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ABSTRACT

Sand flies (Diptera, Phlebotominae) are small biting insects and vectors of Leishmania
spp. which cause medically and veterinary important disease — leishmaniasis. During the
piercing of the host skin, sand fly females inject saliva to facilitate the blood feeding. The
sand fly saliva is composed of many bioactive molecules which were shown to possess
anti-inflammatory and anti-haemostatic functions. The saliva affects host’s immunity in
the bite site and consequently enhances the survival and development of transmitted
pathogens.

Most of the studies focus on salivary proteins and enzymes of sand flies belonging to
Phlebotomus and Lutzomyia genera, while salivary proteins from sand flies of the third
genus Sergentomyia were neglected so far. In this thesis we focused on comparison of
salivary proteins from two Phlebotomus species, namely Phlebotomus perniciosus and
Phlebotomus orientalis, and Sergentomyia schwetzi. These sand fly species differ not only
by the ecology and geographical distribution but also by host preferences. Both
Phlebotomus species prefer large or medium-size mammals as the bloodmeal source,
particularly rabbits, hares and dogs for P. perniciosus and cattle, goats, sheep and humans
for P. orientalis. Contrarily, Sergentomyia sand flies are known for preferred feeding on
reptiles but mammal biting behaviour was also reported.

In the first part of this thesis we characterised main salivary proteins from S. schwetzi.
Moreover, to reveal the adaptation on different hosts, we compared salivary proteins from
two S. schwetzi lineages adapted to feeding either on geckos or on mice. To do so we used
various studying approaches, particularly transcriptome sequencing, RNA-seq, proteome
analysis by mass spectrometry and enzyme assays. We identified S. schwetzi homologues
of all main sand fly salivary protein families. Interestingly, we detected secreted salivary
ribonuclease, the enzyme previously found only in mosquitoes. The lineage comparison
revealed higher hyaluronidase activity and higher expression of PpSP15-like protein in
saliva of the lineage adapted to mice while the comparison of the proteome showed six
proteins more abundant in saliva of lineage adapted to geckos.

The second part of the thesis was focused on salivary yellow-related proteins (YRPs),
which are known to bind host’s biogenic amines. We expressed P. perniciosus,
P. orientalis and S. schwetzi YRPs in mammalian expression system and compared their
amine-binding properties by microscale thermophoresis method and for P. perniciosus and

P. orientalis also by in silico 3D structure modelling. Our analysis showed that each YRP



homologue has different binding abilities. Importantly, we demonstrated that one YRP
from each of both Phlebotomus species, P. perniciosus and P. orientalis, had high binding
affinity to serotonin, biogenic amine which affects host’s platelet aggregation and
vasoconstriction. Contrarily, two YRP homologues from S. schwetzi do not possess
binding function to any of the tested biogenic amines, suggesting their possible adaptation
to reptile hosts.

In the last part of this Ph.D. thesis we revealed utilisation of recombinant YRP from
P. perniciosus (PpeSP03B) as universal marker of exposure for dogs, which can be used in

various endemic sites across the western half of Mediterranean basin.

VI



ABSTRAKT

Flebotomové (Diptera, Phlebotominae), drobny krevsajici hmyz, jsou zndmi piedev§im
jako ptenaseci protist z rodu Leishmania, které zptisobuji medicinsky i veterinarn¢ dilezité
onemocnéni — leishmanidozu. Béhem sani samice vypoustéji sliny do hostitele, coz jim
umoznuje snadnéjsi sani krve. Biologicky aktivni latky obsazené ve slinach flebotomii maji
protizanétlivé ucinky a schopnost ovlivnit hemostaticky systém hostitele, ¢imz zabranuji
srazeni krve. Sliny také ovliviiuji imunitu hostitele v misté sani a zvySuji tak
pravdépodobnost ndkazy riiznymi patogeny, které flebotomové mohou prenaset.

Slinné proteiny byly doposud zkoumany ptedevsim u druhi flebotomu patticich do roda
Phlebotomus a Lutzomyia, zatimco flebotomové rodu Sergentomyia byli po dlouhou dobu
ptehlizeni. Proto jsme se v této disertacni praci zaméfili na porovnani slinnych proteinil
druhit Phlebotomus perniciosus a Phlebotomus orientalis se slinnymi proteiny druhu
Sergentomyia schwetzi. Zminéné druhy se 1i$i nejen ekologii a zemépisnym rozsifenim, ale
1 preferenci hostitele. Oba druhy rodu Phlebotomus uptednostiuji jako hostitele savce
vétsiho ¢i stfedniho vzristu. Phlebotomus perniciosus saje predevsim na krélicich, zajicich
a psech. Phlebotomus orientalis dava piednost sani na vétSich savcich, jako jsou kravy,
kozy, ovce a ptipadné 1 lidé. Oproti tomu zastupci rodu Sergentomyia preferuji jako
hostitele plazy, nicméné bylo pozorovano jejich sani i na savcich.

V prvni ¢ésti této prace jsme se zamefili na charakterizaci slinnych proteint S. schwetzi
a jejich porovnani mezi dvéma liniemi tohoto druhu flebotoma, kdy prvni linie dlouhodobé
sala na mySich a druha na gekonech. Pro zachyceni a kvantifikaci mozného ptizptisobeni
slin na rozdilné typy hostitell jsme zvolili ¢tyfi metodologické postupy: sekvenovani
transkriptomu, porovnani miry exprese transkriptd metodou RNA-seq, porovnani proteomut
pomoci hmotnostni spektrometrie a porovnani enzymatickych aktivit ve slinach.

Porovnani sloZeni a vlastnosti slin mezi dvéma liniemi odhalilo signifikantné zvySenou
aktivitu hyaluronidazy a zvySenou expresy PpSP15-like transkriptu u linie sajici na mysi.
Oproti tomu ve slindch linie pfizptisobené sdni na gekonovi jsme identifikovali Sest
obohacenych proteinli v porovnani s linii sajici na mysSich. Navic se nam krom¢ jiz
zndmych slinnych proteinli podafilo objevit novy slinny enzym, ribonukledzu, kterd byla
zatim popsana pouze u komart

Druhd c¢ast této disertatni prace byla vénovdna slinnym proteinilm skupiny
Yellow-related (YRP), které maji u flebotomli schopnost vazat biogenni aminy hostitele.

Metodou ,,microscale thermophoresis* jsme testovali schopnost vazby rtiznych biogennich

VII



amind u rekombinantnich YRP proteinti ze slin druhli P. perniciosus, P. orientalis a
S. schwetzi ziskanych ze sav¢iho expresniho systému. Vysledky ukézaly, ze YRP proteiny
se li8i ve svych vazebnych vlastnostech a vazi jednotlivé biogenni aminy s riiznou afinitou.
Jeden YRP protein, ptitomny ve slindch P. perniciosus i P. orientalis, vaze silnou vazbou
serotonin, ktery hostiteli napomahd vazokonstrikci a agregaci krevnich desticek. Oproti
tomu, ani jeden YRP ze slin S. schwetzi nevazal zadny z testovanych biogennich amint,
coz je pravdépodobné disledkem piizpisobeni S. schwetzi na plazi hostitele.

V posledni ¢asti této prace jsme oveétili a potvrdili vyuziti jednoho z YRP proteinti ze
slin P. perniciosus, konkrétné PpeSP03B proteinu, jako expozi¢niho markeru pro postipani

psti timto flebotomem v riznych oblastech zdpadniho Mediteranu.
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Ae. Aedes

Ag5r antigen5-related proteins
An. Anopheles

AMP adenosine monophosphate
ATP adenosine triphosphate
DTH delayed type hypersensitivity
ECM extracellular matrix
ELISA enzyme-linked immunosorbent assay
FXa coagulation factor Xa
IFN-y interferon-y

IL interleukin

L. Lutzomyia

Le. Leishmania

MW molecular weight

OBP odorant-binding protein

P. Phlebotomus

S. Sergentomyia

SGH salivary gland homogenate
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INTRODUCTION

Saliva affects the blood uptake of all blood feeding arthropods, including sand flies. Its
compounds and properties play a crucial role in successful blood feeding and moreover
they also influence potential pathogens which are transmitted by arthropods.

The main aim of this thesis is to compare salivary proteins of three sand fly species,
particularly Phlebotomus perniciosus, Phlebotomus orientalis and Sergentomyia schwetzi.
Each of these three sand flies prefers different vertebrate hosts for blood feeding and
differs in their ecology and geographical distribution. In order to highlight all the
ecological differences possibly affecting the host preferences, in first part of the thesis the
brief analysis of ecology (preferred habitats and seasonality) is discussed for all three
species. The characterisation of sand fly salivary proteins with an emphasis to
P. perniciosus and P. orientalis, including properties, their blood feeding functions and
immunogenicity for hosts, is the main element of the second part of the thesis. This thesis
includes four publications published in peer-reviewed journals, in one I am the firs author
(Polanska et al., 2020) and in three I am a co-author (Kostalova et al., 2017; Spitzova et al.,
2020; Sumova et al., 2019).

1. Biology of sand flies with an emphasis on S. schwetzi, P. perniciosus and

P. orientalis

Phlebotomine sand flies (Diptera, Nematocera, Psychodidae, Phlebotominae) are small
blood-sucking insects. They belong to holometabolic insects, meaning that their
development starts with the formation of an egg, which then leads through four instars of
larvae, the pupal stage and eventually finishes with the adult fly. The larvae feed on a
mixture of soil, excrements and fungi. Both sand fly females and males gain energy for
their daily activities from sugar-feeding on plants or from feeding on honeydew-derived
sugars from aphids or coccids. In addition to the sugar meal, female flies also need proteins
and nutrients present in blood from vertebrate hosts to ensure egg development and
maturation [reviewed in (Dvorak et al., 2018; Killick-Kendrick, 1999)].

To date, more than 800 sand fly species are recognized, with members of the
Phlebotomus (Rondani) and Sergentomyia (Franga and Parrot) genera being present in the
Old World and members of Lutzomyia (Franga), Brumptomyia (Franca and Parrot) and
Warileya (Hertig) in the New World [reviewed in (Akhoundi et al., 2016)]. Hereinafter,
only sand fly species of the genera Phlebotomus and Sergentomyia will be further
discussed as only their salivary proteins are the topic of this thesis. More specifically, I
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focused on the ecology and mainly on the feeding preferences of two Phlebotomus species
belonging to the Larroussius (Nitzulescu) subgenus and one Sergentomyia (Franga and
Parrot) species.

Overall, members of the Sergentomyia and Phlebotomus genera share a similar
distribution in the Old World, being regions that comprise the Mediterranecan and the
Afrotropical area, the Middle East, and Oriental regions up to Asia. Sergentomyia spp. can,
however, also be found in the Australasian region, and are more abundant in certain

tropical areas [reviewed in (Akhoundi et al., 2016)].

1.1. Sand fly role in pathogens transmission

Phlebotomine sand flies are proven vectors of various pathogens like protists
(Leishmania sp.), bacteria (Bartonella baciliformis) and various viruses. Their most
important role as vector in human and veterinary medicine is Leishmania sp. transmission.

Phlebotomus perniciosus is a proven vector of Le. infantum in most of the countries in
the Mediterranean area. Leishmania infantum causes visceral leishmaniasis (VL),
cutaneous leishmaniasis and canine leishmaniasis [reviewed in (Maroli et al., 2013)].
Phlebotomus orientalis is a proven vector of Le. donovani, which causes VL, in Kenya,
Ethiopia and Sudan [reviewed in (Elnaiem, 2011)]. Sergentomyia sand flies are vectors of
reptile parasites from the genus 7rypanosoma and Leishmania (Ashford, 1974; Lane, 1993;
Maia and Depaquit, 2016). Human Leishmania sp. or its DNA [reviewed in (Maia and
Depaquit, 2016)] were repeatedly isolated from these sand flies. However, human
Leishmania sp. are not able to develop a transmittable infection in S. schwetzi (Lawyer et

al., 1990; Sadlova et al., 2013).

1.2. Geographical distribution

Phlebotomus perniciosus (Newstead) is distributed mainly throughout Mediterranean
Europe (Portugal, Spain, Andorra, France, Malta, Italy, Slovenia, Croatia, Montenegro)
and North Africa (Morocco, Algeria, Tunisia). However, this sand fly species is also
spreading to northern parts of Europe (the north of France, Switzerland and Germany) and
to North Macedonia on the Balkan peninsula (ECDC July, 2019).

Phlebotomus orientalis (Parrot) is distributed throughout Central and East Africa, more
specifically in Chad, Djibouti, Niger, Rwanda, Uganda, Sudan, South Sudan, Ethiopia,
Kenya, Egypt, Saudi Arabia, Yemen, and it is also present on the Arabian Peninsula
[reviewed in (Gebre-Michael et al., 2004; Lewis, 1982; Rueda et al., 2017)].



Sergentomyia schwetzi (Adler, Theodor and Parrot) belongs to the Sergentomyia
(Franca and Parrot) subgenus and can, according to the morphological characteristics of
the male genitalia, be divided into the “typical” form (Adler, Theodor and Parrot 1929) and
the “atypical” form [e.g. (Abonnenc E., 1959; Lewis et al., 1969; Minter, 1963)]. It is
interesting to know that these morphological forms can also differ by geographical
distribution (Lewis et al., 1969). In general, S. schwetzi sand flies are mostly present from
East Africa. to Central and West Africa (Congo, Egypt, Ethiopia, Kenya, Mali, Sudan,
Senegal, Uganda) (Lewis et al.,, 1969; Seccombe et al., 1993) and are found to be the
predominant sand fly species in the Atbara-River area in East Sudan (Lambert et al., 2002),
in the Segen Valley in southern Ethiopia (Gebre-Michael and Lane, 1996), in the West
Pokot area in Kenya (Mutinga et al., 1984), and in the Mont-Rolland district in Senegal
(Senghor et al., 2011).

1.3. Ecology and feeding behaviour of P. perniciosus

Phlebotomus perniciosus favourable climate in European part of Mediterranean area
corresponds to lower altitudes (Ballart et al., 2014; Hartemink et al., 2011) where the
annual temperature is higher, relative humidity lower and less rainfall (Baron et al., 2011;
Branco et al., 2013; Durdan-Martinez et al., 2013; Risuefio et al., 2017). This climate
characterisation in Spain correlates with thermo- and meso-Mediterranean bioclimatic
zones, where P. perniciosus was found in high numbers (Aransay et al., 2004; Ballart et
al., 2014; Duréan-Martinez et al., 2013; Géalvez et al., 2020). The higher altitudes in Spain
belong to supra- and oro-Mediterranean zones where P. perniciosus occurs in lower
densities (Aransay et al., 2004; Ballart et al., 2014; Duran-Martinez et al., 2013; Galvez et
al., 2020, 2010). However, sand flies of this species were found up to 1,548 m a. s. L
(Galvez et al., 2010). On the other side of the Mediterrancan Sea, in North Africa,
P. perniciosus’ presence was connected sub-humid and semi-arid bioclimatic zones in the
northern part of Tunisia (Ghrab et al., 2006), in north Algeria (Bennai et al., 2018; Gherbi
et al., 2020; Kabbout et al., 2016; Lafri et al., 2016; Ramdane and Berchi, 2018) and in
central and northern Morocco (Boussaa et al., 2009; Kahime et al., 2015; Mhaidi et al.,
2018; Zarrouk et al., 2016). Contrarily, this sand fly was less abundant in the areas with
dry and hot climate, which corresponds to arid and Saharan zones in central and southern
Tunisia (Ghrab et al., 2006), eastern Algeria (Zeroual et al., 2016) and southern Morocco
(Zarrouk et al., 2016). However, due to higher irrigation of arid urbanized areas (Barhoumi

et al., 2015), P. perniciosus’ presence in this areas is on the rise (Zhioua et al., 2007).



The seasonal distribution of P. perniciosus is highly dependent on two aspects: the
climatic conditions and the geographical latitude. The first P. perniciosus sand flies usually
emerge around early April in the southern part of the Mediterranean area (Benabid et al.,
2017; Lisi et al., 2014; Morillas Marquez et al., 1991). The abundance of sand flies during
the season varies between locality and sampling year, and is largely influenced by weather
conditions during the season (Cotteaux-Lautard et al., 2016; Rossi et al., 2008). The
bi-modal and confluent bi-modal seasonality trend is caused by at least two emerging
generations of sand flies, with the first generation — also called the “spring generation” —
consisting of flies that emerged from larvae diapausing over the winter while the second
generation is generated by adults that emerged from summer larvae. This P. perniciosus
bi-modal phenology was shown in Algarve (Portugal), and a confluent bi-modal density in
Madrid area (Spain), Rome province (Italy), and Lisbon (Portugal) (Alten et al., 2016), and
in southern Tunisia (Benabid et al., 2017), northern Morocco (Talbi et al., 2015). If the
weather is not warm enough or its more rainy during the season, only one abundance peak
occurred, like in Italy (Rome) in 2002 (Rossi et al., 2008) and southern France (Marseille)
in 2009 (Cotteaux-Lautard et al., 2016). Interestingly, the end of the sand fly season differs
in various locations, does not correlate with latitude, or average annual or seasonal
temperature, and is usually registered around September/November, or occasionally in
December (Alten et al., 2016).

The habitat of P. perniciosus is quite variable. Phlebotomus perniciosus is present in
both urbanized and sylvatic biotopes, but in these is less frequent (Branco et al., 2013;
Carta et al., 2020; Kahime et al., 2015; Maroli et al., 1994). Interestingly, most of the
studies reported high numbers of this sand fly in peri-urban areas, like solitary farm
buildings and edges of villages, in South France (Cotteaux-Lautard et al., 2016; Peyrefitte
et al., 2013), in central Portugal (Branco et al., 2013), on the island of Mallorca (Alcover et
al., 2014), and northeast Spain (Ballart et al., 2014). Phlebotomus perniciosus was found in
both peri-domestic and domestic biotopes in central and northern part of Morocco
(Boussaa et al., 2009; Kahime et al., 2015; Mhaidi et al., 2018; Zarrouk et al., 2016).
Contrarily, high densities of this sand fly were reported from urbanised biotopes, like
Catania city (Sicily) (Lisi et al., 2014). Within these biotopes, the most favourable
environments for P. perniciosus were shelters for domestic animals, stone walls, and
drainage holes (Alcover et al., 2014; Branco et al., 2013; Galvez et al., 2010; Kahime et al.,
2015; Mhaidi et al., 2018; Prudhomme et al., 2015). Some of the studies, found correlation

between occurrence of high numbers of P. perniciosus with specific flora — Pinus
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halapensis and bushes creating garrigue shrubs (Alcover et al., 2014; Ballart et al., 2014;
Branco et al., 2013) or Quercus ilex (Galvez et al., 2010).

In conclusion, the density of P. perniciosus in a certain area is positively influenced by
a warmer climate, lower relative humidity and lower altitudes (less than 800 m a.s.l.). In
the continental Mediterranean area this corresponds to thermo-, meso- and
supra-Mediterranean bioclimatic zones, while in North African countries, it is found to be
highly abundant in sub-humid and semi-arid zones, which usually corresponds to higher
altitudes (more than 900 m a.s.l.). However, due to increased irrigation its distribution is
expanding to arid areas. The occurrence of P. perniciosus during the season has mostly
bi-modal or confluent bi-modal character, but is highly affected by weather changes.
Higher numbers of this sand fly species are usually found in peri-domestic environments
and in village surroundings, although in some areas it was adapted to urban environments.
Correlating the abundance of P. perniciosus with a specific flora needs to be further
investigated, but the presence of pines, oaks and garrigue shrubs seem to be favourable for
sand flies.

Sand flies from the genus Phlebotomus prefer to take blood from warm blooded animals
(mammals and birds). More particularly, in the case of P. perniciosus, it is known that
females prefer to take blood on medium sized mammals, although they have been
exhibiting a more opportunistic behaviour in their host choice in the past years.

Even though, P. perniciosus is a vector of human VL, its feeding on human was not
reported frequently. Some P. perniciosus females with engorged human blood were found
in central Portugal (Branco et al., 2013), Spain and Menorca island (De Colmenares et al.,
1995), south France (Cotteaux-Lautard et al., 2016), central Italy (Bongiorno et al., 2003),
Sicily island (Abbate et al., 2020) and in northern Algeria (Bennai et al., 2018).
Nevertheless the only report showing higher feeding preference on human host than other
animals was from Tunisia (Remadi et al., 2020).

In most of the surveys, P. perniciosus females had been blood-feeding on various
domestic animals including small ruminants, equines, pigs, and cows. This feeding
preferences was observed in central Italy (Bongiorno et al., 2003) and Sicily island
(Abbate et al.,, 2020), Spain and Menorca island (De Colmenares et al., 1995), south
Portugal (Maia et al., 2015), northern Algeria (Bennai et al., 2018) and Tunisia (Remadi et
al., 2020). But in some areas, like Sicily (Abbate et al., 2020) and the south of France
(Cotteaux-Lautard et al., 2016) rabbits, wild rabbits and hares were found as the main

sources of blood. These lagomorphs were depicted as Le. infantum reservoir hosts in
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Madrid area (Molina et al., 2012). Therefore, they are one of the most important hosts for
blood feeding also in south and central Portugal (including Madrid), which was confirmed
both by analysis of engorged blood (Branco et al., 2013; Gonzélez et al., 2017; Jiménez et
al., 2013, 2014; Maia et al., 2015) and serology (Martin-Martin et al., 2014). Cats, various
rodents and bats were also shown as possible but less frequent P. perniciosus hosts in
Portugal (Branco et al., 2013; Gonzalez et al., 2017; Jiménez et al., 2014, 2013; Maia et al.,
2013; Pereira et al.,, 2019). On the other hand, chickens and birds were bitten very
sporadically in all studied areas (Bongiorno et al., 2003; Branco et al., 2013; Cotteaux-
Lautard et al., 2016; De Colmenares et al., 1995; Maia et al., 2015).

Similar to lagomorphs, dogs are the proven Le. infantum reservoir hosts in the
Mediterranean basin. However, in some of the studies canine blood was detected in fed
females (Abbate et al., 2020; Bongiorno et al., 2003; De Colmenares et al., 1995).
Serological surveys that screen for the presence of P. perniciosus salivary-antibodies
showed high titres in dogs from Madrid (Martin-Martin et al., 2014), north-eastern and
southern Spain and Menorca (De Colmenares et al., 1995), north-eastern Spain, Mallorca
(Velez et al., 2018; Willen et al., 2019) and southern and central Italy and Portugal
(Kostalova et al., 2015; Vlkova et al., 2011).

According to these studies, it is clear that P. perniciosus is able to adapt to various
warm-blooded hosts, with the main reason of its opportunistic behaviour being the
availability of hosts in the sand fly area. Important to note, is that such studies are
unquestionably influenced by the trapping spots (e.g. sheepshed, cowshed, stable, field ...)
(Bennai et al., 2018; Maia et al., 2013).

1.4. Ecology and feeding behaviour of P. orientalis

All areas where P. orientalis occurs are mainly associated with vegetation composed by
Acacia seyal and Balanites aegyptiaca trees (Elnaiem et al., 1997; Quate, 1964), as is
shown in studies from Sudan (Elnaiem et al, 1997, 1999a; Lambert et al., 2002;
Mohammed et al., 2018; Widaa et al., 2012), South Sudan (Hoogstraal et al., 1962; Quate,
1964) and Ethiopia (Gebre-Michael et al., 2010; Lemma et al., 2014). In the study by
Elnaiem et al., (1999b), was proposed that the abundance of P. orientalis in proximity to
A. seyal relies on three factors: (i) on the density of the trees in the area, which affect the
local microhabitat (humidity and temperature), (ii) its association with the preferred animal
hosts and mound-building termites and (iii) the source of the sugar meal (Elnaiem et al.,

1999a). Even though the connection of P. orientalis with woodlands seems to be tight, it



was shown that sand flies are also able to adapt to an agricultural area where there is only a
minimum of trees (Gebre-Michael et al., 2010; Moncaz et al., 2013); implying that other
factors are influencing the population density of P. orientalis in a specific area. One of
these factors can be the type of soil. In all three countries mentioned above, P. orientalis
abundance in an area was associated with specific black cotton soil (eutric vertisols)
(Elnaiem et al., 1998; Gebre-Michael et al., 2004; Thomson et al., 1999). This soil type
absorbs a lot of water during the wet season and then dries completely and deeply cracks
during the dry season (Moncaz et al.,, 2014). Both temperature and humidity are more
stable in these cracks, which causes them to be the ideal microhabitat for sand flies with
copious breeding sites and special soil nutrients for the larvae (Elnaiem et al., 1998).
However, in southern and north-eastern Ethiopia (Omo valley and Awash valley,
respectively) different types of soil (e.g. vertic cambisols, eutric fluvicols) that also crack
during the dry season dominate the environment (Gebre-Michael et al., 2004), and are also
associated with P. orientalis occurrence.

An occurrence prediction modelling (based on Geographical Information System)
performed by Gebre-Michael et al., (2004) identified that P. orientalis has a preference for
the dry season with temperatures between 16-36°C, a lower annual rainfall
(180-1050 mm) and a lower soil moisture (of 67-108 mm). The high abundance of
P. orientalis during the second half of the dry season and its subsequent decrease during
the wet season was previously shown by several authors (Aklilu et al., 2017; Doha and
Samy, 2010; Hoogstraal et al., 1962; Lambert et al., 2002; Mohammed et al., 2018; Quate,
1964; Yared et al.,, 2017). However, in certain areas the number of sand flies did not
change between the seasons, e.g. Umsalala (Sudan) (Elnaiem et al., 1997). Even more so,
close to Umsalala, in the Dinder NP, a higher abundance was reported during the end of
the dry season and the beginning of the rainy season (Elnaiem et al., 1997). A similar
phenology was observed in the Ethiopian highlands (Belessa), where P. orientalis was
more abundant during the rainy season (Ashford et al., 1973).

The preference of P. orientalis for woodlands, forests of 4. seyal and cracked black
cotton soil, has also been shown to be connected with its feeding behaviour. Elnaeim et al.,
(1997) noticed man-biting behaviour only in foci of the Galegu camp, a place close to an
acacia forest. Furthermore, even though Yared et al., (2019) shared no information about
vegetation or soil in their study, they reported higher densities of P. orientalis in the
periphery of villages and in the surrounding fields compared to inside the village around

houses. A similar observation was made in Kafta Humera (Yared et al., 2017), in the
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Tahtay Adiyabo area (Gebresilassie et al., 2015a) and in Libo-Kemeken (Aklilu et al.,
2017), all located in north-west Ethiopia. Taken together, this suggests an exophilic and
exophagic behaviour of P. orientalis — though one study showed more than 75 % of
P. orientalis to be captured inside houses (Lambert et al., 2002).

It is believed that P. orientalis preferably takes blood form larger animals, like cows,
horses and wild bigger ruminants which has been confirmed by studies from north-western
Ethiopia, where P. orientalis females showed a preference for bovine blood, even more
than human blood (Aklilu et al., 2018; Gebre-Michael et al., 2010; Lemma et al., 2014). In
villages situated in northern Ethiopia, cattle was shown to serve as the dominant source of
blood for sand flies, followed by humans (Kirstein et al., 2018), donkey, goat, sheep, dog
and camel blood (Gebresilassie et al., 2015b). Also in central Ethiopia, bigger domestic
ruminants (cows and camels) were the most preferred blood source for P. orientalis
[Mammo 1999, as cited in (Gebre-Michael et al., 2010)]. However, a new study from the
Kafta-Humera region (north-western Ethiopia) described P. orientalis’ feeding behaviour
to be more opportunistic and showed that the highest number of engorged females had fed
on donkey followed by cows, and only a few had blood fed on humans, dogs and goats or
sheep (Yared et al., 2019). A similar trend was observed in a serological study from three
localities in north-western Ethiopia, revealing high titers of P. orientalis anti-saliva
antibodies in the blood of various domestic animals (i.e. dogs, goats, sheep and donkeys)
(Rohousova et al., 2015). Even more so, when the attractiveness of various mammals for
sand flies was compared in the same region in Ethiopia, cows and donkeys were shown to
be the most attractive for P. orientalis, followed by humans and other animals (i.e. sheep
and goat). Dog and chicken baits only attracted very few sand flies (Gebresilassie et al.,
2015c). Lastly, also the attractiveness of wild mammals was investigated for which baits of
Ground squirrels (Xerus rutilus), gerbils (Tatera robusta), Cairo spiny mice (Acomys
cahirinus) and hares (Lepus sp.) were used. The ground squirrel was shown to be the most
attractive for P. orientalis, followed by hares, gerbils and spiny mice. It should be noted
that all of these wild rodents and lagomorphs were much less attractive than bigger
domestic animals (Gebresilassie et al., 2015c).

Similar experiments performed in South Sudan (Upper Nile area) Quate (1964) showed
that P. orientalis females are able to feed on rats, the African grass rat, and only a few
specimens bite skinks and lizards. Importantly, these feeding experiments were done
unnaturally — sand flies were kept with the hosts in enclosed cages — the results should

therefore be taken with caution. A later study on the attractiveness of various rodent baits

8



for P. orientalis in the same area did not confirm these previous findings as it showed only
a low-level attraction of P. orientalis to baits with Natal multimammate mice and Kemp’s
gerbils (Turner and Hoogstraal, 1965). However, the most important finding in this locality
is that human blood was found to be the most attractive and most common source of blood
for P. orientalis (Hoogstraal et al., 1962; Quate, 1964).

Host attractiveness studies performed in eastern Sudan (Dinder National Park),
compared the domestic dog, the Egyptian mongoose, the genet and the Nile rat. As
expected, dogs were shown to attract sand flies the most, followed by the mongoose. The
genet and rat attract less sand flies (Hassan et al.,, 2009). Only two studies in Sudan
focused on the feeding preferences of P. orientalis or on host blood screening. Again,
humans were shown to be frequently bitten by P. orientalis (Elnaiem et al., 1999b), results
that were confirmed by a recent serological study that identified anti-P. orientalis saliva
and anti-P. orientalis salivary proteins IgG antibodies in human sera from both Sudan and

Ethiopia (Sumova et al., 2018).

1.5. Ecology and feeding behaviour of S. schwetzi

The all ecological aspects of S. schwetzi are difficult to assess as information is scarce.
However, studies that focus on other sand fly species also partially report on the preferred
habitat of this sand fly species. Sergentomyia schwetzi occurs in some areas in high
numbers and sometimes co-occurs with other sand flies from the Phlebotomus genus.
Quate (1964) described this sand fly species to be a forest sand fly present in woodlands in
South Sudan, he showed that it also occurs in grasslands and villages. In Kenya (Kitui
district), S. schwetzi was highly abundant in village huts, termitaries and tree holes (Heisch
et al., 1956; Mutinga et al., 1986a). Sergentomyia schwetzi was also found in villages in
north-east Congo (Trouillet et al., 1988). In Mali, S. schwetzi was shown to be the most
abundant sand fly species in the Segou region (Anderson et al., 2011; Coulibaly et al.,
2018). A study from two separate localities in south-central and southern Mali showed that
S. schwetzi is the dominant species in both but occurs in lower numbers compared to the
Segou region (Coulibaly et al., 2016). Similarly, a studies in Bamako city and its suburban
area also showed lower numbers of S. schwetzi (Demba-Kodindo et al., 2015; Kone et al.,
2016). Even though it appears that in Mali S. schwetzi is ubiquitously represented in all
studied areas in high or medium amounts, the study from Mopti region in central Mali
reported almost no sand flies of this species in the five screened villages (Berdjane-Brouk

et al., 2012).



In the Mont Roland area in the Thies region in Senegal, S. schwetzi was caught in high
numbers mainly in the periphery of villages that were situated in areas with sandy and
sandy-clay soils. Contrarily, significantly lower numbers of this species were found in
areas with lateric gravel soils (Senghor et al., 2016, 2011). Furthermore, most of
S. schwetzi sand flies were captured outdoors in farming and peri-domestic areas; also
gravid and fed females were most frequently captured outside — confirming an exophilic
behaviour of S. schwetzi in this environment and locality (Senghor et al., 2016), which is
similar to the Segou region in Mali (Anderson et al., 2011). On the contrary, an endophilic
behaviour of S. schwetzi was shown by Lambert et al., (2002) in eastern Sudan (the Atbara-
River area). The direct connection of the presence and abundance of S. schwetzi with some
special biotopes or vegetation have not been shown yet. However, according to a study in
southern Sudan (Dinder national park), S. schwetzi was present in high numbers in an 4.
seyal forest, and was shown to occur also in other biotopes like riverine vegetation
(Elnaiem et al., 1999a). Sergentomyia schwetzi was also abundant in rodent burrows in the
area of western Sudan (Mohammed et al., 2018) and western Senegal (Ba et al., 1998). All
these data from different localities showed that S. schwetzi sand flies are not connected to a
particular habitat, as already suggested by Quate (1964) and Elnaiem et al., (1997).

The abundance of S. schwetzi changes during the year according to the season. Usually,
the abundance peak raises its top during the dry season (Ba et al., 1998; Lambert et al.,
2002; Mohammed et al., 2018; Quate, 1964), although they also occur in lower numbers at
the beginning of the rainy season (Quate, 1964). Sergentomyia schwetzi was found
throughout the year in Kitui area in Kenya (Heisch et al., 1956).

Sand flies from the genus Sergentomyia are known for their preference to take blood
from cold blooded animals, like reptiles (Ashford, 1974; Minter and Wijers, 1963;
Seccombe et al., 1993). However, it has been shown repeatedly that members of this genus
also take blood from mammals, including humans [reviewed in (Berdjane-Brouk et al.,
2012; Maia and Depaquit, 2016)]. Even though most studies focus on sand fly species that
are more important as vectors of human Leishmania sp., we can sometimes find
information about Sergentomyia sand flies. According to Hiesch et al., (1956) in a study
performed in Kenya, S. schwetzi was shown to feed most often on lizards, although man
biting behaviour was also observed. This preference for cold blooded hosts was also shown
by Mutinga et al., (1986a) in the Baringo District (Kenya) where sand flies were caught in
termite hill ventilation shafts, and most of S. schwetzi females were engorged with lizard

blood. Even more so, S. schwetzi showed a higher attraction to baits with lizards than to
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those with mammal hosts (i.e. dogs, chickens, goats, rats) (Mutinga et al., 1986b). Another
study in the same area tested the source of the blood meal from various sand flies,
including S. schwetzi, by ELISA. Again, blood from lizard, but also humans, rabbits and
chickens was found in S. schwetzi, suggesting it to behave as an opportunistic feeder
(Ngumbi et al., 1992). Similarly, opportunistic feeding behaviour of S. schwetzi females
were shown in the Sudan Upper Nile area (Quate, 1964). Moreover, host attraction
experiments in the same area stipulated S. schwetzi’s attraction to various African rodents,
even though S. schwetzi females only fed on gerbils. Only some females were caught in
human-baited nets even while feeding on human (Hoogstraal et al., 1962; Turner and
Hoogstraal, 1965). The man-biting behaviour was also observed in the Mont-Rolland area
in Senegal, where one third of tested fed females were fed on human blood and the rest on
dogs, horses, cows, mice and some unspecified mammals (Senghor et al., 2016).

The possibility that S. schwetzi is also attracted to warm blooded animals was tested in
Tahtay Adiyabo district (northern Ethiopia). Tent trap baits with different domestic
animals or a human volunteer demonstrated that the most attractive animal for S. schwetzi
are donkeys, followed by cows, goats, sheep, dogs, humans and chickens. However, Blood
fed females were found only in baits with cows, followed by donkeys and goats
(Gebresilassie et al., 2015c). In south-west Ethiopia (Omo river plains) S. schwetzi females
were caught in human baits (Hailu et al., 1995). The possibility that mammals serve as host
for S. schwetzi was shown in a field study in the Ethiopian district of Kafta-Humera, where
Yared et al., (2019) collected sand flies from various environments in villages and in the
surroundings and fields. The blood meal analysis from captured sand flies revealed that
from all captured S. schwetzi 34 females had fed on cow, two on human, one on dog, two
specimens had taken blood from more than one host (Yared et al., 2019). Finally, the
attractiveness of sand flies to various animals was also tested in eastern Sudan. Here,
S. schwetzi females were mostly attracted to animal-bait traps with domestic dogs,
followed by bait traps with Egyptian mongoose (Herpestes ichneumon) and genet. Nile rats
did not attract almost any females (Hassan et al., 2009). In conclusion, S. schwetzi feed

mainly on cold-blooded animals, but it also bite mammals including humans.

2. Sand fly saliva
Sand fly saliva is produced by salivary glands, two “balloon-like” organs bounded by a
single layer of epithelium and connected through the salivary duct to the mouth parts. Sand

fly saliva is known to contain specific salivary proteins that differ between sex, age and
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species of sand flies (Volf et al., 2000; Volf and Rohousova, 2001). Differences were
found between various populations, between colonies of the same species that originated
from distant localities, and even among long-term maintained colonies (Ramalho-Ortigao
et al., 2015; Rohousova et al., 2012a; Volf et al., 2000). Saliva also facilitates the blood
feeding process on vertebrate hosts as it contains pharmacologically active compounds that
have immunomodulatory, anti-haemostatic and anti-inflammatory properties. Some of the
salivary proteins are potent antigens that induce a humoral immune response in the host
which is species-specific (Rohousova et al., 2005; Thiakaki et al., 2005; Volf and
Rohousova, 2001). In repeatedly bitten hosts, IgG antibodies were shown to serve as
reliable marker of exposure to sand fly bites that sensitively reflect contact of the host with
this insect [reviewed in (Lestinova et al., 2017)].

While a sand fly specific antibody response shows us if the host has been exposed to
sand fly bites, the host’s cellular immune response is a crucial factor in the establishment
of an actual Leishmania infection. In naive hosts, who previously have not been repeatedly
exposed to non-infected bites, sand fly saliva facilitates parasite survival by changing the
environment from a pro-inflammatory to an anti-inflammatory one — leading to an
inhibition of various protective functions of macrophages and a successful survival and
spread of the parasite in the host. However, a completely different scenario is present in
hosts who were regularly exposed to non-infectious sand fly bites. When these hosts are
consequently exposed to infectious bites, the antigenic salivary proteins will be recognized
by the hosts’ immune response and a delayed-type hypersensitivity (DTH) reaction
together with an increased IFN-y/IL-12 production will protect the host [reviewed in
(Lestinova et al., 2017)].

The skin composition, haemostasis, erythrocytes and some of the humoral and cellular
immune responses differ among vertebrate hosts (Didisheim et al.,, 1959; Dodds and
Matsushita, 2007; Doolittle, 2009, 2011; Lewis, 1996). These differences should also be
extrapolated to quantitative or qualitative changes in the composition of sand fly saliva.
However, studies focused on salivary adaptations to the preferred host are very limited for
all blood feeding arthropods. The only discussed topic is the activity of the salivary
enzyme apyrase, which causes hydrolysis of ATP and ADP. Adenosine diphosphate
activates platelets of mammals causing platelet aggregation which together with other
haemostatic processes stops the bleeding (Blanco and Blanco, 2017). However, platelets
are replaced by thrombocytes in birds and reptiles, which are not activated by ADP
(Schmaier et al., 2011; Soslau et al., 2005). The adaptation to possibly lower amounts of
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ADP in avian and reptile blood could be a reason for the low anti-clotting and apyrase
activities in Culex quinquefasciatus (Ribeiro, 2000) and Dipetalogaster maxima (Ribeiro et
al., 1998), two arthropods that prefer to blood feed on birds and lizards, respectively. A
similar adaptation of sand flies to reptiles was shown recently on the activity of S. schwetzi
apyrase, which was lower compared to other sand flies’ apyrases (Volfova and Volf,

2018).

3. Characterization of the main salivary protein families

All immunological processes mentioned in the previous chapter can be caused by a
specific sand fly salivary protein. The characterisation of sand fly’s salivary proteins can
be done by various experimental approaches, one of them being transcriptome sequencing.
The salivary gland transcriptomes, also called sialomes, of fourteen sand fly species
belonging to two genera (Phlebotomus, Lutzomyia) has been published, up to date
[reviewed according to (Lestinova et al., 2017; Oliveira et al., 2020)]. More than 250
salivary proteins were identified in these transcriptomes, all belonging to more than 30
salivary protein families (Coutinho-Abreu and Valenzuela, 2018). For certain sand fly
species more sialomes were made, due to the different country of origin of the sand fly
colony, e.g. P. papatasi from Israel (Valenzuela et al., 2001a) and Tunisia (Abdeladhim et
al., 2012), P. duboscqi from Mali and Kenya (Kato et al., 2006), P. perniciosus from Italy
(Anderson et al., 2006) and Spain (Martin-Martin et al., 2013), P. orientalis from two
Ethiopian areas — Addis Zemen and Melka Werer (Vlkova et al., 2014). Various salivary
proteins were identified and were, according to their characteristic (sequence, molecular
weight, function), divided into main salivary protein families (Coutinho-Abreu and
Valenzuela, 2018). The characteristics of these families are the content of next chapter,
with a special focus on proteins from P. perniciosus and P. orientalis. Since the
nomenclature of salivary proteins is rather confusing, the main salivary proteins from
P. perniciosus and P. orientalis are listed in Tables 1 and 2. The P. orientalis Addis Zemen

proteins’ names (PorASPxx) will be mainly used in the text of this thesis.
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Table 1: proteins identified in P. perniciosus sialome (Anderson et al., 2006; Martin-
Martin et al., 2013) and transcriptome (Petrella et al., 2015)

P. perniciosus

A
Sialome from colony originated in Italy

B
Sialome from colony originated in Spain

GenBank accession

GenBank accession

protein family protein number pred. pl protein name number pred.
name R X MwW R R MW
nucleotide | protein nucleotide | protein
PpeSP03 DQ150621 | ABA43049 | 41.8 kDa | 6.0
Yellow-related
PpeSP0O3B | DQ150622 | ABA43050 | 42.7 kDa | 8.6 PpeSPO3B HE974346 | CCK33661 | 44.6 kDa
Antigen5-related | PpeSP07 DQ153101 | ABA43055 | 29.6 kDa | 9.1
Lufaxin PpeSP06 DQ153100 | ABA43054 | 33.0kDa | 8.9 PpeSP06 HE970770 | CCK18305 | 36.2 kDa
PpeSP04 DQ150623 | ABA43051 | 24.5kDa | 8.5 PpeSP04 HE980444 | CCK73754 | 28.9 kDa
D7-related
PpeSP04B | DQ150624 | ABA43052 | 26.9 kDa | 8.7 PpeSP04B HE980443 | CCK73753 | 20.7 kDa
PpeSP02 DQ150620 | ABA43048 | 14.8 kDa | 8.7 PpeSP02 HE985074 | CCM43814 | 17.1 kDa
PpeSP02 HE985075 | CCM43815 | 15.7 kDa
PpeSP02 HE985076 | CCM43816 | 17.1 kDa
SP15
PpeSP02 HE985077 | CCM43817 | 17.0 kDa
PpeSP09 DQ153103 | ABA43057 | 14.6 kDa | 8.6 PpeSP09 HE966456 | CCJ67632 | 16.7 kDa
PpeSP11 DQ153105 | ABA43059 | 13.2 kDa | 9.0 PpeSP11 HE974348 | CCK33663 | 15.3 kDa
ParSP25-like PpeSP08 DQ153102 | ABA43056 | 28.8 kDa | 4.9 PpeSP08 HE974347 | CCK33662 | 29.5 kDa
PpSP32-like PpeSP0O5 DQ153099 | ABA43053 | 27.8 kDa | 10.4
PpeSP01 DQ192490 | ABB00906 | 35.5kDa | 9.3 PpeSP0O1 HE974344 | CCK33659 | 37.7 kDa
Apyrase
PpeSP01B | DQ192491 | ABB00907 | 35.3 kDa PpeSP0O1B HE974345 | CCK33660 | 37.3 kDa
Hyaluronidase hyaluronidase ¢ KT160228 | ALL27024
Endonuclease PpeSP32 DQ154099 | ABA43064 | 41.4kDa | 4.4
:;°S”h°""ase PpeSP18 | DQ154097 | ABA43062 | 29.9 kDa | 8.3
- pyrophospha-
Pyrophospha (o KT160227 | ALL27023
tase tase
i adenosine
Adenosine T KT160229 | ALL27025
deaminase deaminase
7kDasalivary | b op15 | Q153106 | ABA43060 | 7.1kDa | 11.0
protein SP12
10 kDa salivary
protein SP13 PpeSP13 DQ153107 | ABA43061 | 9.7kDa | 4.8
2.7kDasalivary | b op15 | DQ192489 | ABBO0SOS | 2.7kDa | 10.6
protein
p119 pl19 HE985078 | CCM43818 | 17 kDa

A published in Anderson et al., (2006), ® published in Martin-Martin et al., (2013),

€ published in Petrella et al., (2015); empty — not detected or un-published
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Table 2: proteins identified in P. orientalis sialome (Vlkova et al., 2014)

P. orientalis

Sialome from colony originated in Addis Zemen

Sialome from colony originated in Melka Werer

GenBank accession

GenBank accession

protein family protein number pred. pl protein number pred. ol
name nucleotide protein MW name nucleotide protein MW
PorASP2 KC170933 | AGT96427 | 41.5kDa | 6.1 | PorMSP23 KC170966 | AGT96460 | 41.6kDa | 6.1
Yellow-related
PorASP4 KC170934 | AGT96428 | 42.3kDa | 8.1 | PorMSP24 KC170967 | AGT96461 | 42.3kDa | 8.1
Antigens5- PorASP74 KC170947 | AGT96441 | 28.8 kDa | 8.9 | PorMSP6 KC170962 | AGT96456 | 28.8kDa | 8.9
related PorASP76 KC170948 | AGT96442 | 28.8kDa | 8.9 | PorMSP8 KC170963 | AGT96457 | 28.8 kDa | 8.9
Lufaxin PorMSP78 KC170976 | AGT96470 | 18.8kDa | 8.4
PorMSP28 KC170969 | AGT96463 | 27.3kDa | 7.5
PorASP48 KC170943 | AGT96437 | 26.9 kDa | 8.3 | PorMSP38 KC170970 | AGT96464 | 26.9 kDa | 8.3
D7-refated PorASP46 KC170942 | AGT96436 | 26.7 kDa | 6.4 | PorMSP43 KC170971 | AGT96465 | 26.7 kDa | 6.7
PorASP122 KC170954 | AGT96448 | 26.8kDa | 9.2 | PorMSP67 KC170973 | AGT96467 | 26.8 kDa | 9.2
PorASP28 KC170938 | AGT96432 | 14.5kDa | 8.9 | PorMSP96 KC170978 | AGT96472 | 14.5kDa | 8.9
PorASP31 KC170939 | AGT96433 | 14.3kDa | 8.7 | PorMSP90 KC170977 | AGT96471 | 14.3kDa | 8.7
SP15 PorASP37 KC170940 | AGT96434 | 14.9kDa | 8.8 | PorMSP12 KC170964 | AGT96458 | 14.9 kDa | 8.8
PorASP61 KC170944 | AGT96438 | 13.9kDa | 9.1 | PorMSP74 KC170974 | AGT96468 | 13.9 kDa | 9.2
PorASP64 KC170945 | AGT96439 | 14.7kDa | 8.0 | PorMSP75 KC170975 | AGT96469 | 14.7 kDa | 8.0
ParSP25-like PorASP106 KC170953 | AGT96447 | 27.6kDa | 4.7 | PorMSP65 KC170972 | AGT96466 | 27.6 kDa | 4.8
. PorASP86 KC170950 | AGT96444 | 25.0kDa | 10.1 | PorMSP15 KC170965 | AGT96459 | 25.0 kDa | 10.2
Ppspa2-lie PorASP87 KC170951 | AGT96445 | 25.0 kDa | 10.5
PorASP14 KC170936 | AGT96430 | 35.1kDa | 9.0 | PorMSP4 KC170961 | AGT96455 | 33.2 kDa | 8.9
Apyrase PorASP15 KC170937 | AGT96431 | 35.3kDa | 9.2
PorASP11 KC170935 | AGT96429 | 35.5 kDa | 10.0 | PorMSP3 KC170960 | AGT96454 | 35.6 kDa | 8.8
Hyaluronidase | PorASP112 KC170958 | AGT96452 | 37.2kDa | 6.5 | PorMSP108 | KC170981 | AGT96475 | 35.6 kDa | 7.0
Endonuclease | PorASP139 KC170955 | AGT96449 | 41.7 kDa | 9.3 | PorMSP101 | KC170979 | AGT96473 | 41.7 kDa | 9.4
:;°S”h°""ase PorASPS0 | KC170949 | AGT96443 | 29.7kDa | 8.4 | PorMsSP129 | KC170982 | AGT96476 | 29.7 kDa | 8.3
;‘l’s’:"h“"ha' PorASP262 | KC170959 | AGT96453 | 32.9 kDa | 7.2
SP16-like PorASP150 KC170956 | AGT96450 | 16.0kDa | 5.0 | PorMSP162 KC170983 | AGT96477 | 16.0kDa | 5.0
PorASP98 KC170952 | AGT96446 | 5.6 kDa 10.5 | PorMSP104 KC170980 | AGT96474 | 5.6 kDa 10.0
PorASP68 KC170946 | AGT96440 | 49kDa |9.8 |PorMSP196 | KC170984 | AGT96479 |4.9kDa |10.2
PorASP40 KC170941 | AGT96435 | 3.9kDa |9.2 |[PorMSP169 | KC170985 | AGT96478 |3.9kDa |9.2
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3.1. Yellow-related protein family

Sand fly yellow-related proteins (YRPs) contain a characteristic major royal jelly
protein (MRJP) domain and belong to a large family of insects’ MRJP/Yellow. They are
named after the protein yellow from Drosophila melanogaster and the MRJP from honey
bee jelly produced by nurse bees (Buttstedt et al., 2014). The YRPs are highly abundant in
sand fly saliva and are present in all sand fly species studied, usually even represented by
more than one homolog (Coutinho-Abreu and Valenzuela, 2018; Oliveira et al., 2020). The
YRPs can be divided into two subfamilies. First there is the “42 kDa” subfamily which is
characterised by a lower molecular mass (41.5 — 43.5 kDa) and a more acidic isoelectric
point (pl), while the second “44 kDa” subfamily has a higher molecular mass (42.3 —
45.2 kDa) and a basic pl. Proteins originating from different species but that are part of the
same subfamily cluster together, while protein paralogues likely originated by gene
conversion (Abdeladhim et al., 2016). When considering the sialomes of P. perniciosus
and P. orientalis, both contain two homologues of YRPs. The sequence similarity, MW
and pl of these P. perniciosus and P. orientalis proteins divide them into two subfamilies:
the 42 kDa subfamily comprising PpeSP03 and PorASP2 and the 44 kDa subfamily with
PpeSP0O3B and PorASP4. (Anderson et al., 2006; Sima et al., 2016a; Vlkova et al., 2014).

The structure of YRPs with their specific six-bladed B-propeller that has a binding
cavity inside a “tunnel shape”, was first described on a crystal of a Lutzomyia longipalpis
YRP (LIM11). The amino acid residues within the cavity are responsible for binding
pro-haemostatic and pro-inflammatory biogenic amines (serotonin, histamine and
catecholamines), which leads to wvasodilatation, platelet activation and vascular
permeability in the host. This amine-binding function was first described on recombinant
YRPs of L. longipalpis (LJM11, LIM111, LIM17), with each of them having a specific
affinity for different biogenic amines. The variation in the binding properties of these
proteins most likely complement each other (Xu et al., 2011). This ability to bind biogenic
amines was proposed for all sand fly YRPs based on a sequence alignment of this amine-
binding cavity. The cavity was shown to have eleven conserved amino acids, responsible
for binding of the amines. Furthermore, in silico 3D structural modelling also confirmed
these findings (Sima et al., 2016a; Xu et al., 2011). Besides these conserved amino acids,
the sequences of YRPs contain a four cysteine residue pattern, which are connected with
structure stabilisation and right folding, by building disulfide bounds (Xu et al., 2011).
Conserved cysteines are more frequent in soluble extracellular proteins and is presented in

other salivary proteins (Coutinho-Abreu and Valenzuela, 2018).
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It is well-established that sand fly YRPs generate high numbers of antibodies in
repeatedly bitten hosts. Their strong antigenicity has been shown for various hosts such as
mice (Martin-Martin et al., 2012; Rohousova et al., 2005), hamsters (Martin-Martin et al.,
2012), rabbits (Rohousova et al., 2012b), dogs (Hostomska et al., 2008; Teixeira et al.,
2010; Vlkova et al., 2011) and humans (Marzouki et al., 2011; Rohousova et al., 2005;
Vinhas et al., 2007). Based on these studies, the antibody response against recombinant
YRPs from various sand fly species has been tested as marker of exposure.

All three recombinant YRPs from L. longipalpis showed a different antigenicity for
different hosts. The recombinant protein LJIM17 was recognized by a broad spectrum of
hosts, namely: chicken (Soares et al.,, 2013), dogs, foxes and humans (Teixeira et al.,
2010). On the other hand, the protein LIM11 was only antigenic in dogs and humans,
whereas the third YRP (LJM111) showed a very low antigenicity in humans (Teixeira et
al., 2010). The antibody response against both LJM17 and LIM11 and their mixture were
proposed as potential exposure markers due to their high antigenicity, their broad host
specificity and their no cross-reactivity with anti-L. intermedia antibodies, a sympatrically
occurring sand fly species (Souza et al., 2010; Teixeira et al., 2010). Despite these
promising results, the antibody response against the recombinant YRP (LinB-21) from
L. intermedia was unable to distinguish between positive (bitten) and negative (non-bitten)
humans, rendering it not suitable as a marker for human exposure to L. intermedia
(Carvalho et al., 2017). Although YRPs from P. papatasi are not suitable to test for human
exposure (Marzouki et al., 2011), plasmids coding for P. papatasi YRPs (PpTSP42 and
PpTSP44) were shown to stimulate the Thl cellular immune response and the production
of IFN-y (Tlili et al., 2018). This specific Thl immune response and the higher levels of
IFN-y produced, were shown to protect mice against Le. major infections [reviewed in
(Lestinova et al., 2017)]. YRPs from L. longipalpis exhibited a similar protective effect
against a Le. major infection when mice were pre-immunised with LIM11 (Gomes et al.,
2012). These pre-immunised mice generated a Thl immune response which together with
a DTH reaction led to protection against Le. major (Abi Abdallah et al., 2014).
Furthermore, the immune reaction against the LJM17 protein was shown to confer
protection against Le. infantum in pre-immunised dogs (Collin et al., 2009).

The antibody response against the SGH of P. orientalis has been shown to be useful to
measure exposure of Ethiopian domestic animals to bites of P. orientalis (Rohousova et al.,
2015). Furthermore, the high correlation between the SGH of P. orientalis and its
recombinant YRP (PorMSP24 ~ PorASP4) validated the antibody response against this
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protein as a promising exposure marker for dogs, sheep and goats in Ethiopia (Sima et al.,
2016b). Antigenic B-cell epitopes of the PorMSP24 were then synthesised as short
peptides, and showed to be a good substitute for the recombinant protein in estimating dog
and goat exposure (Sima et al., 2019). Moreover, the same P. orientalis recombinant YRP
expressed in a mammalian expression system — in contrast to a bacterial expression system
used in previous studies — was also shown to be a useful exposure marker for naturally
exposed humans living in Ethiopia and Sudan. The antibody response against this protein
showed a high correlation with the P. orientalis SGH. When this YRP was combined with
another salivary recombinant Ag5r protein (PorASP74) from P. orientalis an even higher
correlation coefficient was achieved, resulting in the antibody response against this antigen
mixture to be proposed as a valid human exposure marker for P. orientalis bites (Sumova
et al., 2018).

The main reservoir host of VL in the Mediterranean area are dogs. Therefore, from an
epidemiological perspective, it is important to measure their exposure to P. perniciosus
bites facilitated by a reliable exposure marker. Antibody responses against two YRPs of
P. perniciosus (PpeSP03 and PpeSP03B) were shown to be able to reliably indicate
exposure when sera of pre-exposed dogs (Vlkova et al., 2011), laboratory mice (Martin-
Martin et al., 2012), hamsters (Martin-Martin et al., 2012; Volf and Rohousova, 2001) and
rabbits were used (Volf and Rohousova, 2001). Even more so, a high correlation was
found between the canine antibody response against PpeSP03B and the SGH of
P. perniciosus (Drahota et al., 2014). Subsequent studies successfully employed the
PpeSPO3B is in measuring exposure in naturally exposed dogs, hares and rabbits in Spain
(Martin-Martin et al., 2014; Velez et al., 2018). Furthermore, during a study in VL foci in
Italy, anti-PpeSP03B antibodies in dogs imported in the area prior to the study were able to
reflect the seasonal sand fly dynamics in a similar trend as the anti-SGH antibodies do.
More specifically, the anti-PpeSP03B antibody levels rose during the summer months
when sand fly density is at its highest and decreased during the winter months when sand
flies are not active (Kostalova et al., 2015).

All previously mentioned studies paved the way for a new state-of-the-art application of
this YRP of P. pernicious: an immunochromatographic test (ICT) that allows for rapid
identification of dogs exposed to P. perniciosus. The resulting ICT highly correlated with
standard serology assays (ELISA) (Willen et al., 2018). Follow-up studies were able to

improve the specificity of the test from 86.8 % to 94.9 %, allow the use of whole canine
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blood (Willen et al., 2019), and confirm its validity in field conditions (Burnham et al.,
2020).

3.2. Lufaxin protein family

The salivary protein lufaxin (Lutzomyia longipalpis Factor Xa Inhibitor) was first
described in the sialome of L. longipalpis (Collin et al., 2012; Valenzuela et al., 2004). It
has been described only in sand fly saliva and has a predicted MW of 32.4 kDa in
L. longipalpis and between 32.3 — 34.5 kDa in other sand fly species (Oliveira et al., 2013).
The sequence of all lufaxin proteins contain a specific pattern of five cysteine residues
while the rest of the sequence is more variable (between 35 and 40 %) (Coutinho-Abreu
and Valenzuela, 2018).

Lufaxin acts as an anticoagulant through tightly binding and consequently inhibiting the
host’s coagulation factor Xa. As a result, the prothrombinase complex cannot be formed,
leading to an unrealized conversion of prothrombin to thrombin. Collin et al., (2012)
characterised lufaxin as a slow-tight and non-competitive inhibitor of FXa. Moreover, FXa
also influences protease activated receptors (PARs), presented on various cell types, which
are involved in inflammatory processes. Therefore, lufaxin has also anti-inflammatory
function (Collin et al, 2012). Furthermore, lufaxin was also shown to inhibit the
alternative pathway of the complement cascade by binding to the C3b-B complex,
eventually causing an inhibition of the C3 convertase formation (Mendes-Sousa et al.,
2017).

Importantly, lufaxin has a potential to produce a strong Thl cellular immunity and a
DTH response in dogs, an immune response known for its protective effect against an
infection with both Le. major and Le. infantum in various animal models (Gomes et al.,
2008; Oliveira et al., 2008; Xu et al., 2011). This finding led to lufaxin proteins being
studied as Leishmania transmission blocking vaccine candidates (Collin et al., 2009),
which was further supported by the fact that it has a conserved sequence, conserved B-cell
epitopes and that it is present in both Old and New World sand flies (Coutinho-Abreu and
Valenzuela, 2018). However, despite these findings Xu et al., (2011) was unable to show a
protective effect of L. longipalpis lufaxin against a Le. major infection in mice. A
combination of lufaxin with KMP11, LeishF3+ and an adjuvant in virus-like particles
could be a promising substitute as it was shown to generate higher antigen-specific cellular
and humoral immune responses in uninfected mice (Cecilio et al., 2017) — encouraging

results that need to be further investigated, especially its combination with Leishmania sp..
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In both the sialome of P. perniciosus and P. orientalis only one homolog of the lufaxin
protein was found (Anderson et al., 2006; Vlkova et al., 2014). The predicted MW of the
P. perniciosus lufaxin is 33 kDa (Anderson et al., 2006), the one for the P. orientalis
lufaxin is 18.8 kDa (Vlkova et al., 2014). Phylogenetic analyses showed that P. perniciosus
lufaxins are closely related to P. tobbi (both from Larroussius subgenus), while they are
closely related to other lufaxin proteins from Adlerius and Larroussius subgenus
(Coutinho-Abreu and Valenzuela, 2018). This shows that the evolution of these proteins is
in accordance with the classical sand fly phylogeny inferred from the small subunit nuclear
ribosomal DNA (Aransay et al., 2000). Since the P. orientalis lufaxin is almost half the
length of homologues in other sand flies (Vlkova et al., 2014), it has not been included in
any of the phylogenetic analysis published so far. However, since P. orientalis lufaxin is
highly related to the lufaxin of P. perniciosus with a 88 % sequence similarity and other
lufaxins from Larroussius sand flies cluster together (Coutinho-Abreu and Valenzuela,
2018), it can be assumed that also the lufaxin from P. orientalis will cluster with the

lufaxins of other Larroussius species.(Vlkova et al., 2014).

3.3. Antigen S-related protein family

The antigen-5 related proteins (AgSr) are found in various insect species and together
with the cysteine-rich secretory proteins (CRISPs) and the plant pathogenesis-related
protein 1 (PR-1) they form the CAP family (Gibbs et al., 2008). They have been described
for the first time in venom of various ants and wasps [reviewed in (King and Spangfort,
2000)] and in saliva of various blood sucking insects (Ameri et al., 2008; Assumpgao et al.,
2011, 2008; Ribeiro et al., 2010a; Xu et al., 2011). Antigen 5-related proteins are present in
the sialomes of all studied sand fly species and have a predicted MW around 28.8 —
31.2 kDa (Oliveira et al., 2006). Sequences of Ag5r generally consist of fourteen
conserved cysteine residues and an almost 80 % sequence similarity is found between sand
flies from the Old and New World (Coutinho-Abreu and Valenzuela, 2018). One
homologue of the Ag5r protein was shown to be present in the sialome of P. perniciosus
(Anderson et al., 2006), while two homologues were detected in the sialome of
P. orientalis (Vlkova et al., 2014). The antigen 5-related proteins from these two members
of the Larroussius subgenus are highly related in phylogenetic analyses, creating one
cluster together with the P. fobbi Ag5r, and are closely related to other Larroussius,
Adlerius and Euphlebotomus Ag5r proteins (Coutinho-Abreu and Valenzuela, 2018;
Vikova et al., 2014).
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The function of Ag5r remained elusive for a long time. However, in recent years it was
shown that Ag5r proteins possess diverse functions. For instance, the Ag5r protein from
the horse fly Tabanus yao has a fibrin(ogen)olytic enzymatic activity and is able to inhibit
platelet aggregation (Ma et al., 2009; Xu et al., 2008), whereas the Ag5r of kissing bugs
has an antioxidative function (Assumpgdo et al., 2013). The Ag5r (IT5) from Stomoxys
calcitrans, on the other hand, can bind immunoglobulins (Ameri et al., 2008) and inhibit
the classical pathway of the complement system (Wang et al., 2009). Despite these
findings, the function of Ag5Sr proteins in mosquitoes and sand flies remains unknown.

In sand flies, the Ag5r proteins are highly antigenic in various vertebrates (Hostomska
et al., 2009; Rohousova et al., 2012a, 2012b; Vlkova et al., 2012, 2011). The antibody
response against recombinant L. intermedia Ag5r protein (LinB-13) have been proposed as
an exposure marker for sand fly bites in humans (Carvalho et al., 2017). However, the
recombinantly expressed P. perniciosus Ag5Sr protein (PpeSP07) did not recognize sera
from mice nor dogs that were previously bitten by P. perniciosus (Drahota et al., 2014).
Also for the recombinantly expressed P. orientalis Ag5r (PorASP76) protein, no satisfying
results were obtained when testing it as a marker of exposure to P. orientalis bites in
Ethiopian domestic animals (Sima et al., 2016b). Latter, the second P. orientalis Ag5r
protein (PorASP74) was expressed in a mammalian system, which resulted in it being a
valid antigen for human exposure to P. orientalis when combined with the P. orientalis
YRP (Sumova et al., 2018). A lack of glycosylation patterns and other post-translational
modifications due to the expression of the recombinant proteins in a bacterial expression
system might be the cause of its low antigenicity in study by Sima et al., (2016a) or the
differences between two P. orientalis Ag5r homologues, even though they share 99 %

identity.

3.4. Odorant-binding protein family

The family of odorant-binding proteins belongs to the odorant binding protein (OBP)
superfamily that has a characteristic OBP domain. The number of copies of the OBP
domain in the sequence, the molecular weight of the proteins and the species of origin all
divide these proteins into subfamilies. Homologues of these proteins have also been found
in the sialomes of other blood feeding insects e.g. mosquitoes [reviewed in (Valenzuela et
al., 2002)], black flies (Andersen et al., 2009), and biting midges (Wilson et al., 2008). The
sialomes of all sand flies contain two groups of OBPs: (i) long odorant binding proteins

named D7 and (ii) short OBPs that are similar to P. papatasi SP15, and therefore
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commonly named PpSP15-like proteins. Interestingly, another small group of OBPs

(LIM19) was found only in L. longipalpis saliva (Ribeiro et al., 2010a).

The D7-related proteins (large OBPs):

The first subfamily of salivary OBPs are the D7-related proteins, found in all sand flies’
sialomes studied so far and with a predicted MW of 25.3 — 28.1 kDa (Oliveira et al., 2013).
A specific pattern of ten cysteine residues is present in their sequences. However, the
unconserved part of their sequence is highly divergent, even among homologues from the
same subgenus (Coutinho-Abreu and Valenzuela, 2018). Multiple homologues of
D7-related proteins were found in the sialomes of P. perniciosus and P. orientalis. The
sequence similarity between the homologues — even within the same species — is low (30 —
40 %) (Anderson et al., 2006; Vlkova et al., 2014). However, certain regions, mainly at the
N-terminus, are more conserved (Anderson et al., 2006; Vlkova et al.,, 2014). Strong
selective forces related to the function and/or immunogenicity of these proteins are
hypothesized to lay at the base of the difference in phylogeny of these D7-related proteins
and the classical sand fly phylogeny (Aransay et al, 2000; Coutinho-Abreu and
Valenzuela, 2018).

The D7 proteins from Aedes aegypti and Anopheles gambiae were able to act as
eicosanoids and biogenic amines binders (Calvo et al., 2006, 2009; Mans et al., 2007),
while this function in sand fly’s saliva is hold by YRPs. The inability of sand fly
D7-related proteins to bind biogenic amines is due to a different arrangement of the
C-terminal domain compared to the D7 proteins from Ae. aegypti and An. gambiae
(Jablonka et al., 2019). Moreover, the An. stephensi D7 protein was shown to bind factor
XII (FXII) and a high molecular weight kininogen which leads to an inhibition of the
intrinsic coagulation pathway in the vertebrate host (Isawa et al., 2002). In sand flies the
function of D7-related proteins was discovered recently when it was demonstrated that
both D7-related proteins of P. duboscqi (PduMO1) and P. papatasi (PptSP28) are able to
inhibit platelet activation by binding thromboxane A2, confirming their role as
anti-haemostatic molecules. Finally, they are able to bind cysteinyl leukotrienes (Jablonka
et al., 2019), which are released by hosts’ mast cells and may cause vasoconstriction,
itching, pain and swelling (Boyce, 2005; Soter et al., 1983).

Importantly, D7-related proteins are also antigenic in vertebrate hosts. This
antigenicity was proven for various combinations of sand fly and host; e.g. P. papatasi —

human (Marzouki et al., 2011; Rohousova et al., 2005), P. papatasi — mice (Vlkova et al.,
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2012), L. longipalpis — dogs (Bahia et al., 2006; Hostomska et al., 2008), P. tobbi — rabbit
(Rohousova et al., 2012b). Even more so, the antigenicity of D7-related proteins was also
shown for P. perniciosus with sera from naturally bitten hares and rabbits (Martin-Martin
et al., 2014), experimentally bitten mice (Martin-Martin et al., 2015), experimentally bitten
hamsters (Martin-Martin et al., 2012) and experimentally and naturally bitten dogs (Vlkova
et al., 2011); and for P. orientalis and sera from naturally bitten dogs (Sima et al., 2016b).
Due to their antigenicity their potential as exposure markers was explored. However, only
some were found suitable for certain host. For example, the recombinant D7-related
protein (LJL13) of L. longipalpis was specifically recognised by antibodies present in sera
of dogs, but not by human sera (Teixeira et al., 2010). Similar results were obtained with,
the recombinant D7-related protein from P. papatasi (PpSP30) (Marzouki et al., 2012)
(Vlkova et al., 2011), and from P. orientalis (PorMSP67), the latter one showing promising
results in a preliminary study with sera from Ethiopian goats, but with an insufficient

correlation with the SGH (Sima et al., 2016b).

The PpSP15-like proteins (short OBPs):

The second subfamily of OBPs was named after the P. papatasi SP15 protein
(Valenzuela et al., 2001b), and is characterized by the presence of a single OBP domain
and a lower predicted molecular weight than the large OBPs (between 12.2 and
17.1 kDa)(Oliveira et al., 2013). The sequence of the PpSP15-like proteins contains five
cysteine residues organized in a specific motif. Similar to the D7-related proteins, also the
PpSP15-like proteins have a highly divergent sequence across sand fly subgenera and even
between species (Coutinho-Abreu and Valenzuela, 2018). Three and six PpSP15-like
protein homologues were identified in the P. perniciosus sialome according to Anderson et
al.,, (2006) and Martin-Martin et al., (2013), respectively and five in the P. orientalis
sialome (Vlkova et al, 2014). All PpSP15-like proteins from P. perniciosus and
P. orientalis have a predicted MW (13 — 17 kDa) characteristic for this protein family
(Coutinho-Abreu and Valenzuela, 2018; Vlkova et al., 2014). The phylogeny of
PpSP15-like proteins is hard to reproduce, as their sequences are very variable due to
multiplication of gene copies. However, sequences of Larroussius and Adlerius are usually
divided into three clades (Coutinho-Abreu and Valenzuela, 2018; Vlkova et al., 2014).

Only the function of the P. duboscqi PpSP15-like proteins (PduM02, PduMO03) has been
elucidated. More specifically, they were shown to be able to bind anionic polymers like

polyphosphate, dextrane sulphate and heparin (Alvarenga et al, 2013), which are
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responsible for the activation of FXII and subsequent stabilisation of coagulation
complexes (Didiasova et al., 2018). Hence the PpSP15 serve as anticoagulant molecule in
sand fly saliva (Alvarenga et al., 2013).

When PpSP15 was inoculated in mice, followed by exposure to Le. major and
P. papatasi SGH, the number of parasites and the lesion size were reduced, suggesting of a
protective effect of the PpSP15 protein. A DTH response was demonstrated to lay at the
base of this protective effect (Valenzuela et al., 2001a). This protective effect mediated by
a DTH immune response and a Thl polarisation was consequently shown for the
PpSP15-like protein from P. ariasi (ParSP03) (Oliveira et al., 2006), the PpSP15-like
protein (PsSP9) from P. sergenti (Gholami et al., 2019) and the P. duboscqi PpSP15-like
protein (PduMO02) (Oliveira et al., 2015, 2008). Interestingly, also a protective effect of a
plasmid containing the PpSP15 ¢cDNA together with cysteine proteinases expressed by
Le. tarantolae was shown (Zahedifard et al., 2014). Up to date, the PdSP15 is the most
promising candidate to be part of a vaccine against human cutaneous leishmaniasis
(Oliverra et al., 2015).

Not only PpSP15-like proteins were tested as vaccine candidates: the L. longipalpis
small OBP (LJM19) was successfully tested as a protective molecule against both
Le. donovani-infantum complex and Le. brasiliensis (da Silva et al., 2011; Gomes et al.,
2008; Tavares et al., 2011). Similar results were reached by vaccinating hamsters with
either a plasmid coding for LIM19 and leishmania antigen KMP11 (da Silva et al., 2011)
or the Le. donovani centrin gene knock-out parasites (Fiuza et al., 2016), which protected
against Le. infantum and Le. donovani, respectively. Even more so, LIM19 also protected
hamsters against a Le. brasiliensis infection when inoculated with the SGH of
L. intermedia (Tavares et al.,, 2011). Based on these results, LIM19 is an important
candidate as an anti-Le. donovani-infantum vaccine or vaccine adjuvant, especially as it
has a protective effect against both Le. donovani-infantum and Le. brasiliensis.

Apart from using PpSP15-like proteins as an anti-leishmania vaccine, they are also
shown to be highly antigenic. High titers of P. papatasi anti-PpSP15 antibodies were
detected in repeatedly bitten mice (Vlkova et al., 2012) and humans (Marzouki et al.,
2011). Phlebotomus perniciosus PpSP15-like was recognized by antibodies from sera of
dogs (Vlkova et al., 2011) as well as rabbits and mice (Martin-Martin et al., 2015) and
P. tobbi small OBP was antigenic for repeatedly bitten rabbits (Rohousova et al., 2012b).
Despite these results, none of the immune responses against these proteins was shown to

be a good marker of exposure for sand fly bites.
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3.5. PpSP32-like protein family

The first member (PpSP32) of this protein family was discovered in P. papatasi.
PpSP32-like proteins are sometimes called “silk proteins” according to the only detected
homolog of PpSP32, which is a flagelliform silk protein from Nephila clavipes
(Valenzuela et al., 2001b). The average molecular weight of these proteins varies from
22.5 to 34.9 kDa (Oliveira et al., 2013) and their isoelectric point is highly basic. The
function of these proteins within sand fly saliva remains elusive. It has been suggested that
it could bind the extracellular matrix of the host as it is similar to collagen-binding proteins
from Bacillus cereus (Valenzuela et al., 2004). However, the P. perniciosus PpSP32-like
protein is similar to collagen type VII, contradicting the previous hypothesis (Anderson et
al., 2006). The sequence of this protein family does not include any specific domains, but
they are rich in glycine residues organised in patterns similar to those in collagen type VII
(Anderson et al., 2006). Representatives of the PpSP32 family were found in the sialomes
of sand flies (Coutinho-Abreu and Valenzuela, 2018) but not in other blood feeding
insects. Similar to OBPs, the sequence divergence of PpSP32-like proteins is one of the
highest among the sand flies studied so far (Coutinho-Abreu and Valenzuela, 2018).

Even though the sequence of PpSP32-like proteins is not very conserved among all sand
flies, the recombinant PpSP32 protein of P. papatasi was shown to be an ideal marker for
humans naturally exposed to P. papatasi bites (Marzouki et al., 2015, 2012).

One homologue of the PpSP32-like protein was found in the transcriptomes of the
salivary glands of both P. perniciosus and P. orientalis (Anderson et al., 2006; Vlkova et
al., 2014). Both proteins from these Larroussius sand flies shared a similar predicted MW
and an alkaline isoelectric point, and a very high sequence similarity (87 %), supporting
their distribution in the phylogenetic tree of PpSP32-like proteins, where PpSP32-like
proteins of P. orientalis and P. perniciosus cluster together (Coutinho-Abreu and

Valenzuela, 2018).

3.6. ParSP25-like protein family

The ParSP25-like protein family is a small family of which the members are unique in
the sialomes of Old World sand flies belonging to the Larroussius and Adlerius subgenera
(Anderson et al., 2006; Coutinho-Abreu and Valenzuela, 2018). They were named after the
first discovered 26.6 kDa protein in the sialome of P. ariasi. The sequence of the ParSP25
protein does not contain any specific domains, but its N-terminus is rich for negatively

charged amino acids, resulting in a very acidic isoelectric point (4.8) (Oliveira et al., 20006).

25



The molecular weight of these proteins is predicted between 24.8 and 38.8 kDa (Anderson
et al., 2006; Hostomska et al., 2009; Oliveira et al., 2006; Rohousova et al., 2012b; Vlkova
et al., 2014). The divergence among homologous sequences from different sand fly species
is very low (Coutinho-Abreu and Valenzuela, 2018). One ParSP25-like protein is present
in the saliva of both P. perniciosus and P. orientalis (Anderson et al., 2006; Vlkova et al.,
2014). Both of these proteins have a highly similar sequence (73 %), predicted MW and a
very acidic pl (Anderson et al., 2006; Vlkova et al., 2014). According to phylogeny of
available ParSP25-like proteins’ sequences, the P. perniciosus and P. orientalis proteins
are not directly related within one group (Coutinho-Abreu and Valenzuela, 2018).

The ParSP25 protein from P. ariasi was tested for its ability to induce either a cellular
or humoral immune response in mice. A strong DTH reaction was observed when a
plasmid containing this protein was injected in mice, which was, interestingly, not
combined with a Thl immune profile and infiltration of pro-inflammatory immune cells
into the injection site, causing it not to be an optimal vaccine candidate (Oliveira et al.,
20006).

The function of ParSP25-like proteins remains to be discovered. They have been
repeatedly shown to be highly antigenic in the various hosts, such as repeatedly bitten
mice, hamsters (Martin-Martin et al., 2012) and dogs (Vlkova et al., 2011) which
recognized the P. perniciosus ParSP25-like protein (PpeSP08). Furthermore, the
recombinant P. orientalis ParSP25-like protein (PorSP65) was chosen as one of the
potential P. orientalis exposure markers for domestic animals from Ethiopia (Sima et al.,
2016b), while this was not the case for the P. perniciosus ParSP25-like recombinant
protein (rPperSP08) which was tested as an exposure marker for dogs (Drahota et al.,

2014).

3.7. Other salivary proteins from P. perniciosus and P. orientalis sialomes

Certain proteins that do not belong to the large salivary protein families that were
mentioned above were found in the sialomes of P. perniciosus and P. orientalis. One of
these are the SP16-like proteins, found in P. orientalis (Vlkova et al., 2014). The proteins
of this family have a predicted molecular mass between 14 and 16 kDa, and their function
remains unknown. They have only been shown to be present in the saliva of Old World
sand flies, particularly P. arabicus, P. argentipes, P. sergenti, and P. papatasi (Coutinho-
Abreu and Valenzuela, 2018). Another protein with an unknown function and part of the
ParSP17-like family was identified in the P. perniciosus sialome (PpeSP19) (Anderson et
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al., 2006). Finally, two groups of proteins with a predicted low molecular mass (5.6 —
10 kDa and 2.7 — 5kDa, respectively) were found in both the P. perniciosus and
P. orientalis transcriptomes. Homologues of these proteins were also present in the
sialomes of P. tobbi (Rohousova et al., 2012b) and P. ariasi (Oliveira et al., 2006), but

their function remains unknown.

3.8. Enzymes present in sand fly saliva

Salivary enzymes are one of the main compounds of sand fly saliva, with some being
more abundant than others. Their enzymatic activities play a crucial role in facilitating the
sand fly blood feeding. In the following chapter the major sand fly salivary enzymes that

were found in sand fly saliva up to date will be discussed.

3.8.1. Salivary apyrase

In general, apyrases are enzymes that hydrolyse nucleotide di- and thri-phosphates to
orthophosphate and mononucleotides, and they can be divided into three families in
animals: (i) 5’-nucleotidase family, (i1) homologues to the human B-cell antigen CD39,
and (ii1) Cimex-type apyrases. The latter family was first described in saliva of the bed bug
Cimex lectularius (Valenzuela et al., 1998), and enzymes in this family are responsible for
the ATP hydrolysis effect in sand fly saliva (Charlab et al., 1999; Valenzuela et al., 2001b).
Cimex-type apyrases have been found in all published sand fly sialomes (Coutinho-Abreu
and Valenzuela, 2018; Oliveira et al., 2020), and compared to the other families of
apyrases they are strictly Ca’" dependent and unable to cleave adenosine monophosphate
(AMP) (Valenzuela et al., 1998, 2001b). Since adenosine diphosphate (ADP) is released
from ruptured tissues and consequently stimulates platelet aggregation, its degradation
facilitates sand fly blood feeding. Moreover, apyrases also have an anti-inflammatory
function. The degradation of both ATP and ADP inhibits purinergic signalling pathways
which are responsible for the activation of inflammatory cells and the production of
pro-inflammatory mediators and cytokines [reviewed in (Francischetti, 2010; Gounaris and
Selkirk, 2005)].

Besides their important enzymatic function, sand fly apyrases were also shown to be
antigenic in various hosts. Apyrases from P. arabicus, P. papatasi, L. longipalpis and
P. duboscqi were all shown to be antigenic in mice (Hamasaki et al., 2009; Hostomska et
al., 2009; Rohousova et al., 2005; Vlkova et al., 2012). However, only the apyrases of
P. papatasi and L. longipalpis reacted with human sera from individuals naturally exposed

to these sand flies (Marzouki et al,, 2011; Rohousova et al., 2005). Apyrases from
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P. perniciosus (PpeSP01 and PpeSPO1B) produced high amounts of antibodies in mice,
hamsters, dogs and lagomorphs (Drahota et al., 2014; Martin-Martin et al., 2013, 2014,
2015; Volf and Rohousova, 2001). The recombinant apyrase (PorSP15) from P. orientalis
possesses similar antigenic properties and was indicated as a potential exposure marker in
Ethiopian dogs (Sima et al., 2016b).

Furthermore, also the potential of the apyrase enzyme as an anti-Le. infantum vaccine
has been studied. However, both the L. longipalpis (LJL23) apyrase (Gomes et al., 2008)
and the P. papatasi apyrase (PpTSP36) were unable to produce a protective DTH response
in mice (Oliveira et al., 2008). Studies on the apyrase of P. papatasi did show a stimulated
production of IFN-y together with a Thl polarisation in cell cultures isolated from humans
pre-exposed to this sand fly, thereby creating an anti-Leishmania milieu indicative of a
potential use of this apyrase as a vaccine candidate (Tlili et al., 2018). Contrarily, apyrases
from P. ariasi (ParSPO1) and P. sergenti (PsSP40, PsSP41, PsSP42) were able to produce
a DTH response in mice (Gholami et al., 2019; Oliveira et al., 2006), but immunisation of
mice did not result in an increase in the production of IFN-y (Gholami et al., 2019).

The apyrase enzymatic activities were characterised for six Phlebotomus (Hamasaki et
al., 2009; Ribeiro et al.,, 1989; Vlkova et al.,, 2014; Volfova and Volf, 2018), one
Lutzomyia (Ribeiro et al., 1986; Volfova and Volf, 2018) and one Sergentomyia species
(Volfova and Volf, 2018), respectively. The apyrases had activity in pH range 6.5 and 9
(Hamasaki et al., 2009; Ribeiro et al., 1986, 1989; Vlkova et al., 2014; Volfova and Volf,
2018). Both, the amino acid sequence and predicted MW (33 — 36 kDa) of these sand fly
enzymes, are conserved (Coutinho-Abreu and Valenzuela, 2018; Oliveira et al., 2013;
Vikova et al., 2014).

The highest apyrase activity for both ATP and ADP was found in P. argentipes,
followed by P. papatasi and P. orientalis together with P. perniciosus (Ribeiro et al., 1989,
1986; Vlkova et al., 2014; Volfova and Volf, 2018). A lower apyrase activity was shown in
S. schwetzi saliva (Volfova and Volf, 2018), and the lowest was observed in L. longipalpis
saliva (Ribeiro et al., 1986; Volfova and Volf, 2018). Compared to other sand fly species,
S. schwetzi apyrase hydrolyses both ATP and ADP to a similar extent, possibly due to its
adaptation to the evolutionary preferred host (reptiles) (Volfova and Volf, 2018). However,
this functional variation is not distinguishable on the phylogeny of apyrases which follows
the classical sand fly phylogeny (Aransay et al., 2000; Coutinho-Abreu and Valenzuela,
2018).
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In the sialomes of P. perniciosus and P. orientalis, two and three homologues of
apyrase were found, respectively (Anderson et al., 2006; Vlkova et al., 2014). Phylogenetic
analyses revealed that they cluster into two paraphyletic clades (clade I.: PpeSP01 with
PorASP14 and PorASP15; clade II.: PpeSPO1 with PorASP11) within other Larroussius-
Adlerius apyrases. The sequences of the apyrases of P. perniciosus and P. orientalis share
a high degree of identity (94 — 99 %) within a clade, while their sequence identity is lower
(66 — 68 %) between clades — a trend caused by a gene duplication during their evolution

(Coutinho-Abreu and Valenzuela, 2018; Vlkova et al., 2014).

3.8.2. Salivary hyaluronidase

Hyaluronidase is another enzyme present in saliva of sand flies (Coutinho-Abreu and
Valenzuela, 2018; Volfova and Volf, 2018) and other blood sucking arthropods (Campbell
et al, 2005; Ribeiro et al., 2000a, 2004, 2010b). The salivary hyaluronidase belongs
together ~with the mammalian and the Hymenopteran ones, to the
endo-PB-N-acetyl-hexosaminidases [reviewed in (Kreil, 1995; Stern, 2003)]. They are
responsible for the degradation of hyaluronan (HA) and other glycosaminoglycans that are
contained in the extracellular matrix (ECM) of the vertebrate host, which eventually
facilitates feeding, particularly for insects with shorter mouthparts that have a pool-feeding
strategy. While hyaluronidase increases the skin matrix permeability of the host and
enlarges the intradermal hemorrhagic “feeding pool”, it simultaneously promotes the
spread of active salivary components and pathogens such as Leishmania sp. (Volfova et al.,
2008). Moreover, cleaved HA triggers various immunological processes that affect
macrophages (induction of iNOS and chemokine secretion), activate dendritic cells and
stimulate T-lymphocyte proliferation [reviewed in (Mummert, 2005)]. When this effect
was studied with the recombinant hyaluronidase of L. longipalpis (LuloHya), the
subsequent immune reaction caused an acute haemorrhage, edema and inflammation on the
ears of the tested mice, and provided a better milieu for a successful infection of
Leishmania sp. (Martin-Martin et al., 2018).

The possibility of using L. longipalpis recombinant hyaluronidase (LuloHya) as an
anti-Le. major vaccine was shown to depend on the production of specific anti-LuloHya
antibodies, which completely block its enzymatic function (including the subsequent hosts’
immune reaction) and eventually lead to a reduction in lesion size and parasite load, as was

shown in a L. longipalpis-Le. major model (Martin-Martin et al., 2018).
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The sequences of sand fly hyaluronidases are highly conserved (around 70 — 90 %) and
only one homolog of this enzyme was found in each sand fly species (Coutinho-Abreu and
Valenzuela, 2018). The low abundance of the transcript (Oliveira et al., 2020) together
with the large size of the protein cause that they were detected only in eight sand flies’
sialomes or transcriptomes (P. arabicus, P. kandelakki, P. pernicious, P. orientalis,
P. tobbi, L. longipalpis, L. olmeca, L. intermedia) (Charlab et al., 1999; Coutinho-Abreu
and Valenzuela, 2018; Petrella et al., 2015).

On the other hand, the hyaluronidase activity was measured and characterized in all ten
species studied so far. A high activity was shown for P. papatasi (Cerna et al., 2002;
Rohousova et al., 2012b; Volfova and Volf, 2018), P. halapensis (Cerna et al., 2002),
P. tobbi (Rohousova et al., 2012b; Vlkova et al., 2014) and P. perniciosus (Rohousova et
al., 2012b; Vlkova et al, 2014). A medium activity was detected in P. arabicus
(Rohousova et al., 2012b), P. duboscqi (Cerna et al., 2002), and P. argentipes (Rohousova
et al., 2012b) saliva, while P. sergenti (Cerna et al., 2002; Rohousova et al., 2012b),
S. schwetzi, and L. longipalpis saliva had a low hyaluronidase activity (Cerna et al., 2002;
Rohousova et al., 2012b; Volfova and Volf, 2018).

The predicted MW of sand fly hyaluronidases varies between 24 — 53 kDa (Abdeladhim
et al., 2016; Charlab et al., 1999; de Moura et al., 2013; Hostomska et al., 2009; Vlkova et
al.,, 2014). However, the apparent MW on protein-gel electrophoresis was usually found
much higher (60 — 135 kDa), suggesting that hyaluronidase contains a high number of
post-translational modifications, such as glycosylations (Cerna et al., 2002; Hostomska et
al., 2009; Rohousova et al., 2012b). Interestingly, S. schwetzi hyaluronidase had an
apparent MW of 43 kDa on protein-gel electrophoresis, possibly due to low glycosylation
(Volfova and Volf, 2018). Importantly, the glycosylation of this enzyme (L. longipalpis
hyaluronidase) was recently shown to be essential for the activity of hyaluronidase
(Martin-Martin et al., 2018). Not only the glycosylation patterns but also the
oligomerisation of the molecule affect the apparent MW of these enzymes. For example,
hyaluronidases of P. tobbi, P. duboscqi, P. halapensis and S. schwetzi are active as
monomers, while P. sergenti is active as a dimer, and L. longipalpis and P. papatasi
hyaluronidases as both monomers and oligomers (Cerna et al., 2002; Rohousova et al.,
2012b; Volfova and Volf, 2018). Even though the sequences of sand fly hyaluronidases
show high levels of identity, their activity, MW, and molecule organization significantly

differs between all sand fly species.

30



3.8.3. Other salivary enzymes

Apart from apyrase and hyaluronidase, other enzymes have also been detected in sand
fly saliva that might have an influence on sand fly blood feeding. All enzymes mentioned
below are low abundant transcripts (Oliveira et al., 2020) and were recognised only in the
sialomes of some sand fly species (Coutinho-Abreu and Valenzuela, 2018).

Salivary 5’-nucleotidase, an enzyme first and only described in the L. longipalpis
sialome (Charlab et al., 1999). It is able to hydrolyse the nucleotide AMP, and ADP or
UDP-glucose, suggesting that it possesses also a phosphodiesterase activity. Compared to
apyrase, the 5’-nucleotidase activity does not depend on the presence of divalent-cations
(e.g. Ca™", Mg™", Mn®).

Another enzyme connected to the AMP hydrolysis pathway is the salivary adenosine
deaminase (ADA). Similarly to the 5’-nucleotidase, this enzyme was first described in
L. longipalpis saliva (Charlab et al.,, 1999), after which transcripts were found in the
sialome of P. duboscqi (Kato et al., 2006), L. olmeca (Abdeladhim et al., 2016) and
P. perniciosus (Petrella et al., 2015), and the ADA catalytic activity was identified in
P. duboscqi saliva (Kato et al., 2007).

The salivary apyrase, ADA and 5’-nucleotidase are all involved in vertebrate hosts’
ATP-ADP-AMP-adenosine catalysis pathway. The salivary 5’-nucleotidase is responsible
for degradation of AMP to soluble adenosine (Ribeiro et al., 2000b), which is then
catalysed by salivary ADA to inosine (Charlab et al., 2000, 2001). Adenosine itself has a
vasodilatory (Edlund et al., 1987) and anti-platelet-aggregation activity (Collis, 1989) and
it participates in pain processes (Burnstock and Wood, 1996). Moreover, together with
inosine, it induces mast cell degranulation, which provokes itching in the vertebrate host
(Tilley et al., 2000). Inosine is also able to inhibit the production of pro-inflammatory
cytokines (e.g. TNF-a, IFN-y, IL-12...) and it activates anti-inflammatory ones, like IL-10
(Hasko et al., 2000). Some sand fly species, like P. papatasi and P. argentipes, lack both
the transcripts and the enzymatic activity of ADA. However, large amounts of AMP and
adenosine were detected in their saliva (Ribeiro et al., 1999; Ribeiro and Modi, 2001),
suggesting that the hosts’ balance of AMP at the sand fly bite site is affected by several
mechanisms of salivary components that were independently invented throughout the
individual sand fly species evolution.

Another enzyme present in sand fly saliva is pyrophosphatase, with transcripts present
in Old World (P. argentipes, P. duboscqi, P.arabicus, P. orientalis, P. perniciosus,

P. kandelakki) but not in New World sand fly species [reviewed in (Coutinho-Abreu and

31



Valenzuela, 2018)]. The sequence of pyrophosphatase showed a low rate of diversification
between sand fly species. Its possible function might be connected with the hydrolysis of
the phosphodiesterase bond which is present in dinucleotides, nucleotide sugars or
nicotinamid adenine dinucleotide (NAD). Some dinucleotides are inflammatory or
mediators of vasoconstriction (Flores, 1999; Gasmi et al., 1996; Schliiter et al., 1996),
indicating that pyrophosphatase might serve as an anti-inflammatory and
anti-vasoconstriction molecule. Unfortunately, its enzymatic activity has not yet been
functionally characterised.

Transcripts of the salivary phospholipase A2 were detected only in Larroussius and
Adlerius sand fly species, more specifically in the sialomes of P. perniciosus, P. orientalis,
P. ariasi and P. argentipes. The amino acid sequences of this enzyme are highly conserved
among these sand fly species and include a signature of ten cysteines [reviewed in
(Coutinho-Abreu and Valenzuela, 2018)]. The phospholipases A2 from P. orientalis and
P. perniciosus have a similar MW (30 kDa) and show a high degree of amino acid
sequence conservancy (99 %) (Anderson et al., 2006; Vlkova et al., 2014). The function of
this enzyme remains unknown. Efforts to measure the phospholipase A2 activity in saliva
of P. arabicus were unsuccessful (Hostomska et al., 2009).

Lastly, Salivary endonuclease was found in both Old World and New World sand fly
species, with an exception of P. sergenti and P. tobbi [reviewed in (Coutinho-Abreu and
Valenzuela, 2018)]. The enzyme has a low divergence of its amino acid sequence in all
sand fly species studied so far. It possesses a specific domain (DNA/RNA non-specific
endonuclease domain) and a specific pattern of ten cysteine residues (Coutinho-Abreu and
Valenzuela, 2018; Valenzuela et al., 2004). When the sequence of this endonuclease from
P. orientalis and P. perniciosus was compared, a high degree of identity (92 %), a similar
predicted MW, and a strong evolutionary relationship was shown (Anderson et al., 2006;
Coutinho-Abreu and Valenzuela, 2018; Vlkova et al., 2014). The salivary endonuclease of
P. perniciosus reacted with sera of dogs exposed to P. perniciosus (Vlkova et al., 2011).
Before the function of this enzyme was revealed, it was believed that it facilitates feeding
together with hyaluronidase by permeabilization of the hosts” ECM (Ribeiro et al., 2010a).
Later, an additional function of this endonuclease was revealed for the L. longipalpis
homologue. This homologue is called Lundep (Lutzomyia NET destroying protein)
(Chagas et al., 2014) as it degrades neutrophil extracellular traps (NETs), thereby
facilitating the survival of Le. major in neutrophils both in vitro and in vivo (Chagas et al.,

2014). Moreover, Lundep was shown to be highly antigenic and after exposure of mice to
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this molecule, the produced antibodies decreased the feeding success of the sand fly
(Chagas et al,, 2014). Even more so, immunizing mice with a combination of the
recombinant Lundep and the L. longipalpis hyaluronidase resulted in a promising

anti-Le. major protection (Martin-Martin et al., 2018).
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OBJECTIVES

The main aim of this thesis was to compare the salivary proteins and enzymes of
Sergentomyia schwetzi with those found in Phlebotomus perniciosus and Phlebotomus
orientalis, with special attention to their adaptation to different vertebrate hosts.
Furthermore, the function of one salivary protein family, the yellow-related proteins, was
compared between these sand fly species and its use as an exposure marker against

P. perniciosus was verified for dogs.

The main objectives of thesis were:

1. Characterise the salivary proteins and enzymes from Sergentomyia schwetzi saliva,
compare their properties and function with their known homologues from
Phlebotomus perniciosus and Phlebotomus orientalis with emphasis on their

preferred hosts
2. Compare biogenic amine-binding properties of the recombinant yellow-related
proteins from Phlebotomus perniciosus, Phlebotomus orientalis and Sergentomyia

schwetzi

3. Study the antigenic properties of the Phlebotomus perniciosus yellow-related

protein and its utilisation as a P. perniciosus-exposure marker in dogs
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Abstract

During the blood feeding, sand fly females inject saliva containing immunomodulatory
and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is spe-
cies-specific, likely due to an adaptation to particular haemostatic pathways of their pre-
ferred host. Research on sand fly saliva is limited to the representatives of two best-
studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Ser-
gentomyia are highly abundant in many areas in the Old World, their role in human dis-
ease transmission remains uncertain. Most Sergentomyia spp. preferentially attack
various species of reptiles, but feeding on warm-blooded vertebrates, including humans
and domestic animals, has been repeatedly described, especially for Sergentomyia
schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current
study. lllumina RNA sequencing and de novo assembly of the reads and their annotation
revealed 17,293 sequences homologous to other arthropods’ proteins. In the sialome, all
proteins typical for sand fly saliva were identified—antigen 5-related, lufaxin, yellow-
related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent
salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like pro-
teins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase
A2, adenosine deaminase, pyrophosphatase, 5’nucleotidase, and ribonuclease. Proteo-
mics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted
into the saliva. We also compared two S. schwetzilineages derived from the same origin.
These lineages were adapted for over 40 generations for blood feeding either on mice (S-
M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Alto-
gether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G
lineage, respectively. Proteomic comparison revealed ten salivary proteins more abun-
dant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G.
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No difference between lineages was found for apyrase activity; contrarily the hyaluroni-
dase activity was significantly higher in the lineage feeding on mice.

Introduction

Phlebotomine sand flies (Diptera, Psychodidae) are bloodsucking insects and vectors of
viruses, bacteria and protists, causative agents of several important diseases of humans and
animals. Out of over 800 described sand fly species, about 100 (all belonging to the two genera:
Phlebotomus and Lutzomyia) are proven or suspected vectors of medical importance [1,2].
Sand flies of the third genus, Sergentomyia, are highly abundant in many areas in the Old
World, but their vectorial role in human diseases is uncertain. Most of them exhibit a prefer-
ence to feed on cold-blooded vertebrates (such as reptiles and amphibians), yet feeding on
warm-blooded vertebrates, including domestic animals and humans, was also described [3,4].
Traditionally, Sergentomyia sand flies were considered as insects with possible vector role in
the transmission of reptile trypanosomatid parasites belonging to the genera Trypanosoma
and Leishmania [5-7], but more recently they have been found positive for several human
pathogenic viruses, namely Chandipura [8], Toscana [9], and Dashli virus [10], despite that
Sergentomyia sand flies vectorial capacity is still under consideration.

During the blood feeding process, a female sand fly injects saliva into the host skin. Saliva
has anti-haemostatic, immunomodulatory and anti-inflammatory properties, enabling the
successful completion of the blood uptake by the sand fly (reviewed in [11]). Sand fly saliva
can also facilitate transmission of the Leishmania parasites and enhance the Leishmania infec-
tion in the mammalian host [12,13]. While a number of reports focused on the composition
and function of Phlebotomus and Lutzomyia saliva (reviewed in [11]), only a single study dealt
with characterization of Sergentomyia salivary enzymes [14].

The salivary composition of blood-feeding insects differs, likely due to their adaptation to a spe-
cific haemostatic pathways of their preferred host [15]. The host’s haemostatic system is a complex
physiological process that halts bleeding at the site of injury (reviewed in [16]). The compounds
involved in the host haemostasis vary across vertebrates [17]. For example, ADP was shown to acti-
vate mammalian platelets, but not thrombocytes of birds and reptiles [18]. Thus, biting insects
adapted to feeding on birds or reptiles are expected to have lower level of apyrase activity for suc-
cessful blood feeding on mammals [15]. This could explain why the triatomine bug Dipetalogaster
maxima, which prefers to feed on lizards, exhibits very low salivary apyrase activities, compared to
other triatomine bugs [19]. Similarly, the saliva of Culex quinquefasciatus, the species which appears
to be adapted to mammalian hosts only recently, exhibits very low anti-clotting and apyrase activi-
ties, and, therefore, is not able to effectively prevent platelet aggregation caused by ADP [15]. In
other bloodsucking insects, several studies have focused on comparison of salivary compounds
between various insect families (reviewed in [20-22]), but not in respect to host preferences.

Here we present data on the salivary gland transcriptome, proteome and salivary enzyme
activities of two S. schwetzi lineages come from a common origin, that were adapted to blood
feed either on mice (S-M) or geckos (S-G), two hosts with a different body temperature and
haemostatic mechanisms.

Materials and methods
Ethics statement

Animals were maintained and handled in the animal facility of Charles University in Prague in
accordance with institutional guidelines and Czech legislation (Act No. 246/1992 and 359/
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2012 coll. on Protection of Animals against Cruelty in present statutes at large), which includes
all relevant European Union and international guidelines for experimental animals. The exper-
iments were approved by the Committee on Ethics of Laboratory Experiments of the Charles
University (Prague) and were performed under permission of the Ministry of the Environment
of the Czech Republic (number: MSMT-10270/2015-6) and the Certificate of Competency
(number: CZ 02451) approved by the Ministry of Agriculture of the Czech Republic. Mice
were housed in polypropylene breeding cage and geckos in terrarium. Both cages and terrar-
ium were placed in a room with constant room temperature with a 12-hour-light/12-hour-
dark cycle and all animals had free access to food and water. All efforts were made to minimize
suffering of experimental animals within the study.

Sand flies

The colony of Sergentomyia schwetzi (Adler, Theodor & Parrot, 1929) was established from a
pool of eggs obtained during field work in Ethiopia (Sheraro district, Tigray region) in 2011
and it was maintained under standard conditions as described previously [23]. The females
from third generation were fed on two different hosts: BALB/c mice and the common leopard
gecko, Eublepharis macularius (Blyth, 1854). Consequently, one lineage (S-G) was established
from 191 female sand flies that were blood fed on the gecko, whereas the second lineage (S-M)
derived from 91 females blood fed on BALB/c mice. Both lineages were maintained under the
same conditions (but on different hosts) for over 40 generations (3 years) without any bottle-
neck effect and only then used for the experiments described below.

Sample preparation for illumina sequencing

In the sand fly’s salivary glands the majority of mRNA is transcribed during first two days after
emerging from pupae and therefore all transcriptomic studies are using 1-2 days old sand flies
[24], from which salivary glands were dissected in sterile Tris buffer (20mM Tris, 150 mM
NaCl, pH 7,8) and stored in batches of 60 salivary glands (originated from 40 to 50 individual
females) in TRIzol (Thermo Fisher Scientific, Waltham, USA) at -80°C until subsequent pro-
cessing. Three samples from three following generations, each containing 180 salivary glands,
were prepared for both lineages of S. schwetzi. In one day we dissected 60 to 120 salivary glands
(one or two batches) from females emerged on that day or one day before in the same pot (one
generation). For another batch we dissected newly emerged females from another pot (second
generation). We repeated this procedure to reach required amount of salivary glands. Total
RNA was extracted according to the manufacturer’s protocol; its quality was assessed using the
Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, USA) and quantified on a Nano-
Photometer (Implen GmbH, Miinchen, Germany). All six samples (three from S-G and three
from S-M lineages) were sequenced at Macrogen (Seoul, Republic of Korea) on the Illumina
HiSeq™ 4000 platform (Illumina, San Diego, USA).

Assembly and annotation of the transcriptome

Raw reads were trimmed for sequencing adapters, ambiguity, quality and length in the CLC
genomics workbench with standard settings (software versions 7.0.5 to 8.5.1, Qiagen, Hilden,
Germany) as described previously [25,26]. Trimmed reads were stored in FastQ format after
which a quality check was performed in FastQC [27].

All raw trimmed reads were de novo assembled by Trinity v2.2.0 [28,29] with the following
settings:—min_kmer_cov 1;—min_contig length 200. Additionally, de novo assembly was
verified by mapping the raw trimmed reads back to the assembled contigs using Bowtie v1.1.2
[30] utility in the Trinity pipeline by running a perl script bowtie_PE_separate_then_join.pl

PLOS ONE | https://doi.org/10.1371/journal.pone.0230537 March 24, 2020 3/40


https://doi.org/10.1371/journal.pone.0230537

PLOS ONE

Sergentomyia schwetzi saliva

(settings: -aligner bowtie—-p 4—all—best-strata). The assembled contigs were then clustered,
compared and filtered by CD-HIT-EST v4.6 [31] with an identity parameter 95%. Contigs,
which passed the identity parameter, were screened for open reading frames (ORFs) and the
single longest ORF was translated to its amino acid sequence using the TransDecoder v3.0.1
[29].

The protein sequences were annotated by finding their closest homologues in NCBInr pro-
tein database (National Center for Biotechnology Information non-redundant database) using
BLASTYp (basic local alignment search tool) with an e-value cut-off < 107" [32]. All annotated
protein sequences were manually sorted into seven groups according to the BLASTp hit organ-
ism: bacteria, fungi, plants, vertebrate, protozoa, other invertebrates, and arthropods. The
sequences from the arthropod subset were divided into the following groups: sand flies, mos-
quitoes, other blood-feeding arthropods, and other (non-blood-feeding) arthropods. Further
annotations of specific protein domains and families were performed against the Protein fam-
ily database (Pfam v31.0) [33], the Protein domain families (ProDom v2006.1) [34], the gene
ontology (GO) database [35], and the InterPro (classification of protein families) database
using the InterProScan software [36]. The GO hits were annotated using the WEGO v2.0
[37,38]. The putative signal peptide cleavage sites in the proteins were predicted by SignalP
v4.1 for all sequences [39], and the protein sub-cellular localization was predicted by TargetP
v1.1 for arthropod sequences subset [40]. The theoretical molecular weight (Mw) and isoelec-
tric point (pI) of the annotated proteins was predicted by ExPASy Compute pI/Mw [41].
Finally, the potential O-, N- and C-glycosylation sites of the selected proteins were predicted
using the NetOGlyc v4.0 Server [42], NetNGlyc v1.0 Server [43] and NetCGlyc v1.0 Server
[44].

Differential gene expression analysis

The RNA-seq analysis of all six transcriptomes (S-G 1-3, S-M 1-3) was performed in the CLC
genomics workbench. The transcripts were statistically compared by an “Empirical analysis of
differential gene expression” (EDGE) algorithm with default settings, p-value of < 0.05, and
FDR (false discovery rate) correction. The transcripts with salivary annotation were then
sorted into four groups: i) transcripts with a fold change lesser than 1.5, ii) transcripts with a
fold change greater than 1.5, iii) transcripts with a fold change greater than 1.5 and p-value
lesser than 0.05. The fourth group of transcripts contains those, which passed the FDR correc-
tion regardless their annotation.

RT-qPCR gene expression analysis

Six independently pooled samples each containing 15 salivary gland pairs were prepared for
each lineage. Salivary glands were dissected as above from 1- to 2-day-old sand fly females and
stored in RN Alater RNA Stabilization Reagent (Qiagen) at -80°C for a maximum of 4 hours.
Total RNA was isolated using the High Pure RNA Tissue Kit (Roche, Basel, Switzerland) fol-
lowing the manufacturer’s protocol, but eluting RNA into 35 pl of PCR-clean water. The
cDNA was then synthesized with a combination of anchored-oligo (dT);s and random hex-
amer primers using the Transcriptor First Strand cDNA Synthesis Kit (Roche) according to
the manufacturer’s instructions.

The RT-qPCR (reverse transcription quantitative polymerase chain reaction) primers
sequences are listed in S1 Table. The expression of all transcripts was confirmed by PCR using
the EmeraldA Amp® GT PCR Master Mix (TaKaRax Bio, Inc., Kusatsu City, Japan) (S1 Table)
and cDNA from either the S-G or S-M sand flies. PCR products were sequenced directly. All
RT-qPCR reactions were performed with the SYBR Green (Bio-Rad, Hercules, USA) using
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optimized conditions (S1 Table) on the iQ5 Multicolor Real — Time PCR Detection System
(Bio-Rad) in the technical duplicates. Relative gene expression values were quantified accord-
ing to the 27**“T method [45] using actin and G3PDH (glycerol-3-phosphate dehydrogenase)
as the reference transcripts and all relative gene expression values were calibrated to mean of
Cr values measured for each transcript from S-G lineage. The R software [46] was used for
data evaluation and visualization.

Phylogenetic analysis

Selected orthologues sequences were aligned by MAFFT (multiple alignment using fast fourier
transform) with L-INS-I method [47]. The phylogenetically informative regions were selected
using BMGE (block mapping and gathering with entropy) with BLOSUM30, and entropy
threshold of 0.4 to 0.5 [48]. Maximum likelihood phylogenetic trees were built in the IQ-TREE
software [49] using the ModelFinder [50] with corrected Akaike information criterion and an
ultrafast bootstrap approximation with 1,000 replicates [51]. The trees were constructed using
various protein substitution models: WAG (for D7-related and PpSP15-like proteins), WAG

+ 1+ G4 (for antigen 5-related proteins), WAG + F + I + G4 (for lufaxins and YRPs), WAG

+ F + G4 (for hyaluronidases), LG + F + R4 (for amylases), LG + F + I + G4 (for apyrases). Phy-
logenetic trees and the aligned sequences were edited and visualized in FigTree v1.4.3 (http://
tree.bio.ed.ac.uk/) and Jalview 2 [52], respectively. Nodes supports in phylogenetic trees were
indicated by the bootstrap values, while values higher or equal to 50% were displayed.

Proteomic analysis

In order to perform the proteomic analysis, 15 salivary glands from 5- to 7-day-old sand fly
females were dissected and stored in 15 pl of 100 mM TAE buffer (Tris Acetate EDTA) with
1% SDC (sodium deoxycholate) at 4°C. The dissection was performed between 5™ and 7™ day
after emerging from pupae, as the full protein content in salivary glands is reached only after
4™ day [24]. Three salivary gland samples from each lineage were analyzed on mass spectrome-
try in the OMICS Proteomics laboratory at BIOCEV (Vestec, Czech Republic), each of them
in three technical replicates. All the data were analyzed and quantified with the MaxQuant
software (v1.5.3.8) [53] with FDR set to 1% for both proteins and peptides and specified mini-
mum length set to seven amino acids. Quantification was performed with the label-free algo-
rithms described previously [53]. The data analysis was performed using Perseus v1.5.2.4
software [54]. Subsequently, the final data were filtered according to their quality and LFQ (log
2-transformed normalized label-free quantification) intensity (threshold 20). The significance
of the protein enrichment was statistically evaluated by Student’s T-test. The proteins with sali-
vary annotation were divided into three groups according to difference of LFQ intensity (S-G
vs. S-M samples) and Student’s T-test q-value: i) proteins with difference of LFQ intensity
lesser than 0.6, ii) proteins with difference of LFQ intensity greater than 0.6, and iii) proteins
with difference of LFQ intensity greater than 0.6 with Student’s T-test q-value lesser than 0.05.
For the proteome analysis by the SDS PAGE (sodium dodecyl sulfate-polyacrylamide gel
electrophoresis), the salivary glands from 5- to 7-day-old S. schwetzi females, of both S-G and
S-M lineages, were dissected into Tris buffer and stored (-20°C) until used. The samples, with
an equivalent protein concentration (20 pg per well), were incubated (95°C, 5 min, sample
buffer with 2-mercaptoethanol) and electrophoretically separated at 4°C using two SDS PAGE
maxi gels on OmniPAGE Maxi Plus (Cleaver Scientific, Rugby, UK) with 10% and 15% acryl-
amide, respectively. Gels were stained for total proteins with Coomassie Briliant Blue R-250
(SERVA Electrophoresis GmbH, Heidelberg, Germany). Raw gels are displayed on S1 Fig.
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Sample preparation for measuring enzymatic activities

For the enzymatic activity assays, the newly emerged females of both lineages were separated
(to ensure age standardization) and maintained at 26°C on 50% sucrose for 7 days. Dissected
salivary glands were transferred to Eppendorf tubes containing either 0.02M TBS (tris-buff-
ered saline), pH 7.6 with 0.005% Triton X-100 for apyrase, or 0.01M PBS, pH 7.2 for the hyal-
uronidase assays. Samples were stored at -80°C in batches of 10 salivary gland pairs per 20 pl
of buffer until used. Salivary gland homogenates (SGHs) were obtained by the disruption of
tissue with a plastic pestle after one freeze-thaw cycle in liquid nitrogen. The resulted homoge-
nate was diluted in an appropriate assay buffer to a working concentration and analyzed
immediately. The protein concentrations of the SGHs were measured by the Qubit Fluorome-
ter (Thermo Fisher Scientific) following the manufacturer’s instructions.

Apyrase assay

The apyrase activity was measured using a colorimetric microassay based on the Fiske and
Subbarow method [55] with slight modifications [56] on the Infinite M 200 Fluorometer
(Tecan, Minnedorf, Switzerland) at 665 nm. The concentration of the Pi was calculated from a
standard curve with potassium dihydrogen phosphate. One unit of enzyme activity was
defined as the amount of enzyme that releases one micromole of orthophosphate per minute
from the nucleotide substrate at the specified assay conditions.

Hyaluronidase assays

The zymographic analysis of hyaluronidase activities were visualized by SDS PAGE electro-
phoresis in 10% polyacrylamide gels (0.75 mm thick) with copolymerized 0.002% HA (hyal-
uronic acid) as was described previously [14] with the modification in sample loading— 0.5 of a
gland pair was loaded per lane. Raw gels are displayed on S1 Fig.

The hyaluronidase activities were quantified using a method of Frost and Stern [57] with
previously described modifications [58]. Briefly: biotinylated HA (bHA) was covalently bound
onto Covalink NH microtiter plates (NUNC) at the final concentration of 2 ug of bHA per
well, coated for 45 min with 1% BSA in PBS and equilibrated with 100 pl of an appropriate
assay buffer: 0.1M citrate-phosphate buffer (pH 4.0-7.0), and 0.1M sodium phosphate buffer
(pH 7.0-8.0), all containing 0.1M NaCl and 0.1% Triton X-100. SGH samples were loaded in
triplicates at a final concentration of 0.25 of a salivary gland pair per well, incubated for 45 min
at 37°C and the reaction was stopped by 6M guanidine (200 pl/well). Avidin-peroxidase
(Sigma-Aldrich) was used at a final concentration of 0.2ug/well for 30 min and the color reac-
tion was developed in a substrate buffer with o-phenylenediamine for 15 min in the dark. The
plates were read at 492 nm. Bovine testicular hyaluronidase (Sigma-Aldrich) serially diluted in
the assay buffer (pH 4.5) served as a standard and wells without bHA or without SGH were
used as negative controls. Raw data were evaluated by the Measurement Parameters Editor
Magelan 6 (Tecan). The measured activity was expressed as relative turbidity reducing units
(rTRU) per pair of salivary glands.

Results
Illumina sequencing and read assembly

Total of 339,133,323 trimmed reads generated from six libraries of S. schwetzi salivary glands
(S-M 1-3, S-G 1-3) were subsequently assembled into 88,676 contigs (N50 length 1,104 bp;
median contig length 329 bp; average contig length 644 bp; total assembled bases 57,076,819).
Out of these, 53,976,836 (16% of all reads) reads were matched back to assembled contigs in
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proper pairs and 61,570 contigs were obtained after clustering similar sequences (with similar-
ity threshold 95%). These were translated into 26,253 protein sequences. Among them, 5,927
OREFs were complete (from Met to stop codon), 9,970 ORFs were partial and 10,356 were iden-
tified as internal sequences. All protein sequences were annotated using their closest homo-
logues by searching the NCBInr with 19,800 matched sequences and UniProt/SwissProt
database with 14,676 matched sequences. The BLASTp against NCBInr results divided the
final dataset into 7 groups: bacteria (1,134 sequences), plants (325 sequences), fungi (24
sequences), protozoans (194 sequences), vertebrates (727 sequences), invertebrates other than
arthropods (103 sequences), and arthropods (17,293 sequences) (Fig 1A). In addition, 13,064;
175; and 12,194 sequences were matched in the Pfam, ProDom, and InterPro databases,
respectively (Fig 1B), and 7,749 sequences obtained GO terms (S2 Fig). Putative signal peptide
cleavage sites were predicted for 1,208 sequences, from which 474 had complete ORF.

Focusing on arthropod sequences only, four main groups were identified: sand flies (10,389
sequences), mosquitoes (3,151 sequences), other bloodsucking arthropods (189 sequences),
and other arthropods (3,568 sequences) (Fig 1A). From the arthropods subset, the 4,714;
6,389, and 6,181 ORFs were identified as complete, partial, and internal ORFs, respectively.
Within these protein sequences, 12,884; 11,293; 10,602; and 120 hits were matched with Uni-
Prot/SwissProt, Pfam, InterPro, and ProDom annotations, respectively. Total of 5,937 hits
with various function were annotated with GO (S2 Fig), and 856 and 2,122 proteins were pre-
dicted to possess signal or targeting peptides (Fig 1B).

Identification of salivary protein families

In the salivary gland transcriptome of S. schwetzi, we found the full-length and/or partial
sequences of main members of sand flies’ salivary protein families, namely lufaxin, antigen
5-related proteins, yellow-related proteins, small odorant-binding proteins (PpSP15-like pro-
teins), large odorant-binding proteins (D7-related proteins), silk proteins (PpSP32-like pro-
teins), and ParSP25-like proteins. Furthermore, we documented the expression of the
following sand fly salivary enzymes: apyrase, hyaluronidase, endonuclease, amylase, phospho-
lipase A2, adenosine deaminase, pyrophosphatase, 5’nucleotidase and ribonuclease, and pro-
teins: 71kDa-like protein, C-type lectin, ParSP80-like, SP16-like and ParSP17-like proteins
and peptide homologous to Lol38.8. These data for proteins with complete ORFs are summa-
rized in Table 1; the partial sequences of the detected salivary proteins are listed in S2 Table
along with their annotations.

Antigen 5-related proteins

The antigen 5-related proteins (Ag5r) are proteins found in various insect species. In the ana-
lyzed transcriptomes, we identified two complete and five partial sequences of Ag5r proteins.
Only the complete sequences were used in further analyses. Data on the homologues of S.
schwetzi Ag5r proteins (SschwAgb5r) are presented in Table 1 and S2 Table.

Both full-length proteins, SschwAg5r1 and SschwAg51r2 (sequence identity 70.5%), are 290
aa (amino acid) long with predicted Mw (without signal peptides) of 29.2 kDa and 30.2 kDa,
respectively. In the sequence of SschwAg5r1, there were no N-glycosylation but 11 putative O-
glycosylated sites, while in the sequence of SschwAg5r2, 2 and 5 putative N-glycosylation and
O-glycosylation sites were predicted, respectively. The sequence identity of SschwAg5r with
other sand fly Ag5r was between 67.6 and 60.2%. All Ag5r proteins share a motif of 14 Cys res-
idues CX4CXy 13CXo.10CXe1-63CX6CX5CX70_71CX17.18CX,CX;5CX,CX4CX,C [59]. This pat-
tern was slightly modified in the sequences of SschwAg5r1 and SschwAg5r2 (S3 Fig).
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yellow), mosquitoes (16%, green), other blood-sucking arthropods (1%, maroon), other arthropods (18%, azure), bacteria (5.7%, dark green), plants (1.6%,
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whole transcriptome sequence dataset are shown in blue and sequences annotated from arthropod sequences subset in yellow, TargetP search was performed
only for arthropod sequences subset.
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The phylogenetic analysis showed that SschwAg5r1 and SachwAg512 are sister to all
sequences available from other sand fly species (Fig 2).

Lufaxin

Lufaxin proteins are sand flies’ specific salivary anticoagulants (inhibitors of factor Xa). Five
full-length sequences and one partial sequence of lufaxin homologues were identified in S.
schwetzi transcriptome. The BLASTp hits and more annotations for each SschwLuf sequences
are listed in Table 1 and S2 Table.

The amino acid sequences of SschwLuf are between 296 and 337 aa. The putative signal pep-
tide cleavage site was predicted for all SschwLuf, except the SschwLuf5. The predicted molecular
weight of SschwLuf varies between 31 kDa and 37.4 kDa and the putative O-glycosylation sites
were detected for SschwLufl (5 sites), SschwLuf2 (5 sites), SschwLuf3 (6 sites), SschwLuf4 (1
site). The putative N-glycosylation sites were predicted only for SschwLuf4 (2 sites). Six cyste-
ines typical for other sand fly lufaxins consensus sequence CX;; 20CXoCX3, 35CX115.125CXsC
[60] were conserved across all SschwLuf sequences.

The sequence identity between SschwLuf proteins ranged between 30% and 37.6%, except
the SschwLuf2 and SschwLuf3, which shared 97.7% sequence identity. Sequence identity with
other known sand fly lufaxins varied from 30.3% to 46.8%. The cysteine motifs and putative
glycosylations are shown in the 54 Fig. The phylogenetic analysis clustered SschwLuf
sequences as two separate groups out from both Old World (OW) and New World (NW) sand
flies. Further SschwLufl and SschwLuf5 were clustering as one group and SschwLuf2,
SschwLuf3 and SschwLuf4 were generating the other group (Fig 3).

Odorant-binding proteins (OBPs)

Large odorant-binding proteins (D7-related). Large odorant-binding proteins
(D7-related) were represented in S. schwetzi transcriptome by two full-length transcripts,
SschwD7_1 and SschwD?7_2, and 19 partial transcripts. The further annotations of all
SschwD?7 sequences are listed in Tables 1 and S1.

Both SschwD7 protein sequences possessed putative signal peptide cleavage sites. The
amino acid sequence lengths were 242 aa for SschwD7_1 and 263 aa for SschwD7_2 and the
predicted Mw of matured proteins were 26.4 kDa and 28.3 kDa, respectively. Both SschwD7
proteins contained one putative N-glycosylation site and SschwD7_2 had one putative O-gly-
cosylation site (S5 Fig). The other sand flies D7-related proteins contain 10 conserved Cys resi-
dues in the pattern CX,s5 ,7CX3CX44.46CX49.50CX6.12CX3CX30.3,CXoCXC [59]. The Cys
distribution pattern in SschwD7 was slightly modified (S5 Fig).

The sequence identity between the two SschwD7 was 30.2% and the identity with other
sand fly D7-related proteins was between 24.8% and 37.9%. The SschwD7 proteins cluster
with other Phlebotomus (Adlerius, Larroussius, and Euphlebotomus) proteins; however, the
phylogenetic analysis did not give any significant support for closer relationship with these
subgenera (Fig 4).

Small odorant-binding proteins (PpSP15-like). Small odorant-binding proteins
(PpSP15-like) were detected in S. schwetzi transcriptome and presented by four complete
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Table 1. Main salivary protein families identified in the transcriptome of S. schwetzi.

Protein family

Antigen 5-related (Ag5r)

Lufaxin (Luf)

Large odorant-binding proteins

(D7-related)

Small odorant-binding proteins

(PpSP15-like)

Yellow-related proteins (YRPs)

Apyrase (Apy)

Hyaluronidase (Hya)

5’-nucleotidase (s5nuc)
Adenosine deaminase (sADA)

Amylase (sAmy)

Endonuclease (sEnuc)
Phospholipase A2 (sPLA2)
Pyrophosphatase (sPP)
71kDa-like

C-type lectin

SP16-like
ParSP60-like
ParSP80-like
MBE2-like
Secreted peptide 1
Secreted peptide 2

Complete ORFs of S. schwetzi annotated as main salivary protein and enzyme families. Protein family name, S. schwetzi protein name, putative matured protein features

Protein name

SschwAg5rl
SschwAg5r2

SschwLufl
SschwLuf2
SschwLuf3
SschwLuf4
SschwLuf5
SschwD7_1
SschwD7_2
SschwSP15_1
SschwSP15_2
SschwSP15_3
SschwSP15_4
SschwYRP1

SschwYRP2
SschwYRP3
SschwApyl

SschwApy2

SschwApy3
SschwHyal

Sschwb5nucl
SschwADA1
SschwAmyl
SschwAmy3
SschwAmy?2
SschwEnucl
SschwPLA2_1
SschwPP1
Sschw71kDal
SschwCTL1
SschwCTL2
SschwSP16
SschwSP60-like
SschwSP80
SschwMBF2
SschwPeptidel
SschwPeptide2

Mw

[kDa]

29.2

30.2

31
35.3
35.3
37.2
37.4
26.4
28.3
14.8
31.7
14.5
15.0
40.9

39.6
43.8
353

355

35.9
38.9

59.9
57.6
53.9
52.7
54.1
52.3
42.1
47.1
70.9
19.1
15.9
17.6
15.2
16.2
15.3
7.7
7.8

pl

8.7

9.0

8.3
8.7
8.4
59
7.9
9.1
8.5
7.7
9.3
9.0
9.3
5.0

6.0
8.4
8.4

8.7

9.0
8.5

8.9
5.1
6.2
6.2
5.3
8.7
8.2
7.4
5.4
5.0
5.5
5.6
3.9
5.5
5.8
5.0
4.8

Best BLASTp match to NCBInr database

Species of the best

match

P. argentipes
P. duboscqi

P. papatasi

L. olmeca

L. olmeca

L. ayacuchensis
P. ariasi

P. orientalis

P. perniciosus
L. neivai

L. ayacuchensis
P. ariasi

P. ariasi

P. orientalis

P. ariasi
P. argentipes

L. neivai
L. ayacuchensis

P. orientalis

L. longipalpis

L. neivai

P. perniciosus
P. papatasi
M. domestica
P. papatasi

L. longipalpis
L. neivai

P. perniciosus
L. longipalpis
L. ayacuchensis
L. neivai

P. orientalis
P. argentipes
L. longipalpis
P. duboscqi
L. neivai

L. neivai

Accession
number

ABA12137

ABI20191

AGE83098
ANW11471
ANW11471
BAM69113
AAX55751
AGT96467
ABA43058
JAV08238
BAMG69139
AAX55748
AAX55748
AGT96428

AAX56360
ABA12136
JAV08627

BAM69108

AGT96431
AAD32195

JAV08429
ALL27025
AGE83100
XP_005185446
AGE83100
AAS16916
JAV08461
ALL27023
AAS16911
BAM69191
JAV08591
AGT96450
ABA12152
AAS16917
ABI20163
JAV08913
JAV08913

E-
value

9E-
118

2E-
106

3E-36
2E-41
2E-41
5E-55
1E-70
3E-44
9E-43
1E-22
7E-24
2E-25
2E-21

6E-
100

1E-90
3E-79

4E-
137

2E-
105

1E-99

2E-
133

(== - k= =)

2E-16

0

0

0
2E-12
8E-25
9E-17
6E-6
2E-99
5E-58
8E-27
1E-22

Seq. identity
[%]
62

57

35
32
32
45
45
37
35
38
38
39
35
44

41
40
60

47

47
56

57
69
74
66
59
38
82
75
85
33
33
34
38
82
63
52
45

GenBank protein
accession number

QHO60649
QHO60650

QHO60656
QHO60657
QHO60658
QHO60659
QHO60660
QHO60662
QHO60663
QHO60683
QHO60684
QHO60685
QHO60686
QHO60691

QHO60692
QHO60693
QHO60713

QHO60714

QHO60715
QHO60718

QHO60721
QHO60732
QHO60734
QHO60735
QHO60736
QHO60737
QHO60752
QHO60755
QHO60759
QHO60772
QHO60773
QHO60782
QHO60783
QHO60784
QHO60785
QHO60786
QHO60787

(Mw-molecular weight, pI-isoelectric point), BLASTp match to NCBInr protein database and NCBI GenBank protein accession numbers are listed.

https://doi.org/10.1371/journal.pone.0230537.t001
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Fig 2. Phylogenetic comparison of antigen 5-related proteins. The phylogenetic tree with 20 sequences was based on MAFFT alignment with BMGE
(threshold 0.4) containing 240 aa sites, 124 parsimony-informative sites, 49 singleton sites and 67 constant sites. The node values represent the percentage of
bootstrap support for each branch (values equal or higher than 50% are shown). The position of sand flies of Lutzomyia genus is marked by red branches color,
the sand flies of Phlebotomus genus are marked with blue branches color. The S. schwetzi proteins are marked by green branches color. For rooting the tree, the
Aedes aegypti (XP_021712908) sequence was used (branch in black). The sand flies’ subgenera are marked by shortcut in parentheses: Ad. - Adlerius, La. -
Larroussius, Eu. - Euphlebotomus, Ph. - Phlebotomus, Pa.—Paraphlebotomus, Lu. - Lutzomyia, Bi. - Bichromomyia, Ny. - Nyssomyia.

https://doi.org/10.1371/journal.pone.0230537.9002

sequences (SschwSP15_1 —-SschwSP15_4) and four partial sequences. The aa length of all
sequences, putative Mw and pl for complete SschwSP15 sequences and other annotations are

listed in Table 1 and S2 Table.

--------------------------- SschwLufl
--------------------------------------------------------------------------- SschwLuf5

100 [ SschwLuf2

67

100
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------------------------------------------------------- P. (Eu.) argentipes ABA12140
------------------------------------------------------------ P. (Ph.) papatasi AGE83098
----------------------------- P. (Ph.) duboscqi ABI20155
e e P. (Pa.) sergenti ADJ54130

Fig 3. Phylogenetic comparison of lufaxin proteins. The phylogenetic tree with 23 sequences was based on MAFFT alignment with BMGE (threshold 0.5) containing
259 aa sites, 213 parsimony-informative sites, 18 singleton sites and 28 constant sites. The tree is unrooted. For more detail see Fig 2 legend.

https://doi.org/10.1371/journal.pone.0230537.9003
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Fig 4. Phylogenetic comparison of large odorant-binding proteins (D7-related). The phylogenetic tree with 38 sequences was based on MAFFT alignment with
BMGE (threshold 0.5) containing 213 aa sites, 185 parsimony-informative sites, 19 singleton sites and 9 constant sites. For rooting the tree, the Anopheles stephensi
(CAC70632) and Culex quinquefasciatus (AAL16046) sequences were used (branches in black). For more detail see Fig 2 legend.

https://doi.org/10.1371/journal.pone.0230537.9004

All full-length sequences contained putative signal peptide cleavage site. Twelve putative O-
glycosylation sites were predicted for SschwSP15_2 and one site in the SschwSP15_3 sequence.
No putative N- or C-glycosylation sites were detected.

The PpSP15-like proteins also contain 6 Cys residues in the CX;7CX;5CX46CX;5CX3sC pat-
tern [59]. Changes in the SschwSP15_1, SschwSP15_2, SschwSP15_3, and SschwSP15_4 are
depicted in the S6 Fig.

The sequence identity among SschwSP15 proteins was relatively high between
SschwSP15_3 and SschwSP15_4 (87%) but relatively low between SschwSP15_1 and
SschwSP15_2 (43.8%), SschwSP15_1 and SschwSP15_3 (43%) and SschwSP15_1 versus
SschwSP15_4 (42.2%). The lowest sequence identity were predicted between SschwSP15_2
and SschwSP15_3 (32.8%) and SschwSP15_2 versus SschwSP15_4 (32.3%). In comparison
with other sand fly PpSP15-like proteins the SschwSP15 proteins reached sequence identities
between 23% and 40.7%.

Phylogenetic analysis of four SschwSP15 proteins and other sand fly PpSP15-like proteins
revealed a high diversity among this protein family. S. schwetzi PpSP15-like proteins constitute
a sister clade to Lutzomyia and part of Phlebotomus sequences (Fig 5).

Yellow-related proteins (YRPs)

Three full-length transcripts and 19 partial transcripts were identified as homologous to other
known sand fly YRPs. The description of SschwYRP sequences and their annotation are
shown in Table 1 and S2 Table.

The protein sequence length was 387 aa for SschwYRP1, 370 aa for SschwYRP2 and 404 aa
SschwYRP3. The predicted Mw of secreted SschwYRP1 was 40.9 kDa and 3 putative N-glycosyl-
ation sites were predicted. Mw of matured SschwYRP2 was lower (39.6 kDa) than other YRPs
homologues, and no glycosylation site was presented in its sequence. Third protein, SschwYRP3,
possessed 2 putative O-glycosylation sites and predicted Mw of 43.8 kDa (secreted variant). All
sand fly YRPs sequences share similar Cys motif (CXg;_7,CX12123CX71_76C modified according
to [60]). Interestingly this sequence design was modified for all three SschwYRPs-SschwYRP1:
CX64CX120CX69C; SschwYRP2: CX5,CX;14CX53C; SschwYRP3: CX6CX,135CX55C (S7 Fig). The
MRJP (Major royal jelly protein) domain, specific for insect YRPs, was present in all SschwYRPs.
Further, the amino acid residues, responsible for binding biogenic amines, were highly con-
served only for SschwYRP1. The amine-binding residues in other two SschwYRPs were more
variable as it is visible in alignment in S7 Fig.

The sequence identity between SschwYRP1 and SschwYRP2 and between SschwYRP1 and
SschwYRP3 was 39.4% and 41.4%, respectively, while the identity between SschwYRP2 and
SschwYRP3 was 42.9%. Comparing with the other sand fly YRPs, SschwYRPs shared between
32.7% and 47.1% of the sequence.

Phylogenetic analysis of YRPs revealed SschwYRPs as the paraphyletic basal group to other
sand fly YRPs. Within the SschwYRPs, SschwYRP2 and SschwYRP3 generated distinct group
to SschwYRP1 (Fig 6).

Apyrase

Salivary apyrase was represented in the transcriptome by 3 full-length and 2 partial transcripts
(Table 1, S2 Table).

PLOS ONE | https://doi.org/10.1371/journal.pone.0230537 March 24, 2020 14/40


https://doi.org/10.1371/journal.pone.0230537.g004
https://doi.org/10.1371/journal.pone.0230537

PLOS ONE

Sergentomyia schwetzi saliva

SschwSP15 3
SschwSP15 4
SschwSP15 1

SschwSP15_2 ]
...................... L. (Lu.) ayacuchensis BAM69141
..................... L. (Lu.) ayacuchensis BAM69152
.............. L. (Lu.) longipalpis AAD32197

7] | —— L. (Bi.) olmeca ANW11461
....... L. (Bi.) olmeca ANW11462
- 100p L. (W. ) neivai JAV08239
L. ( Nv ) intermedia AFP99239
----------------- e
(o - i 1.) olmeca
—_— e L. (Ny.) intermedia AFP99266
D ------ P. (Eu.) argentipes ABA12134
------ P. (Eu.) argentipes ABA12133
&E --------------------- P. (La.) ariasi AAX55750

P. (Ad.) arabicus ACS93526
P. (La.) orientalis AGT96438
P. (La.) perniciosus CCK33663
P. (La.) tobbi ADJ54087

P. (La.) tobbi ADJ54086

P. (La.) ariasi AAX55748

P. (Ad.) arabicus ACS93525

P. (La.) orientalis AGT96469

P. (La.) tobbi ADJ54085

P. (Eu.) argentipes ABA12143

— - P. (Eu.) argentipes ABA12139
100¢--- P. (La.) perniciosus ABA43048

ﬂEL P. (La.) perniciosus CCM43817

-------- P. (Ad.) arabicus ACS93524

P. (La.) orientalis AGT96432

P. (La.) perniciosus CCJ67632

P. (La.) perniciosus ABA43057

P. (La.) tobbi ADJ54089

P. (La.) orientalis AGT96472

L. (Lu.) ayacuchensis BAM69118

L. (Lu.) ayacuchensis BAM69115

100

92

P. (La.) tobbi ADJ54088
------------------- P. (Eu.) argentipes ABA12144

P. (Ph.) papatasi AGE83089

P. (Ph.) duboscqi ABI20149
= P. (Ph.) duboscgi AB120152
--- P. (Pa.) sergenti ADJ54126
P. (Pa.) sergenti ADJ54117
--P. (Pa.) sergenti ADJ54119

100

P. (Ph.) duboscqi ABI15933
P. (Ph.) duboscqi ABI15935
P. (Ph.) papatasi AGE83087
P. (Ph.) papatasi AGE83088
P. (Ph.) duboscqi AB120182
P. (Ph.) duboscqi ABI20164
P. (Ph.) duboscqgi AB120183
P. (Ph.) duboscqgi ABI20179
P. (Ph.) duboscqi ABI115939
P. (Ph.) papatasi AGE83086
P. (Ph.) duboscqgi ABI20153
P. (Ph.) duboscgi ABI20150
P. (Ph.) duboscqi AB115937
P. (Ph.) papatasi AGE83083
P. (Pa.) sergenti ADJ54118
P. (Pa.) sergenti ADJ54120
P. (Ph.) duboscqi AB120192
P. (Ph.) papatasi AGE83085
P. (Ph.) duboscqi ABI15940
An. gambiae XP 551869

Cx. quinquefasciatus XP 001863135

PLOS ONE | https://doi.org/10.1371/journal.pone.0230537 March 24, 2020

15/40


https://doi.org/10.1371/journal.pone.0230537

PLOS ONE

Sergentomyia schwetzi saliva

Fig 5. Phylogenetic comparison of small odorant-binding proteins (PpSP15-like). The phylogenetic tree with 67 sequences was
based on MAFFT alignment with BMGE (threshold 0.5) containing 213 aa sites, 87 parsimony-informative sites, 1 singleton sites
and 6 constant sites. For rooting the tree, the Anopheles gambiae (XP_551869) and Culex quinquefasciatus (XP_001863135)
sequences were used (branches in black). For more detail see Fig 2 legend.

https://doi.org/10.1371/journal.pone.0230537.9005

The complete sequences were composed of 329 aa (SschwApyl), 333 aa (SschwApy2) and
339 aa (SschwApy3). One putative N-glycosylation site and one O-glycosylation site was pre-
dicted for SschwApyl and SschwApy3, respectively. In the complete sequences of SschwApy
the apyrase domain was detected with highly conserved Ca** binding sites. Nevertheless active
site of enzyme was highly conserved only for SschwApyl (S8 Fig). The sequence identity was
42.9% between SschwApyl and SschwApy2, 39.8% between SschwApyl and SschwApy3 and
47.9% between SschwApy2 and SschwApy3. The comparison of SschwApy sequences with
other sand fly salivary apyrases revealed sequence identities between 38.9% and 50.8%.

Based on the phylogenetic analysis, visualized on Fig 7, three analyzed SschwApy sequences
form a sister clade to all available sequences from Phlebotomus and Lutzomyia sand fly species.
Furthermore the SschwApy2 and SschwApy3 were clustering as one group separated from
SschwApyl.

Hyaluronidase

One full-length transcript of hyaluronidase, belonging to glycoside hydrolase family 56 -bee
venom hyaluronidase, was detected in S. schwetzi transcriptome. The sequence contained 360
aa with the predicted Mw of 38.9 kDa for matured protein. Another two partial sequences of
salivary hyaluronidase were identified (Table 1 and S2 Table).

In the complete sequence of SschwHyal one putative O-glycosylation site was predicted, as
well as 7 amino acid residues were putatively N-glycosylated. Further, the active sites of the
enzyme were highly conserved in SschwHyal (S9 Fig). The SschwHyal shared sequence iden-
tity with other sand fly salivary hyaluronidases between 52.4% and 59.6%.

Phylogenetic analysis of other sand fly salivary hyaluronidases together with SschwHyal
showed that S. schwetzi hyaluronidase clustered as the sister group to hyaluronidase from the
genus Lutzomyia (Fig 8).

Other salivary enzymes

Complete and partial sequences were detected also for 5’-nucleotidase (s5nuc), adenosine
deaminase (SADA), amylase (sAmy), endonuclease (sEnuc), pyrophosphatase (sPP) and phos-
pholipase A2 (sPLA2). All detected full-length transcripts contained putative signal peptide
cleavage site and the further annotations of each sequence are listed in Tables 1 and S2.

One full-length transcript of 5’-nucleotidase and 10 partial sequences of this enzyme were
identified in the transcriptome. The complete sequence (560 aa residues) contained the puta-
tive signal peptide cleavage site. The putative Mw of matured protein of Sschw5nucl was 59.9
kDa and one positive N-glycosylation site (Asn102) was found in the sequence. The sequence
consisted of two main domains i) calcineurin-like phosphoesterase ApaH type with conserved
active sites and metal binding sites and ii) C-terminal 5’-nucleotidase domain. Both glycosyla-
tion and active and metal binding sites were depicted on the alignment in S10 Fig. The
sequence identity of Sschw5nucl with other sand fly s5nuc was between 57.3% and 57.5%.

The adenosine deaminase was identified in one full-length transcript. The 515 aa long
sequence contained 5 putative O-glycosylation sites (highlighted in S11 Fig) and the matured
protein had Mw 57.6 kDa. Sequence identity of SschwADA1 compared with other known
sand fly sSADA was between 65.8% and 69.4% in the MAFFT alignment. The SschwADAL1
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Fig 6. Phylogenetic comparison of yellow-related proteins (YRPs). The phylogenetic tree with 36 sequences was based on MAFFT alignment with BMGE
(threshold 0.5) containing 359 aa sites, 312 parsimony-informative sites, 18 singleton sites and 29 constant sites. For rooting the tree, the Aedes aegypti
(AAL85600) and Culex quinquefasciatus (XP_001844139) sequences were used (branches in black). For more detail see Fig 2 legend.

https://doi.org/10.1371/journal.pone.0230537.9006

contained specific adenosine/ AMP deaminase domain belonging to metal-dependent hydro-
lases family. The amino acid residues forming active site were highly conserved through the
SschwADA1 sequence (S11 Fig).

Three full-length transcripts of amylase were identified with protein sequence length 499 aa
(SschwAmyl), 494 aa (SschwAmy2) and 509 aa (SschwAmy3), respectively. The predicted Mw
of matured proteins were 53.9 kDa for SschwAmyl, 52.7 kDa for SschwAmy?2 and 54.1 kDa
for SschwAmy3. Both SschwAmyl and SschwAmy3 had putative N-glycosylation sites
(SschwAmyl —-Asn149, Asn416; SschwAmy3 —Asn159), while the sequence of SschwAmy2
possessed 6 putative O-glycosylation amino acid residues. According to MAFFT alignment the
sequence identity between SschwAmyl and SschwAmy2 was 59.2%, while between
SschwAmyl and SschwAmy3 was 67.7%. The sequence identity between SschwAmy2 and
SschwAmy3 was lower (53.2%). In comparison with other sand fly amylases the SschwAmy
reached sequence identities between 51.1% and 75.8%. All sequences of SschwAmy possessed
glycoside hydrolase catalytic domain (family 13) and alpha-amylase C-terminal domain as
other members of glycoside hydrolase superfamily. The active sites were conserved though the
alignment as well as the Ca** binding sites. All the sequences annotations mentioned above
are displayed on alignment in S12 Fig.

The phylogenetic analysis of putative salivary amylase, depicted on Fig 9, does not corre-
spond with the taxonomy position of analyzed sand fly species. Three SschwAmy proteins do
not form a monophyletic group and constitute a sister clades to other known sand fly sAmy
from P. papatasi, P. arabicus and L. longipalpis and/or to the putative alpha amylase from L.
neivai (JAV0853).

Another salivary enzyme, endonuclease, was found in one full-length sequence with 468 aa
and 14 partial sequences. The predicted Mw of secreted protein was 52.3 kDa and 10 putative
O-glycosylation sites were predicted for SschwEnucl (S13 Fig). Comparing SschwEnucl with
other sand fly sEnucs, the SschwEnucl shared with them from 32.4% to 39.2% of the sequence
identity, with low level of sequence conservation. The exception was the DNA/RNA non-spe-
cific endonuclease domain which was detected in the SschwEnuc sequence, and is specific for
other sEnucs. Even though the domain is truncated from C-terminus, the amino acid residues
forming active site and Mg>* binding site were conserved, as is visible on alignment in S13 Fig.

The phospholipase A2 with sequence of 383 aa was found in the S. schwetzi transcriptome.
The secreted protein had putative Mw 42.1 kDa and 4 putative O-glycosylation sites and two
N-glycosylation sites, which were highlighted in S14 Fig, were predicted for the sequence. The
sequence identity with other sand fly sSPLA2 was between 30.5% and 31.2%, especially the cen-
tral part of the alignment was unconserved but on the C-terminus the SschwPLA2_1 sequence
possessed conserved phospholipase A2 domain, specific for insects (Phospholipase_A2_2),
with catalytic sites and metal binding sites (S14 Fig).

The complete protein sequence (442 aa) of pyrophosphatase (sPP) was identified. The puta-
tive Mw of 47.1 kDa and the putative 5 O-glycosylation and 4 N-glycosylation sites were pre-
dicted for the sequence. Comparing SschwPP1 with other sand fly sPP sequences by MAFFT
alignment showed a sequence identity between 60.6% and 71.9%. SschwPP1 sequence con-
tained typical phosphodiesterase domain with the active site, as well as the Zn binding sites,
which were highly conserved. The sequence characterizations mentioned above are
highlighted on the alignment in S15 Fig.
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Fig 7. Phylogenetic comparison of salivary apyrase. The phylogenetic tree with 31 sequences was based on MAFFT alignment with BMGE (threshold 0.5) containing
303 aa sites, 236 parsimony-informative sites, 33 singleton sites and 34 constant sites. For rooting the tree, the Cimex lectularius (AAD09177) sequence was used (branch

in black). For more detail see Fig 2 legend.

https://doi.org/10.1371/journal.pone.0230537.9007

Other salivary proteins

Other protein families rarely found in previously published sand fly salivary gland transcrip-
tomes include 71kDa-like protein, protein with C-type lectin domain, ParSP80-like and
SP16-like.

The 71 kDa-like protein family, so far detected only in NW sand fly species, and is anno-
tated as angiotensin-converting enzyme. In S. schwetzi transcriptome one complete sequence
and 12 partial sequences were detected (listed in Table 1 and S2 Table).

The complete sequence, Sschw71kDal, possessed putative signal peptide cleavage site and
had 626 aa, which resulted in Mw 70.9 kDa. The putative glycosylation sites displayed in S16
Fig, include one O-glycosylated residue, two N-glycosylated residues and one C-glycosylation
residue. The domain typical for angiotensin-converting enzyme, which belonging to glu-zin-
cin sub-group of metalloproteases, was detected in the sequence and the active site together
with Zn binding site were highly conserved through the sequence (S16 Fig). According to
MAFFT alignment Sschw71kDa shared identity with other Lutzomyia spp. homologues
between 85.1% and 76.1%.

Two complete sequences of protein containing C-type lectin domain were identified
(Tables 1 and S2 Table), both having a putative signal peptide cleavage site. The SschwCTL1
had 180 aa, its predicted molecular weight was 19.1 kDa with one putative N-glycosylation site
(Asn36). The second protein, SschwCTL2, was 154 aa long and the molecular weight of its
secreted form was 15.9 kDa with no putative glycosylation sites.

A single member of the SP16-like protein was detected. The complete sequence of
SschwSP16 had 192 aa and a putative signal peptide cleavage site was identified in the sequence
(Table 1 and S2 Table). The molecular weight of secreted protein was 17.6 kDa with no puta-
tive glycosylation site. In SschwSP16 no specific domains were detected. The sequence identity
with other SP16-like proteins is quite low, between 29% and 38.8%.

One full-length transcript of a ParSP80-like protein was identified (Table 1, S2 Table). The
SschwSP80 protein has 170 aa residues and putative signal peptide cleavage site followed by
TRAP-delta (translocon-associated protein delta subunit) domain with no specific known
function. The predicted molecular mass was 16.2 kDa and no putative glycosylation site was
recognized. The SschwSP80 sequence identity with other sand fly homologues was detected
between 82.4% and 74.6% according to MAFFT alignment.

Search through the transcriptomic data revealed two secreted proteins and two peptides
which were homologous to infrequent sand flies” putative salivary proteins (Table 1, S2 Table).
The sequence of SschwSP60-like was annotated as homologous to P. argentipes SP60 and it
contained 162 amino acid residues including putative signal peptide cleavage site. The molecu-
lar mass of mature protein was predicted as 15.2 kDa, but this protein sequence showed high
glycosylation- 19 amino acid residues as positive for O-glycosylation and two residues for N-
glycosylation. No specific domain or pattern was predicted for SschwSP60-like protein. The
second putatively secreted protein showed homology with P. duboscqi 14.5 kDa salivary pro-
tein. The specific domain-transcription activator MBF2 (multiprotein bridging factor 2)-was
detected in the sequence of SschwMBF2. This protein contained a putative signal peptide and
its matured version was predicted to have 15.3 kDa molecular weight. Serine 88 was positive
for putative O-glycosylation. Furthermore, two putatively secreted peptides, homologous to
one L. neivai salivary secreted peptide, were identified in the transcriptomic data. The
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Fig 8. Phylogenetic comparison of hyaluronidase. The phylogenetic tree with 13 sequences was based on MAFFT alignment with BMGE (threshold 0.4)
containing 270 aa sites, 154 parsimony-informative sites, 56 singleton sites and 61 constant sites. For rooting the tree, the Culex quinquefasciatus (AAR18444) and
Culicoides nubeculosus (ACM40915) sequences were used (branches in black). For more detail see Fig 2 legend.

https://doi.org/10.1371/journal.pone.0230537.g008

PLOS ONE | https://doi.org/10.1371/journal.pone.0230537 March 24, 2020 21/40


https://doi.org/10.1371/journal.pone.0230537.g008
https://doi.org/10.1371/journal.pone.0230537

PLOS ONE Sergentomyia schwetzisaliva

------------------------------------------------------------------------- SschwAmy2

O SschwAmyl

84 SschwAmy3
= 100

------------------------------------ P. (Ph.) papatasi AGE83100

8|l T P. (Ad.) arabicus ACS93490

80

Bl  (eesessmsemm L. (Lu.) longipalpis AAD32192

@a 0 e L. (Lu.) longipalpis AOA1BOCMM1

.................... L. (Ny.) neivai JAV0O8753

------------------------------------------------------- L. (Ny.) neivai JAV08801

[ ------------------------------------------------------- L. (Ny.) neivai JAV08800

100

e s Cx. quinquefasciatus XP 001847148

100 e Ae. aegypti XP 021711678

----------------------------------------------- An. gambiae XP 551967

Y et M. domestica XP 005185446

--------------------------------------------------------------------------------------- S. calcitrans XP 013119361

e T e i D. ananassae AAC79123

0.2

Fig 9. Phylogenetic comparison of salivary amylase. The phylogenetic tree with 16 sequences was based on MAFFT alignment with BMGE (threshold 0.5) containing
475 aa sites, 295 parsimony-informative sites, 51 singleton sites and 129 constant sites. By the black color are marked the additional sequences of sAmy from mosquito
(Culex quinquefasciatus XP_001847148, Aedes aegypti XP_021711678, Anopheles gambiae XP_551967), drosophila (Drosphila ananassae AAC79123) and Muscidae
(Musca domestica XP_005185446, Stomoxys calcitrans XP_013119361) species. Tree is unrooted. For more detail see Fig 2 legend.

https://doi.org/10.1371/journal.pone.0230537.9009

sequences of SschwPeptidel and SschwPeptide2 were 89 aa long, contained putative signal
peptide cleavage sites and had low molecular mass (7.7 kDa and 7.8 kDa). No specific domains
or patterns were presented in the sequence.

Some of the salivary protein families were detected in S. schwetzi transcriptome only as par-
tial sequences. The partial transcripts are listed with basic annotation in the S2 Table which
includes the members of PpSP32-like (silk proteins), ParSP25-like, ParSP17-like, salivary
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secreted ribonuclease (sRNase) and a conserved secreted peptide homologous to L. ayacuchen-
sis Lol38.8.

Expression differences between sand flies fed on mice and geckos

Genes differentially expressed on the level of RNA between S-M and S-G lineages were identi-
fied and BLASTp annotated. From the whole annotated arthropod RNA-seq dataset, 150 tran-
scripts of the salivary protein families were identified (S3 Table). The majority of the most
abundant transcripts in both lineages (60 out of 70) were members of salivary protein families:
YRPs, OBPs, lufaxins, Ag5rs, ParSP17-like and a PpSP32-like proteins, apyrase, hyaluronidase,
endonuclease, protein with CTL domain and transcript homologous to Lol38.8.

First we analyzed only transcripts annotated as arthropod genes. The analysis step-by-step
is displayed on S17 Fig. In the S-G lineage, 40 transcripts of the salivary protein families were
up-regulated (EDGE fold change > 1.5) (S17A, I Fig). The statistical evaluation of EDGE fold
change (p-value < 0.05) of the up-regulated S-G transcripts did not revealed any salivary tran-
script (S17A, IT Fig).

In the S-M lineage, the group of up-regulated transcripts (EDGE fold change at least 1.5)
included 20 transcripts homologous to salivary proteins (S17B, I Fig). The statistical evaluation
of EDGE fold change revealed two salivary sequences namely: SschwSP15_5 and SschwLuf3
(S17B, 1I Fig).

Later, we expanded the dataset and analyzed all differentially expressed transcripts (EDGE
fold change > 1.5, FDR corrected p-value < 0.05). This dataset contained eight differentially
expressed transcripts (marked as DET1-8, Table 2). Only three of these sequences (DET2,
DET6 and DET?7) were annotated as arthropod sequences, while DET2 corresponded with
protein SschwSP15_5. Other sequences were manually annotated using the online BLASTx
algorithm, but the homology of DETs with known sequences was low (Table 2). While any of
salivary transcripts was not up-regulated more than 30 times (either in the S-G or the S-M line-
age), some of the DET transcripts were up-regulated for more than 1,000 times. According to
RNA-seq analysis, seven transcripts (DET1-6, DET8) were up-regulated in the S-M lineage
and one (DET?7) in the S-G lineage.

Subsequently we confirmed RNA-seq results accuracy by RT-qPCR. Seven DET's were cho-
sen for RT-qPCR tests (DET5 was excluded because it was annotated as a prokaryotic
sequence). The RT-qPCR results confirmed significant up-regulations of three transcripts
(DET1, DET2, and DET3) in the S-M lineage and up-regulation of DET7 in the S-G lineage
(Fig 10). There was no significant difference detected in the expression of DET4, DET6 and
DETS.

Salivary gland proteome

Mass spectrometry data analysis of the whole salivary glands identified 1,153 proteins. The
quality-filtering of these data resulted in the final dataset of 631 proteins, selected for subse-
quent analysis. Out of these, 85 proteins were annotated as salivary (S18 Fig). The group of the
top 54 enriched proteins (with intensity 1 x 10%), contained members of the main salivary pro-
tein families, namely YRPs, OBPs, Ag5r, ParSP17, PpSP32, lufaxin, as well as members of typi-
cal salivary enzymes i.e. apyrase, endonuclease and adenosine deaminase. The proteomic data
for salivary proteins including the LFQ intensities and their comparison between the two line-
ages are show in 54 Table.

The proteome analysis revealed 586 proteins shared by both lineages. Moreover, 43 proteins
were detected in the S-M sialome exclusively, including one salivary SschwYRP20 protein.
Two proteins were found only in the sialome of SG lineage—one salivary protein containing a
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Table 2. Differentially expressed transcripts (DETs) annotation.

DET1

DET2*

DET3

DET4
DET5

DET6

DET7

DETS8

Reference
transcript
1

Reference
transcript
2

GenBank
Accession
number

MN605409

MN605297

MNG605411

MN605412
MN605413

MNG605414

MNG605415

MN605416

MNG605417

MNG605410

Species of the
BLAST match

Rhagoletis
zephyra
Phlebotomus
orientalis
Acropora
digitifera

No hits

Pseudomonas
fulva
Lutzomyia
longipalpis
Aedes aegypti

Lingula
anatina

Lutzomyia
neivai

Lutzomyia
neivai

BLAST match to NR database Nucleotide Lineage EDGE S-Mlineage S-G lineage
A\ aemim Annotation E- Seq. seq. length | up- test: expression  expression
TIE? value identity regulation Fold value value
[9%] change (RPKM) (RPKM)
XP_017480351 | uncharacterized 3.3 50 218 S-M 1206 1120.53 0.88
protein
AGT96472 SP15-like salivary 0.001 34 253 S-M 576 145.52 0.16
protein
XP_015766698 | uncharacterized 0.29 28 605 S-M 752 107.05 0.02
protein
= = = = 239 S-M 393 56.01 0.03
AEF21400 hypothetical 6.9 36 229 S-M 236 105.62 0.36
protein Psefu_1424
AAS17937 16.4 kDa salivary 0.15 32 265 S-M 64 98.29 1.53
protein
XP_01655722 | general odorant- 4E- 32 535 S-G 137 0.20 47.80
binding protein 56a | 21
XP_023930744 | macrophage 0.18 39 317 S-M 474 108.65 0.12
mannose receptor
1-like
JAV13762 putative actin, 7E- 100 1,131 non 136.6 158.5
partial 220
JAV12252 putative glycerol- 2E- 98 1397 non 7.6 7,0
3-phosphate 100
dehydrogenase/
dihydroxyacetone
3-phosphate
reductase

Annotation of differentially expressed transcripts from RNA-seq and reference transcripts, which were used for RT-qPCR. Table columns indicates: Name of transcript,

NCBI GenBank nucleotide accession number, BLAST match to NCBInr database, nucleotide length of transcript, lineage in which was the transcript up-regulated, fold

change difference in expression between lineages, average expression from three replicates for both S-M and S-G lineage.
*DET?2 is SschwSP15_5

https://doi.org/10.1371/journal.pone.0230537.t1002

CTL domain (SschwCTL4) and one with a C-terminal tandem repeat domain in type 4 procol-
lagen (S18A Fig). When comparing the protein enrichment (LFQ intensities) between line-
ages, 359 and 227 proteins were found to be enriched in the S-M and S-G sialomes,
respectively. Importantly, 10 of the 359 enriched proteins in the S-M sialome and 66 out of 227
enriched proteins in the S-G sialome were annotated as salivary. At a cut off 0.6 for the LFQ
intensity, 113 proteins in the S-M sialome were found to be enriched at least 1.5 x; none of
them, however, were homologous to the salivary proteins. In contrast, 58 proteins in the S-G
sialome were shown to be enriched at last 1.5 X, of which 36 were identified as salivary. Finally,
statistical evaluation of both sialomes revealed 35 proteins to be significantly enriched in the

S-M sialome-all annotated as housekeeping proteins (Fig 11), compared to 8 significantly

enriched proteins in the S-G sialome, of which six were annotated as salivary (Fig 11). The dis-
tributions of enriched proteins within the lineages and the analysis step-by-step are highlighted
in S18B Fig. The putative actin and G3PDH (transcripts which were used as reference tran-
script for RT-qPCR) were used as the normalization control between the lineages. The LFQ
intensities of both reference proteins were very similar for S-G (29.5 and 24.7 respectively) and
SM (29.2 and 25.4 respectively) lineages.
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Fig 10. Differential gene expression in S. schwetzi lineages feeding on mice (S-M) and geckos (S-G). Differential expression of seven transcripts was evaluated by RT-
qPCR method. (A) The obtained Cr values were relatively quantified according to the 2"**“T method [45] using actin and G3PDH as the reference transcripts. The relative
gene expression values of all samples were calibrated to mean of Cr values measured for each transcript from S-G lineage. Each column of chart contains relative
expression of one differential expressed transcript (DET1-8) for both S-G (orange points) and S-M (green points) cDNA, measured in three independent replicates. The
mean of relatively quantified values is depicted by horizontal line in black color. The expression values below the red line were under the detection RT-qPCR limit (Ct =
40). The expression difference between S-G and S-M were compared by t-test and p-values are shown above the square bracket. (B) The Cr values for the reference
transcripts (actin and G3PDH) for both S-G (orange points) and S-M (green points) cDNA, measured in three independent replicates.

https://doi.org/10.1371/journal.pone.0230537.g010

The electrophoretic separation of both SM and S-G salivary gland proteins revealed very
similar profiles. The only visible difference was a 40-45 kDa band (red arrow on Fig 12),
enriched in the S-G sample.

Apyrase assay

The apyrase activities were similar in the SGHs from both S. schwetzi lineages. The maximum
of substrate hydrolysis at pH 8.5 was identical for both lineages and both substrates (519 Fig).
Mean ATPase and ADPase activities determined per a pair of salivary glands as well as per mil-
ligram of total proteins are summarized in Table 3.

Hyaluronidase activity

The analysis by SDS PAGE zymography on hyaluronan substrate gels revealed pronounced
hyaluronidase activities in saliva of both lineages. Both enzymes were visualized as monomers,
with Mw about 43-44 kDa in non-reduced environment, and remained active under reducing
conditions, with estimated Mw at 50 kDa. However, the degradation of HA substrate was sub-
stantially higher in SGHs from the lineage maintained on mice (Fig 13A).

The assay on microtitration plates showed maximum of HA hydrolysis at pH 5.0 in both
lineages studied however, significant differences were detected in measured enzyme activities.
At the optimal pH, hyaluronidase activity of the S-M lineage was about 30% higher than the
activity of the S-G lineage (Table 3). Moreover, elevated hyaluronidase activity in the S-M line-
age was detectable within a broad pH range, from 4.0 to 7.5 (Fig 13B).

Discussion

This is the first study describing salivary components of phlebotomine sand fly of the genus
Sergentomyia. Previously, sand fly salivary gland transcriptomes have been published for 13
sand fly species (reviewed in [11]), all made by sequencing phage cDNA libraries; that
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Fig 11. Volcano plot with protein enrichment from mass spectrometry analysis of S. schwetzi lineages feeding on mice (S-M) and geckos (S-G). Differences in
protein enrichment between S-M and S-G lineage proteome with Student’s t-test evaluation. In S-M lineage proteome there are 35 proteins significantly enriched. In
S-G lineage proteome are 8 proteins significantly enriched (including six salivary proteins and two non-salivary putative proteins yellow-d).

https://doi.org/10.1371/journal.pone.0230537.g011

technology allowed identification of the low numbers of high quality transcripts and secreted
full-length proteins (from 535 to 1,765 transcripts and from 15 to 64 full-length proteins per
transcriptome) [13,59]. The only currently available L. (Ny.) neivai sialome and mialome
sequences done on Illumina platform have not been published yet. Our BLASTp annotation
showed that 51.5% (10,193 sequences) of S. schwetzi were homologous to L. (Ny.) neivai

proteins.

Main salivary protein families detected in all sand fly species studied so far include yellow-
related proteins, D7-related proteins, PpSP15-like proteins, lufaxin proteins, salivary apyrase,
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Fig 12. Salivary glands proteins from two S. schwetzi lineages maintained on different blood-meal sources geckos
(S-G) and mice (S-M): SDS PAGE electrophoresis under reducing conditions. (A) separation on 10%
polyacrylamide gel, (B) separation on 15% polyacrylamide gel. Molecular weights in kilodaltons are indicated and red
arrow marks the band 40-45 kDa.

https://doi.org/10.1371/journal.pone.0230537.9012

PLOS ONE | https://doi.org/10.1371/journal.pone.0230537 March 24, 2020 271740


https://doi.org/10.1371/journal.pone.0230537.g012
https://doi.org/10.1371/journal.pone.0230537

PLOS ONE Sergentomyia schwetzisaliva

Table 3. Salivary apyrase and hyaluronidase in two S. schwetzi lineages maintained on different blood-meal sources, geckos (S-G) and mice (S-M).

S-G S-M
Total protein in pg/gland pair* 0.44 +0.06 0.42 +0.06
Mean specific apyrase activity at 37°C, pH 8.5"
mUnits/pair of glands ATPase 28.40 + 4.62 29.50 + 4.20
ADPase 31.61 +4.84 34.26 + 4.81
Units/mg of total protein ATPase 64,55 + 10.5 70.23 £ 10.0
ADPase 71.84 £ 11.0 81.57 £ 11.5
ATPase/ADPase ratio 0.9 0.86
Mean specific hyaluronidase activity at 37°C, pH 5.0
rTRU/pair of glands 0.3713 £ 0.07 0.5338 £ 0.1
rTRU/mg of total protein 0.844 + 0.16 1.213 +0.24

* Results represent the mean + SD of ten independent measurements

https://doi.org/10.1371/journal.pone.0230537.t003

and PpSP32-like proteins [59]. Here, in S. schwetzi, we demonstrated the presence of all these
protein families. In addition, we found several proteins previously considered as specific for
the genus Phlebotomus among sand flies [60]: particularly salivary pyrophosphatase, phospho-
lipase A2, ParSP25-like proteins and SP16-like proteins. Interestingly, we also found a salivary
ribonuclease (partial sequence, QHO60797), which was previously detected only in transcrip-
tomes of mosquitoes salivary glands.

Salivary proteins or peptides previously identified exclusively in transcriptomes of NW
sand flies include vasodilatory peptide maxadilan [61], salivary 5'-nucleotidase, an enzyme
responsible for cleaving AMP to adenosine [62], SALO anti-complement proteins [63], the
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Fig 13. Visualization and comparison of the hyaluronidase activities in two S. schwetzi lineages maintained on different blood-meal sources, geckos
(S-G) and mice (S-M). (A) Visualization and comparison by SDS PAGE zymography. SDS PAGE gel contained 10% polyacrylamide gel with incorporated
0.002% HA. SGHs of two S. schwetzi lineages maintained on different blood meal sources geckos (S-G) and mice (S-M) were tested under non-reducing and
reducing conditions. (B) Comparison of the pH dependence of salivary hyaluronidase activity from S-G and S-M lineages. Results represent the mean + SD of
five independent measurements. The difference in relative activities for different buffer systems at pH 7 was lower than 1%.

https://doi.org/10.1371/journal.pone.0230537.9013
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RGD-containing peptides with an anti-platelet aggregation function [64] and several protein
families with an unknown biological function, like the C-type lectins, 71 kDa salivary protein,
spider-toxin-like and ML domain proteins [59,62,65-67]. Even though the S. schwetzi is a sand
fly species from OW, we identified in its salivary gland transcriptome salivary 5’-nucleotidase,
71 kDa salivary protein and the protein containing C-type lectin domain.

Three sequences found homologous to protein with C-type lectin domain (SschwCTL4,
SschwCTL5 and SschwCTL6) which had high expression values in transcriptome (S3 Table),
were detected also in the proteome (S4 Table). Usually, the proteins with C-type lectin domain
are immunity-related molecules associated with an activation of complement system (reviewed
in [68]). On the other hand, the snake venom C-type lectins showed anti-coagulation (by bind-
ing FX and FIX) and anti-thrombotic (by inhibition of collagen-induced platelet activation)
functions [69]. However, the function of sand fly proteins with C-type lectin domain remains
unknown.

The phylogenetic and sequence analysis showed that most of the S. schwetzi salivary protein
sequences are more divergent, compared to the Lutzomyia and Phlebotomus proteins. How-
ever, the results of phylogenetic comparison of S. schwetzi salivary protein families (antigen
5-related proteins, lufaxins, YRPs, and apyrases) were in accordance with the established sand
fly phylogeny [70,71]. The S. schwetzi OBPs showed high sequence divergence, which is
together with high gene duplication rates, typical for the sequences belonging to D7-related
and PpSP15-like families [60]. On the other hand, S. schwetzi salivary enzymes identified in
the transcriptome were more conserved, likely due to their enzymatic function. The exception
in this trend was found in the S. schwetzi endonuclease and phospholipase A2 sequences,
which were longer than other sand flies’ homologues. Other S. schwetzi proteins usually clus-
tered as basal group to other sand fly proteins, and some of the S. schwetzi proteins created
paraphyletic groups. This phylogenetic trees structure can be caused by selective pressure of
different feeding preferences of Sergentomyia sand flies, which preferably bite reptiles in con-
trast to Lutzomyia and Phlebotomus sand flies, which feed mostly on mammals. Despite all Ser-
gentomyia species studied prefer reptiles, species-specific differences were described [72]. In
Ethiopia, S. schwetzi feed not only on reptiles but also on mammals, Gebresilassie et al. 2015
found engorged females on cow, donkey and goat [73], while Yared and colleagues detected
human and canine blood in S. schwetzi [74].

In S. schwetzi transcriptome we identified one homologue of salivary hyaluronidase and
three homologues of apyrase. The activities of both these enzymes and their pH optima were
already described in S. schwetzi saliva by Volfova and Volf (2018) [14]. The sequence of
SschwApyl was conserved in all active sites, but the function of SschwApy2 and SschwApy3
can be questioned due to their amino acids replacements in the penultimate and last position
of the active site sequence. Comparison of the salivary apyrase activities between S-G and S-M
lineages did not show any significant differences. On the other hand, interesting differences
were found in hyaluronidase activities using two methods (SDS PAGE zymography, microti-
tration plates assay). In both tests, the HA cleavage activity was significantly higher in S-M
lineage, the quantitative assay on microtitration plates repeatedly showed about 30% difference
in the hyaluronidase activity. The adaptation of sand flies to feed on mammals is associated
with the length of their mouthparts and the depth of skin penetration due to the relatively
thick and stiff epidermis of mammalian skin [75]. However, various species with a rather short
labrum e.g. P. argentipes and some Sergentomyia species are able to obtain successfully blood
from the mammal hosts [76]. Increasing the tissue permeability of mammalian skin, HA
degrading enzymes might represent an efficient tool for sand flies originally adapted to non-
mammalian hosts to get access to blood.
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Yellow-related proteins (YRPs) of Lutzomyia and Phlebotomus genera are known to have
amine-binding function [77,78]. The amine-binding affinity of YRPs depends on the conserva-
tion of sequence regions, especially on eleven amino acid residues, which are responsible for
creating amine binding pocket and that are conserved across the Phlebotomus and Lutzomyia
species [79]. However, the SschwYRPs sequences forming the amine binding pocket are more
variable (S6 Fig), which may result in inability to bind biogenic amines. Thus, SschwYRPs
functions would be interesting topic for future studies.

Besides the description of S. schwetzi salivary proteins, we focused also on the comparative
transcriptomic and proteomic analysis of salivary glands from sand fly females from two line-
ages maintained on different vertebrate hosts, mice and geckos, animals with different hae-
mostasis. For example, all vertebrates possess C3 component and factor B, which is necessary
for creation of C3b-B proconvertase. Reptile complement shares several features with the
mammalian one, like activation by both alternative and classical pathway (reviewed in [80]).
On the other hand, all reptiles lack genes coding for FXI, which active form (FXIa) is responsi-
ble for activation of coagulation factors leading to transformation of prothrombin to thrombin
(reviewed in [81]).

The RNA-seq analysis of S. schwetzi salivary gland transcriptome revealed two salivary tran-
scripts, one belonging to lufaxin salivary protein families (SschwLuf3) and another to
PpSP15-like salivary protein family (SschwSP15_5), which were significantly up-regulated in
S-M lineage (S3 Table, S17 Fig). Enrichment of SschwLuf3 was confirmed by proteomic analy-
sis but biological function of the molecule is questionable as its expression is relatively low in
both lineages (S3 Table). The SschwSP15_5 transcript up-regulation in S-M lineage might be
connected to variability of coagulation pathway between geckos and mice, but its function
remains suspicious as its expression was very low (S3 Table).

In order to compare saliva composition between S-G and S-M lineages, we also did
SDS-PAGE gels and mass spectrometry of salivary glands. The single visible difference
between electrophoretograms of S-M and S-G lineages was found in the Mw between 40 and
45 kDa: the protein band was more pronounced in S-G sample (Fig 12). In this Mw range sev-
eral sand fly salivary proteins including hyaluronidase, phospholipase A2, pyrophosphatase
and YRPs. The best candidate is probably one of three SschwYRPs (SschwYRP5 with highest
LFQ intensity value) as their enrichment in S-G lineage was confirmed by mass spectrometry
analysis, see below (Fig 11).

The mass spectrometry analysis revealed six salivary proteins significantly enriched in S-G
sialome (518 Fig, S4 Table). Three of enriched proteins were homologous to sand flies’ YRPs,
but all of them were detected only as the partial sequences (SschwYRP5, SschwYRP8 and
SschwYRP11). Last three enriched proteins were partial sequences homologous to sand fly
hyaluronidase (SschwHya3), D7-related protein (SschwD7_11) and protein with C-type lectin
domain (SschwCTL5) (Fig 11).

As we mentioned above, two different methods revealed higher hyaluronidase activity in
the saliva of S-M lineage but the comparison by RNA-seq analysis did not reveal any signifi-
cant differences in expression of the hyaluronidase transcripts. Therefore, there is a possibility
of later expression of SschwHyal than in first two days after adult emergence. However, the
salivary proteins expression dependence on sand fly age was showed only for P. papatasi SP44
protein (YRP), while the expression of this protein was higher for younger and lower for older
sand flies which were fed on sugar [82]. In contrast, all three homologues of hyaluronidase
(one complete and two partial proteins) were more abundant in proteome of S-G lineage,
where SschwHya3 was significantly enriched. This contrasting result can be due to coexistence
of different homologues of the enzyme, the one enriched in S-G lineage has no or low activity
and the second one is fully active. Thus, it is possible that the protein SschwHya3 which is
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significantly enriched in S-G lineage, has less or no activity, and the active homologues of
enzyme could be SschwHyal or SscheHya2. Similar trend was recently revealed in salivary yel-
low-related proteins, where one homologue has high amine-binding activity and the other has
very low activity [78]. Furthermore, the difference in hyaluronidase activity can be explained
by different glycosylation of SschwHya homologues, but this we were not able to compare,
because two of three SschwHya are only partial sequences. This crucial role of glycosylation
for hyaluronidase activity was revealed for L. longipalpis hyaluronidase [83].

The SschwD7_11 was significantly enriched in S-G proteome (Fig 11) and its transcript was
highly up-regulated in S-G transcriptome as well. The function of D7-related proteins, known
also as large OBPs, was firstly proved for their mosquito homologues. The An. stephensi
D7-related protein inhibits the intrinsic coagulation pathway by binding FXII and high molec-
ular weight kininogen (HK), which are together with prekallikrein at the beginning of intrinsic
coagulation pathway [84]. Other homologues of D7-related proteins, from Ae. aegypti and An.
gambiae, are able to bind biogenic amines and eicosanoids [85-87]. Recently, the sand flies’
D7-related were identified as binders of cysteinyl leukotrienes and thromboxane A2 [88].
Despite these new findings, we are not able to connect the SschwD7_11 up-regulation to its
specific function on reptile haemostasis or coagulation.

In conclusion, our study significantly expands the knowledge on salivary proteins of
neglected sand fly genus Sergentomyia. Thanks to phylogenetic and sequence analysis we
found, that salivary proteins of S. schwetzi are more diverse from Phlebotomus and Lutzomyia
homologues which can be due to adaptation to preferable vertebrate host-reptiles. To support
this theory, we compared two S. schwetzi lineages adapted to different hosts (gecko and mice).
This comparison revealed significantly higher hyaluronidase activity, which can be caused by
different properties of mice’s skin comparing to geckos’. Further we showed an up-regulated
expression of transcripts for PpSP15-like protein and lufaxin in mice lineage, which might be
due to different haemostasis of these two animals. Last but not least, the transcriptomic analy-
sis also demonstrated unique salivary secreted ribonuclease, the enzyme previously found only
in mosquitoes.

Supporting information

S1 Fig. Raw gels image for Figs 12 and 13.
(PDF)

S2 Fig. Functional gene ontology (GO) classification of the S. schwetzi salivary gland tran-
scriptome. The percentage and distribution of top-level GO-terms are portrayed in the three
categories: cellular component, molecular function and biological process. Transcripts anno-
tated from whole transcriptome sequences dataset are indicated by blue bar (7,749 sequences)
and transcripts annotated from arthropod sequences subset are in yellow (5,937 sequences).
(PDF)

S3 Fig. Multiple sequence alignment of sand flies’ antigen 5-related proteins. Multiple
sequence alignment of S. schwetzi antigen 5-related proteins with chosen sand flies” antigen
5-related proteins. Name of sequence include sand fly species shortcut (P.tob-P. tobbi, P.ser-
P. sergenti, P.per-P. perniciosus, P.ori-P. orientalis, P.ari-P. ariasi, P.ara-P. arabicus, P.pap-P.
papatasi, P.dub-P. duboscqi, P.arg—P. argentipes, Llon-L. longipalpis, L.aya-L. ayacuchensis, L.
olm-L. olmeca, L.nei-L. neivai) and GenBank accession number. Sequence conservation is
depicted by shading of purple color. Conserved cysteines residues are highlighted in green,
putative glycosylation sites in SschwAg5r sequence are highlighted in blue. Lines below the
alignment indicate conserved cysteines residues by “$”, glycosylation by “N” for N-
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glycosylation and by “O” for O-glycosylation and consensus sequence. Alignment was made
by MAFFT with L-INS-i method and visualized in Jalview.
(PDF)

S4 Fig. Multiple sequence alignment of sand flies’ lufaxin proteins. Multiple sequence align-
ment of S. schwetzi lufaxin proteins with chosen sand flies’ lufaxin proteins. Name of sequence
include sand fly species shortcut (P.tob-P. tobbi, P.ser—P. sergenti, P.per—P. perniciosus, P.ari-
P. ariasi, P.ara-P. arabicus, P.pap-P. papatasi, P.dub-P. duboscqgi, P.arg-P. argentipes, L.lon-L.
longipalpis, L.int-L. intermedia, L.aya-L. ayacuchensis, L.olm-L. olmeca, L.nei-L. neivai) and
GenBank accession number. Sequence conservation is depicted by shading of purple color.
Conserved cysteines residues are highlighted in green, putative glycosylation sites in SschwLuf
sequences are highlighted in blue. Lines below the alignment indicate conserved cysteines resi-
dues by “$”, glycosylation by “N” for N-glycosylation and by “O” for O-glycosylation and con-
sensus sequence. Alignment was made by MAFFT with L-INS-i method and visualized in
Jalview.

(PDF)

S5 Fig. Multiple sequence alignment of sand flies’ D7-related proteins. Multiple sequence
alignment of S. schwetzi D7-related proteins with chosen sand flies’ D7-related proteins. Name
of sequence include sand fly species shortcut (P.tob-P. tobbi, P.ser-P. sergenti, P.per-P. perni-
ciosus, P.ori-P. orientalis, P.ari-P. ariasi, P.ara-P. arabicus, P.pap-P. papatasi, P.dub-P.
duboscqi, P.arg-P. argentipes, Llon-L. longipalpis, L.int-L. intermedia, L.aya-L. ayacuchensis,
L.olm-L. olmeca, L.nei-L. neivai) and GenBank accession number. Sequence conservation is
depicted by shading of purple color. Conserved cysteines residues are highlighted in green,
putative glycosylation sites in SschwD7 sequences are highlighted in blue. Lines below the
alignment indicate conserved cysteines residues by “$”, glycosylation by “N” for N-glycosyla-
tion and by “O” for O-glycosylation and consensus sequence. Alignment was made by MAFFT
with L-INS-i method and visualized in Jalview.

(PDF)

S6 Fig. Multiple sequence alignment of S. schwetzi PpSP15-like proteins. Multiple sequence
alignment of S. schwetzi PpSP15-like proteins with two chosen P. papatasi SP15-like proteins.
Name of sequence include sand fly species shortcut (P.pap-P. papatasi) and GenBank acces-
sion number. Sequence conservation is depicted by shading of purple color. Conserved cyste-
ines residues are highlighted in green, putative glycosylation sites in SschwSP15 sequences are
highlighted in blue. Lines below the alignment indicate conserved cysteines residues by “$”
and for SschwSP15_2 the duplication of cysteines motive by “A”, glycosylation by “O” for O-
glycosylation and consensus sequence. Alignment was made by MAFFT with L-INS-i method
and visualized in Jalview.

(PDF)

S7 Fig. Multiple sequence alignment of sand flies’ yellow-related proteins. Multiple
sequence alignment of S. schwetzi YRPs with chosen sand flies’ YRPs. Name of sequence
include sand fly species shortcut (P.tob—P. tobbi, P.ser-P. sergenti, P.per—P. perniciosus, P.ori-
P. orientalis, P.ari-P. ariasi, P.ara-P. arabicus, P.pap-P. papatasi, P.dub-P. duboscqi, P.arg-P.
argentipes, Llon-L. longipalpis, L.int-L. intermedia, L.aya-L. ayacuchensis, L.olm-L. olmeca,
L.nei-L. neivai) and GenBank accession number. Sequence conservation is depicted by shad-
ing of purple color. Conserved cysteines residues are highlighted in green, putative glycosyla-
tion sites in SschwYRPs sequences are highlighted in blue, putative amine binding residues are
highlighted in orange. Lines below the alignment indicate amine binding site by “A”, con-
served cysteines residues by “$”, glycosylation by “N” for N-glycosylation and by “O” for O-
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glycosylation and consensus sequence. Alignment was made by MAFFT with LINS-i method
and visualized in Jalview.
(PDF)

S8 Fig. Multiple sequence alignment of sand flies’ apyrases. Multiple sequence alignment of
S. schwetzi apyrases with chosen sand flies’ apyrases. Name of sequence include sand fly species
shortcut (P.tob-P. tobbi, P.ser-P. sergenti, P.per-P. perniciosus, P.ori-P. orientalis, P.ari-P.
ariasi, P.ara-P. arabicus, P.pap-P. papatasi, P.dub-P. duboscqi, P.arg-P. argentipes, L.lon-L.
longipalpis, L.int-L. intermedia, L.aya-L. ayacuchensis, L.olm-L. olmeca, L.nei-L. neivai) and
GenBank accession number. Sequence conservation is depicted by shading of purple color.
Active sites of enzyme are highlighted in orange, putative glycosylation sites in SschwApys
sequence are highlighted in blue. Lines below the alignment indicate active site of enzyme by
“A”, metal binding site by “&”, substrate binding site by “B”, glycosylation by “N” for N-glyco-
sylation and “O” for O-glycosylation and consensus sequence. Alignment was made by
MAFFT with L-INS-i method and visualized in Jalview.

(PDF)

S9 Fig. Multiple sequence alignment of sand flies’ hyaluronidases. Multiple sequence align-
ment of S. schwetzi hyaluronidase with sand flies’ hyaluronidases. Name of sequence include
sand fly species shortcut (P.tob—P. tobbi, P.per-P. perniciosus, P.ori-P. orientalis, P.ara-P. ara-
bicus, Llon-L. longipalpis, L.int-L. intermedia, L.olm-L. olmeca, L.nei-L. neivai) and Gen-
Bank accession number. Sequence conservation is depicted by shading of purple color. Active
sites of enzyme are highlighted in orange, putative glycosylation sites in SschwHyal sequence
are highlighted in blue. Lines below the alignment indicate active site of enzyme by “A”, glyco-
sylation by “N” for N-glycosylation and “O” for O-glycosylation and consensus sequence.
Alignment was made by MAFFT with L-INS-i method and visualized in Jalview.

(PDF)

$10 Fig. Multiple sequence alignment of sand flies’ 5’-nucleotidases. Multiple sequence
alignment of S. schwetzi 5’-nucleotidase with other sand flies’ 5’-nucleotidases. Name of
sequence include sand fly species shortcut (L.lon-L. longipalpis, L.nei-L. neivai) and GenBank
accession number. Sequence conservation is depicted by shading of purple color. Active sites
of enzyme are highlighted in orange, putative glycosylation sites in Sschw5nucl sequence are
highlighted in blue. Lines below the alignment indicate active site of enzyme by “A”, metal
binding site by “&”, glycosylation by “N” for N-glycosylation and consensus sequence. Align-
ment was made by MAFFT with L-INS-i method and visualized in Jalview.

(PDF)

S11 Fig. Multiple sequence alignment of sand flies’ adenosine deaminases. Multiple
sequence alignment of S. schwetzi and other sand flies’ adenosine deaminases. Name of
sequence include sand fly species shortcut (P.per—P. perniciosus, P.dub-P. duboscqi, L.lon-L.
longipalpis) and GenBank accession number. Sequence conservation is depicted by shading of
purple color. Active sites of enzyme are highlighted in orange, putative glycosylation sites in
SschwADA1 sequence are highlighted in blue. Lines below the alignment indicate active site of
enzyme by “A”, glycosylation by “O” for O-glycosylation and consensus sequence. Alignment
was made by MAFFT with L-INS-i method and visualized in Jalview.

(PDF)

$12 Fig. Multiple sequence alignment of sand flies’ amylases. Multiple sequence alignment
of S. schwetzi amylases and other sand flies’ amylases. Name of sequence include sand fly spe-
cies shortcut (P.ara-P. arabicus, P.pap-P. papatasi, L1lon-L. longipalpis, L.nei-L. neivai) and
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GenBank accession number or UniProtKB accession number. Sequence conservation is
depicted by shading of purple color. Active sites of enzyme are highlighted in orange, putative
glycosylation sites in SschwAmy sequences are highlighted in blue. Lines below the alignment
indicate active site of enzyme by “A”, metal binding site by “&”, glycosylation by “N” for N-gly-
cosylation and “O” for O-glycosylation and consensus sequence. For easier visualization two
parts of sequence L. longipalpis (AOA1BOCMM1) were hidden (highlighted by blue vertical
lines with arrows, number of hidden aa is displayed below the alignment). Alignment was
made by MAFFT with L-INS-i method and visualized in Jalview.

(PDF)

$13 Fig. Multiple sequence alignment of sand flies’ endonucleases. Multiple sequence align-
ment of S. schwetzi and other sand flies endonucleases. Name of sequence include sand fly spe-
cies shortcut (P.per—P. perniciosus, P.ori-P. orientalis, P.ari-P. ariasi, P.ara-P. arabicus, P.arg-
P. argentipes, Llon-L. longipalpis, L.int-L. intermedia, L.olm-L. olmeca, L.nei-L. neivai) and
GenBank accession number or UniProtKB accession number. Sequence conservation is
depicted by shading of purple color. Active sites of enzyme are highlighted in orange, putative
glycosylation sites in SschwEnucl sequence are highlighted in blue. Lines below the alignment
indicate active site of enzyme by “A”, metal binding site by “&”, glycosylation by “O” for O-
glycosylation and consensus sequence. Alignment was made by MAFFT with L-INS-i method
and visualized in Jalview.

(PDF)

S14 Fig. Multiple sequence alignment of sand flies’ phospholipases A2. Multiple sequence
alignment of S. schwetzi phospholipase A2 with other sand flies’ phospholipases A2. Name of
sequence include sand fly species shortcut (P.per-P. perniciosus, P.ori-P. orientalis, P.ari-P.
ariasi, P.ara-P. arabicus) and GenBank accession number. Sequence conservation is depicted
by shading of purple color. Active sites of enzyme are highlighted in orange, putative glycosyla-
tion sites in SschwPLA2_1 sequence are highlighted in blue. Lines below the alignment indi-
cate active site of enzyme by “A”, metal binding site by “&”, glycosylation by “N” for N-
glycosylation and “O” for O-glycosylation and consensus sequence. Alignment was made by
MAFFT with L-INS-i method and visualized in Jalview.

(PDF)

S15 Fig. Multiple sequence alignment of sand flies’ pyrophosphatases. Multiple sequence
alignment of S. schwetzi pyrophosphatase with other sand flies pyrophosphatases. Name of
sequence include sand fly species shortcut (P.per-P. perniciosus, P.ori-P. orientalis, P.ara-P.
arabicus, P.dub-P. duboscqi, P.arg-P. argentipes) and GenBank accession number. Sequence
conservation is depicted by shading of purple color. Active sites of enzyme are highlighted in
orange, putative glycosylation sites in SschwPP1 sequence are highlighted in blue. Lines below
the alignment indicate active site of enzyme by “A”, metal binding site by “&”, glycosylation by
“N” for N-glycosylation and “O” for O-glycosylation and consensus sequence. Alignment was
made by MAFFT with L-INS-i method and visualized in Jalview.

(PDF)

S16 Fig. Multiple sequence alignment of sand flies’ 71 kDa-like proteins. Multiple sequence
alignment of S. schwetzi 71 kDa-like protein with other sand flies 71 kDa-like proteins. Name
of sequence include sand fly species shortcut (L.lon-L. longipalpis, L.aya-L. ayacuchensis, L.
olm-L. olmeca) and GenBank accession number or UniProtKB accession number. Sequence
conservation is depicted by shading of purple color. Active sites of enzyme are highlighted in
orange, putative glycosylation sites in Sschw71kDal sequence are highlighted in blue. Lines
below the alignment indicate active site of enzyme by “A”, metal binding site by “&”,
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ARTICLE INFO ABSTRACT

The amine-binding properties of sand fly salivary yellow-related proteins (YRPs) were described only in
Lutzomyia longipalpis sand flies. Here, we experimentally confirmed the kratagonist function of YRPs in the genus
Phlebotomus. We utilized microscale thermophoresis technique to determine the amine-binding properties of
YRPs in saliva of Phlebotomus perniciosus and P. orientalis, the Old-World vectors of visceral leishmaniases cau-
sative agents. Expressed and purified YRPs from three different sand fly species were tested for their interactions
with various biogenic amines, including serotonin, histamine and catecholamines. Using the L. longipalpis YRP
LJM11 as a control, we have demonstrated the comparability of the microscale thermophoresis method with
conventional isothermal titration calorimetry described previously. By homology in silico modeling, we predicted
the surface charge and both amino acids and hydrogen bonds of the amine-binding motifs to influence the
binding affinities between closely related YRPs. All YRPs tested bound at least two biogenic amines, while the
affinities differ both among and within species. Low affinity was observed for histamine. The salivary re-
combinant proteins rSPO3B (P. perniciosus) and rPorASP4 (P. orientalis) showed high-affinity binding of ser-
otonin, suggesting their capability to facilitate inhibition of the blood vessel contraction and platelet aggrega-
tion.

Keywords:
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Biogenic amine

(Lestinova et al., 2017). To ease the spread of these biomolecules, sand
fly saliva contains hyaluronidase, which enzymatic activity facilitates

1. Introduction

Phlebotomus perniciosus and P. orientalis are closely related sand fly
species (Diptera: Phlebotominae) belonging to the subgenus Larroussius.
P. perniciosus is distributed through the western and central parts of
Mediterranean region and it serves as an important vector of Leishmania
infantum, a causative agent of visceral leishmaniases in Southern
Europe and Northern Africa, while P. orientalis is a proven vector of
Leishmania donovani in Sudan, Ethiopia and Kenya (Dvorak et al.,
2018). The number of human cases of visceral leishmaniasis were es-
timated to annually reach up to 20,000 and 56,700, in Mediterranean
and East African regions, respectively (Alvar et al., 2012).

To facilitate successful blood feeding, sand fly female injects into
the host skin saliva containing a vast variety of pharmacologically ac-
tive compounds that interact with the host haemostatic processes

the enlargement of the feeding site by degrading the extracellular ma-
trix (Volfova et al., 2008; Volfova and Volf, 2018). To stop the blood
coagulation, sand flies employ anticoagulants which affect the com-
ponents of coagulation cascade (Chagas et al., 2014; Collin et al., 2012)
or inhibit the activators of coagulation (Alvarenga et al., 2013). Some
sand fly saliva components such as maxadilan (Lerner and Shoemaker,
1992) and adenosine (Ribeiro et al., 1999) act directly as vasodilata-
tors, while other proteins, such as salivary apyrase prevent the ATP-
induced aggregation of platelets (reviewed in Lestinova et al., 2017).
Host haemostatic responses to insect bites are triggered also by
biogenic amines such as serotonin, histamine or catecholamines.
Serotonin is released by platelets and initiates vasoconstriction re-
sulting in limitation of the flow of blood to the insects mouthparts

Abbreviations: YRP, yellow-related protein; MST, microscale thermophoresis; ITC, isothermal titration calorimetry; HEK293S, human embryonic kidney 293S; Kd,

dissociation constant
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(Ribeiro, 1995). Histamine is secreted upon the tissue damage from
basophiles and mast cells granules and influences the hydrostatic
pressure of capillaries and their permeability for plasma containing
immune cells and other factors (Paesen et al., 1999; Ribeiro and
Francischetti, 2003). Both serotonin and histamine have also roles in
inducing itch and pain response to the insect bite (Julius and Basbaum,
2001; Yosipovitch et al., 2018). Other biogenic amines playing roles in
host haemostatic responses belong to the catecholamine family. Nor-
epinephrine stimulates vasoconstriction via adrenergic receptors in the
vasculature (Calvo et al., 2009; Xanthos et al., 2008). When released by
the local nerves in response to bleeding, epinephrine also initiates
constriction of blood vessels and together with serotonin it potentiates
platelet aggregation (Andersen et al., 2003; Francischetti, 2010).

Bloodsucking insects prevent haemostatic responses through
binding biogenic amines in the pocket of hollow barrel structure
forming the amine-binding proteins belonging into three different
protein families (reviewed in Lestinova et al., 2017). Lipocalins serve
this function in ticks and triatomine bugs (Andersen et al., 2003; Mans
and Ribeiro, 2008; Sangamnatdej et al., 2002; Xu et al., 2013), while
D7-related proteins are known kratagonists (= abundant proteins that
arrest or seize their bioactive agonists; Ribeiro and Arca, 2009) in
mosquitoes (Calvo et al., 2006; Jablonka et al., 2019; Mans et al.,
2007). The amine-binding potential of sand fly salivary yellow-related
proteins (YRPs) was firstly hypothesized by Charlab et al. (1999). In
2011, the crystal structure and antihaemostatic properties of YRPs of
the New-World sand fly Lutzomyia longipalpis were revealed. All three L.
longipalpis YRPs were shown to bind with different affinities serotonin,
histamine and catecholamines - epinephrine, norepinephrine, dopa-
mine and octopamine (Xu et al., 2011). Although predicted, the binding
of biogenic amines was not yet experimentally demonstrated for YRPs
of sand flies from the genus Phlebotomus.

To measure the amine-binding interactions of YRPs, several
methods can be employed. So far, the isothermal titration calorimetry
(ITC) was the method of choice for the characterization of salivary
amine-binding proteins of blood-sucking arthropods (Andersen et al.,
2003; Calvo et al., 2009, 2006; Jablonka et al., 2019; Ma et al., 2012;
Xu et al., 2013, 2011). In sand flies, this method was also utilized to
characterize the mechanism of coagulation pathway inhibition in an-
ticoagulants (Alvarenga et al., 2013; Collin et al., 2012). Microscale
thermophoresis (MST) was demonstrated as a method comparable with
ITC, requiring less sample volume and time (Scheuermann et al., 2016;
Seidel et al., 2013; Wienken et al., 2010) but has never been used to
characterize binding properties of proteins from blood sucking ar-
thropods.

Here, we have expressed recombinant YRPs from two closely related
Phlebotomus species, P. orientalis (rPorASP4 and rPorASP2) and P. per-
niciosus (rSP03 and rSP03B), and experimentally tested their ability to
bind host biogenic amines through MST. To validate the accuracy of our
chosen method, we have also expressed and measured binding affinities
of L. longipalpis YRP LJM11, which ability to bind amines was pre-
viously determined using ITC (Xu et al., 2011). We have utilized the 3D
models of YRPs to estimate the effect of the amino acid composition of

Table 1
Recombinant salivary yellow-related proteins.
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the amine-binding site and of the surface electrostatic potential on the
differences in YRPs binding affinities to different biogenic amines.

2. Methods
2.1. Expression of recombinant yellow-related proteins

For binding experiments five salivary YRPs were expressed in
human cell line (Table 1). For P. perniciosus YRPs, the gene construct
was prepared by isolating the total RNA from one day old P. perniciosus
females by the High Pure RNA Tissue Kit (Roche), after which it was
transcribed using anchored-oligo (dT);g primers into the cDNA by
Transcriptor First Strand cDNA Synthesis Kit (Roche) following the
manufacturer's protocol. The cDNA fragments were amplified by PCR
and subcloned into the pTW5sec expression plasmid, a derivative of
pTT5 (Blaha et al., 2015; Durocher et al., 2002). Proteins expressed
using this plasmid contain additional ITG- and -GTHHHHHHHHG se-
quences at their N- and C-termini, respectively.

The rSP03B protein was transiently expressed in human embryonic
kidney 293S (HEK293S) GnTI™ cell line (ATCC CRL-3022), as pre-
viously described in Bldha et al. (2015). Briefly, suspension adapted
cells were grown in EX-CELL293 medium supplemented with 4 mM L-
glutamine (Sigma) in square-shaped glass bottles at 37 °C and 5% CO,
in a humidified incubator and shaken at 135 rpm. For transient trans-
fection, the cell culture was transferred into EX-CELL293 medium at
20 x 10° cells/ml cell density. The expression plasmid (diluted in PBS;
1 ug of DNA per 1 x 106 cells) and 25 kDa linear polyethylenimine (in a
1:4 w/w ratio to total amount of DNA) were added directly into the
high-density cell culture. After 4h of incubation, the culture was di-
luted with EX-CELL293 medium to 2 X 10° cells/ml.

Due to low protein yields, expression cassette of rSP03 was sub-
cloned into vector permitting generation of stably transfected HEK293S
GnTI™ cell line using piggyBac system (Li et al., 2013). After selection,
pools of stably transfected cells were expanded, and protein expression
was induced by doxycycline (1 mg/ml) when cell density reached
3 x 10° cells/ml.

Culture medium was harvested five to seven days post-transfection
(rSP03B) or induction (rSP03) by centrifugation (10,000 X g, 30 min)
and filtered thereafter (0.22 um Steritop filter; Millipore, USA). Before
purification, the harvested medium was diluted with an equal volume
of buffer (50 mM Na,HPO,, 300 mM NaCl, 10 mM NaNs, pH 7.5).
Histidine-tagged proteins were then purified by IMAC chromatography
using HiTrap Talon Crude columns (GE Healthcare) by isocratic
(rSPO3B) or gradient elution (rSP03). Affinity chromatography was
followed by size exclusion chromatography using Superdex 200
Increase 10/300 GL column (GE Healthcare).

Recombinant YRPs derived from P. orientalis and L. longipalpis were
produced and purified as described elsewhere (Gomes et al., 2012;
Sumova et al., 2018). Briefly, the synthetic DNA fragments (GeneArt
Strings, ThermoFisher Scientific) coding recombinant proteins in-
cluding histidine tag at the C-terminus were cloned into VR2001-TOPO
vector (Oliveira et al., 2006). Plasmids were sent to Leidos, NCI, Protein

Name Species MW (kDa) e (M?tem™) GenBank ACCN Parallel codes

1SP03 P. perniciosus 43.20 51,590 ABA43049 PpeSP03’, Pperl?

rSP03B P. perniciosus 44,26 51,590 ABA43050 PpeSPO3B!, Pper2?

rPorASP2 P. orientalis 42.96 53,080 AGT96427 Poril?, mYEL2>

rPorASP4 P. orientalis 43.74 53,080 AGT96428 Pori2?, mYEL1%,
PorSp24*

LIM11 L. longipalpis 44.67 65,000 AAS05318 3Q6K Llon1?

List of recombinant YRPs based on the salivary proteins of P. perniciosus, P. orientalis and L. longipalpis. Designation, species, molecular weight (MW), extinction
coefficient (¢), GenBank accession numbers and the codes of parallel YRPs are indicated. * retrieved from Anderson et al. (2006); % Sima et al. (2016b);  Sumova et al.

(2018); 4 Sima et al. (2016a).


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=protein&doptcmdl=genbank&term=ABA43049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=protein&doptcmdl=genbank&term=ABA43050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=protein&doptcmdl=genbank&term=AGT96427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=protein&doptcmdl=genbank&term=AGT96428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=protein&doptcmdl=genbank&term=AAS05318
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Expression Laboratory (Frederick, MD) for transient transfection and
expression. Transfected FreeStyle HEK293 C18 (ATCC CRL-10852) cell
cultures were harvested after 72 h. Recombinant proteins were purified
in one step in a HPLC system (Bio-Rad) using the HiTrap Chelating HP
columns (GE Healthcare) by gradient elution with imidazole.

2.2. Quality check of recombinant proteins

All recombinant YRPs were purified and subsequently stored in
phosphate-buffered saline (PBS; pH 7.5). Protein concentrations were
measured using a NanoDrop ND-1000 spectrophotometer
(ThermoFisher Scientific) at 280 nm and calculated using the theore-
tical molar extinction coefficients and molecular weights of the proteins
(Table 1).

Oligomeric state of all recombinant YRPs was analyzed in analytical
ultracentrifuge ProteomeLab XL-I equipped with an An-50 Ti rotor
(Beckman Coulter, USA) using the sedimentation velocity experiment.
Samples of proteins in PBS buffer were spun at 48,000 rpm at 20 °C, and
100 scans with 0.003 cm spatial resolution were recorded at 280 nm in
5-min steps using absorbance optics. Buffer density and protein partial
specific volumes were estimated in SEDNTERP (www.jphilo.mailway.
com). Data were analyzed with Sedfit (Schuck, 2000) using a c(s)
continuous size distribution model, figure illustrating AUC data was
prepared in GUSSI (Brautigam, 2015).

To check the quality of expressed proteins, 1 g of each eligible
protein fractions acquired from chromatography was electro-
phoretically separated on 12% polyacrylamide gel under non-reducing
conditions using a Mini-protean apparatus (Bio-Rad). One gel with se-
parated proteins was silver stained. Separated protein bands from
parallel gel were transferred onto a nitrocellulose membrane using the
iBLOT system (Invitrogen) and blocked in 5% non-fat milk diluted in a
Tris-buffered saline with 0.05% Tween 20 (TBS-Tw) overnight at 4 °C.
Subsequently, the membrane was incubated for 1 h with a monoclonal
anti-polyhistidine-peroxidase antibody (Sigma Aldrich) diluted 1:1000
in TBS-Tw. After the washing step with TBS-Tw, the chromogenic re-
action was developed using a substrate solution containing diamino-
benzidine and H,0,. Identity and high purity of the proteins was fur-
ther verified by mass spectrometry.

2.3. Mass spectrometry

Mass spectrometry was used to confirm the high purity of expressed
proteins, to estimate the proportion of P. orientalis and P. perniciosus
YRPs in the total amount of salivary glands proteins and to determine
the ratio of the two YRPs in both species. The analyses were performed
in OMICS Proteomics laboratory Biocev, Czech Republic. For the ana-
lysis, salivary glands were dissected from 5 to 7 day old sand fly females
into aliquots of 20 glands per 20 ul of 100 mM triethylammonium bi-
carbonate buffer with 2% sodium deoxycholate and boiled at 95 °C for
5 min. Protein samples (20 ug of each YRP per sample) were mixed with
4vol of cold ice acetone and kept for 30 minat —20 °C, then cen-
trifuged for 15 min at 16,000 X g at 4 °C. Supernatants were discarded
and pellets were resuspended in the same buffer as for salivary glands.

Subsequently, cysteines were reduced by 5 mM tris(2-carboxyethyl)
phosphine (TCEP; 60 minat 60 °C), blocked with 10 mM of methyl-
methanethiosulfonate and incubated 10 min at RT. Samples were di-
gested with trypsin at 37 °C overnight, after which they were acidified
with trifluoroacetic acid up to a final concentration of 1%. Finally,
sodium deoxycholate was removed by extraction to ethyl acetate
(Masuda et al., 2008) and the peptides were desalted on a Michrom C18
column.

The Nano Reversed phase column (EASY-Spray PepMap C18
column, 50 cm X 75 pm ID, 2 um particles, 100 A pore size) was used
for the LC/MS analysis. The mobile phase A was composed of 0.1%
formic acid, while the mobile phase B was composed of acetonitrile and
0.1% formic acid. Samples were loaded onto the peptide trap column

Insect Biochemistry and Molecular Biology 115 (2019) 103245

(Acclaim PepMap 300 C18, 5 pm, 300 A pore size, 300 ym X 5mm) ata
flow rate of 15 pl/min. The loading buffer was composed of water, 2%
acetonitrile and 0.1% trifluoroacetic acid. Peptides were eluted with
gradient of B from 4% to 35% during 60 min at a flow rate of 300 nl/
min. The eluted peptides were converted to gas phase ions using elec-
trospray ionization and subsequently analyzed on a Thermo Orbitrap
Fusion (Q-OT-qIT, Thermo). Survey scans of peptide precursors from
350 to 1400 m/z were performed at 120K resolution (at 200 m/z) with
a5 x 10° ion count target. Tandem MS was performed by isolation at
1.5 Th with the quadrupole, higher energy collisional dissociation
fragmentation with normalized collision energy of 30, and rapid scan
MS analysis in the ion trap. The MS 2 ion count target was set to 10*
and the maximum injection time was 35 ms. Only the precursors with a
charge state of 2-6 were sampled for MS 2. The dynamic exclusion
duration was set to 45s with a 10 ppm tolerance around the selected
precursor and its isotopes. Monoisotopic precursor selection was turned
on. The instrument was run in top speed mode with 2s cycles (Hebert
et al., 2014).

All data were analyzed and quantified with the MaxQuant software
(version 1.5.3.8) (Cox et al., 2014). The false discovery rate was set to
1% and we specified a minimum length of seven amino acids. The
Andromeda search engine was used for the MS/MS spectra search
against the database obtained from the available sand fly tran-
scriptomes (for samples from salivary glands), or from the Human da-
tabase (downloaded from Uniprot on September 2017, containing
20,142 entries). Enzyme specificity was set as C-terminal to arginine
and lysine, also allowing cleavage at proline bonds and a maximum of
two missed cleavages. Dithiomethylation of cysteine was selected as the
fixed modification and N-terminal protein acetylation and methionine
oxidation as variable modifications. Finally, data analysis was per-
formed using Perseus 1.5.2.4 software (Tyanova et al., 2016). Proteins
purities/ratios were calculated as percentages of intensities of parti-
cular proteins from summed intensities of all identified proteins.

2.4. Microscale thermophoresis

Microscale thermophoresis (MST) was used to measure the binding
between recombinant YRPs and their potential ligands, the biogenic
amines. This approach is based on the measurement of the ligand
binding induced change in directed movement of molecules along a
temperature gradient. The change in movement is caused by differences
in size, charge, or solvation energy of the studied protein itself versus in
complex with the ligand. This change is measured by monitoring the
fluorescence of label attached to the protein (Baaske et al., 2010).

The highly pure recombinant YRPs were fluorescently labeled by
Monolith Protein Labeling Kit RED-NHS (Nanotemper) according to
manufacturer instructions. Fluorescent YRPs were then diluted to 6 nM
concentration (corresponding to 260 ng/ml) in the MST buffer (50 mM
Tris-HC, pH 7.4; 150 mM NaCl; 10 mM MgCl,; 0.05% Tween-20) and
centrifuged for 10 minat 15,000 x g at 4°C to get rid of protein ag-
gregates. The biogenic amines serotonin, histamine, dopamine, octo-
pamine, norepinephrine and epinephrine (Sigma) were dissolved in
MST buffer. For each tested recombinant YRP, a titration series with
constant concentration of fluorescently labeled YRP and equal amount
of two-fold dilution series of a single unlabeled ligand was prepared in
the MST buffer. Binding experiments were performed on a Monolith
NT.115PicoRed (Nanotemper). Samples were loaded into the Monolith
NT.115 Premium Capillaries (Nanotemper) and ran with 40% MST
power and 10-20% LED power based on the fluorescence signal of each
protein. The Kd (dissociation constant) model binding curves expres-
sing the dependence of normalized fluorescence on the ligand con-
centration were fitted to the average of three independent repetition of
each experiment. The Kd values, confidence intervals, amplitudes and
the signal to noise levels were calculated using the NanoTemper ana-
lytical software package. The amplitude of the binding interaction ex-
pressed the difference in normalized fluorescence values between the
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bound and unbound state (signal). The noise level was defined as the
average standard deviation of all data points compared to the Kd model
curve. The signal-to-noise ratio was used to assess the quality of the
binding outcome, with a ratio higher than 5 being desirable and ratio
higher than 12 reflecting an excellent assay according to manufacturer's
manual. For the purposes of this study we have defined the strength of
the binding interaction as high when the measured Kd was lower than
10 nM, medium when Kd was in range of 10-1000 nM, low for Kd in
range of 1-10 uM and poor for Kd higher than 10 uM.

2.5. 3D models

The YRPs were modeled as described in Sima et al. (2016b). Models
were based on the crystal structure of LJM11, the only available sand
fly YRP in Protein Data Bank (3Q6K; Xu et al., 2011). Models and their
amine-binding site were displayed and analyzed in PyMOL (The PyMOL
Molecular Graphics System, Version 1.5, Schrodinger, LLC.). Electro-
static surface potentials were calculated using the APBS Tools 2 plug-in
(Baker et al., 2001) in PyMOL.

3. Results and discussion

Yellow-related proteins (YRPs) are characterized by the presence of
major royal jelly protein domain (Schmitzova et al., 1998) and their
name is derived from the role of “yellow” protein in cuticle pigmen-
tation in Drosophila (Geyer et al., 1986). So far, YRPs were found only in
sand fly salivary proteomes. Presence of YRP in the midgut was once
reported (Volf et al., 2002), but it seems that the protein was swallowed
there with saliva. YRPs are abundant in saliva of all sand fly species
studied up-to-date (Abdeladhim et al., 2016, 2012; Anderson et al.,
2006; Coutinho-Abreu and Valenzuela, 2018; de Moura et al., 2013;
Hostomska et al., 2009; Kato et al., 2013, 2006; Oliveira et al., 2006;
Rohousova et al., 2012; Valenzuela et al., 2004; Vlkova et al., 2014). In
each sand fly species, 1-5 YRPs of distinct sequences with molecular
weight of 41-45kDa were described. In sand fly saliva, YRPs are pre-
dicted to act as high affinity binders of host's pro-haemostatic and pro-
inflammatory biogenic amines, such as serotonin, histamine and ca-
techolamines but previously this binding was experimentally verified
only for YRPs from New-World sand fly species L. longipalpis (Xu et al.,
2011). Here, we have tested the amine-binding capability of YRPs in the
two species of the Old-World genus Phlebotomus and validated micro-
scale thermophoresis (MST) as an accurate method to determine the
binding affinities of biogenic amines to YRPs.

3.1. YRPs in salivary glands

Among proteins determined by mass spectrometry in the P. perni-
ciosus and P. orientalis salivary gland homogenates, YRPs constitute a
high proportion; 40% and 35.4%, respectively. These portions corre-
spond to approximately 160 ng and 100 ng of YRPs per a pair of salivary
glands of P. perniciosus and P. orientalis, respectively (Sumova et al.,
2018; Velez et al., 2018). The two YRPs in each species tested were
present in ratio 2.67 for rSP03B/rSP03 and 2.52 for rPorASP4/
rPorASP2 making the closely related proteins rSPO3B and rPorASP4
considerably more abundant than the other two YRPs (S1
Table;Sumova, 2019 [dataset]). The potential of both rSPO3B and
rPorASP4 to sequester biogenic amines is therefore enhanced by the
higher quantities of these proteins salivated into the host skin.

To antagonize host haemostasis through sequestering the biogenic
amines at the biting site, the amine-binding proteins should presumably
achieve the concentrations corresponding to 0.2-2 uM, which in mos-
quitoes correspond to 0.03-0.3 ug of amine-binding D7 proteins (Calvo
et al., 2006). In mosquitoes, both the blood meal (2.4-3.3 ul) and the
salivary proteins amount per a pair of glands (1.4-4 pg) are in average 5
times larger than in studied sand flies (0.6 ul and 0.3-0.4 ug, respec-
tively) (Jeffery, 1956; Nascimento et al., 2000; Pruzinova et al., 2015).
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Therefore, after recalculation according to YRPs molecular weight, we
can consider 17-174 ng of YRPs necessary for physiological relevance.
As both mosquitoes and sand flies discharge during blood feeding ap-
proximately half of the salivary proteins content (Marinotti et al., 1990;
Ribeiro et al., 1989), we can consider the measured amount of YRPs
sufficient to scavenge local biogenic amines. YRPs are therefore present
in salivary glands in physiologically significant quantities to act as
kratagonists.
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Fig. 1. Purification and quality control of recombinant proteins. a)
Representative results of size exclusion chromatography (Superdex 200
Increase 10/300 GL, GE Healthcare); peaks for each protein are shown with
distinct type of line (see legend on the right). b) Recombinant YRPs were
analyzed in analytical ultracentrifuge by sedimentation velocity experiment
and an overlay of normalized size distributions for individual proteins is shown.
c) Recombinant YRPs were run by SDS-PAGE under non-reducing conditions.
Silver-stained gel is shown on the left. Western blot analysis was performed
with anti-polyHistidine-peroxidase antibody. Molecular weights (kDa) of stan-
dard (STD; BenchMark Protein Ladder, ThermoFisher Scientific) are indicated.
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3.2. Recombinant yellow-related proteins

All YRPs with a histidine-tag were expressed in a HEK293 cell line
and purified by chromatography; the representative results for P. per-
niciosus and P. orientalis YRPs are shown in Fig. la. All recombinant
proteins were analyzed in an analytical ultracentrifuge by performing
sedimentation velocity experiment. The resulting size distributions of
sedimenting species are shown in Fig. 1b. Apart from rSP03, all other
proteins have standard sy, sedimentation coefficient of 3.5-3.6S,
corresponding well to anticipated 43-45kDa monomeric proteins.
Protein rSP03 sedimented slower with s,y of 3.2 S, suggesting slightly
different shape of the particle when compared to other measured YRPs.
The purity of proteins was verified by SDS-PAGE and Western blot
analysis with an anti-histidine-tag antibody. Both the silver stained gel
and the Western blot assay showed only one major band of expected
molecular weight for all YRP tested (Fig. 1c). The purity of all YRPs was
verified by high-resolution mass spectrometry and reached 91% in
average. The major contaminants were identified as keratins, whose
presence in samples resulted from protein handling and do not interfere
with YRPs performance.

The amino acid similarities between studied recombinant YRPs are
summarized in Table 2. The highest similarity was found between YRPs
originating from different Phlebotomus species, reaching 86% amino
acid sequence identity for rSPO3 and rPorASP2, and 85% for rSPO3B
and rPorASP4. High degree of identity found between rSP03/rPorASP2
and rSP03B/rPorASP4 is in accordance with their position on phylo-
genetic tree, where they form the same clusters together with YRPs
from related Larroussius species P. tobbi (Abdeladhim et al., 2016;
Coutinho-Abreu and Valenzuela, 2018; Sima et al., 2016b). As expected
for a species from different genera, L. longipalpis LJM11 share only
51-55.6% identity with Phlebotomus YRPs.

3.3. Ligand binding analysis using microscale thermophoresis

Microscale thermophoresis was used to determine whether the ex-
pressed recombinant YRPs bind different biogenic amines. Binding
curves modeled for each protein with binding amines are shown in
Fig. 2. Dissociation constants (Kd) of the interaction of each YRP with
all ligands derived from these data are summarized in Table 3. The
calculated amplitudes and signal to noise ratios were high enough to
confirm the significances of the binding curves for all measured binding
interactions.

Protein rSP03 acted as a medium affinity binder of norepinephrine,
low affinity binder of octopamine and a poor affinity binder of hista-
mine, epinephrine and serotonin. The binding curve for dopamine was
affected by the ligand induced change in fluorescence which precluded
plotting it into graph. We have estimated the Kd for dopamine to be
higher than 20 uM thus making it a poor affinity ligand. The second P.
perniciosus YRP, protein rSP03B, had affinity for two ligands only. It
served as a high affinity binder of serotonin and it also interacted poorly
with histamine. Protein rPorASP2 bound with high affinity octopamine,
with medium affinity serotonin and dopamine and it poorly bound
histamine. rPorASP2 had no measurable affinity for catecholamines

Table 2
Recombinant YRPs amino acid sequence identity.
LIM11 1SP03 rPorASP2 rPorASP4 rSPO3B

LIM11 —_— 51.06 53.32 55.56 51.45
rSP03 51.06 _ 85.98 75.65 68.49
rPorASP2 53.32 85.98 _— 76.96 68.25
rPorASP4 55.56 75.65 76.96 —_— 84.82
rSP03B 51.45 68.49 68.25 84.82 —_

Percent identity matrix of recombinant YRPs created in Clustal Omega (Sievers
et al., 2011).
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epinephrine and norepinephrine. Protein rPorASP4 interacted with
different strength with all ligands. It displayed a high affinity for ser-
otonin and dopamine, medium affinity to norepinephrine, octopamine
and epinephrine, and it interacted with low affinity with histamine. The
binding interactions of LJM11 were similar to those measured for
rPorASP4; the only variation was detected in the lower affinities of
LJM11 for epinephrine and histamine. The binding affinities of LJIM11
measured by MST correspond well with the ones measured previously
by the ITC technique (Table 3, square brackets; Xu et al., 2011). We
have therefore shown that for this type of study the results obtained
either by ITC or MST are comparable.

Although the binding of biogenic amines to YRPs varied both among
and within sand fly species, we can draw the following conclusions: In
both P. orientalis and P. perniciosus, at least one YRP was shown to bind
with high affinity serotonin (Kd < 10nM) and with medium affinity
norepinephrine (Kd = 10-1000nM), suggesting that both sand fly
species effectively sequester these compounds during feeding. This
YRPs capability might inhibit the blood vessels contraction and impede
platelet activity by increasing the agonist threshold concentration for
the platelet aggregation (Andersen et al., 2003; Calvo et al., 2006). This
effect can be further emphasized by the high abundance of both high
affinity binders of serotonin (rSP03B and rPorASP4) in sand fly saliva.
On the contrary, all tested proteins bound histamine with affinity lower
than 1 uM which was indicated as insufficient to prevent interaction of
histamine with its physiological receptors (Mans et al., 2008; Xu et al.,
2011). To our knowledge, there are recently no other histamine-binding
candidates in sand flies. Sand flies D7-related proteins, whose coun-
terparts serve this function in mosquitoes, were recently shown not to
contain the essential amine-binding pocket (Jablonka et al., 2019).

The binding affinities for epinephrine, dopamine and octopamine
varied among the individual YRPs. When comparing the two
Phlebotomus species, the binding affinities were in P. perniciosus much
lower for all these potential ligands. Observed species-specific differ-
ences in amine-binding properties could be hardly explained by dif-
ferent feeding behavior as both Phlebotomus species studied share si-
milar host preferences. Despite the tight binding of dopamine and
octopamine to P. orientalis YRPs, these ligands are improbable physio-
logical targets for the salivary YRPs, as they do not play a major role in
haemostasis or inflammation (Xu et al., 2011). Therefore, the inter-
specific difference in binding of these catecholamines is not supposed to
have an application in physiological conditions. We may hypothesize
that the only physiological activity of sand flies YRPs is to bind ser-
otonin, while binding the other amines might be artifact of their similar
structure. Therefore both sand fly species have one functional YRP
which binds serotonin with very high affinity.

3.4. Amine-binding site

The YRPs amine-binding site was formerly determined from LIM11
crystals with added serotonin (Xu et al., 2011). The site was shown to
be composed by 11 amino acids from which eight bound biogenic
amines through van der Waals forces and hydrophobic interactions.
Five of these amino acids are conserved in all YRPs modeled up to date.
Three extra amino acids (Thr327, Asn 342 and Phe 344) of the LJM11
binding motif were able to bind serotonin not only by above mentioned
non-covalent intermolecular interactions, but also by hydrogen bonds
(Fig. 3), which are predicted to play major role in the binding event
(Sima et al., 2016b; Xu et al., 2011).

We have modeled the major amino acids together with their hy-
drogen bond interactions in the amine-binding site of all YRPs tested
(Fig. 3). In P. orientalis rPorASP4, the binding motif differed only in one
amino acid (position 344; Gln instead of Phe) from L. longipalpis LIM11,
though the amino acid sequence identity of these two proteins is only
55.6%. This non-conservative substitution should not alter the potential
hydrogen bond of the carbonyl oxygen; on the contrary it could facil-
itate the link of additional hydrogen bond to the glutamine side chain
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Fig. 2. MST showing binding of biogenic amines to each YRP. Graphs show the MST data fitted with Kd model binding curves for each YRP and all the biogenic
amines it bound. For the amines for which no binding was detected, no graphical visualization is shown. Each curve and data point represents an average of three
independent experiments. Curves for each amine are shown with distinct type of line and data points (see legend in frame).

and therefore tightening the interaction with serotonin (Sima et al.,
2016Db). This assumption was emphasized by the measured high affinity
interaction of rPorASP4 with serotonin, which achieved the lowest Kd
of all proteins tested.

The highly related proteins rSP03 and rPorASP2 (86% identity)
shared the same amine-binding motif differing from LJM11 in one non-
conservative substitution at position 344 (His instead of Phe), which
should not affect the distance of putative hydrogen bond; and one
conservative substitution within the other amino acids of the binding
motif.

Protein rSPO3B varied in all 3 amino acids playing major role in the
ligand binding in addition to conservative substitutions in other two
amino acids of the amine-binding motif. Conservative substitution at
the position 327 (Ser instead of Thr) and non-conservative substitution

at the position 344 (His instead of Phe) probably did not affect the
putative hydrogen bonds to serotonin. On the contrary, the con-
servative substitution at the position 342 (Thr instead of Asn) probably
resulted in the switch of two potential hydrogen bonds to only one.
Previously described site-directed mutagenesis of an asparagine to
alanine at the position 342 resulted for LJM11 in elimination of both
potential hydrogen bonds. This mutation led to the complete loss of
binding to norepinephrine and epinephrine and to the large reduction
of the affinity for serotonin and dopamine (histamine and octopamine
were excluded from the analysis) (Xu et al., 2011). This finding is in
accordance with the measured absence of binding of all catecholamines
by rSPO3B. The fact that SPO3B was shown to bind serotonin with high
affinity can be explained by the protein retaining one hydrogen bond at
the side chain of threonine which is larger and therefore closer to the
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Table 3
Amine-binding properties of recombinant YRPs.
YRP Ligand Kd (nM) Kd CI Amplitude Signal to
Noise

rSP03 Serotonin 20,558 + 7062 5.1 10.0
Dopamine > 20,000 NA NA NA
Norepinephrine 534 +131 9.3 13.1
Epinephrine 18,418 + 1920 9.8 33.6
Octopamine 5935 + 1160 9.0 17.1
Histamine 13,138 + 4431 3.3 9.6

rSPO3B Serotonin 9.6 +6.2 16.1 5.4
Dopamine NB + NA NA NA
Norepinephrine NB + NA NA NA
Epinephrine NB * NA NA NA
Octopamine NB + NA NA NA
Histamine 23,708 + 4602 10.9 16.5

rPorASP2  Serotonin 37.5 *+10 6.1 13.0
Dopamine 76.4 +20.8 8.6 12.0
Norepinephrine NB + NA NA NA
Epinephrine NB + NA NA NA
Octopamine 4.2 +1.2 7.4 13.2
Histamine 75,107 + 20,800 8.3 16.2

rPorASP4  Serotonin 1.1 +0.3 13.3 13.2
Dopamine 3.2 + 0.7 11.9 15.7
Norepinephrine  74.8 + 8.4 15.8 28.9
Epinephrine 745 +79.2 15.2 30.4
Octopamine 122 +16.2 17.5 24.3
Histamine 5753 + 378 17.6 48.7

LIM11 Serotonin 4.5 [4.3] + 1.1 14.1 15.5
Dopamine 12.4 [12] + 4.0 17.0 10.5
Norepinephrine 182 [63] * 24.6 20.4 23.8
Epinephrine 4212 [454] + 465 23.4 29.3
Octopamine 396 [217] +61.9 17.8 20.6
Histamine 178,801 + 23,426 26.6 24.6

[ > 1000]

Dissociation constants (Kd; nM), Kd confidence intervals (CI), amplitudes and
the signal to noise ratios for rSP03, rSPO3B, rPorASP2, rPorASP4 and LIJM11.
The dissociation constants measured previously for protein LJM11 by ITC (Xu
et al.,, 2011) are presented in square brackets. NB — no measurable binding
interaction, NA - not applicable.

serotonin than in the case of alanine (Fig. 3.). The expected decrease of
affinity to catecholamines could have been further enhanced by the
substitutions in other amino acids possibly influencing the interaction
of rSPO3B with the secondary and phenolic hydroxyls, which were
previously shown to have an important role in the binding interactions
of mosquitoes amine-binding proteins (Calvo et al., 2009; Mans et al.,
2007).

The majority of the measured substitutions in the amine-binding
motif had presumably no effect on the putative hydrogen bonds holding
the ligand in the binding pocket. We can therefore hypothesize that
there are other factors which should be considered when analyzing the
differences in the YRPs affinities for different ligands. For instance, the
low affinity binding of histamine by all YRPs might be due to the ab-
sence of hydrogen bond formation towards hydroxyl groups, which are
not present in the structure of this ligand. Even though the ligand-
binding sites of insect amine-binding proteins were by crystallography
(Calvo et al., 2009; Mans et al., 2007), site-directed mutagenesis (Mans
et al.,, 2007; Xu et al.,, 2011) or by ligand saturation experiments
(Andersen et al., 2003) repeatedly shown to be analogous for different
biogenic amines, it is possible that the ligands may in each protein
accommodate a slightly different position disabling, reducing or con-
versely increasing their binding affinity (Calvo et al., 2009; Xu et al.,
2013).
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3.5. 3D models and electrostatic potential of YRPs

L. longipalpis YRPs share a similar six-bladed (-propeller fold with
all sand fly YRPs studied up to date, which were all shown by homology
modeling to comprise a ligand-binding site within their barrel structure
(Sima et al., 2016b). The electrostatic potential of the P. perniciosus, P.
orientalis and L. longipalpis YRPs surface was compared on their 3D
models (Fig. 4). The models of both entrance sides of the six-bladed f3-
propeller structure showed that the cavity of the channel has in all cases
negative charge, which enables the binding of positively charged
bioamines in all YRPs studied. This is in accordance with the negatively
charged amine-binding site of structurally similar D7 proteins in mos-
quitoes (Calvo et al., 2009).

Closely related proteins rSP03 and rPorASP2 were shown to share
the negative electrostatic potential at both channel openings. Other
proteins shared predominantly neutral charge at the entrance of the
side further from the ligand-binding site. The charge on the side closer
to the ligand was found more variable, with the proteins LIM11,
rPorASP4 and rSP03B displaying positive, negative and predominantly
neutral electrostatic potential, respectively. Proteins rPorASP4 and
LJM11, which were shown to have similar binding affinities, had op-
posite charges at the channel entrance closer to the binding site, but
shared the same charges on the other side of the channel (Fig. 4). We
can therefore hypothesize that the ligands preferably enter the barrel
structure from the side further from the binding pocket. This assump-
tion is in agreement with already described larger size of this entrance
in all YRPs, which could facilitate the entry of the ligand (Sima et al.,
20160D). If this hypothesis is valid, the surface charge will probably have
less pronounced effect on binding interactions than expected.

The observed variance in the binding affinities even of closely re-
lated YRPs was shown also in the three L. longipalpis YRPs indicating the
occurrence of functional divergence in the family (Xu et al., 2011).
Divergence in YRPs function might be caused also by other factors apart
from the variations in the amine-binding motif and charge. This can be
illustrated on proteins rPorASP2 and rSP03, which share the same
amine-binding motif and electrostatic potential but differed in binding
affinities for all ligands. Interestingly, rSP0O3 protein showed slightly
lower value of sedimentation coefficient than expected according to its
molecular weight and also lower than all other analyzed YRPs (Fig. 1b),
pointing to more elongated shape or slightly different folding of this
protein compared to other tested YRPs, which might be the cause of
different binding properties of rSP03. Distinct interactions of rSP03 and
rPorASP2 might be also influenced by the absence of N-glycosylation in
rPorASP2 (Sima et al., 2016b; Vlkova et al., 2014) presumably affecting
the protein folding and subsequently its structure and therefore also
binding properties (Katoh and Tiemeyer, 2013). The particular sand fly
YRPs were also found versatile in other parameters including the
length, minimum radius and hydrophobicity of their channels, which
could also affect the binding affinities even of closely related proteins
(Sima et al., 2016Db).

In conclusion, we have validated MST as a useful tool to study the
amine-binding interactions of the sand fly YRPs. We have shown that
although the 3D structure of all YRPs is highly conserved, differences in
the amino acids of the ligand-binding motif, conformation of the po-
tential ligands and other factors might affect the binding affinities even
of closely related proteins. Nevertheless, both P. orientalis and P. per-
niciosus express at least one YRP which bound serotonin with high af-
finity, while none of the proteins was shown to bind histamine with
significant affinity. We can therefore propose that both P. perniciosus
and P. orientalis YRPs potentially contribute to counteracting of the
platelet aggregation and vasoconstriction.
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Fig. 3. Amine-binding pocket of YRPs. The model
depicts the relevant amino acids of the serotonin
binding site for both P. perniciosus (rSP03 - red,
rSPO3B - violet) and P. orientalis (rPorASP2 - dark
green, rPorASP4 - light green) YRPs and L. longipalpis
protein LJM11 (blue). Numbering of amino acids was
adapted from Xu et al. (2011). Dashed lines represent
putative hydrogen bonds which bind serotonin
(black) inside the pocket, the numbers mark the ac-
tual donor-acceptor distances in f\ngstr('ims, in grey
are marked the bonds formed by the amino acid
substitutions. Asterisks mark the substitutions in
amino acids participating in hydrogen bond forma-
tion. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 4. Electrostatic potential at YRPs channel entrances. Models depict each recombinant YRP from side closer (ligand side) and further (other side) to the
ligand-binding site inside the channel. Color and its brightness correspond to the scale of negative (red) to positive (blue) charge. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)
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Background: During blood feeding, sand flies inoculate salivary proteins that interact with the host haemostatic
system. The blocking of biogenic amines such as serotonin and histamine helps to limit vasodilatation and clot forma-
tion, and thus enables the insect to finish the blood-feeding process. In sand flies, an amine-binding ability is known
only for the yellow-related proteins of Phlebotomus and Lutzomyia vectors, but not yet for members of the genus

Methods: The ability of Phlebotomus argentipes and Sergentomyia schwetzi recombinant yellow-related salivary pro-
teins to bind histamine and serotonin was measured by microscale thermophoresis. Both sand fly species were also
fed through a chicken-skin membrane on blood mixed with histamine or serotonin in order to check the effects of
biogenic amines on sand fly fitness. Additionally, fecundity and mortality were compared in two groups of P argen-
tipes females fed on repeatedly-bitten and naive hamsters, respectively.

Results: The P argentipes recombinant yellow-related protein PagSP04 showed high binding affinity to serotonin

and low affinity to histamine. No binding activity was detected for two yellow-related proteins of S. schwetzi. Elevated
concentrations of serotonin significantly reduced the amount of eggs laid by P argentipes when compared to the con-
trol. The fecundity of S. schwetzi and the mortality of both sand fly species were not impaired after the experimental
membrane feeding. Additionally, there were no differences in oviposition or mortality between P argentipes females

Conclusions: Our results suggest that in natural conditions sand flies are able to cope with biogenic amines or anti-
saliva antibodies without any influence on their fitness. The serotonin binding by salivary yellow-related proteins may
play an important role in Phlebotomus species feeding on mammalian hosts, but not in S. schwetzi, which is adapted

Keywords: Phlebotomus argentipes, Sergentomyia schwetzi, Serotonin, Histamine, Oviposition, Mortality, Yellow-

Background

Females of phlebotomine sand flies (Diptera: Psychodi-
dae) feed on blood in order to complete egg development.
During blood-feeding they inoculate salivary proteins
into the skin that counteract the host haemostatic system
[1]. Biogenic amines, such as, histamine and serotonin,

*Correspondence: tatiana.spitzova@gmail.com
Department of Parasitology, Faculty of Science, Charles University, Vinicna
7,128 44 Prague 2, Czech Republic

B BMC

are crucial molecules for host haemostasis. Histamine is
commonly associated with an immediate-type hypersen-
sitivity response (i.e. increased vascular permeability and
vasodilatation) and chemoattractant activity. This amine
is produced by a wide variety of cell types (e.g. mast cells,
basophils) [2]. Serotonin plays a role in numerous physi-
ological processes, among others as an inflammatory
modulator, vasoconstrictor and contributor to clot for-
mation. Circulating platelets are the main storage site for
peripheral serotonin [3].
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Bloodsucking arthropods have developed various sali-
vary molecules to cope with biogenic amines such as
lipocalins in ticks [4] and triatomids [5] and D7 proteins
in mosquitoes [5]. In sand flies, the ability to bind host bio-
genic amines has only been described for the family of sali-
vary yellow-related proteins (YRPs) [6, 7]. Proteins of this
family are found exclusively in insects and are abundant in
phlebotomine sialomes with high variability in the number
of YRPs among different sand fly species [1, 8]; they show
a similar structure with some intraspecific modifications
that influence the ligand-binding abilities [9].

In repeatedly-bitten hosts, sand fly saliva also stimu-
lates the production of high levels of species-specific anti-
saliva antibodies [1]. According to some authors, these
antibodies could have an impact on sand fly fecundity
and mortality [10-12]; however, other studies have not
found any significant effects [13—15].

In this study, we focused on two sand fly species, Phle-
botomus argentipes and Sergentomyia schwetzi. Phleboto-
mus (Euphlebotomus) argentipes is the most important
vector of visceral leishmaniasis in Asia [16], with a mainly
zoophilic feeding behaviour and a preference to feed
on humans as the second choice [17]. This study of the
amine-binding properties of its yellow-related pro-
tein adds to previously published data on other visceral
leishmaniasis vectors in America, Europe and Africa [6,
7]. Sergentomyia schwetzi is the only representative of
the genus Sergentomyia available in laboratory colonies
worldwide [18]. Sergentomyia species prefer to feed on
reptiles [19], and to our knowledge, this is the first study
to describe the S. schwetzi salivary yellow-related proteins
and their role in feeding processes.

The main aims of the study were (i) to compare the
ability of P. argentipes and S. schwetzi yellow-related pro-
teins to bind biogenic amines, particularly histamine and
serotonin; (ii) to clarify if the fecundity and mortality of
P argentipes and S. schwetzi could be affected by bio-
genic amines present in blood using membrane feeding;
and (iii) to study if high levels of anti-P. argentipes saliva
antibodies in repeatedly-bitten hamsters interfere with P
argentipes fecundity and mortality.

Methods

Sand flies and laboratory rodents

Laboratory colonies of P. argentipes originating from
India and S. schwetzi originating from Ethiopia were
maintained in the insectary of the Department of Para-
sitology, Charles University, under standard conditions
(at 26 °C, fed on 50% sucrose, with a 14 h:10 h light:dark
photoperiod) as described by Volf and Volfova [20].
The hamsters used were 3-month-old Syrian hamsters
(Mesocricetus auratus) kept in the animal facility of the
Department of Parasitology, Charles University.
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Expression of recombinant yellow-related proteins

For biogenic amine-binding experiments, one P. argen-
tipes and two S. schwetzi salivary yellow-related pro-
teins were expressed in a human cell line (Table 1). The
gene constructs were prepared by isolating the total
RNA from one-day-old females using a High Pure RNA
Tissue Kit (Roche, Prague, Czech Republic), then the
c¢DNA was synthesised with the anchored-oligo (dT)g
primers using the Transcriptor First Strand cDNA
Synthesis Kit (Roche) following the manufacturer’s
protocol. The requested transcripts were amplified
from cDNA by PCR and subcloned into the pTW5sec
expression plasmid, a derivative of pTT5 [21, 22]. Pro-
teins expressed using this plasmid contain additional
ITG- and -GTHHHHHHHHG amino sequences at
their N- and C-termini, respectively. Proteins were then
transiently expressed in the human embryonic kidney
293S (HEK293S) GnTI- cell line (ATCC CRL-3022), as
previously described [6, 21, 23].

All recombinant yellow-related proteins were purified
by IMAC chromatography using HiTrap Talon Crude
columns (GE Healthcare, Prague, Czech Republic) fol-
lowed by size exclusion chromatography using Super-
dex 200 Increase 10/300 GL column (GE Healthcare).
Proteins were subsequently stored in phosphate-buff-
ered saline (PBS; pH 7.5). Protein concentrations were
measured using a NanoDrop ND-1000 spectrophotom-
eter (Thermo Fisher Scientific, Prague, Czech Republic)
at 280 nm and calculated using the theoretical molar
extinction coefficients and molecular weights of the
proteins (Table 1). The identity and purity of the pro-
teins were further verified by mass spectrometry.

Microscale thermophoresis
Microscale thermophoresis (MST) was used to meas-
ure the binding affinities between recombinant yellow-
related proteins and their potential ligands, serotonin
and histamine. The MST affinity experiments were per-
formed as described in [6] with minor modifications.
The highly pure recombinant yellow-related pro-
teins were fluorescently labelled by a Monolith His-Tag
Labeling Kit RED-tris-NTA 2nd Generation (Nanotem-
per, Munich, Germany) according to the manufacturer’s

Table 1 Recombinant salivary yellow-related proteins

Name Species MW (kDa) &€(M~'cm™")  GenBankID
PagSP04 P argentipes 4492 62020 ABA12136.1
SschwYRP1 S schwetzi 4251 57090 QHO60691.1
SschwYRP3  S. schwetzi 45.34 70103 QHO60693.1

Notes: List of recombinant yellow-related proteins based on the salivary proteins
of P. argentipes and S. schwetzi. The name, species, molecular weight (MW),
extinction coefficient (€) and GenBank accession numbers are indicated
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instructions. Fluorescent YRPs were then diluted to 40
nM concentration (corresponding to 1.73 pg/ml) in the
MST buffer (50 mM Tris-HCI, pH 7.4; 150 mM NacCl;
10 mM MgCl,; 0.05% Tween-20) and centrifuged for 10
min at 15,000xg at 4 °C to remove protein aggregates.
Serotonin (Sigma-Aldrich, Prague, Czech Republic)
and histamine (Sigma-Aldrich) were dissolved in MST
buffer. For each tested recombinant YRP, a titration
series with a constant concentration of fluorescently
labelled YRP and an equal amount of a two-fold dilu-
tion series of a single unlabelled ligand were prepared
in the MST buffer. Binding experiments were per-
formed on a Monolith NT.115 PicoRed (Nanotemper).

Membrane feeding with histamine and serotonin
Phlebotomus argentipes and S. schwetzi females (5-7
days-old) were fed through a chick-skin membrane by
the standard method described by Volf & Volfova [20].
From 100 to 120 female sand flies were used for each
group. Histamine and serotonin were dissolved in 200
ul of physiological saline to concentrations of 0.3 mg/
ml and 0.07 mg/ml, respectively, and mixed with 3 ml
of defibrinated rabbit blood. In order to emphasize the
effect of biogenic amines on the sand fly fitness, we
decided to use elevated “non-physiological” concentra-
tions for both amines [24, 25]. A blood mixture with
saline only was used as a negative control. The experi-
ment with serotonin and P. argentipes was repeated
twice, to confirm differences between the experimental
and naive groups. Engorged sand flies were maintained
in cages under standard conditions until defecation.

Feeding on repeatedly exposed hamsters
Hamsters of both sexes were randomly assigned to two
groups of 6 animals each. In the first group, anesthe-
tized animals (ketamine 50 mg/kg and xylazine 2 mg/
kg, intramuscularly) were exposed to 100-290 P. argen-
tipes females six-times at 7—15-day intervals. The sec-
ond group served as a negative control. One week after
the last exposure, hamsters from each group were
exposed to 100 P. argentipes females (5-7 days-old) for
45 min. Engorged sand flies were maintained in cages
under standard conditions until defecation.

Sera were collected from anesthetized animals from
both groups one week after the last exposure to sand flies
and stored at — 80 °C until use.

Oviposition and mortality monitoring

After defecation (3 and 5 days after blood-feeding for P
argentipes and S. schwetzi, respectively), females were
individually separated into small glass vials equipped
with wet filter paper, closed with fine gauze and allowed
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to oviposit. All vials were placed into a single plastic box
with its base filled with wet filter paper to ensure a uni-
form microclimate [18]. The humidity, mortality and
occurrence of eggs were checked daily for the next 5 days,
and laid eggs were counted at the end of the experiment.

Detection of anti-P. argentipes 1gG

Anti-P. argentipes 1gG were measured by an enzyme-
linked immunosorbent assay (ELISA) as described in [26]
with minor modifications. Briefly, microtiter plates were
coated with salivary gland homogenate (SGH) (0.2 sali-
vary gland per well) obtained as described in [26]. Ham-
ster sera were diluted 1:100 in 2% (w/v) low fat dry milk
with 0.05%Tween-20 (PBS-Tw), and secondary antibod-
ies (anti-hamster IgG, AbD Serotec) were diluted 1:1000
in PBS-Tw. Each serum was tested in duplicate. Absorb-
ance values were reported as optical densities (ODs) with
a subtracted blank (value in the control wells).

Statistical analysis
Statistical analyses were carried out using R software
(http://cran.r-project.org/). Differences in oviposition
between groups were tested by fitting generalised linear
models (GLM) with quasi-poisson distribution. Differ-
ences in mortality between groups were analysed by a
2-sample test for equality of proportions. A P-value of <
0.05 was considered to indicate statistical significance.
For the MST experiments, the Kd (dissociation con-
stant) model binding curves were fitted to the average
of three independent repetitions of each measurement.
The Kd-values, confidence intervals, amplitudes and
the signal-to-noise levels were calculated using the
NanoTemper analytical software package.

Results

Ligand binding analysis using microscale thermophoresis
The amine-binding properties of P argentipes and S.
schwetzi YRPs measured by MST are visualized in
Fig. 1, and the binding parameters are summarized in
Table 2. Phlebotomus argentipes yellow-related protein
PagSP04 bound serotonin with high affinity (Kd = 86.9
nM), while it had only a low affinity for histamine (Kd
= 9.3 uM). On the contrary, neither of the S. schwetzi
YRPs tested had detectable binding affinities for either
biogenic amine.

Feeding on biogenic amines: effects on sand fly oviposition
and mortality

Results from the experimental feeding of P argentipes
and S. schwetzi on histamine and serotonin are sum-
marized in Table 3. In total, 358 P. argentipes and 178
S. schwetzi females were separated individually into
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Fig. 1 Amine-binding properties of Phlebotmus argentipes and Sergentomyia schwetzi yellow-related proteins. a Kd model binding curves of P
argentipes yellow-related protein. The binding curves for serotonin and histamine are depicted in black and grey, respectively. Each curve and data
point represent the average of three independent experiments. b An example of non-measurable binding interaction for S. schwetzi yellow-related
proteins

Table 2 Amine-binding properties of recombinant yellow-related proteins

YRP Ligand Kd (nM) Kd 95% Cl Amplitude Signal to noise
PagSP0O4 Serotonin 86.9 72.5-101.3 16.6 20.8
Histamine 9304.5 8042.9-10566.1 221 23.7
SschwYRP1 Serotonin nb na na na
Histamine nb na na na
SschwYRP3 Serotonin nb na na na
Histamine nb na na na

Notes: Dissociation constants (Kd; nM), Kd 95% confidence intervals (95% Cl), amplitudes and the signal-to-noise ratios for P. argentipes and S. schwetzi yellow-related
proteins

Abbreviations: nb, non-measurable binding interaction, na, not applicable

Table 3 Oviposition and mortality rates of P argentipes and S. schwetzi females fed experimentally

Histamine Serotonin
P argentipes S. schwetzi P argentipes S. schwetzi
Exp Con Exp Con Exp Con Exp Con
Perctent ovipositing females® 90 (79/88) ~ 89(82/92) 92 (49/53) 96 (51/53) 96 (97/101)  96(100/104) 85 (40/47) 88 (38/43)
Median no. of eggs per female 32 (1-58) 31 (1-68) 62 (1-128) 84 (1-143) 32 (1-62) 43 (1-74) 58 (1-108) 70 (2-105)
(range) [IQRI° [23-40] [15-41] [47-87] [68-101] [26-41] [33-49] [36-70] [50-84]
Percent mortality 26(23/88)  18(17/92)  72(38/53) 62 (33/53) 36 (36/101) 27 (28/104) 49 (23/47) 49 (21/43)

@ Calculated from total sum of blood fed females
b The difference between 25th and 75th percentile

Abbreviations: Exp, experimental group; Con, control group; IQR, interquartile range
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glass vials to monitor oviposition and mortality. The
prevalence of ovipositing P. argentipes and S. schwetzi
females reached very similar numbers regardless
of whether sand flies were fed on blood mixed with
amines or blood mixed with physiological solution,
with percentages ranging between 85-96%. However,
the P. argentipes females fed on blood mixed with sero-
tonin showed a significant decrease in the number of
laid eggs compared to the control group (¢t = —4.46, df
= 195, P < 0.001). The median numbers of eggs laid by
the serotonin and control groups were 32 (range: 1-62)
and 43 (range: 1-74), respectively. In the other experi-
mental groups, the number of laid eggs was not signifi-
cantly affected by the presence of biogenic amines in
the blood meal.

No significant differences were detected in mortality
rates between the experimental and the control groups
(Table 3).

Feeding on repeatedly exposed hamsters: effects on sand
fly oviposition and mortality
In total, 312 and 318 P. argentipes females fed on immu-
nized or naive hamsters, respectively, were separated
into glass vials for monitoring of oviposition and mor-
tality. The prevalence of ovipositing females was 58%
(181/312) for sand flies fed on immunized hamsters and
60% (192/318) for those fed on naive hamsters (Table 4).
There was no significant difference between the num-
bers of eggs laid by females fed on immunized or naive
hamsters. The median number of eggs laid per sand fly
female was the same for both groups, 35, with a mini-
mum of 1 egg per female for both groups and maxima
of 72 and 74 eggs for the groups fed on immunized and
naive hamsters, respectively (Table 4). Immunized ham-
sters showed very high levels of IgG antibodies against
P argentipes salivary proteins: the mean ODs for immu-
nized and naive groups were 2.01 (95% CI: 1.78-2.25)
and 0.04 (95% CI: 0.02-0.05), respectively.

At the end of the experiment (on day 8 post-blood
meal) the mortality of sand fly females fed on immunized
and naive hamsters did not differ ()(2 =285 df=1,P

Table 4 Oviposition and mortality rates of R argentipes females
fed on host

Immunized hamsters ~ Naive hamsters

Percent ovipositing females® 58 (181/312) 60 (192/318)

Median no. of eggs per 35 (1-72) [16-48] 35 (1-74) [9-50]
female (range) [IQR]°

Percent mortality 63(197/312) 70(222/318)

2 Calculated from total sum of blood fed females
b The difference between 25th and 75th percentile
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= 0.09), with mortality rates of 63% (197/312) and 70%
(222/318), respectively (Table 4).

Discussion

Sand flies inoculate salivary molecules including yellow-
related proteins into their host’s skin in order to coun-
teract the host haemostatic system and bind biogenic
amines such as serotonin and histamine [6, 7]. Phleboto-
mus argentipes has only a single yellow-related protein,
PagSP04 [27], and here we demonstrated that it acts
as a poor binder of histamine but as a strong binder of
serotonin. Similarly, strong affinities for serotonin and
weak affinities for histamine have been shown for yellow
related proteins of P. pernicious, P. orientalis and L. lon-
gipalpis [6, 7]. Our findings support the hypothesis that
by binding serotonin, yellow-related proteins take part
in counteracting the mammalian haemostatic system,
especially platelet aggregation and vasoconstriction. On
the other hand, the role of histamine at the site of bite
is questionable, and it seems that in mosquito-induced
itching in mice, histamine did not play a primary role
[28]. In mosquitoes, D7 salivary proteins were shown to
bind histamine in addition to other amines [29], but this
has not yet been demonstrated for D7-related proteins
in sand flies [30]. In sand flies, the D7 proteins are func-
tionally and structurally similar to mosquito D7 proteins.
However, the C-terminal domain of sand fly D7 protein
is missing major elements of the putative ligand-binding
pocket and therefore is not able to bind small molecule
ligands [30].

The membrane feeding of P argentipes on blood
mixed with serotonin resulted in reduced fecundity
(26% fewer eggs than the control group), which sug-
gests that extremely elevated concentrations of serotonin
negatively affect P. argentipes oviposition. In repeatedly-
bitten hosts, however, serotonin concentrations are prob-
ably lower than our experimental concentration, and
we expect that sand flies are able to cope with these
lower concentrations. This corresponds with the results
of experimental feeding on hamsters immunized by
repeated sand fly bites: P. argentipes females did not show
any difference in mortality and numbers of laid eggs
when experimental and control groups were compared,
despite the high levels of anti-saliva antibodies in repeat-
edly-bitten hamsters.

So far, studies focused on the effects of anti-saliva
antibodies on various biological aspects of sand flies
have failed to yield consistent results. Ghosh et al. [11]
reported that feeding of P argentipes on immunized
hamsters led to a gradual decrease of feeding attrac-
tion, while mortality increased during subsequent bites.
Although hamsters were exposed to sand flies using a
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similar immunization scheme as in our experiment (to
about 90-150 females twice a week followed by a two-
week interval, for a total of six exposures), antibody
titres detected by those authors were not high. This was
explained by low concentrations of each protein frac-
tion in whole saliva, so antibodies developed against
these proteins could not have reached high levels [11].
However, in laboratory and in field conditions it was
already proved that animals repeatedly exposed to sand
flies revealed increased levels of anti-saliva IgGs when
compared to the control group [1]. In our experiments,
hamsters were exposed to about 100-290 P. argentipes
females six times at 7-15-day intervals, and antibody
titres were very high compared to the control group. In
L. longipalpis, Vilela et al. [12] reported that females fed
on animals immunized by repeated bites obtained lesser
amounts of haemoglobin, laid fewer eggs and had higher
mortality than females fed on naive animals [12]. On the
contrary, Tripet et al. [14] showed that egg production by
L. longipalpis is not affected by feeding on immunized
hosts, and studies on P. duboscqi and P. perniciosus also
did not observe any differences in oviposition or mor-
tality between experimental and control groups of sand
flies [13, 15]. Moreover, it is known that sand fly colonies
thrive even on laboratory hosts that have been repeatedly
exposed to sand flies [20]. Taken together, the effects of
anti-saliva antibodies on sand fly physiology are not clear.
A more promising approach to altering vector fecundity
and mortality might be the immunization of hosts with
body tissues, such as whole gut extracts or midgut chi-
tinase [31, 32].

We successfully expressed and purified two yellow-
related proteins in S. schwetzi, but the ligand binding
analysis did not show any affinity to serotonin or hista-
mine. As the feeding preferences of S. schwetzi are dis-
tinctly different than in P argentipes and other sand fly
species studied previously [6, 7], the different properties
of this reptile-biting species are not surprising. Adapta-
tions to feeding on either warm-blooded vertebrates or
cold-blooded vertebrates [19] may result in different
properties for salivary proteins, as demonstrated recently
for the relatively low enzymatic activities of apyrase
and hyaluronidase in S. schwetzi saliva [33]. Unlike in P
argentipes, the non-physiologically high concentration of
serotonin did not have any effect on S. schwetzi fitness.
The degradation of serotonin is connected with oxida-
tive stress [34], similarly to heme detoxification [35].
The midgut epithelium of blood-sucking insects is pro-
tected from these toxins by the peritrophic matrix (PM)
[35], which differs between S. schwetzi and P. argentipes
in morphology and duration: in S. schwetzi the PM is
thicker and has a prolonged persistence [36], and thus
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could block the unfavourable effects of serotonin on
oviposition.

Surprisingly little is known about the presence of bio-
genic amines in reptiles. So far, circulating serotonin has
been described in three reptilian species, two of them
with true or partial endothermy (the leatherback sea tur-
tle, Dermochelys coriacea, and the American alligator,
Alligator mississippiensis). These findings support the
hypothesis that circulating serotonin might have emerged
with endothermic vertebrates [37]. A study carried out
on the common snapping turtle (Chelydra serpentina),
showed that the release of histamine from basophils
takes 40—60 minutes, regardless of antigen concentra-
tions [38]. In contrast, the histamine release from human
basophiles is usually completed within several minutes
[39, 40]. Due to the fact that sand flies can finish a blood
meal within several minutes [14, 41], it is possible that
the neutralization of histamine in cold-blooded animals
is not necessary.

Conclusions

We confirmed the high affinity of salivary yellow-related
proteins to serotonin in P argentipes, a vector known
for its mammalian host preference. This interaction may
play a role in the neutralisation of serotonin at the site of
the bite and thus facilitate successful blood-feeding. The
production of high levels of specific antibodies in hosts
repeatedly exposed to P, argentipes did not lead to a dete-
rioration of sand fly fitness, suggesting a minor effect of
anti-saliva antibodies on sand fly feeding processes. No
affinity of the yellow-related proteins to biogenic amines
was demonstrated in the reptile biter S. schwetzi, and this
may reflect the adaptation to cold blooded vertebrates.
However, further studies are needed to unravel the role of
Sergentomyia yellow-related proteins.
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Abstract. The frequency of sandfly—host contacts can be measured by host antibody
levels against sandfly salivary proteins. Recombinant salivary proteins are suggested
to represent a valid replacement for salivary gland homogenate (SGH); however, it
is necessary to prove that such antigens are recognized by antibodies against various
populations of the same species. Phlebotomus perniciosus (Diptera: Psychodidae)
is the main vector of Leishmania infantum (Trypanosomatida: Trypanosomatidae)
in southwest Europe and is widespread from Portugal to Italy. In this study, sera
were sampled from naturally exposed dogs from distant regions, including Campania
(southern Italy), Umbria (central Italy) and the metropolitan Lisbon region (Portugal),
where P. perniciosus is the unique or principal vector species. Sera were screened
for anti-P. perniciosus antibodies using SGH and 43-kDa yellow-related recombinant
protein (rSPO3B). A robust correlation between antibodies recognizing SGH and rSP03B
was detected in all regions, suggesting substantial antigenic cross-reactivity among
different P. perniciosus populations. No significant differences in this relationship were
detected between regions. Moreover, rSPO3B and the native yellow-related protein were
shown to share similar antigenic epitopes, as canine immunoglobulin G (IgG) binding
to the native protein was inhibited by pre-incubation with the recombinant form. These
findings suggest that rSPO3B should be regarded as a universal marker of sandfly
exposure throughout the geographical distribution of P. perniciosus.
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of exposure, Mediterranean region, salivary proteins, sandflies.
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Leishmaniasis is a widely distributed disease caused by Leish-
mania protozoans and transmitted by phlebotomine sandfly
vectors. During blood feeding, sandflies inoculate saliva into
the host. Bitten hosts then develop a species-specific antibody
response against salivary antigens that reflects the intensity of
sandfly exposure and thus provides a useful marker of expo-
sure to generate epidemiological data (Vlkova etal., 2011;
Martin-Martin et al., 2014; Kostalova et al., 2015).

Large-scale serological studies using total sandfly salivary
gland homogenate (SGH) are currently impractical because it
is difficult to dissect the high numbers of sandflies necessary to
obtain sufficient amounts of SGH. Another potential complica-
tion refers to variability in the protein composition of sandfly
saliva, which has been found to fluctuate depending on physi-
ological factors such as sandfly age and diet (Volf ez al., 2000;
Prates eral., 2008). Studies in Old World sandfly species also
revealed a certain degree of intra- and inter-population vari-
ability in protein and mRNA levels (Rohousova etal., 2012;
Ramalho-Ortigdo etal., 2015). Therefore, salivary recombi-
nant proteins have been suggested to represent valid replace-
ments for the whole salivary gland protein cocktail, and some
have already been validated in the field (Drahota et al., 2014;
Martin-Martin et al., 2014; Kostalova et al., 2015). The use of
specific recombinant salivary antigen circumvents the neces-
sity for the laborious maintenance of sandfly colonies, and
potentially provides a more refined way to minimize antigenic
cross-reactivity with taxonomically close sandfly relatives. A
useful recombinant salivary protein would demonstrate anti-
genicity comparable with that of SGH, share similar antigenic
epitopes with the native proteins, and demonstrate similar anti-
genic patterns throughout the geographical distribution of a par-
ticular sandfly vector.

This study follows the canine longitudinal study conducted
in southern Italy by Kostalova eral. (2015), which described
the dynamics and diagnostic potential of antibodies recogniz-
ing Phlebotomus perniciosus (Larroussius subgenus) salivary
recombinant proteins in dogs following natural exposure to
sandflies over 2 years. Factors such as salivary antigens, age
and expected sandfly dynamics were considered as variables
and were therefore carefully evaluated. The most reactive and
reproducible antigen was found to be the 43-kDa yellow-related
recombinant protein (rSPO3B) from P. perniciosus saliva. In
view of these promising results, the rSPO3B antigen was tested in
canine sera samples collected cross-sectionally in canine leish-
maniasis (CanL) endemic settings in Italy and Portugal. The
study evaluated levels of individual canine antigenic responses
to P. perniciosus 1SPO3B compared with P. perniciosus SGH,
and the degree of similarity in these antigenic associations,
across endemic canine populations in Portuguese and Italian foci
in order to assess the universal use of rSPO3B as a marker of
natural sandfly exposure. Previous research had confirmed the
presence of two native yellow-related proteins in P. perniciosus
salivary gland transcriptome and proteome (Anderson efal.,
2006). Therefore, the antigenic similarity of rSPO3B to its
native form was studied and the specificity of the anti-rSPO3B
immunoglobulin G (IgG) antibody response was confirmed by
the inclusion of 42-kDa yellow-related recombinant protein
(rSP03).
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Canine sera originated from three regions: (a) Campania
(n=118), a traditional high-risk area for CanL in southern con-
tinental Italy (Oliva et al., 2006); (b) Umbria (n =96), an inland
area of central Italy recently recorded as a medium- to high-risk
area for CanL (Di Muccio etal., 2012), and (c) the metropoli-
tan Lisbon region (n=341), which is well known as a CanL
endemic locality on the west coast of Portugal (Cortes etal.,
2012). In all three areas, P. perniciosus is the only or princi-
pal vector of CanL (Bongiorno etal., 2003; Rossi eral., 2007;
Alten etal., 2016). Phlebotomus perfiliewi (Larroussius sub-
genus), another vector of Leishmania infantum, was found to
be abundant in some areas in Umbria (Maresca et al., 2009).
However, P, perfiliewi is found in association with large ani-
mals (cattle and equine species) in rural habitats (Bongiorno
etal., 2003). Dogs examined in Umbria included urban pets
and animals hosted in kennels, but all lived in populated areas
including residential zones surrounding urban centres, which
represent typical habitats for P. perniciosus (Maroli et al., 1994).
Additionally, sampled dogs may have been exposed to sand-
flies from other subgenera occurring in study localities (Cortes
etal., 2007; Rossi etal., 2007; Maresca et al., 2009). A previ-
ous study by Volf & Rohousova (2001) suggested there was
no cross-reaction of Larroussius species with other sandflies
present in these study regions, namely Phlebotomus papatasi
(Phlebotomus subgenus), Phlebotomus sergenti (Paraphleboto-
mus subgenus) and members of the genus Sergentomyia.

Single sera samples from Campania and Umbria were pur-
posely selected from archived samples collected in 2007-2013
to represent the period from July (i.e. at least 2 months after
the beginning of the sandfly season) to October (i.e. the end of
the sandfly season). The selected sera were collected from dogs
ranging in age from 1.5 to 13 years. The dogs from both Italian
regions represented a mixture of hunting breeds and mongrels.
Single sera samples from the metropolitan Lisbon region were
randomly collected from kennelled dogs (mostly mongrel) at the
beginning of the sandfly season in May 2012. These dogs ranged
from young (6—12 months) to more senior (> 7 years) dogs.

Samples from Campania consisted of stored sera sent by
veterinary clinics to the Istituto Superiore di Sanita for routine
serological diagnosis of suspected CanL in owned dogs. Sera
from Umbria were collected from healthy dogs that were
enrolled on a voluntary basis in the Perugia University CanL
surveillance programme. Blood sampling was performed in
accordance with the Italian guidelines for animal welfare,
following owners’ consent, and did not include additional or
unnecessary invasive procedures. The collection of sera in
the metropolitan Lisbon region was ethically approved by the
board of the Institute of Hygiene and Tropical Medicine, New
University of Lisbon IHMTUNL) (authorization no. 8 2011-PI)
in compliance with Portuguese legislation for the protection of
animals (Law 113/2013).

Anti-Leishmania 1gG in canine sera from Campania and
Umbria was detected with an in-house indirect fluorescent anti-
body test (IFAT) using L. infantum promastigotes as antigen,
as described in Gradoni & Gramiccia (2008). Samples show-
ing an IFAT titre of 1:40 or greater were considered to indicate
exposure to Leishmania. Immunoglobulin G antibodies against
Leishmania in canine sera from the metropolitan Lisbon region
were detected using an enzyme-linked immunosorbent assay
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(ELISA) kit (Bordier Affinity Products SA, Crissier, Switzer-
land) according to the manufacturer’s guidelines (Maia et al.,
2010). The result was considered positive when the absorbance
of the analysed sample was higher than the absorbance of the
weak positive control serum provided with the kit.

A longterm established laboratory colony of P.perniciosus
originating from Spain (Murcia) was reared under standard
conditions as described in Volf & Volfova (2011). Salivary
glands, rSPO3B (GenBank accession no. DQ 150622) and rSP03
(GenBank accession no. DQ 150621) from P. perniciosus were
obtained for this study as previously described (Kostalova et al.,
2015) and used as antigens for testing the canine sera.

Antibodies against P. perniciosus SGH and rSPO3B protein
were measured by ELISA as described by Kostalova eral.
(2015). Each serum was tested in duplicate. Test absorbance
values were reported as optical densities (ODs) with subtracted
blanks (the ELISA plate background mean absorbance value
measured in control wells).

Western blot analysis was used to confirm the similarity of
antigenic epitopes between the native yellow-related protein
found in P. perniciosus SGH and the corresponding recombi-
nant protein rSPO3B. Sodium dodecyl sulphate polyacrylamide
gel electrophoresis (SDS-PAGE) of SGH (equivalent to 4 pg
total salivary proteins per lane) and rSPO3B (2 pg per lane)
was run on a 12% gel and blotted onto the nitrocellulose mem-
brane using the iBLOT instrument (Invitrogen Corp., Carlsbad,
CA, U.S.A.). Membrane with separated proteins was cut into
strips and blocked in 5% milk diluted in Tris-buffered saline
with 0.05% Tween 20 (Tris-Tw) overnight at 4 °C. For the inhi-
bition test, three Italian canine sera possessing high levels of
anti-P. perniciosus 1gG against SGH and rSPO3B were pooled.
The positive serum pool was diluted 1:50 in Tris-Tw and split
into halves. The first half was incubated for 2 h on a shaker with
rSP0O3B (20 pg/mL) and the second half was incubated without
rSPO3B. Negative control sera (canine sera from a non-endemic
locality) were diluted 1:50 in Tris-Tw and incubated without
rSP0O3B on a shaker for 2 h. In the next step, part of the positive
sera pool, incubated either with or without rSPO3B protein, and
part of the negative control sera was incubated with strips of sep-
arated P. perniciosus SGH. The same procedure was repeated for
strips containing rSPO3B, except that sera were diluted 1 : 100 in
Tris-Tw. After 1h, all strips were rinsed in Tris-Tw and subse-
quently incubated for 1h with peroxidase-conjugated anti-dog
IgG (1:3000) (Bethyl Laboratories, Inc., Montgomery, TX,
U.S.A.). The colour reaction was developed by substrate solu-
tion containing 3,3’-diaminobenzidine (Sigma-Aldrich Corp.,
St Louis, MO, U.S.A.). Furthermore, in order to confirm the
specificity of the western blot analysis, the same procedure was
repeated for rSP0O3 protein.

Statistical analyses were carried out using R software (http://
cran.r-project.org/) and sSTATA Version 13.1 (Stata Corp., Col-
lege Station, TX, U.S.A.). Correlations were analysed using
the Spearman rank correlation test and medians were compared
between groups using a Wilcoxon rank sum test. Optical density
values were logarithmized (natural logarithm) for better read-
ability. Statistical analyses of the relationships between SGH
and rSPO3B OD values among the canine populations were
statistically tested by fitting Poisson general linearized models
(GLMs) with an In link function as the right-skewed frequency

distributions were found not to follow a negative binomial dis-
tribution (deviance goodness-of-fit y?>>56.2; P=1, d.f. =549,
for each antibody). The full Poisson GLMs included interaction
terms to test differences between the regions, both in terms of
baseline anti-rSPO3B value (intercept where anti-SGH equals
0) and the relationship between antibodies against SGH and
rSPO3B (slopes). A P-value of < 0.05 was considered to indicate
statistical significance.

The use of P. perniciosus rfSPO3B as an epidemiological tool
was tested for investigations of canine exposure to sandfly bites
in geographically distinct localities in which P. perniciosus is
the prevalent phlebotomine vector. The recombinant protein
rSPO3B used in this study was obtained from the salivary glands
of P. perniciosus in a laboratory-reared colony originating from
Murcia in Spain, and was used as an antigen in the serology of
dogs living in the Campania and Umbria regions of Italy and in
the metropolitan Lisbon region in Portugal.

Levels of canine IgG antibodies reacting with SGH and
rSP03B were measured by ELISA. Positive but variable corre-
lations between antibody responses to SGH and rSPO3B anti-
gens were observed in sera from all three localities [Campania:
r=0.73, 95% confidence interval (CI) 0.62-0.82 (P <0.001);
Umbria: r=0.56, 95% CI 0.38-0.71 (P <0.001); metropoli-
tan Lisbon: r=0.81, 95% CI 0.76-0.84 (P <0.001)] (Fig. 1).
Table 1 summarizes the OD values for each region and indi-
cates that OD frequency distributions were over-dispersed. To
query possible differences in the relationships between SGH
and rSPO3B antibody responses between geographical regions,
the equality of the population-specific regression slopes was
tested by fitting a Poisson model. No significant differences were
detected (population X antigen interaction terms: Z > —0.85,
P>0.365). Relative to the metropolitan Lisbon region, both the
Campania and Umbria populations tended to produce higher
baseline antibody responses against rSPO3B, although these dif-
ferences failed to reach significance at the 5% level (Campania:
Z=1.66, P=0.097; Umbria: Z=1.95, P=0.051). One plausi-
ble explanation for the putative differences in baseline rSPO3B
antibody levels among populations is that the populations dif-
fer in their condition or past history of infections and that these
differences affect general immunological responses to certain
antigens, and/or that sandfly biting pressure differs across these
populations. The seasonal exposure of dogs to sandflies has
been found to lead to antibody response fluctuations related to
the period of activity and abundance of vectors (Vlkova et al.,
2011; Kostalova etal., 2015). Secondly, as age is a frequent
covariate of cumulative exposure used to model cross-sectional
age-related prevalence data of Leishmania infection (Courtenay
etal., 1994), the average older dog is expected to have experi-
enced more sandfly seasons (Kostalova et al., 2015). Dogs from
Campania and Umbria were sampled from July (i.e. during the
period of highest sandfly abundance in Italy). All of the animals
tested from these two regions had experienced at least two con-
secutive transmission seasons. Sera from dogs in the metropoli-
tan Lisbon region were sampled in May, which is the beginning
of the sandfly season, and were sourced mainly from dogs aged
> 1 year. Thus these dogs had experienced at least one transmis-
sion season. According to reactivity data shown by Kostalova
etal. (2015), dogs will be reactive to saliva at the beginning of
the transmission season if they have already been ‘primed’ in the
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Fig. 1. Correlations between antibodies recognizing salivary gland homogenate (SGH) and rSPO3B in dogs naturally bitten by Phlebotomus
perniciosus in (A) Campania, (B) Umbria and (C) the metropolitan Lisbon region. Correlations were ascertained using Spearman rank correlation.

r, correlation index; 95% CI, 95% confidence interval.

Table 1. Summary of optical density (OD) values recorded by
enzyme-linked immunosorbent assay (ELISA) using Phlebotomus per-
niciosus salivary antigens.

OD values

Antigen Region Dogs,n Median (IQR) Min—max

SGH Campaniax 118
Umbriat 96
Lisboni 341
rSPO3B  Campaniax 118
Umbriaf 96
Lisbon 341

0.131 (0.073-0.241) 0.011-1.899
0.218 (0.133-0.409)  0.005-1.652
0.221 (0.165-0.311)  0.081-1.390
0.407 (0.311-0.516)  0.091-1.761
0.495 (0.386-0.649)  0.026-1.925
0.323 (0.234-0.436)  0.092-1.766

*Southern Italy.

FCentral Italy.

FMetropolitan Lisbon region (Portugal).

IQR, interquartile range; SGH, salivary gland homogenate.

previous season. These results indicate substantial salivary anti-
gen cross-reactivity amongst P. perniciosus populations from
Campania, Umbria and the metropolitan Lisbon region. Strong
antigenic cross-reactivity between populations of the same sand-
fly species was similarly observed between two geographically
distant colonies of Phlebotomus orientalis (Larroussius sub-
genus) in Ethiopia (Vlkova et al., 2014), and among colonies of
P. sergenti originating from Israel and Turkey (Rohousova et al.,
2012).

The similarity of antigenic epitopes between native
yellow-related proteins in Spanish P perniciosus SGH and
rSPO3B was demonstrated by an inhibition test (Fig.2). For
this analysis, sera of dogs from Campania and Umbria with
high levels of specific antibodies were selected and pooled. The
inhibition test showed that all IgG antibodies specific for the
native yellow-related protein bind to the recombinant form dur-
ing pre-incubation of the sera, which resulted in the complete
disappearance of the corresponding band on western blotting

(Fig.2). This demonstrated that rSPO3B shares antigenic epi-
topes with the native yellow-related protein contained within
P. perniciosus saliva and presumably identifies the proportion of
bitten dogs in a manner similar to the use of SGH. By contrast,
when the inhibition test was performed with rSPO3 protein,
intended to confirm the specificity of the western blot analysis,
no band appeared and no inhibition was observed (Fig.?2).
Therefore, rSPO3 is considered to be a non-immunogenic
antigen. These results show that the band observed in western
blotting with SGH as antigen corresponds to the native 43-kDa
yellow-related protein and that the anti-SPO3B IgG antibodies
are highly specific for the tested rSPO3B protein.

Italy and Portugal are generally assumed to show endemic
CanL transmission (Oliva eral., 2006; Cortes etal., 2012; Di
Muccio etal., 2012). In this study, CanL seropositivity ranged
from 5% to 30%, with the lowest prevalence in Umbria and the
highest in Campania (Table 2). The use of antibodies against
sandfly salivary proteins as risk markers of L. infantum infection
has been tested earlier for SGH (Vlkova et al., 2011), as well as
for salivary recombinant proteins, among which rSPO3B proved
to be a powerful marker of host exposure to sandflies (Kostalova
etal., 2015). Therefore, the present study analysed the rela-
tionship between anti-P. perniciosus antibodies and Leishmania
serological status. When using rSPO3B antigen, significantly
higher levels of specific IgG in Leishmania-seropositive dogs
[median =0.346, interquartile range (IQR) 0.257-0.536]
than in Leishmania-seronegative dogs (median=0.320, IQR
0.229-0.422) were found only in the metropolitan Lisbon region
(Wilcoxon rank sum test, W =5391.5, P =0.025). In Campania,
the differences in antibodies against rSPO3B between Leish-
mania-seropositive (median=0.457, IQR 0.357-0.550) and
Leishmania-seronegative (median=0.379, IQR 0.303-0.499)
dogs were marginally significant (Wilcoxon rank sum test,
W=1123.5, P=0.053). Previous studies on the relationship
between anti-P. perniciosus antibodies and seropositivity to
L. infantum show variable correlations. In Kostalova eral.
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Fig. 2. Western blot analysis of salivary gland homogenate (SGH), rSP03B and rSP03 and inhibition test. A mixture of canine sera positive to
Phlebotomus perniciosus SGH was pre-incubated with rSPO3B or rSP03 and then tested in western blotting against SGH. Arrows indicate the points
at which inhibition should take place. The star indicates the position of rSP03. STD, standard; AB, strip stained by Amido black; (+), positive control
strip; i3, inhibition strip for rSPO3B; i4,, inhibition strip for rSP03; (—), negative control strip.

Table 2. Frequencies of Leishmania seropositivity and seronegativity in dogs from different regions.

Anti-L. infantum 1gG positive/total animals sampled, n (%)

Diagnostic method Cut-off Serological statuss Campania Umbria Lisbon

IFAT 1:40 Positive 35/118 (30%) 5/96 (5%) —
Negative 83/118 (70%) 91/96 (95%) —

ELISA 0.26 Positive — — 46/341 (13%)
Negative — — 295/341 (87%)

#As determined by the IFAT titre or ELISA cut-off.

IgG, immunoglobulin G; IFAT, indirect fluorescent antibody test; ELISA, enzyme-linked immunosorbent assay.

(2015), a positive association was observed between levels of
canine IgG antibodies against sandfly saliva and active CanL
infection in dogs sampled longitudinally over 2 years. By con-
trast, the study by Vlkova eral. (2011) described a negative
correlation between levels of specific IgG2 and risk for Leish-
mania infection. Comparisons between studies are difficult
following observations that anti-saliva antibodies wax and wane
with sandfly exposure and seasonality (Kostalova et al., 2015).
In actively infected dogs, anti-Leishmania antibodies tend to
persist after an initial increase, whereas in exposed resistant
animals they tend to fluctuate or convert to negative (Oliva
etal., 2006). As studies tend to be cross-sectional and use
different approaches to determine Leishmania infection status,
cross-study comparisons are difficult. Although longitudinal
studies have already demonstrated the potential usefulness of
the sandfly saliva antigenic response in dogs as a marker for
Leishmania infection (Kostalova etal., 2015; R. J. Qinnell,
personal communication, 2016), the possibility of using sandfly
salivary recombinant proteins in a similar way in cross-sectional
surveys still needs to be validated.

In conclusion, this study showed that P. perniciosus rSP0O3B,
the 43-kDa yellow-related recombinant protein, possesses the
same antigenic epitopes as its native form in salivary glands,
and binds similarly in canine sera from foci in Italy and
Portugal. Therefore, it could serve as a universal marker of

sandfly exposure across the entire geographical distribution of
P. perniciosus, even in dogs of various breeds and ages.
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SUMMARY AND CONCLUSION

The main aim of this thesis involved the characterization of the sialome of S. schwetzi
and comparison with the sialomes of other Phlebotomus and Lutzomyia sand fly species.
This was then followed by the investigation of the binding affinities of a major protein
family (YRP) present in all sand fly species. The binding affinity of these YRP to biogenic
amines was tested for both S. schwetzi and two other palearctic and medically-important
sand fly species — P. orientalis and P. perniciosus. Finally, we studied also the
immunogenic properties of the YRP of P. perniciosus, highlighting its use as a universal
exposure marker in various endemic sites across the Mediterranean basin. The results of
these objectives are summarized below.

Sergentomyia salivary components have been neglected for a long time. There is only a
single recent study on the enzymatic activities in S. schwetzi saliva (Volfova and Volf,
2018). Therefore, we performed a large transcriptomic, proteomic and enzymatic analysis
of S. schwetzi saliva to address the differences with other Phlebotomus and Lutzomyia sand
flies; the results are summarised in Polanska et al., (2020) published in PLoS One.

The analysis of S. schwetzi transcriptome revealed proteins that belong to all main sand
fly salivary protein families. Some proteins were found in multiple homologues compared
to previously published sialomes (Coutinho-Abreu and Valenzuela, 2018; Polanska et al.,
2020), possibly caused by sensitivity of the next generation sequencing (NGS) method
used in our study (the Illumina platform). This NGS allows for a deeper sequencing and
will therefore also include low copy transcripts and consequently render more and higher
quality transcripts [reviewed in (Zhou et al., 2010)]. On the other hand, the higher number
of homologues of salivary proteins can also naturally occur by gene conversion and
multiplication, like it was observed for e.g. YRPs, D7-related proteins and Ag5r
(Coutinho-Abreu and Valenzuela, 2018). Most of the salivary proteins from S. schwetzi
had more divergent amino acid sequences (23 — 50 % sequence identity) compared to
Phlebotomus and Lutzomyia proteins (Polanska et al., 2020), with the Ag5r proteins and
certain enzymes having the highest sequence identity (52 — 69 %).

Phylogenetic analyses showed that most of the S. schwetzi proteins (i.e. YRPs, Ag5r,
lufaxin, apyrase) create separate basal groups to other Phlebotomus and Lutzomyia proteins
(Polanska et al., 2020), which is in accordance with the established sand fly phylogeny
(Aransay et al., 2000). Apart from the OBPs and hyaluronidase, all S. schwetzi proteins
inclined to paraphyly, most probably caused by gene conversion (Polanska et al., 2020).
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In the S. schwetzi sialome we detected some homologues from protein families known
previously as specific for Phlebotomus (pyrophosphatase, phospholipase A2, ParSP25-like
protein, SP16-like protein) or Lutzomyia species (71 kDa salivary protein, protein with
C-type lectin domain, 5’-nucleotidase) [reviewed in (Coutinho-Abreu and Valenzuela,
2018)]. The 71 kDa salivary protein found in saliva of S. schwetzi is highly identical to
those present in the sialomes of L. longipalpis, L. olmeca and L. ayacuchensis (going from
76.1 % up to 85.1 %) (Polanska et al., 2020). These 71 kDa salivary proteins are similar to
the angiotensin converting enzyme (ACE) (Polanska et al., 2020; Valenzuela et al., 2004),
responsible for hydrolysis of inflammatory or haemostatic peptides (angiotensin,
bradykinin) [reviewed in (Gaddam et al., 2014)]. Besides these, also a partial transcript of
secreted ribonuclease was found in S. schwetzi saliva, an enzyme previously found only in
mosquito saliva (Calvo et al., 2010; Ribeiro et al., 2007).

In addition, we also studied differences between two lineages of this sand fly species.
Both lineages of S. schwetzi had the same origin, but for more than thirty generations were
adapted to different hosts for blood feeding. The first lineage fed on mice (a warm-blooded
animal), and the second lineage fed on geckos (a cold-blooded animal), the latter being a
more natural host for Sergentomyia sand flies. The distinctions were examined by various
approaches: enzymatic assays were used to measure the activities of salivary apyrase and
hyaluronidase, the RNA—seq method to measure mRNA expression levels and mass
spectrometry to compare the proteome.

A significantly higher hyaluronidase activity (30 % difference) was observed in the
S. schwetzi lineage that was adapted to mice. However, this difference was not detected in
the mRNA expression levels nor did this reflect in the protein abundance in the proteome.
Interestingly, one hyaluronidase identified only as a partial transcript was significantly
more abundant in the proteome of the gecko lineage. However, this hyaluronidase
homologue might not possess the enzymatic activity (Polanska et al., 2020). We suggested
that the higher hyaluronidase activity observed in the mice lineage could be caused by its
adaptation to mammalian skin, which is thicker than a reptile’s one. The mouthparts of
sand flies that feed on reptiles are shorter than those of mammal feeders (Lewis, 1987). A
thicker mammalian skin might require more active hyaluronidase to increase the
permeability of the skin and facilitate sand fly feeding. Degrading the ECM in the
mammalian host by hyaluronidase may therefore decrease the tissue barrier for feeding.

The PpSP15-like transcript was only detected at partial transcript length, but was

significantly up-regulated in the S. schwetzi lineage that was adapted to mice. However, its
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expression was low in saliva of both lineages, so its biological function in the S. schwetzi
mice lineage saliva was dubious. All the other significantly up-regulated transcripts were
also only at partial length and had low annotation support, which made it impossible to
predict their function (Polanska et al., 2020).

Mass spectrometry of both S. schwetzi lineages, identified a significant enrichment of
the D7-related protein, hyaluronidase, a protein with C-type lectin domain and three YRPs
in the lineage adapted to feed on geckos. A subsequent comparison of this protein
enrichment using SDS-PAGE showed that only one protein band (between 40 and 42 kDa)
was more apparent on the electrophoretogram of the gecko lineage. We cannot exclude the
possibility that this band comprises more salivary proteins, however, most likely it
corresponds YRPs, since YRPs are abundant proteins and three of them were enriched in
the proteomic analysis of the gecko lineage (Polanska et al., 2020).

Sand fly YRPs are one of the most abundant proteins in sand fly saliva and are known
to bind biogenic amines in the vertebrate host (Xu et al., 2011). Eleven amino acids in their
sequence are responsible for this binding, of which three create the direct hydrogen bonds
with the amines (Xu et al, 2011). Among these amino acids the various substitutions
occurred in sand flies YRPs (Sima et al, 2016a). These together with variable
hydrophobicity and the charge of the residues surrounding the entrance of the binding
cavity could contribute to the different binding abilities of each YRP (Sima et al., 2016a).

In our study by Sumova et al., (2019), published in Insect Biochemistry and
Molecular Biology, we confirmed these predicted differences in bioamine-binding ability
of YRPs of P. perniciosus and P. orientalis. Five recombinant YRPs (two from
P. perniciosus, two from P. orientalis and LIM11 from L. longipalpis) were prepared in
human embryonic kidney cells and used for bioamine-binding assays measured by micro
scale thermoforesis (MST). This novel method enables to detect the dissociation constants
(Kd) of the YRP-bioamine bond. Our MST results were comparable with those obtained by
isothermal titration calorimetry (ITC), previously used by Xu ef al. (2011) to measure
bioamine-binding abilities of L. longipalpis LIM11.

According to their Kd the YRPs were divided into four groups: i) high affinity binders
(Kd = 1.1 — 10 nM), ii) medium affinity binders (Kd = 10 — 1,000 nM), iii) low affinity
binders (Kd = 1,000 — 10,000 nM) and iv) poor affinity binders (Kd < 10,000 nM).
Recombinant proteins from both P. perniciosus (PpeSP03B) and P. orientalis (PorASP4)
bound serotonin with a high affinity and histamine with a low affinity. Furthermore,

PorASP4 bound dopamine with a high affinity and catecholamines with medium affinity.
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The second recombinant protein form P. orientalis, PorASP2, bound one of the
catecholamines — octopamine — with high affinity, serotonin and dopamine with medium
affinity, and histamine with poor affinity. For the other catecholamines (norepinephrine
and epinephrine) no measurable binding was shown. The YRP PpeSPO03 of P. perniciosus
showed medium and low affinity binding to norepinephrine and octopamine, respectively,
and poorly bound the other bioamines. We proposed that the amount of PpeSP0O3B and
PorASP4 present in sand fly saliva, together with their high ability of binding to serotonin,
is physiologically relevant to neutralize the natural serotonin function and might lead to an
inhibition of vasoconstriction and platelet aggregation in the sand fly bite site and hence
facilitate sand fly feeding (Sumova et al., 2019).

A third study (Spitzova et al. 2020, published in Parasites & Vectors) used the MST to
measure the binding affinity of YRPs of S. schwetzi and P. argentipes to serotonin and
histamine. We expressed two recombinant YRPs from S. schwetzi (SschwYRP1 and
SschwYRP2) and one from P. argentipes (PagSP04) in human embryonic kidney cell
lines. P. argentipes YRP bound serotonin with a high affinity and histamine with a low
affinity. Interestingly, both S. schwetzi YRPs did not bind any of these bioamines (Spitzova
et al., 2020). The inability to bind bioamines can be caused by amino acid changes in the
binding cavity, as previously mentioned. The sequence analysis of S. schwetzi YRPs
supported this hypothesis. Moreover, the S. schwetzi YRPs sequences also differ in length
compared to YRPs of other sand fly species, which might affect their tertiary structure
(Polanska et al., 2020).

Besides the physiological function (binding of hosts’ bioamines) the sand fly YRPs
were shown to induce humoral immune response in the sand fly hosts. The antibodies
against sand fly saliva (or single salivary protein) produced by repeatedly bitten host were
shown to be sand fly species-specific and they reflect host’s exposure to sand fly bites.
Therefore, some of the salivary proteins can be used as sand fly exposure markers
[reviewed in (Lestinova et al., 2017)].

The recombinant YRP (PpeSP03B) of P. perniciosus has previously been shown to be a
good marker of exposure for dogs (Kostalova et al., 2015). In our study by Kostalova et
al., (2017) published in Medical and Veterinary Entomology, we further investigated the
potential of the PpeSP03B to be used as a marker of exposure across multiple foci of
canine leishmaniasis in the Mediterranean basin. The protein sequence used for production
of recombinant PpeSP03B was derived from mRNA isolated from saliva of P. perniciosus

(laboratory colony originated in Spain). The blood sera were collected from dogs coming
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from two different localities in Italy (Campania and Umbria) and one in Portugal (Lisbon).
A positive correlation was observed in all studied localities between the canine antibody
response against the P. perniciosus SGH and the recombinant PpeSP03B. Moreover, by
performing an inhibition immunoblot we were able to show that the antigenic epitopes are
highly similar for both the natural and recombinant PpeSP03B (Kostalova et al., 2017).
Based on the results published in this study, the PpeSP03B was proposed as a universal
exposure marker for dogs to P. perniciosus, which subsequently led to its usage in multiple
follow-up studies (Burnham et al., 2020; Maia et al., 2020; Velez et al., 2018; Willen et al.,
2018, 2019).

To conclude, we characterised salivary proteins from S. schwetzi by various methods.
The transcriptomic study revealed a presence of proteins belonging to the main sand fly
salivary protein families, but their sequences showed a higher divergence compared to
those from Phlebotomus and Lutzomyia. We identified a novel sand fly salivary enzyme —
a secreted ribonuclease — which had not been described in sialomes of sand flies up to date.
By comparing the enzymatic activities, mRNA expression and protein abundances from
saliva of two S. schwetzi lineages adapted to feeding either on mice or gecko, we have tried
to reveal the adaptation to hosts with different haemostasis and immunity. A higher
hyaluronidase activity was detected in the lineage adapted to feeding on mice. As the exact
functions of some salivary proteins remains elusive and more information about reptile
haemostasis and immunity is lacking, it is challenging to explain the differences in mRNA
expression levels and protein abundances. Interestingly, we showed that S. schwetzi YRPs
do not bind serotonin nor histamine. Contrarily, a high binding affinity for serotonin was
shown for the YRPs from P. perniciosus and P. orientalis, possibly affecting the
physiological condition of the host which facilitates sand fly blood feeding. Finally, we
proved that the recombinant YRP of P. perniciosus, PpeSP03B, can be used as a universal
canine marker of exposure to P. perniciosus bites in the western part of Mediterranean

arca.
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