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Abstract 
 

Multidrug resistance (MDR) is a common cause of failure in chemotherapy for 

malignant diseases. Cancer cells develop MDR most often via the up-regulation of P-

glycoprotein (P-gp) expression. P-gp is an efflux pump with broad specificity belonging to 

ATP-binding cassette (ABC) transporters which decreases the intracellular concentration of 

various drugs. 

We designed polymeric conjugates based on an N-(2-hydroxypropyl)methacrylamide 

(HPMA) bearing a cytostatic drug and/or P-gp inhibitor and tested their cytostatic/cytotoxic 

activity in vitro and their therapeutic efficacy in vivo in MDR tumors. We demonstrated that 

HPMA copolymer conjugates bearing both the cytostatic drug (doxorubicin (Dox) or 

pirarubicin) and the P-gp inhibitor (derivative of reversin 121 (R121) or ritonavir) possess 

remarkable cytostatic and cytotoxic activity in MDR tumor cell lines in vitro and superior 

antitumor activity in vivo. Notably, the HPMA copolymer conjugate bearing both Dox and 

R121 showed significant antitumor activity in both P388/MDR and CT26 mouse tumor models 

and was capable to completely cure 6 out of 8 mice with established CT26 tumors. 

We explored the potential of micelle-forming HPMA copolymer-poly(propylene oxide) 

(PPO) diblock bearing Dox to overcome MDR in vitro and in vivo. The HPMA copolymer-PPO 

diblock bearing Dox showed higher cytostatic and cytotoxic activity in vitro in comparison to 

the HPMA copolymer conjugate bearing Dox in MDR murine and human cancer cell lines. 

Moreover, the HPMA copolymer-PPO diblock bearing Dox showed higher antitumor activity 

and accumulation in mouse EL4 lymphoma in vivo in comparison to the HPMA conjugate 

bearing Dox. 

Finally, we evaluated the potential of polymeric NO donors to improve the therapeutic 

activity of the HPMA copolymer conjugate bearing Dox through an increase of the enhanced 

permeability and retention effect. Polymeric NO donors were able to sensitize murine and 

human cell lines to the cytostatic activity of Dox in vitro and significantly improved the 

treatment of EL4 lymphoma-bearing mice with the HPMA copolymer conjugate bearing Dox 

in vivo. 

 

  



 
 

Abstrakt 
 

Mnohočetná léková rezistence (MDR) představuje jednu z nejběžnějších a z 

nejzávažnějších komplikací při chemoterapii nádorových onemocnění. Hlavní mechanismem 

podílejícím se na vzniku MDR nádorových buněk je zvýšená exprese ATP-dependentních ABC 

transportérů, zejména P-glykoproteinu (P-gp). P-gp jako effluxní pumpa snižuje 

cytoplazmatickou koncentraci řady protinádorových léčiv.  

Otestovali jsme cytotoxický a cytostatický efekt polymerních konjugátů na bázi N-(2-

hydroxypropyl)metakrylamidu (HPMA) nesoucí protinádorové léčivo a inhibitor P-gp in vitro 

a in vivo na nádorech s MDR. Na MDR myších i lidských nádorových liniích jsme prokázali, 

že polymerní konjugáty nesoucí protinádorové léčivo a inhibitor P-gp nejenom efektivně 

inhibují aktivitu P-gp a tím zvyšují intracelulární akumulaci daného cytostatika, ale také zvyšují 

jeho cytostatickou a cytotoxickou aktivitu in vitro a in vivo. Léčba pomocí konjugátu nesoucího 

doxorubicin (Dox) a derivát reversinu 121 (R121) vedla k signifikantní inhibici růstu nádorů a 

prodloužení doby přežití myší u nádorových modelů P388/MDR a CT26. U modelu CT26 

dokonce došlo ke kompletní regresi nádorů u 6 z experimentální skupiny 8 myší nesoucí nádor. 

Dále jsme otestovali schopnost diblokového konjugátu nesoucího Dox a skládajícího se 

z HPMA kopolymerního řetězce a řetězce polypropylen oxidu (PPO) překonávat MDR in vitro 

a in vivo. HPMA kopolymer-PPO diblokový konjugát vykazoval vyšší cytostatickou a 

cytotoxickou aktivitu ve srovnání s HPMA kopolymerním konjugátem nesoucím Dox a to jak 

na lidských tak myších MDR buněčných liniích in vitro. Tento diblokový konjugát měl pak i 

vyšší terapeutickou účinnost in vivo a vykazoval vyšší akumulaci v nádorech ve srovnání s 

HPMA kopolymerním konjugátem nesoucím Dox. 

Nakonec jsme testovali schopnost HPMA kopolymerních konjugátů nesoucí donory NO 

zvýšit terapeutickou účinnost HPMA konjugátu nesoucího Dox, a to pomocí zvýraznění EPR 

efektu. Tyto konjugáty nejenom sensitizovali myší a lidské buněčné linie k cytostatické aktivitě 

Dox in vitro, ale také výrazně zvýšili účinnost léčby HPMA kopolymerního konjugátu 

nesoucího Dox v modelu myšího EL4 lymfomu. 
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1 Introduction 
 

Chemotherapy is one of three principal cancer treatment modalities. The effectiveness 

of chemotherapy is limited by tumor chemoresistance, which represents the most common 

cause of cancer treatment failure. A diverse range of molecular mechanisms have been 

implicated in tumor chemoresistance. There are two mechanism-based types of tumor 

chemoresistance. The first is based on the impairment of the delivery of anticancer drugs to 

tumor cells and the second is based on cancer cell genetic alterations that affect sensitivity to 

chemotherapeutics [1, 2].  

Tumor chemoresistance mediated by impaired drug delivery results from the reduced 

accessibility of administered drugs to tumor cells. Factors such as the composition of the 

extracellular matrix (ECM), increased hydrostatic pressure within solid tumors and altered 

tumor vascularization were identified as major contributors to this type of chemoresistance 

mediated by the tumor microenvironment (TME) [3-5]. While some aspects of the TME on 

tumor growth and progression have long been appreciated, the role of TME in chemoresistance 

is now increasingly accepted [6-8]. 

The chemoresistance of cancer cells can be further divided into two categories: intrinsic 

(natural) and acquired (secondary). Intrinsic resistance means that resistance-mediating factors 

pre-exist in cancer cells and make chemotherapy ineffective from the onset. Acquired resistance 

gradually develops during the chemotherapy course and thus initially chemosensitive tumor 

cells become chemoresistant upon relapse. Alternatively, acquired resistance could arise from 

the outgrowth of the preexisting subpopulation of tumor cells that already harbored resistance 

[9].  

Loss of sensitivity to a single chemotherapeutic agent, or a class of chemotherapeutic 

agents with similar mechanisms of action, may not directly cause the loss of sensitivity to other 

chemotherapeutic agents. However, the development of resistance to chemotherapy is 

frequently associated with cross resistance to structurally and mechanistically unrelated drugs, 

suggesting the existence of general mechanisms of chemotherapy resistance. This phenomenon 

is known as multidrug resistance (MDR) [10].  

 

1.1 Multidrug resistance 
 

MDR is defined as the cross-resistance or insensitivity of cancer cells to the cytostatic 

and cytotoxic actions of different chemotherapeutic agents commonly used in cancer 
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chemotherapy which are structurally and functionally unrelated and have different molecular 

targets [11]. This phenomenon was first discovered in 1968 by Kessel and colleagues. They 

observed that cells adapted to grow in the presence of daunorubicin did not accumulate as much 

of the drug as daunorubicin-sensitive cells [12]. Two years later, Biedler and Riehm described 

the phenomenon called cross-resistance. They found that Chinese hamster lung cells and 

fibroblasts grown in presence of actinomycin D were resistant not only to actinomycin D but 

also to vinblastine, vincristine and daunorubicin [13, 14]. Another study showed that 

daunorubicin was actively transported out of chemoresistant Ehrlich ascites cells, suggesting 

the existence of a promiscuous membrane transporter that confers MDR [15]. This transporter 

was later identified by Juliano and Ling in Chinese hamster ovary cells resistant to colchicine 

and was named P-glycoprotein (P-gp) [16].  

MDR can be mediated by numerous mechanisms. Recent studies indicate that there are 

three major mechanisms: i) the decreased uptake of water-soluble drugs which require 

transporters to enter the cells; ii) various changes in cancer cells affecting the capacity of 

anticancer drugs to kill cells, including alterations in the cell cycle or apoptosis induction, 

increased DNA damage repair and altered drug metabolism; and iii) the increased ATP-

dependent efflux of drugs that enter the cancer cells by diffusion through the plasma membrane. 

These mechanisms could work both independently or together with one another. However, one 

particular mechanism is usually dominant. 

The numerous mechanisms described to explain the MDR phenomenon can be divided 

into two broad categories: non-cellular and cellular mechanisms. The non-cellular mechanisms 

involve factors that are extracellular and reduce drug access to the tumor cells, whereas cellular 

mechanisms include tumor cell-intrinsic factors [17-25]. 

 

1.1.1 Non-cellular mechanisms of MDR 
 

Non-cellular mechanisms of chemoresistance are usually associated with solid tumors 

and occur as a consequence of tumor growth. These mechanisms are typically exhibited in 

cancers which show inherent resistance to chemotherapy at the initial exposure. The unique 

features of the TME provide protection for cancer cells from chemotherapeutic agents. A lack 

of nutrition, hypoxia, higher interstitial fluid pressure and an acidic environment could reduce 

drug access to the tumor mass and thus confer resistance to chemotherapeutic agents. Recent 

studies suggest that tumors do not manifest as a proliferation and progression of cancer cells 

alone, but rather as collaborative interactions between cancer cells and their stroma. These 
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interactions between cancer cells and non-transformed cells such as endothelium, immune cells 

and fibroblasts may alter the response to chemotherapeutic agents [26-31]. Another important 

attribute in non-cellular MDR mechanisms is that cancer cells are genetically heterogeneous. 

This heterogeneity is now considered an important factor in tumor resistance [27, 32].  

 

1.1.1.1 Role of the TME in MDR 
 

Tumors exist in a close relationship with the surrounding microenvironment. The TME 

could also affect the sensitivity of tumor cells to drug treatment, in addition to initiating and 

supporting the tumorigenic process [33]. The first study describing interactions between tumor 

cells and their microenvironment was performed in 1863 by Rudolph Virchow [34]. The 

concept that the progression of cancer is regulated by the interactions of cancer cells with their 

microenvironment was postulated in 1889 by Stephen Paget. Accordingly, Paget is considered 

the pioneer of the TME concept [35]. The first evidence that the TME participates in tumor 

resistance to radiotherapy and chemotherapy was described by Sutherland and colleagues. They 

showed that multicellular spheroids were more resistant to adriamycin than cells cultured in 

monolayer using Chinese hamster lung fibroblasts and EMT-6 mammary tumor cells [36, 37]. 

Further work demonstrated that resistant variants of EMT-6 cells cultured in monolayer were 

no more resistant than the parent cell line. However, upon reinjection of the resistant variant of 

EMT-6 cells into the mice, they regained their resistant properties [38, 39]. These findings 

demonstrated that the composition of the TME, including cell-cell and cell-ECM interactions, 

may contribute to the rapid development of drug resistance in tumors [5].  

The TME is composed of a variety of stromal cell types implicated in tumor promotion 

and progression, such as cancer-associated fibroblasts (CAFs), mesenchymal stem cells 

(MSCs), lymphocytes, monocytes/macrophages, mast cells and myeloid-derived suppressor 

cells (MDSCs). Furthermore, the secreted products of these cells, such as cytokines, 

chemokines and the non-cellular components arranged into the extracellular matrix, are an 

important part of the TME [40-42]. The stromal cells within the TME substantially support 

tumor growth and progression in a different manner. For example, endothelial cells provide 

nutrients through angiogenesis and adipocytes may support cancer growth mainly through the 

secretion of growth factors and cytokines [43-45]. On the other hand, immune cells could have 

both pro-tumorigenic and antitumor functions through diverse and complex mechanisms [42, 

46-48].  
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Recent studies have identified mechanisms of resistance to various cancer therapies 

which were conferred by alteration not in the tumor but rather in the TME (Figure 1.1). TME-

mediated drug resistance can be mediated either via soluble factors, such as cytokines and 

chemokines secreted mainly by CAFs, or cell adhesion-mediated drug resistance (CAM-DR), 

mediated by the adhesion of cancer cells to components of the ECM [49-58]. 

 

 

 

Figure 1.1: Chemoresistance of tumors mediated by the TME. Dynamic interactions between tumor cells and 

the TME induce a drug resistant phenotype in cancer cells. Integrins on tumor cells could adhere to components 

of the ECM. These adhesions modulate pro- and anti-apoptotic signals in tumor cells which might induce drug 

resistance. Moreover, soluble factors secreted by stromal cells upregulate anti-apoptotic proteins in tumor cells 

and may therefore increase drug resistance. Adopted from Meads et al. [29].  

 

1.1.1.1.1 Soluble factor-mediated drug resistance 
 

CAFs are most abundant stromal components in the TME of solid tumors. Numerous 

studies demonstrated their prominent roles in cancer pathogenesis [59, 60]. Fibroblasts were 

first described as spindle-shaped cells capable of collagen synthesis in connective tissue [34]. 

Fibroblasts synthetize many constituents of the ECM, such as collagen and fibronectin, in 

addition to contributing to the formation of the basement membrane. In addition, fibroblasts are 

also an important source of ECM-degrading proteases such as matrix metalloproteinases 

(MMP) [61-63]. Fibroblasts are usually quiescent. However, they become activated during the 
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wound healing response and secrete a high amount of ECM components [62]. Fibroblasts 

associated with tumors exhibit an activation phenotype and different gene expression profile in 

comparison to normal counterparts [61]. The most unique feature of CAFs is their high capacity 

for ECM synthesis and remodeling of the local ECM. The deposition of ECM components by 

CAFs in the tumor stroma can function either as a physical barrier or as a structural scaffold for 

tumor cells [64]. 

The most common source of CAFs are normal resident tissue fibroblasts which are 

activated by neighboring tumor cells [65]. For example, their source could be quiescent stellate 

cells that share many functions and are considered CAFs in pancreatic and liver cancer [66]. 

Another source of CAFs are MSCs. Many studies have provided evidence that bone marrow-

derived MSCs can differentiate into CAFs in cancers such as glioma, or breast and pancreatic 

carcinomas [67]. The less common sources of CAFs include epithelial and endothelial cells 

which could undergo epithelial-to-mesenchymal transition (EMT) or endothelial-to-

mesenchymal transition (EndMT), respectively [68-71]. 

The first evidence of the pro-tumorigenic activity of CAFs was found in a model of 

human prostate cancer in which immortalized prostate epithelial cells grafted onto mice in 

combination with CAFs led to the emergence of lesions resembling prostatic intraepithelial 

neoplasia [72]. Numerous studies have examined the response of CAFs to chemotherapy, as 

well as their role in cancer chemoresistance (Figure 1.2). These effects are mainly mediated by 

the secretion of high levels of molecules produced by CAFs, such as interleukin-6 (IL-6), 

transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF). IL-6 induces a pro-

survival signal in many cancer cells through the overexpression of NF-κB, which confers 

resistance to cisplatin [53, 73]. HGF is a key regulator of cancer cell resistance to receptor 

tyrosine kinase inhibitors. The activation of the mitogen-activated protein kinase (MAPK) and 

the phosphoinositide 3-kinase (PI3K) signaling pathway confers chemoresistance in pancreatic 

and colorectal cancers [52, 74]. Moreover, recent studies indicate that CAFs can upregulate the 

glutathione level and thus inhibit the production of reactive oxygen species (ROS) to antagonize 

chemotherapy-induced cell death in prostate cancer [75]. There is some evidence showing that 

a unique subset of CAFs are resistant to chemotherapy themselves due to the overexpression of 

ATP-binding cassette (ABC) transporters [76]. 
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Figure 1.2: The functions of CAFs in tumors. The role of CAFs in tumor growth, progression and resistance. 

Adopted from Kalluri [77] with minor changes. 

 

1.1.1.1.2 Cell adhesion-mediated drug resistance 
 

The ECM comprises approximately 300 proteins that regulate tissue homeostasis. The 

major constituents of ECM forming the structural framework are fibrous proteins, such as 

collagens, fibronectins, laminins and proteoglycans [78-82]. 

While adhesion is essential for normal cells to grow and survive, independence from 

adhesion is considered an essential feature of tumor cells [83]. In 1995, Boudreau and 

colleagues demonstrated that the loss of β1-integrin-mediated adhesion in non-malignant cells 

led to apoptosis [84]. On the other hand, the adhesion of tumor cells to the ECM through β1-

integrin enhances tumor growth and resistance to chemotherapeutic agents in multiple myeloma 

and small cell lung carcinoma (SCLC) cells [85]. Preventing tumor cell adhesion by blocking 

β1-integrin interaction with ECM components resulted in the inhibition of tumor growth in 

mouse multiple myeloma and human breast xenografts [86]. Additionally, the combination of 

this anti-adhesion approach together with conventional chemotherapeutic drugs showed higher 

efficacy in tumor growth inhibition than chemotherapy alone [87]. These resistance-promoting 

effects of cell adhesion were also observed in pancreatic, ovarian, prostate, liver and brain 

cancer [88-91].  
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1.1.2 Cellular MDR mechanisms 
 

Cellular mechanisms of tumor chemoresistance are represented by various mechanisms 

within the cell operating at different levels of the cytotoxic action of the drug. These 

mechanisms range from a decrease of intracellular drug accumulation to the alteration of 

apoptosis induction. Such mechanisms can be further classified into non-classical mechanisms 

and transport-based (classical) mechanisms [26]. 

 

1.1.2.1 Non-classical MDR mechanisms 
 

Non-classical mechanisms of chemoresistance are non-transport based mechanisms 

which are often associated with the altered activity of specific enzymes, such as glutathione S-

transferase (GST) and/or topoisomerase I or II, which limit the cytostatic/cytotoxic activity of 

the drug without altering its concentration inside the cells. Moreover, changes in the expression 

level of proteins controlling drug metabolism, apoptosis induction and membrane permeability 

may also reduce the cytotoxic effect of various drugs [26, 92, 93]. 

 

1.1.2.1.1 Glutathione-S transferase in tumor chemoresistance 
 

Glutathione (GSH) is a small oligopeptide composed from glutamate, cysteine and 

glycine which plays an important role in multiple cellular processes such as proliferation, 

differentiation and apoptosis [94]. Reduced GSH is the major form under physiological 

conditions, however, it could be converted into GSH disulfide (GSSG) upon reaction with ROS 

[95]. Elevated GSH levels have been observed in various types of tumors. Moreover, increased 

concentrations of GSH are typically found together with higher levels of γ-glutamylcysteine 

ligase (GCL), γ-glutamyl transpeptidase (GGT) and GSH-transporting pumps [96]. The 

increase in GSH levels and GCL and/or GGT activities are often associated with the 

chemoresistance of tumor cells [97, 98]. A higher level of GSH per se is a major contributing 

factor to the chemoresistance of drugs, inducing ROS production and leading to the damage of 

DNA and proteins [99]. In addition, GGT-overexpressing cells were shown to be more resistant 

to hydrogen peroxide and chemotherapeutic agents such as doxorubicin (Dox), cisplatin and 5-

fluorouracil (5-FU) [100-102]. Recent studies showed coordinated elevated levels of GSH and 

the overexpression of multidrug resistance protein 2 (MRP2) in chemoresistant colorectal and 

lung cancer cell lines. The proposed mechanism was that GSH plays a cofactor role in MRP2-

mediated efflux [103, 104]. 
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GST represents a classical phase II detoxification enzyme which is primarily responsible 

for binding GSH to xenobiotics, thus forming conjugates that are subsequently secreted out of 

the cell (Figure 1.3). There are three types of GST: cytosolic, mitochondrial and nuclear. 

Cytosolic forms of GST are divided into six classes (α, μ, ω, π, θ and ζ) with 30% sequence 

homology [105]. GST binds both substrate and GSH and activates the thiol group of GSH to 

enable nucleophilic attack on the substrate. Accordingly, the elevated expression of GST 

combined with high GSH levels can increase the rate of conjugation and the detoxification of 

drugs, thereby increasing chemoresistance [106-108]. Several inhibitors of GSTs were recently 

developed to improve the response of tumors to chemotherapeutic drugs. Ethacraplatin, 

ethacrynic acid and its analogs were tested for their toxicity and tolerance in patients with 

invasive bladder cancer. Collectively, a combination of inhibitors of GSH and GST synthesis 

might increase the sensitivity of cancer cells to chemotherapeutics and provide viable options 

for patients with chemotherapy-resistant tumors [106].  

 

 

 

Figure 1.3: The role of GST in xenobiotic detoxification. GSH conjugation to a xenobiotic (X) via GST results 

in the formation of glutathione-S conjugate. Adopted from Townsend et al. [109].  

 

1.1.2.1.2 Upregulated DNA damage repair in drug resistance 
 

The anticancer activity of most chemotherapeutic drugs relies on the induction of DNA 

damage. Consequently, the capacity of DNA damage repair (DDR) mechanisms in tumor cells 

affects the effectiveness of DNA-damaging drugs (Figure 1.4) [110].  

There are five major DNA repair pathways. Modified bases are repaired by the base 

excision repair (BER) pathway [110]. Two other major forms are involved in the repair of DNA 

double-strand breaks (DBSs). The first is called homologous recombination repair (HRR) and 
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it is a relatively accurate and efficient repair pathway, however, it depends on the presence of 

an undamaged sister chromatid. The second mechanism, called the non-homologous end-

joining (NHEJ) pathway, is still effective but less accurate. The nucleotide excision repair 

(NER) mechanism deals with modified nucleotides which distort the structure of the double 

helix and the mismatch repair (MMR) pathway deals with replication errors, including deletions 

and insertions [111]. 

Efficient NER is required for the repair of DNA damage caused by platinum-based 

drugs [112]. One of the crucial components of the NER pathway is excision repair cross-

complementing 1 protein (ERCC1). High expression of ERCC1 has been linked to poor 

responses to platinum-based drugs in numerous cancer types, including NSCLC, gastric and 

ovarian cancer [113-115]. Resistance to drugs inducing single-strand breaks arises from the 

upregulation of proteins of the BER pathway, including poly(ADP-ribose) polymerase 1 

(PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA 

phosphodiesterase 1 (TDP1). For example, the overexpression of XRCC1 or TDP1 promotes 

resistance to camptothecin [116-118].  

Although there is evidence that the response to chemotherapy could be affected by NER 

and BER, the sensitivity of cancer cells is preferentially linked to HRR and MMR. Tumors 

deficient in HRR are highly sensitive to platinum-based drugs. Moreover, two HRR-related 

genes, breast cancer anti-estrogen resistance protein 1 and 2 (BCAR1 and BCAR2), are 

frequently inactivated in breast, ovarian and pancreatic tumors [119, 120]. Recent studies 

showed a link between MMR proteins such as DNA mismatch repair protein 2 (MSH2) and 

Mutl homolog 1 (MHL1) and resistance to platinum-based compounds. For example, cancer 

cells deficient in MSH2 protein or with the hyper-methylated MLH1 gene were more sensitive 

to cisplatin and carboplatin than control cells [121].  

Therefore, inhibition of the main DDR mechanisms in combination with DNA-

damaging drugs could represent a promising treatment strategy [110].  
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Figure 1.4: DNA repair pathways involved in chemotherapy resistance. Five major DNA repair mechanisms 

were described including: (a) mismatch repair (MMR); (b) nucleotide excision repair (NER); (c) base excision 

repair (BER); (d) homologous recombination repair (HRR); and (e) non-homologous end-joining (NHEJ). 

Together, DNA repair pathways form a highly complex defense against genotoxic damage. The capacity of DDR 

mechanisms may therefore influence the effectiveness of DNA-damaging chemotherapeutic drugs. Adopted from 

Bouwman et al. [110] with minor changes.  

 

1.1.2.1.3 Role of apoptosis in cancer resistance 
 

The resistance of cancer cells to apoptosis induction relies on a small number of anti-

apoptotic proteins. The most prominent are anti-apoptotic Bcl-2 family members, inhibitors of 

apoptosis proteins (IAPs) and the caspase 8 inhibitor FLIP [122, 123].  

In order to resist apoptosis, cancer cells either upregulate anti-apoptotic Bcl-2 family 

members, such as B-cell lymphoma 2 protein (Bcl-2) and B-cell lymphoma-extra-large protein 

(Bcl-xL), or downregulate pro-apoptotic proteins of Bcl-2 family members, including Bcl-2-

associated agonist of cell death (Bad) or Bcl-2-associated X protein (Bax) [124-126]. The 

increased ubiquitination of Bax was found to be positively correlated with the onset of 

resistance in SCLC cells [127]. Similarly, decreased expression of Bad was associated with 

resistance to apoptosis in SCLC, breast and pancreatic cancer cells [128, 129]. The 

overexpression of Bcl-2 or Bcl-xL was demonstrated to be effective in inhibiting apoptosis and 
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enhancing resistance to a variety of chemotherapeutic agents in various tumor types [130-134]. 

The expression of both proteins is regulated by transcription factors NF-κB and STAT3, which 

were found to be overexpressed in many types of chemoresistant tumors. The inhibition of NF-

κB activity in murine tumor models resulted in sensitization to a broad spectrum of 

chemotherapeutic drugs [135]. Further, the constitutively activated STAT3 signaling pathway 

was demonstrated in many solid tumors [136]. The constitutively activated STAT3 signaling 

pathway upregulates the expression of anti-apoptotic proteins, including Bcl-xL and myeloid 

cell leukemia 1 (Mcl-1), which prevent cytochrome c release and the induction of apoptosis. 

Consequently, the inhibition of either NF-κB or STAT3 signaling in combination with 

chemotherapy could achieve desirable outcomes [135-138]. 

Inhibitors of apoptosis (IAPs) block apoptosis by forming a complex with the 

baculovirus-IAP repeat (BIR) domain of caspases and inhibiting their catalytic activity. The 

elevated expression of IAPs was demonstrated to be a common feature of various cancer types 

resistant to apoptosis induction by a large variety of apoptotic stimuli, including 

chemotherapeutic agents, radiation and immunotherapy [122].  

 

1.1.2.2 Classical transport-based MDR mechanisms 
 

The classical cellular mechanisms of MDR, also known as transport-based mechanisms, 

involve changes in the efflux or influx of drugs from or to the cancer cells, respectively, by 

various energy-dependent membrane transport proteins, thereby preventing the drugs from 

reaching therapeutic concentrations. These mechanisms include a decreased uptake of water-

soluble drugs such as folates and nucleotide analogs, and the increased energy-dependent efflux 

of hydrophobic drugs [139]. 

 

1.1.2.2.1 Role of copper transporters in cancer resistance 
 

Platinum-based drugs have a unique role in the treatment of solid tumors and in most 

cases they are not interchangeable. These agents are most active against testicular, lung, ovarian 

and bladder cancers. However, resistance to platinum-based drugs (Pt resistance) is very 

common. Pt resistance is a complex phenomenon which is regulated by a cascade of events that 

interfere with any of the multiple steps involved in its cytotoxic actions. However, reduced 

intracellular accumulation is one of the most common features [140]. The decreased expression 

of platinum-based drug influx transporter copper transporter receptor 1 (CTR1) and the 

overexpression of platinum-based efflux transporter copper transporter receptor 2 (CTR2), both 
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belonging to the soluble carrier (SLC) SLC22A2 family, were observed to confer Pt resistance 

[141]. Conversely, the sensitivity of cisplatin-resistant SCLC cells was restored when CTR1 

was introduced into the cells [142]. Similarly, the decreased expression of CTR1 was associated 

with cisplatin sensitivity in ovarian and colorectal cancer cells, as well as in a mouse model of 

human cervical cancer in which the levels of cisplatin-induced DNA adducts correlated with 

CRT1 expression [143-146].  

 

1.1.2.2.2 Antifolate resistance in cancer treatment 
 

One of the first documented mechanisms of antifolate resistance was impaired 

methotrexate (MTX) transport into cancer cells [147]. The reduced folate carrier 

(RFC/SLC19A1) was described as a major transporter which facilitates the uptake of antifolates 

into the cells. The loss of function of the RFC or an inactivating mutation were frequently 

associated with antifolate resistance [148-152].  

Another route of antifolate uptake is mediated via the proton-coupled folate transporter 

(PCFT/SLC46A1) which functions as a unidirectional symporter that co-transports antifolates 

along with protons into cells. However, to date no resistance to antifolates has been documented 

with a loss of function of PCFT [153, 154].  

Folate receptors (FRs) are the third route of folate entry into the cell. FRs are high-

affinity folate-binding membrane glycoproteins encoded by three different gene loci including 

FRα, β and γ [21]. Several studies suggested that alterations in FR expression could result in 

antifolate resistance. It was demonstrated that selection with MTX resulted in decreased levels 

of FRα, leading to the decreased transport of MTX and drug resistance [155]. Furthermore, the 

transfection of FRα into human breast carcinoma MCF-7 cells increased their uptake and 

sensitivity to MTX [156].  

These data indicate the importance of understanding the molecular mechanisms 

underlying antifolate resistance for the design of a new generation of antifolates which aim to 

overcome this resistance (Figure 1.5) [21].  
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Figure 1.5: Molecular mechanisms of antifolate resistance in cancer. Adopted from Gonen et al. [21].  

 

1.1.2.2.3 Lung resistance-related protein  
 

Lung resistance-related protein (LRP), also known as major vault protein (MVP), was 

first described in Dox-resistant lung cancer cells [157]. LRP is not a member of the ABC 

transporters superfamily, however, the expression of LRP is associated with MDR in lung 

cancer. LRP is primarily located in the cytoplasm and mediates MDR through drug efflux [158, 

159]. LRP overexpression was demonstrated in lung cancer cells derived from patients after 

chemotherapy treatment. It was also documented in B-cell lymphoma and gliomas [160]. 

Moreover, basal LRP protein expression was associated with resistance to platinum-based 

drugs, anthracyclines, etoposide and vinblastine in lung cancer cell lines [159]. 

 

1.1.2.2.4 RLIP76 in drug resistance 
 

Ral-interacting protein (RLIP76) is an ATP-dependent non-ABC transporter 

responsible for the efflux of endogenous metabolites, as well as chemotherapeutic agents [161]. 

RLIP76 actively transports Vinca alkaloids, including vincristine, vinblastine and vinorelbine, 

leading to decreased drug accumulation within the cell [162]. RLIP76 is expressed in many 

human tissues and is also overexpressed in multiple cancers. More importantly, the inactivation 

of RLIP76 results in the sensitization of both NSCLC and SCLC cells to vinorelbine [163].  
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1.2 ABC transporter superfamily 
 

ABC transporters represent one of the largest and most conserved families of membrane 

proteins from prokaryotes to humans. The wide-spread presence of these proteins with a 

relatively conserved structure and function suggests their fundamental role [164]. ABC 

transporters are usually localized in the plasmatic membranes of cells in the gut, liver and 

kidney and the epithelia of various tissues. Moreover, the expression of ABC transporters has 

also been reported in the membrane of intracellular organelles such as the mitochondria, Golgi 

apparatus and endoplasmic reticulum [165].  

The majority of ABC transporters are responsible for the active transport of a wide 

variety of substrates across the membranes, including steroids, phospholipids, glycolipids or 

xenobiotics. Various other physiological roles for ABC transporters has been demonstrated, 

such as defense against oxidative stress and antigen presentation [166]. Some ABC transporters 

have functions other than substrate translocation, for example, sulfonylurea receptors SUR1 

and SUR2 regulate potassium channels, whereas cystic fibrosis transmembrane conductance 

regulator (CFTR) is an ATP-gated chloride channel [167-169].  

The ABC transporter superfamily can be divided into two categories. The first category 

includes transporters which utilize the energy of ATP hydrolysis to translocate substrates across 

membranes. Other ABC transporters localized mainly in the cytosol or nucleus play a role in 

chromatin organization, DNA repair and mRNA transport through the nuclear membrane [31, 

170, 171]. Identification and characterization has been performed for 49 members of the ABC 

transporter superfamily. They are divided into seven subfamilies from ABCA to ABCG based 

on their gene organization and location, the structure of domains and sequence homology [165, 

172, 173].  

Mutations or the functional failure of ABC transporters are associated with multiple 

human diseases, such as cystic fibrosis (associated with the mutation of CFTR, also known as 

ABCC7), pseudoxanthoma elasticum (associated with the mutation of MRP6, encoded by 

ABCC6), Stargardt macular degeneration (associated with the mutation of ABCC4), Tangier 

disease (associated with the mutation of ABCA1), sitosterolemia (associated with the mutation 

of ABCG5 or BCG8) and harlequin ichthyosis (associated with the mutation of ABCA12) 

[174].  
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1.2.1 General structure of ABC transporters 
 

The canonical domain organization of ABC transporters comprises two transmembrane 

domains (TMDs), which provide a passageway for the cargo and two cytoplasmic nucleotide-

binding domains (NBDs), which bind and hydrolyze ATP (Figure 1.6) [175-177].  

In eukaryotes, the majority of ABC transporters are composed of a single polypeptide 

that contains all functional units. Eukaryotic ABC transporters are organized either as full 

transporters (containing two NBDs and two TMDs), or as half transporters (containing one 

NBD and one TMD), which form homo- or heterodimers [178].  

 

 

 

Figure 1.6: Molecular architecture of the ABC transporter. (a) Structure of the human P-gp (E556Q/E1201Q) 

in complex with ATP. The N-terminal half (TMD1 and NBD1) is colored in orange and the C-terminal half (TMD2 

and NBD2) in blue. ATP is shown in ball-and-stick format (gray, carbon; red, oxygen; blue, nitrogen; orange, 

phosphorus) and Mg2+ is shown as a sphere (magenta). (b) Two conformational states model of the ABC 

transporter, outward facing and inward facing, with the substrate-binding site orientated towards the extracellular 

and cytoplasmic regions. Adopted from Rees et al. [175] with minor changes.  

 

1.2.1.1 Structure and properties of the NBDs 
 

The nucleotide-binding domains are homologous throughout the members of the ABC 

transporter family. Each NBD has an L-shaped configuration containing two subdomains and 

several characteristic conserved motifs. The conserved nature of NBD comprises a RecA-like 

subdomain with a so-called Rossman fold containing Walker A and Walker B consensus motifs 

and an α-helical subdomain which contains an LSGGQ sequence also called a “C-loop” or 
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“ABC signature motif” that contacts the nucleotide in the ATP-bound state and is characteristic 

of all ABC transporters (Figure 1.7) [179-184].  

 

 

 

Figure 1.7: Crystal structure of the NBD dimer of the HlyB transporter. NBD dimer representation with 

bound ATP/Mg2+. ATP and Mg2+ (green spheres) are sandwiched at the interface of the two NBD monomers 

(shown in light tan and yellow). N- and C-termini of the individual monomers are labeled. Conserved motifs are 

colored accordingly. Adopted from Zaitseva et al. [185].  

 

The crystal structures of isolated NBDs bound to ATP show the two NBDs engaged in 

a symmetric dimer with the two ATP molecules sandwiched in the dimer interface. This 

arrangement is called a sandwich dimer or head-to-tail arrangement. As a consequence of this 

organization, the ATP-binding sites are formed between the P-loop of one NBD and the 

LSGGQ motif of the other and vice versa [186-188].  

 

1.2.1.2 Structure and properties of the TMDs 
 

Unlike NBDs, the TMDs vary in their primary sequence, length, architecture and the 

number of transmembrane (TM) α-helices, depending on the transporter class. ABC exporters 

contain conserved 12 TM α-helices, whereas ABC importers feature 10 to 20 TM α-helices. 

The lack of primary structure conservation in the TMDs is likely due to the diverse nature of 

the transporting substrates. Transporting substrates interact with residues of the TM α-helices 

which line the TM pore. The TM α-helices of the TMDs form a TM pore which is either 

accessible from the cytoplasm (inward facing) or from the outside of the cell (outward facing) 

(Figure 1.6). Several overlapping drug-binding sites were identified in multidrug transporter P-



27 
 

glycoprotein. Accordingly, the drug binding pocket of P-glycoprotein has been described as 

polyspecific [189-191]. Conformational changes at the NBDs are transmitted to TMDs via 

coupling helices, also called intracytosolic loops (ICLs). The coupling helices are embedded in 

a grove on the surface of the NBDs at the boundary between the Rec-like and α-helical 

subdomain [192-194].  

 

1.2.2 ATPase catalytic cycle of ABC transporters 
 

The crystal structures of transporters provided a framework for formulating the reaction 

mechanisms of ATP-driven substrate transport. Numerous distinct mechanisms were proposed 

to describe how ATP binding and hydrolysis by NBDs might be coupled to inward-facing or 

outward-facing conformations of the TMDs. Three major mechanistic models were proposed: 

the ATP-switch model, constant contact model and the reciprocating twin-channel model 

(Figure 1.8) [195].  

 

 

 

Figure 1.8: Models of the ATP catalytic cycle in the ABC transporters. (a) ATP-switch model; and (b) constant 

contact model. Adopted from George et al. [196].  

 

1.2.2.1 The ATP-switch model 
 

The ATP-switch model was proposed to explain the mechanism of substrate transport 

via ABC transporters, specifically how cycling between high and low-affinity states for ligands 

on different sides of the membrane are coupled to the ATP catalytic cycle. The characteristic 

feature of the ATP-switch model is that transport mechanisms are divided into several steps and 

the transmission from one step to next is mediated by conformational changes. The transporter 

is in the nucleotide-free basal state at start of cycle with a high affinity for a ligand and NBDs 
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are in an open dimer configuration with a low affinity to ATP. The transport cycle is initiated 

by the binding of the substrate to its high affinity sites in TMDs, causing conformational 

changes in the NBDs transduced via coupling helices. As a result, the affinity of NBDs for ATP 

is increased by lowering the activation energy for the closed dimer formation. Next, the 

cooperative binding of two molecules of ATP to NBD monomers generates the formation of 

the sandwich dimer around ATP molecules. The closed NBD dimer induces a conformational 

changes in TMDs to initiate substrate translocation. These conformational changes involve the 

breaking of interactions between TM α-helices and the formation of new contacts. These new 

interactions allow the relocation of the substrate binding site from the cytoplasmic to the 

extracellular face. The extracellular exposure of the binding site reduces its affinity to the 

substrate and allows the substrate release. Next, ATP is sequentially hydrolyzed to form a 

transition state and the sequential release of phosphate and ADP restore the transporter to its 

basal configuration.  

This model highlights the close crosstalk between the two halves of the ABC transporter 

which is essential for forming the ATP hydrolysis sites and the drug translocation pathway. It 

also helps to explain how substrate binding can stimulate ATP binding instead of ATP 

hydrolysis [194, 195, 197].  

 

1.2.2.2 The constant contact model 
 

The major difference between the constant contact model and the ATP-switch model is 

that in the former, NBDs remain in contact throughout the cycle. There are two distinct versions 

of the constant contact model. The symmetric working model assumes ATP hydrolysis in each 

NBD, with one site opening at the point of ATP hydrolysis and second site remaining closed 

with ATP bound and occluded. The enzymatically supported asymmetric model proposes that 

one nucleotide-bound active site is occupied with ATP while other is empty and accessible to 

ATP [187, 198, 199].  

 

1.3 Role of ABC transporters in MDR 
 

The MDR phenotype represents the dominant mechanism in the development of 

resistance to chemotherapeutic drugs in cancer cells. It is associated with the overexpression of 

ABC transporters, reducing the intracellular concentration of drugs. To date, 15 members of 

the ABC transporter superfamily which confer a MDR phenotype have been identified. The 

most common members of ABC transporters mediating cancer MDR are P-glycoprotein (P-gp), 



29 
 

multidrug resistance protein 1, 2, 5, 7 (MRP1, 2, 5, 7) and breast cancer resistance protein 

(BCRP). Moreover, these transporters can be simultaneously expressed in tumor cells [200-

202].  

 

1.3.1 P-glycoprotein 
 

The first correlations between cell membrane transporters and drug resistance were 

made in Chinese hamster ovary cell lines, in which it was shown that a 170 kDa glycoprotein, 

called P-gp (ABCB1 or MDR1), correlated with the degree of drug resistance. P-gp was purified 

in 1979 as a surface glycoprotein. Strong evidence supporting its role in pleiotropic drug 

resistance came in 1982 when it was shown that DNA from a resistant cell line which was 

transferred to non-resistant cells was able to confer resistance [203]. P-gp represents the most 

studied member of the ABC transporters mediating MDR in tumor cells [8, 165]. P-gp can 

transport a large variety of hydrophobic compounds, either neutral or with a positive charge, 

including numerous anticancer agents. The overexpression of P-gp is the most common 

mechanism of MDR in human tumors [139].  

 

1.3.1.1 Structural features of P-gp 
 

P-gp is encoded by the human ABCB1 (MDR1) gene located on chromosomal region 

7q21. In mice, there are two closely related homologous genes, Abcb1a (Mdr1a) and Abcb1b 

(Mdr1b) [204, 205]. The MDR1 gene consists of 28 exons encoding a protein which is 1,280 

amino acids in length. It has been shown that the MDR1 gene is highly polymorphic, with 50 

single nucleotide polymorphisms (SNPs) and three insertion/deletion polymorphisms reported 

so far. Several SNPs are currently considered to be the most clinically relevant: G2677T/A in 

exon 21, C3435C/T in exon 26 and C1236C/T in exon 12. The SNP in exon 26 was associated 

with a two-fold reduction of intestinal P-gp expression, which caused a higher digoxin plasma 

concentration after oral administration. All three abovementioned SNPs were positively 

correlated with the progression-free survival of patients after paclitaxel treatment [206-208].  

P-gp is a single polypeptide chain organized in two similar halves. Each half contains 

one homologous NBD and one homologous TMD consisting of six membrane-spanning α-

helices [209]. P-gp contains three putative glycosylation sites, which represent asparagines 91, 

94 and 99 and two phosphorylation sites for protein kinases A (PKA) and C (PKC), which 

correspond to serines 669 and 681 in the linking region [210, 211].  
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It is still unclear whether P-gp contains a single or multiple drug binding sites in its 

drug-binding cavity. So far, three drug binding sites in P-gp have been identified, the H-site, 

which preferentially interacts with Hoechst 33342, the R-site interacting with Rhodamine 123 

and the P-site, with a positive allosteric effect on the H- an R-sites. Interestingly, nearly 18% 

of amino acids involved in drug-binding possess aromatic residues [209, 212].  

 

1.3.1.2  Mechanism of drug efflux 
 

One of the most interesting features of P-gp is that it recognizes an extremely wide 

spectrum of chemical structures as substrates. Its substrates are typically of a hydrophobic 

nature. Nevertheless, P-gp substrates are also amphipathic molecules which align in the 

interfacial region rather than being uniformly distributed in the hydrophobic part of the lipid 

bilayer. Three models of the P-gp drug efflux mechanism have been proposed, namely the 

classical pore pump model, the hydrophobic vacuum cleaner (HVC) model and the flippase 

model (Figure 1.9) [213].  

 

 

 

Figure 1.9: Different functional models of P-gp-induced MDR. Adopted from Dewanjee et al. [213].  

 

Drug molecules associated with P-gp in the cytosolic compartment are transported out 

of the cell through the protein channel in the classical pore pump model, thus keeping the 

substrate away from the hydrophobic lipid phase of the membrane [214]. 

According to the HVC model, P-gp drives the efflux of drugs directly from the 

membrane rather than the aqueous phase. This model suggests that P-gp interacts with its 

substrates within the membrane through two portals formed by TM domains 4/6 and 10/12, due 
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to the hydrophobic nature of most P-gp substrates, allowing the substrate to enter the cavity and 

be subsequently effluxed to the extracellular space [215].  

In the flippase model, substrates located in the inner leaflet of the plasma membrane are 

translocated to the outer leaflet of the lipid bilayer, from which they passively diffuse into the 

extracellular environment. This model assumes that substrates have specific localizations 

within each bilayer leaflet. Substrates exert a slower rate of passive transbilayer flip-flop than 

the rate of P-gp-mediated flipping, therefore the concentration of substrates remain higher in 

the outer leaflet [216].  

 

1.3.1.3  Physiological role of P-gp 
 

P-gp is constitutively expressed in various normal tissues including in the kidneys, liver, 

pancreas, small and large intestine, brain, testes, adrenal glands and the placenta. This tissue 

distribution implies an important physiological role in the protection against a wide range of 

potentially toxic substances [7].  

P-gp is located on the apical membrane of intestinal epithelial cells, ensuring the 

transport of substrates from cells into the intestinal lumen [217]. An intriguing feature of P-gp 

in the gastrointestinal tract (GIT) is the interaction with drug metabolizing enzymes, 

particularly with the 3A4 isozyme of cytochrome P450 (CYP3A4). P-gp and CYP3A4 share 

many substrates and have a common tissue distribution. This considerable overlap in substrate 

selectivity and tissue localization had led to hypothesis that this enzyme pair acts as coordinated 

barrier against xenobiotics in GIT [218].  

P-gp is expressed on the luminal side of the proximal tubule cells in the kidneys as well 

as in other parts of the nephrons, such as the loop of Henle or collecting ducts. Many studies 

have shown that P-gp plays a key role in the renal elimination of certain molecules by means 

of active secretion into the urine and it most likely limits the re-absorption of these molecules 

filtered in the glomerulus [219].  

P-gp is also expressed on the apical membrane of endothelial cells lining the brain 

capillaries. These cells form a continuous monolayer called the blood-brain barrier, which 

represents an important physical and biochemical transport barrier leading to the limited access 

of xenobiotics to the central nervous system (CNS). P-gp transports substrates to the blood and 

accordingly, it is probably a major limiting factor of xenobiotic entry into the brain. This 

hypothesis is supported by studies in knockout mice lacking P-gp. These animals have a normal 

lifespan and appear healthy and fertile. However, when certain drugs (P-gp substrates) are 
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administrated, these drugs accumulate at very high levels in the brain compared with wild-type 

mice [220].  

 

1.3.1.4  Role of P-gp in cancer MDR 
 

Studies performed over the last two decades showed that the intrinsic and acquired 

expression of P-gp plays a significant role in the clinical chemoresistance of human 

malignancies. According to the analysis of MDR1 RNA levels in more than 400 different tumor 

samples, tumors can be classified into three categories: i) usually positive (intrinsically 

chemoresistant tumors such as in colon, kidney and pancreatic cancer); ii) occasionally positive 

(e.g., neuroblastoma); and iii) generally negative (e.g., lung, ovarian and prostate cancer and 

melanoma). The low level or absence of MDR1 gene expression in some chemoresistant tumors 

suggests that other mechanisms of MDR exist. However, there is a strong correlation between 

MDR1 expression and drug resistance in many types of cancer [221].  

The overexpression of P-gp confers resistance to a wide variety of neutral and cationic 

hydrophobic chemotherapeutics including taxanes (e.g., paclitaxel and docetaxel), 

epipodophyllotoxins (e.g., etoposide and teniposide), Vinca alkaloids (e.g., vinblastine and 

vincristine), anthracyclines (e.g., Dox and daunorubicin), actinomycin D or tyrosine kinase 

inhibitors (TKIs, e.g., imatinib, nilotinib and erlotinib) [139, 172]. It was therefore important to 

identify the mechanisms regulating P-gp expression and activity. Several potential mechanisms 

were suggested: i) amplification of the MDR1 gene; ii) increased transcription of the MDR1 

gene; iii) changes in ABCB1 translation efficiency; iv) mutations in the MDR1 gene; and v) 

chromosomal rearrangements that produce hybrid MDR1 genes [222, 223].  

P-gp can also confer resistance to apoptosis induced by diverse non-drug stimuli 

including Fas, TNF, γ-irradiation and serum starvation [200]. The exact mechanism by which 

P-gp inhibits apoptosis is not clear. However, different theories have been proposed, including 

interference with the death-inducing signaling complex (DISC) and the inhibition of caspase-8 

activation [213]. Moreover, P-gp could prevent apoptosis by regulating the intracellular levels 

of the lipid molecules involved in apoptotic signaling pathways, such as the sphingolipids and 

their metabolites, particularly ceramide and sphingosine-1-phosphate (S1P) [221]. 

Furthermore, the overexpression of sphingosine kinase, which is the enzyme involved in the 

production of S1P, leads to the upregulation of P-gp [224, 225].  
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1.3.2 Multidrug resistance proteins 
 

The multidrug resistance proteins (MRPs) belong to the C subfamily of the ABC 

transporters (ABCC). The ABCC subfamily contains thirteen members. Nine are MRPs, 

designated MRP1-MRP9 (ABCC1-ABCC6 and ABCC10-ABCC12). The other three members 

of the ABCC subfamily, namely CFTR (ABCC7), SUR1 (ABCC8) and SUR2 (ABCC9), are 

not involved in MDR but rather play a role as chloride- or potassium-selective channels. Finally, 

ABCC13 lacks Walker A, Walker B and the ABC signature motif and it is most likely a non-

functional ABC transporter [226].  

MRPs share several common structural features, including TM α-helices arranged in 

membrane spanning domains (MSDs), as well as NBDs at the intracellular site, similarly to 

other members belonging to the ABC transporter superfamily. Two MSDs and two NBDs are 

commonly observed in the ABC transporter superfamily and also in MRP4, MRP5, MRP8 and 

MRP9 (ABCC4, ABCC5, ABCC11 and ABCC12, respectively). This group of transporters is 

designated short MRPs. However, MRP1, MRP2, MRP3, MRP6 and MRP7 (ABCC1, ABCC2, 

ABCC3, ABCC6 and ABCC10, respectively) have an additional N-terminus-proximal MSD0 

and are therefore defined as long MRPs (Figure 1.10) [227].  

MRPs share a similar transport mechanism, although they are structurally different. 

Most MRPs were initially cloned from tumors, but they are also broadly found in normal 

tissues. A wide range of endo- and xenobiotics can be transported by MRPs and different MRPs 

may have similar substrate specificity. Accordingly, the function of MRPs is a primary tissue 

defense in different locations [228].  
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Figure 1.10: Schematic illustration of MRP topology. The MRPs can be divided into two classes, short (MRP4, 

-5, -8 and -9) and long (MRP1, -2, -3, -6 and -7). Short MRPs have a canonical ABC transporter structure with 

two membrane spanning domains (MSD) and two nucleotide-binding domains (NBD), whereas long MRPs have 

three MSDs and two NBDs. Adopted from Deeley et al. [228] with minor changes.  

 

1.3.2.1  Structure of MRP1 
 

MRP1 (ABCC1) was first cloned in 1992 from the Dox-selected human lung cancer cell 

line H69/AR. The human ABCC1 gene has been mapped to chromosome 16p13.1 and spans 

approximately 200 kb. It contains 31 exons encoding a 1,531 amino acid protein [229]. The 

murine ortholog of human MRP1 (Mrp1/Abcc1) was identified in 1996. Although these proteins 

share 88% of amino acid sequence homology, functional differences are present. For example, 

murine MRP1 is not capable of conferring resistance to anthracyclines, although it mediates 

resistance to vincristine and etoposide. Newly synthetized MRP1 is a 170 kDa polypeptide, 

rapidly processed into a 190 kDa protein via N-terminal glycosylation [230-232].  

The MRP1 has a five-domain structure with two NBDs and three MSDs. The exact 

function of the N-terminal MSD0 in MRP1 remains uncertain and may depend on the cell type 

[233]. The cavity in the membrane through which substrates are effluxed is formed by MSD1 

and MSD2. The orientation of MSD0 to MSD1 and MSD2, as well as its role in substrate 
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translocation, is poorly understood [234]. The MSDs have the highest sequence divergence 

within the ABC transporter superfamily and an abundance of evidence indicates that they 

largely, but not exclusively, dictate transporter substrate selectivity [235, 236]. TM α-helices of 

MSD1 and MSD2 contain a high frequency of polar amino acids. In particular, the last two TM 

α-helices of MSD1 and MSD2 (TM10-11 and TM16-17, respectively) are amphipathic and 

contain polar amino acids clustered on one side of the α-helix [237]. Multiple studies indicate 

that the polarity of these amino acids is important for substrate binding and transport in MRP1 

[238-241].  

 

1.3.2.2  MRP1 mechanism of function 
 

The transport of substrate by MRP1 is similar to other ABC transporters, as it is powered 

by the hydrolysis of ATP which facilitates protein conformational change. Each NBD contains 

three key motifs common among all ABC transporters and forms a characteristic sandwich 

dimer with bound ATP. The ATP-binding sites of MRP1 are not functionally equivalent. 

Whereas NBD1 has an ATP-binding site called the degenerate site, with a high affinity for ATP 

but very low ATPase activity, NBD2 has a so-called consensus site with much a higher capacity 

for ATP hydrolysis [242]. This functional asymmetry represents a feature of ABCC 

transporters, as well as several heterodimeric transporters, which is distinct from canonical 

ABC transporters. Such asymmetry is explained by differences in the canonical sequences and 

spacing of the three key motifs [196].  

The substrate binds to the high-affinity binding site in MSD during the first step of 

MRP1-mediated efflux. This causes the recruitment of ATP to NBD1. ATP binding causes 

further conformational changes resulting in the interaction of NBD1 with NBD2 and the 

recruitment of a second ATP molecule. These two NBDs are arranged in a head-to-tail 

orientation with the two ATP molecules positioned in-between. The dimerization of the two 

NBDs causes conformational changes in MSDs, resulting in the transport of the substrate to the 

low-affinity binding site and its release into the extracellular environment [243]. MRP1 is an 

atypical ABC transporter due the presence of MSD0, however, the deletion of this additional 

MSD does not affect the transporter’s function [244]. 

 

1.3.2.3  Role of MRP1 in cancer chemoresistance 
 

MRP1 is overexpressed in many cancers, such as breast, brain, pancreatic and prostate 

carcinoma, NSCLC and SCLC, melanoma, neuroblastoma, myeloid leukemia and acute 
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lymphoblastic leukemia (AML and ALL), in which it may play a key role in chemoresistance 

development and tumor progression. MRP1 contributes to cancer chemoresistance by exporting 

different classes of drugs, ranging from amphipathic anions to hydrophobic molecules. It also 

mediates the efflux of amphipathic drugs conjugated with sulfate, glutathione and glucuronic 

acid. These drugs include anthracyclines, Vinca alkaloids, epipodophyllotoxins, camptothecins, 

methotrexate, mitoxantrone and tyrosine kinase inhibitors [245]. However, unlike P-gp, MRP1 

does not confer resistance to taxanes, which is an important feature of P-gp-mediated resistance 

[246]. Nonetheless, the clinical correlations of MRP1 overexpression and MDR are extremely 

variable amongst tumor types. For example, the clinical prognostic value of MRP1 remains 

questionable in breast cancer despite its well-described capacity to provide a MDR phenotype 

in vitro [247]. It is noteworthy that the elevated expression of MRP1 has been observed in cells 

isolated from metastatic lesions and metastatic lymph nodes, suggesting a possible contribution 

of MRP1 to metastatic spread [248]. MRP1 was also found to be localized within intracellular 

compartments including mitochondria, endoplasmic reticulum and endocytic vesicles. The 

presence of MRP1 in mitochondria may protect mitochondrial DNA from damage and 

mitochondrial-induced cell death, thus serving as a sequestering mechanism to prevent drugs 

reaching their intracellular target. Moreover, recent studies demonstrated that intracellular 

MRP1 may serve as a reservoir for the rapid restoration of surface levels when required [249].  

MRP1 is also expressed in many normal tissues, such as the testes, lungs, skin, skeletal 

muscles, heart, kidneys and small intestine. Accordingly, MRP1 may affect the efficacy of 

drugs used to treat non-malignant diseases by transporting various antibiotics, opiates, antiviral 

agents and statins [250].  

 

1.3.2.4  MRP2 structure and function  
 

Multidrug resistance protein 2 (MRP2, ABCC2) was first identified and cloned from rat 

hepatocytes as a homolog of MRP1 and named the canalicular multispecific organic anion 

transporter (cMOAT). MRP2 has three MSDs and two NBDs. Amino acid residues in TM α-

helices, particularly TM6, TM9, TM16 and TM17, are essential for the recognition and binding 

of substrates [251]. MRP2 shares 49% of amino acid sequence homology with MRP1, but it 

has a different expression pattern [252].  

MRP2 is expressed at the apical membrane of the polarized cells of various tissues 

including hepatocytes, proximal tubule cells, enterocytes, bladder epithelial cells and cells of 

the placenta [253]. One of the main physiological functions of MRP2 is to transport conjugated 
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metabolites into the bile canaliculus in the liver. Mice with impaired MRP2 transporters showed 

decreased hepatobiliary excretion of glucuronide conjugates and developed Dubin-Johnson 

syndrome [254]. MRP2 actively transports a spectrum of physiological compounds, such as 

glutathione, glucuronides and sulfate conjugates, leukotriene D4 (LTD4), leukotriene E4 (LTE4), 

LTC4 and estradiol-17β (E217G). However, the affinity of MRP2 for these substrates is 

significantly lower than that of MRP1 [255, 256].  

Chemoresistance conferred by MRP2 has been demonstrated in a variety of cancer types 

such as lung, GIT and liver cancer. The overexpression of MRP2 corresponds to etoposide, 

vincristine, cisplatin, Dox, epirubicin and MTX resistance. Therefore, MRP2 appears to be 

involved in the resistance to various chemotherapy agents in many types of tumors [257].  

 

1.3.3 Breast cancer resistant protein 
 

The breast cancer resistance protein (BCRP) is the second member of the G subfamily 

of the ABC transporter superfamily (ABCG2). BCRP was first identified in 1998 in a multidrug 

resistant human breast cancer cell line, MCF-7/Adr, which does not express other known 

multidrug efflux transporters [258]. Human BCRP is encoded by the ABCG2 gene located on 

chromosome 4q22. It is a 72 kDa glycoprotein containing 665 amino acids. The murine ortholog 

shares 81% of amino acid sequence homology with human ABCG2 and was found to confer 

drug resistance in a pattern indistinguishable from human ABCG2 [259]. It contains three 

potential N-glycosylation sites at Asn418, Asn557 and Asn596. However, the elimination of these 

N-glycosylation sites did not affect the expression, subcellular trafficking or the overall 

function of ABCG2 [260-262].  

Several unique features of BCRP distinguish it from most other ABC transporters. First, 

BCRP is the first described half transporter mediating MDR, with one MSD and one NBD 

(Figure 1.11). Second, the NBD precedes the MSD, a domain organization that is opposite to 

that in P-gp and MRP1. Third, BCRP is active upon the homodimerization or oligodimerization 

of either itself or with other transporters from the ABCG subfamily, such as ABCG5 and 

ABCG8. Such unique structural features imply that BCRP employs quite a different transport 

mechanism in comparison to P-gp and MRP1 [263].  

 



38 
 

 

 

Figure 1.11: Model of the putative structure of BCRP. BCRP as a half transporter contains a single NBD 

followed by six TM α-helices organized into the single MSD with three N-glycosylation sites. Adopted from Xu 

et al. [263] with minor changes.  

 

BCRP is widely expressed in normal human tissues with higher expression on the apical 

membrane of syncytiotrophoblast cells. In addition, BCRP is prominently expressed on the 

apical membrane of cells in the small intestine, colon, liver canaliculi membrane and the 

endothelial cells of capillaries in the blood-testis and blood-brain barriers. This localization 

implies that BCRP can play a crucial role in limiting the absorption, distribution and elimination 

of various xenobiotics [264, 265]. Interestingly, BCRP is also expressed on the plasma 

membrane of mature erythrocytes with reduced cellular protoporphyrin IX (PPIX) levels in 

rodents. It is possible that BCRP plays an important role in protecting these erythrocytes from 

oxidative damage, because the elevated cellular accumulation of PPIX is associated with the 

formation of ROS [266].  

High BCRP expression has been detected in many chemoresistant hematological 

malignancies and solid tumors, indicating that it is responsible for MDR in these cancers. BCRP 

is also overexpressed in a subpopulation of cancer cells also known as the side population in 

AML, neuroblastoma, sarcoma, breast cancer, SCLC and glioblastoma. These stem-like cells 

may have an important role in conferring resistance to chemotherapeutic drugs, thereby 

contributing to relapses [267].  

Substrates of BCRP include organic anionic molecules, nucleoside analogs, organic 

dyes, TKIs, anthracyclines, camptothecin-derived topoisomerase I inhibitors, MTX and 

flavopiridols [10]. Other BCRP substrates are toxins, such as carcinogen 2-amino-1-methyl-6-

phenyllimidazo[4,5-b]pyridine (PhIP), or flavonoids such as genistein, uric acid and vitamins. 

Accordingly, BCRP has a very broad substrate specificity that is substantially distinct from that 

of P-gp and MRPs [263].  



39 
 

1.3.4 Modulation of ABC transporter-mediated MDR 
 

There is an ongoing effort to develop drugs capable of either inhibiting or inactivating 

ABC transporters to increase the concentration of anticancer drugs within cancer cells. The 

inhibition of ABC transporters has been evaluated with synthetic or natural inhibitors, including 

competitive and non-competitive inhibitors. Competitive inhibitors exert their function by tight 

binding and blocking the substrate binding pocket. Non-competitive inhibitors exert their 

function by binding to a non-substrate binding site and inhibiting the ATPase activity or 

modulating transporter function allosterically. Another potential strategy to circumvent MDR 

is the downregulation of the expression of ABC transporters by microRNA or small interfering 

RNA (siRNA). A third approach is based on the rational design of new chemotherapeutics 

which are not substrates of ABC transporters [8].  

 

1.3.4.1  Inhibitors of ABC transporters 
 

Compounds with the ability to reverse the chemoresistance mediated by ABC 

transporters belong to a number of different chemical classes, including calcium channel 

blockers, vasodilators, indole alkaloids, hormones and surfactants. The process of 

chemosensitization involves the co-administration of an inhibitor with the anticancer drug in 

order to increase intracellular anticancer drug accumulation by impairing ABC transporter 

function [8].  

Three generations of P-gp inhibitors have been described to date. The first generation 

of P-gp inhibitors includes verapamil, cyclosporine A (CsA) and quinine. These inhibitors are 

pharmaceutically active molecules themselves and they were not specifically developed for 

ABC transporter inhibition. Moreover, these P-gp inhibitors are substrates of P-gp and as a 

result, they show effective inhibition of P-gp only at high dosages that result in serious side 

effects. The second generation of inhibitors was developed through the modification of the first 

generation in order to acquire higher potency and specificity, but lower toxicity. These 

inhibitors, such as CsA analog valspodar, verapamil analog dex-verapamil and biricodar (VX-

710), showed higher efficacy than the first generation of P-gp inhibitors when used in 

combination with conventional chemotherapeutic drugs. However, these drugs were also 

inhibitors of hepatic and intestinal cytochrome P450 enzymes. As such, they decreased the 

metabolism and clearance of cytostatics, causing systemic toxicity [139]. The continuous 

problem with MDR inhibitors led to the development of the third generation of P-gp inhibitors, 

including tariquidar (XR9576), zosuquidar (LY335979), laniquidar (R101933) and elacridar 
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(F12091) [245]. Although these compounds were less toxic and significantly inhibited P-gp 

function at nanomolar concentrations, clinical trials revealed that the results of combined 

treatment with chemotherapeutics were not improved [268, 269].  

Most of the abovementioned molecules inhibit only P-gp. However, some drugs capable 

of inhibiting other ABC transporters have also been developed. For example, agosterol-A, LTC4 

and LTD4 receptor agonist (MK571), raloxifine analogs and isoxazole-derived molecule PAK-

104P significantly inhibited MRP1- and MRP2-mediated MDR [270]. In contrast, inhibitors for 

other ABC transporters of the ABCC subfamily have not been developed [270, 271].  

A large number of BCRP inhibitors with diverse chemical structures have been 

identified. The typical example of a highly selective BCRP inhibitor is fumitremorgin C (FTC), 

produced by Aspergillus fumigatum. However, the neurotoxicity of FTC precludes its use in 

vivo [272]. Several FTC analogs, including Ko132, Ko134 and Ko143 with a much higher 

inhibitory activity, remarkable selectivity and low neurotoxicity have been developed [273]. 

Other notable BCRP inhibitors are novobiocin, tamoxifen and its derivatives, TAG-11 and 

TAG139, and reserpine and dietary flavonoids such as chrysin and biochanin A. Moreover, 

several non-specific inhibitors, such as elacridar and biricodar, known to inhibit P-gp and 

MRP1, were also identified as BCRP inhibitors [263]. Several studies have reported in the last 

decade that BCRP can be inhibited by TKIs, such as imatinib, nilotinib and apatinib, and by 

HIV-protease inhibitors, such as ritonavir, nelfinavir and saquinavir [274].  

 

1.3.4.2  Novel strategies to overcome MDR 
 

MicroRNAs are small, non-coding RNAs that bind to the 3’UTR of mRNA and inhibit 

the expression of proteins at the translational level. MicroRNAs are generally dysregulated in 

cancer cells and alterations in microRNAs levels may play a role in MDR. Several studies 

reported that microRNAs can regulate MDR by modulating P-gp expression [275]. For 

example, the upregulation of microRNA-331-5p and microRNA27a can decrease P-gp 

expression and thus cause the reversal of MDR in the Dox-resistant leukemia cell lines K562 

and HL60 [276].  

Synthetic siRNAs are also extensively used to reverse chemoresistance by inhibiting the 

expression of MDR genes such as ABCB1, ABCB4 and ABCG2. An example is the reduced 

expression level of the ABCC4 gene using RNA interference in chemoresistant gastric cancer 

cells. This inhibition resulted in the increased sensitivity of cancer cells to chemotherapeutic 

drugs [277, 278].  
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Another approach to overcome MDR is to develop drugs that are not substrates of ABC 

transporters. Accordingly, new anticancer drugs that are not transported by P-gp and/or other 

ABC transporters were developed. These drugs are, for example, taxane analogs DJ-927 [279], 

BMS-184476 [280] and ortataxel [281]. However, they have been evaluated in preclinical trials 

for their capacity to overcome MDR in both sensitive and resistant tumor cell lines, with 

negative outcomes due to significant adverse effects [245].  

 

1.4 HPMA copolymer-based drug delivery systems 
 

Conventional chemotherapy plays an important role in cancer treatment. However, 

unfavorable pharmacokinetics and the severe side effects of low molecular weight (LMW) 

anticancer drugs are a limiting disadvantage. As a consequence, numerous polymer drug-carrier 

systems have been developed. Polymeric drug carriers are characterized by their high molecular 

weight (HMW) and can be divided into naturally occurring or synthetic carriers. Synthetic 

polymers can be tailor-made to have properties suitable for the particular need and 

consequently, they are used more frequently in comparison to polymers of natural origin. The 

majority of synthetic polymer drug carrier systems, e.g., nanoparticles or liposomes, usually 

have the drug entrapped inside the carrier-formed particles. On the other hand, water-soluble 

polymer-drug conjugates have pharmacologically active molecules covalently bound to the 

polymer chain via a defined spacer, enabling controlled drug release. Among them, synthetic 

polymer carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers are one 

of most intensively studied systems [282-284].  

HPMA copolymers were developed at the Institute of Macromolecular Chemistry in 

Prague by Kopecek and co-workers several decades ago. Due to their suitable biological 

properties and biocompatibility, HPMA copolymers have been tested for their potential use in 

various medical applications. Nevertheless, their most important and promising application is 

in the field of anticancer drug delivery [285-287].  

HPMA copolymers bearing anticancer drugs substantially reduce the side toxicity of the 

attached drug by preventing its release in the bloodstream during transport to the tumor. Unlike 

free LMW drugs, HPMA copolymer conjugates preferentially accumulate in the solid tumors 

due to the enhanced permeability and retention (EPR) effect (see page 43). Once they reach the 

tumor, the drug is released either in the tumor interstitium or within the cancer cells, providing 

a sufficient drug concentration to trigger cancer cell death. In addition, the long half-life in the 
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bloodstream and the solubilization of even highly hydrophobic anticancer drugs makes this 

drug delivery system particularly attractive [288].  

 

1.4.1 Structure and synthesis of HPMA copolymer carriers 
 

HPMA copolymer-drug conjugates are composed of several distinct parts: a water-

soluble HPMA copolymer backbone, spacer/linker and anticancer drug(s), in addition to an 

optional targeting moiety (Figure 1.12) [284].  

 

 

 

Figure 1.12: Schematic of a polymer-drug conjugate. The polymer conjugate consists of a polymer backbone 

and one or more kinds of anticancer drugs attached by a biodegradable bond, in addition to an optional targeting 

moiety. Adopted from Ulbrich et al. [289].  

 

HPMA copolymer-drug conjugates were originally prepared using the free radical 

copolymerization of HPMA with respective co-monomers bearing reactive 4-nitrophenyl ester 

groups or other functional groups, followed by conjugation with an anticancer drug. All reactive 

polymer precursors were multivalent HPMA copolymers with various amounts of reactive 

groups randomly distributed along the polymer chain. The molecular weight of the copolymers 

usually ranges from 20,000-35,000, due to chain-transfer reactions and steric hindrance in the 

precipitation of growing polymer radicals [290-292].  

The low polydispersity of polymer-drug conjugates is an important requirement for in 

vivo application and regulatory authorities such as the FDA. Unfortunately, HPMA copolymer-

drug conjugates synthetized by free radical copolymerization exhibited polydispersity higher 

than 1.5 and often close to 2. A new technique using controlled radical polymerization, namely 

reversible addition-fragmentation chain transfer (RAFT), was used. RAFT-controlled radical 

copolymerization of HPMA enabled the synthesis of a copolymer with a molecular weight of 
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3-135 kDa and polydispersity of 1.1-1.3. The resulting polymer-drug conjugates therefore 

exhibited a well-defined structure [293, 294]. 

Anticancer drugs are bound to the polymeric carrier via a covalent bond which is stable 

in the bloodstream but cleavable within the tumor cells, particularly in the lysosomal 

compartment [295]. One strategy is to use the pH differences between the blood and lysosomes 

and bind the drug via a pH-sensitive hydrazone bond [296] or cis-aconityl [297] and maleic 

[298] spacers. The other option is to design spacers which are cleavable by specific lysosomal 

enzymes. The best stability in the bloodstream and a fair degradability in the presence of the 

lysosomal enzyme cathepsin B has been shown for the oligopeptidic Gly-Phe-Leu-Gly (GFLG) 

spacer [299, 300].  

Optionally, a targeting moiety could be used for the increased accumulation of polymer-

drug conjugates in the target cells. The active targeting of polymer-drug conjugates can be 

achieved through the incorporation of target-cell-specific ligands such as peptides, 

carbohydrates, lectins, transferrin, antibodies or antibody fragments [301-303].  

 

1.4.2 HPMA copolymer-drug conjugates without a targeting moiety 
 

Malignant cells within the tumor mass are characterized by phenotypic diversity. 

Accordingly, several generally applicable approaches for targeting solid tumors in general have 

been developed. The most important approach is based on the enhanced permeability and 

retention (EPR) effect (Figure 1.13). The EPR effect can be exploited for the so-called passive 

targeting of antitumor drugs into solid tumors [304]. The EPR effect was first reported by 

Matsumura and Maeda in 1986 [305]. They showed that most solid tumors have leaky blood 

vessels with defective architecture, absent or impaired lymphatic drainage and produce an 

extensive amount of various vascular permeability factors. Newly formed blood vessels in solid 

tumors usually have defective endothelial cells with wide fenestration of approximately 200 to 

700 nm and lack a smooth muscle layer. The EPR effect exploits this unique pathophysiological 

nature of tumor blood vessels for the transport of macromolecules into the tumor tissue. 

Macromolecules larger than 40 kDa, as well as small particles approximately 20-500 nm in 

diameter, can easily leak from tumor vessels and accumulate in tumor tissue. Impaired 

lymphatic drainage then further increases the accumulation of such molecules within the tumor. 

The main advantage of the EPR effect in solid tumors is its universality, which enables the use 

of this drug delivery approach in many types of tumors [306, 307].  
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Figure 1.13: Schematic of the EPR effect. The accumulation of macromolecules in solid tumors due to the EPR 

effect. Red dots represent the LMW drug and the blue lines represent macromolecules. Adopted from Ulbrich et 

al. [289].  

 

Various anticancer drugs have been attached to non-degradable linear HPMA 

copolymer carriers such as Dox, puromycin, MTX, taxanes and 5-FU [308-310]. However, the 

first HPMA copolymer conjugate bearing Dox bound through an amide bond and via a GFLG 

spacer subjected to Phase I/II clinical trial was DoxAM-PHPMA (PK1) (Figure 1.14). The results 

of the clinical trial confirmed most of the findings obtained in vivo in animal models, such as 

low toxicity and improved pharmacokinetics, including significantly prolonged drug circulation 

and the increased the accumulation of the drug within the solid tumors. Nevertheless, the 

introduction of HPMA copolymer-drug conjugates which are activated by lysosomal enzymes 

(via an oligopeptide spacer) into clinical practice has been declined [311-313].  

The next generation of linear HPMA copolymer-drug conjugates bearing Dox bound 

via a pH-sensitive hydrazone bond, DoxHYD-PHPMA (Figure 1.14), was introduced about two 

decades after PK1 [314]. This conjugate exhibited remarkable antitumor activity in mice and 

induced a specific antitumor immune response that could be transferred to naive mouse 

recipients [315]. Moreover, this structurally simpler HPMA copolymer-drug conjugate has a 

maximal tolerated dose (MTD) which is three times higher than PK1 [316].  
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Figure 1.14: HPMA copolymer conjugates bearing Dox. Polymer conjugates bearing Dox bound via an 

enzymatically degradable GFLG spacer and amide bond (left) or pH-sensitive hydrazone bond (right). Adopted 

from Ulbrich et al. [289].  

 

The accumulation of HPMA copolymer-drug conjugates in solid tumors due to the EPR 

effect improves with the increasing molecular weight of the polymer carrier (up to ̴ 250 kDa) 

[317, 318]. As such, the use of linear HPMA copolymers with molecular weights of about 40 

kDa as carriers for efficient passive tumor targeting is somehow limited [319]. Accordingly, 

HMW HPMA copolymers such as branched [320], grafted [317], diblock, multiblock [321] and 

star [318] conjugates have been designed and synthetized (Figure 1.15). However, these HMW 

copolymers with molecular weights above the renal threshold need to be biodegradable to 

enable the excretion of the short polymer chains through the urine [318].  
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Figure 1.15: Schematic structures of biodegradable HMW drug conjugates based on HPMA copolymers. 

(a) Branched polymer carrier; (b) linear diblock and multiblock carrier; (c) grafted polymer carrier; and (d) star 

polymer carrier. Adopted from Ulbrich et al. [289].  

 

1.4.3 Active targeting of HPMA copolymer-drug conjugates 
 

Active targeting is an approach based on the specific interactions between a surface 

antigen and a complementary ligand bound to the polymeric carrier. Actively targeted polymer-

drug conjugates can be highly selective and effective against tumors which are less sensitive to 

passively targeted polymer-drug conjugates. Nevertheless, the process of the active targeting of 

polymer-drug conjugates begins through passive accumulation in tumor tissue via the EPR 

effect [289].  

Various targeting moieties have been employed in HPMA copolymer-drug conjugates 

to achieve specific delivery. HPMA copolymer-dug conjugates bearing Dox via the 

oligopeptide spacer GFLG and a targeting moiety, such as antibodies, transferrin, lectins, 

saccharides or melanocyte-stimulating hormone (MSH), were evaluated [284]. The results of 

these studies showed that such targeting moieties can significantly influence the systemic 

distribution of polymer-drug conjugates and promote receptor-mediated targeting in vivo [284, 

322].  



47 
 

One of the HPMA copolymer conjugates bearing Dox and targeted B1 monoclonal Ab 

was used in the treatment of mouse B-cell leukemia BCL1. This conjugate was found to 

completely cure up to 70% of mice bearing B-cell leukemia BCL1 after a single intravenous 

dose. Similar results were obtained with mice bearing B-cell lymphoma 38C13 and treated with 

αCD71 mAb-targeted conjugate, or T-cell lymphoma EL4 and treated with αThy1.2 mAb-

targeted conjugate. However, significant drawbacks of using Ab as a targeting moiety are the 

high cost and poor reproducibility of the synthesis [323].  

HPMA copolymer conjugates bearing Dox have also been conjugated with targeting 

lectins such as wheat germ agglutinin (WGA) or peanut agglutinin (PNA) and evaluated in 

human colorectal carcinoma SW620 in vitro [289].  

The HPMA copolymer conjugate bearing Dox via a GFLG spacer and targeted by a 

galactosamine called PK2 was the first actively targeted HPMA-based conjugate which entered 

Phase I/II clinical trials. However, due to the comparable drug accumulation in tumor and 

normal liver tissues, further testing was declined [324].  
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2 Aims of the thesis 
 

The aim of this study was to design and evaluate the biological activity of HPMA 

copolymer conjugates capable of overcoming P-gp mediated MDR or enhancing the EPR 

effect. This general aim can be dived into three partial tasks: 

 

1. The characterization of the biological activity of new HPMA copolymer conjugates 

bearing a P-gp inhibitor and cytostatic drug (Dox, pirarubicin) in MDR cell lines in vitro 

and in vivo.  

a. The evaluation of the P-gp inhibitory activity of HPMA copolymer conjugates 

bearing P-gp inhibitor (derivative of reversin 121 (R121) or ritonavir (RIT)).  

b. The determination of the cytotoxic and cytostatic activity of HPMA copolymer 

conjugates bearing a P-gp inhibitor and cytostatic drug in vitro.  

c. The efficacy of HPMA copolymer conjugates bearing a P-gp inhibitor and cytostatic 

drug in the treatment of murine model tumors expressing P-gp.  

 

2. The evaluation of the therapeutic potential of micelle-forming HPMA copolymer-

poly(propylene oxide) (PPO) diblock bearing anticancer drug and its capability to 

inhibit P-gp per se.  

a. The determination of the P-gp inhibitory activity of HPMA copolymer-PPO 

diblock in MDR cell lines in vitro. 

b. The evaluation of the cytotoxic activity and cellular uptake of HPMA 

copolymer-PPO diblock in various cancer cell lines in vitro.  

c. The evaluation of the therapeutic efficacy of HPMA copolymer-PPO diblock in 

the treatment of murine model tumors.  

 

3. The investigation of the biological activity of HPMA copolymer conjugates bearing 

organic nitrates as polymeric NO donors.  

a. The evaluation of NO release from the polymeric carrier and the effect of polymeric 

NO donors on proliferation in cancer cell lines in vitro.  

b. The characterization of the cytostatic activity of Dox in the presence of the polymeric 

NO donors in tumor cell lines in vitro.  

c. The estimation of the MTD of selected polymeric NO donors.  

d. The evaluation of the effect of polymeric NO donors on the treatment of solid tumors 

by the HPMA copolymer conjugates bearing Dox by increasing the EPR effect.  
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4 Conclusions 
 

1. We designed and evaluated the biological activity of HPMA copolymer conjugates bearing 

a P-gp inhibitor and cytostatic drug in sensitive and resistant murine and human cancer cell 

lines in vitro and in vivo. 

a. We proved that R121 and RIT, when bound to a polymeric carrier via a pH-sensitive 

hydrazone bond, were very effective in the inhibition of P-gp activity in vitro in both 

murine and human MDR cancer cell lines in a dose dependent manner. The HPMA 

copolymer conjugate bearing R121 inhibited P-gp activity even at 12 µM, whereas 

RIT was effective at higher concentrations. Both conjugates had no effect on 

sensitive cell lines at these concentrations. The conjugate bearing R121 was also 

effective in vivo as a P-gp inhibitor in P388/MDR tumors. 

b.  HPMA copolymer conjugates bearing both an anticancer drug (Dox or THP) and 

P-gp inhibitor (R121 or RIT) were far more potent than the conjugate bearing Dox 

alone or a mixture of conjugates bearing either the cytostatic drug or P-gp inhibitor 

in terms of cytostatic and cytotoxic activity, cell cycle arrest, the accumulation of 

cytostatic drug in cells and the induction of apoptosis in murine and human cancer 

cell lines expressing different levels of P-gp in vitro. 

c. We showed that the conjugate bearing both Dox and R121 remarkably inhibited the 

growth of resistant P388/MDR tumors and led to the significantly prolonged 

survival of treated mice. More importantly, this antitumor activity was more 

profound in the CT26 tumor model, in which it completely cured six out of eight 

experimental mice. 

 

2. We evaluated the biological potential of micelle-forming HPMA copolymer-PPO diblock 

bearing Dox in sensitive and MDR murine and human cancer cell lines in vitro and in vivo. 

a. We proved that the presence of PPO in the structure of HPMA copolymer-PPO 

diblock ensures the inhibition of P-gp in murine and human cancer cell lines 

expressing different levels of P-gp. 

b. HPMA copolymer-PPO diblock without Dox was capable of sensitizing cancer cell 

lines expressing P-gp to the cytostatic and cytotoxic activity of Dox in a dose 

dependent manner. HPMA copolymer-PPO diblock bearing Dox showed higher 

cytostatic activity than the HPMA copolymer conjugate bearing Dox. We observed 

a significantly higher accumulation of HPMA copolymer-PPO diblock bearing Dox 
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in comparison to HPMA copolymer-drug conjugates that do not form a micellar 

structure in both sensitive and MDR neuroblastoma cell lines in vitro. 

c. HPMA copolymer-PPO diblock bearing Dox showed higher antitumor efficacy in 

mouse EL4 lymphoma in vivo, even at a sub-optimal dose in comparison to the 

HPMA copolymer conjugate bearing Dox, which does not form a micellar structure. 

 

3. We evaluated the potential of polymeric NO donors to improve the therapeutic activity of 

HPMA copolymer conjugates bearing Dox in murine tumor cell lines in vitro and in vivo. 

a. The polymeric NO donors showed intracellular NO release upon incubation with 

mouse EL4 lymphoma cells after eight hours of incubation. 

b. Polymeric NO donors were capable of chemosensitizing mouse EL4, 4T1 and 

human EA.hy926 cells to the cytostatic activity of Dox in vitro. Polymeric NO 

donors showed no cytostatic or cytotoxic activity per se within the concentration 

range used. 

c. No decrease of body weight or the occurrence of other signs of systemic toxicity 

were observed after the administration of a therapeutic dose of polymeric NO 

donors. 

d. Two tested polymeric NO donors significantly improved the treatment of EL4 

lymphoma bearing mice with HPMA copolymer conjugate bearing Dox by 

increasing the EPR effect, resulting in a higher accumulation of polymer-bound Dox 

within the tumors. 
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