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Abstract
Universal Semantic Language (USL) is a semi-formalized approach for the description 
of knowledge (a knowledge representation tool). The idea of USL was introduced by 
Vladimir Smetacek in the system called SEMAN which was used for keyword 
extraction tasks in the former Information centre of the  Czechoslovak Republic. 
However due to the dissolution of the centre in early 90's, the system has been lost.

This thesis reintroduces the idea of USL in a new context of quantitative content 
analysis. First we introduce the historical background and the problems of semantics 
and knowledge representation, semes, semantic fields, semantic primes and universals. 
The basic methodology of content analysis studies is illustrated on the example of three 
content analysis tools and we describe the architecture of a new system. The application 
was built specifically for USL discovery but it can work also in the context of classical 
content analysis. It contains Natural Language Processing (NLP) components and 
employs the algorithm for collocation discovery adapted for the case of  cooccurences 
search between semantic annotations.

The software is evaluated by comparing its pattern matching mechanism against another 
existing and established extractor. The semantic translation mechanism is evaluated in 
the task of automated document classification with special attention to the problem of 
semantic ambiguity and correct translation. Finally we evaluate the ability of the system 
to discover statistically significant semantic relationships from textual corpora.

Abstrakt
Univerzální sémantický jazyk (USJ) je semi-formalizovaný způsob zápisu znalostí 
(systém pro reprezentaci znalostí). Myšlenka USJ byla rozvinuta Vladimírem 
Smetáčkem v 80. letech při pracech na systému SÉMAN (Universální semantický 
analyzátor). Tento systém byl využíván pro automatizovanou extrakci klíčových slov v 
tehdejším informačním centru ČSSR. Avšak se zánikem centra v 90. letech byl systém 
SEMAN ztracen.

Tato dizertace oživuje myšlenku USJ v novém kontextu automatizované obsahové 
analýzy. Nejdříve prezentujeme historický kontext a problémy spojené s reprezentací 
znalostí, sémů, sémantických polí, sémantických primitivů a univerzálií. Dále je 
představena metodika kvantitativní obsahové analýzy na příkladu tří klasických 
aplikací. Podrobně popíšeme architekturu nové aplikace, která byla vyvinuta speciálně 
pro potřeby evaluace USJ. Program může fungovat jako nástroj pro klasickou 
obsahovou analýzu, avšak obsahuje i nástroje pro zpracování přirozeného jazyka (NLP) 
a využívá algoritmů pro vyhledávání kolokací. Tyto byly upraveny pro potřeby 
vyhledávání vazeb mezi sémantickými anotacemi.

Jednotlivé součásti programu jsou podrobeny praktickým testům. Subsystém pro 
vyhledávní vzorů v textech je porovnán s existujícím extraktorem klíčových slov. 
Mechanismus pro překlad do sémantických kódů je otestován na příkladu automatické 
klasifikace dokumentů a speciální pozornost věnujeme problémům mnohoznačného 
překladu. Poslední část evaluace se zabývá schopnostmi systému objevit významné 
vazby mezi sémantickými anotacemi v textu.
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I. INTRODUCTION

I. INTRODUCTION

“Vague, but exciting.” Such was the handwritten note of a reviewer on a proposal by Tim 
Berners-Lee for a system that later became known as World Wide Web; the biggest 
network people have ever built and also the biggest source of information for and about 
people. It was designed for researchers at European Organization for Nuclear Research 
(CERN), but exceedingly elegant and beautiful in its simplicity, it was adopted later by 
people outside the research community. They built on top of it and created more than just a 
sum of the individual parts. And as with everything in human history, this tool was put to 
use for all possible zeals – it virtually saves lives, and literally takes them away as well.

But I do not mention the beginnings of WWW to draw any sort of a far fetched and 
arrogant parallel between the big invention called Web and the small research task that I am 
going to present here. No, not at all. I have other reasons. I owe much to the Web and to 
“IT” at CERN. A strange twist of luck or chance brought me to CERN and these lines are 
written only a few meters away from the shabby and dark corridor where Tim Berners-Lee 
and Robert Cailliau once sat in front of the first web browser. It is a dark passage down 
there, but visitors must notice the golden plaquette on the wall – the only source of light in 
the dark alley. When I came closer to it another handwritten note came to my mind. It was 
attached to an old computer in the CERN museum and read; “This machine is a server. DO 
NOT POWER DOWN!!!”1

As you can imagine, the beginnings must have been difficult and not always smooth. The 
idea of the global information system must have been exciting, perhaps the more vague, the 
more exciting. But the initial rush was probably soon replaced by a realization that things 
must be implemented. Not “somehow” or “anyhow”, but well enough. To do more than 
necessary is as wrong as to do less than necessary. And there it is where the parallel story 
for me starts. It was in classes and during discussions with my supervisor at Charles 
University. Discussions about a computer system that could “do something useful” - 
something that could extract, filter out, provide useful information, make sense of the 
information avalanche in which we are submerged. It was during these discussions about 
history, religion, all the biological, ethical, rational or irrational decisions that people make,  
that the idea of a computer system called SEMAN was introduced to me. And the more 
vague, the more exciting it was!

What if we were able to “read” the texts written by people and indirectly deduce from these 
texts what and how people think? What if we use the information now widely available on 
the Web to analyse ourselves? What if we could help the computer to make some sense of 
the bits that are floating around? Dreams, for sure, vague but exciting dreams, I dare say.

1 http://en.wikipedia.org/wiki/File:First_Web_Server.jpg
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I. INTRODUCTION

My supervisor started a work on such a project nearly 35 years ago, in the times when 
mainframes (and especially mainframe computers in the then communist block) had very 
limited memory. Software and hardware constraints were considerable. Yet it was still 
possible to implement the idea of a computer code which translated the natural language 
texts into a semi-formalized form that got analyzed later. Vladimir Smetacek called this  
form “Universal Semantic Language” (USL) and it allowed him and his collaborators to 
look at the features of texts. USL was effectively a knowledge representation system which 
encoded our knowledge of the world into formalized categories (that stood for concepts). 
Words were used as pointers towards concepts. In the semantic triangle we had the word on 
one edge, semantic codes on the other edge, and indirect link of a meaning between the 
two.

The system used to work in the centre of information industry of the Czechoslovak 
Republic. It extracted keywords from the abstracts of scientific papers, but with the 
dissolution of the centre in the post-communist times, the information system as well all  
the products of the centre were lost. A few attempts were made to revive the idea, but as far 
as I know, all were unsuccessful which brings us to the beginning of this thesis.

I.1   MOTIVATION 
The main motivation of this research was to build a system that would implement the USL 
and will test its capabilities. It also wanted to verify assumptions we had had about its 
ability to extract interesting data. 

A concrete application of such an idea is perhaps not useless. In offices and reading rooms, 
thousands of researchers and analysts every day grapple with the textual data and ask 
questions about them. We have at our disposal extraordinary amounts of text, but our 
ability to process them is limited. Perhaps if we were able to find what people wrote about 
the reality, then one day we could deduce from these facts what was indeed happening in 
reality. For example, if there was a high degree of violence in society, then the products of 
society (such as texts) could testify about this higher degree of violence.

Ideally, the computer programs should be able to “read and understand” these texts in the 
same ways as people do. But we know quite well this is just a dream and what seems so 
easy for people is still too difficult for any intelligent computer system. The reality is much 
more profane and really not that exciting as science fiction or sensational newspapers 
purport. There has been huge progress in many fields of artificial intelligence, robotics, 
language processing and computer science in general. Nevertheless we are still far away 
from the expectations that our ancestors had from computers just only 40, 30 or even 20 
years ago (Shapiro, Tackett, Dawson, and Markoff 1998; Cuilenberg, Kleinnijenhuis, and 
de Ridder 1998; Krippendorf 2004a) But the progress came slowly in small, incremental 
changes and contributions such as this thesis might be perhaps useful as well.
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I. INTRODUCTION

I.2   RESEARCH QUESTIONS

I was facing the task of reviving the idea of a system that used to work in a different 
context. There was a body of published literature about the system, and the idea seemed 
appealing – but it was still a vague idea. The published literature was not new, the software 
did not exist anymore. But Dr. Smetacek hopefully remembered every detail. Nevertheless 
I had to recreate SEMAN myself as I understood it. We spent long afternoons in 
discussions and disputes whether something is a good idea or not, but usually the final 
answer to my doubts was: “we shall test it and see”.

So, there were many doubts that I had at the beginning of this work, today, arguably I know 
much more, but it is good to remember them.

Firstly, there were questions about the USL itself. As a tool for  knowledge organization – 
where can the idea be traced from? Are we using something similar as people were/will be 
using after us? And there was this 'unpleasant' feeling of anarchy. The way the USL is 
described is somewhat 'messy' and it does not require nor impose strict rules. By design it 
refuses to have organizational principles (ideology). This was very disconcerting at the 
beginning. I was expecting some organization principle, certain philosophy and patterns of 
construction of the language. Because rule(s) are needed...? (Or are they?)

But the most important questions were about the application. Is it possible to translate the 
text written in the natural language into this flat structure of USL? Can we enhance the text  
with semantic tags around words? Can we do it despite all the problems of semantic 
ambiguity associated with the translation? Can we extract useful information from such 
processed texts? Will it all work?

In a more orderly fashion, the questions and tasks were as following:

1. Is the idea of the universal semantic language (USL) translatable to the form of a 
working application in a different domain?

2. Can we translate the texts from their natural form into the language of USL and 
actually avoid the problems of increasing entropy?

3. Can the process of extraction of facts work?

4. Is the current form of knowledge representation management sustainable? And 
what tools and methods one needs to develop to improve them?

5. Is it possible to have one, universal definition of a meaning?

These were the main questions for which the work on a new application with the old name 
(SEMAN) was started.

3



I. INTRODUCTION

I.3   CONTRIBUTIONS

The thesis makes the following research contributions:

1. We have developed a new research tool

2. We have reviewed the theory behind the USL and summarized its application into 
the context of content analysis

3. We have evaluated the ability of the system to code texts and retrieve semantic 
relationships

Besides working on the application of USL, SEMAN was conceived also as a generic tool 
for content analysis. It is comparable in functionality to some existing tools and this is 
another contribution of the thesis.

I.4   THESIS OUTLINE

Chapter II. starts with the introduction to the problem of knowledge representation. We 
continue with the history of semantic primes and universals including the examples from 
philosophy and recent lexicography. The idea of USL is compared with the theory of 
Universal Characteristic, semantic fields, semantic primes and universals, and we describe 
the features of the USL representation discussing the data structures used for 
representation. The whole chapter II.3 is dedicated to a discussion on semantics and 
whether we could find one unique meaning/definition of concepts. The chapter concludes 
with personal remarks based on the experience with the maintenance of the USL dictionary. 
Remarks about its potential and shortcomings I was able to perceive.

The following chapters III. and IV. concentrate on content analysis. First we review the 
basic methodology of content analysis and the problems of “definition of meaning”. This 
chapter is followed by review of tools for content analysis; representative tools for so 
called “classical content analysis studies”. Right after this section comes the detailed 
description of SEMAN, the architecture of the software, components, storage mechanism 
and algorithms for translation and analysis. SEMAN is compared against the previous tools 
at the end of the chapter.

The last chapter V. represents the most important part of the thesis. We evaluate the 
performance of SEMAN. Firstly, the internal matching mechanisms which is a crucial 
component for the extraction of information. Next we conduct an experiment with 
document classification. The goal of this procedure is to find out whether SEMAN can deal 
with the semantic ambiguity in the process of translation from the natural language form 
into USL semantic codes. The final part of the evaluation consists of two experiments. We 
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want to find out whether SEMAN can recognize and extract significant cooccurences of 
semantic codes from the translated corpus and what proportion of significant pairs may be 
missed.
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II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II. SEMANTICS AND KNOWLEDGE 
REPRESENTATION

This chapter represents a short discourse on history of semantic fields and semantic 
primitives, the main building blocks of USL. We will also discuss various problems 
associated with the representation of knowledge, touching upon technical aspects of the 
primitives and their representation in  computer memory in later chapters. But before we 
delve into semantics, we can look at the world of ideas and their representations in the 
philosophy. We will start with Aristotle and his endeavour to organize the knowledge of a 
physical world. Aristotle was in many fields the first, he compiled an unprecedented body 
of facts. And what is more, Aristotle devised a system of their categorisation. Being 
opposed to the world of ideas of his teacher Plato, he saw the origin of things in the 
physical world and the idee as a reflection of it; he connected the physical world with the 
static, spiritual heaven and made of it a dynamic, organized encyclopaedia of facts.

Aristotle was the first to establish terminology for logic, physics, biology, linguistics and 
many other fields. Out of the invented terms, the categories, quantity, quality, genus,  
species, noun, verb, subject, predicate are the most important for the subject of our study. 
Also Aristotle's fundamentals of syllogisms and deductive logic are of no lesser 
importance, such as: 
All humans are mortal.
Socrates is human.
Therefore Socrates is mortal.

Much later, the four main syllogistic patterns together with the fifteen derived patterns 
were studied by Christian scholastics in the many centuries that followed the dissolution of 
the Western Roman empire. They served as a basis for logical operations and evolved into 
rich set of tools and theories ranging from the binary, two-typed predicate logic into fuzzy 
and higher-order logics, mathematical logic of the 20th century and also in the formal 
semantics of the Montague grammar. We will dedicate more time to this topic when 
discussing properties of the universal semantic language but let us first address the 
problem of knowledge representation.

The first graphical notation of knowledge appeared very early, in the third century A.D., as 
a commentary on Aristotle's Categories by the philosopher Porphyry and is up to now 
called Tree of Porphyry. 

7
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Substance, for instance, is the single highest genus of substances, for no other genus 
can be found that is prior to substance. Human is a mere species, for after it come the 
individuals, the particular humans. The genera that come after substance, but before 
the mere species human, those that are found between substance and human, are 
species of the genera prior to them, but are genera of what comes after them. (Sowa 
2000, 4)

Up to current times, the features that distinguish the different species of the same genus are 
used in the construction of dictionaries, for definition of new categories inside Artificial 
Intelligence (AI) systems, as well as for object-oriented design and programming. The tree 
shows the important property of inheritance, which in other words means there is a path 
from the current element towards its ancestors. 

This is the principle of composition and specialization that we seem to find in nature 
around us, and that we, together with Aristotle, project onto the models of the world as we 
understand it.

While science flourished on the Arab peninsula and Indian continent, the European 
scholastics were living in the Dark Ages. In our short historical sketch, we will leave them 
there and jump fourteen centuries forward to the work of the German philosopher, diplomat 
and mathematician Georg Wilhelm Leibniz who, amongst many other things, developed 
Universal Characteristic. A tool for knowledge description and knowledge representation1. 
Leibniz used combinatorics of prime numbers to define complex concepts. First he defined 
a few primitive concepts:

substance = 2
material = 3
animate = 7
sensitive = 13
rational = 19

immaterial = 5
inanimate = 11
insensitive = 17
irrational = 23

1 We shall not forget Leibniz was also a librarian.
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II. SEMANTICS AND KNOWLEDGE REPRESENTATION

Complex concepts were then represented by a product of primitives. In Leibniz's theory, for 
instance, “body” is material substance. The characteristics of the concept body 
are therefore represented by the product of 2 and 3, similarly the number for mineral is 
2x3x11, or 66; and the number for human is 2x3x7x13x19, or 10.374.

The number represents all the composite characteristics of the concept and Leibniz defined 
operations for reasoning about them. To test whether human has body, the number 10.374 
must be exactly divisible by 6. And if human is insensitive the number 10374 must 
be exactly divisible by 17, and it is not. Therefore no human is insensitive, at least 
for this definition of the concept. 

Despite the development of mechanical calculators in the seventeenth century, no practical  
application of Universal Characteristic was possible due to large prime numbers.2 It was 
only centuries later that a similar approach would not present insuperable problems. 
Nevertheless the principle was established. And it keeps returning in many knowledge 
representation systems, be they lattices, USL or decimal classification systems, for 
example:

Another representation, which is isomorphic to Leibniz's products of primes, 
represents each concept type by a string of bits. If n is the number of defining 
features, each product of primes is mapped to a string of bits of length n. A feature 
represented by the i-th prime number is mapped to a string with 1 in the i-th position 
and all other bits 0. Each concept type is represented by the logical OR of all the bit 
strings for each of its defining attributes. Concept type A is a subtype of B (A<B) if 
each position that has a 1 bit for b has a 1 bit for a. The lattice operators are defined 
as follows:
A ∩ B is the logical AND of the bit strings for a and b;
A ∪ B is the logical OR of the bit strings for a and b. (Rajman 2007, 240)

Leibniz Combinatorics were also very important for the study of semantics and meaning, 
of which the detailed history is given in (Wierzbicka 1996). “Leibniz even began a program 
of lexical investigation with a view to discovering the primitive notions and rules of 
composition from which all complex notions were composed... his ars combinatoria or 
'universal characteristic', is a direct ancestor of the present work [on semantic primes and 
universal].” (Goddard 1994, 9)

2 Interestingly, Leibniz is quoted as saying: "It is unworthy of excellent men to lose hours like slaves in the 
labour of calculation which could safely be relegated to anyone else if machines were 
used."[WIKI#History of computing hardware, quoting Smith, David Eugene (1929), A Source Book in 
Mathematics, New York: McGraw-Hill, pp. 180–18]
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II.1   USL AND FORMAL CONCEPT ANALYSIS

The symmetric hierarchies generated by Leibniz's method are called lattices and they are 
an important method for knowledge organization in Artificial Intelligence. Another method 
with similar purpose called Formal Concept Analysis was invented by Rudolf Wille in 
1984 (FCA).3 The difference is that Universal Characteristic was designed to describe in a 
compact way the properties of  objects, while FCA approaches the same problem from the 
opposite direction. Its aim is to discover the underlying structure inside the set of known 
properties.

FCA is used for tasks such as automatic concept clustering and automated ontology 
construction. It is based on the Aristotelian duality of intension and extension – as in the 
classical logic, where intension defines the features (differetiae) that characterize objects,  
and extension is the set of all objects that belong to the given group.

For example, the concept type “Dog” applies to fewer entities in the real world than 
its supertype “Animal”, but more attributes are required to describe it. Concept are 
described as a natural way of grouping things by means of relationships between 
objects and attributes. The world (called context) is characterized by the three 
dimensions <O, A, H> where

– O is a set of objects;

– A is a set of features;

– H is the relationship between objects and attributes: (o ,a )∈H  means that the 
object o has the attribute a.. 

This method is effective since it bypasses the combinatorial explosion induced by 
Leibniz's method. Leibniz's method generates lattices containing all possible 
combinations of features, but most of these combinations never actually occur in 
practice...The FCA lattices, however, contain only known concept types and likely 
generalizations...An FCA lattice can also be refined. For instance, new concepts can 
be created by adding supplementary features to the existing ones. Concept refinement 
corresponds to the application of the lattice operator ∩ . For instance, “Beer” 
would be "sparkling"∩"alcoholic"∩"madeFromFrain" . (Rajman 2007, 240)

In this sense, USL can be viewed as informal application of FCA to lexical items, objects 
are represented by the entries in the lexicon and the semantic features are substituted by 
semantic codes. The relation H is denoted by the sign of equality and we can generate set 
of objects and their attributes.

3 Interestingly, the USL works with the same set of objects and attributes as FCA.
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Illustration 2: Visualisation of the High-Energy physics taxonomy written in the USL. Some components are not attached to any word (like 0003w) and the FCA discovered two  
places where the entries miss connections (the empty boxes).



II. SEMANTICS AND KNOWLEDGE REPRESENTATION

II.2   EXISTENTIAL-CONJUNCTIVE LOGIC

The subset of logic with only ∃ and ∧  is called existential-conjunctive or EC 
logic. It is a common subset for translating, relating, and analyzing the specialized 
notations of many different fields. It is also the subset used to represent all the 
information stored in commercial database systems, both relational and object-
oriented. EC logic is therefore an extremely important subset, but it has one serious 
limitation: it cannot represent any generalization, negations, implications, or 
alternatives. For that, the operators ∀ , ~ ,→and∨  are necessary. (Sowa 2000, 17)

From the perspective of logic, USL can be classified as existential-conjunctive logic. As an 
example, the transliteration of the concept father in the USL into the notation of EC 
logic would be following:

∃ x
1
human x

1
∧male x

1
∧parenting x

1


This formula says that there exists an x that has the qualities denoted as human, male and 
parenting. If we were to include a more sophisticated version, we could specify arguments 
of a preposition.

∃ x
1
humanx

1
∧male x

1
∧parenting x

1,
y

2


This small subset of logic is sufficient to represent all the things that exist in the 
universe, their properties, and their relationships to every other thing. It forms the 
common logical core of every software system that stores and retrieves data of any 
kind. (Sowa 2000, 163)

USL is just a particular application of the EC logic and therefore shares the power of the 
EC logic. However, all those systems of knowledge representation have serious limitations. 
It was already mentioned when discussing the Leibniz's Ars Combinatorics. Multiplication 
can only represent conjunction, it cannot represent negation, disjunction, or implication. 
Even if Leibniz later replaced his single numbers with a pair of positive and negative 
numbers for each concept, he never found a way to represent all the logical operators and 
rules of inference.

Because of this limitation, we must draw a clear line between the power of a knowledge 
representation system that is based on the EC logic and the ontologies based on the higher 
order logics. Researchers in AI made this experience in early 80' when it became clear that 
knowledge representation systems needed to have two different parts – so called T-box and 
A-box (Schmolze, Beranek, and Inc 1985; Weida 1991). The terminological reasoner (T-
box) has got task definitions of the terms (knowledge), while the assertional reasoner (A-
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box) is responsible for drawing inferences, making assertions about those terms. Leibniz 
universals serve as a T-box system. It is a hierarchy of concepts with multiple inheritance. 
It holds  characteristics of different various supertypes and has the power of EC logic. 
However, it is not the task of the T-box to encode every possible property of the world. It is 
the A-box, which uses this knowledge representation for automatic reasoning and 
inference-drawing operations. Either by employing specially crafted inference rules, logical 
constraints, machine learning methods or any other mechanism.

As we have previously 
mentioned, the EC logic can 
represent everything stored in a 
database, but it cannot represent 
negations, disjunctions, 
implications, or universal 
quantifiers. Thus USL cannot be 
charged with such functionality. 
Another external system must 
be developed. The application 
of the USL is limited and can 
only provide input for the 
second (A-box) system.

Predicate logic (or any other 
logic) is a simple language with 
only limited number of basic 
symbols and operations, but the level of details depends on the choice of predicates, which 
at the end do not belong to the system itself. They represent an ontology of all relevant 
objects in the domain and finally they also have something to say about what kind of 
operations, what limitations and what constraints are applied. Thus some researchers will 
represent the knowledge from the perspective of logic and will try to define possible 
operations and conversions a priori. Others may see the problem from a different 
perspective. Rather than top-down, they will build the knowledge system from the bottom. 
This time it will not be achieved by theoretical conceptual analysis, but by a laborious 
process of concept-usage discovery. That is the case of bottom-up ontologies and also the 
case of SEMAN, as a particular application of the USL. With many iterations, the 
knowledge of the world that we have, is being slowly encoded and clarified inside the 
lexicon. This process is slow and laborious, and many difficulties are initially hidden. As 
Kant once mentioned: “If we were conscious of all that we know, we would have to be 
astonished at the great multitude of our cognitions.” (Kant 1992, 569)
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II.3   SEMANTICS

The crucial component of the search for components in the knowledge representation 
system is the question of meaning. What is meaning? While intuitively, this problem may 
seem trivial, it is so only for very careless observers. To anyone who has to deal with 
meaning, its definition, analysis, and representation, the answer to the question is crucial. 
Very soon it has too many facets to be grasped, and constraints to remember. In this section 
we will place the USL into the context of the current theories of meaning and discuss the 
most important problems that the system using USL faces. In later chapters, problems 
specific to lexical semantics will be discussed.

II.3.1   What is meaning?
Researchers elaborated whole theories to provide an answer to such a “simple” question. 
Differences were partly due to different goals of various disciplines (especially remarkable 
if we compare fields of content analysis and linguistics) but the fact remains that there 
exists no simple and universal answer to the question “what is meaning?”. To make 
discussion easier, we can limit observations to the field of semiotics and its subparts.

Semantics, the second of the branches of semiotics, is often described as a discipline 
concerned with study of common “in language present” meaning. Whilst pragmatics is 
seen as a discipline which studies meaning in use. How people use signs to convey a 
message, how they interpret the message. The line between two fields is often blurred, and 
in modern approaches to cognitive linguistics the division into syntax, semantics and 
pragmatics is often seen as something arbitrary or artificial. Meaning is not conceivable as 
something abstract, something that can exist without the subject, without the person who 
“understands” it. Yet for our purposes it might still be beneficial to distinguish semantics as 
an area of study of meaning which is abstracted away from users. And pragmatics, on the 
other hand, as study of meaning with the extra component of relation to speakers and 
hearers.

There exist two mainstream approaches to meaning in semantics, one  denotational and 
the other representational. The denotational approach studies meaning as if it was 
something autonomous. Meaning there corresponds to the real-world objective reality and 
it can be found, objectively, in a text (for example). The denotational approaches are 
represented by the formal model theory of meaning and by formal logic. Most often by the 
Montague grammar.4 They represent and study meaning through the formal apparatus of 
logic.

Denotational approaches, if successful, have another advantage: they escape the 
problem of circularity...if we interpret English in terms of a metalanguage, another 
set of symbols, then we have just translated from one language to another. This 
second language then needs a semantics, and so on. As we shall see, formal 
semanticists do translate a natural language like English into a second, local 

4 The Montague grammar treats natural languages as a form of a formalized language, with all  
consequences of the formal logic approach.
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language, but this translation is only part of the semantic analysis. This logical 
language is then semantically grounded by tying it to real-world situations. The aim 
of a denotational approach is not just to convert between representations: it seeks to 
connect language to the world. (Saeed 2009, 307)

In the other of approaches, meaning is not studied through the real world and its in-word 
description. But it is seen as a kind of a mental construct. 

...for semanticists [of this sort] semantic analysis involves discovering the conceptual 
structure which underlines language. For such linguists the search for meaning is the 
search for mental representations. Formal semanticists on the other hand come at 
meaning from an another angle: for them a primary function of language is that it 
allows us to talk about the world around us... From this perspective, understanding 
the meaning of an utterances is being able to match it with the situation it describes.  
Hence the search for meaning, from the denotational perspective, is the search for 
how the symbols of language relate to reality. (Saeed 2009, 305-306)

This remains a problem together with the fact that the representational approach cannot 
take advantage of the elaborate system of logical reasoning. First and foremost, there is a 
profound philosophical opposition between the two approaches. The denotational branch is 
closer to linguistic structuralism and denies all psychological features. It accepts to study 
meaning only through relationships between lexical items. Meaning is considered to be an 
autonomous system, something that can be isolated and described. The representational 
approach, on the other hand, is prevalent in cognitive semantics and does take into account 
the extra-linguistic features and processes inside the person. There is a strong 
psychological dimension. The representational theories strive to construct mental models of 
the conceptual world and test such models using language data. Cognitive semantics is thus 
a part of cognitive linguistics and is characterized by its encyclopedic nature. The dense net 
of relations that outnumber relations in language itself. It maintains that linguistic meaning 
cannot be isolated and studied as a world on its own.

Any content or semantic analysis using the USL will inevitably struggle with this aspect of 
knowledge representation. Based on personal preferences, a researcher may find one or the 
other of the approaches more plausible and decide to use the USL system in a particular 
way. Yet, Smetacek expressed certain preferences during our discussions and this allows 
me to guess which of the two branches of semantics are closer in his views to USL. First of 
all, Smetacek does assume that the lexicon will sooner or later include  encyclopedic 
knowledge.5 This alone is a strong indicator pointing towards the representational approach 
of cognitive semantics. Secondly, throughout the discussions with Smetacek, it became 
clear that SEMAN should be a system for content analysis. With automated ways of 
analysis of textual data, we disclose indicators of what is happening in the reality – the 
analyst provides a certain mental model, knowledge representation through the language of 
USL, and based on this model harvests data about texts. Through such data, one can 
indirectly deduce what is happening in the real world – but only indirectly. Because the 
texts are not mirrors of the psychological or objective reality. They mirror what people 
think about the reality.

5 Even if we may question its feasibility.
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On its own, components of meaning can be obtained by semantic features analysis – object 
are characterized by their features. Yet there is no definite prescription on how to select 
features. Classic theories in semantics (in the tradition of Alfred Tarski and Donald 
Davidson) would tend to speak about necessary and sufficient conditions, and propositional 
functions. This highly analytical  approach takes advantage of the apparatus developed for 
logic, but its binary nature (false, or true) is limiting. It ignores the very presence of a 
person and assumes there exists one universal truth to which everybody can subscribe; or 
against which sentences may be evaluated. Meanwhile cognitive semantic theories are 
typically built on the argument that lexical meaning is conceptual. That is to say, meaning 
is not necessarily a reference to an entity or relation in some real or possible world. Instead, 
meaning corresponds with a concept held in the mind of an individual understanding. And 
as such, it is described as best as the individual can describe it – at the given moment. Later 
on it changes.

Smetacek is very close to this view and perhaps opposed to classical truth theories of 
meaning. “Meaning in model-theoretic semantics is a mathematical construct, not a mental  
object, and is completely independent of use and of speakers...model-theoretic semantics is 
utterly indifferent to questions of psychological realism, and is not interested in speakers' 
actual processes of lingustic understanding and production. Furthermore, meaning 
constructed in this fashion is totally objective: the truth conditions with which it is 
identified are objective characteristics of the world which do not depend in any way on our 
recognition of them or even on the existence of a mind to think them.” (Violi 2001, 41)

Yet cognitive semantics will pay attention to processes inside the speaker. Even if not by 
using means of introspection, but by analysis of usage. The evidence comes from the 
language use, the utterances are external signs of internal structures. The theoretists 
construct theory of meaning, and can verify the concept on the actual utterances. Seman is 
thus a tool that may serve in this endeavour, it helps to analyse patterns in language use. 
“Once it is accepted that a theory of understanding is not only part of semantics, but 
actually coincides with semantic description, given that to explain how we understand is to 
explain how we mean, there are a number of important methodological consequences.” 
(Violi 2001, 29)

II.3.2   Semantic fields
The concept of semantic fields can be traced back to Humboldt (1836) who is first credited 
with the linguistic relativity theory, i.e. with the understanding that different languages 
encode linguistic and cognitive categories differently. They influence the way people think 
about reality. The language is therefore no more a passive tool and more attention is given 
to study of relationships between concepts and how they are expressed. This is then the 
direct predecessor of the theory of  semantic fields by Jost Trier. He showed development 
and various modifications of a conceptual field in medieval German over the course of 
time. (Harden 1983, 46)
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Trier applied his analysis to lexical transformations of the medieval German in the 
“knowledge” domain – he discovered that around 1200 AD the word Kunst was used in 
the context of chivalry and gallantry. The word List was used for skills needed outside 
the court. And the word Weisheit was used as a hypernym that encompassed both 
domains. But looking at the usage one hundred years later. Trier discovered the semantic 
change. Weisheit was no longer used as a hypernym of Kunst and List, but 
possessed meaning of religious and mystical experience. Kunst attained modern meaning 
of “artistic knowledge” and a new word Wissen appeared. It denoted more general usage 
of “knowing something” - having knowledge. The word List was not used any longer so 
frequently and usage of other related terms started to reflect the new lexical configuration – 
and new organisation of the real world. Meaning which was associated with different terms 
got gradually shifted towards another term and the original word started to be used in a 
different context, with different meaning. While the lexical form may remain constant,  
meaning associated with it may in fact change constantly over time.

Trier defined semantic fields as sets of all lexemes connected at syntagmatic and 
paradigmatic levels (or in only one of them). Thus it is nothing else than a structured subset 
of the lexicon.6 Syntagmatic relations have to do with rules of discourse, ordering of 
linguistic elements, and on the syntagmatic plane the term acquires value in relation to 
what precedes or follows it. Outside of this syntagmatic system we have to deal with 
paradigmatic (associative) relations. They are not linear but substitutive (therefore 
associative). While syntagmatic relations are manifested in language, paradigmatic 
relations are “virtual”. They exist in heads of speakers, and if we want to speak about them, 
we must choose filters. These relations almost presuppose conceptual and mental 
structures. By assuming this methodology, the theory of semantic fields effectively re-
introduces the psychological dimension of the language system. Something, which is in 
direct opposition to denotational linguistics we discussed previously.

6 The distinction between syntagmatic and paradigmatic relations dates back to Ferdinand de Saussure, and 
corresponds to a dichotomy of linguistic and cognitive domains. One being directly observable through 
the language and its rules, the other intuitively felt present, but not manifested through rules of grammar.
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Another classic example of semantic fields are colours. Colour terms have a precise 
counterpart in the reality, measurable with the wave length. Terms can be compared across 
different languages. For those reasons colour terms have been widely favoured for 
hypothesis testing about conceptualization of reality in different languages. But the 
situation is very different if semantic fields become more abstract and their meaning must 
be determined within a given culture and objective verification is often impossible. In such 
situations it is not clear how to define a semantic field. Frequent criticism of semantic 
fields then stems from this fact, from their vagueness – it is not possible to clearly and 
unambiguously define what a particular semantic field means (intention) and what 
members belong to it (extension). “How can we say that different lexical fields “map” the 
same conceptual field, that they represent the same conceptual content? What proof is there 
that the conceptual field is really the same? And what is the nature of this conceptual field? 
Clearly, it cannot be linguistic, since the terms which describe it differ, but what non-
lingustic instruments are there for circumscribing a conceptual area? Definition of the 
lexical and the conceptual thus seems to run the risk of circularity.” (Violi 2001, 25)

Some authors (Gliozzo and Strapparava 2009) would argue that the linguistic features are 
sufficient for 'circumscribing' semantic fields as shown in their research. Semantic fields 
were identified by an algorithm for word clustering, by automated machine-learning 
procedures. While this approach might be efficient (and eliminates subjectivity), its 
limitations lay in the fact that it eliminates subjectivity – lexical units are clustered  
automatically by their closeness and occurrence, but there exist many other ways to group 
words (because there are so many relations between concepts). Whatever strategy is then 
chosen, it will always be specific and of limited coverage. From the very definition of 
semantic fields and their syntagmatic and paradigmatic features it is impossible to ever 
reach precise definitions in all cases.7 There exist too many ways of in partitioning the 
linguistic and extra-linguistic domain. So it seems unrealistic to ever define everything and 
once for all.

Semantic fields organize the lexicon internally into defined sets, but these sets will almost 
always overlap. Boundaries are not be clear-cut and clashes occur. The lexicon is not 
simply a list but a multi-dimensionally structured set of thematically connected subsets. “In 
other words, the overall semantic universe of a language can be conceived as a set of 
interconnected, reciprocally activated semantic microuniverses. This idea has been 
confirmed in terms of the mental organization of the lexicon by a great many 
psycholinguistic tests, and it is at the basis of many cognitively inspired semantic theories,  
including Fillmore's frame semantics.” (Violi 2001, 27)

Semantic fields are thus not representatives of a complete semantic theory of meaning. 
They are more akin to a discovery tool. One can decide to turn attention to deep conceptual 
structures (the Greimasian ones, for instance, if one believes in existence of such 
structures) or one can decide to include only cultural and domain specific features – that is 
what content analysts do when they prepare coding schemes and select relevant keywords. 
Semantic fields thus represent not a theory of meaning, but 'only' an important 
methodological approach. USL and semantic fields are alike, but they should not be 
confounded with theory of meaning. In fact, particular theory of meaning, vision of the 

7 And it might be interesting to note, that whilst the first version of the semantic field was based on the 
automatic word clustering, the most recent version of the Domain WordNet has been prepared manually.  
I.e. the lexical terms were clustered into domain by humans, using extra-linguistic knowledge. This 
approach is the same as SEMAN does.

18



II. SEMANTICS AND KNOWLEDGE REPRESENTATION

world, or any innate assumptions might be encoded using USL – the formal treatment will 
be the same, but there is no guarantee of objectivity in the formal treatment of any 
subjective belief.

II.3.3   Semantic primes and universals
Some people believe that basic universal components of thinking exist and that they are 
similar (if not identical) across different natural languages. The most famous proponent of 
this ida is Anna Wierzbicka who started research into semantic primes and universals in the 
early seventies and which continues until now. (Goddard 1994; Wierzbicka 1996)

The development of the idea of semantic primes is in many aspects similar to that of the 
Smetacek's semes –  he devised a list of 300 basic semes which were meant to define 'all' 
other complex concepts. From the initial proposed set of primitives, during iterative clean 
up, redefinition and (re)discovery of new concepts, research gradually identified new 
candidates for primitives, so that after 30 years, the list of core semes contained close to 
2 000 items. This is a very similar development to Wierzbicka's primes. And it is 
instructive to picture semes against semantic primes research, even if careful comparison 
reveals also a lot of differences.

Wierzbicka started her research in 1972 with the first tentative set of 14 primitives – such 
as: want, do not want, something, someone, I, you, world and a few 
others. Unlike USL, the primitives were combined using a syntax of a natural language, 
even if a limited one. Here is an example of a (more recent) definition of a concept lie:
X lied to Y =
X said something to Y
X knew it was not true
X said it because X wanted Y to think it was true
[people would say: if someone does this, it is bad]

And here another example comparing sad and distressed:
Sad (e.g. X feels sad)
X feels something
sometimes a person thinks something like this:
  something bad happened
  if I didn't know that it happened
    I would say: I do not want it to happen
  I do not say this now
  because I know: I can't do anything
because of this, this person feels something bad
X feels something like this
Distressed
X feels something
sometimes a person thinks something like this:
  something bad is happening to me now
  I do not want this
  because of this, I want to do something
  I do not know what I can do
  I want someone to do something
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because of this, this person feels something
X feels something like this

The search for primitives grew also into the search for universal syntactic patterns 
(universally valid combinations of primitives) and later on into a pursuit for a fully scaled 
natural semantic metalanguage. The theory became more pronounced and a range of 
domains, where the theory was applied, was growing as well. Wierzbicka and her 
collaborators analysed more than 30 world languages and collected an impressive amount 
of data.8

Semantic primes are defined by their 'un-breakable' meaning:

The elements which can be used to define the meaning of words (or any other 
meanings) cannot be defined themselves; rather, they must be accepted as 
“indefinibilia”, that is, as semantic primes, in terms of which all complex meanings 
can be coherently represented. (Wierzbicka 1996, 10)

In this definition we meet the philosophical tradition of ancient Greece with the ideas of 
enlightenment, particularly that of Descartes and Leibniz. But on the opposite side stand 
the genius of Ludwig Wittgenstein and the dominant figure of modern linguistics Noam 
Chomsky. Both of whom refuted the notion of any universals in meaning.9 Ideas of basic 
semantic concepts were embraced and refuted throughout history, and sometimes by the 
very same people who advanced them. As was the case of the young Wittgenstein, a 
fervour advocate of formal logic of a language before rejecting it in favour of family 
resemblances and language games. 

The issue of semantic primes is indeed controversial one and so far nobody succeeded in 
finding the list of truly universal primes:

If at this point, we had to evaluate the work on primitives as developed in the 
dictionary semantics, we would have to conclude that it has been a failure. There are 
two major problems. Firstly, no one has been able to convincingly determine an 
exhaustive list of primitive terms; the attempts often differ considerably, a sign there 
is no intuitive agreement about how many and what kind of terms there should be. In 
short, there does not seem to be any correct set of primitive terms... a satisfactory list 
has not yet been found, and above all that all other lexical meanings cannot be 
derived from them. This, in fact, is the second and more serious problem, which 
appears insurmountable. However vast the group of selected primitives, it can never 
thoroughly account for the meanings of the terms not derivable from it. The semantic 
system cannot be reduced in this way, and primitives do not have an adequate 
descriptive-explanatory capacity. The result is that primitives are neither really finite,  
nor comprehensive and exhaustive, nor ultimate atoms... nor do they always avoid 
circularity. (Violi 2001, 77-78)

8 Though for reasons that will be discussed later, semantic primes are not a widely accepted theory in the 
linguistic domains; “Since 1970s, general enthusiasm for semantic primitives has subsided” (Goddard 
1994, 10)

9 Even if Chomsky is the most prominent figure of universalism in the grammar and the universal deep 
structures (mentalist hypothesis) he was opposed to universalism in semantics.
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But proponents of the theory argue that it is a known fact that dictionary entries contain 
limited set of words.10 That translation into foreign languages is possible. And therefore, 
there must exist identical concepts across cultures. They will point to the very necessity of 
having basic, structural items of meaning:

“It is clear that there are words which cannot be defined; and if nature hadn't 
provided for this by giving all people the same idea all our expressions would be 
obscure; but in fact we can use those words with the same confidence and certainty 
as if they had been explained in the clearest possible way; because nature itself has 
given us, without additional words, an understanding of them better than what our art 
could give through our explanations.” (Wierzbicka 1996, 12)11

Wierzbicka continues that for Pascal and Leibniz there was never a question of “choosing” 
some arbitrary set of primitives. What mattered was the choice of  concepts that were clear 
on their own and which could be used to explain other concepts. There is a certain 
expectation in this claim. That it is possible to arrive at a limited set of semantic primes.  
Our life-long experience or the fact that we are able to understand different languages 
points to the idea that fundamental human concepts are somehow innate, being part of the 
way we relate to and think about the world. Knowledge which is perhaps not conditioned 
by culture, race, education and social status.

If we look at the main principles of the semantic primes theory, we can recognize 
similarities between USL and semantic primes. In fact the only main differences are in the 
chosen representational system – natural language syntax in case of semantic primes12 – 
and in the strong emphasis on lexicalisation. But in principle, USL complies with the first 5 
points of the Wierzbicka's programme, as adapted from from (Goddard 1994, 8-14)

1. Semiotic principle: A sign cannot be reduced to or analysed into any combination of 
things which are not themselves signs.

2. Principle of Discrete and Exhaustive Analysis. Any complex meanings can be 
decomposed into a combination of discrete other meanings, without circularity and 
without residue.

3. Semantic Primitives Principle. There exists a finite set of undecomposable 
meanings with the elementary syntax and form of 'simple propositions'

10 Oxford Advanced Learner dictionary (2003) for instance lists three thousand basic terms, only those 
words are used in definitions of an entry to explain a meaning. And quite often, the definition of the basic 
entry will reveal some sort of circularity such as when a person is defined as living being, being is 
defined as creature, and creature contains two definitions, one of which says it is a person.

11 Citing: Pascal, Blaise. De l'esprit géométrique et de l'art de persuader. In Oeuvres complètes. Ed. 
Chevalier. Paris: Gallimard, 575-604.

12 This difference is profound, of course. While Wierzbicka is expressing higher-order logical constructs,  
USL can define only propositions of existential-conjunctive logic. In Wierzbicka case, the representation 
is not formalized. “In fact, meanings are very complex structures, built not directly from simple elements 
such as 'someone', 'want', or 'this', but from structured components such as 'I want something', 'this is 
good', or 'you did something bad'...”Concrete” nouns (i.e. names of natural or cultural kinds) will usually 
exhibit a more static semantic structure, but here too, many different components are usually involved, 
and these components refer not only to certain inherent features of the referents, but also to the “external  
frames”-such as habitat, behaviour or typical interaction with people in the case of animals, or the typical  
situation of use in the case of artefacts.” (Wierzbicka 1996, 171)
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4. Natural Language Principle. Semantic primitives and their elementary syntax exist 
as a minimal subset of ordinary natural language.

5. Expressive Equivalence of NSMs. Any simple proposition expressed in language 
L1 will be expressible in a NSM based on other language L2 etc.

6. Isomorphism of NSM. The simple propositions expressed in L1, L2 etc will be 
fundamentally isomorphic (resembling each other)

7. Strong Lexicalisation Hypothesis. Every semantically primitive meaning can be 
expressed through a distinct word, morpheme or fixed phrase in every language.

Speaking pragmatically, almost every automated system that deals with knowledge 
representation is working with something that is operatively defined as a prime or in other 
words, primitives or primitive terms. In fact, Wierzbicka embodies the extreme case of the 
definition-based approach to the lexical semantics. Speaking metaphorically, the enemy 
camp is laid just on the other side of the river bank. It is the theory of Rosch, inspired by 
Wittgenstein family resemblances. (Wittgenstein 1998, 67-77) As Kecskés explains, 
linguists are divided into invisible and controversial groups, one semiologic, which looks at 
words in their isolation and the way their meaning is manipulated, the other, 
onomasiologic, which focuses on concepts and from there on the multiple expressions that 
embody them. (Kecskés 2003, 30)

USL represents the latter approach, because the main governing principle is the meaning 
but not the word or its neighbours. But we shall also not forget the limitations of the lexical 
semantics. The approach of Wierzbicka, and to some extent of Smetacek, goes one step 
further and presupposes existence of universal primitives – common to every language (in 
the first case), or to human race (in the case of the latter). While for Wierzbicka, this is the 
tenet of her theory, for Smetacek such a claim is a theoretical possibility – something, that  
should be refuted or studied and bears influence on the way the thesaurus is constructed. 
But in essence this is not different from the attitude of knowledge engineers who accept 
some primitives because they are useful for the job. Usability and applicability are then the 
final criteria for construction (or discovery) of primitives.

“Leibniz also saw clearly the dilemma stemming from the mutual dependence 
between our knowledge of simple concepts and our understanding of complex ones: 
to understand complex concepts we have to decompose them into what we assume 
are simples concepts; but to discover which concepts can be reasonably regarded as 
the simple ones we have to experiment with many different candidates, checking 
their power to “generate” complex concepts.” (Wierzbicka 1996, 213)
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II.4   USL AND LEXICAL SEMANTICS

USL was conceived as a language for a description of the meaning – more precisely, for 
definition of features that are the most important for the analysis (notwithstanding the fact 
that they may or may not constitute all necessary and sufficient conditions to characterize 
the concept). This approach to the problem is that of lexical semantics, and we shall discuss 
and delimit areas of interest that are solvable in this context.

The central point to the USL is the lexicon – a store of lexical items with explicitly 
expressed/encoded semantics and very often also encyclopeadic knowledge. The semantic 
lexicon was perceived as an open system and Smetacek insists that it is never fixed and 
never finished. In the same way as the mental lexicon of a speaker whose knowledge store 
is not static and who is continuously learns and keeps forgetting words. Perhaps this is the 
main reason why Smetacek did not see advantages in a complex computational 
representation of the lexicon. And insisted that the representation remaines very simple and 
trivial. So that also the changes and updates to the lexicon are propagated in a trivial and 
instantaneous manner.13

USL is a tool for lexical semantics and certain assumptions accompany such a view. Firstly, 
lexical semantics is concerned with the meaning of words and word groups which is in 
quite sharp contrast to the meaning of sentences. Sentence semantics is often described as 
compositional. I.e. the meaning is extracted from the sentence as being a composite of the 
individual words' meanings, but of course it is more complex than that. With the USL and 
lexical semantics we are able to study only words and words groups without taking into 
account their context. From this view USL is not concerned with the grammar and on its 
own cannot take advantage of the rules. Words are seen in isolation without the linguistic 
knowledge.14 Thus the computer system is not capable of operations that involve fine-
grained, but sometimes also very simple distinctions. To give a simple example:

Mary saw a saw.

There is no way for the system to distinguish between saw as an act of seeing (in the past) 
and the saw as an object for cutting without the extra linguistic knowledge or without a 
statistical model of a language (which says what meaning is most likely present at the 
given position, based on the context). It is clear that from the word alone it is not possible 
to disambiguate the meaning and the system must be prepared for such variants. In the 
worst case scenario the lexicon would contain several ambiguous entries:
saw = object instrument cutting
saw = seeing

13 Note, this is not the issue of computational complexity or available technologies. In fact, the lexicon is 
stored in a relational database, with foreign keys constraints and possibly triggers that update contents 
automatically. Yet the problem of technical implementation was always seen as secondary. The key 
principal issue is the relative simplicity of the knowledge representation. Thus also the dictionary, viewed 
from the human perspective has a very simple structure. It can be argued that this is not the easiest and the 
most effective representation, as my experience showed, but in many occasions is proved to be sufficient.  
The power of the simple representation  was very often realized months after one already worked with the  
system. A more complex and more powerful mechanism would also prove as more time- and energy-
consuming.

14 In Machine Learning literature, this is the prominent approach, very often denoted as 'bag of words'.
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The system would identify twice the same word and assigned to it two different meanings.

This problem can be mitigated by several ways. Firstly, the construction of the dictionary 
makes it possible to see tokens in context of other words. With the increasing number of 
tokens their ambiguity decreases (but does their frequency). But that is not everything, the 
system can employ a  number of NLP procedures in the pre-processing stages and 
translation happens only after specialized linguistic operations were completed. Thus the 
system can be tailored to be either very fast and produce rather 'noisy' results, or be very 
careful. Complexity and processing times increase exponentially for certain problems and 
in some cases this extra work is justified, in other cases, it is not needed. 

II.4.1   Words as lexical items
The construction of the semantic dictionary follows the design of the original SEMAN 
system and we will discuss a few peculiarities in this place.

In the classical linguistic traditions words of the lexicon are listed in their basic entry form, 
lemma. In many computer dictionaries the notion of lemma is taken further to stem, i.e. the 
basic inflexive form of the word – its non-linguistic root. In the USL words are listed in the 
form of quasi-roots which are basically word stems. However in cases of ambiguous 
readings, the longest non-ambiguous wording is preferred, often being the full form of the 
word. For example words waiter and waiting, though being both nouns, will have the 
same stem 'wait' in the lexicon. They could be both represented with the forms 'wait' that 
results in ambiguous definitions being retrieved when one of the form is encountered in the 
text. But if the lexicon contains a more complete version of the word, for example 'waiter',  
then most ambiguous parses are resolved. 

This behaviour is due to the combinatory principle of the algorithm15 which constructs all 
possible inflectional and derivational variants of words.16 In the present embodiment the 
algorithm is able to retrieve combinations of prefixes, word stems and affixes that match 
the form found in the text, and the form with the longest stem is in majority of cases the 
correct, unambiguous parse of the word. If more than one parse of the word is identified, 
the system allows for a detailed disambiguation procedures to be put in place which will 
select the correct lexical form. Empirically, this form of parsing is very fast and accuracy 
depends on the quality of the lexicon. It is thus relatively easy to improve accuracy with 
diagnostic information. And the system assists users in finding them.

15 For details of the algorithm, see V.1 The pattern matching mechanism, p. 115

16 Derivational affixes are used to create (derive) new words from the stems, very often they do have  
meaningful interpretation (open-ness). This is in contrast to inflectional affixes which express the 
grammatical categories such as aspect, case, modality, number, person, tense, voice.
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It is up to dictionary maintainers to decide whether derivational suffixes should have an 
impact on the meaning of identified words in later stages of analysis. For example, whether 
the difference between 'was waiting' and 'waited' is an important feature and translated 
meanings of the two contain different semantic codes. Or, if it is not the case, they shall be 
assigned the same code and differences considered as irrelevant. The system must allow for 
a very flexible mechanism that can deal with similar tasks. It will not be possible to define 
conditions in the form of a dictionary and for those reasons SEMAN contains a simple, but 
powerful mechanism for definition of conditional workflow routines. Each set of problems 
can thus be analysed and resolved by separate modules.17

II.4.2   But what is a word? And how do we define 
its meaning?
It is a known fact that different languages package meaning into different words, 
constructs, and syntactical categories. It is quite impossible to say that words and phrases 
have one, or on contrary do not have one meaning (when is meaning expressed by one 
word and when by several?). Smetacek approaches this problem pragmatically. It is noted 
that external forms of words are rather irrelevant, what is central here is meaning – if 
meaning of a word or group of words is considered equal, for the given application, it 
should receive the same definition. Trivial as this might seem, it is important to note that  
the semantic dictionary (in its original form) contains no meaningful labels at place of 

17 For details, see: IV.4.6 SEMAN GUI and scripting control, p. 109
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definitions. Instead, one can just see a group of codes. This decision was intentional 
because it was believed that human readable codes in place of definitions would influence 
the way the dictionary is built. People would tend to focus on meaning of the individual 
codes (seen as words), instead of seeking the definition of meaning in its combinatory 
form.18

The way the SEMAN dictionary is built forces people to consider meaning first rather than 
focus on words. The problem is not seen from the lexical side – i.e. we do not concentrate 
on the form of words in the dictionary. The crucial direction is from meaning towards the 
form of a word (to the index of meaning). This criterion is applied universally throughout 
the whole semantic dictionary. If meaning is considered equal (for the given purpose), the 
definition contains the same number of semantic codes, no less no more. The lexical entry 
can then be anything. For example:
ping fluffy rabbit = id89
Rabbit = id89

The word 'Rabbit' is a lexical form assigned same meaning as the first entry. The person 
who creates the dictionary is responsible to limit grey areas and clean up idiosyncrasies. 
When she finds that too many tokens are clustered under same meaning, the lexicon allows 
for a swift and instantaneous changes of definitions. 

The reason is that we are not and should not be talking about universal definitions. 
Definitions are ad-hoc but made consistent, but definitely not acceptable by all. It is a leap 
of faith, an assumption made to move forward as the whole history of the semantic 
primitives shows. Some can argue that languages clearly exhibit empirically observable 
regularities, words tend to occur together, there exist lexical fields and by analogy we can 
find semantic relations. Groups of lexemes belong to a particular activity or area of 
knowledge. Lexemes exhibit evidence of a network of relations, strongest between 
members of the lexical field and these are the best candidates for inclusion into the lexicon. 
But due to number of paradigmatic relations, it will always be possible to see very distant 
words to share meaning which is crucial to the researched problem.

II.4.3   Words and grammatical categories
In the previous versions of SEMAN, no capability to accommodate different linguistic 
categories of entries existed. But nouns, adjectives, verbs (open-ended words) need to be 
given special treatment. For these reasons a special mode signals special meaning  and 
problem-specific logic. Thus we can encode word categories or define our groups. For 
illustration, we first define categories:
e = entities (proper names)- ex. Bill Clinton
q = common noun - ex. dog, woman, house
i = pronouns (immutables) – ex. I, you, we, them 
l = logical words – ex. not, and, or, any

The form of the entry then distinguishes adjectives from nouns:
esq explosive = artifact substance explosion

18 Classification systems such as Dewey Decimal Classification or Universal Decimal Classification have 
similar approach. Yet they tend to focus on the hierarchical organisation and have very strict rules. For a  
lay person, unfamiliar codes and combinatory rules make their usage even more difficult.
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esa explosive = attribute explosion

Then, in the phase of translation the system is instructed to use only a certain subset of 
entries for lookup; or in post-processing stages only some definitions are retained based on 
the known linguistic and extra-linguistic features. For example, token bill is recognized 
as a noun, verb and possibly also a proper noun, all of those categories are retrieved for 
translation. But in the post-processing stage the verb and the proper noun definitions are 
discarded because part of speech tag will be 'noun' and not 'verb' nor 'proper noun'. For this 
procedure, it is of course necessary that the grammatical categories are encoded together 
with the tokens and the part of speech tagging used. For simpler applications such 
functionality may not be needed and dictionary entries remain simple.

II.4.4   Problematic areas of the thesaurus

II.4.4.1   Homonyms

Homonyms are unrelated senses of the same phonological word. In the context of this 
work, we are not interested in senses of a spoken word therefore we may ignore 
homophones. Of importance are only homographs, lexemes that are written in the same 
form but with disparate meanings. Homonyms can be present in the same grammatical 
category or outside it, the first case poses considerably more difficulties as we cannot rely 
on the part of speech information to decide which of the senses is more appropriate. On the 
other hand, for the second case which covers homonyms outside the grammatical 
categories, we may rely on the POS taggers that achieved precision of more than 96%.19

II.4.4.2   Polysemy

When senses of the word are related, lexicographers call this situation polysemy rather than 
homonymy. Polysemous senses are listed under the same lexicographic entries in 
dictionaries, but quite often the criteria for senses to be included or excluded rely on 
intuition or purpose for which the lexicon was created.
school  • noun 1a an institution for educating children. 1b any 
institution at which instruction is given in a particular 
discipline. 2 a department or faculty of a university. 3 a group 
of artists, philosophers, etc. sharing similar ideas, methods, or 
style. 
school  • verb 1 formal or N. Amer. send to school; educate. 2 
train in a particular skill or activity. 3 Riding train (a horse) 
on the flat or over fences.

19 Accuracies of close to 96-97% are typically achieved in English for taggers that were trained on a corpus  
of at least 10^6 words. (Dale, Moisl, and Somers 2000, 408) Of course POS taggers produce different 
results based on the quality of the training corpus (if the POS tagger is statistical), therefore there may 
exist huge discrepancies in the accuracy of the POS and thus the accuracy of the homonym identification.  
But in general, the inter-category synonymy will be a much more complex problem.
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Distinctions are not always clear (and one could argue if they ever could be). The approach 
of Smetacek to the problem has always been consistent with traditions of lexicographers if 
possible. Yet definition are constructed with respect to needs of the analysis. Therefore, 
some entries are superfluous and may be discarded, other entries may be grouped (joined), 
yet other entries will be given a prominent position and serve as main senses of the 
dictionary.

II.4.4.3   Synonymy

Synonyms are different phonological words which have the same or very similar meanings. 
Unfortunately, the true (exact) synonyms are very rare and most often we will face words 
whose meanings overlap, but not completely. It is again an informed decision of analysts 
who will allow or deny the same semantic definition to be present for different words. But 
the form of the dictionary makes this problem almost a non-issue and synonyms are not 
causing problems.

II.4.4.4   Antonymy

Given the representation of meaning by USL and the absence of the A-box, the current 
system is not able to deal with antonymy, at least in the sense of the logical negation. This 
is also a direct result of the expressive power of the existentional logic on which SEMAN 
is constructed. To recall: “EC [existential-conjunctive] logic can represent everything 
stored in a database, but it cannot represent negations, disjunctions, implications, or 
universal quantifies.” (Sowa 2000, 163)

Ability to deal with antonyms must be part of the inference engine, which, as was 
discussed previously is built on top of the basic ontology representation. It requires rules of 
inference and reasoning in one way or another. Thus it is not a part of the current work. 
This is true about simple antonyms (dead/alive), but also about gradable antonyms like: hot 
– warm – tepid – cool – cold. It is true also about words representing reversed relations 
such as here/there, ascend/descend, up/down as well as for converse terms like 
employer/employee, above/below.

Even if some or possibly all those relations might be described with combinations of 
categories, meaning is not encoded in their combination, but in interpretation. For instance,  
if employee/employer are defined as:
employee = person in-work subordinate
employer = person in-work superior

The inference mechanism is not contained in the definition but has to be added by external 
interpretation. Therefore meaning of subordinate/superior link needs to be interpreted by 
given logical rules. And that is outside the scope of the current USL.
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II.4.4.5   Hyponymy/hypernymy

Hyponymy is a relation of inclusion and includes meaning of a more general word, e.g. 
dog and cat are hyponyms of animal. The more general term is hypernym and this 
relation is responsible for most of the links inside the semantic network. USL is particularly 
well suited to represent the hyponymy/hypernymy relations. If certain entries contain the 
same elements, we can conclude that they are all coming from the same taxonomic level  
(sometimes called 'taxonomic sisters'). If codes of certain entries are fully present in the 
definition of some other entries, then we can know that a term is a hyponym of another 
term and it is in the hierarchy lower in the tree (or seen from a different angle, the parent 
hypernym term has all the features of its children).

II.4.4.6   Meronymy

Meronymy is used for a part-whole relationship between lexical items.  Meronymy is 
different from hyponymy in the aspect of transitivity, we can for instance say that a hand 
has a finger and finger has a hand, but not that a button has a hole and hole 
has a button. Hole is a meronymy of a button, it makes its part, but is not its necessary 
condition. This problem is inheritently a question of external-world knowledge, “it is 
conceptually possible to segment an item in countless ways, but only some divisions are 
coded in the vocabulary of a language.” (Saeed 2009, 70)

Thus it is recommended not to use the meronymy relationships in the lexicon, unless they 
are needed for the analyzed problem. The same recommendation would be valid if we deal 
with relations of a type member-collection (ship-fleet) or portion-mass (drop of 
water).

II.4.4.7   Difference between names and types

Proper nouns are important parts of the language processing, any system that is dealing 
with content analysis must be able to distinguish them from the general, common nouns. In 
terms of logic, the proper names denote particular individuals, and common nouns denote 
types or predicates. Proper nouns are always having a unique element even if they share 
features with other individuals or with other common nouns. For instance:
esq small = a1
esq four-legged = a2
esq domestic = a3
esq animal = a4
esq cat = a1 a2 a3 a4
esq proper name = a5
ese Elsie = a1 a2 a3 a4 a5
ese Elza = a1 a2 a3 a4 a5

There are two things we shall notice here: firstly, the mode of the entry for Elsie and Elza is 
different, “ese” stands for “english semantic entity” and is different from the common 
nouns/types, denoted by “esq” (this difference is driven by the application and was 
introduced while solving problems of how to identify and extract entities effectively).
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What is interesting here is that Smetacek proposed to encode even individuals as 
composites of types, either because it followed naturally, or perhaps because it was planned 
that way. It might seem unimportant at first but it is not, because here we deal with a 
metalanguage. First-order logic that operates in the domain of non-linguistic objects is 
facing problems when the meta-level is introduced. Such as:
Elsie is a cat.
Cat is a species.
Therefore, Elsie is a species.

The problem here is that we are mixing two levels. The proper name denotes the individual 
and the common noun cat is a type. The way how this issue is solved in first-order logic is 
that a type predicate is used (effectively a second-order type, that relates the type of cat 
with the individual Elsie). Therefore, some individual of a type cat does correctly 
belong to species. The species is effectively a second-order relation whose instances 
are individuals like Elsie.

∃ x species x , cat 

Smetacek must have been aware of logical relations and distinctions in first- and higher-
order logical operations, and recommended use of the predicates inside the definition of 
entities. Thus Elsie is not only a cat, but she has a sem a5 which says Elsie is proper 
name. Reasoning engine, if implemented, can then operate with the external world 
knowledge and conclude that if Elsie contains the type of a proper name (or any similar), 
Elsie is an individual and apply rules associated with individuals. The code “ehe” on 
itself would not be enough. 

Though we shall note the notational ambiguity of the current system. There is no way to 
distinguish first-order from the second-order types – everything is grouped together and the 
reasoning engine would have to have a knowledge base that marks “individual” as a first 
order type, and the other predicates as modifiers (higher-order relations). What is of direct 
importance though, is the recommendation to follow the compositional principle of the 
USL and put higher-order relations in place of semes, not in place of modifiers.

II.4.5   Word sense disambiguation
Even if lexical semantics limits itself to the level of words and their meanings many 
difficult tasks remain to be solved. One of the crucial is the identification of a correct sense 
in case the dictionary contains more definitions for the given token. Let us stop for a while 
between semantics and pragmatics. As was noted before, semantics is concerned with 
relations of words to objects they denote, and pragmatics is (roughly speaking) about 'how 
people use signs to convey meaning'. A sentence like 'The deal is broken.' may have a wide 
range of meanings depending on context, speaker intentions and recipients' interpretation. 
In the completely neutral sense, we only know that there was some kind of a contract, 
presumably a spoken one, between the contractor and the contractee. Based on the change 
of a state, the contract is no longer deemed valid – we do not know whether by one or by 
all parties. So far, this interpretation can be obtained only from the possible 'common sense' 
of meaning for the word 'deal'. As well as what it usually means that 'a deal is broken 
(ended, prematurely)'. But depending on the context, the very same sentence may have a 

30



II. SEMANTICS AND KNOWLEDGE REPRESENTATION

very diverse meaning. If in the context, more salient meaning of the 'deal' is 'community, 
gang' than we can see  different meaning if the speaker is a policeman or a member of a 
rival gang. Or, as given in the nice example by Anderson (as reported by (Saeed 2009, 200-
201)), subjects of an experiment were asked to read the story below, and then answer 
questions about it:
A Prisoner Plans His Escape
Rocky slowly got up from the mat, planning his escape. He 
hesitated a moment and thought. Things were not going well. What 
bothered him was being held, especially since the charge against 
him had been weak. He considered his present situation. The lock 
that held him was strong, but he thought he could break it.

It was generally agreed that 'Rocky was alone and that he had been arrested by police, and 
is in prison'. When the very same text, but with a different title was presented, people 
generally agreed on 'wrestler is held by some kind of a wrestling hold and plans to get out 
of it'.
A Wrestler in a Tight Corner
Rocky slowly got up from the mat, planning his escape. He 
hesitated a moment and thought. Things were not going well. What 
bothered him was being held, especially since the charge against 
him had been weak. He considered his present situation. The lock 
that held him was strong, but he thought he could break it.

This example, amongst many others, shows that listeners add their own inferences, their 
interpretation based on the provided context. And this depends on knowledge provided by 
the discourse topic – thus, it was found that inside a discourse, even ambiguous words tend 
to have one meaning (sometimes called as 'one topic per discourse hypothesis'). 

From the practical viewpoint, it is often necessary to construct a dictionary that is specific 
for the given domain and the given topic. We may intuitively assume, that even if 
individual words carry many diverse meanings, the prevalent meaning is consistent with 
the discourse topic. Thus, the dictionary can deal with ambiguity, with precision of up to 
70% as shown by (Yarowsky 1992) or even much higher when the disambiguated words 
were coming from limited number of domains - for a review see: (Christoper D. Manning 
and Schuetze 1999, Chpt. 7; Navigli 2009). For the more complex context, more 
sophisticated methods of word sense disambiguation are sought after. This is nevertheless 
an AI complete problem and general solutions were not found yet. We will discuss relevant 
details in the chapter V.2. Semantic ambiguity, p. 124.

II.5   CONCLUDING REMARKS ON USL
In this section, I would like to discuss difficulties and possible shortcomings of the USL, 
starting perhaps non-conventionally with a personal account of my experiences. I 
remember that at the first encounter with USL and its ideas, I was very much confused by 
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the ambiguity, vagueness, lack of rules and certain methodological carelessness. The 
ambiguity and vagueness stemmed from the very properties of the language, but USL does 
make them stand out. It does not give us the feeling that once a term is analysed and 
defined, it is fixed and may be used in other definitions. On contrary, the basic principle of 
the USL is the flexibility. Smetacek also came to the conclusion that every definition leaks 
and therefore the system must be open for changes. So, on one hand, the system is 
ambiguous and vague, on the other hand it is also very flexible – it allows for rapid 
changes.20

But the lack of rules was confusing. I would have thought that basic principles of the 
knowledge representation should be stated and rules set out (pragmatically, humans will 
deviate from rules, but at least there is something, some sort of a fall-back mechanism that 
is able to resolve problems). But the approach of the USL was again different. It did not 
offer the pleasant security of the theoretical ground, instead, it invited researchers to go 
ahead, define as many concepts as were necessary and revise them only when 
inconsistencies were spotted. This approach was radically different from most of the 
theoretical recommendations but I have to admit that there were arguments in favour of 
both. In the case of USL, very little time and energy is dedicated to painstaking 
clarifications of rules and principles, something that philosophers would consider as 
complete madness. But on the other hand, it is also little 'crazy' that they spent centuries in 
disputes about the basic principles of knowledge, epistemology and ontology. USL is here 
on the other bank and I would characterize its approach as a pragmatic resignation. It is 
assumed that the current definitions are wrong, but it is “the best we currently have, so let's 
see how well they do in the real application”. USL urges researchers to define concepts in 
the best-possible way, but what really matters is the internal consistency. If there are errors 
(and they are there), they should be coded consistently – to err systematically is thus one 
of the basic principles of USL.

This might mean that content analysis and the knowledge representation should be 
prepared only by one individual because that person will not be able to spot its conceptual 
deficiencies in his or her views of the world. Nevertheless, by following the systematic 
procedures, all of the deficiencies are (hopefully) encoded systematically and when 
spotted, also rectified systematically. However, by including more people in the process, 
we introduce different views of the world and if several persons are responsible for 
construction of the ontology, their differences will be intermixed. Then it will be 
impossible to discern them – they might err systematically, but if several people err 
systematically, it will mean complete chaos.

This was a source of many long discussions with Vladimir Smetacek, in which I argued 
that the person effectively encoded his or her vision of the world in the dictionary and that 
it is very difficult to align ontologies that were created by different people, not mentioning 
different domains. And the answer to my doubts were variations of previous arguments – 
one person is not able to construct the encyclopedic ontology, be it Aristotle or Dewey, they 
all left it unfinished. But there exist many ontologies, in a different stage of completeness, 
like UDC or patent classifications, and it is the best we can get. And pragmatically, 
something is better than nothing. Smetacek believes21 that in ontological chaos, there is an 
order, that people at the end employ their mental capacities in a very similar manner. That  

20 Flexibility is after all, also an important feature of any natural language.

21 Together with many others, including Wierzbicka, Goddard, Jackendoff and finally also Plato
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they are able to understand each other, relate to external cultures using some fundamental 
mechanism of meaning. And this principle will be discernible through the law of big 
numbers and that we shall try, at least, to detect it. Our theory might be wrong and we do 
not know if it works, but we also do not know if it does not, until we try.

But to be precise and make justice to clarity, I will have to admit again that a theory of  
reference, in other words semantics is very vaguely defined in the case of USL. This 
vagueness may be the ultimate reason for failure. As results bring nothing very special and 
extensions to the knowledge representation in a form of some logical reasoning machine 
are necessary. I tried to dispel some of the concerns by showing that USL represents the 
EC-logic. Nevertheless people are free to implement ontologies as they want and for 
instance the difference between first-order and second-order predicates may not be 
respected; in the way how un-ruleful and flexible USL is, it is possibly the case. Also, we 
do not have a theory of truth and in fact, USL is there just to help discover links between 
certain facts without defining what they mean. If, in the future, extensions are built, they 
will have to bring in the missing parts, together with rules of inference, richer vocabulary 
and more elaborate syntax. In case of USL those parts were not built yet.
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III. CONTENT ANALYSIS

Perhaps the most cited definition says that content analysis is interested in finding, "Who 
says what, in which channel, to whom, and with what effect." (Berelson and Lazarsfeld 
1948) It was coined by Berelson, one of the most influential figures of content analysis in 
the 2nd half of the 20th century, and whilst being short, intuitive and captivating, it is also 
very broad. Application of such an approach is anything but straightforward – it 
encompasses domains of linguistics, as well as psychology and cognitive sciences. And 
even though Berelson was strong proponent of empirical methods in research, his views on 
content analysis as a method for making valid inferences from the text towards the impact 
in the future are not universally shared by all – for reviews see (Krippendorf 2004a; 
Neuendorf 2001)

There are many views on definitions of content analysis, and researchers bring them 
together with different backgrounds and traditions of their own base domains. Content 
analysis is thus often viewed from diverse phenomenological standpoints – and this 
problem is not purely philosophical, as it may seem. As researchers subscribe to varying 
conceptualization(s) of the world, their views of content analysis are significantly different 
and that influences their execution of the research. For example, in history of content 
analysis the first studies of mass communication were purely descriptive, but often with the 
goal of demonstrating the decline of society or changes in manners. The development of 
content analysis was initially influenced by tight links to the domain of journalism. The 
first, widely recognized quantitative content analysis appeared in 1893 and was focused on 
newspapers bearing the title “Do newspapers now give the news?”. It compared the 
contents of the newspapers of the state New York with special attention to news worthy of 
attention – it is not surprising, that the criteria of what is 'informative' or moral would vary. 

The tight links to the domain of newspapers were not coincidental. The fourth power was 
gaining in strength and in parallel with that, it was becoming more and more important to 
know and influence public opinion. To study ways how to measure and even control it in 
the dynamics of mass communication. The first nation wide content analysis of all the 
German newspapaers was proposed by Max Weber in 1910, just 4 years before the 
outbreak of the Great War, and even though the research was not carried out, war 
propaganda of the following years brought a fascinating subject of study which produced 
numerous analyses (for review of history see: Krippendorf 2004b; Neuendorf 2001). And 
with the Great Depression in the 30's, the importance of content analysis as a tool even 
increased because at the time it was argued that mass media was aggravating the impact of 
the crisis with alarming stories.1 Increasing number of studies analysed the power and 

1 Not dissimilar to the call of US Department of State, that the leak and subsequent publication of secret 
diplomatic cables puts life of Americans and their collaborators in danger 
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impact of newspapers on general public opinion, and later on, when new media such as 
radio and television were introduced, content analysis extended its coverage from text to 
domains of sound and moving pictures. 

Propaganda, a weapon employed massively by the major powers during war times, 
attracted much attention – content analysis was used during the war, in particular by the 
Allies to analyse the German news and radio broadcasts in order to gauge the morale of the 
enemy population, the development of new weapons or even the geographic locations of 
the future war operations (George 1959). Such development naturally lead to the 
establishment of methodology, and a shift of attention from the purely descriptive content 
analysis studies to 'predictive assessment'. It was necessary to carefully isolate and measure 
the importance of certain factors, something which was extremely difficult in the 
amorphous reality of social sciences and with conflicting signals at hand.

The impact of experiences of the World War II and new impulses from the study of 
personal traits and subjects' inner worlds as carried out in psychology had shown that 
content analysis could supply important information, even if in many cases only as 
supplementary proofs. In fact, it was never used as the only method of inquiry.2 Empirical 
research lead to the gradual purification of the theory. The first conference on content 
analysis was held in 1941 in Chicago and the first methodical publication of Berelson and 
Lazarsfeld, compiling the basics of the method, was published in 1948.3 Content analysis 
was accepted by the research community as a full-grown method of inquiry into social 
reality.

Given its noninvasive nature, and also thanks to its relatively low cost, it became popular in 
other fields such as anthropology, history or linguistics. But as is often the case with the 
pendular movements, the massive adoption lead not only to the greater popularity of the 
method, but also to the loosening of the scientific rigour. Content analysis became so 
popular, that it seemed to be everywhere, and everything was considered to be a kind of 
content analysis. (Krippendorf 2004b, 10) Berelson cautioned against such exaggerated 
views, warning that it has never been comparable to techniques of intelligence and as a 
research method it could supply only additional, auxiliary evidence. That information was 
to be used in conjunction with other resources. Nevertheless, despite many warnings, 
content analysis, especially quantitative ones, were considered by many to be somewhat 
magical – perhaps because it employed statistical methods and the numbers gave 
impression of hard facts.

With time, such attitudes normalized, and the method is not considered to be magical. It is  
not trusted to be absolutely right, but it is trusted enough to be the sole method of inquiry – 
if the used methodology is correct. It is often the main and only method of inquiry in many 

(http://en.wikipedia.org/wiki/Wikileaks). There always exist power groups with hidden political 
programme or interests.

2 As for example described in Peter Conradi, Hitler's Piano Player: The Rise and Fall of Ernst Hanfstaengl: 
Confidant of Hitler, Ally of FDR (Da Capo Press, 2006). The American army used the services of the 
deserted Hitler's confident in order to interpret certain personal traits and wartime operations. Hanfstaengl  
reports were read by president Wilson, nevertheless, Americans never considered such information to be  
on pair with intelligence information. This is testified by many other resources.

3 Later published in a revised version in 1952 as 'Content analysis in Communication research'. (Titscher, 
Jenner, and Meyer n.d., 56)
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studies, but of course the situation has changed considerably in the past 20 years4. Firstly, 
never in the past had researchers access to such abundant sources of information as now. 
Secondly, mankind is developing tools to process huge amounts of textual and non-textual 
data alike – what was only envisaged a few decades ago is now slowly becoming a reality. 
People communicate over the web, without even being aware that their actions are 
recorded, stored, accessed and analysed simultaneously.

Developments in hardware and networking are mirrored in the fields of natural language 
processing, information retrieval and artificial intelligence. These areas are already beyond 
their infancy and bear useful fruits, the disciplines had moved past the unrealistic 
expectations that computers will 'soon' be able to understand and interpret natural 
language. The modern generation of researchers see computer systems as very effective 
tools, nevertheless they are also aware of their limitations. They do not expect computers to 
suddenly start interpreting the meaning of communicated messages, especially not in the 
same ways as human brains do – especially because we do not even know how human 
cognitive facilities work (Bickle, Mandik, and Landreth n.d.; West 2001) However, it is 
possible to build tools that are able to provide useful insights, no matter if the extracted 
data is simple in its nature.

Similarly to the domain of computer linguistics and machine translation, content analysis  
was subject to some exaggerated claims and aspirations. Computers were expected to 
replace human trained coders (“Assessment and Development of New Methods for the 
Analysis of Media Content” n.d.; Cuilenberg, Kleinnijenhuis, and de Ridder 1998; 
Krippendorf 2004b) with the ultimate goal of replacing human intelligence altogether.  
People hoped it would be possible to design tools that automatically process huge 
quantities of text with results comparable to human processing. Whilst it is already true and 
was demonstrated that computers outperform trained human coders in certain tasks (King 
and Lowe 2003), we are still at the beginning. The tasks in which computers outperform 
people are simple ones - of recognizing concept, selecting important pieces of information, 
processing immense quantities of data fast. Though the evolution continues, as seen in the 
areas of machine learning, in many aspects we are still at the beginning:

Computational linguistics, with its current concern for parsing sentences and 
disambiguating words and phrases, has made only marginal contributions to 
computational theories of meaning, largely because it theorizes what is general to 
language, not what is specific to particular nonlinguistic contexts. Content analysis, 
in contrast, needs to answer specific questions that have not previously been 
answered about extratextual phenomena of analysts' concerns... Despite remarkable 
progress, content analysts can hardly claim to have met the challenges of this new 
era. The imagined analytical potential is far ahead of what can be done today, fuelling 
the work of many developers of new analytical tools.(Krippendorf 2004b, 309)

It is clear there is great potential here. Even simple solutions may provide very interesting 
results, especially when the networking effect is exploited, such as crowd-sourcing.5 Yet 
most authorities in content analysis field still maintain, that the method itself can describe  

4 For a substantial list of studies in the past, see: (Berelson 1972a) and for the more recent studies 
(Neuendorf 2001)

5 Perhaps one significant example for all is the study of Twitter messages which predicts the value of 
commercial products such as films and is proven to be more accurate than expensive consultants (B. A. 
Huberman, Romero, and Wu 2009; Szabo and Bernardo A. Huberman 2010)
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only message characteristics or relationships between these message characteristics – 
therefore the scope of conclusions drawn from such data is often limited. It is true, that 
such information can and should be used in scientific endeavours – science seeks to 
describe, explain, predict and interpret the reality around us – but it is recognized that there 
is no direct relationship between the source of the message and the intended effect on the 
audience without a sound theory of how the human mind works.

But such a stance is not extreme, there clearly are relationships and it is important to study 
them. In the past, behaviourists ignored everything which could not be directly observed, 
counted, measured, or weighed 'objectively' – and yet the paradigm has changed and was 
dismissed. It is not necessary to move from one extreme towards another one again. Whilst 
content analysis still strives to be scientific, certain characteristics of texts (messages in 
general) are already acceptable for the community. Krippendorff lists a few features of 
texts that are important for content analysis, and they seem to support such reading of 
literature (Krippendorf 2004b, 24):

● Text has no meaning without a reader (but its characteristic features can be 
measured)

● Text does not have "one" precisely definable meaning, but there exists a plethora of 
possible perspectives and interpretations

● Subject is at each moment aware only of a few of the meanings, the rest are ignored

● The meaning "speaks" to subjects – affects them, carries some potential and has 
effect on the conglomerate of psychological variables in the background (intellect, 
emotions, experience etc.)

● Those subjective variables of individuals are probably generalizable, but so far 
there exists no generally accepted theory of 'human cognition'

● Text has certain meaning in the given context – thus it is possible to delimit one or 
few interpretations from the sea of other possible readings. "The analyst must, in 
effect, construct a world in which the texts make sense and can answer the analyst's 
research questions."

● Content analysis of text creates a specific reading of a text - "inferences" are 
possible from the text towards the context for which the interpretation was 
constructed

From the points listed above it is apparent, that the analyst is recognized as an important 
component of the environment - the research questions and the design of experiments 
inevitably bear traces of the analysts' personalities. The problems are not only in the way in 
which they interpret results, but also in the way “how” and “what” questions they ask or do 
not ask. And since content analysts aspire to create a repeatable and fair measurement, they 
must limit themselves to manifest content. Krippendorf says, content analysis is only “a 
research technique for making replicable and valid inferences from texts (or other 
meaningful matter) to the contexts of their use”.(Krippendorf 2004b, 18)
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III.1   MAIN TYPES OF CONTENT ANALYSIS

Neuendorf lists four main types of textual content analysis.

1. Descriptive content analysis – In this type of analysis, only the characteristics of the 
message are taken into account. Researchers are careful not to draw inferences 
about the studied phenomenon outside the studied domain. The analysis describes 
only characteristics of the content matter – it can be viewed as a summarization or 
re-statement of existing content matter. Clearly, this type of analysis can serve as 
input for other interpretations, but as far as content analysis study is concerned, this 
is not the goal. Examples include description of the TV series, characteristics of 
shows aired at certain countries, frequencies of keywords, topics, certain rhetorical 
expressions.

2. Inferential content analysis – There is great interest for those wanting to go beyond 
the description of data, most often in studies of mass-communication. Researchers 
are naturally keen to discover what is happening in reality, but because reality can 
only be studied indirectly using products of human communication, it is tempting to 
draw certain conclusions from these signals. The prevalent view of the 
communication in the form: source → message → channel → receiver seems to 
support the idea that after characteristics of the message were discovered, one can 
indirectly infer facts about the source or recipients of the message. I.e. what was 
the motivation of the source to communicate in that way, what effects such a 
message had on recipients, how to change the message so that desired results are 
obtained next time. Quite clearly, if such an interpretation is not backed by data 
from other sources (validated) researchers are in danger of creating wild guesses or 
unsustainable theories.

3. Psychometric content analysis – This type of content analysis is applied in 
psychology. The method seeks (a) to provide a clinical diagnosis for an individual 
through analysis of messages generated by that individual or (b) to measure a 
psychological trait or state of the individual using the messages. Though this 
method seems to go beyond the characteristics of the manifest content, it involves a 
careful process of validation in which the analysis is linked with other diagnostic 
methods. (For review and bibliography see Gottschalk 1997; “PCAD 2000” n.d.)

4. Predictive content analysis – This type of content analysis has as its primary goal 
the prediction of some outcome or effect of the message. Researchers aims to 
predict receiver or audience responses, for example (Phillips 1979, 1983) has 
examined the incidence of suicides after newspaper reports of suicides, and the 
occurrence of deaths due to car accidents following soap opera suicides. Although 
this type of research is criticized because causal links are hard to prove, especially 
in behavioural and social sciences, strong correlation can sometimes be shown. 

In Smetacek's view, SEMAN is a tool for predictive analysis. However in my opinion that 
is more wishful thinking than reality. The nature of USL does not make it predisposed for 
any inferential work, unless there is an A-box built on top of an existing T-box and the 
nature of USL makes it best suited for descriptive (classical) content analysis. The idea of 
semes might indeed be useful for the discovery of new relations, as we will see later, and it 
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indeed works differently than the classical content analysis tools. However, the novelty in 
the approach does not necessarily make the tool more suited for inferential content 
analysis. It would be difficult to argue that SEMAN is something more than a new tool for 
traditional content analysis.

III.2   THE COMPONENTS OF CONTENT ANALYSIS

Content analysis is a scientific method and thus follows verified and repeatable procedures 
which we will summarize in this section with the goal of highlighting certain elements and 
problems relevant specifically to the task of the computer assisted content analysis. 

As a research method content analysis is consistent with the standards of survey research; 
an attempt is made to measure certain variables as they occur in the manifest content – its  
accessible representation. The procedure of quantitative content analysis (summarized by 
White and Marsh 2006) generally consists of these steps:

1. Establishment of hypothesis or hypotheses

2. Identification of appropriate data (text or other communicative material)

3. Determination of the sampling method and sampling unit

4. Sampling

5. Identification of the data collection unit and units of analysis

6. Establishment of a coding scheme (for hypothesis testing)

7. Coding of data

8. Verification of coding reliability, adjustment of the coding process if necessary

9. Analysis of the coded data, statistical testing

10. Interpretation of results

The process, as outlined above seems linear, but often the contrary is true – especially if the 
exploratory analysis is done first, or when researchers subscribe to a certain scientific 
school or paradigm, as is the case of grounded theory, the school of thought prevalent in 
qualitative content analysis circles6. However, for the purposes of this discussion, the 
generalization of the process as outlined above is sufficient.

6 Important concepts of grounded theory are categories, codes and codings. The research principle behind 
grounded theory is neither inductive nor deductive, it might be characterized as explorative – this leads to 
a research practice where data sampling, data analysis and theory development are not seen as distinct and  
disjunct, but as different steps to be repeated until one can describe and explain the phenomenon that is to 
be researched. The stopping point is reached when new data does not change the emerging theory  
anymore, until that point is reached, the research is iterative.
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In the case of quantitative content analysis, the hypotheses should be tested and falsified. A 
certain theory of communication provides researchers with a view on the cultural or social 
phenomena and the task is not the formulation of the explanation of such a movement, but 
identification and extraction of indicators that confirm or falsify such a description. It is 
still necessary to identify the variables that support or testify for the presence or absence of 
an ongoing process, but theory also serves as a starting point. It provides a ready 
explanation of a studied phenomena, and content analysis is a method to obtain data. 

In the first phase, researchers clarify their research questions. A working hypotheses are 
generated. They will serve as a search spotlight for the next steps. Based on the research 
questions, researchers must select variables (indicators) of the studied phenomena. But as 
there are many ways to look at the definition of meaning, there are also very many ways to 
study people when they use, express, and interpret the meaning written in the text. A few of 
the points thus deserve separate treatment. 

III.2.1   Coding and categories

In quantitative content analysis, a fairly exact and unambiguous definition of seeked 
concepts is needed for the coding phase. This is called “operationalisation of concepts”. 
For most part, the operationalisation of the concepts has the form of a coding dictionary or 
coding scheme (when human encoders are used) and content analysis tools are specifically 
built to make the coding reliable, fast, and unambiguous. From our viewpoint, the coding is 
the crucial phase and the tools differ in the way they handle it and the dictionary 
development.

Indicators from the text are usually grouped under categories – harvested into 'bins' – and 
these will represent the extracted data, the raw material for the analysis. It is important how 
fairly the coding scheme captures the studied phenomena. Categories must not be too 
general, because that would conflate too many signals into one bin, but categories also 
must not be too narrow, as each observed feature would, in extreme cases, have its own 
category and that is just as unhelpful. Categories should not overlap, as the signals would 
be counted several times. Categories must be both unique, and exhaustive, not leaving out 
important indicators. And because it is not easy to build such a sufficient coding scheme, 
the process can take many iterations.

The development of the coding scheme is the most laborious and expensive operation of 
most advanced content analysis studies. It is reported, that such work takes more than 5 
person-years of coding (Schrodt 2009, 19) , and the absence of a good coding scheme is 
effectively the same problem as the infamous 'knowledge bottleneck' of the knowledge 
representation systems.7 Classical content analysis stands and falls with the coding 
dictionary, especially in case of traditional automated content analysis.

The proper design of content analysis tool needs to ensure:

7 And the final reason, why the modern systems of information extraction are focused rather on 
unsupervised methods, statistical learning and artificial intelligence algorithms. To build a knowledge 
representation with human experts is often prohibitively complex and expensive (Sowa 2000; Turmo, 
Ageno, and Català 2006)
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1. consistency of coding

2. consistency of categories throughout the times

Consistency of coding is of paramount importance and therefore it is convenient if content 
analysis tool contains procedures for dictionary evaluation and coding scheme performance 
measurement.8 Various functions for checking consistency, distribution of gathered signals 
across categories with the possibility of splitting certain parts of the coding scheme in an 
automated way. And procedures that automatically check integrity of the dictionary.

The second requirement of consistent categories throughout the times is sometimes more a 
theoretical than a practical possibility. Most of content analysis studies devise elaborate 
coding schemes, but none of them can expect them to be complete – at least not until a 
period of prolonged testing is over. If after that the research needs to be replicated, it is 
necessary that the coding scheme be fixed – or at least versioned. People will need to 
change, evaluate and revise it – if not in later stages, certainly during the development 
stage. And small changes will often have profound, unforeseen consequences. Therefore 
the systems must provide feedback, evaluate results of the coding schema changes and 
measure performance gains or loses.

Generally, it is beneficial if existing coding schemas are reused – it not only allows for a 
direct comparison of research results, but also mitigates the knowledge acquisition 
problem. There exist numerous dictionaries – for example several coding schemes 
developed for the analysis of armed conflicts in political sciences such as WEIS, PANDA, 
or datasets with the associated coding schemes such as CIA Factbook. Also the dictionaries 
with Osgood differential, and Harrold Lasswell's attitude dictionary. These were designed 
specifically for the purposes of content analysis, but more dictionaries usable for analysis 
are available from different resources – for example generic, upper ontologies such as 
Wordnet9 or CYC, or domain specific ontologies published in the form of SKOS ontologies 
such as the dictionary for High Energy Physics. We shall not forget also the more 
traditional classification systems, such as the Dewey Decimal Classification or Patent 
Classification which are also successfully used for the task of content analysis.10

It is often beneficial to choose existing dictionaries, but very often the development of a 
specialized version will be necessary. Content analysis tools usually make it possible to 
import different coding schemes and provide tools for dictionary maintenance. It is usually 
possible to develop a new dictionary, but also convert existing dictionaries into the data 
structure of a particular system. For example SEMAN has such abilities and they were 
tested on a semantic network as complex as Wordnet or the HEP taxonomy expressed in 

8 Interestingly, when such tools were made available they were parts of the academic coding tools and not  
the commercial software suites, as will be apparent later on.

9 WordNet is the most widely used ontology for natural language processing. It was started by George 
Miller and his colleagues in 1995 and it contains 155,287 English words classified by concept types called 
synsets (synonym sets). They are further split into a hierarchy of types and subtypes with a few other 
relations, but with no axioms or formal definitions. Wordnet is thus effectively a semantic network of 
concepts expressed in English language. CYC on the other hand, is a real ontology with the inferential 
engine suitable for the AI robots. It has the aspiration of becoming a knowledge base for the computer 
driven human-like reasoning.

10 The possibilities are numerous, for example De Wever reviewed 'only' 15 coding schemes targetted 
specifically at the coding of the computer supported collaborative learning (the collaborative discussion 
activities). (De Wever, Schellens, Valcke, and Van Keer 2006)
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SKOS format. But at this point it is not possible to compare the tools yet. Without 
discussing their working mechanisms. Suffice to say that some tools allow us to build a 
semantic map, and again some others rely on a simple, flat list of patters. This is an 
important detail because the internal knowledge representation of the dictionary in the final  
stages limits the capabilities of the tool.

The limited options of some content analysis tools may not always be perceived as a 
disadvantage. Because the more complex concepts we try to capture or express, the more 
difficult it is to select and maintain consistent coding of patterns. There is an imminent 
paradox of what is possible and what is attainable with the resources at hand – it may be 
nice to express very complex concepts in a language of USL or any other coding system, 
but if the final purpose is the simple recognition of patterns, the advantages do not 
outweigh added complexity. And such complexity will have a detrimental effect on the 
reliability of the dictionary. Suddenly we are working with a knowledge representation 
system and if there are more people expressing their views of the world, they will 
inevitably end up mixing different views of the same world into one representation system. 

The differing views will be encoded into one. Sometimes it will be necessary, because 
simpler coding allow only simple operations – but there lays inevitably a tradeoff between 
expressiveness and complexity. If we enforce simplicity, we may lose actual meaning. If 
we enforce expressiveness, we may retain meaning but sacrifice consistency. In the end it is 
the researcher, who has to take the decision. But the content analysis tool may make such 
decisions easier when higher expressive power is needed – even if it means more risks. As 
Berelson said: “[w]hat does it matter that we gain reliability if in the process we lose all our 
insights?” (Berelson 1972b, 173)

III.2.1.1   Reliability and validity

Reliability means that if different human coders were reading the same text, they should 
code the same parts of the text with the same categories – i.e. they interpret meaning of the 
symbols in the same way, consider them to be the same thing and consistently assign the 
same set of signals to the same category. Results from measurements which are reliable 
will not change considerably over time. Even if the procedure is applied to a different 
sample of the same kind, it is expected that results will remain constant despite slight 
variation. Reliability says that results will not change considerably, that there are no 
external factors bearing too much influence on the measurement. But it does not say that if 
we gather wrong data reliably, we will be able to discover something – unless of course by 
chance.

Krippendorff discusses three types of reliability, together with the accompanying mode of 
their testing:

Reliability How to evaluate How is shown Importance

stability test-retest Important difference in the 
interpretation of categories

Weak
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reproducibility test-test As above + discrepancy 
with other, external studies

Middle

accuracy test-standard As above +  variations 
against standard

Strong

Stability means that the process of measurement is not variable through time and that 
categories are designed in such a way that coders (or the population that was using such 
codes) understand, interpret and handle them in the same way. Therefore, if the analysis is 
completed by other researchers, with the same set of tools, they will obtain same results.

Reproducibility is a different facet of the reliability and means, that if the measurement is  
conducted by other researchers, but using different tools, the results will be still 
comparable.

The last level of reliability of the measurement is a conformance to the standard. The 
standard may be hard to obtain in the domain of social sciences. Nevertheless, if available, 
the variances from it are understood as errors in the measurement, not as errors in the 
standard.

To achieve high levels of reliability is intrinsically difficult. It was shown, that the overlap 
even between trained human indexers is on average around 44% (Leininger 2000) which 
can be corroborated with values reported in (Medelyan 2009; Medelyan and Witten n.d.) 
which span the range of 13-70% for different thesauri. Therefore for computers this task is 
very difficult because even people are not sure what is correct.11 The act of coding, when 
done by people, is further complicated by external factors such as fatigue, distraction and 
cognitive disparities, cultural backgrounds or education. 

These reasons ultimately lead to the development of machine coded content analysis, but it  
took more time to be accepted. This happened only after research had demonstrated that the 
machine can outperform people in certain tasks (King and Lowe 2003) – at least with well 
disambiguated dictionaries or routines that make the processing less ambiguous.

As discussed by Schrodt (Schrodt 2009, 66) the reliability of content analysis research 
consists of three components:

– stability: the ability of a coder to consistently assign the same code to a given text

– reproducibility: the ability of different coders to assign the same code to a given 
text

– accuracy: the ability of a group of coders to conform to a standard, minimum of 
omitted (missed out) entries, as well as a minimum of false positives

In the case of machine coded data, the situation is easier in some aspects and more difficult 
in others. For a given set of patterns the stability of machine coding is 100% because the 
machine will always code the same text in the same manner. This is particularly useful 
when a time series is being maintained for a number of years. Because the patterns used in 
coding are explicitly specified in the coding dictionaries rather than dependent on coder 

11 Similarly, in the tasks of word sense disambiguation, on the words that have few meanings, the inter-coder 
agreements oscilated around 95% however for words with many meanings, the agreement between people  
was on average 70%. (Christoper D. Manning and Schuetze 1999, 233)
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training, the same rules can be used 10 years later. Also the machine will be consistent in 
making the same mistakes and inter-coder reliability becomes a non-issue, at least as far as 
coding is concerned. However, we come across a knowledge representation problem – as 
discussed in the previous chapters. 

If the dictionary was prepared by several people, it may contain different views of the 
world inherently encoded in its structure. The good news is that machines are able to code 
reliably, provided care was taken in the preparation of the dictionary. 

In our experience, the reproducibility of machine coding seems comparable to the 
inter-coder reliability of humans, and a machine is obviously not influenced by the 
context of an event or by intrinsic political or cultural biases. (The coding 
dictionaries may reflect biases, but these will be explicit and can be examined by 
another researcher; the dictionaries are also applied consistently to all actors and in 
all contexts.) Furthermore, the machine is not subject to coding errors due to fatigue 
or boredom, and, once a coding vocabulary has been developed, it does not require 
retraining. (Schrodt and Gerner n.d., 2:66)

The results reported in King are impressive.12 Nevertheless it should be also noted, that 
they apply to a limited domain of problems and that coding schemes are carefully crafted. 
For example, the language of the source document is simple. There are not many problems 
with coreferences, a domain specific rather than domain-universal dictionary is used, the 
coding scheme is well tested and was cleared up by many iterations. A lot of precautions 
were put in place to fight against pollutants, distortions and biases so that dictionaries are 
unambiguous and the machine is able to recognize patterns in the text with a high degree of 
accuracy. The task of content analysis tool is therefore to make such customization not only 
possible, but also easy.

Validity

Contrary to “reliability”, validity is the name for the “intended concept match”. Data can be  
valid only if the tools that are measuring them are capable of such measurements. In the 
particular case of content analysis, the tools are not the software packages, but the coding 
schemes – these are the real tools of measurement. Validity cannot be estimated by 
repeating a survey or experiment with the same tool, or by duplicating the data or by 
calculations that dependent on the previously obtained values. Validity can be estimated 
only by comparison with other external sources of information obtained independently of 
the conducted measurements. Estimates can then say how much information obtained in 
the process is a valid indicator for the studied phenomenon.

In the case of textual content analysis, the nature of data is peculiar. Texts themselves can 
be considered as indirect representation of reality, but these pictures of the reality are 
skewed in many different ways – and they can also be interpreted in different ways. Even if 
we assume that there exists one shared, and perhaps objectively describable reality, it is 
hard to concede that these 'snapshots' of (one) reality represent it. That the observed change 
in the data corresponds to the (unobserved) change in the underlying reality and therefore 
the world of 'texts' is parallel to the changes in the other worlds. 

12 And can be corroborated by the TABARI project which reports 75-85% accuracy. (Schrodt 2009, 7-8)
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We could see content analysis in the same light as sociological research and distinguish 
between different types of analysis levels:

1. description of the manifest content (descriptive studies)

2. content analysis that supply data about the existence of certain patterns (i.e. theory-
supporting data extraction)

3. content analysis which interprets (therefore somehow 'understands') the meaning, 
says how people read and comprehend, how this understanding influences their 
behaviour

Especially the last type of analysis cannot be conducted without a firm theory of 
communication and the human mind and without a significant input of the humans, thus it 
is very difficult to achieve validity from the methodological point of view: (Krippendorf 
2004a, 318) 

(a) if content analysis serves the purpose of predicting future events and states, it is not 
possible to validate the results against results of other measurements

(b) the second, more significant case, is when researchers have the external evidence and 
this evidence is used for the design of the current Content Analysis study. Such results may 
influence researchers to focus on certain facets and thus the study will be effectively 
confirming the previous study. Even though formally external, the study will not be 
independent from the first. 

Validity is hardly a problem in a simple study, because people can generally agree that 
categories measure what they are intended to measure. “In cases where there is high 
agreement on the definitions of the relevant categories, there is little difficulty in achieving 
validity in content analysis data”. (Neuendorf 2001, 169) But because validity is mainly a 
problem of definition, and several definitions can be made of a certain category, it is not 
always easy to make sure that the tool is really measuring what it should. Also the relation 
between validity and usefulness is contradictory. It is possible to conduct very valid and 
accurate research, but also very limited and without any value, without taking any risks. Or 
to take the other route, take risks and validate the data against an external source of 
information. But content analysis coding tools will not be of any great help here, that is a 
project design problem.

III.2.2   Data 
Content analysis tools can help mostly with the processing of data. It is the responsibility 
of researchers to make sure that information coming from the conceptualization directly 
relates to studied questions. The initial decisions in content analysis research have to deal 
with the question “which units of analysis are important?” – for the purpose of the 
research, a unit may be defined 'freely' based on the purpose it serves. But it is important to 
distinguish whether it is (a) a sampling unit or (b) is used as a base for measuring variables, 
and whether it (c) serves the purposes of reporting final results. Content analysis tools thus 
have to deal with several data units during the analysis, and be flexible enough to allow for 
their separation.
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Sampling units

They denote WHAT will be included in the analysis. Contrary to census or sampling for the 
purposes of quality testing, sampling units of content analysis are rarely used as units for 
reporting. The sampling units serve as 'containers' or pools, from which data is extracted. 
For example, they can be constructed as issues of a journal, random samples or articles 
from a given year, all newsgroup messages for the first week of every month (time periods) 
etc. Obviously they represent the input for the coding phase and must fairly represent the 
population of all the messages. Content analysis tools should be flexible enough to process 
various input formats and allow researchers to extract and work with only the important 
parts of the message in the next phase. Yet in most cases, the problem of sampling is 
external to the tool used, and is internal to the chosen methodology.

Recording units

Also called units of data collection, these represent 'the smallest possible and meaningful 
units of the message that contain information about the researched problem'. For example, 
in psychological content analysis the verbal clause is often the best unit of data collection, 
because it allows one to assess presence or absence of many key markers of a personality. 
For purposes of the analysis, the word would be too isolated and sentences or paragraphs 
too broad. The decision depends on the problem at hand. Obvious tradeoffs in the economy 
of research remain (Berelson 1972b, Chpt 2), but as far as text content analysis systems are 
concerned, it should be possible to work with individual words, sentences, paragraphs, 
pages or other units. Tools will necessarily vary in their capabilities to recognize and work 
with different recording units. But recording units are not what distinguishes one tool from 
another – it is ultimately the next data unit and its processing which is the most important 
one.

Units of analysis

These units tell different systems apart. In our work we focus on content analysis tools that 
use dictionaries, and are specifically suited for frequency analysis of categories – 
represented by (groups of) words or more generic patterns. Units of analysis are simply 
'things being counted', and while they might be identical with the units of recording, in 
most cases they will represent simpler items. For example category WEALTH will count 
occurrences of words such as money, dollar, pound, or complex patterns such as 
he invested in or company x acquired y. The task of the most content 
analysis applications is to assist with the definition of such categories and their content, 
find such units, or help to find them, and then produce output that can be analysed. Either 
by the tool itself, or more often, using external, specialised statistical software packages. 
The units of analysis ultimately correspond to the raw material which will be melted and 
recast during analysis inside the (external) packages.

Contextual units

There exists another interesting unit type, while not strictly being a 'data unit', it may be 
very important. Contextual units are simply containers for information that describe the 
way in which the units of analysis were obtained – simply because for analysts it may be 
vitally important to know the context in which  recording units were extracted, how they 
were extracted, using what procedures. Also, what was the presumed target audience of the 
original messages, when the sampling units were selected, how the recording units were 
chosen and similar. All this data may help interpretation of extracted information,  
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especially in later stages, when analysts already forgot all the intricate details of the coding. 
If content analysis tool can record contextual units (presumably many of them in an 
automated way, creating logs of operations), they will serve the same purpose as 
workbooks of experiments in the natural sciences.
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IV. SOFTWARE FOR CONTENT 
ANALYSIS

Prevalent classification of content analysis software is based on the difference between 
qualitative and quantitative content analysis and also on differences between different types 
of analysis (as outlined in the previous chapter). The two main groups of software are: 
packages for qualitative content analysis, called CAQDAS (Computer Assisted Qualitative 
Data Analysis). The other group is composed of quantitative content analysis tools. (For 
review and extensive bibliography see Koenig n.d.) While it is true that many qualitative 
content analysis programs now offers modules for quantitative content analysis, there are 
still many differences in the way in which the research is organized. For example, most of 
the tools which are of importance and interest to us, work with specially crafted 
dictionaries, provide mapping operations and the results of the analysis are available as 
input for more sophisticated processing – usually employing statistical packages such as 
SPSS, MatLab or analytical tools in Excel. They usually lack the capabilities and graphic 
interfaces of the qualitative tools, unless they are parts of much bigger software suites.

Lejeune observed (Lejeune 2008, 2009) that content analysis tools can be classified into 3 
main categories. Those that:

1. generate classification categories automatically

2. leave the construction of the categories completely to the user, but help with the 
analysis

3. assist with the analysis using registers

The first group is the subject of research in the fields of artificial intelligence and machine 
learning. It encompasses a plethora of algorithms, from the simple extraction of concepts 
based on probability metrics, up to the classification of data using neural networks, 
statistical learning and similar - for reviews, see (Sebastiani 2002; Dale, Moisl, and Somers 
2000; Christoper D. Manning and Schuetze 1999; Sampson 2003)

The second group of tools consist of already mentioned CAQDAS packages (“Assessment 
and Development of New Methods for the Analysis of Media Content” n.d.; for reviews 
see: MacMillan 2005)The most visible packages include software like NVivo and 
MegaPutter.1 While it is no longer true that they 'only' help to organise the content and the 
researcher does all the work manually2, it is true they were constructed primarily to assist 
humans to organise content matter. The researcher does the work “manually”and it is her 

1 NVivo can be found at http://www.qsrinternational.com/products_nvivo.aspx [Accessed: 24-07-2011] and 
MegaPutter at: http://www.megaputer.com/ [Accessed: 24-07-2011]
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input that the software helps to manage. This group is the biggest, and usually when the 
general public hears about content analysis tools, it is software from this category that is 
used.

Finally, the third group of tools is specially constructed around a dictionary (called a 
register) and as opposed to the CAQDAS tools, that almost all subscribe to grounded 
theory, tools in this category show much wider theoretical and methodological variety. 
Here the analysis is not completely in hands of researchers (like in 2) or completely in 
'hands' computer (like 1), but we see various degrees of combination. The registers are 
often based on the established theory for which dictionaries were built by groups of 
researchers. For example the Laswell's dictionary for measuring levels of positive/negative 
interest. The fact that often a standard register is employed of course does not preclude the 
option of creating a completely new register.

For a comparison, we can cite another example of how content analysis tools are 
distributed:

Software for content analysis divides, according to its intended function, into three 
major categories. The first set of programs perform dictionary-based content analysis. 
They have the ‘basic handful’ of text analysis functions, involving word counting, 
sorting, and simple statistical tests. The basic handful are described in the next 
section. The second set contains development environments. These programs are 
designed to partially automate the construction of dictionaries, grammars, and other 
text analysis tools, rather than being analyzers themselves. Development 
environments are more similar to high-level text-specific programming languages 
than to freestanding content analysis packages. The third category contains 
annotation aids. While an annotation aid can often perform some automatic content 
analysis, it is intended more as an electronic version of the set of marginal notes, 
cross-references and notepad jottings that a researcher will generate when analyzing 
a set of texts by hand. (Lowe 2003, 1)

The quote from Lowe succinctly describes the world of content analysis tools. The first 
category belongs to the tools of classical content analysis, the second more to the world of 
the new algorithmic approaches and, finally, the third speaks about the CAQDAS tools.  By 
classical content analysis we mean the tradition of examining word frequencies, creating 
concordances, and building content dictionaries in order to operationalize interesting 
aspects of document meaning. Of course, also other traditions of content analysis exist. 
E.g. discourse analysis, cognitive mapping, and collocational clustering, with specialized 
software available for application of each method. However, SEMAN belongs to traditional 
content analysis and will be described as such. While it might be interesting to compare 
SEMAN with CAQDAG tools, as they are amongst the most utilized packages, they were 
not subject of our work. Our purpose was to focus on the first and the second category of 
programmes – tools that can help to code and provide basic analytical functions. 

The main difference of SEMAN against the existing tools, is that we wanted to provide a 
solution crafted for USL. But also flexible enough to serve in the more classical paradigm 
of content analysis. It is somewhat a mix between the two approaches but details will be 
discussed later. First comes a review of content analysis tools features and then a review of 
the selected packages. The review may serve as a baseline for comparison with capabilities 
of SEMAN.

2 Sometimes described as reflexive, instead of “manual” content analysis.
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As described by Lowe, tools from classical content analysis category, contain certain 
functionality. That includes counting frequencies of words and its basic analysis, also 
summarization and visualisations of results. Word frequency analysis provides a list of (all) 
the words that occur in a text and the number of times they occur, or a normalized form as 
a function of word counts and text length. More sophisticated methods split the text into 
subparts, e.g. chapters, and create frequency lists for each, taking advantage of the fact that 
certain parts of the text such as introduction or conclusions have somewhat higher 
information value. The knowledge of the document structure is often used in the parsing 
tasks, or during information extraction. (Medelyan 2009) 

Lists with frequency information can be compared either visually, or using a statistical test 
to see if certain locations contain significantly more mentions of particular words in one 
part than another. Another common use of the frequency statistics is to compare treatment 
of one subject in different sources – to see how different their treatment of it is on the basis 
of the sorts of words they use.

Statistically this procedure can sometimes be reasonable because the counts from one 
source are compared with the total counts for all words over all the sources; 
significant differences may then track differences of emphasis across sources. Some 
packages make use of synonym lists or lemmatize before the analysis in order to 
merge word counts. Lemmatization removes the grammatical structure from the 
surface form of a word, leaving only the stem; words are then counted as identical 
when they share a stem. For example, a lemmatizing frequency count would treat 
‘steal’ and ‘stole’ as the same word. Lists of lemma and synonyms are naturally 
language specific. (Lowe 2003, 2)

However, the most important functionality is the category frequency analysis. Almost all 
tools work with a dictionary that allows mapping of certain words into a predefined subset 
of codes. Category counts provide a slightly more sophisticated analysis. The implicit 
model of text generation implies the author of the text thought in terms of categories and 
natural language is used as a medium of transport when the message is recorded. If the 
content analyst can recover or reconstruct the word set used by the author, the dictionary 
can be used to decode other texts translating and normalizing their form so that direct 
comparison is possible.

This is the main usage of the coding tool in content analysis routine where computers are 
appraised for their speed, and reproducibility of errors. And for the mapping operation, 
computers outperform humans even for context sensitive problems. (Medelyan 2009; 
Schrodt 2009, 66) Errors in the coding are systematic and to a large extend correctable – 
while the computer will always make the same error, human coders frequently introduce 
bias that is hard to spot and even harder to correct. The two factors, speed and consistency, 
are therefore the main factors that drive the introduction of content analysis tools.

The disadvantage of machine coding lies in complexity of the language, computers do not 
do the best job in parsing complex and often idiosyncratic expressions that are easy for a 
normal human reader. It is also substantially harder to provide a computer system that is 
able to infer facts from the signals, especially if the inference spans over larger areas of 
texts, as often is the case with texts and their interpretation. Thus content analysis systems 
may differ in (parsing) speed and ability to recognize complex or simple structures, which 
will influence accuracy of the coding and the ability of the system to extract useful 
information. The existence of the dictionary is nevertheless a very important feature of 
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almost all tools, because it allows researchers to specify a mental model of the world, even 
if simplified one. The dictionary is used as a mapping from the wild and ambiguous 
domain of the natural language into a more ordinate form of formal codes with known 
properties.

The category of software tools that analyse texts using registers is not small. The sites that 
register content analysis tools3 contain an impressive number of packages. But looking 
closely, we will discover that almost half of these tools are CAQDAS, such as T-LAB4, 
Wordcruncher5 – the other big group of tools specializes in automatic content analysis, 
without the underlying conceptualization in the form of a coding scheme, such as: 
Concordance6, Crawdad7, Hamlet II8, Leximancer9 and many others. And the packages, that 
use coding schemes and are built specifically for classical text analysis are relatively few. 
Interestingly, the newest one was created in 2006, while the oldest was created 40 years 
ago.10  Incomplete list contains:

– Diction 

– General Inquirer

– Intext

– PCAD2000

– PROTAN

– TABARI

– TEXTPACK

– VBPro

– Wordstat

– Yoshikoder

3 The main sites are: http://www.textanalysis.info/, 
http://www.restore.ac.uk/lboro/resources/analysis/ca_software.php, http://www.content-
analysis.de/software/quantitative-analysis and 
http://academic.csuohio.edu/kneuendorf/content/cpuca/ccap.htm (dated but still widely referenced)

4 http://www.tlab.it/

5 http://www.hlanalysis.com/WordCruncher/WC.aspx

6 http://www.concordancesoftware.co.uk/

7 http://www.crawdadtech.com/   Crawdad uses Centering Resonance Analysis, or CRA, a method that 
applies natural language processing to create a network model of text. Word influence is calculated based  
on the structural position of the word within the CRA Network. 

8 http://apb.newmdsx.com/hamlet2.html   – software by Alan Brier counts individual and joint word 
frequencies, the resulting similarities matrix can be analysed using different methods (cluster analysis,  
MDS). 

9 https://www.leximancer.com/   – a text mining tool that automatically identifies key themes, concepts and 
ideas from unstructured text. 

10 Naturally, it was rewritten several times so that it is compatible with the recent hardware and operating 
systems.
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For purposes of illustration and comparison with SEMAN, I will select a few tools that are 
similar in functionality: General Inquirer, TABARI, and Yoskikoder. They represent good 
approximation of the field. For two of them it is possible to obtain the source code, and for 
all of them the documentation is detailed enough to be sure they work in the similar way as 
SEMAN. We can leave out many other tools, that are either too small or obsolete, or tools 
that are parts of much bigger software bundles consisting of many features, which are not 
directly comparable because they do not deal with coding and mapping of codes onto texts.

Also a number of web services can be found, accessible only via pre-paid subscriptions, 
but with them it is even harder to see how results were obtained. For this reason we do not 
include them in the comparison. Certain, such as VRANET11 are widely known to the 
scientific community as they were used for production of large datasets (King 2003) but 
their mechanism is hidden behind contractual agreements and available only to 
departmental agencies and contractors. Therefore the comparison is very difficult. And I 
also omit the general purpose text engineering frameworks such as UIMA or GATE. These 
frameworks are used to built almost any kind of text analytical services, but content 
analysis components constitute a fraction of them. And SEMAN in itself uses these 
frameworks for its internal operation. My goal is not to list all available tools and content 
analysis services, rather I would like to describe a few representative tools and compare 
their operations with SEMAN.

IV.1   GENERAL INQUIRER

General Inquirer is a general purpose system for content analysis and the predecessor of 
almost any content analysis package available today. It was developed by Philip Stone at 
the Harvard center of communication and has been used in numerous content analysis 
studies in the last 40 years. Because of these reasons, I will reproduce here the somewhat 
fascinating history of its life cycle. This will also serve to illustrate how content analysis 
evolved together with its computing environment.12

Since its original development in the early 1960’s, the General Inquirer content 
analysis software has been adapted again and again to the changing landscape of 
computing resources. The earlier stages in this adaptation saga are roughly as 
follows:

1) Originally programmed in several languages (COMIT, BALGOL) for the IBM 704-
709-7094 mainframe series, the system was reprogrammed in the more powerful 
PL/I that became available with the large IBM 370 mainframes. These mainframe 

11 http://vranet.com/ [Accessed: 24-07-2011]

12 There is an interesting parallel with SEMAN, also SEMAN existed in the version for mainframes and was 
in initial phases limited by memory space and CPU issues. From there we could trace certain design 
choices.
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programs were then supplemented with AUTOCODER programs operating on the 
smaller, more accessible and hands-on IBM 1401 computer for searching and 
retrieving text stored on magnetic computer tapes.

2) When time-shared resources first became available at MIT’s Project Mac and then 
on commercial time-shared systems in the late 1970’s, the PL/I General Inquirer 
programs were adapted to supporting real-time content analyses. Time-shared 
computing, usually by connecting a teletype or electric typewriter to a mainframe 
computer over a phone line, enabled us, for example, to perform content analyses of 
TAT stories as soon as they were typed, giving immediate scores for such categories 
as “need achievement.”

2) In the 1970’s and 1980’s, the General Inquirer might have been be adapted for the 
growingly popular Berkeley UNIX platforms, which at the time ran mainly on DEC 
and Data General computers. However, IBM mainframes continued to be available 
and offered continuously improving computing capabilities in speed and available 
memory size, while the skimpy PL/I versions eventually available on UNIX 
machines never did facilitate a straightforward implementation of the General 
Inquirer on a UNIX platform.

3) When PC and MAC computers increased their RAM and hard-disk storage 
capacities enough by the mid-1990’s to handle the General Inquirer content-
analysis procedures, the Inquirer was reprogrammed for them using the Dartmouth 
College “TrueBasic” language with its pioneering capabilities in effectively 
handling very long text strings. A “run-time” PC or Mac compilation of the 
TrueBasic General Inquirer was distributed that did not require users to have the 
TrueBasic language on their computers. General Inquirer users could then complete 
an entire content-analysis project on their personal computer, often also enlisting 
desktop statistical software packages that also by then had become available on 
personal computers, such as SPSS and JMP, to complete their analyses.

4) By the late 1990’s, Java’s widespread distribution on personal computers supported 
large Java programs being run on them. The General Inquirer was therefore 
reprogrammed in Java for personal computers as well as other platforms. This 
adaptation of the General Inquirer was made available without cost to academic 
users by downloading a zipped package containing the Inquirer’s Java procedures, 
its dictionaries, and its disambiguation rules. In addition, a General Inquirer website 
was created to provide detailed information that might be helpful in using the 
system.(Stone 2001)

Dr. Stone passed away in 2006 and General Inquirer is now available as a web service 
usable only for simple projects, but definitely deserves a place in the current section 
because General Inquirer was the first software of its kind that showed it was possible to 
conduct content analysis studies using computers and not human coders. Even if in many 
cases the research was focused on counting the surface features of a text and those features 
were taken for symptoms of psychological features, the principles of General Inquirer are 
in use everywhere:

1. It counts features, but also retrieves segments of the text with given characteristics 
(selected by user). Researchers can change the dictionary based on the given 
feedback. Improve accuracy.
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2. General Inquirer also counts sentences, and displays sentences with given 
characteristics – it is not bound only to words, recording units are wider.

3. Provides output with statistics on word and sentences. The output can be imported 
to external statistical packages.

4. General Inquirer is distributed with a prepared dictionary, but is not committed to it.  
Users can build their own dictionaries.

For the first time, General Inquirer allowed the replacement of the manual coding scheme 
with a set of computer rules. This practically eliminated the problem of reliability of 
coding. Computers were coding consistently under the same conditions. This also forced 
discipline on content analysis researchers as suddenly they were required to formalise 
rules, provide very exact and precise operational instructions. Such a development had a 
positive impact on the scientific nature of the method, and finally, the boredom of the study 
was limited only to the phase of designing the dictionary (which is actually a creative 
process).13

IV.1.1   Disambiguation rules
What makes General Inquirer stand out from the crowd is not only being the first, but also 
the fact that it was employing extensive routines for the disambiguation of English 
homographs. Homograph is the word that is written in a same way but based on the context 
takes very different meanings – such as “kind”. It can be an adjective, but also a noun with 
many meanings such as 'species', 'type', 'somewhat'. 

The disambiguation was accomplished using specially constructed rules, not a general 
disambiguation approach per se, but considered to be a useful subset of it. The following 
account describes the details: “Our hope was to endow computer with a limited but useful 
ability to resolve lexical ambiguity, that is, to discriminate a useful set of senses for some 
high frequency words of English, with a reasonable degree of accuracy.” (Shapiro, Tackett, 
Dawson, and Markoff 1998, 57)14 The rules, when translated to language, look like this:

To select the appropriate sense of the word “last”:

Consider instances not in root form such as “lasted”, “lasts”, “lastly” and so forth. If 
the word ends in “ly”, that is “lastly”, assign the sense FINALLY. Otherwise, if the 
ending is is not “ing” (e.g. “lasted”, “lasts”) assign the sense ENDURE, REMAIN. If 
it is “ing”, look to see if the following word is tagged as a determiner (such as “a”, 
“an”, “the”) or a preposition (e.g. “lasting a”, “lasting the”, “lasting until”). In that 
case, assign the sense ENDURE, REMAIN. Otherwise (no determiner or preposition 
following) assign ENDURING.

13 For more details, see: http://www.wjh.harvard.edu/~inquirer/kellystone2.htm

14 Wuoting: Edward Kelly and Philip Stone. "Computer Recognition of English Word Senses." North-
Holland Linguistic Series, 1975. 
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If the word appears in its root form, that is, simply as “last”, first look to see if the 
following word is “time” or “fall”. If so, in case the previous word is not “the”, 
assign the sense PREVIOUS (e.g. “last time”, “last fall”). In case the previous word 
is “the”, look to see if the word before “the” is a form of the verb “to be” (as in “is 
the last time”) in which case assign the sense FINAL.

In all, five different meanings of “last” are identified, and eighteen rules, some of 
which are logically dependent on others, are formulated to distinguish them. This 
complexity is not at all atypical of the 1.070 dictionary entries for which 
disambiguation rules were written by 25 collaborators over a period of 7 years. 
(Shapiro, Tackett, Dawson, and Markoff 1998, 57)

The mentioned period of the last 7 years is the period before the publication of the Stone's 
book, therefore 1968-1975. In the current state, General Inquirer contains over 13 thousand 
word roots and 6,336 disambiguation rules. These rule were engineered by skilled 
programmers in the many years since the first version and the last version of the software 
from 2006, when the development stopped. The rules were generated from the corpus of 
the encoded texts that were available to Stone and his team, using KWIC and manual 
inspection of the context, which means if the feature was not present in the corpus, the case 
was probably not identified. But as was mentioned earlier, Stone and Kelly aimed only at 
disambiguation of the “most frequent words with a reasonable level of accuracy.”

IV.1.2   Dictionary
General Inquirer is basically a mapping tool. It maps each text file onto dictionary-supplied 
categories counts.  The current version combines the Harvard IV-4 dictionary content-
analysis categories and the Lasswell dictionary content-analysis categories, and five 
categories based on the social cognition work of Semin and Fiedler, making for 182 
categories in all. The view on the categories might be similar to that of Smetacek's 
semantic primes (see Table on page 59). 

The General Inquirer categories were developed for social-science content-analysis 
research applications, not for text archiving, automatic text routing, automatic text  
classification, or other natural-language processing objectives, although they may be 
relevant to some of them. Many categories were initially created to represent social-science 
concepts of several grand theories that were prominent at the time the system was first 
developed, including those of Harold Lasswell, R.F. Bales, Talcott Parsons and Charles 
Osgood. It also included categories relevant to "middle-range" theories, such as David 
McClelland's theories regarding needs for achievement, power and affiliation. 15

Each category is a list of words and word senses. A category such as "self references" may 
contain only a dozen entries, mostly pronouns. Currently, the category "negative" is the 
largest category with 2291 entries.  Users can also add additional categories. An example of 

15 Stone says that normally, each entry in a category is given equal weight. However, this was a choice of the 
category developer rather than any inherent limitation of the computer. Earlier versions of some Inquirer 
dictionaries included categories with weightings, but were found to be difficult to obtain agreement about 
the weights and they added little to the validity counts. Currently, none of the categories employ 
weightings.
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the dictionary below shows several meaning for the word CONTENT, we can also notice 
comments written after the pipe “|” character, they were probably used by programmers 
that constructed the disambiguation rules.

CONTENT#1  Noun Know | 21% noun: Meaning or constituent elements
CONTENT#2  Noun Object Comnobj | 8% noun: "Contents"--that which 
is contained
CONTENT#3 Pos Modif EMOT Pstv Psv Pleasur | 58% adj: Satisfied
CONTENT#4 Pos Modif Pstv Pleasur Psv | 13% adv: "Contentedly"--in 
a satisfied
           manner
CONTENT#5 IAV Pos SUPV Pstv Psv Pleasur | 0% verb: To satisfy
    6   TOR(K+0,K+0,APLY(4),,LY.
    7   TOR(K+1,K+1,APLY(5),,DEF3.DEF2.
    8   TOR(K+0,K+0,APLY(3),,ED.
    9   TOR(K+0,K+0,APLY(2),,S.
   10   TOR(K+0,K+0,APLY(5),,ING.
   11   TOR(K-1,K-1,APLY(3),,BE.LY.LINK.VB.DEF1.
   12   WOR(K+1,K+1,APLY(3),APLY(1),WITH.TO.

The General Inquirer software includes the sense disambiguating procedures as discussed 
above, but they are not part of the dictionary and cannot be edited or extended by a user. A 
simplified rules-based POS engine is used to assign the senses and the General Inquirer 
also cautiously removes common regular suffixes so that one entry in a category can match 
several inflected word forms. A category entry can be an inflected word (for example, 
"swimming"), a root word ("swim" would match "swimming", if "swimming" is not a 
separate entry) or a word sense (for example, "swim#1") identified by the disambiguation 
routines of an inflected or root word form. These English stemming procedures, integrated 
with English dictionaries and routines for disambiguating English word senses, limit the 
Inquirer system to English text applications.

Text files are grouped for processing into folders. The output is a matrix of "tag counts" for 
each category, with separate rows of counts for each file processed. The main output from 
the Inquirer is basically raw frequency counts and indexes scaled for document length. 
Statistical tests outside the program can then be employed to evaluate whether there are 
statistically reliable differences between the texts or groupings of texts being studied.
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Illustration 6: An example output from the General Inquirer processing a news from Burma  
polls. Categories are in the left column, matched words in the right one.



A H4Lvd
ABANDON H4Lvd Negativ Ngtv Weak
ABANDONMENT H4 Negativ Weak
ABATE H4Lvd Negativ Passive
ABATEMENT Lvd
ABDICATE H4 Negativ Weak Submit Passive
ABHOR H4 Negativ Hostile Passive Arousal
ABIDE H4 Positiv Affil Active
ABILITY H4Lvd Positiv Strong Virtue
ABJECT H4 Negativ Weak Submit Passive Vice
ABLE H4Lvd Positiv Pstv Strong Virtue
ABNORMAL H4Lvd Negativ Ngtv Vice
ABOARD H4Lvd
ABOLISH H4Lvd Negativ Ngtv Hostile Strong Power Active
ABOLITION Lvd
ABOMINABLE H4 Negativ Strong Vice Ovrst
ABORTIVE Lvd
ABOUND H4 Positiv Passive
ABOVE#4 H4Lvd
ABRASIVE H4 Negativ Hostile Strong Vice
ABROAD H4Lvd
ABRUPT H4Lvd Negativ Ngtv
ABSCOND H4 Negativ Hostile Weak Submit Active
ABSENCE H4Lvd Negativ Weak
ABSENT#1 H4Lvd Negativ Weak Passive
ABSENT#2 H4Lvd Passive
ABSENT-MINDED H4 Negativ Weak Passive
ABSENTEE H4 Negativ Hostile Weak Vice
ABSOLUTE#1 H4Lvd Strong Virtue Ovrst
ABSOLUTE#2 H4Lvd Strong Ovrst

Table 1: Example of the dictionary distributed with General Inquirer, the first column contains words with different senses (marked by #), the second column lists the source of the  
entry – for example. Lasswell dictionary is marked as Lvd, merged Lasswell and HarvardIV dictionary as H4Lvd. The rest of the columns list the categories into which the matched  
token belongs. As will be seen later, the other systems usually assign only one code, however General Inquirer (as well as SEMAN) are built around the idea that the tokens match  
several features.
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IV.2   TABARI
During the 90s, the panorama of content analysis changed considerably. Firstly, with the 
development of the rapid news reporting, the focus shifted from newspapers towards news 
wire services. It was also established by empirical studies that mere machine-assisted 
coding16 of news was not more efficient than completely manual coding – thus the energy 
and funding was redirected towards the development of completely human-independent 
coding. This move was accompanied by changes in the geo-political area, with the 
dissolution of one superpower and the end of the Cold War era. The two major enemy 
camps ceased to exist and the attention had moved to very specific subjects in limited 
areas. After 1989, suddenly there were no superconflicts, but individual, geographically 
located threats.17 The amount of information accessible electronically steadily increased 
and that made it possible to gather enough 'signals' even for the globally insignificant 
issues – in contrast to the previous situation of the major competing superpowers. Even 
small incidents generated a wave of responses (signals) and this information was then used 
in content analysis. Paradoxically, the wiring of information into the global network made 
local analysis possible. 

In this environment, the project KEDS (Kansas Event Data System) was born at the 
beginning of 1990s. It benefited from NSF grants and from the second wave of revived 
interest into the analysis of a large scale data (General Inquirer being a representative of the 
first wave). The National Science Foundation grant on “Data Development in International 
Relations” in the early 1990s had a more profound impact:

The Global Event Data System (GEDS) at the University of Maryland grew out of 
this project, as did the early work on KEDS and several other experimental projects. 
The DDIR project marked a transition between the DARPA-style event data research 
and contemporary approaches, and the various articles in Merritt, Zinnes and 
Muncaster (1993) show a mix of old and new techniques. These methods slowly 
diffused into the policy community, and by the end of the decade, event data were 
employed in the development of experimental early warning systems at the U.S. 
Department of Defense, in the dynamic modeling phase of the State Failures Project, 
and in Switzerland by the FAST project. (Schrodt and Gerner n.d., 15)

On the technical side, KEDS was written in the Pascal programming language and worked 
only on Apple Macintosh computers. It was used in the years 1995-2001, but gradually 
became obsolete and difficult to maintain. It was decided to rewrite it under the name 

16 i.e. the coding in which human coders had programmatic tools to preprocess the text, but it was finally 
humans that decided about each and every category assignment. Sometimes called as human-assisted 
coding.

17 With the global terrorist thread, the situation is changing again – what remains, at least for some areas, is 
the need to analyse local signals. Locally, but on a global scale.
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TABARI (Textual Analysis by Augmented Replacement Instructions) in Spring 2000. The 
main core of the system is written in the language C++, and TABARI also contains various 
utilities for text filtering and pre-processing written in Perl and Java. But TABARI, as a 
successor to KEDS, applies the very same principles and operational modes as KEDS.

IV.2.1   What TABARI does
TABARI extracts event data from the stream of text using a pattern recognition techniques. 
In this context, event data is a name for a semi-formalized structure with the following four 
components:
date source target event 

To give a specific example, taken from (Schrodt and Gerner n.d., 1-4), the report: 
July 23, 1990: Iraqi newspapers denounced Kuwait's foreign 
minister as a U.S. agent Monday

 corresponds to an event which is in the coding scheme defined as 
122: "Denounce; denigrate; abuse." 

In this event, Iraq is the source of the action and Kuwait is the target. Together, this 
information generates the event record 
900723 IRQ KUW 122

where 900723 is the date of the event, IRQ is a standard code for Iraq, KUW is the code 
for Kuwait, and 122 is the assigned category.

The first item is usually the date of reporting – though TABARI allows this date to be 
shifted by the text itself. For example, if the report contained the words week ago, it is 
possible to recognize this compound tokens as time shifting event and change the date of 
reporting accordingly. This facility, and the presence of dates in general, is important for 
time-series analysis.

The most important part of the event record is the group of the last three elements which 
could be freely described as actor-act-object triad. The sources as well as the targets are the 
political entities, such as states, leaders, political parties and similar. The verb then 
corresponds to the event, the relation between the source and the target. 

TABARI is specifically designed to process short news summaries, usually only the lead 
sentence of such summaries.  This detail is not without significance as other similar 
systems are designed to work on portions or the whole texts. TABARI, however, employs 
shallow parsing procedures which would fail in many other circumstances, but work well 
for news wires. Specifically because the journalistic practice dictates that the lead 
sentences contain the essence of the whole article, in a condensed, and rather predictable 
form – the source data thus follows certain patterns and grammatical complexities are 
limited. This allows TABARI to extract event data with a relative high accuracy. The 
studies comparing the accuracy of the predecessor of TABARI, KEDS against the human 
encoded data (using the same coding scheme) showed on average a correlation of .80 in the 
reporting of dyads (source-target elements), and on average .92 correlation in identification 
of actors (see Illustration 7 (Schrodt and Gerner n.d., Chpt 2, p. 17)).

61



IV. SOFTWARE FOR CONTENT ANALYSIS

IV.2.2   How TABARI works
TABARI uses a system of syntactical pattern recognition. This mechanism is written in a 
configuration using special syntax and several dictionaries play an important role:

• Actors: proper nouns that identify the political actors. The dictionary is  used for 
naming targets as well. In the new version (since 0.7), there exists also a dictionary 
of agents and it lists the possible qualifiers of the actors, such as prime 
minister of.

• Verbs: for TABARI the verb is the most important part of a sentence and is used for 
identification of the event and assignment of the event code to the final dyad18. The 
elaborate system of phrase patterns phrases can be specified inside this dictionary. 
Phrases are then used to distinguish different meanings of a verb – for example 
PROMISED TO SEND TROOPS has a different meaning than PROMISED TO 
CONSIDER PROPOSAL and will be classified using different event codes. The 
dictionary of phrases also provides syntactic information on the location of the 
source and target within the sentence.

18 By dyad it is meant the couple of involved entities, a source-target relation. The dyad in this sense is 
effectively the same as 'predicate' in logic or 'triple' in the parlance of the semantic web.
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Illustration 7: Correlation between computer and hand coded data, in the case of first  
column, the same scheme (WEIS) was used. In the case of the second column, the different  
coding schemes are used and therefore there is an additional level of discrepancy.
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As a general-purpose coding system, TABARI lets users define its operational rules, or at 
least change them considerably by simple rewriting of the dictionary – unlike General 
Inquirer, where the disambiguation rules cannot be changed. All of TABARI's files are 
stored externally as simple ASCII (“text”) files and can be edited using a word processor. 
Certain parts of the dictionary, the verbs and actors, as well as their associated codes, can 
also be interactively edited using the dialog, command-line interface. The editing routine 
also keeps track of the coder who added each phrase to the dictionary and the date the 
phrase was added. To illustrate the work of the TABARI system, we can consider this 
example from the demo actors dictionary.

AL_GORE  [USA] ;  pas 26 apr 03  TEXT-02
ALBRIGHT  [USAGOV 930206-010114] [---] ;ems 02 Feb 2001
ALBRJGHT  [USAGOV <010114] [---] ;ems 02 Feb 2001
ALBRKGHT  [USAGOV 930206-010114] [---] ;ems 02 Feb 2001
AMROTH_TANKS  [AMRTNK]
ANORIEN  [GON]
ARAGORN  [RNG]
ARGENTIN  [ARG]

And the verbs dictionary:

ABANDON  [345] ;pas 15 Jul 2003
- * EFFORT  [987] ;pas 15 Jul 2003
ACCORD  [---]
- SUGGESTED_+ * DEMAND_{ GENEVA_ | INTERNATIONAL }_CONVENTIONS 
[111] ; used to test blank padding of {|}
- SUGGESTED_+ * DEMAND_{ GENEVA_ | INTERNATIONAL }_CONVENTIONS 
[222]
- INCHING { CLOSER | NEARER } *  [083] ;tony  4/29/91
- IN_*  [075] ;pas 2 May 2005;  pattern CONNECT-3  7/14/03
- IN_ *  [075A] ;pas 2 May 2005;  pattern CONNECT-3  7/14/03
- IN *  [072] ;pas 2 May 2005;  pattern CONNECT-2  7/14/03
- TO *  [073]

The dictionary is a plain ASCII file, with patterns and special codes. A standard input 
format is used for the dictionaries. Words are entered in upper case; codes for actors and 
events are enclosed in square brackets []. If two words must be consecutive, they are 
connected by an underscore; if the two words are separated by a space, other words can 
intervene. For example, the text “agreed to provide a loan” can be matched by the 
pattern AGREE LOAN but not the pattern AGREED_TO_LOAN (we will describe more 
details about the special syntax later).

The input to TABARI is a file containing a set of sentences, each prefixed with a date  and 
other identifying information, and followed by a blank line. The lines should not exceed 
255 characters limit, otherwise they will be truncated. Each new record is delimited by a 
blank line. The total size of any single text record is limited to a maximum of 2047 
characters. TABARI will also apply number of limitations to filter out malformed texts 
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(using defaults, which may be changed in the configuration file), such as no coding is done 
for sentences with less than 8 tokens, or eliminating words which contain more than 63 
consecutive characters. Here is an example input:

980216 REUT-0001-01 
Egypt's President Hosni Mubarak warned in an interview published 
on Monday that the situation in the Arab world could deteriorate 
if the United States attacks Iraq for failing to comply with 
weapons inspections.

980216 REUT-0002-01 
Iraqi Foreign Minister Mohammed Saeed al-Sahaf said on Monday 
that he was going to Paris only to take a message from President 
Saddam Hussein to French President Jacques Chirac about Baghdad's 
showdown with the United States.

980216 REUT-0003-01 
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Illustration 8: List of types that TABARI recognizes
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Israeli businessmen, Jordanian officials and foreign bankers 
agreed on Monday that the Israeli-Jordanian peace treaty was not 
producing economic dividends quickly enough.

These are the lead-sentences extracted from a newswire service reports (TABARI website 
provides several utitilies for processing of several formats of the major news providers, 
such as Reuters or Factiva). When coding events, TABARI goes through the following 
steps: (Adapted from Schrodt and Gerner n.d., Chpt 2)

1. Word classification

The source text is first converted to a standard form. All letters are changed to capitals  and 
commas are delimited with spaces. TABARI then checks each word in the text to see if it 
occurs in the actor, verb, and agent dictionaries. If the word is found, it is assigned the 
appropriate type (e.g. actor, verb, pronoun, conjunction etc.); otherwise it is designated as 
untyped. TABARI disambiguates verbs that can also be nouns (e.g. ATTACK and FORCE) 
by detecting the presence of the articles A, AN, and THE. It also disambiguates proper 
names that could be verbs by looking at mid-sentence capitalization. Most of the 
subsequent parsing operations deal only with the words that have been classified by type. 
See Illustration 8, on page 64 for the list of all recognized types.

2. Processing local grammatical structures

After the elements are tagged, TABARI will process local grammatical structures. This 
means that actor identities are assigned to common nouns, also pronoun references are 
linked with the nouns, and two actor references are translated to a single actor (e.g. 
Israeli Prime Minister Rabin is reduced to a single reference Israel), 
compound noun phrases are recognized and subordinate phrases delimited by commas 
eliminated. If customized "rules" are used — for example a general rule to deal with the 
English-language passive-voice construction — they are applied at this point (we will see 
details in the section IV.2.3). Sentences that appear too complex for TABARI to process are 
written to a separate file rather than coded.

3. Event coding

The program next attempts to match the patterns associated with each verb in the sentence 
to phrases from the .verbs dictionary. As we mentioned earlier, the verb constitutes the 
crucial element for identification of the event – and also relative to the position of the verb 
the actors and targets of the action are identified. Each phrase is associated with an event 
code. Patterns typically distinguish between direct objects, as in the distinction between 
promised military aid and promised to veto. If a verb phrase 
corresponding to an event is identified, the program finds the source actor and target actor 
associated with the verb. The source is usually the first actor in the sentence; the target is 
usually the first actor following the verb, provided that actor has a code distinct from the 
code of the source. If no such actor is found, the program then looks for an actor prior to 
the verb that has a code distinct from the code of the source. If the source or target are 
compound phrases, these are expanded into multiple events. Only the first verb 
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corresponding to an event is coded, unless the sentence is compound (i.e. contains a 
conjunction not associated with a compound actor), in which case each clause of the 
compound sentence is checked for an event.

4. Information output

Following the coding phase (and if TABARI is used in the interactive mode) the main 
display will show the source text along with its date and identification number, the coded 
events and some summary statistics. The main display can also show the parts of speech 
assigned to various words (if configured and supported by the terminal): actors are shown 
in red, verbs in blue, agents in green, pronouns are replaced with their references and text 
eliminated by subordinate phrases or null codes is shown crossed-out. This display is useful 
for quick overview of the text results and refinement of the dictionary. This dictionary 
development mode is a powerful feature of TABARI because it allows for making 
interactive changes in rules of coding with results being immediately visible after recoding 
(which is usally very fast). The whole editing is controlled by a keyboard shortcuts, there is 
no graphical interface, all operations happen in the terminal window.

In the non-interactive mode the extracted events are simply written to an output file. The 
coded output can be formatted in a variety of ways, including tab-delimited formats for use 
in database, spreadsheet or statistics programs.

The default event output format is:
<date> \t <source code> \t <target code> \t <event> \t <label> 

where \t is the tab character. Additional information can be added by TABARI if configured 
to do so. Example output: 

040401 ISRSET ISRGOV 220 (FORCE) FORCED 
040401 USAGOV ISRGOV 031 (MEET) HOLD MEETINGS 4.4. EVENT FILE 43 
040401 ISRGOV USAGOV 031 (MEET) HOLD MEETINGS 
040401 JOR SYR 121 (CRITICIZE) SUSPECTS 
040401 PALGAZ PAL 094 (CALL FOR) CALLING ON 
040401 USAGOV ISR 042 (ENDORSE) ENCOURAGED 
040401 BEL NTH 023 (NEUTRAL COMMENT) SAID 
040401 SYR USAGOV 171 (UNSPECIF THREAT) STRAINED
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TABARI provides also the statistics on the number of recognized entities from each of the 
dictionary, for example the following list shows the entities from the actors dictionary that 
were recognized during the coding:

0 ARAGORN 
0 ARGENTIN 
13 ARNOR 
0 ATHENS 
0 AXNOR 
1 BARAD_DUR 
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Illustration 9: An example coding of the diplomatic communication in the 'Kingdom of  
the Ring', TABARI allows for very quick edits and recoding of the whole corpus
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TABARI does not contain any statistical procedures for evaluation of the data, it only 
writes the cummulative category frequencies. This output effectively contains only 
nominal-level data (categorical), event series must be aggregated to produce a numerical 
(interval) values suitable for import into the standard statistical programs. There is a special 
program called KEDS_count used for such purposes. It can produce any CSV separated 
values and aggregate them into a given output. This utility is very generic and might be 
used by other projects. It is flexible and allows for a range of output scenarios. The 
example output is shown in Illustration 10, below.

IV.2.3   Pattern matching
TABARI relies on sparse parsing of sentences – rather than using full syntactical analysis. 
It will identify actors (mostly proper nouns and possible compound proper nouns) in the 
vicinity of which the verbs are found, and with help of the verb, the direct objects within 
the verb phrase are found – or, in the case of passive voice, the entities are swapped at the 
position of the direct object with the actor. The source of the event is equal to the subject of 
the sentence, event code is equal to the verb, and the object of the verb is the target. In the 
old version of KEDS, the success of such a mechanism largely depended on the form of the 
sentences available for coding because KEDS concentrated on a traditional (at least for 
English) Subject-Verb-Object structure (SVO). This pattern is very common in the lead 
sentences and can used reliably, nevertheless authors of the system were still finding a lot 
of cases where the default parsing could not deal with a relatively simple, but frequent 
cases. Thus a new system of pattern matching was invented.

This mechanism distinguishes TABARI from all other systems, making it a very flexible 
and powerful tool. The possibility to provide your own patterns is very important, even if 
authors say that the differences in accuracy between the old and new versions are not big 
(see Illustration 11, below), certainly thanks to the classical SVO structure of the English 
sentences, which also KEDS handled well. Nevertheless, the patterns are a new and 
powerful feature that deserves separate discussion.
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Illustration 10: Example of the aggregation of the categorical scoring scheme (WEIS)  
into the numerical values coding Scheme (Goldstein)
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When identifying phrases, TABARI looks at the clause – usually the parsing stops when a 
conjunction or comma is encountered. By default, TABARI checks for standard regular 
suffixes (-s, -es, -ed, -en, -ing) and the stemming is also activated, for example the basic 
entry of a verb
KILL

Would match also
KILLS
KILLED
KILLING

However the following form would restrict the match only to the basic form:
KILL_

To define a more complex pattern, TABARI uses the following codes:
*   substitution character for the lead verb
-   wildcard meaning 'any group of tokens'
--- null code tells the system NOT to ignore the event 
$   to mark the position of the source
+   to mark position of the actor
%   to mark an entity that is both an actor and the target
^   (caret) symbol instructs TABARI to skip some entity (not to 
use it)

And the software has also the following possibilities for partial matches (wild-card 
endings) and their consecutive placement:

XXXX YYYY XXXX can partially match, YYYY does not 
need to follow immediately

XXXX~_YYYY XXXX can partially match, YYYY must follow 
immediately
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Illustration 11: Comparison of KEDS and TABARI system on a  
large corpus of Levant Data.
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XXXX_ YYYY XXXX must match exactly, YYYY does not need 
to follow immediately

XXXX_YYYY XXXX must match exactly, YYYY must follow 
immediately

{X|Y|Z} X is synonymous with Y and Z

It is a simple but flexible set of patterns for definition of complex rules. Moreover, the 
patterns seem minimalistic but it is clear they stem from real world extraction tasks. The 
following examples illustrate how the patterns are used.19

BREAK_ [1717]
{BROKE_ BROKEN_}
- * TREATY [161]
_ * BONE [182]

This pattern would match: BREAK A TREATY, BROKE BONES and similar,  but it 
would NOT match BREAKS TREATY. 

Another example:

ATTACK [122]
- * CRITICISM OF [042]
- *_HELICOPTERS [- - -]
...
POUND [223]

- BRITISH_* [- - -]

Will force TABARI to ignore the event where ATTACK HELICOPTERS are used, as well 
as BRITISH POUND or BRITISH POUNDS because the category code is empty [---]. 
At the same time, it will allow for coding of ATTACKED CRITICISM OF as well as 
ATTACKED FIERCELY CRITICISM OF because by default, TABARI skips 
intermediate consecutive words.

To write:
- * BACK~_POLICY [062]

Means that the form BACK can have a wild-card ending, but it must be followed 
immediately by POLICY, such as BACKS POLICY, BACKED POLICY, BACK 
POLICY but not BACKED ANOTHER POLICY

Phrases can specify also the location of the source and target by using the tokens $ and +:

ADVISE
- +_WAS_*_BY_$

would recognize the following:

19 Interesting is the fact that the former version, KEDS, also allowed very complex patterns, but using 
different rules and syntax. Worth mentioning is the fact that the current system is much simpler.
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Egypt was advised by the United States

In this example, the actor locations are used to reverse the default matching rules for 
identification of the source and target when a verb phrase is in passive voice. 

The pattern matching mechanism is indeed a powerful way to define complex processing 
of the phrases – it is not used strictly to construct formal parsing grammars, perhaps 
because TABARI is used mostly by social scientists and they would find it too difficult to 
use such tool. But the patterns remain simple and clear, it is tangible that the authors of the 
system did not want to burden the work of analysts with too many rules, yet felt the 
available subset is sufficient enough for all their needs.20 

IV.2.4   Dictionary

The coding system that was used in TABARI by its creators, is derived from the World 
Event/Interaction Survey (WEIS) (McClelland 1999) which was one of the prevalent 
coding schemes for the political events data, together with another coding scheme 
COPDAB (Azar 1980) from the early 1970. WEIS and COPDAB coding schemes are 
general and comprehensive, meaning they strive to cover every possible area in the domain 
of analysis. But of course more specialized coding schemes exist, often invented by 
individual researchers, focusing only on specific correlations or subsets of behaviour and 
TABARI was successfully used with them. (For a detailed bibliography of the dictionary 
developments, see Schrodt and Gerner n.d., 13) 

While the COPDAB coding system was maintained and expanded by the GEDS project 
(http://www.bsos.umd.edu/cidcm/geds/), WEIS continued to be the most widely employed 
coding scheme, even if often extended to provide greater detail in the coding of domestic 
conflict events. The most notable of these WEIS extensions was done by the Protocol for 
the Analysis of Nonviolent Direct Action (PANDA) project at Harvard in the mid-1990s 
(http://data.fas.harvard.edu/cfia/pnscs/panda.htm), which produced a global, Reuters based 
event data set covering 1984 through early 1995. To accommodate domestic events, 
PANDA more than doubled the number of WEIS categories, while providing a systematic 
table for translating PANDA codes to WEIS codes. More recently, this effort has been 
extended to the IDEA coding system, which is designed to be used in the edition of the 
World Handbook.21 

The TABARI authors followed suit and developed their new coding scheme called 
CAMEO -- Conflict and Mediation Event Observations, which borrows from IDEA and 
offers several new features compared to WEIS:

• New tertiary sub-categories specific to conflict mediation

20 The TABARI codebook manual contains almost 20 pages of examples of the pattern matching rules.

21 IDEA can be found at: http://www.vranet.com/idea/
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• Substantially expanded the categories for "use of force" which allows for finer 
granularity in distinguishing levels of violence

• Number of WEIS categories that, in the experience of TABARI authors, could 
not have been reliably differentiated in machine coding were removed

• A new systematic hierarchical coding scheme for substate actors 

This development shows how important role the coding scheme plays. For example 
datasets produced using the VRA coder are available (King 2003) but not the coding 
scheme itself.22 Also in the case of TABARI, the coding scheme is not available for 
download – even if the WEIS categories are available on the site. The coding scheme 
represent the substantial investment23, as we could guess from the description of the older 
KEDS framework:

The KEDS dictionaries we have used to code international events in the Middle East 
contain about 650 actors and 3500 verb phrases. The PANDA project used slightly 
larger dictionaries: 880 actors, 4300 verb phrases and 200 agents. Earlier work ... on 
automated processing of English-language reports of political violence indicated that 
dictionaries on the order of 5,000 phrases are necessary for relatively complete 
discrimination between political events, so these KEDS-compatible dictionaries are 
probably close to having a relatively complete vocabulary. Despite the fact that 
PANDA is coding the entire world while the Kansas project codes only the Middle 
East, the actor dictionaries are about the same size because a fairly complete list of 
actors is required to identify potential targets of events. Dictionaries for coding 
internal events are somewhat larger, although the number of additional phrases 
required is usually in the tens or hundreds, not the thousands. (Schrodt and Gerner 
n.d., 46)

IV.2.5   Concluding remarks
TABARI is one of the systems for the extraction of even data – and perhaps the only open-
source available for more than a decade. While it has been available for many years, it is 
interesting to see that it took many years for analysts to adopt the new paradigm of content 
analysis. A few reasons are discussed by (Laurance 1990), such as low sensitivity to 
detection of certain events, distrust of humans for early automated methods of quantitative 
content analysis and also the technical problems together with low level of user friendliness 
of the packages.

We find the similar account also in the paper by Schrodt that summarizes the history of 
TABARI (Schrodt 2006, 5, emphasis added):

TABARI is generally stable and has been used intensively in a number of projects at 
the University of Kansas Center for International Political Analysis over the past five 
years. We have periodically added some additional specialized features at the request 

22 Albeit online coding manual can be found at: 

23 Or in other words: the real “knowledge bottleneck” of knowledge representation systems.
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of external funders, and are slowly eliminating a few remaining quirks, but for the 
most part are no longer doing active development. Instead, we are producing data 
sets, which was the reason we got into this project in the first place. Fifteen years 
ago.

The TABARI system is successful and as the citation shows, the authors do not feel pressed 
for addition of new features. For the type of analysis that TABARI does, especially with the 
existence of the powerful pattern matching, the system is able to adapt to new 
requirements. However, it still remains focused on the limited set of the content matter 
(news clippings) and lacks sophisticated features. Schrodt discussed them in several places 
(For detailed treatment see: Schrodt and Gerner n.d., Chpt 2, 5), to finally conclude that 
TABARI would need considerable redesign to take advantage of the new capabilities such 
as assignment of parts-of-speech, resolution of ambiguities, full sentence parsing, and 
larger repertoire of sentence forms – all these elements could improve the already high 
accuracy of the system, but it would also require a lot of changes. Therefore the system 
does not include them now and probably will not have them even in the future either.

IV.3   YOSHIKODER

Yoshikoder is another tool for content analysis. It was developed by Will Lowe for the 
Identity project at Harvard university24 and released as open source in 2006. It is written 
completely in Java. Therefore it can, unlike the previous tools, run on any major operating 
system and is also not limited to the ASCII input. And as it was designed 16 years after 
TABARI, it also contains an intuitive graphical user interface. 

While at the time when Yoshikoder was developed there already existed many tools for 
content analysis (the commercial ones also provided a graphical interfaces and many 
advanced functions), it is an interesting fact that Will Lowe, author of the software, felt the 
need to develop this new tool. It is even more interesting if we know that Lowe 
collaborated on many projects that generated content analysis data (King and Lowe 2003; 
Lowe 2003, 2008, n.d.) and he must have known the field very well.

Nevertheless, something was missing. 1) Firstly, data produced by other tools were not 
transparent. Before release of Yoshikoder, only TABARI was available as an open-source 
software and for the other content analysis tools it was not clear what algorithms they used 
and how the data was aggregated. 2) Another reason was economic; Yoshikoder can 
provide services comparable to those of commercial tools at much lower costs. 

The Yoshikoder is designed to help non-technical social scientists perform classical 
content analyses on text in arbitrary languages. Using the Yoshikoder helps support 
the replication standard and annoys people who sell similar functionality in 
proprietary packages, but it is also part of a larger project to unify, standardize, and 
disseminate the theory and technology of content analysis.(Lowe n.d.)

24 http://www.wcfia.harvard.edu/conferences/04_initiative_identity/overview [Accessed: 24-7-2011]
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IV.3.1   What Yoshikoder does
The basic functionality of Yoshikoder is in statistics, simple counts of words – i.e. counts of 
tokens that were found in the documents, either in absolute frequencies or proportionally 
relative to the document size. More interesting functionality is the reporting of the category 
counts of the coding scheme. The basic dictionary report counts dictionary matches in all 
the currently selected documents and can display totals for the categories, as well as for 
individual matching patterns. In the first column, the name of dictionary entry is shown as 
a path. The second tab shows the same information normalized for document length, as a 
proportion of words in each documents (see Illustration 12 above).

Yoshikoder also produces concordance reports, that lists all the matched patterns together 
with their local context for quick visual debugging of the patterns. And also a specific 
report for comparative purposes. Yoshikoder can compare two documents based on the 
frequencies of their categories matches by computing the relative risk ratio and also the 
confidence interval for the obtained values (the details will be described later).
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As is standard with content analysis programs, data can be exported in a variety of formats 
and analyzed with more powerful statistical tools.
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Illustration 14: Unified Frequency Report for two documents

Illustration 13: The interface to Yoshikoder with the visible dictionary tree and the  
highlighted matches and the concordance report at the bottom.
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IV.3.2   How Yoshikoder works
Yoshikoder works with the hierarchical dictionaries, it recognizes the terminal nodes as 
patterns and inserts them into categories, the categories are the parental nodes in the 
dictionary.

Categories represent concepts and the patterns within them represent their indicators that 
can be observed in text. The GUI allows editing the dictionary entries directly from inside 
Yoshikoder. Adding category/pattern, removing, dictionary changes are thus very simple 
and intuitive. It is immediately visible, whether the new pattern matches portions of texts.  
Dictionary entries are displayed as a tree, with patterns nested under the categories that 
contain them. It is also possible to rearrange entries just by dragging and dropping them 
within the tree. Since categories often have hierarchical structure they can be nested in 
other categories. 

Pattern matching is simple; the wildcard character '*' allows matching of any sequence of 
characters (zero or more than one characters). Behind the scenes, Yoshikoder converts the 
pattern into a regular expression pattern and uses it in searches. Pattern entries thus allows 
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Illustration 15: Graphical view of the dictionary inside Yoshikoder and also the xml structure of the data
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the matching of single words or sequences of words.25 For example: chin matches the 
word chin but not the words chinese or cochin, chin* will match chin and 
china, but not cochin, and *chin will match chin and cochin but not china. The 
wildcard character can be applied in any part of the pattern name, any number of times. For 
example, ch*n* will match china, chan and chinese.

Categories may also have a description, and the patterns can have associated scores. For 
example if the dictionary contains a category Sexual abuse and inside the category, 
there are several patterns such as molest*, rape*, sexual assault*, each of these 
patterns may have a different weight associated with them, if say molestation was 
being seen as more serious than rape (for the given study) the score of rape* may be 
offset accordingly. The scores of the matched patterns will contribute to the overall score of 
the parent category. 

Assuming that rape has a score of 1.5, and molestation 2 and sexual assault has no score. 
Molestation occurs 10 times, rape 3 times, sexual assault 1 time. If sexual assault has not 
been assigned a score then the dictionary report will assign the score of 1 (1 x 1) and rape 
4.5 (3 x 1.5) and molestation 20 (10 x 2). If, in addition, molestation is assigned the score 
-1, the report will assign sexual assault 1 and rape 4.5 as before, and molestation will be 
assigned -10 (10 x -1). This method of scoring allows to distinguish between an analysis 
where patterns are separately scored, and one where all the patterns in a category are 
treated as exchangeable.

As mentioned before, Yoshikoder allows for testing of differences between documents 
using the risk ratio. 

RR=
p

Exposed

p
NonExposed

For example, if two documents A and B are compared using a dictionary containing a 
category positive that represents positive language, then the relative risk for A and B is how 
much more (or less) likely it is to see a positive word in A than in B, expressed as a ratio. If 
A contains 100 words, 10 of which are positive and B contains 200 words, 15 of which are 
positive, then the risk ratio for the category positive is 10/100 = 0.1 (the probability of 
seeing a positive word in A), divided by 15/200 = 0.075 (the probability of seeing a 
positive word in B). 0.1/0.075 is approximately 1.333, implying that it is about 33 percent 
more likely to see a positive word in A than in B.

RR=10 /100

15 /200

Yoshikoder also computes a .95 confidence interval around this estimate. The interval 
indicates whether the ratio is significantly different from a ratio of 1 (1 in this case meaning 
that there is no true difference in proportions), by applying:

CI=log RR ±SE∗z
alpha

25 In the tested version (0.6.3-preview3) the multi token pattern matching does not work. At least not for 
patterns like 'Peop* of Burma' or 'peopl* Burma' or simple 'people of'.

77



IV. SOFTWARE FOR CONTENT ANALYSIS

The standard score which Yoshikoder is using is 1.96, therefore it computes the interval on 
the 0.95 significance level. When a category does not appear in one of the documents the 
relative risk is reported as plus or minus infinity and no confidence interval is provided. If 
the category does not occur in either document then no estimate is provided. If the category 
relative frequencies are outside the bounds of the interval, the category count is marked as 
statistically significant difference.

IV.3.3   Concluding remarks
Yoshikoder is a simple, but a very intuitive application. It does not contain sophisticated 
parsing rules as the software mentioned so far and neither any NLP processing routines, but 
it has the infrastructure that allows to plug in different processing resources - for example, 
plugins for segmenting text for some non-latin languages, notably Chinese. It contains a 
graphical user interface and does not suffer from some limitations that seem very odd in the 
current circumstances – for example TABARI can process only ASCII text, lines must have 
certain size, otherwise be truncated – Yoshikoder on the other hand can work with texts 
written in any encoding and both in the server as well as workstation mode.

Author of the program clearly felt a need to develop such a tool, and as he says, it is also a 
way to promote content analysis standards. Lowe also maintains dictionary resources 
converted into the xml format suitable for import into the Yoshikoder.26 As an example, it 
shows that even a rather simple processing software is still useful to the CA community 
and that the certain commercial software packages may be overpriced.

IV.4   SEMAN
SEMAN was created to test the possibilities of the USL, but it is also a tool for content 
analysis so we can describe it as such. However, the idea and also the name SEMAN 
comes from the previous work of Vladimir Smetacek. There existed a version of the 
program which was built and used in 80s for automatic keywording27 of abstracts on the 
metallurgic databases in the former centre of information industry of Czechoslovak 
republic. This version was programmed for the mainframe computers and is not available 
any more, being long forgotten and non-functional. Vladimir Smetacek attempted to revive 
the idea of SEMAN several times in the past years, but it was only this reincarnation of the 
system that contains the components of a fully functional system. 

26 See: http://www.yoshikoder.org/resources.html

27 But as an interesting conincidence, we can compare functionality of SEMAN against a similar tool which 
is used at the Centre for High-Energy Physics (CERN) for similar purposes. Based on the dictionary, it 
extracts (recommends) keywords that should be used for the bibliographic records.
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SEMAN is written in Python, but certain heavy-duty components are built using Java and 
C++. However, all the components are fully controlled from Python28 and can be executed 
on any modern operating system. It is run routinely on Windows, Linux and MacOs X. 
SEMAN supports unicode and is therefore able to process texts written in any encoding. It 
can run both in a graphical user mode, and also on the server in the console mode and was 
released as open-source. The motivation is similar to that of Will Lowe, the creator the 
Yoshikoder – to make the procedure of content analysis more transparent and also the tools 
affordable. The following sections display the internals of the system, and in the following 
chapter we will evaluate SEMAN performance and capabilities on several corpora.

For the purposes of description, we will follow a default pipeline of processing set of 
documents that consists of 3 steps:

1. NLP pre-processing

2. Translation into the semantic codes

3. Analysis and export of the results

IV.4.1   NLP pre-processing
Certain tasks are better handled by components that are specialised for it, SEMAN was 
therefore designed to take maximum advantage of the existing research and to separate the 
processing into disparate layers. The delegation of tasks onto other libraries is especially 
the case of the NLP processing operations, the topic of the following section.

In the current state, SEMAN is using two NLP frameworks – GATE and NLTK.29 GATE 
(Cunningham, Maynard, Bontcheva, and Tablan 2002) is architecture, framework and 
development environment for LE (Language Engineering) written in Java. It is a very 
robust platform actively developed since the mid-1990s and used in many projects, 
especially for text engineering.30 The GATE framework comprises a core library and a set 
of reusable LE modules, ranging from the document format conversion, POS tagging, 
sentence parsing to machine learning algorithms, neural networks or visual annotation 
tools.  

28 Communication between the Java and Python components is made possible using the standard Java 
Native Interface (JNI). JCC – an automated code generator –  produces a C++ object interface wrapping  
of Java libraries via Java Native Interface (JNI) that conform to Python C type system, which means that  
Java processes are directly available to the Python interpreter. When generating Python wrappers, JCC 
produces a complete Python extension module. SEMAN thus retains the ease of use of the Python 
language and its fast prototyping and friendliness of the dynamically compiled scripting language, but 
JCC allows us to offer very powerful and complex processing of the native NLP and information retrieval 
toolkits without sacrificing quality.

29 Though it is possible to include another NLP framework – UIMA, indirectly through GATE.

30 GATE version 1 was written in the mid-1990s; in 2000 completely rewritten in Java; at the time of this 
writing in version 6.5.
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The framework implements the architecture and provides (amongst other things) facilities 
for processing and visualising resources, including representation, import and export of 
data. The components can be freely combined into processing workflows. SEMAN is able 
to execute any non-visual GATE workflow and to my knowledge, it is the only system that 
allows this kind of operation from inside Python. This flexibility is used by SEMAN itself 
as any type of non-visual31 workflow can be prepared in GATE and executed by SEMAN.

Of a special importance is a component called ANNIE (A Nearly-New Information 
Extraction System) which was for the information extraction tasks. Information extraction 
is a subfield of computational linguistics concerned with a constrained form of natural 
language understanding - only prespecified information is acquired from textual data.32 In 
the extraction, the machine attempts to discover what is relevant inside the document.
(Cunningham 2005; King and Lowe 2003)

ANNIE consists of the following main processing resources: tokeniser, sentence 
splitter, POS tagger, gazetteer, finite state transducer (based on GATE’s built-in 
regular expressions over annotations language ...), orthomatcher and coreference 
resolver. The resources communicate via GATE’s annotation API, which is a directed 
graph of arcs bearing arbitrary feature/value data, and nodes rooting this data into 
document content (in this case text).(Cunningham, Maynard, Bontcheva, and Tablan 
2002)

In the default workflow, the usual processing of a document follows these steps:

31 I.e. workflow that does not use GATE's display components.

32 For a review of IE field, see (Turmo, Ageno, and Català 2006)
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Illustration 16: General overview of GATE, the red area indicates the area of components which  
can be currently used by by SEMAN.
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1. Document is converted from its original format (pdf, doc, html...) into a xml 
representation (GATE, as shown in Fig. 16 above)

2. Resulting GATE document is processed by ANNIE (based on the configuration, the 
default workflow will be described below)

3. Results are exported as XML with inline annotations

4. SEMAN reads in the xml produced by GATE and creates a collection of tokens

5. This collection is translated by SEMAN (depending on the currently configured 
workflow – will be described later)

6. Results are then summarized and exported/saved

The following chart illustrates the first pre-processing stage. GATE converts a document 
from its original format into an internal data structure.

The tokeniser splits text into simple tokens, such as numbers, punctuation, symbols, and 
words of different types (e.g. with an initial capital, all upper case, etc.). The aim is to limit  
the work of the tokeniser to maximise efficiency, and enable greater flexibility by placing 
the burden of analysis on the grammars. This means that the tokeniser does not need to be 
modified for different applications or text types.

The sentence splitter is a cascade of finite state transducers which segments the text into 
sentences. This module is required for the tagger. Both the splitter and tagger are domain 
and application independent.
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Illustration 17: Components of the ANNIE subsystem and the flow of a document.
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The tagger produces a part-of-speech tag as an annotation on each word or symbol. 
Neither the splitter nor the tagger are a mandatory part of the NE system, but the 
annotations they produce can be used by the grammar (described below), in order to 
increase its power and coverage.

The gazetteer consists of lists such as cities, organisations, days of the week, etc and it 
enriches the tokens. It not only consists of entities, but also of names of useful indicators, 
such as typical company designators (e.g. ‘Ltd.’), titles, etc. The gazetteer lists are 
compiled into finite state machines, which can match text tokens.

The semantic tagger consists of handcrafted rules written in the JAPE (Java Annotations 
Pattern Engine) language which describe patterns to match and annotations to be created as 
a result. JAPE is a version of CPSL (Common Pattern Specification Language) which 
provides finite state transduction over annotations based on regular expressions. A JAPE 
grammar consists of a set of phases, each of which consists of a set of pattern/action rules, 
and which run sequentially. Patterns can be specified by describing a specific text string, or 
annotations previously created by modules such as the tokeniser, gazetteer, or document 
format analysis. Rule prioritisation (if activated) prevents multiple assignment of 
annotations to the same text string.33

An example of such a rule for matching $20, $20 USD, CZK 30.5 is:
Rule:

MoneyCurrencyUnit
  (        
      (AMOUNT_NUMBER)
      ({Lookup.majorType == currency_unit})
  )
:number -->
  :number.Money = {kind = "number", rule = "MoneyCurrencyUnit"}

Rule:

MoneySymbolUnit
(   
 ({Token.symbolkind == currency}|
  {Lookup.majorType == currency_unit})
 (AMOUNT_NUMBER)
 (
  {Lookup.majorType == currency_unit}
 )?
) 
:number 
 -->
  :number.Money = {kind = "number", rule = "MoneySymbolUnit"}

The orthomatcher is another optional module for the IE system. Its primary objective is to 
perform co-reference, or entity tracking, by recognising relations between entities. It also 
has a secondary role in improving named entity recognition by assigning annotations to 
previously unclassified names, based on relations with existing entities.

The GATE document is finally converted to XML with inline annotations and passed to 
SEMAN. All tokens and annotations (or their subsets) are converted into the Python data 
structure and made available for further processing that will be described later. 

33 Detailed documentation of the rules is available at: http://gate.ac.uk/sale/tao/splitch8.html

82



IV. SOFTWARE FOR CONTENT ANALYSIS

As was said earlier, the user has a lot of flexibility in the configuration of the previous 
steps. For SEMAN, this pre-processing stage is completely optional, it is also possible to 
use Python Natural Language Processing Toolkit, or ignore any advanced NLP processing 
altogether. If there is no dedicated layer, SEMAN input capabilities will be roughly 
equivalent to the capabilities of the already mentioned content-analysis tools. With the 
dedicated layer, SEMAN is superior in many aspects. Such superiority is however paid 
with the number of resources needed, and we will explore different scenarios in the 
following chapters – using dedicated NLP processing, only certain parts, different NLP 
engine or no NLP processing at all.

IV.4.2   Translation into semantic codes
The core task of SEMAN is to find indicators in the text, translate them into the correct 
USL codes, store such codes and analyse and export them for further processing. This 
chapter will describe the matching algorithm, the following sections will explain more 
about dictionary maintenance and document storage facilities.

As discussed previously, there are three main components of the dictionary entries:

1. prefixes

2. radixes

3. suffixes

The algorithm used for matching tokens is a simplified version of a morphological 
analysis. Simplified, because we can use the results of the NLP pre-processing and for the 
cases where the languages exhibit more complex problems than this algorithm can handle, 
we can first parse lexemes using the appropriate morphological tagger for the given 
language (if available, either in GATE, UIMA or NLTK), and obtain the basic lemmas 
together with POS information.

When identifying the pattern, SEMAN first constructs the possible prefix-radix-suffix 
combinations for the given token, and from these candidates selects the one which is 
considered best – the default functionality simply selects the longest matching radix. The 
matching with longest radix can be made sufficiently unambiguous if the dictionary is 
constructed properly, as results of the experiments show, see V.1 The pattern matching
mechanism, p. 115. But in most cases the default behaviour is sufficient and it is easy to 
rectify parsing exceptions by changing the dictionary, for example by listing the full form 
of words, or selecting the correct translation based on the contextual information (for 
example using appropriate POS tag). 

Translation of the individual token uses the following algorithm:

# try to match directly
direct_lookup_indexes = get_indexes(language)
for index in direct_lookup_indexes:
    if index.has(token_value) 
        and callback_check_lookup(token, index.get(token_value)):
            update_token(token, features to save...)
            return True
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# no matches found using lookup methods of the indexes implementations
prefixes = self.getPrefixes(language)
suffixes = self.getSuffixes(language)

# try to find prefix-radix-combinations
suffix_candidates = find_matching_suffixes(token_value, suffixes)
prefix_candidates = find_matching_prefixes(token_value, suffixes)

if len(suffix_candidates) > 0 or len(prefix_candidates) > 0:
    possible_matches = []

    radixes = self.getRadixes(language)

    if len(suffix_candidates):
        #we start with suffixes
        for (suffix_candidate, suffix_entry) in suffix_candidates: 
            slength = len(suffix_candidate)
            word = token_value[0:-slength] #strip-off suffix
            for (prefix_candidate, prefix_entry) in prefix_candidates:
                plength = len(prefix_candidate)
                root = word[plength:] #strip-off prefix
                #and see if the resulting quasi-lemma is in our dictionary
                if root in radixes: 
                    possible_matches.append(prefix_candidate, 
                        root, 
                        suffix_candidate, 
                        sem=[prefix_entry, radixes[root], suffix_entry] )
            else: # if we do not have prefix
                #we search in dict of radixes
                if word in radixes: 
                    possible_matches.append(
                        prefix_candidate, 
                        root, 
                        suffix_candidate, 
                        sem=[None, radixes[root], suffix_entry] )
    else: # no suffixes
        for (prefix_candidate, prefix_entry) in prefix_candidates:
            plength = len(prefix_candidate)
            w = token_value[plength:] #strip-off prefix
            if w in radixes:
                possible_matches.append(
                                prefix_candidate, 
                                root, 
                                suffix_candidate, 
                                sem=[prefix_entry, radixes[root], None] )

    if len(possible_matches) == 0:
        record_failure(token)
    else:
        features_to_save = select_the_best_match(token, possible_matches)
        update_token(token, features_to_save)

As an example, given the following dictionary entries:
esq revol = abc dde
esq french revol = abc dde fra 

and this set of suffixes and prefixes:
ess ution = 0
ess utionary = 0
esp pre = 0
esp contra = xui

The following patterns will be recognized (codes assigned):
revolution = abc dde 0
revolutionary = abc dde 0
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prerevolutionary = 0 abc dde
contrarevolution = xui abc dde

However, because the dictionary is very simple, these tokens will not be recognised:
revolutions, contra-revolution, contra-revolutions,...

In order to match these tokens, the dictionary must be enhanced by additional suffixes – or 
list the full patterns in the dictionary. But listing the full form of the token(s) is 
cumbersome and recommended only for exception handling. For example we would like to 
count tokens pressure, that stand at the position of a noun, but we do not want to use the 
POS tokenizer because it slows down the processing or because we are processing a corpus 
of documents from a very limited domain where the ambiguity is limited. If for the purpose 
of our application, these requirements are sufficient, we can use the following entries:
hsq pressur = code1 code2 code3
hsq pressures = XXX #entry will be ignored

Application of this rule on the corpus of HEP papers (full details available in the next 
chapter) yield correct results, the first entry matches the following word forms: pressure 
(1049), Pressure (18), pressurized (3), pressures (61), 
PRESSURE (2) – while the second entry filters out the considerable number of matches 
of the form: Pressures (1), PRESSURES (2), pressures (61). As to the 
rest, such a simple mechanism of negative exceptions is used for TABARI and authors 
report that it is responsible for dealing with the most frequent cases of ambiguity, roughly 
75% of the ambiguous cases (Schrodt 2009, 7-8) However in the case of SEMAN this 
strategy would not be as successful if we work with individual words only.

SEMAN is of course able to recognize not only individual tokens, but also groups of 
tokens, provided they follow in sequence or dedicated post-processing is activated. For 
example, this dictionary entry:

hsq cosmol model = 00mrl
hss ogy = 000
hss ogical = 000
hss s = 000

Will indentify:

cosmological model, cosmological models, cosmology model

But will not match:

models of cosmology, cosmologic model, cosmological modelling

Yet because SEMAN identifies the basic elements of these patterns, it is also possible to 
match the groups of tokens (lookbehind for matches that appeared before the entry, 
lookahead for matches after the entry, or both-directional lookup) - up to certain distance or 
until a boundary is reached. Such an extension is a part of the SEMAN standard toolkit. 
SEMAN can find the groups of tokens, in or out of order. Taking for illustration again the 
High-Energy physics thesaurus, we can find following entries there:

charmonium: mass: calculated
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charmonium: decay constant: calculated

These are composite keywords that signal occurrence of a certain concept. In order to 
identify their presence (and we could do it inside one sentence, or a paragraph) each of the 
components needs to be listed as a single pattern, I.e.

hsq deca constant = ...
hsI charmonium = …
hsI mass = ...
hsq charmonium: deca constant = ...
hsI charmonium: decay constant: calculated = ...
hsI charmonium: decay constant: measured = ...
hsI charmonium: decay modes = ...

Given this definition, and if we set the distance of the tokens to w=5, the following 
sentences would produce the match:

The charmonium decay constant was calculated...
Calculation of the decay constant of charmonium was...

Because internally, SEMAN does not work with words, but USL codes, the group of words 
that read decay constant is identical to group of words with a different reading, such 
as decayed constant(!), decay constants, or deca constants(!). Of 
course, if the dictionary is designed carefully this feature can be used for the benefit of 
better matching. Because semantic codes act as unique identifiers, we can change freely 
the wording (the left-hand side part of the entry). While the pattern matching words will 
change, the combinations remain the same. In fact, the semantic codes are for SEMAN 
more important than the reading of the words – this reverses the standard view of the most 
matching schemes, where people think of the concepts in terms of words. In SEMAN we 
think of concepts in terms of concepts. If we added a new definition:

hsq constant: deca = ...

Provided the right side of the entry remains the same, the following two entries will be for 
SEMAN identical: decay constant, decay is constant. Nothing needs to be 
changed also in the definition of the group of composite tokens and following sentence 
would identify charmonium: decay constant: calculated:

The constant of the decay of charmonium was calculated using...

But SEMAN matches elements in or out of order and it is only possible to limit the 
distance of tokens between each match and the mechanism has its limitations, consider the 
following:

Charmonium and charmed meson decay constants were used in 
calculation of..
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This sentence would produce the same match, but semantically the charmonium 
constant is not calculated, something else was calculated. Therefore this is clearly not 
what we wanted to extract. The simplistic matching of tokens is clearly not capable of 
distinguishing such situations.

For the purposes of content analysis, this was not considered as a main problem as we were 
not interested in interpreting individual sentences correctly. Instead signals are sought in a 
(possibly very large) corpora, therefore certain amount of errors is expected and tolerated. 
However it would be possible to solve also this situation – and in several ways: we could 
change the pattern in the dictionary to further limit the forms of the matched entries, or we 
can use the part-of-speech tagger and ignore matches that are composed of transitive 
passive verbs, but probably the most accurate approach would be to fully parse the 
sentence and identify individual clauses and function of each word. With a high accuracy, 
we could remove the false positive matches. 

While SEMAN does not use the sentence parsing by default, it certainly has this capability, 
however such processing would increase the time needed for analysis so it was not used in 
the experiments. But we did not mention another available mechanism of code callbacks.  
They provide an interesting alternative of how to increase the accuracy of the parsing 
mechanism maintaining the high-speed processing. 

SEMAN internally works with the stream of tokens (to the engine they constitute acyclic 
graph34) and the token object usually corresponds to a word, but it can contain anything 
from a compound word to a sentence. It holds the features, which can be set and retrieved. 
The specificity of the token object is that every token has access to all the other tokens in 
the collection, as they appeared in the text. So that the context can be explored. It is  
possible to write special routines (in Python) and register them as callbacks inside 
SEMAN. For example, for each translation, we can test whether the tokens around the 
translated token have approprite POS tag. These callbacks normally receive only the 
currently processed token, but because the token has access to all of its neighbours – the 
callback can freely change the whole collection. 

In the current version of the SEMAN translation, the following callbacks can be registered:

1. Callbacks that prepare tokens (pre-processing, work mostly with the lexemes):

• tokenize_input: this is a general tokenizer point, it receives a text and should return 
a collection of tokens that will be processed

• check_token: checks individual token and decides if it should be processed or 
ignored

• prepare_token: cleans up the token and prepares it for translation

• find_next_part: when identifying multi-word tokens, this callback receives the 
currently processed token (already translated and only if it was translated), and 
should return the correct next key from the dictionary of multiwords. By applying 

34 If we were processing arabic  languages or Jewish, the processing is no different than latin or other  
languages with left-to-right scripts. The only difference would be in the construction of the dictionary. 
Because the simplified-morphological matching is symmetrical, for right-to-left languages we would have 
to put prefixes at the place of suffixes and vice versa.
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special function, we can effectively match words that are separated by other tokens. 
For example the series of tokens: Primakoff found the effect... can 
be identified as containing one token: Primakoff effect 

• token_merged: callback called when SEMAN identifies a multi-word token, for 
example originally there were two tokens: 1.) constant, 2.) decay, but after this 
call, these tokens were removed from the collection and replaced with one token: 
constant decay

2. Callbacks that are concerned with the process of parsing the lexemes and their 
translation:

• token_transl_success: called when translation is finished and token was found in 
the dictionary, this callback can approve or disapprove of the translation, it also 
returns attributes to be cached, or nothing to prevent its caching

• token_transl_failure: called when NO translation was found for the given token, 
this callback can activate a special processing, change the token values and call the 
translation again. If something is returned, that value will be cached as in the 
success callback - and success will be reported

• translation_problem: general method called when the token does not have one 
code, but several codes and translation cannot decide which semantic code should 
be chosen

• morphoanalysis_ambiguity: we have identified several possible combinations of 
prefix-radix-suffix that correspond to the current token. And we were unable to 
decide which of them should be selected. This method can go through the list of 
candidates and select the right one

• emit_multiple_definitions: used usually in debugging stages, called when the 
translation identified several unique codes, but could not decide which of them to 
choose

• disambiguate_multiple_definitions - this is the same case as above, with the 
difference that the callback should choose one definition.

• veto_direct_lookup: the exact match of the token was found in the dictionary, the 
normal behaviour is to stop any translation attempts and continue with the 
translation of the next token. This callback can veto such an operation and order 
SEMAN to continue with trying to find other translations. This callback can also 
select the desired translation from the list of possible translations, if there are 
multiple matching entries in the dictionary for this token.

• longest_radix_ambiguity: when the parsing algorithm finds several possible 
parses of the word, all of them with the corresponding entry in the dictionary, this 
callback can decide which one should be used. 

• before_translation: callback activated before the whole collection of tokens is 
translated, it can be used for filtering the tokens or any similar operation

• after_translation: callback activated after the whole collection of tokens was 
translated, this is the callback where composite matches are identified or when the 
translation is checked and spurious cases resolved
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3. Operational callbacks that influence the results of the translation:

• prepare_dict_value: this callback is used when we need a special attributes of the 
dictionary, for example the POS information (if that is necessary in further steps) or 
it can automatically create a stemmed version of the dictionary entries and similar.  
What this method returns will be used as a translation result (usually it is a string - 
eg. 'code1 code2 code3', but it can be also a complex object with attributes – 
usually used in cases when we want to disambiguate words and look at the context 
of the previously translated tokens)

• token_get_keys: returns a value of the token that will be processed and also a key 
identifying this token in the cache of other tokens – if found, then the translation is 
not repeated. Cachekey is key under which results is found/saved into cache for 
faster lookups. If None is returned, cache is effectively deactivated 

The callbacks can be registered and re-registered freely when needed. Clearly, this option is 
reserved for the programmable usage of SEMAN, but it offers a interesting alternative to 
the more powerful, but slower NLP processing. This is also the main point of the 
mechanism. It can provide for fast-enough and robust solution of many usual cases, but in 
situations when we need to process more complex patters, it allows us to use a very 
specific processing logic. The level of complexity depends on the data that are available to 
us and also on the purpose of the application. If we face the difficult texts, we can first pre-
process the input text with a more powerful NLP tools and then ask SEMAN to do the 
translation. The modular design allows for a wide variety of choices.

IV.4.3   Storage and analysis
Out of the three tools already mentioned, only TABARI keeps the record of the already 
processed results ( in plain text format). The other two work with documents without 
storing results of the previous phases.  SEMAN can work in such a way also, but it also 
provides a mechanism for incremental processing, actually two mechanisms:

1. RDBMS storage

2. Lucene index storage

The RDBMS storage keeps documents translated into USL codes, the tokens are saved into 
the database in the following format
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Internally, the SQLAlchemy (“SQLAlchemy - The Database Toolkit for Python” n.d.) 
toolkit is responsible for the database layer management, the data and the model are 
decoupled so that SEMAN is free to disregard differences in the implementation of the 
underlying database engine. The data abstraction layer also allows for construction and 
manipulation of SQL expressions in a platform agnostic way, and offers easy to use and 
fast result objects, as well as table creation and schema reflection utilities. If there was a 
need to implement a storage not in the RDBMS system, but on a file system or a 
distributed filesystem, nothing would change inside SEMAN. The changes would happen 
at the level of the database abstraction layer.

The performance depends on the underlying RDBMS engine. In the basic settings, 
SEMAN is using the sqlite implemenation, which is both portable and relatively fast, but it 
does not scale well for big collection of documents. In such cases, more powerful solutions 
such as MySQL, Postgresql, or Oracle should be used. However, such a requirement would 
complicate the life of most users, so a second search-engine index-based mechanism was 
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implemented. It is built on top of the Lucene information retrieval library35 – this 
implementation can handle relatively very large volumes of data and provides a special 
mode of analysis not available with the RDBMS implementation. 

After the documents are translated, number of features are stored in separate field (indexes) 
– later on, they can be retrieved and exported for analysis. This mechanism makes it 
possible to store any feature associated with the word/token, however a special treatment is 
given to the USL semantic codes. They are stored and indexed together with the original 
text at the same position as the original text. The situation is similar to adding new 
dimensions to words, for example the sentence:

The ATLAS detector was stopped.

Will be first parsed by GATE, then by SEMAN, the text split into tokens, then analysed and 
translated. ATLAS for example is recognized as a known concept (a composite of: 
instrument + experiment + particles + high energy physics + CERN experiments). In the 
language of semes denoted as: 

0005s 0009d 450is 23ioi 8sdet

The complete sentence then has a form similar to:
1. The 
2. ATLAS detector, 0005s, 0009d, 450is, 23ioi, 8sdet
3. was
4. stopped

We process this structure in a special way inserting all the semantic codes at the same 
position as the original text. Lucene will build the index where several tokens are at the 
same position:

token     position
---------------------
ATLAS     0
detector  1
0005s     0
0009d     0
450is     0
23ioi     0
8sdet     0
was       2
stopped   3

The first position 0 holds 6 tokens, namely: particle, 0005s, 0009d, 450is, 
23ioi, 8sdet. The word detector is placed at position 1, because of the limitations of 
the PhraseQuery of the Lucene engine – if we wanted to search for phrases, the words need 
to be adjacent, and not at the same position. So the phrase query “ATLAS detector” 
matches only if the tokens' positions are different. The other parts of the sentence were not 
recognized by SEMAN, and therefore not enriched with the semantic features. 

35 http://lucene.apache.org/java/docs/index.html [Accessed: 24-7-2011]
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While the features can be stored independently in separate indexes, the method described 
above allows us to search for surface word forms and at the same time look and work with 
relations between semantic codes, ignoring the natural form altogether. Semantic features 
influence search results (sort order) in many ways:

– recognized concepts can be boosted during indexing (ie. some words become 
more important)

– we can translate query and boost recognized concepts during search

– we can search for synonymous concepts (i.e. "0005s AND 0009d AND 
450is AND 23ioi AND 8sdet" at position X)

– we can search for similar concepts (i.e. any of '0005s 0009d 450is 
23ioi 8sdet' IF they occur together up to a certain distance)36

This storage mechanism is then utilized during the analysis of statistical significance when 
searching for combinations of semes. 

IV.4.4   Search for statistically significant 
cooccurences
This section will provide an overview of the theory behind our search for semantically 
related components. How we use the methodology of the lexical semantics for the 
application on the semantic features, what statistical tests and tools are used in the search 
for semantically related and statistically significant combinations of semes.

English linguist J.R. Firth acquired fame for his approach to linguistic analysis based on 
the view that language patterns cannot be accounted for in terms of a single system of 
analytic principles and categories, but that language is a system that can be described by a 
group of different subsystems at different places within a given level of description. One of 
Firth's phrases, describing the search for nature of words, is particularly known nowadays : 
“You shall know the word by the company it keeps!” (Firth 1957, 11) And if we replace 
'word' with 'concept' in the very same phrase, we will look at a very similar topic but from 
a new perspective. For this to work, let me first describe what the lexical linguistics and 
natural language processing understand under the two key concepts of cooccurences and 
collocations.

The term collocation was first used in 1930s to point at characteristic, “habitual” word 
combinations. As Evert (Evert 2005, 15) describes, different definitions of the term were 
introduced over the past fifty years, and lexicographers often disagreed about border cases. 
Nevertheless there was always a clear consensus that words are not combined randomly. 
And rules of grammar and syntax on their own can only explain part of the story, perhaps 
the smaller part of the whole story because these combinations are an important source of 
information not only about the language itself but also about the world we live in and what 

36 Note: the last two examples don't describe a Boolean query, we are not searching for: "0005s OR 0009d 
OR 450is OR 23ioi OR 8sdet" in the whole text, we will search only for groups of codes that MUST 
occur together up to certain chosen distance. 
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and how we think. The linguistically motivated search into the ways people combine 
concepts (and not words) was also one of the main motivations for Vladimir Smetacek to 
start work on SEMAN in the first place.

Over the past fifty years different methods of the study of collocates evolved, according to 
Evert we could distinguish two main branches to the study of collocations: a distributional  
and an intensional school. The distributional approach is the direct successor to Firth's 
ideas and evolved in the UK. This approach is often referred to as Neo-Firthian and is 
based on the premise that collocations are recurrent word combinations in a particular 
text, that these combinations are directly observable and no linguistic pre-processing (or 
very little pre-processing) is needed for their identification. Taken to the extreme, the 
corpus is the only and definitive authority in what can be found and no linguistically 
motivated pre-processing should tamper with the data. The most notable figure of this 
school is the british linguist M.A.K. Halliday, for an overview of the school itself see 
(Williams 2003)

On the other hand, the intensionally motivated search for collocations is different. 
Collocations are not viewed as purely recurrent word combinations, as if they were 
automatically extracted from the source documents, they also have to belong to certain 
linguistically motivated types or classes of words. Linguists will define rules of what is 
considered to be a valid collocations. This approach is naturally more inclined towards 
dispute and argumentations over the linguistic theories, but usually collocations are placed 
somewhere in the grey area between fixed idioms ('kick the bucket') and free 
combinations ('outstanding achievement'). In a narrower sense, they are understood as 
semi-compositional word pairs, with one “free” element (the base) and the other element 
that is lexically determined (the collocate). While the free element retains its independent 
meaning in the combination, the collocate often contributes a meaning component that the  
collocation cannot have on its own. And the resulting combination of the elements creates a 
new concept, something that is more than a mere sum of its parts. 

The intensional approach is then characterized by varying and much more elaborate 
requirements on conditions of collocations; more extra textual linguistic knowledge is often 
required for the analysis. If the search is done in an automated manner, parts of speech of 
the individual words, as well as their function inside the sentence are identified, and 
obviously words are parsed and interpreted using whatever linguistically motivated theory 
was behind the tools – and this is also an important argument in favour as well as against 
the intensional approach. The pre-processing transforms the source data and researchers 
might ask questions that are not stemming from data, but from their own beliefs of the 
language.37 For an overview of the theoretical approaches of this school, see (Bartsch 2004, 
27-64). 

Evert, which is an excellent source for evaluation of the statistical measures used for the 
collocation search, summarizes his understanding of the differences between the schools in 
the following way:

In order to make a clear distinction between the two approaches to collocations, I 
refer to the distributional notion as cooccurences, which encompasses both the 
observable (cooccurrence) frequency information and its interpretation as an 
indicator of statistical association. This description seems fully adequate for the Neo-

37 A striking parallel with the same problem of content analysis, as described in III.2.1.1 Reliability and
validity
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Firthian understanding of a collocation as a recurrent word combination, cf. the 
definition “collocation is the occurrence of two or more words within a short space of 
each other in a text” (Sinclair 1991, 170). By contrast, I reserve the term collocation  
for an intensionally defined concept that does not depend on corpus frequency 
information.” (Evert 2005, 17)

He further continues to propose the Manning and Schütze's definition of the collocation as 
“word combination whose semantic and/or syntactic properties cannot be fully predicted 
from those of its components, and which therefore has to be listed in a lexicon”, 
collocations  “correspond to some conventional way of saying things” (Christoper D. 
Manning and Schuetze 1999, 151). As for the cooccurences, Evert defines them as 
“observable evidence that can be distilled from a corpus by fully automatic means. After 
statistical generalisation, this information can be used to predict which word combinations 
are most likely to appear in another corpus.” (Evert 2005, 23)

Collocation is therefore a generic term that attains a very specific meaning based on the 
requirements of a particular research question or application. The distinction between the 
two different approaches is then highly relevant for us and the study of semantic features 
because we can draw the direct parallel between collocations and the combination of 
semantic features. And also the two, somewhat distinct, ways of processing will be applied 
to them later – I can refer to the purely frequency based combinations of the semantic 
features as sem cooccurences, and reoccurence of specific categories of semantic features 
as sem collocates – for the latter, we need to introduce and operate with extratextual 
information that cannot be found or seen in the corpus and the token positions itself. 
Perhaps we will be required to find these criterias ourselves.

IV.4.4.1   Types of cooccurences
In the search for sem cooccurences and collocates we will need to use statistical 
tests of significance. The corpus is used as a source of information about elements 
and their combinations, and thanks to random sampling and the law of big num-
bers, we try to establish whether the combinations that we discovered are due to 
chance and can therefore be disregarded, or whether there is indeed some import-
ant link between the elements and we have discovered sem cooccurence or sem 
collocation. For any of the two approaches, we will work with frequencies of the 
elements and their pairs.

However the cooccurence of semes can be defined at different levels: as a proxim-
ity, looking at the semes and their immediate neighbours – ie. searching a window 
of certain size. Or as occurences of semes within the same linguistic or structural 
unit (sentence, paragraph, chapter, article etc) or as a functionally specific (usually 
syntactic) relationship between words and their semes – in this case, we limit our 
search to the semantic features that belong to a certain POS classes, and only cer-
tain combinations of them are allowed. Such an approach amounts to a filtering of 
the semantic pairs before the measurement.

Historically the positional search is older – words (in our case semes) are con-
sidered to form a pair if they appear within a certain distance of each other, this 
distance is usually measured by the number of intervening words, in the case of 
semes, by the number of intervening words or semantic compounds. In the literat-
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ure, such a group is often referred as collocation span, so we could speak about se-
mantic collocation span. The advantage of this approach is that data is directly 
observable and no special pre-processing is necessary to discover pairs. 

However, this approach is not without problems. If we consider only the combina-
tions of semantic tokens based purely on their distance, we are potentially creating 
too many pairs, but there is a more serious problem than this. It can be illustrated 
by an example. It was shown by Justeson, that extraction accuracy can be consider-
ably improved by using a simple POS filter which accepted only certain types of 
relations, such as AJ+N, V+N etc. (Justeson and Katz 1995) Combining the fre-
quency information with a small amount of linguistic knowledge the algorithm 
achieved 80% accuracy, which is a considerable increase. There is a number of oth-
er studies that confirm the same view that linguistic information when taken into 
account during the filtering of collocaiton candidates, considerably improves the 
accuracy and removes false negatives. (Evert 2005; Smadja 1993)

Such findings show that inside the corpus there exist many different kinds of rela-
tions and various types of relations follow substantially different frequency 
distributions. Statistical methods based on 'simple' frequency counts effectively 
mix these various distributions into one distribution, but arguably the obtained 
results could be considerably improved if the statistical tests were applied to a 
single “homogeneous” frequency distributions rather than to such a mixture. This 
is where the historically newer approach to the collocation search comes in place. It 
is centered around the idea that occurences can be found using linguistic interpreta-
tion of corpus data. Therefore only certain distributions are generated and 
included in analysis. Typical examples contain dependency relations and subtrees 
in a phrase-structure analysis or relations based on the POS, and syntactic relations 
that are considered valid for English38: (i) verb + noun (direct object),e.g. commit 
suicide; (ii) adjective + noun, e.g. reckless abandon; (iii) adverb + verb, e.g. tacitly 
agree; (iv) verb + predicative adjective, e.g. keep sth handy; (v) verb-particle con-
structions, e.g. bring sth up; and (vi) verb + prepositional phrase, e.g. set in 
motion. For knowledge extraction tasks, there is usually a strong emphasis on verb 
+ noun relations. (Evert 2005, 19)

Such operation requires automatic linguistic pre-processing, and critics point out 
this makes the unbiased analysis of the observable facts impossible, because pre-
conceived notions of a particular linguistic theory are inserted in the data. 
However, the advantages might overweight the risks, as the simple example above 
shows. While the processing is technically more complex, the final extracted data 
are actually more elegant and easily interpretable. And this usually means that we 
can get meaningful results. The explanation being, that in natural language words 
are not combined randomly into phrases and sentences so we cannot build a mod-
el of the language based on pure combinations39 (for example certain related words 
may be very far in terms of position in a sentence). By focusing on the position, we 
are probably mixing the different distributions into one search space. And by mix-
ing them, the Neo-Firthian approach is actually complicating the search. Whilst by 

38 This type of analysis is dependent on the knowledge and interpratation of the language units, therefore it 
is not applicable universally, across languages.

39 Even if this approach of 'bag of tokens' is used successfully in many areas of NLP and yields significant 
results, therefore the advantages of the 'cleaner' distributions may not be always helpful.
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separating the distributions, we can remove a lot of noise.

IV.4.4.2   Extracting cooccurences from text 
The following part explains how the extracted cooccurences are evaluated and 
what methods are applied inside SEMAN. While many treatements of the subject 
can be found, for example (Dale, Moisl, and Somers 2000, Chpt 21; Christoper D. 
Manning and Schuetze 1999, Chpt 5) I have adapted the reference presented in the 
Evert's evaluation of the association metrics because he created a unified system 
and notation for it. Evert's main interest was the evaluation of association meas-
ures for the relational data, however the following section applies both to 
positional as well as relationally related searches. 

First we have to gather data about pairs of tokens. Cooccurrence frequency data is 
analysed separately for each pair (u,v). If we do the analysis in the relational 
paradigm, only certain types of tokens are considered – such as the aforemen-
tioned groups adj.+noun, verb + noun etc. In the positional paradigm, on the other 
hand, all adjacent tokens up to the length of window w is considered. The in-
stances are considered to be valid pairs if their frequency is higher or equal to 1 (f 
≥ 1). 

Evert shows that reliable statistical inference is impossible in principle for the 
hapax and dis legomena (f = 1, 2). “In this frequency range, quantisation effects 
and the characteristic highly skewed distribution of the cooccurrence probabilities 
of pair types (roughly following Zipf’s law) dominate over the random variation 
that statistical inference normally takes into account. As a result, probability estim-
ates are entirely unreliable unless the precise shape of the population is known. 
This rather negative result provides theoretical support for the application of a fre-
quency threshold, which should at least exclude the hapax and dis legomena (f >= 
3). Quantisation and the shape of the population no longer play a role for f >= 5.” 
(Evert 2005, 166)

Usually a filter is applied that removes sparse pairs and thus only pairs with f ≥ 3 
are retained. Given a pair (u,v), the extracted pair tokens are classified into the four 
cells of a contingency table, depending on whether the first component of the 
token belongs to type u and whether the second component belongs to type v. 
These conditions are written U = u and V = v in the contingency table shown be-
low. 
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The very same treatment is reserved for the positional data. In this table, u and v 
stand for the occurrences of the adjacent tokens in the corpus (up to the distance 
w), and the other cells mark the frequencies of the non-occurrence data. The cell 
counts O11, ..., O22 of the contingency table are called the observed frequencies of 
the pair (u,v). For example, the cell O11 contains the number of tokens that are of 
type AN (adjective-noun) from the corpus, O12 will hold the number of pairs 
where the type A is present, but the second component is made of every other type 
but N freq u ,¬u  , similarly the cell O21 holds data about the pairs in which 
there N is present, but the second element is not of type A. Finally, the cell O22 
holds the number of all the rest of the pairs from the corpus.

The cell frequencies add up to the total number of pair tokens, called the sample 
size N. As an example, the contingency table below shows the observed frequen-
cies of the adjective-noun pair type (black,box) in the British National Corpus. 

The row totals R
1,

R
2

 and column totals C
1,

C
2

 often play an important role in 
the analysis of frequency data. They are referred to as marginal frequencies and 
are written in the margins of the table. R1

 is the marginal frequency of u, i.e. the 

number of pair tokens whose first component belongs to type u. Similarly, C
1

 is 

the marginal frequency of v. O11
, the number of cooccurrences, is also called the 

joint frequency of the pair (u,v). 
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Continuing with the example, we can see that the joint frequency of the pair is 
f =O11=123 . The marginal frequencies are f 1=R1=13,291  (13,291 pair tokens 

of the form (black,*)) and f
2
=C

1
=1,933  (1,933 pair tokens of the form (*,box)). 

The full sample consists of N = 4,966,984 adjective-noun pair tokens extracted from 
the British National Corpus. 

The quantitative study of the frequencies requires a statistical model of the frequencies to 
draw conclusions about the observed values. The model assumes that the observed pair of 
tokens are drawn randomly from an infinite population (so that the much simpler 
equations for sampling with replacement can be used). Such an infinite population can be 
described as a set of (pair) types and their relative frequencies in the population, which are 
the parameters of the model. The random selection of a single pair token is modelled by 
two random variables U and V that represent the component types of the selected token. A 
sample of N pair tokens is modelled by N independent pairs of random variables Um and 

Vm, whose distributions are identical to those of the prototypes U and V. Just as with the 

observed corpus data, the frequency information for a given pair type (u,v) is collected in a 
contingency table of random variables X11, ..., X22: 
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X11 is the number of m for which Um = u and Vm = v etc. The marginal frequencies 

are also random variables, written as XR1, XR2, XC1, and XC2. This contingency 

table contains all relevant information that a random sample can provide about the 
pair (u,v).

The sampling distribution is determined by the probability parameters τ11, ..., τ22 
of (u,v), which can be defined in terms of the prototype variables U and V. 

P U=u∧V=v=τ11        P U=u∧V≠v =τ 12

P U ≠u∧V=v =τ 21        P U≠u∧V≠v =τ22

Only three of the four probability parameters, which must add up to one (τ11 + τ12 
+ τ21 + τ22 = 1) are free parameters. Therefore, it is more common to use an equival-

ent set of three parameters, given by the equations below. π is the probability that a 
randomly selected pair token belongs to the pair type (u,v), π1 is the probability 

that its first component type is u, and π2 that of v being the second component 

type. 

π=P U=u∧V =v=t11

π1=P U=u=τ11τ12

π 2=P V=v=τ11τ 21

The contingency table of random variables represents a potential outcome of the 
sample. The probability of a particular outcome, i.e. a contingency table with cell 
values k11, ..., k22, is given by the multinomial  distribution of (u,v):

P  X=k | N = N !
k 11!k12!k 21!k 22!

⋅τ 11
k11⋅ τ12

k 12⋅τ 21
k 21⋅τ 22

k 22
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Each random variable Xij has a binomial distribution by itself, so the probability of 

an outcome with Xij = k (regardless of the other cell values) is: 

P X ij=k | N =N
k ⋅τ ij

k⋅1−τ ij
N−k

The statistical association between the components u and v of a pair type is a 
property of its probability parameters (i.e. a population property of the statistical 
model). Consequently, a main goal of the statistical analysis of cooccurrence data is 
to make inferences about the population parameters from the observed data. The 
tables below schematise this comparison between probability parameters and ob-
served frequencies. 

The simplest form of inference are direct ("point") estimates for the probability 
parameters, which are known as maximum-likelihood estimates (MLE). MLEs for 
π, π1, and π2 are given by the relative joint and marginal frequencies p, p1, and p2 as 

shown below. 

Unfortunately, the difference between the estimate (sample) and the true value in  
the population can be very high (sampling error, especially when the observed 
frequencies are small) so this method is not applicable. We need to test whether the 
differences between the observed and the estimated values are due to the chance 
or if there is indeed some statistically significant relation. Assessing if we face the 
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chance event, the test of the null hypothesis is applied.

The null hypothesis of independence basically states that there is complete absence 
of association: statistical independence.When a pair type (u,v) has no association, 
the events {U = u} and {V = v} must be independent, which leads to the null hypo-
thesis of independence H0 below. 

H
0
:π=π

1
⋅π

2
≈ p

1
⋅p

2

The null hypothesis of independence stipulates a relation between the probability 
parameters (namely, π = π1 π2), but the parameter values are not completely fixed, 

and neither is the sampling distribution. The mathematical analysis is greatly sim-
plified (and often made possible in the first place) when H0 is reduced to a point 

hypothesis by inserting maximum-likelihood estimates for the probability para-
meters π1 and π2. Most statistical independence tests for contingency tables are 

based on this point hypothesis. 

The expectations Eij = E[Xij] of the contingency table cells under the point null hy-

pothesis of independence can easily be computed from the observed row and 
column totals. Values E11, ..., E22  are referred to as expected frequencies and hy-

pothesis tests that are based on the point null hypothesis can be understood as a 
comparison of the contingency tables of expected and observed frequencies, as 
schematised below. 

When the observed data are 'unlikely' in a sense of being outside the range of val-
ues predicted by the probability distribution function built from the expected 
frequencies, the null hypothesis is rejected. This procedure is called a statistical hy-
pothesis test. The same approach can also be used to obtain confidence interval 
estimates for the true values of population parameters. 
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IV.4.4.3   Association measures

An association measure is a formula that computes an association score from the 
frequency information in a pair type's contingency table. This score is intended as an 
indicator of how strong the association between the pair's components is, correcting 
for random effects. (Evert 2005, 75)

The cornestone of the cooccurence search is statistical analysis using association measures. 
In computational linguistics, various association measures were suggested and evaluated 
over the course of years (for an excellent overview of the past research, see (Evert 2005) 
Two groups of association measures exist, those that measure:

a) significance of association

b) degree of association

The first group tests the existence of a link between the constituent elements. This test is 
conducted using statistical tests against a null hypothesis of indepdence and the final results 
show whether there is enough evidence for rejecting the null hypothesis of independence 
(no statistically significant relationship). This estimate can be expressed in the form of a p-
value40 and this value can be used to compare the results of the association measures inside 
the category.

The significance of association tells us whether the cooccurences can be explained as 
random events, brought about by a pure chance, or whether there is certain, statistically 
significant link between the elements. The association measures exist in two variants: one-
sided and two-sided depending on whether they distinguish between positive and negative 
association41. In general terms, the negative score means that cooccurences are present less 
often than predicted by the null hypothesis, the positive score means the cooccurences are 
present more often than if they were independent.

For one-sided association measures, high scores indicate strong positive association. Low 
scores (including negative scores) indicate that there is no evidence for a positive 
association (which could mean either that the components are independent or that there is 
negative association). For two-sided association measures, high scores indicate near-
independence, regardless of their sign. A two-sided measure whose scores are always non-
negative can easily be converted into a one-sided measure: for any pair type with negative 
association by multiplying the association score by -1. Thus, positive score indicate 
positive association and negative scores indicate negative association. The absolute value 
of the score depends on the association strength, with values close to 0 indicating near-
independence. But as (Evert 2005, 76) found, for small absolute values, the distinction 
between positive and negative association is unreliable because of random effects. Such 
cooccurences should be interpreted as “roughly independent”, with no clear evidence for 
either positive or negative association.

40 Statistical hypothesis tests compute the total probability of all possible outcomes that are similar to or 
more "extreme" than the observed contingency table. This total probability is called a p-value. When it 
falls below a certain threshold, the sample is said to provide significant evidence against the null 
hypothesis, which is then rejected. Thus, the p-value provides a measure of the amount of evidence 
against H0.

41 The terms one-sided and two-sided are parallel to the one-side and two-sided tests from the statistical  
theory.
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The second group of measures is concerned more with the degree of association than with 
the amount of evidence supporting it. They are usually used for sorting the candidates into 
the list of the strongest pairs and selecting the first n-best cooccurences.

Evert conducted a detailed review of the different association measures, taking as a base 
line Fisher's exact test. “After decades of controversy, most experts seem to agree now that 
Fisher's test produces the most meaningful p-values (cf. Yates 1984). We can thus take the 
Fisher association measure as a reference point for the significance of association group.” 
(Evert 2005, 110)

Fisher= ∑
k=O11

min{ R1, C1 } C1

k ⋅ C
2

R
1
−k 

 N
R1


The Fisher's exact test is however computationally expensive and it is advisable to use a 
different alternative. Mathematicians already computed how well various tests approximate 
the exact Fisher's test value, however Evert repeated their tests using the corpus that has the 
type of distribution found in natural language – ie. large sample size but highly skewed 
contingency tables where O11 is very small and O22 is extremely large.

From the comparison, the best results were obtained using the Poisson test:

Poisson=∑
k=O11

∞

e−E11⋅
E11

k ! 
k !

Using this test also has several advantages, besides being computationally more efficient. It 
does not assume that the underlying data comes from the standard distribution. Poisson 
distribution is used for any elements (even rare) in which we predict a standard rate of data 
points appearance.

This test is therefore selected for SEMAN to serve as a filter that distinguishes statistically 
significant data from insignificant noise. But it is not yet enough, because in the corpus of 
documents we will find evidence of many relations. In order to focus the attention on the 
most important, we have to somehow sort and select only the best cooccurences. 

“With the wide range of association measures available, some guidance is needed for 
choosing an appropriate measure to be used in an application of cooccurrence data. While 
the theoretical discussion of Chapter 3 has helped to narrow down the number of options 
by grouping similar measures together, it cannot provide a definitive answer. The 
significance of association is a meaningful and well-defined concept, and Fisher’s exact 
test is now widely accepted in mathematical statistics as the most appropriate quantitative 
measurement of this significance. The log-likelihood association measure gives an 
excellent approximation to the p-values of Fisher’s test and has convenient mathematical  
and numerical properties. Consequently, it has recently become a de facto standard in the 
field of computational linguistics for the purpose of measuring the statistical association 
between words or similar entities.”(Evert 2005, 137)
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Following this advice, the log-likelihood association measure was selected as the default 
measure for ordering cooccurence pairs. It has the form:

log−likelihood=2∑
ij

Oij log
Oij

Eij

In the Everts formula, the logarithm is undefined when there are empty cells (with 
O ij=0 ). For such cells, the entire term evaluates to zero (because 0⋅log 0=0  by 

continuous extension) and can simply be omitted from the summation. 

The Evert's version is in effect identical to the log-likelihood as invented by the original 
author Dunning:
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Illustration 19: Comparison of p-values for measures from the significance of association group, using Fisher as a  
reference point (labels on the axes refer to −log10 pv). Source: Evert, 2005, p. 111. G2 is the log-likelihood and “t” is  
the Students t-test. These graphs show that X2 statistic favorized rare events, while the t-test gave undesired advantage  
to frequent events. The other two tests results were much closer to the Fisher's p-value.
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log−likelihood Dunning=−2log
L O11,C1, r⋅L O12,C2, r
L O11, c1, r1⋅L O12,C2, r2

L k ,n , r =rk 1−rn−k
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N
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O12

C 2

The effectiveness of the log-likelihood association measure stems from the attention it  
gives to all the elements of the contingency table. The ranking is derived from the sampling 
distribution, the smaller the probability of the a sample outcome under the null hypothesis, 
the bigger is the “surprise” and therefore the probability that the difference is not due to a 
chance.

And because the log-likelihood statistic has an asymptotic χ 2  (chi-squared) distribution, 
we can directly compare its results with the χ 2  test statistics with one degree of freedom 
(because the 2x2 contingency table and one free parameter, Oij ). The log-likelihood 
measure is two-sided but it can also be converted into a one-sided measure by changing the 
sign of the test statistic when O

11
<E

11 , indicating negative association. The test 
statistics formula is:

log−likelihood ratio=−2log
max P  X=O | N∧π=π1⋅π 2

max P  X=O | N 

When we search for the significant changes, we compare data coming from two collections 
of documents – we call them corpus 1, and corpus 2 C1, C2 using the following 
algorithm:

# retrieve set of used semantic codes
sem_components = get_sem_components(opened_index)

# find all possible collocations of terms, considering their index position
existing_collocations = get_collocations(field, distance_w)

# test statistical significance of collocation occuring/change/missing
for collocation in existing_collocations:
    token_a = collocation.get_term()
    token_b = collocation.get_incidental_term()
    signif_collocation = set()
    if token_a in sem_components and token_b in sem_components:
        for part_a in token_a:
            tf_a = get_term_freq(part_a)
            for part_b in token_b:
                 tf_b = get_term_freq(part_b)
                 signif_score = test_significance(part_a, 
                                                  part_b,
                                                  tf_a, tf_b,
                                                  tf_ab,
                                                  alpha_level)
                 if signif_score:
                     signif_collocation.add((comp_a, comp_b, signif_score))
     
     if signif_collocation > 0:
         store.append(signif_collocation)
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Following the procedure describe above, we can search for both relational and positional 
pairs of cooccurences. The evaluation of this procedure will be given in the chapter V.2.3 
Search for significant combinations, p. 142

IV.4.5   Dictionary creation and maintenance
One of the most difficult and time consuming operations for any content analysis research 
is the creation, and maintenance of the coding dictionary. This is probably the most 
expensive operation and the existence or absence of a 'good' coding scheme bears a lot of 
influence. Because the dictionary is so important, even the best algorithm or methodology 
cannot relinquish mistakes and ambiguities that were introduced in the representation of 
the knowledge. Systems that rely on the human created/supplied knowledge representation 
thus face the real problem of knowledge acquisition – the knowledge bottleneck. (Turmo, 
Ageno, and Català 2006)

When reviewing the existing approaches to knowledge representation tools, I have found 
many systems built specifically for the ontology maintenance.42 But most of them work 
with a different conceptualization of the dictionary and are not  appealing for the nature of 
the USL.43 Especially because there are many links inside the semantic network, and many 
of the tools are either too complex or built for the maintenance of the hierarchical systems 
where the graphs are acyclic. But an entry in the USL may have many parents and exhibit a 
sort of cyclic relationships – either because of the mistakes, or simply by the complex 
nature of the world of knowledge representation.44 

Also the two content analysis tools presented provide some help with the dictionary build. 
In many other cases, we can find a sophisticated graphical user interfaces with greater 
control and much advanced functions. However, the experience of V. Smetacek spoke in 
favour of keeping it simple and lean. That advanced GUI tools often stand in the way of 
effective and fast dictionary administration. After all, the TABARI system itself is a good 
example of the same approach. The dictionary in TABARI is edited via set of commands, 
very quickly and efficiently once analysts are familiarized with the keyboard shortcuts. 

Undeniably, the command line tools may be much faster, but sadly, they can be  rather 
unfriendly and confusing when they do not provide enough context. In the case of 
TABARI, the structure of the dictionary does not exhibit such a multi-relational nature as 

42 For a list of some, see: http://semanticweb.org/wiki/Category:Ontology_engineering_tool [Accessed: 24-
7-2011] which lists SMW+(http://semanticweb.org/wiki/SMW%2B), Semantic Turkey 
(http://semanticturkey.uniroma2.it/), RDF2GO (http://rdf2go.semweb4j.org/), NeOn Tookit (http://neon-
toolkit.org/wiki/Main_Page), PoolParty (http://poolparty.punkt.at/).  But we should also not forget Protégé 
(http://protege.stanford.edu/), which was needless to say, the only tool widely spread at the time when the 
work on SEMAN started.

43 And in the words of the supervisor of this work: the more and fancy approaches were tried before, but in  
the end, the plain old representation of the dictionary is the best. So it was kind of a requirement to keep 
the form of the USL untouched. 

44 Another requirement, with which I cannot disagree, is to build the dictionary in as simple ways as 
possible. But not simplistic.

106

http://rdf2go.semweb4j.org/
http://semanticturkey.uniroma2.it/


IV. SOFTWARE FOR CONTENT ANALYSIS

for USL, and it would be very hard to present it in the console environment. The graphical 
interface can provide much more information visually, and provides certain views more 
easily.

Analysts need a way to view the whole semantic network, edit not only single records, but 
also whole parts of the dictionary or even everything. Change and automatically propagate 
changes to the whole network. For those reasons, it was decided to implement a hybrid 
approach between a very quick and familiar mode of the text editing software, together 
with the advanced characteristics of widget based GUIs. In a sense, it is the mix of the 
proven interface of the TABARI system, where analysts control all the operation via 
command line shortcuts, and the fully functional graphical interfaces of word processing 
editors on the other hand. Because we do not  want to miss the advanced features and 
services of the graphical interface. Therefore, in the domain of the dictionary, we have 
opted for an advanced editor interface rather than advanced graphical interface to 
dictionary. 

A special editing mode is built inside the programmers editor called Editra. This 
component is an open-source text editor, with programmable features, and written in 
Python. It gives users control of the dictionary maintenance but also provides complete 
control over SEMAN, thus it naturally becomes a working environment not only for the 
dictionary maintenance, but also for the analysis and the control of the coding operations, 
as will be show later.

As can be seen from the screenshots, the dictionary can be edited as a normal text file. 
Each record is listed on a separate line and there is a simple format of:

<code> <pattern> = <categories>
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Illustration 20: The dictionary editing session, with some special functions activated  
(autocompletion of semantic codes)
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Almost every operation can be executed using only keyboard shortcuts, which makes it 
analogous to the TABARI fast editing mode. Users do not need to learn commands and in 
most cases they will be already familiar with the concept of a text editors. The editor hides 
the complexity of the operations behind the scenes – it can check for duplicates, validate 
the entry form, help users to search for codes already used, link to them, autocomplete the 
lexical entries, search for other similar entries or provide statistics on the usage. These 
operations are in many cases context dependent, and we will not list them here in their 
completeness.45

With the additional widgets, it is possible to edit and maintain the dictionary in an effective  
manner. Even big dictionaries, consisting of hundreds of thousands of records – as was the 
case of the converted version of Wordnet, that was transformed into the form of USL. This 
dictionary had more than 60 thousands entries, not strictly hierarchical. If we were to use 
the simple 'search and replace' functionality of normal text editors, it would be 
cumbersome, for example, to find all items that share a few semantic codes, choose from 
them a subset of entries, and replace this subset with a newly defined categories. With 
SEMAN, these operations are simple.

Besides the special functions of the editor available in the text editing area, there are also 
some special routines for dictionary maintenance, consistency checking, sorting, 
comparison with other (older) versions of the dictionary and similar. For example to edit 
the dictionary, view only the changed parts and import only the differences between the 
versions – or directly apply the new version of the dictionary on the texts. 

This is perhaps not important when we need to edit a few categories, such as in the case of 
Yoshikoder, but it is very much needed when we do global, bulk updates to the whole parts 
of the dictionary, changing hundreds and thousands of records. The experience shows that 
the editor must be very flexible and at the same time simple. Because of these reasons, the 

45 They can be found in the appendix of (Schrodt 2009)

108

Illustration 21: Another set of commands of the editor, on the right side are visible the  
maintenance routines for more complex operations
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editing mode was tailored to the concept of the programmable editor. And this makes it 
possible to write and execute specific scripting routines, perhaps only on part of the 
dictionary. A number of the functions were implemented, but the powerful combination of 
Python and the scripting components gives the user the option to write her own processing 
routines. The Python language is ideal for such operational mode.

IV.4.6   SEMAN GUI and scripting control
The same interface which is used for dictionary maintenance is used also for controlling 
the execution of analysis in the interactive mode. In the series of screenshots below, the 
panel on the right side contains various processing steps that the user can apply on the 

individual document or the collection of documents. These steps were described in the 
previous chapters.

Another feature that distinguishes SEMAN from most of content analysis software is the 
programmatic interface. While all of content analysis packages contain prepared methods 
of processing (which SEMAN also has), none of them give  researches tools to write ad-
hoc analytical routines, just to explore the data. But SEMAN provides such functionality. 
For example, if the user wants to tests the null hypothesis that there exists no dependence 
between word pairs, but instead of the standard log-likelihood or a pearson test, she would 
like to apply the risk ratio or information gain test, all that is needed is to write one-purpose 
macro without any need to compile or rebuild individual components.
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Illustration 22: Example debugging session of the document analysis - on the right side a  
few processing steps are selected and executed as one. The window at the bottom shows  
log messages as the analysis proceeds.
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In fact, more than a one-purpose tool for content analysis, SEMAN is also a content 
analysis environment. Power users, who are comfortable with scripting, do not need to 
leave the Editra interface. They can open the interactive console and test their own methods 
directly from inside the editor. All the methods and packages of SEMAN are available. 
Windows and Macintosh users may carry such environment even on the portable storage 
media, having the full functionality including the NLP components. 
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Illustration 23: Example document analysis, showing which tokens were found - with their  
absolute frequencies.
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Yet it would be mistake to conclude that the portable nature is important only in the context  
of individual users. Text processing of a large corpus is often executed on the grid or in the 
cloud, in heterogenous computer architectures, with different Python versions, or operating 
systems, so it is vital that content analysis tool can be used in such scenarios.46 

46 At the time of writing, the CERN lxplus network is a cluster of 30 thousand computer nodes made 
available (on demand) to the HEP community. Machines are running either Scientifc Linux version 4 or 
version 5 operations systems. This distribution is based on the Fedora operating system. SEMAN 
routinely runs in this environment as well as on Windows NT, Linux Ubuntu and Macintosh OS X 
machines.
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Illustration 24: Risk Ratio is the statistical method implemented in Yoshikoder. It tests  
whether the difference between two documents are significant. 

CI=log RR ±SE∗z
alpha

 

This illustration shows how easy it is to add the same functionality to SEMAN. We can test  
different test functions, the shell provides a full environment and is interactive.
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IV.5   COMPARISON

It might be interesting to look more than one decade back at a review of artificial  
intelligence methods and their use in content analysis studies. It was found in 1998 that the 
CA tools were well suited for instrumentation type studies – i.e. those in which we are not 
interested in obtaining the meaning, where the 'intended' meaning is not a component of the 
message that should be extracted. The review identified 4 main problem areas where 
content analysis approaches failed: (1) parsing – discovering the syntactic structure of the 
sentences; (2) context – deciding the meaning of sentences when this depends upon other, 
surrounding text; (3) prior knowledge – assumptions about the world outside the of a 
discourse that are essential to its meaning; (4) semantic variability – differences in the 
meanings of words and sentences from one speaker to another. (Cuilenberg, Kleinnijenhuis, 
and de Ridder 1998) The authors reviewed the chosen approaches, but after a lengthy 
discussions, concluded that the analysis at the level of interpretation of complex texts is 
still a long way away. 

The report was issued in 1998 and in the meantime at least part of the landscape changed. 
The most striking example is the development of computer software for application of the 
Gottschalk-Bechtel method. This method measures psychological traits and is used in 
clinical studies to assert different levels of anxiety, hostility, hope and 9 other psychological 
states. The software used for content analysis of the transcripts has to deal with very 
complex and incomplete sentences, but it was shown that the reliability is comparable to 
human coders and the software is even able to achieve higher levels than 0.8 accuracy.
(Gottschalk and Bechtel 1995)

However, this is still an isolated problem on which a team of researchers worked since 
1982 and there exists an extensive theory behind the scale. For other areas of ambiguous 
general-domain content analysis, we are still not in the phase where content analysis 
software could parse and interpret complex syntactical and semantical structures. 

Nevertheless, considerable development has taken place, at least for the problem (1), the 
syntactic structure and parsing of sentences we can report that current techniques are able 
to achieve close to 90% accuracy (Cer, Marneffe, Jurafsky, and Christopher D. Manning 
2010). As for the disambiguation of words (3) the present content analysis tools still rely 
more on knowledge representation maps (the dictionaries) than on the methods of 
automatic word sense disambiguation47 And the other two remaining areas are mostly 
untouched. Interpretation of sentence meaning is a very hard problem (as complex as word 
sense disambiguation,  AI complete) but its solution is not needed for tasks of the classical 
content analysis. What would be more interesting are the developments in the field of 
automatic knowledge acquisition, creation of knowledge representations. Yet most tools, 
including SEMAN, still rely heavily on manually acquired and curated dictionaries which 
is perhaps their biggest weakness. It is fair to say that all these tools belong to the same 
paradigm as the knowledge representation systems that were developed until late 1990's 
before the statistical learning and automatic knowledge extraction systems took over 
(Turmo, Ageno, and Català 2006).

47 The following chapter will contain information about an experiment where we compared results of 
classification using automatically disambiguated word senses and heuristic rules. Surprisingly, the 
heuristic rules of word sense disambiguation may be enough for many content analysis studies.
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But if we stay in the domain of classical content analysis, we can compare the systems – or 
better, we can compare the different approaches that the four systems represent. In the 
nature of processing, they are all very similar. There is a dictionary of patterns in the core 
of the system – either constructed manually, or derived from the other existing dictionaries 
and knowledge organisation databanks. Texts are parsed, coded and recognized entities 
analysed or exported for further analysis in external programs. 

The main difference of SEMAN from the majority of content analysis tools is the 
application of USL – while the other content analysis programs are designed to find and 
assign indicators into (single or multiple) categories, in the case of SEMAN, the coding 
scheme has the nature of a combinatory classification system. Not exactly hierarchical, but 
similar in functionality to the hierarchical classification systems such as DDC or UDC. 

Albeit codes can be used as unique identifiers of a category exactly in the same way as 
classical content analysis tools, they can also be combined with the aim of finding 
relations. For example, the classical tools allow analysis of the distribution of signals 
across the categories, SEMAN also answers questions like: What is the proportion of 
analysed documents, that belong to the category with features X and Y and Z? Are there 
some significant connections between a feature X and Y? 

In order to answer these questions, SEMAN is taking advantage of the network of relations 
that is encoded inside the dictionary. Operational mode is similar to other  tools. First a 
conceptualization of the research questions must be encoded in the dictionary of categories. 
For that purpose, SEMAN provides its own graphical user interface. Directly as the user 
edits the dictionary, SEMAN can analyse texts using the new version of the coding scheme 
and provide feedback. The user controls content analysis operations directly from the same 
interface which is used for the dictionary maintenance and debugging. Coding operations 
can be executed for individual files or whole collections of files. Results are then stored in 
the index or database. Or exported in various formats for further analysis.

If we put aside the nature of the USL, the biggest difference is that SEMAN can handle 
very complex workflows and can employ a wide range of NLP procedures. It is not simply 
a find-and-count tool. In the default configuration SEMAN disambiguates meaning using 
POS of the extracted tokens, but it can also work similarly to TABARI – by using a full 
sentence parsing with much more powerful options. To that effect, internally SEMAN does 
not work with text, but with acyclic graph of tokens. However in the present state, the 
TABARI with its pattern matching mechanism is easier to use and allows for more granular 
and semantically correct matching. For SEMAN, other possibilities are open but they 
require programming skills and are not part of the dictionary definitions.

The third difference comes with the open nature of the application. It contains a standard 
set of tools of content analysis, but technically savvy users can modify them and obtain a 
very specific results with small changes. SEMAN works as a content analysis tool, but it is 
open and offers the previously mentioned workflow engine and many text-analysis 
components. Optional modules may be plugged into the workflow(s), some of which were 
described - such as word sense disambiguation, format conversions, keyword extraction. 
With this apparatus it is possible to prepare specific processing tailored to the nature of 
texts, as will be illustrated in the third section of the dissertation. 
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Finally, we should mention also the programming language SEMAN is written in. At the 
beginning of the project it was not clear what programming language to choose, but with 
time it became clearer that Python was a very good choice. There are many strong 
arguments for it, mainly its ease of use, rapid prototyping, nature of the scripting language, 
weak typing and very clear syntax and readability of the code.  The main parts of the 
system are thus written in Python, but this does not limit SEMAN only to Python. The 
language serves very well as a 'glue' between other components, and where the speed or 
extendability is an issue, we can choose to use compiled languages.48 But the Pythonic 
nature may have influenced the final form of the system. Now, it can be very useful for 
power users to whom it exposes advanced functionality easily. But it is not as usable and 
straightforward as Yoshikoder, even if the GUI does make SEMAN more accessible.

48 So SEMAN now incorporates components written in C++ and Java, but from the viewpoint of the user 
they are invisible.
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V. EVALUATION OF SEMAN

In this section we shall focus on SEMAN; a system that was designed to work with USL. A 
few experiments were designed to show capabilities of the application. First part of the 
evaluation is concerned with a pattern matching mechanism, then we examine results of 
translation it the case of document classification and finally we look at the search for 
concept cooccurences. The methodology and corpora will be described in respective 
chapters.

V.1   THE PATTERN MATCHING MECHANISM

The pattern matching mechanism present in SEMAN is different from the majority of 
content analysis tools. It does not work with regular expression or wildcard expressions. 
Instead the search uses sets of possible combinations of prefixes, suffixes and radixes, the 
search is deterministic, based on the entries present in the dictionary. However, the nature 
of the combinatory principle poses certain challenges (as well as opportunities) and the 
mechanism must work well should the system produce useful data. The extraction is 
therefore an important stage and the matching mechanism is a crucial component. We will  
look at its speed and accuracy in comparison with another tool that does a similar job but 
works differently.

V.1.1   BibClassify
BibClassify is an automated keywords extractor developed by CERN. It performs an 
extraction of keywords based on the recurrence of specific patterns that are listen in a 
controlled vocabulary. The controlled vocabulary is a thesaurus of all the terms that are 
relevant in the field of High Energy Physics. 

BibClassify accepts thesauri in two formats, either as a simple text of allowed keywords 
with one keyword per line, or in a XML format of RDF SKOS. Out of the two, only the 
second form is suitable for recording the taxonomic relationships between concepts. This is 
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a richer and more complex structure to describe concepts.1 In RDF SKOS, every keyword 
is marked with a tag concept which encapsulates the full semantics and hierarchical 
status of a term - including synonyms, alternative forms, broader concepts, notes and 
annotations - rather than just a plain keyword. For example:

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#asymmetry">
    <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.yieldasymmetry"/>
    <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.timeasymmetry"/>
    <composite 
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.timereversalasymmetry"/>
    <composite 
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.supernovaasymmetry"/>
    <prefLabel xml:lang="en">asymmetry</prefLabel>
    <hiddenLabel xml:lang="en">/asymmetr\w*/</hiddenLabel>
    <hiddenLabel xml:lang="en">/nonsymmetric\w*/</hiddenLabel>
</Concept>

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#asymptoticbehavior">
    <composite 
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.transformationasymptoticbehavior"/>
    <composite 
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.totalcrosssectionasymptoticbehavior
"/>
    <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.space-
timeasymptoticbehavior"/>
    <prefLabel xml:lang="en">asymptotic behavior</prefLabel>
    <altLabel xml:lang="en">asymptotic behaviour</altLabel>
</Concept>

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#ATLAS">
    <prefLabel xml:lang="en">ATLAS</prefLabel>
</Concept>

<Concept rdf:about="http://cern.ch/thesauri/HEP.rdf#atmosphere">
    <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.nucleusatmosphere"/>
    <composite 
rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.neutrinoatmosphere"/>
    <composite rdf:resource="http://cern.ch/thesauri/HEP.rdf#Composite.muonatmosphere"/>
    <prefLabel xml:lang="en">atmosphere</prefLabel>
    <hiddenLabel xml:lang="en">/atmospher\w*/</hiddenLabel>
</Concept>

The thesaurus is actively maintained and enriched by subject specialists and BibClassify 
exploits the richness of the thesaurus to produce accurate results. 

In its basic form, BibClassify selects keywords from a fulltext document based on the 
frequency of thesaurus terms in it; by calculating how many times a keyword from the 
thesaurus (and its alternative and hidden labels) appeared in the text. Results are ranked 
accordingly. This simple term/document frequency ranking makes it easier for us to 
compare performance of the pattern matching. However, the systems differ considerably 
and BibClassify is not a simplistic token matcher. For example when selecting keywords, it 
gives preference to identified groups of tokens and filters out concepts which are not 

1 The specification of the SKOS language and various manuals that aid the building of a semantic thesaurus 
can be found at the SKOS W3C website. Furthermore, BibClassify can function on top of an extended 
version of SKOS, which includes special elements such as keychains, composite keywords and special 
annotations.

116



V. EVALUATION OF SEMAN

marked as “core concepts” or which are marked as “no standalone”2. The thesaurus thus 
effectively contains  simple disambiguating routines that work well for the specific subject 
domain.

It differentiates between single and composite concepts. In the majority of cases single 
concepts are made of single keywords. Nevertheless the difference is semantic. Humans 
tagged certain words or groups of words as single concepts, and these can be present in 
combinations with others. For simple concepts, one or more regular expression patterns are 
compiled and when compiling the regular expressions around the candidate terms, the basic 
rule is:

    (?:[^A-Za-z0-9\+-])( + candidate term + )(?=[^A-Za-z0-9\+-])

The word separator (in bold) differs from the standard regular expression for non-
whitespace character (\s) as it includes plus and minus signs (that in the case of HEP 
thesaurus terms cannot be regarded as whitespace). When compiling the regular 
expressions, BibClassify also performs a number of transformations. For instance it creates 
multiple patterns that match form variants, for illustration, if a word ends with following 
patterns:3 
"[^e]ed$"
"ics?$"
"[io]s$"
"ium$"
"less$"
"ous$"

It will not be searched in the case insensitive manner, but only first letter uppercase or 
whole expression lowercase will be allowed. So the candidate term electronics is 
converted into [Ee]lectronics?$. In the case of other patterns, the search will be case 
insensitive. There are also a number of patterns that deal with different word spellings, for 
example:

term               becomes:
--------------------------------------
"color"            r"colou?rs?"
"colour"           r"colou?rs?"
"deflexion"        r"defle(x|ct)ions?"
"flavor"           r"flavou?rs?"
"flavour"          r"flavou?rs?"
"gas"              r"gas(s?es)?"
"lens"             r"lens(es)?"
"matrix"           r"matri(x(es)?|ces)"

Certain invariable forms will be left unchanged if they contain patterns such as: "any", 
"big", "chi", "der", "eta", "few", "low", "new", "non", 
"off", "one", "out", "phi", "psi", "rho", "tau", "two", 
"van", "von", "hard", "weak", "four", "anti", "zero", "sinh" 
and many others.

2 I.e. those that must be accompanied by another concept

3 We do not list all the BibClassify patterns here.
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Also during the compilation of patterns, BibClassify will check for UPPERCASE 
candidate terms, they will be considered acronyms and patterns are always case sensitive. 
Similarly if the candidate term contains a digit, the pattern is unchanged – so rho(1980) 
will be searched as case insensitive rho(1980) but if there was no digit, the original 
pattern would have been changed in number of ways. This exemplifies the complex nature 
of the regular expressions automatically derived from the taxonomy. 

We should also not forget that the original candidate words may be changed to mimic 
stemming, so for example if the word ends with the following patterns, the final pattern 
will be changed to contain the expression from the second column:
"ional"                 "ional(ly)?"
"([ae])n(ce|t)$"        "\1n(t|ces?)"
"og(ue)?$"              "og(ue)?s?"
"([^aeiouyc])(re|er)$"  "\1(er|re)s?"
"([aeiouy])[sz]ation$"  "\1[zs]ations?"
"([aeiouy])[sz]ation$"  "\1[zs]ations?"
"([^aeiou])(y|ies)$"    "\1(y|ies)"
"o$"                    "o(e?s)?"
"(x|sh|ch|ss)$"         "\1(es)?"
"f$"                    "(f|ves)"
"ung$"                  "ung(en)?"
"([^aiouy])s$"          "\1s?"
"([^o])us$"             "\1(i|us(es)?)"
"um$"                   "(a|ums?)"

All the various adjustments are done to patterns of the single keyword entries but because 
also their combinations are matched, BibClassify will sometimes use special regular 
patterns or it will explore the immediate context and search for  combinations of the 
components up to a certain distance around single matches. And only certain patterns are 
considered as valid keyword separators, such as: "of", "of a", "of an", "of 
the", "of this", "of one", "of two", "of three",  "of new", 
"of other",  "of many", "of both", "of these", "of each", 
"is". If different tokens separate keywords, the matches will be rejected.

And finally we should mention that BibClassify will normalize the fulltext before 
processing – for example Greek alphabet characters that are used for mathematical 
expressions are replaced with their ascii names such as Sigma, or Lambda and dashes in 
the end of lines indicating word split will be merged. Citations and references to other 
papers will be removed from extraction. Empty spaces normalized and so on. As we can 
see, BibClassify contains a number of rules that were discovered with time and that aim at 
eliminating false positives and improve precision. It is a careful matching mechanism 
represented by the regular expressions automata and against this system the performance of 
SEMAN will be compared.
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V.1.2   Comparison
The corpora used in this task is made of 2084 fulltext documents randomly selected from 
the six physics related fields of the arXiv.org digital library.4 

The six groups are:

ID        arXiv codename     Name
------------------------------------------------------------------
0         astro-ph           Astrophysics
1         hep-ex             High Energy Physics - experimentation
2         hep-lat            High Energy Physics - lattices
3         hep-ph             High Energy Physics - phenomenology
4         hep-th             High Energy Physics - theory
5         math-ph            Mathematics - phenomenology

All the papers were drawn from a pool of documents classified by the arXiv section 
manager. They were given one main subject and possibly several additional categories. 
Such a multi-class corpus better represents the distribution of documents in a real life 
situation.5

For purposes of comparison, texts were normalized using routines present in BibClassify. 
Both BibClassify and SEMAN will use the same taxonomy with  3244 single and 56161 
composite concepts. By composite, we mean a concept that is made of a combination of 
simpler keywords. For the 3244 single keywords BibClassify creates 4167 regular 

4 The corpus files as well as the code are distributed together with SEMAN so that the measurements can 
be repeated.

5 The classification experiments with a corpus of single-category documents showed very high precision. 
I.e. the job of classification was too easy. As such a situation is highly improbable in normal 
circumstances the corpus was drawn from multiple-class documents.
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HEP corpus distribution
=================================
  .    0    1    2    3    4    5
=================================
  0  378    0    0    3    3    0
  1    0  365    2    6    1    0
  2    0    2  351   13   10    1
  3    3    6   13  351    3    0
  4    3    1   10    3  334    8
  5    0    0    1    0    8  305
=================================

Table 2: Distribution of files in the HEP corpus categories, the count  
in the diagonal shows the total number of documents in the category,  
the number outside the diagonal shows number of multi-class  
documents. For example there are 378 items in total for  
Astrophysics, 3 of them are also HEP phenomenology and 3 are  
HEP theory papers
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expressions. The number is higher because many concepts contain additional regular 
expressions. For the other composite keywords, there are 339 additional regular expression 
patterns – in total, BibClassify is working with 4506 compiled regular expressions which 
make for the rest of the 59405 entries.

While BibClassify reads the taxonomy from the RDF file, SEMAN generated it from the 
source files.6 The dictionary is generated automatically, without any human intervention. 
The entries are stemmed using the Porter stemmer, the original full form, and the stemmed 
and lowercased forms are both saved for further reference. The dictionary also contains all 
suffixes that were removed during stemming. The total number of entries for each category 
is shown below:

Mode Number of values Explanation

hsI 59405 Main keys

hsi 1085 Non-stemmed versions of synonyms

hsq 53082 Stemmed versions of the above

hss 165 Suffixes

total 113737

This shows, that the number of entries in the dictionary of SEMAN more than doubled. If 
we look at the number of patterns by their composite type, we will see the following:

single keywords 7699

keywords with 2 components 93584

keywords with 3 components 12438

keywords with 4 components 16

Due to the conversion problems for some documents and the way in which documents 
were selected for the run (with the same number of documents in each category for both 
BibClassify and SEMAN; we also use only the training part of the corpus, i.e. 80%), the 
run included 1682 documents. On the machine with the following specification:

Model Name: MacBook Pro
Memory: 4 GB
Processor Name: Intel Core i7
Processor Speed: 2.66 GHz
Number Of Processors: 1
Total Number Of Cores: 2
L2 Cache (per core): 256 KB

6 In principle, there is no difference in the contents, only that some fields are not exported into the RDF 
form. However, these fields are not used by any of the tool, therefore can be ignored. For purposes of our  
comparison the dictionary is identical.
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L3 Cache: 4 MB
Python: 2.6, 32bit
OS: Mac OS X 10.6

The two programs finished in the following time:

BibClassify SEMAN

Total time 9368.74s 1505.39s

Average time per document 5.57s 0.895s

The matcher such as BibClassify, is using regular expression patterns while searching for 
entries in the whole text. It must try all the expressions available. This explains the 
difference in speed of the two systems. If we were to increase the size of the dictionary the 
time of matching for BibClassify would increase linearly to the number of expressions. 
While for SEMAN the increase is sub-linear.

In the case of SEMAN most time is spent in matching the single keywords (which are 
groups of tokens of any length). As in this run we were not using any prefixes, the worst 
case would be basic words x suffixes combinations, i.e. 165 x 7534 = 1.270.335 
combinations. If there were 10 prefixes, this number would increase 10 times, but it is not 
uncommon to work with several hundred prefixes. In such cases the number of 
combinations is getting close to one billion. So how can we explain the fact that SEMAN is 
still more than 6 times faster than the regular expression matching?

The answer lays partly in the algorithm and partly in the regularity of the natural language.  
The theoretical number of combinations wildly surpasses any probable number of 
combinations of prefix-radix-suffix combinations present in the real language. Because the 
pattern matching inside SEMAN follows local constraints, the number of examined 
combinations is a fraction of the theoretical combinations.

However we have to see whether the two systems are comparable in terms of precision 
before we can conclude anything. Maybe SEMAN matches only a few patterns and thus 
spends less time searching and can finish faster. Or the results are not useful. To verify it, 
we will see the comparison of the keywords extracted from the corpus by BibClassify and 
by SEMAN with three different configurations. BibClassify represents the baseline and 
only keywords that were matched by one or the other extractor are counted in the 
comparison (to illustrate, the total number of patterns is 59405, but slightly less than 1/5 
were present in the testing corpus of 1682 documents).

In the case of SEMAN all tests were run on the corpus that was automatically POS tagged 
with ANNIE.  R1 represents results extracted by SEMAN using the default automatically 
generated and stemmed dictionary. When there was an ambiguous pattern (i.e. token that 
several definitions) the first meaning was automatically selected. R2 improves on the 
selection of the ambiguous matches using the POS tags, i.e. matches on verbs are 
discarded, adjectives are considered in combination with nouns, definitions of verbs are not 
used for translation of homograph nouns etc. The R3 set contains results using the same 
POS corpus after the SEMAN algorithm was corrected to correspond more closely to the 
way BibClassify operates. Because when BibClassify finds a match for a composite 
keyword, it will remove the single components of the composite keyword from the final 
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result set. The comparison shows correlation coefficients when using the default (non-
changed, automatically generated) dictionary, and when the first 50 and 100 most frequent 
patterns were manually checked and corrected.

We can see that the correlation between BibClassify and R1 is very low for the default, 
automatically generated dictionary. This poor result is mainly due to the automatically 
applied stemming. To illustrate this situation, consider the concept of relativity 
theory which in the thesaurus had relativity listed as a synonym. The automatically 
stemmed entries created by Porter stemmer were:

relativity → rel
relativity theory →  rel the

Which resulted in 8950 occurrences extracted, compared to the 90 recognized by 
BibClassify. This pattern is clearly wrong and matches erroneous entries:

relations (1909), relator (8), Relic (20), RELIC (4), rel (54), 
related (3), relators (12), relation (3167), RELATIONS (2), 
relates the (81), Relation (62), relational (2), Relics (2), 
Relative (107), RELATION (9), relation the (2), Related (59), 
related theories (1), relatives (7), Relativity (175), RELATED 
(2), Relating (2), Relating the (2), related theory (3), relics 
(43), RELATIVITY (4), RELATIVE (2), Relate the (1), relative 
(2158), relic (705), Relations (44), relate the (37), related the 
(6), relating the (52), relations the (6), relativity & 
relativity theory (- the rest)

After manually checking and fixing the ambiguous, most frequent pattens, results improved 
considerably as the table shows. We shall note that fixing the first 50 most ambiguous 
entries had considerable effect. The R2 column shows the effect of POS disambiguation, 
interestingly the correlation with BibClassify is slightly lower than against the R1/50 run, 
however, this could be explained by the fluctuation of patterns. When we changed the 
dictionary, for each run the extraction was different. So in the R1 run we had more deviant 
patterns in the first 50 entries than in the R2/50 run. And correcting them had more impact.

The R3 results exhibit other interesting behaviour. Firstly, the extraction algorithm was 
tweaked to more closely resemble BibClassify7 which resulted in higher correlation 
coefficient, in other words SEMAN works more like BibClassify. But results did not 
continue to improve after more wrong patterns were corrected – this is a rather puzzling 
result at first. It shows that more accurate patterns had an adverse effect on the correlation, 

7 As noted before, BibClassify will remove the elements of the composite keyword match from the final 
result set.
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Correlation R1 R2 R3
All patterns 0,666 0,746 0,843

0,770 0,802 0,872
0,813 0,811 0,835

50 most freq kws removed
100 most freq kws removed
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that SEMAN was then picking less keywords, being perhaps less forgiving. But recall that 
more than 10 thousand patterns are recognized by both system and the most diverging 
patterns are not always top most frequent ones. In fact, if we were able to sort patterns by 
the most significant difference between SEMAN and BibClassify, we could achieve 0.90 
correlation by fixing the first 64 entries and 0.92 after fixing the first 100 diverging 
patterns. But since in the normal cases we do not know which patterns differ most, we must 
simply look at the most frequent matches and pick the wrong extractions from the 
diagnostic information provided by SEMAN. However, in general SEMAN seems to 
recognize roughly the same number of patterns. Of course the precision could be greatly 
improved should we spent more time on tweaking the dictionary. After all, BibClassify 
contains number of hand-crafted rules that are there to improve the accuracy and filter out 
false matches.

On average, for each document SEMAN and BibClassify agree on 79.9% of  keywords – 
i.e. out of the all keywords that BibClassify found for each file, 79.9% of them were found 
in the same file by SEMAN. The missing 20.1% can be attributed to the following:

– BibClassify works with hidden regular expressions, for example D-brane contains 
also a regular expression /D[\dp][\s-]branes*/that matches D1-brane, 
D2-branes, Dp brane etc. Because SEMANs' dictionary was generated 
automatically, these patterns are missing. And this example also shows that for 
some cases, the regular expression pattern is more elegant than having the possible 
combinations listed in the dictionary; which is often the case for chemical and 
physical elements.8

– Both of the tools pick composite keywords differently, SEMAN searches around the 
matched keyword, up to certain distance, order is not important. If a composite 
keyword is found, its components are not available for further lookups (unless they 
make up part of other composite keywords)

– Finally, for BibClassify tokenization is not so important because it works with the 
whole plain text, but in the case of SEMAN incorrect tokenization has a big 
negative impact. For example, if the pattern K*(892) is split into 4 tokens, SEMAN 
must first join them into one token, and certain patterns are simply missed if the 
tokenization is not correct.

But for the purposes of comparison, we can conclude that the matching mechanism of 
SEMAN compares well to the regular expression engine matching. But built on the 
simplified morphological analysis and using the prefix-stem-suffix pattern it is also faster. 
The difference in speed will increase with the number of patterns. Because for BibClassify 
usually it is impractical or impossible to decide what pattern should be omitted from 
matching for a given text.9 

In SEMAN the matching is done differently (on nodes of a graph), and as it turns out the 
Information Extraction system inside GATE works the same way. Items are presented as a 
serialisable stream of tokens which allows for a greater degree of flexibility. Dedicated 
extraction workflows can be created for special cases while keeping the level of complexity 
relatively low. And the matching speed is superior to the regular expression matching 

8 The future version of the system should recognize certain classes of characters and expand them 
automatically; probably by generating entries automatically from the dictionary prescription.

9 And in fact, such optimisation would be a part of the regular expression engine.
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mechanism. Due to our ability to effectively apply caching. The following graph shows the 
impact of such a strategy on the processing of 20 000 documents with more than 1.6 
million unique tokens.

The graph shows the percentage of new tokens as they are discovered during the 
translation. It is apparent that for the first documents the ratio of new tokens is very high 
(100%), but quickly diminishes so that after the first 3000 documents, we have already 
seen more than 95% of all valid patterns. Which shows that after the first few thousand 
documents, the translation speed can increase considerably.

V.2   SEMANTIC AMBIGUITY

We have seen that the matching mechanism of SEMAN is to a large extent, at least in its 
results, comparable to the regular expression engine. Even with the automatically derived 
patterns, out of which only the first 100 most frequent were manually corrected, we were 
able to arrive at results that correlated closely with much more complete and sophisticated 
prescriptions of the BibClassify extractor. SEMAN is much faster, especially if the number 
of dictionary entries grows considerably.
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corpus of 20.000 documents
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However, more difficult challenges are ahead. Even if we can conclude that the matching 
mechanism works well – there is the problem of semantic ambiguity. Because it is one 
thing to be able to extract occurrences of certain patterns from the relatively narrow subject 
domain corpus, and quite another to select a correct concept out of several possible 
alternatives, even if we are not interested in understanding the meaning of sentences. But 
for content analysis to be reliable, we need to produce reasonably accurate data, therefore 
we have yet to establish how well can SEMAN cope with the problem of ambiguity.

For that purpose, I propose to look at the problem of an automated document classification 
where we can compare the performance of various combinations of the features, using 
unprocessed data as well as data that SEMAN offers. For this task we will use two corpora. 
The previously mentioned corpus of HEP fulltexts for which we possess the subject 
taxonomy. It will represent the domain specific collection of documents. And another 
corpus, much broader in its scope, a multidisciplinary collection called 20 Newsgroups.

The 20 Newsgroups data set10 is a collection of approximately 20,000 newsgroup 
documents, partitioned (nearly) evenly across 20 different newsgroups. The 20 newsgroups 
collection has become a popular data set for experiments in text applications of machine 
learning techniques, such as text classification and text clustering. Some of the newsgroups 
are very closely related to each other (e.g. comp.sys.ibm.pc.hardware / 
comp.sys.mac.hardware), while others are highly unrelated (e.g misc.forsale / 
soc.religion.christian). Here is a list of the 20 newsgroups, partitioned (more or less) 
according to subject matter:

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt
sci.electronics
sci.med
sci.space

misc.forsale
talk.politics.misc
talk.politics.guns
talk.politics.mideast

talk.religion.misc
alt.atheism
soc.religion.christian

In our case, the goal of the classification is, based on the features of a document, to choose 
the group to which the document belongs. We use the supervised learning and the state-of-
art classification engine based on support vector machines (SVM). They were shown to 
achieve the best results in the text categorization tasks (Hsu, C.-C. Chang, and C.-J. Lin 
2003; Joachims 1998; “SVM-perf: Support Vector Machine for Multivariate Performance 
Measures” n.d.) but also because SVM will allow us to work with very large number of 
features for reasons we will describe later. SVM is a popular technique for classification 
tasks that involve training and testing data. Each instance in the testing/training set contains  
one target value (class label) and several attributes (features). The goal of SVM is to 
produce a model which predicts the target value of the instance after inspection of its 
attributes. We will be comparing results of the classification based on plain text features 
against results of the classification based on SEMAN translated features. 

10 http://people.csail.mit.edu/jrennie/20Newsgroups/ 
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Given a training set of instance label pairs x i , yi  , i=1,. .. , l where x
i
∈Rn and 

y∈{1,−1}l the SVM require the solution to the following optimization problem:

min w ,b , 1
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subject to y
i
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,
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≥0

The training vectors x
i are mapped into a higher (maybe infinite) dimensional space by 

the function  . Then SVM finds a maximum margin hyperplane that best separates the 
training instances in this higher dimensional space – i.e. (all) the points of the opposite 
classes are at the greatest possible distance far away from the separating line. C0 is the 
penalty parameter of the error term and SVM works with various kernel functions. These 
allow the mapping of the the data points into a much higher- and possibly infinite-
dimensional inner product space in which it is possible to find a better separating 
hyperplane. It is thanks to these kernel trick mappings that SVM classification can be used 
for non-linear classification problems.

Many kernels exist and new ones are constantly researched, but the traditional ones are:

• linear K  x
i
, x

j
=x

i

T

• polynomial: K (x i , x j)=(Υ x i
T x j+r )d ,Υ>0

• radial basis function (RBF): K  x
i
, x

j
=exp − || x

i
−x

j
||rd ,0

• sigmoid: K (x i , x j)=tanh (Υ x i
T x j+r )

Where  , r , and d  are kernel parameters ( r is a constant trading off the 
influence of higher-order versus lower-order terms in the polynomial and sigmoid and the 
other constants  )

But for this task, we will use the SVM implementation coming from LIBLINEAR (Fan, K. 
W. Chang, Hsieh, Wang, et al. 2008) where the kernel function is replaced with a loss 
function called L1-SVM.

max (1− y iw
T x i , 0)2

The particular implementation of LIBLINEAR performs much faster than the traditional 
SVM kernel implementations and is specially suitable for the classification of documents 
with high number of features. In our case we have to deal with more than 100 thousands of 
them.
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For both corpora, we use the 1/10 split – ie. first a model is built using the training set of 
90% documents and the model is evaluated on testing set of 10% documents. The process 
is repeated 10 times, each time with a different testing and training sets. The results are 
averaged and we will report the precision, recall and the harmonic measure of the 
classification for each group.

Usually, the two metrics of precision and recall use two sets of data, one assigned by a 
human and the other assigned by algorithm. The first set is considered to be “correct” and 
is often called the “golden standard”. The results of the computation are then compared 
against this golden standard, precision (P) expresses the number of matching (positive) hits 
as a proportion hits that were retrieved, and recall (R) is the proportion of the correct hits 
that exist in the whole collection.

P= number of correct hits

number of retrieved hits

R= number of correct hits

number of relevant hits

The harmonic f-measure we use is then a harmonic mean (sometimes called F1 score)

F=2⋅ precision⋅recall

precision+recall

V.2.1   Feature selection and scaling
As is discussed in literature (Forman 2003, n.d.) the selection of features for classification 
may considerably influence the final results. However, as was shown by Forman as well, 
these conclusions are not so clear in the area of text categorization. In the experiments 
conducted by Forman, the different methods of feature selection bore less significant 
impact on the results of classification using SVM classifier. The selection was important 
mostly as a way to limit the computational time and memory resources.11  This might stem 
from the fact that SVM is designed to pick-up the most significant data points (the support 
vectors) that separate the document classes.  

This might be both blessing as well as curse in our case. Blessing, because we can use all 
the features that we have at our disposal for the classification task without having to select 
the most significant ones. So we want to compare two classification results that are based 
on two non-directly comparable data sets. It is perhaps apparent that a wrong feature 
selection in the case of one dataset could make the results of the second classification seem 
unjustly better. From this view it seems more appropriate to conduct no feature selection 
rather than introduce more errors into the comparison.

11 The cost of this approach is acceptable, as classification tasks finish quickly, however memory limitations 
are still a considerable issue. For the comparison, we were obliged to build a custom framework for 
feature selection and scaling, as it was not possible to use a more standard and known tools such as Weka 
(http://www.cs.waikato.ac.nz/ml/weka/). While Weka could work with no more than 20 thousand features, 
filling up 3GB of RAM, our custom framework had to handle at times more than 200 thousand features 
with much lower memory footprint.
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However, the curse of the comparison comes from the way in which SVM works. It is not 
easy to inspect the SVM model and find out which features had the greatest impact and 
why (recall that SVM will pick up the hyperplane that maximizes the distance from the 
data points after they were transformed into higher-dimensional space). The SVM trained 
model will represent the model trained on many features where only a certain number of 
these features is significant, but we do not know exactly which of them or what their 
combinations are. We can only compare the final results of the classification. Small 
differences will be hard to attribute, but trends and bigger disparities will speak more 
clearly.

So for the reasons outlined above it was decided that we will compare the results of the 
same classification task but use different features without filtering them. Nevertheless we 
still need to prepare them.

An intuitive way of determining document features is by focusing on terms according to 
their frequency – those that appear most frequently are perhaps more important. However, 
this view is too simple as certain terms appear too often and provide no additional 
information. To give more weight to the candidates that are more important, the inverse 
document frequency (IDF) scale is employed. IDF weights the term according to its 
frequency in the whole corpus, so that the very frequent terms become less important and 
the relatively rare terms possess more discriminative value. Then the traditional TF×IDF 
statistics combines the two measures into a single term metric. Given a candidate token t in 
a document d ,  TF×IDF computes the following:

TF × IDF= freqt , d 
∑i

freqti , d 
×−log2

nt

N

where freq(t,d) is the occurrence count of term t in document d, n t is the number of 
documents with token t and N is the total number of documents in the corpus. The first 
component in this expression is the term frequency, or the normalized frequency of term t 
in document d. The second is the negative logarithm of the inverse document frequency, 
which is larger for less frequent tokens.

There exist many similarity measures for vectors, such as the Dice or Jaccard coeficient for 
binary vectors, however cosine is by far the most popular in information retrieval and also 
in many other areas. In order to compute the similarity of the vectors, and because cosine 
for normalized vectors is a dot product of the vectors, we normalize the TF×IDF based 
vectors. The vector is normalized when its unit length according to the Euclidean norm 
equals one.

∣x∣=∑
i=1

n

x i
2=1

As for the normalized vectors, because cosine is the dot product, we can use the Euclidean 
distance to measure similarity between the documents in this vector space. (Christoper D. 
Manning and Schuetze 1999, 301)

∣x−y∣=∑
i=1

n

xi− y i2
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This normalization is also important for the SVM classification. For the purpose of 
classification, we will create a document matrix consisting of vectors with values in the 
document space – by document space we mean all features that are present in the corpus of 
the documents. The resulting matrix will be sparse and each data point is a real number 
(n<1). But there is a difference in the dimensionality of the resulting matrix. While for the 
classification task that is based on the plain text, we will have potentially as many features 
as there are unique tokens in the corpus12, so the resulting matrix can be very big. Also 
errors in parsing or neologisms increase the vector space.

On the other side, the document space of the features that are produced by SEMAN is 
limited by the size of the taxonomy. In the case of SEMAN, by the number of core semes 
or the compound semes. Thus the vector space is considerably smaller. The question is 
whether this reduced space is better, or comparable to the vector space produced from the 
plain text features.

V.2.2   The comparison
The table below and its accompanying graph contains an interesting story of the data 
processed with the USL. In this case we do not yet look at the final set of results, but we 
compare pre-liminary results of classification using certain combination of features to see 
how they influence the overall final score and also the differences inside the categories. 
This comparison used 0.8/0.2 split, the training set contained 16.000 documents, while the 
evaluation set hold the remaining 4 thousand documents from the 20 Newsgroup corpus. A 
cross-evaluation was not conducted (yet), but the table can illustrate the range of 
challenges.

12 Because we do not group the tokens, even if we potentially could. For example by using latent semantic 
analysis. But we do not do so intentionally because the goal is to compare results of the analysis using 
plaintext features against SEMAN translated features.
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The combination of features in this run is the following (it should be understood that 
whenever the term scaled features is used, it is the normalized cosine similarity as 
described above):

• C1 plaintext: features are roughly the words of the text

• C2 plaintext lowercase: as above, but we limit the number of features by 
disregarding case differences

• C3 plaintext binary: instead of the cosine similarity, the data points are either ones 
or zeros (vector length is not equal one)

• C4 No-POS scaled: translation using only semes, automatically selecting the first 
concept if several translations are possible 

• C5 POS-disambiguated scaled: the disambiguation uses POS information

• C6 POS-disambiguated binary: as previous but data points are simply zeros or ones

• C7 fullsemes + semsplit/ scaled: the features are made of composite semes as well 
as individual semes (counting both the aggregate and core terms)
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Group/test C1 C2 C3 C4 C5 C6 C7 C8

alt.atheism 0.7123 0.6803 0.7162 0.5457 0.6577 0.6839 0.6797 0.7327

comp.graphics 0.7527 0.7590 0.7430 0.5938 0.6242 0.5946 0.6275 0.6843

comp.os.ms-windows.misc 0.8267 0.8069 0.8344 0.6216 0.6776 0.7059 0.7332 0.8202

comp.sys.ibm.pc.hardware 0.7692 0.7874 0.7794 0.5867 0.6513 0.6308 0.6842 0.7727

comp.sys.mac.hardware 0.8522 0.8678 0.8545 0.6479 0.7198 0.7484 0.7929 0.8843

comp.windows.x 0.8412 0.8254 0.8311 0.6918 0.6988 0.6762 0.7123 0.8367

misc.forsale 0.8901 0.8716 0.8954 0.7763 0.7808 0.7940 0.8367 0.8874

rec.autos 0.9200 0.9259 0.9163 0.8489 0.8501 0.8701 0.8780 0.9508

rec.motorcycles 0.9383 0.9140 0.9387 0.8222 0.8757 0.8635 0.8780 0.9284

rec.sport.baseball 0.9562 0.9682 0.9511 0.8300 0.8912 0.8929 0.9574 0.9577

rec.sport.hockey 0.9654 0.9546 0.9546 0.8737 0.8843 0.8914 0.9262 0.9476

sci.crypt 0.8820 0.8808 0.8628 0.8035 0.8224 0.8277 0.8660 0.8856

sci.electronics 0.7815 0.7703 0.7764 0.5976 0.6030 0.6027 0.7039 0.7510

sci.med 0.8835 0.8772 0.8625 0.7870 0.8110 0.8344 0.8710 0.9024

sci.space 0.8950 0.9079 0.8859 0.8179 0.8577 0.8879 0.9139 0.9152

soc.religion.christian 0.8954 0.8808 0.8924 0.8087 0.8515 0.8388 0.8827 0.9103

talk.politics.guns 0.8215 0.8237 0.8182 0.7449 0.7628 0.7861 0.8258 0.8301

talk.politics.mideast 0.9017 0.9017 0.9017 0.8356 0.8277 0.8140 0.8760 0.8960

talk.politics.misc 0.5932 0.5595 0.5870 0.5189 0.5718 0.6138 0.5949 0.6042

talk.religion.misc 0.7115 0.7051 0.7179 0.5364 0.5718 0.6069 0.6477 0.7471

Microaverage

precision 0.84 0.834 0.837 0.715 0.751 0.759 0.795 0.843

recall 0.84 0.834 0.837 0.715 0.751 0.759 0.795 0.843
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• C8 Fullsemes + words / scaled: the features include semes and where seme is not 
available, then words

The first three columns of the table show results of the multi-label classification using only 
the plaintext features – any token which is present in the document will be used by the 
SVM for the classification. The first column displays results of the classification using the 
frequency count of the token scaled by the cosine. The second column shows an interesting 
variation in the results, when fulltext features were normalized, using only the lowercase 
form, the number of features decreased considerably – we do not draw any conclusions 
here, because the set was not cross-validated – but it is interesting to note the negative 
effect on the accuracy of the final results. It is true that in four categories we achieved best 
results using the lowercased normalized form, but the difference did not seem large and 
after this initial run, it was decided to use plaintext without normalization. Overall, the first  
set fared better by only 0.12%.

The third column represents another interesting variation to the first row-set. This time the 
features are not normalized, neither scaled, but the presence of a feature is simply marked. 
As we can see, the scaled feature classification is generally more accurate than the binary 
features, yet the differences (in this test run) were not dramatic – only 0.07% – thus even if 
we decided to use the most accurate method for a comparison with the classification on 
semes, it should be noted that the binary features represent the interesting variant which is 
computationally easier as no cosine scaling is needed. This finding is in line with the 
results reported in (Hopkins and King 2010; King, Knowles, and Melendez 2010) where 
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also the presence or absence of a feature is counted without measuring the relative 
importance – the weight of the feature. Though it might seem counterintuitive, the 
experimental results repeatedly show good performance.

All the remaining columns then represent results somehow influenced by the process of 
translation. The fourth column (C4) shows classification when only semes are used – ie. the 
text is processed, the appropriate matching tokens and groups of tokens are identified, 
translated into semes and only the semes are used for classification. But we did not attempt 
to select the appropriate translation for a pattern that matched the token. Because the 
WordNet lists several definitions of the term, and the system is not able to decide on the 
most appropriate one, we use all of them. Such an approach results in added ambiguity and 
the SVM machine is in fact incapable of finding the most distinctive feature vectors for 
classification. Clearly, this method is the simplest and it does produce the worst possible 
results. 18 out of 20 groups achieved the lowest accuracy, overall only 71.50%. 

However this result is very interesting on its own. We can observe the effect of introducing 
more ambiguity into the data (by inclusion of all possible translations). And we can see the 
change from 'the-worst procedure', towards improvements when some sort of 
disambiguation was employed.

The next column presents the results after the part-of-speech disambiguation. In particular, 
we are using only nouns, adjectives and adverbs for the purpose of classification. The 
number of definitions (semantic composites used) decreased by more than 20% and with it 
also the artificially induced ambiguity. The SVM is able to identify support vectors better 
and we have reached the 75% accuracy. As is discussed in (Schrodt 2009; Schrodt and 
Gerner n.d.) this level of accuracy is acceptable for certain content analysis applications. 
When we think of the fact that no special processing (besides the POS tagging, which 
SEMAN incorporates) was needed, this option might seem attractive. Especially if we 
recall that only a very limited set of tokens is used for classification, the number of features 
is lower by more than 50%. On the other hand, the comparison with the previous column 
also shows that without incorporating the NLP technology, the usefulness of SEMAN 
decreases rather significantly.

It is interesting to observe that the cosine scaling has an effect on the final accuracy, but at 
the same time the simple presence or absence of a sem (feature) is a good indicator and 
SVM is able to use it for the purpose of classification. In this case it meant an increase of 
overall precision by 0.8%. This is not surprising because the features are selected from the 
limited set of pre-defined words. Thus presence or absence of a feature in this narrower 
space may be a somewhat stronger indicator of a category than in the case of plain text 
features, which are potentially much more numerous than semantic features.

As we can see classification based only on the semantic features obtained the worse results 
if no disambiguation was employed, and improved by 9% to almost the magical range of 
80% when a more careful sense disambiguation was employed. I was curious whether a 
more complete sense disambiguation could improve the results even further. To test this, I 
have used the word sense disambiguation (WSD) software by Pedersen (Pedersen and 
Kolhatkar 2009). While many variants of the WSD exist and the Pedersen's solution is not 
the most accurate, it achieves substantial F-Score of 76.02% over general domain corpus 
and the algorithm itself finished as the second best in the SemEval0713 competition. 
(Kolhatkar 2009) But while not being state-of-art, still we can reasonably expect that it 

13 http://nlp.cs.swarthmore.edu/semeval/tasks/index.php
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does a much better job than a simple disambiguation based solely on POS information. 
Unfortunately, the cost of running the WSD on a relatively small corpus of 20 thousand 
documents is very high. A small cluster of eight machines was working for 32 hours just on 
the disambiguation task. So this option is not viable for the real life tasks, but it may 
provide interesting comparison.

Microaverage Macroaverage

Precision Recall Precision Recall

Semes 0,8174 0,8174 0,8199 0,8174

Semes* 0,8070 0,8070 0,8070 0,8070

The table above summarizes the results of classification after the WSD method was 
employed. We are using only the seme features in the classification and indeed the results 
improved by almost 2%. The second row, marked as “Semes*”, shows an interesting 
variation to the processing when the last element of the concept definition was removed. 
For example the last element from the definition of the concept car as in the example 
below :

car = entity
        physical_entity
          object
            whole
              artifact
                instrumentality
                  container
                    wheeled_vehicle
                      self-propelled_vehicle
                        motor_vehicle
                          car

If we remove the last element (car) the definitions are thus more general, more objects are 
clustered together and this results in decreased accuracy. This is valuable observation for 
the task of document classification but in the case of content analysis studies, we often 
want the details to be suppressed. In this case, we continued using the unabridged 
definitions that gave us 2% increase in the accuracy. Yet the cost of this improvement is 
indeed high, and the procedure of WSD makes whole procedure too slow. It is obvious we 
cannot use it in the real-life application. But it is good to know that there is a space for 
improvement in better disambiguation and the direction clearly goes into more precise 
assignment of meaning. But it is questionable whether we could achieve bigger gains with 
better and smarter disambiguation algorithms. To see why, we have to look more closely at 
the corpus we are translating. 

Number of files: 19618
Total number of tokens: 5382275
Number of translated tokens: 2050193 (38.1%)
Multi token expressions recognized: 33868
Average number of tokens per doc: 274.35
Number of tokens translated/doc: 104.51
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From the statistics above we can see that there are almost 5.4 million tokens but only 38% 
of them recognized and translated into the semantic codes. The average number of tokens 
per document is also rather low because the corpus is made of newsgroup messages that 
tend to be shorter and made of reactions on some previous replies.

So if we use only the semes for classification, it is quite possible that many messages 
contain very little information. It is actually surprising that we were able to achieve almost  
80% accuracy given such ratio of translation (or 82% with the more elaborate word sense 
disambiguated corpus). However, we may be close to the limits of accuracy and further 
improvements may not be easy to obtain, certainly not if we do not have enough data for 
every document or when the translation rate is low. And that will often be the case with 
content analysis studies in which the research is focused on a pre-defined variables 
omitting all the rest. 

Nevertheless, our test is still valid. The preliminary results show that the accuracy of 
classification improves when we employ the POS disambiguation techniques, and as 
expected, it improves even further if word sense disambiguation is applied. 

Because WSD is prohibitively expensive, we will not use it for cross-evaluation. Instead 
our focus is directed towards comparison of results from three datasets. We will compare 
the classification that uses scaled plaintext features (a baseline for comparison) against  the 
classification that is using only semes, and finally the classification that is based on the 
combination of semes and plaintext features. And we will report results for both corpora, 
the High Energy Physics papers and the 20 Newsgroups. All the numbers reported below 
are computed with 1/9 split, cross-validated across the whole corpus. Discussion follows 
the results.

V.2.2.1   HEP corpus 

Classification that used plain text features only:

========================================================================
  class   accuracy        precision       recall          fscore
========================================================================
    1.0   0.968306010929  0.915851831624  0.896167702274  0.899704228865
    2.0   0.945901639344  0.845513485885  0.832473118280  0.833114882782
    3.0   0.967213114754  0.912607085972  0.905125653782  0.905881037602
    4.0   0.896721311475  0.69195076879   0.637663416285  0.647404952567
    5.0   0.910928961749  0.716733180612  0.730740651799  0.727272378357
    6.0   0.955737704918  0.839964727110  0.911623775564  0.896046606180
========================================================================
microaverage:
precision: 0.822404
recall: 0.822404

macroaverage:
precision: 0.820439
recall: 0.818967

confusion matrix:
=========================================
    .   1.0   2.0   3.0   4.0   5.0   6.0
=========================================
  1.0  55.4   0.8   0.0   1.8   3.2   0.6
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  2.0   0.6  51.0   0.0   9.2   0.2   0.2
  3.0   0.2   0.8  59.2   2.6   1.6   1.0
  4.0   2.8   7.8   3.6  37.0   6.4   0.4
  5.0   1.6   0.2   2.2   3.2  42.6   8.6
  6.0   0.0   0.0   0.0   0.0   5.4  55.8
=========================================

Classification that used semes only:

========================================================================
  class   accuracy        precision       recall          fscore
========================================================================
    1.0   0.965217391304  0.890801257967  0.907992918985  0.904209667538
    2.0   0.948405797101  0.841617947930  0.862514483169  0.856107023853
    3.0   0.962318840580  0.880873873029  0.911067278798  0.904569552113
    4.0   0.889275362319  0.684631751227  0.569027161662  0.588327339490
    5.0   0.899710144928  0.689191841962  0.673469152597  0.675093119523
    6.0   0.939710144928  0.795411355897  0.863831782196  0.848283214879
========================================================================
microaverage:
precision: 0.802319
recall: 0.802319

macroaverage:
precision: 0.797090
recall: 0.797985

confusion matrix:
=========================================
    .   1.0   2.0   3.0   4.0   5.0   6.0
=========================================
  1.0  53.2   0.6   0.0   1.8   1.6   1.4
  2.0   0.8  50.4   0.6   6.0   0.4   0.2
  3.0   0.2   1.0  55.8   2.6   0.6   1.0
  4.0   3.0   8.0   4.4  31.2   7.2   1.0
  5.0   2.2   0.2   2.2   4.0  36.8   9.4
  6.0   0.4   0.0   0.4   0.2   6.8  49.4
=========================================

And finally classification based on semes or plain text features (when semes are not 
available):

========================================================================
  class   accuracy        precision       recall          fscore
========================================================================
    1.0   0.972173913043  0.923059185503  0.913805996053  0.915147664359
    2.0   0.949565217391  0.862409998182  0.836738624762  0.839823333183
    3.0   0.966376811594  0.901411032396  0.911590204747  0.908566356542
    4.0   0.901449275362  0.707159307258  0.657353101608  0.666329170249
    5.0   0.915362318841  0.733111473193  0.744959621275  0.741576664152
    6.0   0.957681159420  0.853799936023  0.905574232590  0.893842915910
========================================================================
microaverage:
precision: 0.831304
recall: 0.831304

macroaverage:
precision: 0.830160
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recall: 0.828339

confusion matrix:
=========================================
    .   1.0   2.0   3.0   4.0   5.0   6.0
=========================================
  1.0  53.2   0.6   0.0   1.4   2.4   0.6
  2.0   0.6  48.6   0.2   8.2   0.2   0.2
  3.0   0.2   1.0  56.0   2.8   0.8   0.6
  4.0   2.4   6.2   3.4  36.0   6.4   0.4
  5.0   1.4   0.2   2.4   2.8  41.2   7.4
  6.0   0.0   0.0   0.2   0.0   5.2  51.8
=========================================

And the aggregate view on the comparison of the three sets using the f-score:
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Category Text
0.8997 0.9042 0.9151

hep-ex 0.8331 0.8561 0.8425
hep-lat 0.9059 0.9046 0.9099
hep-ph 0.6474 0.5883 0.6701

0.7273 0.6751 0.7489
math-ph 0.8960 0.8483 0.8956

Precision 0.8224 0.8023 0.8342
Recall 0.8224 0.8023 0.8342

Precision 0.8204 0.7971 0.8326
Recall 0.8190 0.7980 0.8310

Sem SemText
astro-ph

hep-th 

Microaverage

Macroaverage

Illustration 26: Comparison of the classification results that were based on different datasets
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V.2.2.2   The 20 newsgroups corpus

Due to formatting issues, we will present the aggregate views first.
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Illustration 27: F-measure for the document classification of 20  
Newsgroups

Category Text Sem SemText
alt.atheism 0.8759 0.8702 0.9135
comp.graphics 0.8092 0.7774 0.8466
comp.os.ms-windows.misc 0.8299 0.7512 0.8588
comp.sys.ibm.pc.hardwar 0.7975 0.7239 0.8096
comp.sys.mac.hardware 0.8638 0.8005 0.8949
comp.windows.x 0.8837 0.8108 0.9055
misc.forsale 0.8620 0.8367 0.8812
rec.autos 0.9004 0.8834 0.9280
rec.motorcycles 0.9389 0.9166 0.9436
rec.sport.baseball 0.9475 0.9494 0.9733
rec.sport.hockey 0.9581 0.9562 0.9726
sci.crypt 0.9160 0.9395 0.9531
sci.electronics 0.8230 0.7948 0.8604
sci.med 0.9034 0.9061 0.9244
sci.space 0.9178 0.9189 0.9424
soc.religion.christian 0.9092 0.8769 0.9255
talk.politics.guns 0.9061 0.9120 0.9414
talk.politics.mideast 0.9490 0.9404 0.9630
talk.politics.misc 0.8657 0.8576 0.8981
talk.religion.misc 0.8406 0.8428 0.8712

Microaverage
Precision 0.8851 0.8851 0.9105
Recall 0.8851 0.8851 0.9105
F-score 0.8851 0.8851 0.9105

Macroaverage
Precision 0.8868 0.8658 0.9122
Recall 0.8851 0.8633 0.9105
F-score 0.8860 0.8646 0.9114



Illustration 28: Aggregate view on the document classification for 20 Newsgroups corpus
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Details by class:
=======================================================================
  class        accuracy       precision          recall          fscore
=======================================================================
    1    0.988955823293  0.907143805719  0.868646464646  0.875901195562
    2    0.979267068273  0.779618322021   0.81723891981  0.809233712835
    3    0.982630522088  0.824265772538  0.832494949495  0.829899874466
    4    0.979016064257  0.785226103624  0.801414141414  0.797484344986
    5    0.986495983936  0.867195033015  0.863199340342  0.863773402962
    6    0.988855421687  0.894637648971  0.881444444444  0.883744612662
    7     0.98483935743  0.832618362789  0.869864151721  0.862036992037
    8    0.989859437751   0.89746234518  0.901626262626   0.90043989812
    9    0.994779116466  0.960769483975  0.933727272727   0.93893180529
   10     0.99437751004  0.939237436237  0.949808080808  0.947535238122
   11    0.995532128514  0.951751381549  0.959878787879  0.958141683194
   12    0.992520080321  0.938077983863  0.910858585859  0.915968944275
   13    0.982831325301  0.836865064337  0.820464646465  0.823005425113
   14    0.990813253012  0.915764882371  0.900717171717  0.903363536359
   15    0.992570281124  0.936015480691  0.913555555556  0.917819804719
   16    0.988403614458   0.85994008218  0.923563182849  0.909160846994
   17    0.989307228916  0.878568680392  0.913585858586  0.906071614625
   18    0.994979919679  0.951446718494  0.948747474747  0.949029829853
   19     0.98765060241  0.888879275279  0.860414141414  0.865722361043
   20    0.986596385542  0.890991105369  0.831141414141  0.840552102942
=======================================================================

Classification that used plain text features only:

microaverage:
precision: 0.885141
recall: 0.885141

macroaverage:
precision: 0.886824
recall: 0.885120
confusion matrix:

============================================================================================================================
   .   1.0   2.0   3.0   4.0   5.0   6.0   7.0   8.0   9.0  10.0  11.0  12.0  13.0  14.0  15.0  16.0  17.0  18.0  19.0  20.0
============================================================================================================================
   1  86.6   0.6   0.2   0.0   0.0   0.0   0.1   0.2   0.1   0.1   0.0   0.2   0.1   0.7   0.6   3.9   0.3   0.7   1.4   3.9
   2   0.2  81.4   4.2   3.1   1.5   3.8   1.3   0.3   0.2   0.2   0.2   0.5   1.0   0.2   0.5   0.0   0.4   0.1   0.3   0.2
   3   0.0   3.2  83.0   5.5   2.2   2.2   0.7   0.1   0.0   0.0   0.1   0.1   1.0   0.1   0.3   0.3   0.3   0.0   0.2   0.4
   4   0.0   3.6   5.1  79.9   3.7   1.0   2.3   0.5   0.1   0.2   0.0   0.2   2.6   0.3   0.1   0.0   0.1   0.0   0.0   0.0
   5   0.2   1.4   2.6   3.2  85.8   0.3   2.6   0.2   0.1   0.2   0.1   0.3   1.7   0.2   0.0   0.1   0.0   0.1   0.1   0.2
   6   0.1   5.4   2.2   1.2   0.3  87.8   0.5   0.0   0.0   0.2   0.0   0.1   0.8   0.3   0.2   0.2   0.1   0.0   0.1   0.1
   7   0.1   0.4   1.0   2.1   1.7   0.1  86.2   2.1   0.7   0.1   0.3   0.3   2.1   0.3   0.5   0.5   0.3   0.0   0.1   0.2
   8   0.0   0.3   0.2   0.7   0.1   0.2   2.0  89.9   1.5   0.3   0.2   0.0   2.3   0.7   0.1   0.2   0.6   0.0   0.4   0.0
   9   0.0   0.3   0.1   0.0   0.1   0.1   1.8   2.1  93.0   0.2   0.0   0.1   0.4   0.3   0.1   0.2   0.2   0.2   0.2   0.2
  10   0.2   0.3   0.0   0.2   0.1   0.3   0.6   0.0   0.0  94.7   2.3   0.0   0.1   0.1   0.0   0.2   0.2   0.0   0.3   0.1
  11   0.1   0.4   0.0   0.1   0.2   0.1   0.2   0.1   0.2   1.7  95.7   0.1   0.1   0.0   0.0   0.0   0.2   0.1   0.2   0.2
  12   0.3   1.6   0.7   0.1   0.2   0.5   0.3   0.1   0.0   0.3   0.2  90.8   1.4   0.3   0.2   0.2   1.4   0.0   0.9   0.2
  13   0.3   1.9   0.6   4.1   2.0   0.4   2.1   2.3   0.1   0.3   0.1   1.4  81.8   0.9   1.0   0.2   0.0   0.0   0.1   0.1
  14   0.4   1.2   0.0   0.6   0.5   0.4   0.5   0.7   0.2   0.7   0.3   0.2   1.2  89.8   1.0   0.2   0.7   0.3   0.7   0.1
  15   0.7   1.2   0.2   0.3   0.2   0.3   1.0   0.1   0.0   0.3   0.2   0.5   0.8   1.3  91.0   0.4   0.4   0.0   0.2   0.5
  16   1.8   0.3   0.2   0.3   0.0   0.2   0.4   0.2   0.0   0.4   0.1   0.0   0.0   0.7   0.4  91.9   0.3   0.6   0.4   1.3
  17   0.2   0.3   0.3   0.1   0.2   0.2   0.3   0.7   0.2   0.4   0.1   0.7   0.3   0.0   0.1   0.0  91.0   0.6   3.2   0.7
  18   0.6   0.2   0.0   0.1   0.2   0.1   0.2   0.3   0.3   0.4   0.1   0.4   0.0   0.2   0.1   0.8   0.2  94.4   0.8   0.1
  19   1.1   0.2   0.1   0.1   0.0   0.0   0.2   0.3   0.1   0.1   0.3   0.9   0.2   1.0   0.5   0.8   5.1   1.5  85.7   1.4
  20   2.6   0.3   0.2   0.2   0.1   0.2   0.2   0.1   0.0   0.1   0.3   0.0   0.2   0.8   0.5   7.3   1.9   0.7   1.1  82.8
============================================================================================================================



=======================================================================
  class        accuracy       precision          recall          fscore
=======================================================================
    1    0.987957852484  0.891908338063  0.865585858586  0.870165673917
    2    0.976869041646  0.763108085306  0.781414141414   0.77735137871
    3    0.973858504767  0.732415428331  0.757121212121  0.751204542144
    4    0.970697441044  0.698504233401  0.731242424242  0.723943206466
    5    0.979277471149  0.788779684158  0.804252525253  0.800545438945
    6    0.981886603111  0.825788471101  0.807599876314  0.810798707844
    7    0.983542398394  0.834713030879  0.837636363636  0.836683554174
    8    0.988058203713  0.879612723121  0.884686868687   0.88341682283
    9    0.992373306573  0.934516742996  0.912707070707  0.916594015773
   10    0.994731560462   0.94566682551  0.950868686869   0.94940923324
   11     0.99633718013  0.974410036225  0.951898989899  0.956172146464
   12    0.994430506774  0.951308976218  0.936797979798  0.939519358921
   13    0.980180632213  0.810708573362  0.791434343434  0.794752904751
   14    0.991419969895  0.925273157198  0.901747474747  0.906090900732
   15    0.992674360261  0.937292041746  0.914606060606  0.918854298535
   16     0.98554942298  0.835876688779  0.888545454545  0.876895252628
   17     0.98986452584  0.884524563169  0.919676767677  0.912004509976
   18    0.994330155544  0.948104707828  0.938848484848  0.940409482414
   19    0.986452584044  0.872599403025  0.854383838384  0.857622208471
   20    0.986151530356  0.881335372379  0.834800659658  0.842798287485
=======================================================================

Classification that used semes only:

microaverage:
precision: 0.863322
recall: 0.863322

macroaverage:
precision: 0.865823
recall: 0.863293
confusion matrix:

============================================================================================================================
   .   1.0   2.0   3.0   4.0   5.0   6.0   7.0   8.0   9.0  10.0  11.0  12.0  13.0  14.0  15.0  16.0  17.0  18.0  19.0  20.0
============================================================================================================================
   1  86.3   0.0   0.0   0.1   0.2   0.0   0.0   0.3   0.0   0.1   0.1   0.3   0.1   0.4   0.4   5.0   0.2   1.2   1.4   3.6
   2   0.1  77.9   5.7   2.2   2.7   5.2   1.0   0.2   0.1   0.5   0.1   0.6   1.7   0.4   0.7   0.2   0.0   0.0   0.1   0.3
   3   0.0   5.3  75.5   7.2   2.7   4.2   0.6   0.3   1.0   0.2   0.0   0.0   1.2   0.2   0.6   0.0   0.1   0.0   0.4   0.2
   4   0.0   2.6   8.4  72.9   6.6   1.2   2.7   0.4   0.0   0.1   0.1   0.3   3.4   0.3   0.1   0.1   0.3   0.0   0.0   0.2
   5   0.0   1.7   1.7   8.1  80.1   1.1   3.5   0.3   0.1   0.0   0.0   0.1   2.2   0.2   0.1   0.0   0.0   0.0   0.3   0.1
   6   0.1   5.8   6.6   1.8   0.7  80.2   0.7   0.0   0.3   0.1   0.1   0.3   1.2   0.2   0.5   0.1   0.1   0.1   0.1   0.3
   7   0.3   0.8   1.5   2.6   2.1   0.3  83.5   2.6   0.7   0.6   0.1   0.3   2.6   0.4   0.5   0.1   0.2   0.1   0.3   0.1
   8   0.0   0.4   0.6   1.0   1.2   0.3   2.1  88.2   1.9   0.4   0.0   0.1   1.5   0.1   0.2   0.2   0.5   0.2   0.5   0.3
   9   0.1   0.1   0.1   0.2   0.4   0.3   1.5   3.2  91.0   0.4   0.1   0.0   0.7   0.4   0.4   0.1   0.5   0.0   0.1   0.1
  10   0.1   0.3   0.1   0.2   0.2   0.3   0.2   0.5   0.1  94.8   1.1   0.0   0.3   0.4   0.0   0.2   0.2   0.0   0.4   0.3
  11   0.1   0.2   0.2   0.3   0.0   0.4   0.5   0.0   0.5   1.5  94.9   0.0   0.1   0.0   0.2   0.0   0.3   0.1   0.3   0.1
  12   0.1   0.7   0.5   0.7   0.2   0.9   0.1   0.0   0.1   0.1   0.0  93.4   1.3   0.1   0.0   0.2   0.7   0.1   0.4   0.1
  13   0.1   2.5   1.1   5.0   2.3   1.1   1.9   2.8   0.2   0.4   0.2   1.1  78.9   0.8   0.4   0.4   0.1   0.1   0.1   0.2
  14   0.5   0.9   0.3   0.6   0.8   0.6   0.3   0.7   0.4   0.6   0.2   0.1   1.1  89.9   0.6   0.3   0.9   0.0   0.8   0.1
  15   0.9   1.6   0.4   0.5   0.5   0.4   0.5   0.1   0.2   0.1   0.0   0.2   0.5   1.1  91.1   0.4   0.2   0.1   0.7   0.1
  16   3.3   0.5   0.2   0.4   0.4   0.2   0.2   0.1   0.3   0.0   0.1   0.1   0.4   0.5   0.0  88.5   0.3   0.6   0.8   2.7
  17   0.4   0.0   0.0   0.1   0.3   0.1   0.2   0.2   0.3   0.1   0.0   0.7   0.1   0.3   0.2   0.2  91.7   0.4   3.9   0.5
  18   1.1   0.2   0.1   0.2   0.2   0.0   0.2   0.1   0.1   0.2   0.2   0.2   0.1   0.3   0.2   0.8   0.2  93.6   1.1   0.6
  19   0.9   0.3   0.2   0.2   0.2   0.2   0.4   0.5   0.2   0.1   0.0   0.4   0.0   1.1   0.7   0.9   5.5   1.4  85.1   1.3
  20   2.5   0.4   0.2   0.2   0.1   0.2   0.0   0.0   0.0   0.1   0.1   0.0   0.2   0.1   0.3   8.5   1.9   0.8   0.8  83.1
============================================================================================================================



=======================================================================
  class        accuracy       precision          recall          fscore
=======================================================================
    1    0.992222779729  0.934549948872  0.908757575758   0.91350404526
    2    0.982890115404  0.814030571136  0.855575757576  0.846565976643
    3    0.985047666834  0.843254871919  0.863595959596  0.858802407148
    4    0.981083793276  0.813152592256  0.809454545455  0.809588922439
    5    0.989563472153  0.897713835825  0.894646464646  0.894854587424
    6     0.99071751129    0.9097833921  0.904757575758  0.905490173943
    7    0.986803813347  0.853391973073  0.888636363636  0.881173872231
    8    0.992574009032  0.923126281502  0.929747474747  0.928036669699
    9    0.995183140993  0.964022417812  0.938838383838  0.943635635355
   10     0.99708981435  0.967694812191  0.974909090909  0.973329862702
   11    0.997691921726  0.984075931178  0.969898989899  0.972574507215
   12    0.995885599599  0.967591608244  0.949828282828  0.953106817668
   13    0.986051179127  0.861198122052  0.860636363636   0.86043596784
   14    0.993226292022  0.943870785497  0.919797979798  0.924361772091
   15    0.994731560462  0.954137546197  0.939645846217   0.94237404204
   16    0.990416457602  0.882396993256  0.937747474747  0.925460525671
   17    0.993125940793  0.918299773179  0.947676767677  0.941368720087
   18     0.99633718013  0.964973764457  0.962848484848  0.962988940513
   19    0.990868038133  0.923978480887  0.892363636364  0.898091807593
   20    0.989563472153  0.923563213983  0.860840032983   0.87122847588
=======================================================================

Classification based on semes or plain text features (when semes are not 
available):

microaverage:
precision: 0.910537
recall: 0.910537

macroaverage:
precision: 0.912241
recall: 0.910511

confusion matrix:
============================================================================================================================
       1.0   2.0   3.0   4.0   5.0   6.0   7.0   8.0   9.0  10.0  11.0  12.0  13.0  14.0  15.0  16.0  17.0  18.0  19.0  20.0
============================================================================================================================
   1  90.6   0.1   0.0   0.1   0.0   0.0   0.3   0.1   0.0   0.0   0.0   0.1   0.1   0.2   0.3   4.0   0.0   0.4   0.6   2.8
   2   0.0  85.3   3.9   2.2   1.2   3.3   1.0   0.0   0.2   0.2   0.1   0.3   0.6   0.4   0.7   0.1   0.0   0.0   0.1   0.1
   3   0.0   3.8  86.1   4.7   1.2   2.0   0.8   0.0   0.0   0.0   0.0   0.0   0.6   0.1   0.2   0.0   0.1   0.0   0.0   0.1
   4   0.0   2.7   6.1  80.7   2.9   1.1   2.4   0.1   0.0   0.1   0.1   0.2   2.7   0.2   0.1   0.1   0.1   0.0   0.0   0.1
   5   0.1   1.7   1.0   2.4  89.2   0.5   2.6   0.1   0.1   0.0   0.0   0.0   1.5   0.1   0.0   0.1   0.1   0.0   0.2   0.0
   6   0.0   4.1   2.4   0.9   0.1  90.2   0.5   0.1   0.2   0.1   0.0   0.0   0.4   0.1   0.2   0.0   0.1   0.1   0.0   0.2
   7   0.1   0.7   0.6   2.5   1.2   0.1  88.5   2.0   0.4   0.2   0.0   0.1   2.1   0.2   0.4   0.1   0.2   0.0   0.0   0.2
   8   0.0   0.2   0.0   0.6   0.2   0.3   1.9  92.7   1.2   0.1   0.2   0.0   1.5   0.1   0.0   0.1   0.2   0.2   0.2   0.0
   9   0.0   0.1   0.1   0.1   0.1   0.2   1.4   2.4  93.6   0.2   0.1   0.1   0.4   0.5   0.1   0.0   0.1   0.1   0.1   0.0
  10   0.0   0.1   0.0   0.1   0.2   0.2   0.3   0.1   0.0  97.2   0.8   0.0   0.2   0.0   0.1   0.2   0.1   0.0   0.0   0.1
  11   0.0   0.3   0.0   0.0   0.1   0.2   0.2   0.1   0.1   1.1  96.7   0.0   0.1   0.2   0.0   0.0   0.2   0.1   0.1   0.2
  12   0.3   0.7   0.6   0.5   0.0   0.4   0.2   0.0   0.1   0.0   0.0  94.7   1.1   0.2   0.0   0.1   0.6   0.0   0.2   0.0
  13   0.1   1.2   0.4   3.8   1.6   0.1   2.2   1.4   0.1   0.3   0.0   1.1  85.8   0.7   0.5   0.2   0.1   0.0   0.0   0.1
  14   0.3   0.9   0.4   0.3   0.5   0.3   0.3   0.5   0.3   0.4   0.2   0.0   1.2  91.7   0.6   0.2   0.6   0.0   0.8   0.2
  15   0.5   1.7   0.2   0.2   0.3   0.1   0.4   0.1   0.0   0.1   0.0   0.1   0.5   0.8  93.5   0.1   0.4   0.0   0.5   0.0
  16   1.6   0.5   0.1   0.1   0.0   0.1   0.2   0.2   0.3   0.0   0.1   0.1   0.2   0.3   0.1  93.4   0.2   0.4   0.7   1.0
  17   0.0   0.1   0.1   0.0   0.1   0.0   0.4   0.0   0.2   0.1   0.0   0.5   0.2   0.1   0.0   0.1  94.4   0.2   2.6   0.5
  18   0.3   0.3   0.1   0.0   0.3   0.0   0.1   0.2   0.1   0.2   0.0   0.3   0.0   0.1   0.1   0.5   0.2  95.9   0.6   0.3
  19   0.9   0.1   0.1   0.1   0.1   0.0   0.0   0.4   0.1   0.1   0.0   0.3   0.2   0.7   0.7   0.4   4.0   1.4  88.8   1.1
  20   2.2   0.4   0.1   0.1   0.2   0.1   0.0   0.0   0.1   0.1   0.0   0.0   0.3   0.5   0.4   6.6   1.2   0.7   0.8  85.7
============================================================================================================================



V. EVALUATION OF SEMAN

We can notice that, as in the first corpus, results based purely on the semes are less accurate 
than the plain text features. What is positive though is that the difference is often only 2% 
and we are using only 30% of text features. What is even more positive is the fact that the 
combined dataset made of semes and plain text features (when semes are not available) 
again outperforms the baseline classification. From this we can conclude that the 
translation of words into the semantic codes is relatively accurate even if only POS 
information is used. This result cannot be stressed enough. It means that without a 
complicated and expensive disambiguation procedures, we can use the standard, state-of-
the-art POS tagging and achieve actually a better performance than the purely text based 
classification. This is perhaps not so important in the context of the document 
classification, but it means a lot for content analysis application. Based on this results, we 
can expect that even in a multi-domain corpus, SEMAN will be able to code the tokens 
with a reasonable level of accuracy.

V.2.3   Search for significant combinations
So far we were able to establish that the pattern matching mechanism is faster than the 
regular expression matching mechanism but its results comparable. The automated 
document classification showed that results depend on the quality of translation and the 
disambiguation mechanism. But we were able to obtain for our application acceptable level 
of accuracy using relatively simple but available POS disambiguation. This compensated 
for the ambiguity of multiple concepts and in fact, the classification that combined the 
translation with the plaintext features  was always superior to the classification based on 
plain text tokens, even if significantly only for the second corpus. Nevertheless, we could 
see that the previous stages gave us relatively accurate results and the process of token 
translation, if prepared carefully, did not introduce unacceptable levels of noise into source 
data. 

The last piece of missing information is about our ability (or inability for that matter) to 
discover the interesting combination of concepts in the text that was enriched by thousands 
of semantic codes. By 'interesting' we mean the combinations of semantic codes that are 
significantly different from the values we would expected in normal situations14. We shall 
use the collocation discovery mechanism that was described in the previous chapters and 
find out whether it also applies to the translated corpora. Recall that the corpus was 
considerably changed by the inclusion of multiple concept codes. They are not strictly 
linear as the normal text and they alone account for additional millions of combinations in 
the case of large collections. Having said that, only a few of the combinations will be 
interesting to us so it is indeed a search for a needle in the haystack.

Since it would be difficult to evaluate the collocation search against corpora that are 
usually used in the collocation search (and which do not contain semantic information), we 
will prepare two synthetic benchmarks – first using a randomly generated corpus, and the 

14 And normal, to continue, is in turn anything that we want to use as a basis for finding the 'strange', 
'unnormal' distribution.
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second one based on a real translated corpus. Both of the tests should look at how well the 
collocation discovery mechanism works. We will evaluate the results then using the 
standard metrics of precision of recall.

In the case of our tests, first a dictionary of an imaginary language is created (for this task it 
had the vocabulary size of 100.000) and the distribution of the language units follows the 
Zipf law. Using the dictionary, we are creating a corpus of 20000 documents, each 
containing a randomly selected number of sentences with 5 to 20 words per sentence. The 
documents are relatively short, spanning the range of 50 to 400 words per message. Words 
are selected randomly which results in a relatively very high number of unique collocations 
– more than it would have been in the real language corpus where certain combinations just 
do not happen. 

The taxonomy used for the purpose of translation is also generated automatically. It is built  
from 3000 core semes that are randomly combined to build a complete dictionary of 7 000 
compound semes; thus our taxonomy contains 10 000 unique concepts. These are assigned 
in a completely random fashion to the tokens of the dictionary until the ratio of translated 
words is covered. In this experiment we have a dictionary of 100 000 tokens, the taxonomy 
contains 10 000 concepts and the ratio of translation is set to 0.5 – this means that 50 000 
tokens will get assigned translation, some of them will share the same definition, some of 
them will contain only one definition. Thus we also simulate the situation of synonymy 
where certain words have the same meaning and certain words have no translation at all 
(despite they should have if we were assigning semantic tags to all patterns).

Before the translation starts, we select a number (200) of pairs from the language model. 
They are chosen randomly and we do not have control over how many of them also contain 
semantic codes (but additional parameter can be used to enforce how big portion of these 
tokens must have semantic codes. If no concept definition is present, it is automatically 
generated – in our experiment, we set this ratio to be 50%). We thus have the model of our 
language, the dictionary and the taxonomy used for translation. We proceed to the 
translation of the previously generated corpus of 20 000 documents. We will read the 
randomly generated corpus and whenever we encounter a token that belongs to one of the 
significant pairs, the other pair will be inserted somewhere around the position of the first 
element. This position is randomly selected, in the range of 1 to 5 tokens – i.e. there can be 
up to 5 other tokens between the first and the second element of the significant pair. 

After the original and the translated corpus were generated, we proceed to the collocation 
discovery. The reported results are averaged from the batch of 10 runs, where for each run 
the corpus as well as the language model was completely regenerated. 

There exist two modes of collocation search that we discussed in the previous chapter 
IV.4.4.We can base our search on a better understanding of the collection of documents - 
for example we have at our disposal corpora of similar or relevant messages that deal with 
the same topics as the corpus in which we are interested. We can thus build a better 
approximation (model) of the expected frequencies and their combinations using such data. 
Or we may simply want to compare a corpus A against a new corpus B and highlight the 
important differences, which is also possible.

In a perhaps more difficult scenario we do not possess prior information and cannot build 
the statistical model of the collection and this will be focus of our evaluation. The null  
hypothesis (to be tested against the real data) will based on the observed frequencies. It has 
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the generic form of: f(AB) = f(A) x f(B) – which says that the expected frequency of a 
cooccurence is made of a joint frequency of its components, for more details see previous 
chapter IV.4.4, p. 92. This assumption is certainly wrong, as language is not random, but at 
the same time is used successfully in many linguistic tasks where it was proven satisfactory 
(Hopkins and King 2010; Christoper D. Manning and Schuetze 1999, 237). We will have 
the opportunity to compare this approach of cooccurence search against both the randomly 
generated corpus (for which it should be naturally more suitable) as well as against the 
corpus based on the real language.

As for the corpus based on real language, we use the publicly available version of the well-
known Reuters-21578 "ApteMod" corpus for text categorization. ApteMod is a collection 
of 10,788 documents from the Reuters financial newswire service, partitioned into a 
training set with 7769 documents and a test set with 3019 documents.  The total size of the 
corpus is about 43 MB.15

The distribution of categories in the ApteMod corpus is highly skewed, with 36.7% of the 
documents in the most common category, and only 0.0185% (2 documents) in each of the 
five least common categories. In the ApteMod corpus, each document belongs to one or 
more categories.  There are 90 categories in the corpus.  The average number of categories 
per document is 1.235, and the average number of documents per category is about 148, or 
1.37% of the corpus.

The procedure for the collocation search is similar with the previous corpus. The selection 
of 200 significant pairs is done randomly, but we disregard words that occur too often as 
well as words whose occurrence is rare. The limit is applied to the list of words from the 
corpus, sorted by frequency and we randomly select significant pairs only from the slice 
that covers 1.5%-30% of the list. Doing this, we remove words from the first and the 
second order category of the Zipf law, as well as most of the tokens that occur less than 5 
times. The search for the significant cooccurences is then conducted in the same way as for 
the first corpus, with average pairs recreated each time and results averaged.

V.2.3.1   Results

We will start by presenting the results from the search on the randomly generated corpus 
using the observed frequencies null hypothesis. The precision and recall reported here 
concerns the list of the first 5000 most significant pairs as selected by the algorithm. The 
chart shows results in bins of 100 items each.

15 It is also available for download from http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html, 
which includes a more extensive history of the data revisions.
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The results above include both pairs made of tokens (words) as well as combinations of 
semes (semantic relations). We can filter out all the semantic relations and look only at 

word pairs (ie. to see whether there is a difference between the relationships discovered 
from the text and those that are based on the enriched semantic information). See 
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Illustration 30: Random corpus looking only at the words,  
ignoring the semantic relations

Illustration 29: Results from the processing of the average corpus  
using the default null hypothesis
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Illustration 30 above.

The previous chart just shows that the portion of word pairs is a fraction of the significant 
pairs, however the token pairs are clustered towards the beginning of the list. As we 
continue to retrieve more results, the frequency of word pairs decreases steadily and later 
we retrieve mostly the semantic pairs. This is correct, as the semantic pairs are more 
numerous, while for the word pairs the precision decreases slowly. In the overall picture 
(for all pairs) it decreases sharply and after the first 1000 results it is at 20%, which is 
rather low.

The second batch of tests was executed on the Reuters21578 corpus. We can observe a 
slightly different situation. The precision starts at 85% and continues to raise as we harvest 

more results, to be highest around 1000 pairs. The curve of the recall is almost diagonal 
which means we are retrieving very high number of positive hits with every step – even if 
the overall recall is 'only' 70%; thus were are not able to get all the 4883 valid and 
significant pairs in the list of the 5000 retrieved pairs. Nevertheless, values for both metrics 
are relatively very high.

If we look at the same run again, but this time filtering out all the semantic pairs and 
leaving only words as they appear in the corpus, we would see the following results. The 
recall is very low, about 6% in the first 5000 combinations, which means all the other 
relevant combinations retrieved in the previous steps are semantic pairs. The distribution of 
the words pairs is also different from the distribution of the semantic pairs.
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Illustration 31: Precision and recall for the Reuters corpus, in the  
search for significant pairs based on the expected values computed  
from the source corpus
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V.2.3.2   Discussion

We can observe that on the Reuters corpora the first several hundred pairs contain more 
than 85% of the significant pairs and this precision actually increases long after the first 
1000 combinations were discovered. This result is probably due to the different distribution 
of words that is less random than the first corpus. This is not a bad news for us, but for 
certain applications also the 70% precision of the automatic null hypothesis search could be 
acceptable and useful. 

If the Reuters corpus exhibits less entropy than the randomly generated one and outliers are 
easier to detect, the number of pairs that we need to test for statistical significance is also 
lower. In the case of the randomly generated corpus, where we searched for the 
cooccurences in the distance w=5, the system had to inspect on average 5 million potential 
pairs per run. In the case of the Reuters corpus, which contained roughly a similar ratio of 
translated tokens, the number of pairs that needed to be inspect was lower - slightly more 
than 1 million pairs per run. In the case of the randomly generated corpus, which is about 
40% bigger, the difference is a factor of two and will grow in a linear fashion with the size 
of the corpus. But in the case of the real language data, it is unlikely that the number of 
cooccurences grows linearly because the language is not random and exhibits rather strong 
consistency. 
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Illustration 32: Precision and recall statistic if we look only at  
words (ie. ignoring the semantic concept relations altogether). The  
recall is considerably lower because words make only a small  
portion of all significant pairs
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This last part of the search is arguably the slowest of the whole pipeline because SEMAN 
takes time in building the indices (and there are two of them if we use the reference 
collection) so it has to inspect millions of pairs to select the significant ones. To inspect one 
million of them takes 16 minutes on the reference machine16, which may not be optimal for 
large collections and by large we mean corpora of several million documents. However, we 
could limit the search only to the semes and their combinations. Thus we can process even 
large corpora because semes usually account for less than 40% of the text. For a small and 
medium sized collections the processing times can be counted in dozens of minutes or 
hours. We can also limit the number of inspected pairs by a simple heuristic of frequency. 

The time spent in the computation is basically dependent on the parameter f which filters 
out combinations based on frequency of the individual components. If we want to cover all 
possible combinations we must set f=(0.0,1.0) but this means we will search too many 
combinations and most of them too infrequent to be scored as significant. The following 
chart shows how precision and recall change. The sweet spot in the Reuters21578 corpus 
was in the range of collocations where both elements are present in at least 0.3% of corpus, 

which translates to roughly 3 documents. As the table below shows, the f=(0.0003;1) will 
limit the number of pairs that have to be inspected to less than one quarter of all possible 
pairs. Without impairing recall, we can limit the computation time significantly.

16 See the machine specification in V.1 The pattern matching mechanism, p. 115
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Illustration 33: Number of pairs retrieved for inspection  
based on parameter f (this run does not represent the  
averaged f-measure values, but is representative for the ratio  
of retrieved pairs and the general trend of the f-measure  
curve)

f(x;0.025) F-measure Ratio of pairs # of pairs

0 0.614684 1 4506645

0.0001 0.614684 1 4506645

0.0002 0.614684 0.4180382524 1883950

0.0003 0.614684 0.2188592623 986321

0.0004 0.611973 0.1250011927 563336

0.0005 0.611973 0.1250011927 563336

0.0006 0.605791 0.0753893417 339753

0.0007 0.59363 0.0472322537 212859

0.0008 0.576321 0.0306534018 138144

0.0009 0.576321 0.0306534018 138144

0.001 0.544783 0.0205332348 92536

0.0011 0.499859 0.0140958518 63525

0.0012 0.448236 0.0098669853 44467

0.0013 0.41519 0.0070067645 31577

0.0014 0.41519 0.0070067645 31577

0.0015 0.390745 0.0050731753 22863

0.0016 0.350589 0.0037102989 16721

0.0017 0.308377 0.002731522 12310

0.0018 0.308377 0.002731522 12310

0.0019 0.276041 0.0020332198 9163

0.002 0.243025 0.001456294 6563

0.0021 0.203579 0.0009987474 4501

0.0022 0.203579 0.0009987474 4501

0.0023 0.131999 0.0006252989 2818

0.0024 0.071752 0.0002851345 1285
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But results that were reported for each corpus correspond to f=(0.0005,0.5), in other words 
we inspect only pairs that are present in at least 0.05% of documents which in the case of 
the random corpus translates to 10 documents and in the case of Reuters21578 corpora to 
slightly more than 5 documents. This could partially explain the differences between the 
two corpora. In the case of the random corpus where the precision starts at 85% and then 
sharply decreases, it is because some of the ambiguous cases were previously filtered out 
by the frequency criteria. In the case of the Reuters21578 corpus, we cover more pairs, and 
less of them were filtered out by the f parameter. So while using the frequency filter can 
improve the precision and decrease the processing time considerably, we will necessarily 
loose certain combinations and the recall will inevitably be lower.

Finally the two plots showing the precision and recall of only the words   (Illustrations 30 
and 32) demonstrate that the system is able to find word pairs but also the semantic 
relationships. In fact, words represent only 6% of all possible and valid cooccurences. The 
semantic pairs were found as well and the performance of that search did not diminish – 
though the distribution and expected values of the semantic codes is very much different 
from the distribution of tokens. And this even if certain semantic codes are used in many 
thousands of other concept combinations. The translation is not always perfect and we face 
also considerable levels of synonymy – which means that the distribution of the semantic 
codes is quite a lot different from those of the words. Nevertheless, identification of a great 
part of the relevant and statistically significant semantic cooccurence pairs is still feasible.
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Illustration 34: Plotting the ratio of inspected pairs 
against the f-measure
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VI. CONCLUSIONS

The work in this thesis focused on the evaluation of the idea of Universal Semantic 
Language (USL) in the context of content analysis. We have demonstrated that it is 
possible to transform the concept of USL into a working application and showed that USL 
can be used to analyze corpora of textual documents. The real application of this research 
lays in the ability of the system to translate texts written in the natural language into the 
collection of semantic codes in which we can search for interesting semantic 
relationships. Such analysis has practical use in many problems that include processing of 
textual data and extraction of new facts from big corpora. 

Firstly, we have reviewed the historical background of the USL and compared it with 
semantic fields, semantic primitives, and semantic primes and universals of Kant and 
Wierzbicka. The concept of the lattice which is often present in a description of meaning is  
not a new one. It is used in many applications of semantic analysis and is well understood. 
However, the meaning itself is more difficult to formalise. What is possible to do, though, 
are operational definitions. They consist of a definition of the meaning that is perhaps not 
universally acceptable, but is applicable to a specific domain. This approach is adopted by 
researchers in the language processing as well as in content analysis. And the content 
analysis studies are the selected field of interest for us. Though we did not exclude the 
possibility that researchers may one day embrace the idea of global and universally 
acceptable semantic primitives.

Secondly, we have reviewed the basic methodological requirements for the construction of 
content analysis studies, with a special focus on the operationalisation of concepts 
(knowledge representation). The second chapter described the elements of content analysis 
and relation of the theory to the tool we build, but we also saw the practical implications in 
the example of three content analysis tools that are widely used by the content analysis 
community. These tools served the purpose of comparison with the application we 
developed.

We have described the architecture and the components of the new application. It can 
operate in similar ways to the classical content analysis tools, but also in a special mode 
which takes advantage of the USL processing. This mode, together with the state-of-the-art 
natural language processing components, constitute the main difference between SEMAN 
and the other classical content analysis tools. But building the system itself was not the 
main aspiration of the thesis. We had to evaluate whether it was possible to extract useful 
information from the textual corpora with USL. 
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To achieve this goal, we have evaluated several components. First the pattern matching 
mechanism which is different than the usual mechanisms employed in similar software 
tools. We have compared SEMAN against a mature  keyword extractor system on a corpus 
of High Energy Physics documents. In the default configuration our system achieved 0.7 
correlation coefficient but after the first 50 and 100 most frequent patterns were manually 
checked and fixed, the correlation coefficient rose up to 0.87. SEMAN provided 
information about matches and based on it we could correct many of the obvious mistakes. 
The correction of the first 100 wrong entries took less than 2 hours and the number of 
incorrect matches diminished gradually as we processed the list starting with the most 
frequent patterns. It would be possible to achieve even higher correlation, but only with 
greater investment of time and energy. The reference system used specialized patterns 
designed specifically for the target domain. SEMAN, on the other hand, used the generated 
dictionary with the automatically stemmed entries. 

The experiment showed it was possible to use the existing external sources of knowledge 
representation, such as dictionaries, thesauri, classification systems. The structure of the 
USL makes it rather easy to convert the existing sources into the language of USL – as was 
also done in the case of WordNet. Yet WordNet transformation also pointed to limitations 
of the current form of USL representation. Its strictly linear form (flat data structure of the 
SEMAN dictionary) is not the ideal mechanism for storage of acyclic knowledge 
representation data. The editor that we developed for dictionary maintenance makes 
operations somewhat easier, but the principal problem remained. While it is not impossible 
to represent the acyclic relations in the form of linear entires, it is not exactly the best 
solution for WordNet (or other more advanced knowledge data represented in USL). 

The pattern matching mechanism is an important component of SEMAN but it was not the 
only part we tested. Next we have looked at the more serious problem of semantic 
ambiguity in the process of translation. We have described the experiment of automated 
document classification in which we used the different sets of data. One more uniform 
corpus containing longer papers from the domain of High Energy Physics. On this corpus 
we used the domain specific thesaurus. The other corpus contained twenty thousands news 
postings and for its translation we have used the general-domain WordNet.

The experiment confirmed that a wrong translation has strongly detrimental effect on the 
final results of classification. When a certain pattern had several definitions and we used all 
of them in the classification, we have observed the worst possible performance of all the 
combinations. This confirms the importance of correct disambiguation. We cannot say yet 
whether the trend would change, were we to use much bigger document corpora, but it 
seems reasonable to expect that the entropy introduced by an incorrect translation is very 
dangerous.

We have therefore shown that the results of classification improved with better word sense 
disambiguation. Unfortunately, most of the automated word sense disambiguation routines 
will be too costly in terms of CPU time. Thus we concentrated on a search for a simpler 
disambiguation techniques that use linguistic information. We have seen that 
disambiguation based on the POS information did improve results of classification 
considerably. The scores of document classification that was based purely on semantic 
features were lower than the plain text feature classification, but the f-measure improved in 
general from the range of 70% to 90%. In fact, we could see that if we used the semantic 
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features together with words (when the semantic translation was not available) the 
document classification produced the best results. This led us to the conclusion that the 
translation did not introduce more entropy into the source data. 

We can assert that for certain applications such an operational mode is more than 
acceptable. Especially if we process bigger collections of data where we can disregard the 
individual errors. The second experiment has shown us two important things. First, that we 
can avoid the costly word sense disambiguation. Even without constructing the 
complicated dictionary patterns it is possible to achieve levels of accuracy of more than 
80%, which is the level of accuracy that was reported satisfactory for at least one of the 
content analysis tools that we described (TABARI). Secondly, the amount of information 
translated into the semantic codes, even if we used one of the biggest available semantic 
networks, accounted for less than 40% of the texts. For these reasons SEMAN allows 
researchers store plain text and enhance it with the semantic codes (but it can also store 
only the semantic codes: this operational mode might be more suitable for  big collections).

The final part of the evaluation focused on our ability to recognize and retrieve the 
significant combinations of concepts from the text. For this we constructed two synthetic 
benchmarks, one modelled randomly with the Zipf distribution which is characteristic for 
natural languages, the other benchmark used real texts. We have seen that in the case of the 
random corpus, SEMAN was able to retrieve 70% of significant combinations in the list of 
the first few hundred results and the precision slowly decreased. In the case of the real text 
corpus, the performance was much better (85%) and  even increased for the first 1000 
entries up to the level of 95% to again slowly decrease as we harvested more pairs. 

This part of the experiment showed us that it was possible to recognize and retrieve the 
combinations of semantic codes that are statistically significant – even if we store texts and 
the semantic codes together and conflate two distributions. But since the words are related 
to their meaning and if the process of disambiguation did not introduce too much 
ambiguity into the source data, we could expect the mechanism to work properly. We have 
concluded from the exercise that SEMAN can recognize and extract the combinations of 
significant semantic codes from corpora of textual messages. But of course, the task of 
interpretation of these results is in the hands of humans.

Though we can conclude SEMAN has potential, we shall mention its weak parts. Perhaps 
the biggest limitation of this type of applications is the cost associated with the production 
of consistent knowledge representation. The cost might be mitigated if we reuse the 
existing sources of knowledge, or automatically extract the knowledge from the existing 
unstructured and semi-structured information resources such as Wikipedia. But even if we 
do so, it should be noted that many modern information extraction systems need not work 
with any prescribed knowledge representation. They can extract useful information directly 
from the corpus of documents, such as Latent Semantic Analysis (LSA). In this respect the 
approach that we worked on and we described belongs to the paradigm that is not 
particularly popular in the research. Perhaps one day the pendulum swings back towards 
the knowledge representation systems with manually prepared data, but in the current stage 
the very existence and necessity of the dictionary represents the biggest stumbling block.

Provided we have means to overcome this knowledge bottleneck, future research can be 
focused on the visualisation of the data extracted from the texts. The automated processing 
of textual data opens doors to many interesting applications and visualisation of even 
simple relationships may prove very insightful. In the current stage, we focused only on the 
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discovery of combinations of two concepts. However it might be even more interesting to 
look at concept trigrams or even much larger groups. And finally, we should definitively try 
to analyse whether there exist differences between users of different languages in the way 
which knowledge categories they apply. We should test in a rigorous manner the hypothesis 
of Anna Wierzbiczka which says that there exists something that we call semantic 
universals, and that people are similar in the way they think. Any confirmation or refutation 
of such a hypothesis may have far reaching consequences.
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VIII.3   INSTALLATION INSTRUCTIONS

SEMAN is released as open-source software under the BSD license. The installation 
instructions and documentation for SEMAN is available at the following address: 
http://code.google.com/p/newseman/ 

The source code repository contains a branch marked “thesis” with the code and data that 
were used for writing the thesis.
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