorithm used to patch parameter references ........................................ 37 

Figure 15 - Code inlined in a method. ......................................................................... 38 

Figure 16 - Jump before patch. .................................................................................... 39 

Figure 17 - Patched jump. ........................................................................................... 40 

Figure 18 - Formula for computing new jump distance after inlining is complete. .... 40 

Figure 19 - Update of the protected blocks after inlining. .......................................... 40 

Figure 20- Algorithm used to determine data type returned by an instruction. .......... 42 

Figure 21 - Instruction verification ............................................................................. 44 

Figure 22 - Execution path modified by control-flow. ................................................ 46 

Figure 23 - Protected block and dependence testing. .................................................. 47 

Figure 24 - Less effective implementation of loops. ................................................... 48 

Figure 25 - Better implementation of loops. ............................................................... 48 

Figure 26 - Complicated for loop. ............................................................................... 49 

Figure 27 - Basic if statement. .................................................................................... 49 

Figure 28 - if/else construct. ........................................................................................ 49 

Figure 29 - Stack and instructions used to access field variables. .............................. 53 

Figure 30 - Algorithm used to locate object containing a field. .................................. 53 

Figure 31 - Induction variable analysis. ...................................................................... 60 

Figure 32 - Simple matrix multiplication. ................................................................... 61 



85 

 

Figure 33 - Parameter aliasing solution. ...................................................................... 62 

Figure 34 - Copy vector function before and after parameter separation. .................. 63 

Figure 35 - Aliasing analysis algorithm. ..................................................................... 64 

Figure 36 - Simple algorithm for aliasing analysis. .................................................... 65 

Figure 37 - Index reconstruction algorithm. ................................................................ 68 

Figure 38 - Array subscript. ........................................................................................ 68 

Figure 39 - Array subscript calculation tree. ............................................................... 69 

Figure 40 - Multidimensional array identification algorithm. ..................................... 69 

Figure 41 - Simple matrix multiplication. ................................................................... 72 

Figure 42 - Initialization loop. ..................................................................................... 72 

Figure 43 - Main statement in matrix multiplication. ................................................. 73 

Figure 44 - Vector addition. ........................................................................................ 74 

Figure 45 - Vector addition after parameter separation. ............................................. 75 

Figure 46 - Architecture of ParallaX modules. ........................................................... 88 

 



86 

 

List of Abbreviations 

 .NET Framework – A development platform implemented by Microsoft for the Windows 

operating system. It is compatible with CLI. 

 CIL – Common intermediate language is an intermediate language similar to Java 

bytecode and it is executed by a CLR virtual machine 

 CLI – Common language infrastructure is the general architecture common language 

platform compatible with the [1]. The standard contains a detailed description of the 

architecture in Chapter I. 

 CLR – Common language runtime is the virtual machine responsible for execution of 

applications compiled to a bytecode compatible with CIL. 

 Ecma International – An industry association founded in 1961, dedicated to the 

standardization of information and communication systems. 

 Ecma-335 – An international standard that specifies the architecture of CLI and its parts. 

 Java – A modern object-oriented language which is usually compiled to bytecode and 

then executed by a virtual machine called JVM. The bytecode has a structure and 

function similar to the CIL. 

 JRE – Java runtime environment is a platform capable of execution of Java applications. 

It is more than just a JVM, because it must contain an implementation of Java standard 

libraries and other features. 

 JVM – Java virtual machine is a machine able to execute applications compiled to the 

Java bytecode. 

 MSIL – Microsoft intermediate language is a specific intermediate language compatible 

with the CIL as it is defined by the [1]. The MSIL is produced by the standard C# 

compiler available in the Visual studio development environment. 

 NOW – network of workstations is a distributed system composed of many common 

computers (usually PCs) connected by a network. 

 SIMD – instructions that can perform a single operation on multiple data, otherwise 

called vector instructions. 



87 

 

Appendix A - DVD content 

The DVD contains the implementation of the Parallax project accompanied by its 

generated documentation and other documents related to the work. The following 

structure explains the folder structure, along with its contents. Very important document 

is readme file that describes the deployment, compilation and execution of the ParallaX 

project or its parts. 

 ParallaX – contains the ParallaX project and all its source files 

o ParallaX – the main project that contains all modules and tests 

 Architecture – diagrams describing projects architecture  

 TestResults – results of the unit tests 

 other – other folders contain modules of the project 

o ParallaXExample1 – sample project used to test ParallaX project 

o ParallaXHelp.shfbproj – project for the sandcastle tool that is used to 

generate the documentation from XML comments in source files 

 Documentation 

o Documentation.chm – generated documentation for ParallaX 

o ECMA-335.pdf – actual version of the standard ECMA-335 

o MatrixMultiplicationCIL.txt – CIL code for the matrix multiplication 

analyzed in section 6.9.1 

o Readme.docx, Readme.pdf – instructions for compilation and execution of 

the ParallaX project 

o ParallaX.docx, Parallax.pdf – electronic version of this text 



88 

 

Appendix B - ParallaX optimizer 

The ParallaX project has been designed as a stand-alone optimizer which would 

be used after compilation to parallelize .NET applications. The actual parallelization has 

not been implemented, but the project contains a framework that would allow 

programmers to decide the way their methods should be optimized or inlined and this 

framework is fully functional. Then there is the implementation of method inlining and 

code verification, which prepares the code for further analysis. Finally there is the code 

analysis, which is able to recognize control-flow constructs and variables used in the 

code. The project was implemented in C# under the Visual studio 2010 and the following 

diagram shows its general structure. 

 
Figure 46 - Architecture of ParallaX modules. 

The diagram shows all the modules included in the project and all of them are 

implemented using the algorithms presented in this work, with the exception of the 

modules indicated by the green ellipse, which were analyzed only theoretically because 

their implementation proved to be too difficult.  



89 

 

The architecture of the project is documented in the Enterprise architect and the 

documentation is in the Architecture module of the project. 

Optimization framework 

The project has been designed as a stand-alone optimizer for existing .NET 

applications and the actual implementation contains the configuration that can be used to 

select the application and its methods that should be optimized, but the actual 

optimization has not been implemented. 

The optimizer uses a transfile that is similar to makefile, because it is used to 

locate the optimized application and it can contain other parameters that specify the 

desired optimization. The transfile is a XML file that is loaded and stored using the XML 

serialization provided by the standard .NET library, while its structure must correspond 

to the structure of the class ParallaX.Common.Configuration.Transfile. The 

general behavior of the optimizer is configured by global configuration file that is loaded 

by the XML serialization and its structure must be compatible with the class 

ParallaX.Common.Configuration. GlobalConfiguration. 

The optimized application must use special attributes provided in the module 

ParallaX.Interface to specify which methods should be optimized and how.  

 The attribute Parallelize is used to identify methods which should be 

parallelized by the optimizer.  

 The Inline attribute is used to specify how should be this method inlined if 

it is called by an optimized method. Methods are not inlined by default, since 

it may be impossible for some library API, but programmers can specify 

certain methods that can be inlined. Methods are inlined only in methods 

selected for parallelization attribute and nowhere else. 

 The Dependence attribute can be used to help the optimizer to analyze 

dependences caused by the specified method and it should be used for 

methods that cannot be inlined. 

Framework capabilities 

The actual implementation of the optimizer is able to use the transfile to find 

target assembly and it is able to use the attributes to locate methods for optimization, but 

it can only inline selected methods since the parallelization was not implemented. The 

framework provides special functions to generate empty transfile or global configuration, 



90 

 

which can be used to simplify the optimization process, because the empty files contain 

all the required properties set to default values. The inlined methods should belong to the 

same module as the method that called them, because the different modules may cause 

problems during inlining. 

The optimizer can be run with parameter –h that prints a help text containing all 

the available parameters and their function. 

Optimizer modules 

The optimizer modules closely follow separate steps of optimization presented in 

chapter 3. Each step is implemented in a single module and the module uses the 

algorithms presented in the appropriate chapter of this thesis. The most important 

modules are ParallaX.Core.CodePreprocessor and 

ParallaX.Core.PrelimCodeAnalyzer, because the dependence testing has not 

been implemented. CodePreprocessor contains method inlining and code verification 

as it is presented in chapter 4 and PrelimCodeAnalyzer implements the analyses 

discussed in chapter 5. 

The module ParallaX.Common contains general interfaces and functions used 

by the entire project and it is used by every other module. The most important part of this 

module is a set of extension methods for the Cecil library, which implement certain 

functionality originally unavailable in the library, like code cloning. 

Very important module is UnitTest which contains all the unit tests used to 

verify the algorithms implemented in the other modules. These tests must be used to run 

all the algorithms implemented in this project, because the actual optimizer was not 

completed. The compiled optimizer is able to inline selected methods into the optimized 

methods according the attributes presented in the previous sections, but the test can 

execute almost every method in the optimizer and verify its results. These tests use the 

test project ParallaXExample1 distributed along with the ParallaX project. 

Used libraries and tools  

This implementation relies heavily on the Cecil library for CIL parsing and 

reconstruction. The Cecil library is used to decode CIL assemblies to objects and their 

methods which is similar to standard reflection, but Cecil is able to decode method body 

to a stream of instructions, unlike the standard reflection library. The library is used as 

the basis for further analysis and it is was a necessary tool for this project. 



91 

 

There are other tools which were used to test, verify and analyze the code 

produced by the optimizer. The most important are PEVerify and ILDasm; both are 

distributed as part of the Microsoft SDK which contains tools and libraries for the 

development of windows applications. PEVerify has been used to verify inlined code and 

it has been invaluable for locating errors in the produced CIL. ILDasm has served as a 

general tool for the disassembly of the analyzed code. 

 

 

  



92 

 

 


