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Summary 

Regulation of transcription in bacteria is critically important for the cell’s 

functioning and its ability to respond to changing environment as well as for 

pathogens to successfully invade and beat the immune systems of their hosts. 

To understand transcription, the key players must be identified, characterized, 

and their modes of function established. These result then help both create 

models of how the bacterial cell functions and aid in designing new antibacterial 

strategies.  

This Thesis covers 27 selected papers that focus on advancing our knowledge of 

bacterial transcription, dealing mostly with RNA polymerase (RNAP) from model 

organisms Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis, 

representing both gram positives and negatives or being closely related to 

pathogenic species. The Thesis is arranged into five Chapters. Brief resumes of 

publications in all Chapters start with the most salient question(s), then follow 

descriptions of the findings, and they are concluded with answer(s). The five 

Chapters describe interactions of RNAP with DNA, transcription initiating 

substrates, small RNAs, and proteins. The last Chapter reports the development 

and mechanism of action of novel antibacterial compounds, lipophosphonoxins 

(LPPOs). 

The most important results include (i) deciphering the mechanism of incorporation 

of nicotine amide adenine dinucleotide (NAD) into RNA by RNAP (Nature, 2016), 

(ii) showing that the transcription start site nucleotide (A or G) dictates the 

promoter response (increase of decrease in activity) to amino acid starvation (Mol 

Microbiol, 2008), and (iii) describing rRNA promoter regulation in B. subtilis, a 

novel type of control of ribosome synthesis (EMBO J. 2004). 
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Chapter 1. DNA 

Deoxyribonucleic acid (DNA), which was discovered in 1872, is the prevailing 

storage medium of the genetic information. Its double stranded structure was 

revealed almost 70 years ago (Watson and Crick, 1953) and ever since, the pace 

of its exploration has been accelerating, bringing in novel insights into its 

organization and function.  

The genetic information is organized into units - genes. Genes either encode 

proteins or have regulatory and/or structural functions by themselves. To realize 

the genetic information, it is necessary to transcribe it from DNA into RNA. In 

bacteria, this task is accomplished by a single enzyme, the DNA-dependent RNA 

polymerase (RNAP). Bacterial RNAP is s multisubunit complex whose core 

consists of an  dimer that holds together two large subunits,  and ’, that form 

the active site. ’ associates with a small subunit . This core enzyme is capable 

of transcription elongation but not initiation. To initiate, it must associate with a  

factor that allows the holoenzyme to recognize and bind specific sequences, 

promoters (Lewis et al., 2008). 

Promoters precede genes and consist of (usually) several conserved elements 

that interact with RNAP and guide the initiation process. The most common 

promoters recognized by RNAP with the primary  factors (A/70) consist of -35 

and -10 hexamers, typically spaced ~ 17 bp apart. ~7 bp downstream of -10 is 

then positioned the transcription start site (TSS) (Feklistov, 2013). 

DNA is built from four types of nucleotides, differing in the attached base: 

adenine, cytosine, guanine, and thymidine. These bases can be modified and 

various modifications bear important epigenetic information that affects gene 

expression (Tomkova and Schuster-Bockler, 2018). In this Chapter I describe our 

research into both natural and artificial types of DNA modification and into the 

possibility to utilize these modifications for manipulation of gene expression by 

biorthogonal chemistry. The studies in this Chapter were done in collaboration 

with Prof. Dr. M. Hocek from the Institute of Organic Chemistry and Biochemistry 

in Dejvice, Prague.  
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1. Raindlová, V., Janoušková, M., Slavíčková, M., Perlíková, P., 
Boháčová, S., Milisavljevič, N., Šanderová, H., Benda, M., Barvík, I., 
Krásný, L. and Hocek, M. (2016) Influence of major-groove chemical 
modifications of DNA on transcription by bacterial RNA 
polymerases. Nucleic Acids Res, 44(7): 3000-12.  

Question: What are the effects of increased bulkiness of base modifications on 

transcription? 

In this study we systematically investigated the effect of base modifications with 

increasing bulkiness (5-substituted pyrimidines or 7-substituted 7-deazapurines 

bearing H, methyl, vinyl, ethynyl or phenyl groups, Fig. 1) on transcription by 

RNAPs from two model organisms: gram positive Bacillus subtilis and gram 

negative Escherichia coli. The templates were prepared by PCR with 

corresponding base-modified substrates (dNTPs). The modifications protruded 

into the major groove of DNA. The modified templates were used in in vitro 

transcription assays with RNAP 

from B. subtilis and E. coli. Some 

modified nucleobases bearing 

smaller modifications (H, Me in 7-

deazapurines) were perfectly 

tolerated by both enzymes, 

whereas bulky modifications (Ph 

at any nucleobase) and, 

surprisingly, uracil blocked 

transcription. Some middle-sized 

modifications (vinyl or ethynyl) 

were partly tolerated mostly by the 

E. coli enzyme. In all cases where 

the transcription proceeded, full-

length RNA product with correct 

sequence was obtained indicating that the modifications of the template are not 

mutagenic and the inhibition is probably at the stage of initiation.  

Figure 1. Structures of modified dNXTPs used to 
create modified DNA (N, base; R, substituent). 
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The results were essential for understanding which modifications are acceptable 

for RNAP and this paved the way for the subsequent development of 

bioorthogonal reactions for artificial chemical switching of transcription. 

Answer: Modifications with increasing bulkiness progressively inhibit 

transcription. Uracil was an exception - despite representing a minimal alteration, 

it displays a strong inhibitory effect. 

 

2. Janoušková, M., Vaníková, Z., Nici, F., Boháčová, S., Vítovská, D., 
Šanderová, H., Hocek, M., and Krásný, L. (2017) 5-
(Hydroxymethyl)uracil and -cytosine as potential epigenetic marks 
enhancing or inhibiting transcription with bacterial RNA polymerase. 
Chem Comm 53(99): 13253-13255.  

Question: What is the effect of two naturally occurring DNA modifications, 5mC 

and 5mU, on transcription? 

Modifications of DNA by epigenetic bases (i.e. 5-methylcytosine, 5mC) play 

critical roles in regulation of gene expression both in eukaryotes and prokaryotes 

and their dysregulation may lead to diseases. Recent advances in detection 

techniques have resulted in the discovery of the new bases 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine 

(5caC) (Lu et al., 2015). More recently, also 5-hydroxymethyluracil (5hmU), 

previously detected in bacteriophages, dinoflagellates and leishmania, has been 

found in eukaryotic genomes where its level appears to be cell type-specific (Guz 

et al., 2014; Witmer, 1981). The level of 5-hydroxymethyl-2’-deoxyuridine in blood 

DNA was investigated as a marker for breast cancer (Djuric et al., 1996). It is 

being hotly debated whether these modifications function as regulators of gene 

expression or whether they are just intermediates in active demethylation of DNA 

or products of oxidative damage. While the role of 5hmC in regulation of 

transcription has been demonstrated, the role of 5hmU remains unclear (Greco 

et al., 2016; Olinski et al., 2016). The 5hmU base can be generated by 

oxidation/hydroxylation of thymine by the Ten-Eleven-Translocation (TET) 

proteins or result from deamination of 5hmC (Carson et al., 2016).  
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In this study we used 

several bacterial 

promoters and RNAP 

from E. coli to 

investigate the effect of 

these modifications on 

transcription. We 

showed that both 5hmC 

and 5hmU affect 

transcription by 

bacterial RNAP 

depending on the 

promoter sequence 

(Fig. 2). The effects were both inhibitory and, surprisingly, also stimulatory. This 

study was the first to report strong enhancement of transcription of templates 

containing 5hmU or 5hmC in an in vitro enzymatic assay. We then focused on 

5hmU where the effects were more pronounced. In the case of 5hmU, both the 

enhancement and inhibition were mediated predominantly by interactions of the 

promoter non-template strand with RNAP. We note that while we used for our 

studies a well-characterized promoter (Pveg), other promoters may exist in the 

genome where random modifications of even single bases may have even more 

pronounced effects on transcription. Taken together, this illustrates the strong 

potential of 5hmU to alter gene expression in vivo.  

Answer: Both 5mC and 5mU inhibit and stimulate transcription (Fig. 2). This is 

probably important for gene expression regulation in the cell. 

 

 

 

 

 

Figure 2. Quantitation of transcriptions from fully-modified 
templates containing different modifications. K+ is the natural 
(non-modified) DNA template. Two wt promoters (Pveg, rrnB 
P1) and their chimeras were used, demonstrating that the 
effects of the modifications were promoter-specific. 
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3. Slavíčková, M., Janoušková, M., Šimonová, A., Cahová, H., Kambová, 
M., Šanderová, H., Krásný, L., Hocek, M. (2018) Turning off 
transcription with bacterial RNA polymerase through CuAAC click 
reactions of DNA containing 5-ethylenuracil. Chemistry - A European 
Journal 24(33):8311-8314.  

Question: Can 5-ethyleneuracil incorporated into DNA be utilized in click 

reactions to turn transcription off? 

In the previous papers 

(see above) we 

demonstrated that bulky 

modifications of bases 

inhibit transcription. Here, 

we selected a small 

modification, 5-

ethyleneuracil, that 

permits transcription with 

E. coli RNAP. Then we 

tested whether its further 

modification by click 

reactions, resulting in 

dihydroxypropyltriazoles, 

turns transcription off. The 

project required massive 

optimization of reaction conditions. Fortunately, we were able to identify 

conditions of the click reaction that did not interfere with the integrity of DNA and 

allowed subsequent transcription experiments. The experiments confirmed the 

feasibility of the concept, successfully turning transcription off (Fig. 3). This, then, 

will allow for future manipulations of gene expression cells: transforming the cells 

with modified DNA and then turning the transcription off when required.  

Answer: 5-ethyleneuracil in DNA can be modified to dihydroxypropyltriazole by 

click reactions and stop transcription. 

Figure 3. In vitro transcriptions from DNAE template. CuBr, 
the catalyst, does not negatively affect the reaction. TBTA 
(Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) facilitated 
the reaction. 3-azidopropane-1,2-diol (Azide) is the bulky 
ligand that abolishes transcription upon the click reaction. 
Primary data (radioactively labeled RNA) are shown above 
the graph. 
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Chapter 2. Transcription initiating substrates 

Transcription starts from promoters and RNAP typically uses four canonical 

substrates: nucleoside triphosphates (NTPs: A, C, G, and U). Transcription 

initiation begins usually with A or G, the remaining two NTPs are used less 

frequently (Helmann, 1995). The initiating NTPs are termed iNTPs and their 

concentration plays an important regulatory role in the activity of a number of 

promoters (Murray et al., 2003). Besides the four canonical substrates, RNAP 

can utilize alternative metabolites, such as nicotine amide adenine dinucleotide, 

the essential participant of many redox reactions (Julius et al., 2018; Lin and 

Guarente, 2003). 

To begin transcription, RNAP must first bind promoter DNA and form the so called 

closed complex. In this complex the two DNA strands are not separated. Next, 

RNAP isomerizes through at least one kinetic intermediate to form the open 

complex, where the two DNA strands are unwound and form the transcription 

bubble. NTPs (or other initiating substrates) can then access the active site, bind 

with the template strand at +1, and after subsequent binding of the +2 NTP, the 

first catalytic step can occur (Haugen et al., 2008). All the steps during 

transcription initiation can be rate limiting. The stability of the open complex is 

critical for the ability of the promoter to be regulated by the concentration of the 

iNTP (iNTP binding stabilizes the open complex and stimulates transcription) 

(Gaal et al., 1997). This type of regulation is especially important for ribosomal 

RNA (rRNA) promoters that by this mechanism sense the nutritional status of the 

cell. The open complex is (in gram negative bacteria) also targeted by ppGpp, 

the alarmone (Barker et al., 2001). This small molecule effector is synthesized by 

RelA, a protein that associates with ribosomes (Hauryliuk et al., 2015). ppGpp is 

made in response to amino acid starvation and by destabilizing the open complex 

at rRNA promoters helps shut down transcription of rRNA operons as new 

ribosomes are not required in poor nutritional conditions. 

This Chapter describes the discovery of how rRNA promoters are regulated in B. 

subtilis by [iNTP] and ppGpp, how this differs from the longer-studied E. coli, what 

promoter sequence elements affect this type of regulation, and how we 

discovered the mechanism and requirements of NAD incorporation at the 5’ end 
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of RNA. The studies in this Chapter were done at University of Madison, WI, USA 

while being a postdoc in the lab of Rick Gourse (EMBO J), at Institute of Molecular 

Genetics, Prague (Mol Microbiol), and the remaining at the Institute of 

Microbiology, Prague. An important collaborator for several of these studies was 

Dr. Ivan Barvík from Charles University in Prague. 

 

4. Krásný, L. and Gourse R. L. (2004) An alternative strategy for 
bacterial ribosome synthesis: Bacillus subtilis rRNA transcription 
regulation. EMBO J.  23:4473-4483.  

Question: What is the regulation of rRNA promoters in B. subtilis? 

Transcription of rRNA operons (an rRNA operon consists of 16S, 23S, 5S RNA 

plus tRNAs) represents > 60 % of transcription in exponentially growing cell; to 

the contrary, in stationary phase cell it is almost nonexistent (Gourse et al., 1996). 

This is dictated by the need of the cell for new protein synthesis, which is most 

required when nutrients are abundant and the cell can grow and divide. 

Therefore, it must be tightly regulated. Historically, rRNA promoters of E. coli 

were the models from which most of our knowledge about ribosome synthesis 

had been derived (Schneider et al., 2003). 

In E. coli, the rRNA core promoter (minimal region required to initiate 

transcription: cca 40 bp including -35 and -10 hexamers) is preceded by the UP 

element, an AT rich region that interacts with  subunits of RNAP and stimulates 

transcription (Estrem et al., 1999; Krasny et al., 2000). Further upstream, several 

FIS binding sites are located, allowing binding of FIS proteins that interact with 

RNAP and contribute to stimulation of transcription (Bokal et al., 1997). E. coli 

rRNA promoters form highly unstable open complexes and are regulated by iNTP 

and ppGpp. ppGpp directly binds to E. coli RNAP (two binding sites) and reduces 

the open complex life-time (Ross et al., 2016). iNTPs, on the other hand, increase 

the stability of the open complex (Gaal et al., 1997). This type of regulation is 

potentiated by DksA, a protein that binds to E. coli RNAP and negatively affects 

the stability of the open complex (Paul et al., 2004). 
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Figure 4. Schematic diagram illustrating mechanisms contributing to rrn P1 promoter activity 
in E. coli versus B. subtilis. The transcription factor Fis and RNAP CTD binding to UP 
element DNA account for the unusually high activity of rrn P1 promoters from E. coli, but not 
B. subtilis. Changing NTP and ppGpp concentrations regulate rRNA promoter activities in 
both bacteria, but in B. subtilis ppGpp inhibits rRNA transcription indirectly by reducing GTP 
levels. 

E. coli is a gram negative bacterium and at the beginning of this project it was not 

clear how growth rate regulation of rRNA promoters is achieved in this organism. 

Even more intriguingly, regulation of rRNA expression in gram positive bacteria 

was a complete unknown. Hence, I decided to decipher this regulation in B. 

subtilis. 

The experiments revealed that the iNTP for rRNA promoters in B. subtilis was 

exclusively G (in E. coli it is A, C, or G) and the intracellular GTP concentration 

regulated their activity (later confirmed by others, e. g. (Kriel et al., 2012; Natori 

et al., 2009)). ppGpp, on the other hand, did not bind B. subtilis RNAP and 

functioned indirectly by affecting the GTP concentration. This was mediated by 

(i) direct consumption of GTP (from which (p)ppGpp is made), and (ii) inhibition 

of the GTP biosynthesis. In addition, I showed that the architectures of E. coli and 

B. subtilis rRNA promoters differed. I demonstrated that the AT-rich upstream 

element (UP element; upstream of the core promoter) that in E. coli stimulated 

rRNA transcription ~50x, stimulated in B. subtilis only ~ 3x, suggesting that the 

B. subtilis core promoter is already strong. Finally, no homologue FIS or DksA 

were found in B. subtilis. 

 

 

 

 

 

 

 

 

 

Answer: B. subtilis rRNA promoters are directly regulated exclusively by GTP 

and indirectly by (p)ppGpp. B. subtilis and E. coli represent two evolutionary 

mechanisms of regulaton of rRNA expression (Fig. 4).  
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5. Krásný, L., Tišerová, H., Jonák, J., Rejman, D., and Šanderová, H. 
(2008) The identity of the transcription +1 position is crucial for 
changes in gene expression in response to amino acid starvation in 
Bacillus subtilis. Mol Microbiol 69: 42-54.  

Question: Does the identity of the transcription +1 postion (A or G) affect gene 

expression? 

During the previous study we noticed that when the (p)ppGpp level increased in 

response to amino acid starvation, the GTP level decreased AND, in parallel, the 

ATP level increased (Fig. 5A). This was because when (p)ppGpp inhibited the 

GTP synthesis, the level of IMP, the last common intermediate for GTP and ATP 

synthesis increased, and this resulted in an increase in ATP concentration (Kriel 

et al., 2012; Lopez et al., 1981). This observation led to a hypothesis that the 

identity of the iNTP might affect the promoter response during amino acid 

starvation. This hypothesis also correlated with the exclusivity of G as the +1 

nucleotide of rRNA promoters, the instability of open complexes of promoters 

driving transcription of genes encoding proteins for biosynthesis of amino acids 

Figure 5. The effects of the identity of +1 on promoter activity of Pilv and Pveg during 
stringent response in B. subtilis. The stringent response was induced at time zero. To 
enable visual comparison of changes in [NTP] and promoter activity, the values were 
normalized to 1 at time zero with respect to the induction of the stringent response. wt refers 
to the identity of +1. A. Changes in ATP (closed circles), GTP (open circles) and (p)ppGpp 
levels (triangles). The GTP levels were 30–40% of the ATP levels at time zero. B. Changes 
in activities of core promoter versions of Pilv+1A (closed circles) and Pilv+1G (open 
circles).C. Changes in activities of core promoter versions of Pveg+1A (closed circles) and 
Pveg+1G (open circles). 
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(their activity is stimulated during the stringent response), and the fact that they 

initiated with ATP. 

The experiments revealed that the identity of the transcription +1 position (A or 

G) plays a pivotal role in the regulation of iNTP-sensitive (i. e. [iNTP]-responding) 

promoters (e. g. Pilv). Changing the +1A to +1G and vice versa, reprogrammed 

the response of these promoters to nutritional stress (Fig. 5B). Moreover, we 

demonstrated that this type of regulation is not restricted to a few promoters but 

it is a genome-wide phenomenon. Pveg was a control promoter that was not 

much affected by iNTP changes (Fig. 5C). 

Answer: The identity of the transcription +1 position qualitatively affects the 

change in gene expression (increase or decrease) of iNTP-sensitive promoters 

initiating with ATP or GTP during amino acid starvation. 

 

6. Sojka L, Kouba T, Barvík I, Sanderová H, Maderová Z, Jonák J, 
Krásny L. (2011) Rapid changes in gene expression: DNA 
determinants of promoter regulation by the concentration of the 
transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res  
39(11): 4598-611.  

Question: What promoter sequence elements determine iNTP-regulation in B. 

subtilis? 

Not all B. subtilis promoters can be regulated by the concentration of the iNTP. 

This regulation requires relatively unstable open complexes. In this study we used 

two promoters from B. subtilis, rrnB P1, regulated by the iNTP, and Pveg, 

insensitive to changes in intracellular iNTP concentrations. We made a set of 

chimeric promoters, changing Pveg in a stepwise manner into rrnB P1. We tested 

these promoters for their ability to respond to iNTP concentrations. The 

experiments revealed that the -10 to +1 region (corresponding to the transcription 

bubble) contains elements responsible for the regulation (Fig. 6). Specifically, -

5T, which is almost universally conserved, proved to be critical for the regulation. 

The identified sequences radically differed from rRNA promoter sequences 

identified in previous studies with E. coli as important for regulation by the [iNTP] 
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(Gaal et al., 1989). Hence, the two organisms (and by extrapolation gram-positive 

and gram-negative bacteria) have solved the same problem by different 

combinations of promoter sequences and structural features of RNAPs. 

 

 

 

 

 

 

 

 

 

Answer: The transcription start site-proximal regions of rRNA promoters 

corresponding to the transcription bubble contain specific sequences, namely -

5T, that make suboptimal interactions with RNAP. This consequently sets up the 

physiologically relevant stability of the complex, allowing for regulation of the 

promoter activity by the concentration of the iNTP both in vitro and in vivo.  

 

7. Bird, J. G., Zhang, Y, Tian, Y, Panova, N, Barvík, I, Greene, L, Liu, M, 
Buckley, B, Krásný, L, Lee, J. K, Kaplan, C.D., Ebright, R.E., Nickels, 
B. E. (2016) The mechanism of RNA 5' capping with NAD+, NADH, and 
desphospho-CoA. Nature, 535(7612):444-447.  

Question: Can RNAP utilize coenzymes as non-canonical substrates of 

transcription initiation? 

Chen and coworkers published surprising findings (Chen et al., 2009), identifying 

NAD and dephospho-CoA as part of RNA in bacteria. Subsequently, Hana 

Cahova developed a chemical method that allowed to pull out and sequence the 

NAD-modified RNAs in E. coli (Cahova et al., 2015). During a discussion with her 

Figure 6. Model of the promoter -5 
position nucleotides and their possible 
interactions with B. subtilis RNAP. The 
‘ subunit was removed to view the 
areas of interest. Light gray, ; light 
magenta, A; light pink, DNA template 
strand; light blue, DNA non-template 
strand. The regions of  and A that 
contain amino acids that may interact 
with the -5 position bases are in yellow 
or magenta, respectively. The DNA 
non-template -5 position is in blue and 
indicated with ‘-5NT’; the DNA template 
-5 position is in red and indicated with ‘-
5T’. -10 and -35 hexamers are 
indicated. 
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I asked by what mechanism NAD was attached to RNA. The reply was that 

nobody knew at the time. People had tried to use RNAP and failed (Jaschke et 

al., 2016). Nevertheless, considering the structure of NAD – the adenine 

nucleotide part is perfectly capable of base-pairing with a T in the template strand, 

and the 3’ OH end of the ribose permits attachment of another nucleotide – I 

proposed that RNAP was still the likeliest enzyme responsible for this RNA 

modification. We used a different approach, however, than the earlier 

unsuccessful attempts. We used a radio-labeled NAD in a defined cell-free in vitro 

transcription system. The very first experiment then yielded a positive result: NAD 

utilization as the transcription initiating NTP was proven! (Fig. 7) 

Subsequently, we performed a panel of additional experiments, showing that the 

incorporation 

indeed depended 

on the +1 position 

being an A, and that 

different promoters 

displayed different 

propensities for 

NAD incorporation 

into RNA. 

Additionally, we 

created an in silico 

model of RNAP 

initiating with NAD 

(Fig. 8). Then, at 

the Phage Meeting 

in Madison, WI, 

USA, I met Jeremy 

Bird from the lab of 

Figure 7. In vitro transcription from the RNA I 
promoter with E. coli RNAP. The identity of the 
labeled compound used for transcription is 
indicated above the primary data. 

Figure 8. De novo transcription initiation complex with initiating NAD 
(replacing the first iNTP) and CTP in the active site of RNAP. Nucleic 
acids and amino acid side chains of Lys-838, Lys-846 are shown 
as stick models, and the bridge helix (yellow), trigger loop (orange), 
DFDGD motif (green), and sigma region 3.2 (magenta) are shown as 
cartoon models. Initiating NAD (iNAD) binds at the active site of 
RNAP through multiple interactions, including base pairing with the 
+1 DNA base, hydrogen bonding of the carboxamide group with the -
1 DNA base (dashed line), ribose-base interactions with the -2 DNA 
base (dashed line), and salt bridges with conserved lysine side 
chains. CTP is stabilized by aspartate residues of the DFDGD motif 
of the ' subunit coordinating the Mg2+ (green spheres). 
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Bryce Nickels who gave a talk describing essentially the same results. After that, 

we got into contact with Bryce and put our results together. Importantly, the 

Nickels lab also had a 3D crystallographic model of the RNAP complex with NAD 

that corroborated the whole idea and confirmed also our in silico modeling. In 

vivo, then, the presence of the cap (NAD) stabilized RNA against degradation, 

prolonging its biological half-life. 

Answer: NAD (and also NADH and dephospho-CoA) can be utilized by RNAP 

as transcription initiating substrates thereby introducing a novel type of an RNA 

cap into RNA. 

 

8. Vvedenskaya, I. O., Bird, J. G., Zhang, Y, Zhang, Y, Jiao, X., Barvík, I., 
Krásný, L., Kiledjian, M., Taylor, D. M., Ebright, R. H., Nickels, B. E. 
(2018) "CapZyme-Seq" comprehensively defines promoter-sequence 
determinants for RNA 5' capping with NAD+. Mol Cell 3;70(3):553-564.  

Question: What are the promoter sequence determinants of NAD utilization by 

bacterial RNAP? 

In the previous study, we had shown an example how mutating the promoter 

sequence affected the efficiency with which NAD was utilized as the transcription 

initiating substrate. Here, in collaboration with the Nickels lab, we identified 

sequences around the +1 position that either stimulated or inhibited NAD 

incorporation. The study was performed both in vitro and in vivo, employing a 

newly developed approach for identification of NAD-capped RNAs. The identified 

promoter consensus that enhances NAD-capping has a potential to be utilized in 

bio-engineering/biotechnological applications, increasing the biological half-life of 

selected mRNAs, and thereby increasing expression of selected genes.  

Answer: This study identified promoter sequences flanking the transcription start 

site (-4 to +4) as crucial for NAD incorporation. 
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9. Barvík, I., Rejman, D., Panova, N., Šanderová, H., Krásný, L. (2017) 
Non-canonical transcription initiation: The expanding universe of 
transcription initiating substrates. FEMS Microbiol Rev 41(2): 131-8.  

In this review we summarized the 

current knowledge about 

transcription initiation with a 

specific focus on various initiating 

substrates, including iNTPs, 

nanoRNAs (oligoribonucleotides), 

and coenzymes, such as NAD 

(Fig. 9). At this stage, it became 

apparent the NAD capping might 

be a universal phenomenon as 

reports had appeared about its 

incorporation into yeast and 

human RNA (Jiao et al., 2017; 

Walters et al., 2017). Interestingly, 

almost 50 % of all transcripts 

contained some percentage of 

NAD caps in human RNA (Jiao et 

al., 2017). Then, very recently, 

mitochondrial RNAs from yeast 

and humans were reported to 

contain 50 % and 10 % of NAD 

caps (e. i. 1/2 and 1/10 of total RNA is modified!), respectively 

(https://www.biorxiv.org/content/early/2018/07/31/381160). These studies, 

together with our findings, then refuted the previous speculations about other 

molecular machineries responsible for (as proposed) posttranscriptional 

modification of RNA (Luciano and Belasco, 2015). Moreover, NAD-capping by 

RNAP has been thus firmly established as trait likely present in all branches of 

life. 

 

Figure 9. Known (ATP, NAD+, CoA) and 
hypothetical substrates (NADH, FAD, ApxN) of 
RNAP in vivo at promoters where +1 encodes 
adenine. RNAP is schematically depicted in 
complex with  bound to promoter DNA; -35 and -
10 consensus hexamers are indicated. The size of 
the circles approximately represents the relative 
pools of the inscribed small molecules in the cell. 
The graph in the bottom right hand corner shows 
the amounts of the depicted molecules based on 
the literature as discussed in the text. The color 
coding of the bars is the same as for the circles. In 
the inset, three types of 5’ RNA ends are depicted 
in brown; the triangle on the right hand side shows 
the effect of the 5’ end status on RNA stability. The 
arrows show where hydrolysis occurs and the 
respective enzymes responsible. 
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Chapter 3. sRNAs interacting with RNAP 

sRNAs are non-coding RNAs, typically of <300 nt in length. They may have 

structural and/or regulatory roles. The very first sRNA ever discovered was 6S 

RNA from E. coli, which is visible as a distinct band in gels containing total RNA 

from stationary phase cells (Storz et al., 2011). Its amount in exponential phase 

is much lower. Although 6S RNA was discovered in 1960-ies, it was only in 2000 

when Karen Wassarman determined that 6S RNA bound to RNAP, specifically to 

its holoenzyme form in complex with the main sigma factor (Wassarman and 

Storz, 2000). Later on, it was established that the secondary structure of 6S RNA 

reminded of a promoter with an open transcription bubble. To this bubble, RNAP 

binds, mimicking thus the transcription initiation complex (Steuten et al., 2013). 

When the RNAP holoenzyme is sequestered in complex with 6S RNA, it is 

transcriptionally inactive. By this inactivation, this fraction of RNAP is “conserved”, 

still present in the cell, yet not engaged in active transcription. This mechanism 

helps the cell switch gears from the rapid growth in exponential phase to the more 

subdued state in stationary phase. When the conditions change, RNAP, which is 

by definition a DNA-dependent RNA polymerase, can initiate transcription from 

the 6S RNA template, transcribe a short 14-19 nt transcript, and dissociate from 

it. 6S RNA is then rapidly degraded and RNAP resumes transcription 

(Wassarman and Saecker, 2006). At the start of our studies, 6S RNA had been 

identified in many but not in all species. Most notably, it seemed to be absent 

from mycobacteria, and we wished to determine whether it was so. 

 

10. Pánek, J., Krásný, L., Bobek, J., Ježková, E., Korelusová, J., 
Vohradský, J. (2011) The suboptimal structures find the optimal 
RNAs: homology search for bacterial non-coding RNAs using 
suboptimal RNA structures. Nucleic Acids Res. 39(8):3418-26.  

Question: Can we find 6S RNA genes in bacterial genomes based on in silico 

approaches? 

This study was initiated by and done in collaboration with Dr. Josef (Pepa) Pánek 

from the Vohradsky lab. Pepa developed an in silico approach to search for and 
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identify genes of structured non-coding RNAs (ncRNAs) in DNA databases. 

These RNAs often display non-conserved nucleotide sequences but possess 

conserved secondary structures. As a case study, we selected 6S RNA with its 

extensive base-paired regions and the essential central bubble. The developed 

in silico approach was based on the assumption that unlike optimal and 

consensus structures, suboptimal structures are capable of capturing RNA 

homology even in divergent bacterial species. A computational procedure for the 

identification of homologous ncRNAs using suboptimal structures was created. 

The suggested procedure was applied to many strongly divergent bacterial 

species and was capable of identifying homologous 6S RNAs. We subsequently 

showed that a 6S RNA homolog (termed Ms1) identified in mycobacteria was 

indeed a bona fide gene, highly expressed in stationary phase, reminiscent of 6S 

RNA. Nevertheless, immunoprecipitation of the RNAPA holoenzyme from M. 

smegmatis revealed no interaction with Ms1. What a disappointment! (A control  

experiment with B. subtilis RNAPA yielded a positive result – interaction with B. 

subtilis 6S RNA.) (Fig. 10). 

 

Answer: A novel in silico approach based on suboptimal structures was 

developed and demonstrated to be able to identify 6S RNA genes in many 

divergent bacteria where this gene had not been identified previously. 

Figure 10. Ms1 does not bind to RNAP holoenzyme. Imunoprecipitation of 6S RNA. A. Western 
blot of total protein from E. coli, B. subtilis and M. smegmatis probed with monoclonal antibody 
against 70 from E. coli. The antibody reacts with the main housekeeping sigma factors from all 
three organisms. B. Northern blot of total RNA (RNA) and the products of immunoprecipitation 
experiments (IP). The B. subtilis blot (positive control) was probed with an oligonucleotide 
against 6Sb RNA demonstrating the presence of this ncRNA on B. subtilis RNAP containing A. 
The M. smegmatis blot was probed with an oligonucleotide against Ms1 RNA, demonstrating 
that it not a bona fide 6S RNA. 
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Nevertheless, the RNA encoded by the predicted 6S RNA gene in mycobacteria 

(Ms1), despite its 6S-like predicted secondary structure, did not bind to RNAPA 

and thus was not a 6S RNA. 

 

11. Hnilicová, J., Jirát Matějčková, J., Šiková, M., Pospíšil, J., Halada, P., 
Pánek, J., Krásný, L. (2014) Ms1, a novel sRNA interacting with the 
RNA polymerase core in mycobacteria. Nucleic Acids Res 
42(18):11763-76. 

Question: What is the binding partner of Ms1 in the cell? 

The previous study prompted us to start from scratch with respect to identification 

of the Ms1 binding partner(s). We employed a combination of several 

approaches, including glycerol 

gradient ultracentrifugation and 

pull-down with biotinylated Ms1 

as the bait. After the glycerol 

gradient ultracentrifugation we 

identified fractions (separated by 

the density of the gradient) with 

Ms1. Then, by mass 

spectrometry, we analyzed the 

protein content of these 

fractions. With the biotinylated 

Ms1, we pulled out proteins that 

interacted with this bait in cell 

lysates. This was followed by 

identification of the proteins by 

mass spectrometry. Both 

approaches yielded several 

proteins. Most notably, and by 

both approaches, we identified 

subunits of the RNAP core but 

Figure 11. Modes of interaction of sRNAs with 
bacterial RNAP. A. The level of σA relative to  
dropped in Mycobacterium smegmatis cells 
harvested 12 h after entry into stationary phase. In 
Escherichia coli, the relative protein level of σ70 to 
 remained unchanged even after 16 h in 
stationary phase. The experiment was repeated 
3× with identical results. B. 6S RNA (e. g. E. coli, 
Bacillus subtilis) binds to RNAP containing the 
main σ factor. C. Ms1 (mycobacteria) binds to the 
RNAP core in the absence of σ factors and the 
presence of σA decreases this interaction. 
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not the main sigma factor or any alternative sigma factor among these proteins. 

The difference in the interaction of the two types of sRNAs (Ms1 or 6S RNA) with 

RNAP possibly reflects the difference in the composition of the transcriptional 

machinery between mycobacteria and other species. Contrary to E. coli, 

stationary phase M. smegmatis cells contain relatively few RNAP molecules in 

complex with σA (Fig. 11).  

Answer: Ms1 binds to the RNAP core, representing a novel type of a sRNA 

interacting with RNAP. 

 

12. Šiková, M., Janoušková, M., Ramaniuk, O., Páleníková, P., Pospíšil, 
J., Bartl, P., Suder, A., Pajer, P., Kubičková, P., Pavliš, O., Hradilová, 
M., Vítovská, D., Šanderová, H., Převorovský, M., Hnilicová, J. and 
Krásný, L. (2019) Ms1 RNA increases the amount of RNA 
polymerase in Mycobacterium smegmatis. Mol Microbiol (in press). 

Questions: How is Ms1 accumulation regulated? What is the effect of Ms1 on 

the transcriptome? 

In this follow-up study we identified the Ms1 promoter in both M. smegmatis and 

M. tuberculosis. In addition, we showed that the core promoter was relatively 

weak and was stimulated by cca. two orders of magnitude by upstream DNA 

sequences that bind yet unknown transcription factors. The activity of the 

promoter region, surprisingly, was about the same in both exponential and 

stationary phases. Therefore, the Ms1 accumulation must stem from its 

differential degradation. Consistent with this model, we identified PNPase, an 

RNase that degrades Ms1 both in vitro and in vivo, as a factor that contributes to 

the differential accumulation of Ms1. 

Next, we created an Ms1 strain and performed RNAseq experiments. 

Surprisingly, the absence of Ms1 (a sRNA binding RNAP) did not have huge 

effects on gene expression during steady state. In stationary phase, only handful 

of genes were affected. Importantly, however, genes for  and ’ subunits of 

RNAP were among those genes, and this was also reflected at the protein level. 

As a consequence, when stationary phase cells were diluted into fresh medium, 
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the mutant strain displayed slower outgrowth, suggesting that the pool of RNAP 

sequestered with Ms1 in wt, is utilized early on in this process, and its lack in the 

mutant leads to slower outgrowth. The mechanism of how Ms1 mediates this 

regulation is unknown and will be the subject of further studies. 

Answers: Accumulation of Ms1 is achieved by its differential degradation and 

increased stability in stationary phase. Ms1 affects the level of transcripts 

encoding the two largest subunits of RNAP. This is important for the ability of the 

cell to start rapidly growing when stationary cells are diluted into fresh medium 

(Fig. 12). 

Figure 12. (LEFT) In exponential phase in mycobacteria, Ms1, a sRNA, is unstable and rapidly 
degraded. PNPase contributes to the degradation. The level of RNAP is about the same in 
both the Ms1 and wt strains. (MIDDLE) In stationary phase, the PNPase level is decreased, 
contributing to accumulation of Ms1. Ms1 interacts with, and sequesters a fraction of the RNAP 
core in a complex. In Ms1, this fraction of the cellular RNAPs is absent. Nevertheless, the 
pool of RNAPs directly involved in transcription remains similar both in wt and Ms1 strains. 
(RIGHT) The absence of this extra pool of RNAP is phenotypically manifested during outgrowth 
from stationary phase - the difference between RNAP levels (Ms1 versus wt) remains similar 
for ~30 min and the growth Ms1 is slowed down for ~3 hours. 
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Chapter 4. RNAP and its protein interacting partners 

Transcription is massively regulated by protein factors (Helmann, 2009). These 

factors interact with the DNA and/or RNA, and/or RNAP. Examples of DNA 

interacting factors are repressors that by various mechanisms inhibit transcription 

e. g. (Brinsmade, 2017). Rho factor is an example of a protein interacting with 

RNA and subsequently with RNAP. It is a transcription termination factor that was 

proposed to function by the “spider strategy: trap first, kill later” (Epshtein et al., 

2010). According to this model, Rho first interacts with nascent RNA (the 

recognition sequences are poorly defined; generally, they are C-rich) and upon 

catching up with RNAP, alters the conformation of RNAP and rapidly inactivates 

the complex. This is followed by a subsequent, relatively slow dissociation step. 

Yet some transcription regulators interact with RNAP only. Examples of these 

factors are proteins interacting with the secondary channel of RNAP, by which 

NTPs enter the active site (Paul et al., 2004; Stepanova et al., 2009). GreA,B are 

such factors, acting on RNAPs during elongation when transcription gets stalled. 

Under such situations, RNAP tends to backslide and the 3’ OH end of the most 

recently added nucleotide is not in the active site anymore but protrudes in the 

forward direction (Toulme et al., 2000). Therefore, RNAP cannot continue 

synthesizing further RNA. To resolve the situation, GreA binds to the secondary 

channel and by its coiled-coil domain reaches into the channel, reaching the 

vicinity of the active site. There, it alters the conformation of the active site, 

reversing the catalytic activity of RNAP. Instead of synthesis, it hydrolyzes the 

phosphodiester bond in the active site, cleaving off the few protruding 

nucleotides, and creates a new 3’ OH end. This subsequently allows RNAP to 

resume transcription. Another example is DksA from E. coli (Paul et al., 2004). 

This protein is important for transcription initiation. Structurally, DksA and GreA 

are homologs. DksA increases the requirements of RNAP for the concentration 

of the iNTP for maximal transcription, and is essential in the cell for the 

physiologically relevant regulation of rRNA promoters by this mechanism. 

Moreover, it is required for RNAP regulation by ppGpp in gram-negative bacteria 

(Ross et al., 2016). In gram-positive bacteria, no DksA-like protein has been 

identified to date. 
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This Chapter focuses of several protein interacting partners of RNAP that either 

had been poorly characterized at the beginning of our studies or were discovered 

by us as new transcription factors. The first of these proteins is the small subunit 

of B. subtilis RNAP, an enigmatic protein (Weiss and Shaw, 2015), for which we 

solved the structure and defined its cellular roles. Next comes , another small 

subunit of B. subtilis RNAP (the name “” originated in our laboratory as well as 

the gene name, rpoY). We characterized its structure, binding to RNAP and 

attempted to decipher its cellular role. The next protein is HelD, a helicase-like 

protein, which we and others discovered to be a binding partner of B. subtilis 

RNAP (Delumeau et al., 2011). We characterized its effects on transcription. 

Next, Spx from B. subtilis is a protein that is important for the cell’s response to 

various types of stress, most notably oxidative stress (Zuber, 2009). We 

characterized the genome-wide effect of this protein and unraveled its 

mechanistic functioning on selected promoters. Finally, and very recently, we 

were able to solve the 3D structure of two forms of mycobacterial RNAP, creating 

thus a basis for further studies of this enzyme complexes with selected factors. 

Studies presented in this Chapter were possible also thanks to our collaborators, 

namely Dr. Lukáš Žídek from Masaryk University in Brno (NMR studies). The 

number of joint publications vastly exceeds those presented in this Habilitation 

Thesis. Next comes Dr. Míša Wimmerova (crystallographer, Masaryk University 

in Brno), then Dr. Peter Lewis (structural biologist) from Newcastle University in 

Australia, Dr. Jan Dohnálek (crystallographer, Biocev, Vestec), Dr. Tomáš Kouba 

(Cambridge, UK), and Dr. Olivier Delumeau and Dr. Philipe Noirot (genomic 

studies) from INRA Micalis, France. 
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4.1. Delta 

 

13. Motáčková V., Šanderová H., Zídek L., Nováček J., Padrta P., 
Švenková A., Korelusová J., Jonák J., Krásný L., Sklenář V. (2010) 
Solution structure of the N-terminal domain of Bacillus subtilis delta 
subunit of RNA polymerase and its classification based on structural 
homologs. Proteins, 78(7):1807-10. 

Question: What is the structure of the N-terminal domain of  from B. subtilis? 

While the ’ composition is conserved 

across the bacterial kingdom, Gram-positive 

Firmicutes contain an additional subunit, , 

which is encoded by the rpoE gene in the model 

bacterium B. subtilis. The subunit was first 

reported as an endogenous protein present in 

RNAP from phage SP01-infected B. subtilis 

cells, which was required for its accurate middle 

gene transcription (Pero et al., 1975). The rpoE 

gene specifies a protein of 173 amino acids 

(aa) with a molecular mass of 20.5 kDa. The 

protein is highly acidic (pI, 3.6) (Lampe et al., 

1988). As determined by circular dichroism 

(CD) spectroscopy, it consists of two domains: 

(i) the N-terminal domain (NTD), which is 

structured; and (ii) the C-terminal domain, 

which is unstructured and whose amino acid 

composition - stretches of glutamic and aspartic 

acid residues - makes it virtually a polyanion 

(Lopez de Saro et al., 1995). 

This study focused on solving the structure of 

the NTD. We prepared the appropriate 

construct and purified the protein with 13C and 

Figure 13. The N-terminal domain 
of  and its structural homologs. A. 
Superimposed backbone traces of 
10 N structures with the lowest 
energy B. The representative 
(lowest energy) structure of N 
compared to its closest structure 
homologs C. Forkhead Box Protein 
K2,2C6Y.PDB; D. Forkhead Box 
Protein P2, 2A07.PDB; E. 
Forkhead Box Protein 01, 
3CO6.PDB; F. and Yeast linker 
Histone Hho1p, 1YQA.PDB. The N 
and C termini and the helices I to IV 
are labeled in Panel B. 
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15N for NMR studies. The structure of NTD was well-defined, consisting of four -

helices (helices I, II, III, and IV, formed by residues Q8-K12, L16-H27, F33-L44, 

G52-N63,  respectively) and an antiparallel -sheet composed of three short -

strands (residues V31-P32, F68-A70, and T75-L78) at the top of a ‘‘twisted tripod’’ 

formed by helices II, III, and IV (Fig. 13). The C-terminal part of NTD starting from 

residue R79, and containing the artificial His-tag region L93–H100, was 

unstructured. With the structure in hand, we searched for its structural homologs 

(no sequence homologs were identified by BLAST searches). Several successful 

hits of the were retrieved, including three proteins (PDB codes 2C6Y,32 2A07,33 

and 3CO634) from the forkhead domain PFAM family (PF00250), and the GII 

domain of the yeast linker histone Hho1p (1YQA) (Fig. 13). All these proteins, 

including NTD, contained DNA/RNA fold. However, in the case of NTD, no 

DNA/RNA binding has ever been detected, indicating that this fold has a different 

function in . 

Answer: The 3D structure of NTD of B. subtilis  has been determined by NMR. 

14. Papoušková, V., Kadeřávek, P., Otrusinová, O., Rabatinová., A., 
Šanderová, H., Nováček, J., Krásný, L., Sklenář, V., Žídek, L. (2013) 
Structural study of the partially disordered full length delta subunit 
of RNA polymerase from Bacillus subtilis. Chembiochem 14(14): 
1772-9.  

Question: What is the structure of the full-length ? 

In this study we structurally characterized the full-length  from B. subtilis. This 

was especially challenging due to the high flexibility of the C-terminal domain 

(CTD). Various 15N relaxation experiments were employed to describe the 

flexibility of both domains. The structure of NTD was essentially the same as that 

of the isolated NTD reported in the previous study. The relaxation data revealed 

that the C-terminal domain is more flexible, but its flexibility was not uniform. By 

using paramagnetic labels, transient contacts of the C-terminal tail with the N-

terminal domain and with itself were identified. A propensity of the C-terminal 

domain to form -type structures was detected by chemical shift analysis (the 

negatively charged CTD interacted with the K-tract, a positively charged stretch 
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at the junction of the two domains. Thus, CTD is an example of an intrinsically 

disordered protein (IDP) that, nevertheless, is not totally chaotic. Its sequence 

molds its spatio-temporal architecture, and underlies its physiologically relevant 

functioning. IDPs appear to be the rule rather than exceptions among proteins, 

with many functions in the cell, both in health and disease (Sigalov, 2016). 

Understanding the determinants of their transient conformations is an urgent 

future challenge. 

Answer: The NTD in full-length  possesses the same structure as isolated NTD, 

validating our previous results. Further, the CTD is highly flexible; nevertheless it 

displays a propensity towards interactions with the K-tract, creating thus an array 

of spatiotemporal conformations that are likely essential for functioning of the 

protein. 

15. Demo, G., Papoušková, V., Komárek, J., Kadeřávek, P., Otrusinová, 
O., Srb, P., Rabatinová, A., Krásný, L., Žídek, L., Sklenář, V., and 
Wimmerová, M. (2014) X-ray vs. NMR structure of N-terminal domain 
of delta subunit of RNA polymerase. J Struct Biol 187(2): 174-86. 

Question: Is there a difference in 3D structures of B. subtilis  NTD obtained by 

crystallography and NMR? 

This study was a bonus. Obtaining protein crystals is always a challenge. Hence, 

we were pleasantly surprised when we learned that Misa Wimmerova, a 

colleague of Lukas Zidek from Masaryk University, as a ‘side project’ managed 

to crystalize the B. subtilis  NTD. Then came another surprise, the two 

structures, one from crystallography and the other from NMR, differed! We 

systematically investigated the cause of the discrepancies between the NMR and 

X-ray structures of  NTD, addressing the pH dependence, presence of metal 

ions, and crystal packing forces. We showed that the crystal packing forces, 

together with the presence of Ni2+ ions, were the main reasons for the difference. 

In summary, the study illustrated that the two structural approaches might give 

unequal results, which need to be interpreted with care to obtain reliable structural 

information in terms of biological relevance. 
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Answer: The 3D structures of B. subtilis  NTD obtained by crystallography and 

differed significantly. Further studies then determined that the NMR structure was 

the one which was physiologically relevant. 

 

16. Rabatinová, A., Šanderová, H., Jirát Matějčková, Korelusová, J., 
Sojka, L., Barvík, I., Papoušková, V., Sklenář, V., Žídek, L., and Krásný, 
L. (2013) The delta subunit of RNA polymerase is required for rapid 
changes in gene expression and competitive fitness of the cell. J 
Bacteriol 195(11): 2603-11.  

Question: What is the cellular role of in B. subtilis? 

Despite extensive previous research from other labs (Weiss and Shaw, 2015) the 

full physiological role of  was unknown. As  binds RNAP, we systematically 

investigated the effect of  on transcription. We discovered that  decreased the 

stability of the open complex, changing thereby requirements of RNAP for the 

concentration of the iNTP. In the absence of , RNAP required relatively low 

concentration of the iNTP for maximal transcription (e. i. increased affinity for 

iNTP that was not physiologically relevant). The absence of  then altered 

regulation of iNTP-responsive promoters in vivo, and severely compromised the 

competitive fitness of the cell. Further, we showed that GreA and YdeB, two 

proteins structurally/sequentially reminiscent of DksA from E. coli, did not affect 

RNAP regulation by the [iNTP]. 

Answer: B. subtilis  affects the affinity of RNAP for the iNTP. This is essential 

for regulation of iNTP-responsive promoters, and, consequently, the competitive 

fitness of the cell. 
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4.2. Sigma factors 

 

17. Holátko, J., Šilar, R., Rabatinová, A., Šanderová, H., Halada, P., 
Nešvera, J., Krásný, L., Pátek, M. (2012) Construction of in vitro 
transcription system for Corynebacterium glutamicum and its use 
in the recognition of promoters of different classes. Appl Microbiol 
Biotechnol 96(2): 521-9. 

Question: Can we engineer a cell free in vitro transcription system from 

Corynebacterium glutamicum? 

Our previous experience with defined in vitro transcription systems of B. subtilis 

and E. coli encouraged us to engineer a similar system for C. glutamicum. This 

organism is a rod-shaped gram-positive bacterium, which is extensively used in 

the industry as an amino acid producer (Nesvera and Patek, 2011). Here, by 

putting a His-tag on the ’ subunit of RNAP in C. glutamicum we managed to 

create a strain for purification of the RNAP core. In parallel, we cloned and purified 

C. glutamicumA and H factors. We reconstituted RNAP holoenzymes in vitro 

and obtained transcription from A and H–dependent promoters. 

Answer: We prepared a new tool for studies of transcription regulation in 

Corynebacterium glutamicum: an in vitro transcription system. 

 

18. Zachrdla M, Padrta P, Rabatinová A, Šanderová H, Barvík I, Krásný 
L, Žídek L (2017) Solution Structure of Domain 1.1 of the σA Factor 
from Bacillus subtilis is Preformed for Binding to the RNA 
Polymerase Core. J Biol Chem 292(28): 11640-17.  

Question: What is the structure of Domain 1.1 of the σA factor from Bacillus 

subtilis? 

σA is the main, vegetative sigma factor in B. subtilis, homologous to other primary 

sigma factors in other organisms (e. g. 70 in E. coli). These factors consist of 

several domains, 1 to 4. These domains are further divided into subdomains. The 
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subdomains of primary sigma factors and their interactions with promoter DNA 

have been extensively studied. Domains 4.2 and 2.4 interact with promoter 

consensus hexamers, -35 and -10, respectively (Davis et al., 2017). The structure 

of domain 1.1, then, has been elusive for many years as the available crystal 

structures lacked electron density for this part of the protein, suggesting a 

significant degree of movement. This had changed, and at the start of our study 

two 3D structures of 1.1 were available: from E. coli in complex with RNAP and 

from T. maritima solved free in solution (Bae et al., 2013; Schwartz et al., 2008). 

However, these two structures significantly differed, and it was unclear whether 

this difference was due to an altered conformation upon RNAP binding or to 

differences in intrinsic properties between the proteins from these two distantly 

related species. Therefore, we solved the solution structure of 1.1 from the Gram-

positive bacterium Bacillus 

subtilis by NMR (Fig. 14). 

We found that B. subtilis 1.1 

is highly compact because 

of additional stabilization not 

present in1.1 from the other 

two species and that it is 

more similar to E. coli 1.1. 

Moreover, modeling studies 

suggested that B. subtilis 

1.1 requires minimal 

conformational changes for 

accommodating RNAP in 

the DNA channel, whereas 

T. maritima 1.1 must be 

rearranged to fit therein. 

Thus, the mesophilic 

species B. subtilis and E. 

coli share the same 1.1 fold, 

whereas the fold of 1.1 from 

Figure 14. 1.1 of B. subtilis. Top panel, amino acid 
sequence of B. subtilis 1.1 with helices indicated below 
the sequence. Negatively charged residues are shown in 
red, and positively charged residues are in blue. An 
alignment of amino acid sequences from T. maritima, E. 
coli, and B. subtilis is shown below. Asterisks indicate fully 
conserved amino acid residues, colons indicate 
conservation of amino acid residues with strongly similar 
properties, and dots indicate conservation of amino acid 
residues with weakly similar properties. Bottom panel, 
solution structure of 1.1 of B. subtilis. Helices HI–HIII, 
N/C termini and selected amino acid residues are 
indicated. 
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the thermophile T. maritima is distinctly different.  

Answer: The 1.1 domain of A from B. subtilis is similar to its counterpart from E. 

coli and these two structures differ from the same protein region from T. maritima. 

Moreover, the B. subtilis domain 1.1 is even more compact than that one of E. 

coli, and appears preformed for binding to the DNA channel of RNAP. 

 

19. Ramaniuk O, Černý M, Krásný L, Vohradský J (2017) Kinetic 
modelling and meta-analysis of the B. subtilis SigA regulatory 
network during spore germination and outgrowth. Biochimica et 
Biophysica Acta (BBA) - Gene Regulatory Mechanisms 
1860(8):894-904.  

Question: Which genes are regulated by RNAP complexed with A during 

germination and outgrowth from spores in B. subtilis? 

A (SigA) is the main, vegetative sigma factor in B. subtilis with hundreds of genes 

identified in its regulon (Nicolas et al., 2012). The goal of this study was to define 

this regulon during spore germination and outgrowth. The approach was a 

combination of bioinformatics (data mining) and wet-lab experiments. We 

performed a meta-analysis and kinetic modelling of gene expression control by 

sigma factor SigA based on microarray data from 14 time points (Keijser et al., 

2007). The analysis computationally modeled the direct interaction among SigA, 

SigA-controlled sigma factor genes (sigM, sigH, sigD, sigX), and their target 

genes. Of the> 800 known genes in the SigA regulon, as extracted from 

databases (Zhu and Stulke, 2018), 311 genes were analysed, and 190 were 

confirmed by the kinetic model as being controlled by SigA. For the remaining 

genes, alternative regulators satisfying kinetic constraints were suggested. The 

kinetic analysis suggested another 214 genes as potential SigA targets. The 

modelling was able to (i) create a particular SigA controlled gene expression 

network that is active under the conditions for which the expression time series 

was obtained, and where SigA is the dominant regulator, (ii) suggest new 

potential SigA target genes, and (iii) find other possible regulators of a given gene 

or suggest a new mechanism of its control by identifying a matching profile of 
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unknown regulator(s). We tested selected predicted regulatory interactions 

experimentally (Fig. 15). Out of the ten tested putative SigA dependent genes, 

five proved to be regulated by SigA without the requirement for additional factors. 

 

Answer: In addition to known SigA-dependent genes, we identified >200 genes 

potentially regulated by this sigma factor. We validated the prediction and 50 % 

Figure 15. In vitro multiple round transcriptions of DNA fragments derived from upstream regions 
of genes predicted to be SigA-dependent. A. Representative primary data. Each reaction was 
performed with the RNAP core and SigA-containing holoenzyme to demonstrate that the core 
had not been contaminated with sigma factors prior to its reconstitution with SigA. Radioactively 
labelled samples were loaded onto polyacrylamide gels. Pveg was used as a positive control. 
Transcript length was calculated with an RNA ladder (data not shown). The differences in length 
between the long and shortened fragment variants were in the 29–36 bp range. The distance 
between the long and shortened transcript variants in the gel differed for different promoters 
because each transcript had a unique length. Asterisks indicate the specific transcripts. The upper 
part of the figure shows respective kinetic modelling results. Red, SigA mRNA; black, specific 
gene. The scaling between boxes varies to accommodate the graphs as the levels of specific 
transcripts differed over a wide range. B. Alignment of putative promoter sequences identified by 
in vitro transcription assays. The −35 and −10 hexamers and the transcription start sites (+1) are 
indicated in red. Spacer regions between −35 and −10 hexamers are indicated. 



Transcription: The Pivotal Process of Gene Expression Regulation                              Libor Krásný 

 

34 
 

of the tested genes proved to be bona fide targets of SigA regulation, thus 

extending our knowledge about the SigA regulon and its kinetics during spore 

germination and outgrowth. 

 

20. Ramaniuk O, Převorovský M, Pospíšil J, Vítovská D, Kofroňová O, 
Benada O, Schwarz M, Šanderová H, Hnilicová J, Krásný L. (2018) 

I from Bacillus subtilis: Impact on gene expression and 

characterization of I-dependent transcription that requires new 

types of promoters with extended -35 and -10 elements. J. 
Bacteriol 200(17): e00251-18. 

Question: What is the regulon of SigI in B. subtilis? 

SigI was the least explored/defined sigma factor regulon in B. subtilis at the 

beginning of our studies (Liu et al., 2017). Considering the industrial importance 

of this model organism (Harwood et al., 2018), we decided to define its regulon 

and cellular roles. SigI had been previously implicated in adaptation of the cell to 

elevated temperature (Zuber et al., 2001). In this study, we provided a 

comprehensive characterization of this transcriptional regulator. By transcriptome  

 

Figure 16. Genes in B. subtilis affected by I. B. subtilis sigI-rsgI and wt strains were grown 
at 37°C and 52°C in LB broth to an OD600 of ~0.45. RNA was extracted and libraries were 
prepared for transcriptome sequencing (RNA-seq). A. Genes positively regulated by I. These 
genes were downregulated in the ΔsigI-rsgI strain compared to in the wt strain. B. Genes 
negatively regulated by I. These genes were upregulated in ΔsigI-rsgI compared to wt. 
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sequencing (RNA-seq) of wild-type (wt) and SigI-null strains at 37°C and 52°C, 

we identified cca 130 genes affected by the absence of SigI (Fig. 16). Further 

analysis revealed that the majority of these genes were affected indirectly by SigI. 

The SigI regulon, i.e., the genes directly regulated by SigI, consisted of 16 genes, 

of which eight (the dhb and yku operons) are involved in iron metabolism. The 

involvement of SigI in iron metabolism was confirmed phenotypically. Next, we 

set up an in vitro transcription system and defined and experimentally validated 

the promoter sequence logo that, in addition to -35 and -10 regions, also contains 

Figure 17. Multiple-round in vitro transcription assays with promoter regions of I-regulated 
genes and RNAPI. A. Alignment of I-dependent promoters. The -10 and -35 elements and 
+1 position for PsigI, PmreBH, and PbcrC are in red. B. Transcription was performed with the 
RNAPI holoenzyme and the RNAP core. Transcription with the RNAP core was used to 
assess potential contamination of the RNAP core with  factors. Promoter PsigI was used as 
a control and its transcription was set as 1. Pveg (A dependent) was used as a negative 
control for RNAPI. Primary data (radioactively labeled transcripts resolved on polyacrylamide 
[PAA] gels) are shown below the graph. The error bars show averages from three independent 
experiments ±SD. C. The I consensus logo was created from the 8 promoter sequences 
shown in panel A. Conserved promoter elements are indicated above the logo. 
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extended -35 and -10 motifs (Fig. 17). Thus, SigI-dependent promoters are 

relatively information-rich in comparison with most other promoters. In summary, 

this study supplied information about the least-explored SigI factor from the 

industrially important model organism B. subtilis. 

 Answer: The SigI regulon is small, consisting of 16 genes. Nevertheless, it is 

important for cell shape maintenance, heat-resistance, and iron metabolism. 

Moreover, the SigI-dependent promoters are unusually information rich, with four 

identified conserved motifs. 

 

4.3. Epsilon 

21. Keller, A., Yang, X., Wiedermannová, J., Delumeau, O., Krásný, L., 
Lewis, P. J. (2014) Epsilon: A new subunit of RNA polymerase 
found in Gram positive bacteria. J Bacteriol 196(20): 3622-32. 

Question: What is the structure/position on RNAP/function of the 1 () subunit 

of RNAP from B. subtilis?  

RNAP from B. subtilis contains additional subunits/binding factors compared to 

RNAP from E. coli (Weiss and Shaw, 2015). In the model Gram-positive organism 

B. subtilis, core RNAP has the subunit composition’. The occurrence 

of two  subunits in B. subtilis at approximately 11 kDa (1) and 9 kDa (2) has 

been known for some time (Helmann, 2003). The  subunit is encoded by rpoZ 

(synonym, yloH) and is similar to the  subunit present throughout eubacteria. 

The 1 subunit has been referred to as the second analogous  subunit simply 

because it has a size similar to that of the true  subunit. This annotation has 

been accepted despite there being no evidence to suggest that these two proteins 

are related in function. Using mTRAQ (mass differential tags for relative and 

absolute quantification) mass spectrometry, it has been shown that both of the 

subunits are approximately equimolar with the  subunit (Doherty et al., 2010). 

The ykzG gene is present in an operon with the physiologically important RNase 

RNaseJ1 (RnjA), and the two proteins are transcriptionally and translationally 

linked (Nicolas et al., 2012). So far, no functional link between these two proteins 
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has been demonstrated. In this 

study we demonstrated that  is a 

bona fide subunit of RNAP and (to 

avoid confusion) we renamed it as  

and the corresponding gene as 

rpoY. We determined the structure 

of , examined the phenotype 

generated on its deletion, and 

determined its location on RNAP 

(Fig. 18). The structural analysis 

indicated that ε is similar to phage 

T7 Gp2 which inhibits host cell 

transcription through interaction 

with RNAP (Bae et al., 2013). 

Mutagenesis studies indicated that 

both ε and Gp2 interact with RNAP 

via a shared structural motif. Due to 

the lack of phenotype on its loss, 

location within an RNAP complex, 

and similarity to phage T7 Gp2, we 

proposed that ε may help protect 

against phage infection from Gp2-like proteins by occupying their binding sites. 

Answer: The structure of is almost identical with that of the phage T7 Gp2 

protein and so is the binding site on RNAP. Remarkably, considering it is an 

RNAP subunit, a deletion mutant for the -encoding gene does not show changes 

in gene expression. Hence, we propose that  may serve as an immunity protein, 

protecting B. subtilis RNAP against phages employing analogous strategy to T7 

via Gp2. 

 

 

Figure 18. Model of ε bound to RNAP. A. ε 
docked against the jaw region of an homology 
model of B. subtilis RNAP using the Gp2-jaw 
structure (PDB 2LMC) as a guide. (B and C) ε-
jaw and Gp2-jaw complexes, respectively. In 
panel B, ε is shown in red, with the 3 strand 
thought to be involved in interaction with B. 
subtilis RNAP shown in green. In panel C, Gp2 is 
shown in green with the 3 strand known to be 
involved in interaction with the jaw of E. coli 
RNAP (pale blue), shown in red. 
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 4.4. HelD 

22. Wiedermannová, J., Sudzinová, P., Kovaľ, T., Rabatinová, A., 
Šanderová, H., Ramaniuk, O., Rittich, Š., Dohnálek, J., Zhihui, F., 
Halada, P., Lewis, P., Krásný, L. (2014) Characterization of HelD, an 
interacting partner of RNA polymerase from Bacillus subtilis. 
Nucleic Acids Res 42(8): 5151-63. 

Question: What is the function of HelD, a newly identified binding partner of 

RNAP in B. subtilis? 

Jana Wiedermannová from my lab discovered a new binding partner of RNAP 

from B. subtilis (it copurified with RNAP and mass spectrometry revealed its 

identity). In parallel, the same protein was described as interacting partner of 

RNAP by others (Delumeau et al., 2011). In this study we set out to characterize 

HelD. We first verified its binding to RNAP and, by the far-Western approach 

identified its approximate binding region on RNAP. HelD binds the RNAP core 

between the secondary channel of RNAP and the subunits. Next, we created a 

HelD-null strain and determined that the absence of the protein results in 

prolonged lag phase. We created recombinant His-tagged HelD and performed 

experiments in vitro. These experiments revealed that HelD stimulateed 

transcription in an ATP-dependent manner by enhancing transcriptional cycling 

and elongation. Interestingly, we observed that the stimulatory effect of HelD 

could be amplified by the small subunit of RNAP, . Thus, there seems to be a 

synergism between these two proteins. 

Answer: HelD binds RNAP between the secondary channel of RNAP and the 

alpha subunits and promotes transcriptional elongation and cycling. Future 

studies will be required to define its overall effect on gene expression and the 

biology of the cell. 
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4.5. Spx 

23. Rochat T, Nicolas P, Delumeau O, Rabatinová A, Korelusová J, 
Leduc A, Bessières P, Dervyn E, Krásný L, and Noirot P. (2012) 
Genome-wide identification of genes directly regulated by the 
pleiotropic transcription factor Spx in Bacillus subtilis. Nucleic 
Acids Res 40 (19): 9571-9573.  

Question: Which genes are regulated by Spx in B. subtilis? 

Spx is a transcription factor in B. subtilis with a key role in affecting gene 

expression with respect to maintenance of redox homeostasis (Zuber, 2009). Spx 

binds to  subunits of RNAP and allosterically affects its binding to DNA, based 

on its redox state. It becomes active when it is oxidized (Zuber, 2009). In this 

study, we catalogued the regulon of Spx by chromatin immunoprecipitation 

followed by microarray hybridization. This part of the project was performed by 

our French collaborators. We, then, validated the results by detailed in vitro 

transcription studies with selected genes (their regulatory sequences) and 

identified new types of regulation of RNAP by Spx. Overall, 283 discrete 

chromosomal sites potentially bound by the Spx–RNA polymerase (Spx–RNAP) 

complex were identified. Three quarters of these sites were located near SigA-

dependent promoters, and upon diamide treatment (e. i. oxidative stress), the 

fraction of the Spx–RNAP complex increased in parallel with the number and 

occupancy of DNA sites. Correlation of Spx–RNAP-binding sites with gene 

differential expression in wild-type and spx strains exposed or not to diamide 

revealed that 144 transcription units comprising 275 genes were potentially under 

direct Spx regulation. Spx-controlled promoters exhibited an extended -35 box in 

which nucleotide composition at the -43/-44 positions strongly correlated with 

observed activation. In vitro transcription confirmed activation by oxidized Spx of 

seven newly identified promoters, of which one was also activated by reduced 

Spx. This study thus globally characterized the Spx regulatory network, revealing 

its role in the basal expression of some genes and its complex interplay with other 

stress responses. 

Answer: Over 200 sites binding the complex of RNAP-Spx were genome-wide 

identified in B. subtilis, underscoring the importance of this transcription factor 
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with respect to the number of regulated genes. Interestingly, subsequent detailed 

analysis revealed that Spx, depending on the gene, can act both in oxidized and 

reduced forms. 

 

4.6. RNAP 

24. Tomáš Kouba, Jiří Pospíšil, Jarmila Hnilicová, Hana Šanderová, 
Ivan Barvík, and Libor Krásný (2019) The Core and Holoenzyme 
forms of RNA Polymerase from Mycobacterium smegmatis. J. 
Bacteriol (in press). 

Question: What is the structure of the core and holoenzyme forms of 

mycobacterial RNAP? 

In this study we described 3D structures of core and holoenzyme forms of M. 

smegmatis RNA polymerase (RNAP) solved by cryo-EM (Fig. 19). These 

structures fill the so far empty spots in the gallery of the pivotal forms of 

mycobacterial RNAP and illuminate the extent of conformational dynamics of this 

 

Figure 19. Secondary structures of two forms of RNAP from Mycobacterium smegmatis as 
observed in the experimental cryo-EM densities: core (Left) and holoenzyme (Right, RNAP 
in complex with primary sigma factor, A), subunits are colored as follows:  – yellow, ’– 
green,  – grey, ’ – cyan,  – orange, σA – magenta. Amino acid residues used to 
quantitate the range of motions of the primary channel pincers are shown in the left 
structure. In the right structure, the AN-helix (of domain 1.1) is shown in red. The 
mycobacteria-specific β’i1 structural element is the prominent helix-coil-helix containing 
R214. 
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enzyme, showing that the mycobacterial enzyme is highly flexible, and providing 

topological details for region 1.1 of SigA and the mycobacteria-specific β’i1 

structural element. The presented findings may facilitate future designs of 

antimycobacterial drugs targeting RNAP, and provide a basis for structural 

studies of mycobacterial RNAP in complex with auxiliary factors.  

 

Answer: We have solved the 3D structures of M. smegmatis core and 

holoenzyme forms of RNAP. The two forms complement the known structures 

and provide a complete movie of the main kinetic intermediates of this enzyme, 

showing that M. smegmatis RNAP is highly flexible compared to other species. 
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Chapter 5. Antibacterial compounds 

Currently, antibiotics in the clinical practice are often found ineffective, due to the 

rise of resistant bacterial strains (Jiang et al., 2018; Schwartz and Morris, 2018). 

The situation is dire and some physicians even say that “We have already entered 

the post-antibiotic era” (Kostakioti et al., 2013). What, then, needs to be done? 

Clearly, new antibiotics are required, preferably such that would elicit zero to low 

level resistance in pathoges. What is the ideal target of such antibiotics? 

Undoubtedly, it is a proces/bacterial cell structure that is difficult to be 

altered/mutated due to its essentiality for the cell. What is such a structure? An 

ideal target is the plasmatic membrane as the phospholipid composition is difficult 

to change; however, efflux pumps scavenging antibiotics from the membrane 

may in some species provide a means for resistance to develop (Alav et al., 

2018). Importantly, there are salient differences between pro- and eu-karyotic 

plasma membranes, with the former being more negatively charged on the 

surface, whereas the latter contain anionic lipids sequestered to the monolayer 

facing the inside of the cell. Antibiotic compounds targeting the bacterial plasma 

membrane have been described in the past (Bastos et al., 2018). These 

antibacterial peptides may alter the physico-chemical properties of the membrane 

and thereby adversely affect the cell. A team from the Institute of Organic 

Chemistry and Biochemistry in Prague, led by Dr. Dominik Rejman, has 

synthesized novel compounds targeting the bacterial membrane and we closely 

collaborated (also with others) on their development and characterization. The 

results of these efforts are contained in the following three papers. 
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25. Rejman, D., Rabatinová, A., Pombinho, A., .Kovačková, S. ,Pohl, R, 
Zborníková, E., Kolář, M., Bogdanová, K., Nyč, O., Šanderová, H., 
Látal, T., Bartůněk, P., Krásný, L. (2011) Lipophosphonoxins – new 
modular molecular structures with significant antibacterial 
properties. J Med Chem 54(22): 7884-7898. 

Question: Can we develop novel antibacterial compounds? 

At the onset of this study was the idea to screen for novel inhibitors of bacterial 

RNAP. To do this, we teamed up with Dr. Dominik Rejman from the Institute of 

Organic Chemistry and Biochemistry in Prague, clinical microbiologists from 

Motol and Olomouc (Drs. O. Nyč and M. Kolář), the private company Trios Ltd 

(Dr. T. Látal) and also several others. We performed an extensive in vitro screen 

of the nucleotide-, nucleoside-like compounds from the library of Dr. Rejman and 

came up with a number of hits. However, while some of these compounds were 

active against purified RNAP, it was difficult to transport them into cells due to 

their negative charge. Nevertheless, in parallel we tested the effect of all the 

library compounds on bacterial strains regardless of their potential mechanism of 

action. By this approach we identified a set of compounds, collectively termed 

lipophosphonoxins (LPPOs), that displayed significant antibacterial activities 

against gram positive (Fig. 20) but not against gram negative bacteria. 

Importantly, they showed low cytotoxicity against a panel of human cell lines.  

 

 

Answer: We identified novel compounds, termed lipophosphonoxins (LPPOs), 

with significant activities against gram-positive bacteria and low cytotoxicity. 

 

Figure 20. LPPOs are active against gram-positive bacteria. The modular structure of 
LPPO sis shown on the left. Minimal inhibitory concentrations (MIC) are listed for the 
most active compounds and respective species on the right. 
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26. Panova, N., Zborníková,E., Šimák, O., Pohl, R., Kolář, M., 
Bogdanová, K., Večeřová, R., Seydlová,G., Fišer, R., Hadravová, 
R., Šanderová, H., Vítovská, D., Šiková, M., Látal, T., Lovecká, P., 
Barvík, I., Krásný, L., Rejman, R. (2015) Insights into the 
mechanism of action of bactericidal lipophosphonoxins. PLOS 
ONE, 10(12)e0145918.  

Question: What is the mechanism of action of LPPOs? 

In this study we systematically searched for the target(s) of LPPOs. We tested 

their effect on DNA, RNA, protein, and cell wall synthesis and showed that none 

of these processes was affected by LPPOs. Next, we investigated the functioning 

of LPPOs by microscopy and noticed a dramatic effect of LPPOs – they appeared 

to create pores in the cell envelope (Fig. 21). This was further studied by a 

number of approaches that confirmed the pore-forming activity of LPPOs. Dr. G. 

Seydlová and Dr. R. Fišer from Charles University in Prague were indispensable 

for these experiments. Importantly, the pore-forming activity was restricted to 

bacterial membranes and eukaryotic membranes were much less affected. 

 
Figure 21. LPPOs destroy the cell envelope. TEM pictures of B. subtilis cells. 0.25% 
phosphotungstic acid at pH 7.3 was used for staining. A. Untreated. B. Treated with 10 mg/L of 
DR5026 for 15 min. C. Treated with 10 mg/L of DR5026 for 30 min. D. Treated with 20 mg/L of 
DR5026 for 15 min. E. Treated with 20 mg/L of DR5026 for 30 min. The scale bars in the right-
hand corners of the pictures represent 500 nm. 

Answer: LPPOs function by creating pores in the bacterial membrane. 
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27. Seydlová G, Pohl R, Zborníková E, Ehn M, Simak O, Panova N, 
Kolar M, Bogdanova K, Vecerova R, Fiser R, Šanderová H, Vítovská 
D, Sudzinová P, Pospíšil J, Benada O, Křížek T, Sedlak D, Bartunek 
P, Krasny L, Rejman D. (2017) Lipophosphonoxins II: Design, 
Synthesis and Properties of Novel Broad Spectrum Antibacterial 
Agents. J Med Chem. 60(14):6098-6118. 

Question: Can LPPOs be improved with respect to efficiency and range of 

bacteria against which they are active? 

As LPPOs from the first generation (LPPOs I) were not active against gram 

negative bacteria, Dr. D. Rejman designed new LPPOs (second generation, 

LPPOs II) with a higher positive charge compared to LPPOs I. These compounds 

were more efficient and, importantly, active also against gram negative bacteria 

including a number of pathogens and resistant strains. Parallel mechanistic 

studies revealed that LPPOs II functioned in the same manner as LPPOs I, and 

retained their low cytotoxicity (Fig. 22). 

 
Figure 22. LPPOs II are specific for bacterial cell membranes. Permeabilization of the 
cytoplasmic membrane of live cells by LPPOs 4c and 8c, and melitin (positive control). 
Permeabilization of the cytoplasmic membrane of Gram-positive (A, B) and Gram-negative 
bacteria (C, D) and mouse macrophages (E) induced by LPPO II measured as the increase 
in fluorescence intensity of propidium iodide. LPPO II and melittin concentrations were 5 mg/L 
and 5 μM, respectively. 



Transcription: The Pivotal Process of Gene Expression Regulation                              Libor Krásný 

 

46 
 

Answer: The second generation LPPOs was more efficient than the first 

generation and active against both gram-positive and –negative bacteria. They 

are now being tested in practical applications. 
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Future Challenges 

The way an organism functions/looks like/communicates depends on gene 

expression. Studies of gene expression regulation are gaining momentum as 

large scale approaches allow to amass and tackle increasing amounts of data. 

Subsequently, this must be followed up by detailed verifications to build reliable 

models of the regulatory processes. We are at the beginning of this era, and the 

quest for the ultimate understanding of the cell has just begun in earnest. 

Completely new concepts and breakthroughs are expected. The new knowledge 

will be utilized in development of new antibacterial compounds and/or 

biotechnologies. 

In transcription, future challenges lie in detailed descriptions/explorations and 

cataloguing of the key players interacting with RNAP, and in gaining insights into 

the mechanistic details of their functioning. This task will be multidimensional, as 

the architecture of the transcription apparatus changes with changing 

environmental conditions. A dynamic view of the process, as complete as 

possible, is the goal. 

In cell-to-cell communication, a relatively new phenomenon, the so called 

nanotubes, is making the waves (Baidya et al., 2018). Their existence seems to 

be firmly established. However, their formation and function are still poorly 

defined. As they in principle transform bacteria into a multicellular organism (and 

change thus the paradigm of how we think about them), their research is an 

urgent need. The challenges include defining the genetic apparatus and its 

regulation as well as defining the types of metabolites/molecules that can be 

trafficked via nanotubes. 

Finally, the demand for antibacterial compounds is on the increase. 

Novel/improved antibiotics (increased specificity, lower possibility for resistant 

strains to occur) have to be developed. Importantly, their implementation into 

clinical practice will need to take place (testing of LPPOs II as additives to surgical 

bone cements is already in progress), and a more intense interaction with 

pharmaceutical companies is desirable. 

I am looking forward to being part of the quest. 
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