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systémy.
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Introduction
In the past decade, the topic of coherence and its role in fast electronic energy
transfer in photosynthetic systems has been a centerpiece of the field of photosyn-
thetic study. There have been many papers quantifying coherence and demon-
strating its role in efficient energy transfer [4],[1], [11]. Coherence, however, is a
consequence of both inter-site coupling and the excitation by an external field.
In a strictly mathematical sense, these two coherences are equivalent and both
their contributions intertwine as the system evolves in time.

This thesis aims at distinguishing these two types of coherences using newly
developed numerical methods to analyze the system evolution. In Chapter 1, the
theoretical model of energy transfer in photosynthetic antennae is outlined with a
simple form of interaction with a thermodynamic bath environment. The evolu-
tion and relaxation of a dimer is calculated. In Chapter 2, the concept of the two
types of coherences is discussed in depth and possible ways of their quantification
are proposed. In Chapter 3, the application of the proposed numerical quantifi-
cation methods of separating these two contributions to coherence is illustrated
by analyzing simple dimer and trimer systems.

As the role of coherence in fast energy transfer is still under discussion, it is
important to distinguish different sources of coherence in order to correct inter-
pret both experimental data and data from numerical simulations. The numerical
methods developed in this thesis could potentially be used precisely in that mat-
ter.
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1. Theoretical model
In this chapter the structure and assumptions of the studied model will be out-
lined. The aggregate Hamiltonian and a simple form of system-bath interaction
will be derived.

1.1 Aggregate Hamiltonian
Photosynthetic antennae consist of several chlorophyll molecules, which can be
modeled with sufficient accuracy as two-level systems for small levels of site ex-
citation. The single excitation restriction is commonly employed in the field of
photosynthesis study, as higher orders of excitation are only reached with levels
of excitation larger than present during excitation by natural sunlight, and are
also not easily accessible by standard spectroscopic measurements.

Firstly, we construct the Hamiltonian of the system alone, taking into account
energies of excited states and coupling between sites. In the localized site basis,
where |i⟩Ni=1 denotes the ith site excited with all others in the ground state, the
Hamiltonian has a simple form

HS =
N∑︂
i=1

εi|i⟩⟨i| +
N∑︂
i=1

N∑︂
j>i

Jij(|i⟩⟨j| + |j⟩⟨i|), (1.1)

where εi are the site energies and Jij is the inter-site coupling, which can be
approximated by dipole-dipole interaction, if the distances between sites rij are
large enough

Jij = 1
4πϵ0r3

ij

[︄
µi · µj − 3(µi · rij) (rij · µj)

r2
ij

]︄
. (1.2)

Since the wavelength of incoming light is much larger than the scale of the
system, the light-matter interaction can be treated semiclassically in the dipole
approximation, with the interaction Hamiltonian for each site being

Hel = −µ · E, (1.3)

where µ is the dipole moment operator of the site, and E is the electric field of
incoming light. In the case of laser induced excitation, the field will be monochro-
matic, E = eE(t) cos(Ωt), with frequency Ω, wave envelope E(t) and polarization
e.

The frequency of the incoming light Ω is of similar magnitude as the charac-
teristic frequencies of the system εi/ℏ - there arise rapidly oscillating terms with
frequencies equal to the sum of the two frequencies. The contribution of these
terms when integrated is small, so they are commonly omitted. This approxima-
tion is called the rotating wave approximation.

Since the aggregate is in a protein bath environment, it is also necessary to
work with the degrees of freedom of the bath, as they affect the dynamics of the
system. We are, however, only interested in the dynamics and time evolution of
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the system, not of the bath. It is therefore convenient to work with the so-called
reduced density matrix for the system

ρ(t) = TrB{W}, (1.4)
where the trace of the total density matrix W is done over the bath. The density
matrix formalism is also useful for describing mixed states, as opposed to solely
pure state dynamics, and will be used throughout this thesis.

1.2 The Lindblad master equation
In general, when dealing with an open quantum system, the dynamics are de-
termined not by the Schrödinger (Liouville-von Neumann) equation, but rather
by a quantum master equation, which takes into account dissipative effects. Its
general form is [10]

∂

∂t
ρ(t) = − i

ℏ
[H, ρ(t)] − R(t)ρ(t), (1.5)

where R is the relaxation tensor, which is a 4th rank tensor that describes effects
such as dephasing or population relaxation.

A useful and accurate approach is the Markov approximation, where the bath
has a ”short memory”, meaning that its correlation time is short. The most
general Markov master equation is the Lindblad master equation. With the
Markov approximation, we can write the time depenent state using a propagator:

ρ(t) = V(t)ρ(t0). (1.6)
The propagator V has to fulfill the semigroup property

V(t2)V(t1) = V(t2 + t1). (1.7)
The solution to this condition is an exponential form

V(t) = exp(Lt). (1.8)
It has been shown, that the superoperator L has to be in the Lindblad form [5]

∂

∂t
ρ(t) = L(ρ) = − i

ℏ
[H, ρ] +

∑︂
k

γk

[︃
LkρL

†
k − 1

2
{︂
L†
kLk, ρ

}︂]︃
, (1.9)

where H represents unitary dynamics of the system and Lk are arbitrary oper-
ators, with γk > 0 ∀k being transfer rates of different channels described by the
Lk operators. These are commonly called Lindblad jump operators. For a formal
derivation of the Lindblad superoperator, see Appendix A.

It is important to note that γk represents the rate of relaxation, whereas Lk
represents the direction of relaxation. Without Lindblad terms, the equilibrium
state of the system would be

ρeq
s = e−βHs/Zs, (1.10)

where β = 1/kT , k is the boltzmann constant and Zs = Tr
(︂
e−βHs

)︂
is the parti-

tion sum. Because of the relaxation that does not necessarily have to be in the
direction of the system eigenbasis, the equilibrium with a Lindbladian is gener-
ally perturbed from the equilibrium in eq. (1.10). In ref.[2], this difference is
calculated using second order perturbative methods, in this thesis, the approach
to quantifying this difference will be numerical.
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1.3 Excitonically coupled heterodimer in a bath
As an example of the Lindblad superoperator acting on a photosynthetic system, a
system with two sites will be examined. A physical heterodimer is a system of two
molecules interacting electrostatically with different energies of their respective
excited states ϵ1 and ϵ2. The coupling between these two-level systems is J .
When the system Hamiltonian is diagonalized, the resulting eigenstates include
the ground state and two exciton states, that are formed as linear combinations
of excited site states. Let the ordered energies of these two states be E1 and E2.
If we denote the energy difference of excited site states as δ = ϵ2 − ϵ1, then the
eigen-energies can be written as [12]

E1 = ϵ2 + ϵ1

2 + J
√

1 + Γ2, E2 = ϵ2 + ϵ1

2 − J
√

1 + Γ2, (1.11)

where Γ = δ/2J . It is common to introduce the mixing angle α as

tan 2α = 1
Γ . (1.12)

The eigenstates can be written as |ψ⟩ = cosα |1⟩ + sinα |2⟩, for the two solutions
to eq. (1.13), where |1⟩ and |2⟩ are the excited site states.

Firstly, let us consider the case where the Lindblad jump operators provide
relaxation between the eigenstates of the Hamiltonian. There are three possible
dissipate channels - from the first exciton state to the ground state, from the
second exciton state to the ground state and from the second exciton state to
the first exciton state. Relaxation to the ground state commonly occurs in the
timescale of nanoseconds as opposed to picosecond dephasing times of the decay
from the second excited state to the first. Therefore, in this model, only the
exchange between excitons will be considered, and the equilibrium at the end of
the evolutions is only a quasiequilibrium living for several nanoseconds.

In order for the model to be compatible with thermodynamics, the rates of
the transition up and down must obey Boltzmann statistics [3], i.e.

γ12 = γ21 exp
(︄

−ω12ℏ
kT

)︄
, (1.13)

where γ21 and γ12 denote relaxation rates from the second exciton state to the first
and vice versa, ω12 = (E2 −E1)/ℏ and T is the absolute temperature. Therefore,
an upward channel is also considered.

When working in the eigenbasis of the electronic Hamiltonian, the Lindblad
operators Lk from eq. (1.9) providing relaxation from state m to state n have
the simple form Lmn = |m⟩⟨n|.

The Lindblad master equation for relaxation of the heterodimer after being
excited by a short laser pulse with the two mentioned relaxation channels with
rates (γ10, γ20 = 0 and γ21, γ12 > 0) can be written in the density matrix formalism
in the eigenbasis where |0⟩ is the ground state and |1⟩ and |2⟩ are the exciton
states as

ρ̇ = − i

ℏ
[HS, ρ]−

γ21

2

⎛⎜⎝ 0 0 ρ02
0 −2ρ22 ρ12
ρ20 ρ21 2ρ22

⎞⎟⎠− γ12

2

⎛⎜⎝ 0 ρ01 0
ρ10 2ρ11 ρ12
0 ρ21 −2ρ11

⎞⎟⎠ . (1.14)
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The ground state is not relevant in the phenomena being introduced in this thesis
and can be calculated as ρ00 = 1 − ρ11 − ρ22 if needed - it is therefore not con-
sidered in the following calculations. The explicit representation of the Lindblad
superoperator in Liouville space is

⎛⎜⎜⎜⎜⎜⎜⎝
ρ11̇
ρ22̇
ρ01̇
ρ02̇
ρ12̇

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
−γ12 γ21 0 0 0
γ12 −γ21 0 0 0
0 0 i

ℏE1 − γ12
2 0

0 0 0 i
ℏE2 − γ21

2 0
0 0 0 0 i

ℏ(E2 − E1) − γ12+γ21
2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
ρ11
ρ22
ρ01
ρ02
ρ12

⎞⎟⎟⎟⎟⎟⎟⎠
(1.15)

From the block diagonal structure of this superoperator it can be seen that it
is possible to deal with optical coherences separately, and then solve the block of
sites 1 and 2 and the coherence between them.

This set of equations directly leads to the solution

ρ11 = 1
γ12 + γ21

[︂
γ21(ρ11(0) + ρ22(0)) + (γ12ρ11(0) − γ21ρ22(0))e−(γ12+γ21)t

]︂
ρ22 = 1

γ12 + γ21

[︂
γ12(ρ11(0) + ρ22(0)) + (γ21ρ22(0) − γ12ρ11(0))e−(γ12+γ21)t

]︂
ρ01 = ρ01(0)ei

E1
ℏ te− γ12

2 t (1.16)

ρ02 = ρ02(0)ei
E2
ℏ te− γ21

2 t

ρ12 = ρ12(0)ei
E2−E1

ℏ te− γ12+γ21
2 t

This result is in accordance with ref. [8] which calculates the behavior of optical
coherences. In the eigenbasis of the electronic Hamiltonian:

• Population of the second exciton state decays exponentially to a constant
while the first exciton state is getting fed and behaves as 1 − e−x,

• Optical coherences exponentially decay and oscillate at the frequency of
the respective energy levels,

• Electronic coherences exponentially decay with rates equal to the sum
of the two rates and oscillate at the frequency equal to the difference of the
respective energy levels.

If, however, the Lindblad operators do not represent transitions between eigen-
states, but between general states rotated from the eigenbasis, the superoperator
suddenly does not have the block structure. The motivation behind this rotated
relaxation is to distinguish different effects that contribute to coherences and will
be thoroughly discussed in Chapter 2. When the basis in which these operators
are in the form Lmn = |m⟩⟨n| is rotated from the eigenbasis, the dynamics of
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the system change. The rotation is done only on the exciton states in order to
preserve the ground state:

R =

⎛⎜⎝ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞⎟⎠ , Lmn = R|m⟩⟨n|RT . (1.17)

The superoperator now contains many more off-diagonal terms and becomes very
complex - non-secular dynamics arise. If we look only at the optical coherences,
the master equation becomes(︄

ρ01̇
ρ02̇

)︄
=
(︄
iE1

ℏ − γ12 cos2 θ+γ21 sin2 θ
2 −γ12+γ21

4 sin 2θ
−γ12+γ21

4 sin 2θ iE2
ℏ − γ12 sin2 θ+γ21 cos2 θ

2

)︄(︄
ρ01
ρ02

)︄
. (1.18)

For the exciton block, the superoperator is even more complicated - the general
analytic solution is too complex to be used practically. At this point, it is more
useful to plug in a specific angle θ and solve by numerical diagonalization.
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2. Two types of coherences
As the role of coherence in photosynthesis is still widely discussed, it is important
to understand the effects which take part in creating it. Coherence is a conse-
quence both of inter-site coupling and the excitation by an external field. In a
strictly mathematical way, these two coherences are equivalent and both their
contributions intertwine as the system evolves in time.

The excitation coherence is a coherence between excitonic states. Its life time
is short, not much longer than optical coherence [7]. It is not a characteristic of
the system, but simply a consequence of short excitation.

On the other hand, off-diagonal elements in the density matrix are present
simply as a consequence of coupling between chlorophyll molecules. Eigenstates
of the Hamiltonian become delocalized and another, long-lived coherence arises.
This is the coherence that is still present after the system reaches steady state -
it is a characteristic of the system itself, determined by the strength of inter-site
coupling.

Throughout the systems time evolution, the system has a ”preferred basis” -
its eigenbasis, which describes the state to which the system would relax with-
out Lindblad terms. The Lindblad superoperator also has a ”preferred basis” -
meaning that the direction of the jump operators is between states of the basis
(Lij = |i⟩⟨j|).

If the Lindblad relaxation tensor is in the eigenbasis of the system, the pre-
ferred basis is the eigenbasis for the whole time throughout the systems evolution.
If, however, the Lindblad relaxation tensor has a different preferred basis than
the system eigenbasis, the preferred basis of the system is ”somewhere between”
these two bases. It also varies in time, as does the strength of the two effects of
strong excitation and relaxation. The preferred basis is essentially something like
a time varying eigenbasis of the whole system with bath interaction.

Because of the combined evolution and the nature of these coherences, it is
impossible to transform one of these coherences away. However, it is, in some
cases, at least numerically possible to find the preferred basis of the system.

2.1 Choosing the right basis
What is the preferred basis then? It is the one where oscillation is exclusively a
matter of coherences, while the diagonal density matrix elements exhibit expo-
nential decay. To quantify this analytically, a few methods were tried out in this
work.

At first, a measure using the Fourier transform was proposed. The oscillation
of a function f was defined as the maximum of the Fourier transform of the
function

o(f) = max F(f − f̄) (2.1)
where f̄ denotes the mean value of the function in order to eliminate the peak
of the Fourier transform at ω = 0. The measure of how close a basis was to the
preferred basis was then the sum of oscillations of site amplitudes

M =
∑︂
i

o(ρii) (2.2)
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For some cases and in some bases, notably when the relaxation was fast, in
some bases the function flattened to almost a constant, and therefore had zero
oscillation. It is also worthy to note the uncertainty principle for the discrete
Fourier transform, which is another source of error for this method - it is impor-
tant to include at least one period of all oscillatory behavior in the system.

Another way of determining how good is a basis is by looking at the second
derivative of the site amplitudes. Then the oscillation of a function is defined
as the sum of the lengths of all the intervals where its second derivative has a
the sign that is most common for the function. For example: for a more concave
function, the oscillation is defined as

o(f) = ||{x, d
2f

dx2 ≤ 0}||. (2.3)

In this case the second derivative is calculated by spline interpolation followed by
differentiation. This method was chosen because it is much faster than computing
a numerical second derivative, while having the same results.

To assess how close is a basis to the preferred basis, the oscillations of diagonal
elements are again added

M =
∑︂

o(ρii). (2.4)

The basis that has maximal parameter M out of the test space is the preferred
basis numerically found.

During the time evolution, the two previously described effects vary in stre-
ngth. Right after the fast excitation, the system Hamiltonian dominates. On the
longer timescale, the relaxation takes over. This effect creates a problem with
determining the preferred basis - it varies in time, and so does the parameter
M . To find this time dependence, it would be necessary to work only with parts
of the complete time development, find the suitable basis in the specific time
window, and do so for all time windows. Ideally, the window should be small, so
the preferred basis time dependence is well described.

In some simple cases, the preferred basis can be determined analytically. In
Chapter 1, the time evolution of a excitonically coupled dimer with relaxation be-
tween states rotated from the eigenstates was calculated. The full superoperator
has been calculated, and it can be diagonalized. This result can be compared with
the numerical methods of finding preferred bases to determine their precision.

When observing the preferred basis evolution, profound questions arise. Does
the system ”know” to which states will it relax to? Is it a characteristic of the
system, or do we have to propagate the density matrix to find out? Would it be
somehow possible to determine where the system will relax to from just part of
the evolution?
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3. Numerical simulation
In this chapter, results of the implementation of the methods discussed in Chap-
ter 2 are demonstrated. To find the preferred basis evolution, it is firstly needed
to calculate the systems time evolution throughout and after the excitation.
The time evolution of the system was calculated using the Quantarhei 0.0.57
package[6].

3.1 Excitation by a δ-pulse
In order to study only the relaxation process, it was required to simulate an
excitation by a short laser pulse. The density matrix after the pulse was then
used as an initial condition for all relaxation simulations. At first, short pulses
were simulated, however, to get not only the correct site amplitudes, but also
coherences, a clean way of excitation was implemented - the excitation by a δ-
pulse.

When a delta pulse in the form of E⃗(t) = E⃗0δ (t− tp) 1
2

(︂
e−iω(t−tp) + eiω(t−tp)

)︂
is applied to a two level system, the operator which accordingly excites the system
is

Ex̂ =
(︄

cos J0
ℏ −i sin J0

ℏ
−i sin J0

ℏ cos J0
ℏ

)︄
, (3.1)

where J0 = µ⃗·E⃗0
2 . Since both molecules are being excited, the complete excitation

operator is obtained by applying the two individual excitation operators.

Ex̂ = Ex1ˆ Ex2ˆ =

⎛⎜⎝ cos J1
ℏ −i sin J1

ℏ 0
−i sin J1

ℏ cos J1
ℏ 0

0 0 1

⎞⎟⎠ ·

⎛⎜⎝ cos J2
ℏ 0 −i sin J2

ℏ
0 1 0

−i sin J2
ℏ 0 cos J2

ℏ

⎞⎟⎠ (3.2)

For a complete derivation of the excitation operator, see Appendix B.

3.2 Dimer
A simple model system discussed in chapter 1 is the excitonically coupled dimer.
Excitation by a δ-pulse and relaxation were simulated. The parameters of the
simulated dimer are listed in Table 3.1.

Table 3.1: Parameters of the dimer simulation
Parameter Value

ϵ1/ℏ 1.0 [1/fs]
ϵ2/ℏ 1.1 [1/fs]
J 0.05 [1/fs]
γ21 1/20.0 [1/fs]
E0 20 [1/fs/a.u.]
T 300K

For this system, the mixing angle is θ ≈ 22.5◦; in the following figures, it
will be highlighted with a red line if relevant to the figure. In figure 3.1 the
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evolution of the dimer with relaxation according to equation (1.14) is shown in
both the eigenbasis (left) and the site basis (right) - the site amplitudes and the
real and imaginary parts of optical and electronic coherences are plotted. The
eigenbasis evolution follows eq. (1.16). In the site basis, the site amplitudes
oscillate while decaying exponentially/exponentially approach quasisteady state,
in the eigenbasis, there are no oscillations, only exponential decay.

0 50 100 150 200
t[fs]

0.2

0.0

0.2

0.4

0.6

0.8
Eigenbasis

0 50 100 150 200
t[fs]

0.2

0.0

0.2

0.4

0.6

0.8
Site basis

Ground state
Site 1
Site 2
Re( 01)
Im( 01)
Re( 12)
Im( 12)

Figure 3.1: Dimer time evolution in the eigenbasis (left) and site basis (right)
with relaxation between eigenstates.

When the measure described in Chapter 2 is applied to the whole evolution
and bases rotated from the site basis in the range θ ∈ ⟨0, 180◦⟩ are searched
through, the eigenbasis is found - see figure 3.2. In this case, the eigenbasis is the
preferred basis the whole time of the evolution.

Further on, the excitation and relaxation of a dimer with the relaxation op-
erators rotated by θ = 20◦ was simulated. This evolution is shown in figure 3.3
in the site basis (right) and the numerically found preferred basis (left).

When the measure is applied to the full evolution, it is found that the basis
in which the site amplitudes ”oscillate the least” is rotated from the eigenbasis -
even in the system eigenbasis, there are mild oscillations present. This difference
is shown in figure 3.4 - the preferred basis is between the eigenbasis denoted by
the red line and the basis of relaxation denoted by the green line.

The effect of the strength of relaxation on the evolution and the preferred
basis was studied. In figure 3.5, the dependence of preferred basis on relaxation
rate γ21 for coupling constants J = 0.025, 0.05, 0.1, 0.5 is plotted. For low levels
of coupling (≤ 0.15), the relaxation is strong enough to turn the preferred basis
from the eigenbasis correspondint to the particular value J . For greater coupling,
the relaxation does not have such an effect in this range, for larger values of γ21
the method becomes inconclusive due to the fact, that relaxation is too fast.
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Figure 3.2: Measure of bases rotated from the site basis by angle θ in arbitrary
units for non-rotated relaxation, red vertical line denotes the mixing angle, i.e.
position of the eigenbasis.

3.2.1 Final state of relaxation
As was discussed in Chapter 2, it is interesting to note where does the system
relax to. The basis where the quasiequilibrium endstate is diagonal should be
somewhere between the eigenbasis and the basis of the relaxation operators. Re-
laxation was calculated for different values of γ21. This relationship is plotted in
figure 3.6. For different levels of γ21, different total evolution times were used, so
that the system manages to relax fully. There is a clear tendency to move from
the eigenbasis towards the basis of the relaxation operators as γ21 increases. In
figure 3.10, the comparison between the endstate basis and the preferred basis for
different levels of relaxation described by relaxation time constants τ21 = 1/γ21
is plotted for different levels of coupling. It is interesting that the preferred basis
gained from the measure over the whole evolution is slightly different than the
diagonal basis of the end state. From this observation it is evident, that the pre-
ferred basis changes in time, as was predicted. The endstate is also closer to the
basis of the relaxation operators - this underlines the idea that the preferred basis
starts at the eigenbasis, when the system Hamiltonian has a greater influence, at
gradually moves towards the relaxation basis.
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Figure 3.3: Dimer time evolution with relaxation operators rotated by 20◦ in the
site basis (right) and in the numerically found preferred basis (left).

Figure 3.4: Measure of bases rotated from the site basis by angle θ in arbitrary
units for relaxation rotated by 20◦, red vertical line denotes the mixing angle, i.e.
position of the eigenbasis, the green line is the position of the basis of relaxation.

13



0.00 0.05 0.10 0.15 0.20 0.25
0

20[°
]

J=0.025

0.00 0.05 0.10 0.15 0.20 0.25
20

40

[°
]

J=0.05

0.00 0.05 0.10 0.15 0.20 0.25

30
40
50

[°
]

J=0.1

0.00 0.05 0.10 0.15 0.20 0.25
21

40

60

[°
]

J=0.5

Figure 3.5: Dependence of preferred basis (blue line) on relaxation rate γ21 for
coupling constants J = 0.025, 0.05, 0.1, 0.5. Red line denotes the position of the
respective system eigenstates, green line denotes the basis of relaxation.

3.2.2 Window dependence
Since there is evidence of the character of the movement of the preferred basis,
the method was used in different time windows throughout the evolution, as
mentioned in chapter 2. The problem with the proposed method is that by
choosing a window, a certain amount of periods of oscillation fit inside. The
second derivative measure is then dependent more on how these waves fit in the
window (i.e. their phase at the beginning and the end of the window) than on
the evolution of the preferred basis. It is therefore unfortunately not possible
to use this method, or the Fourier transform method, to study and see the time
evolution of the preferred basis directly, or to predict the quasiequilibrium final
state.
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Figure 3.6: Dependency of the angle by which the diagonalized final state of
relaxation is rotated from the site basis on relaxation rate. Green line denotes
the basis of relaxation rotated from the eigenbasis by 20◦.

3.3 Systems with more sites
Our approach can be clearly generalized to systems with more sites. The method
was tested on a molecular trimer, parameters of the simulation are listed in table
3.2. Excitation was again simulated using a delta pulse. Relaxation channels

Table 3.2: Parameters of the trimer simulation
Parameter Value

ϵ1 1.0 [1/fs]
ϵ2 1.05 [1/fs]
ϵ3 1.1 [1/fs]
J12 0.05 [1/fs]
J13 0.05 [1/fs]
J23 0.05 [1/fs]
γ21 1/20.0 [1/fs]
γ31 1/10.0 [1/fs]
E0 20 [1/fs/a.u.]
T 300K

from the third and the second exciton state to the first were considered with
their thermodynamically appropriate counterparts. In figure 3.8, the calculated
relaxation is shown for a trimer with both relaxation operators rotated by 20◦ in
the site basis and in the numerically found preferred basis. In figure 3.9, the use
of the method is visualized for nonrotated relaxation. A slice at a certain θ3 that
corresponds to the eigenbasis is shown, a clear maximum in the other two Euler
angles is found. In figure 3.10, the method results are shown on relaxation with
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Figure 3.7: Comparison of final state of relaxation (blue line) with found preferred
basis (orange) depending on relaxation time constant τ21 for coupling constants
J = 0.025, 0.05, 0.1, 0.5.
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both channels rotated by 20◦ from the eigenbasis. A slight shift of the peak in
both θ1 and θ2 is observed, the maximum is also much less clear than in the case
of simple non-rotated relaxation (as was the case with the dimer).
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Figure 3.8: Trimer relaxation in the site basis (right) and the numerically found
preferred basis (left) for relaxation rotated by 20◦.

With systems consisting of more sites, the problem of finding minima effi-
ciently arises, as the space of possible preferred bases increases in dimension.
Basis rotation (as well as the eigenbasis) in n-dimensional space is generally de-
fined by n · (n− 1)/2 parameters/angles. In the case of the trimer, these are the
three Euler angles. The value that the method outputs for different angles how-
ever is not always smooth enough to implement faster optimalization algorithms,
which could make finding the preferred basis much more efficient.
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Figure 3.9: Visualization of the method for the trimer - a slice at a certain
θ3 shows the values of M for different θ1 and θ2, the peak corresponds to the
eigenbasis of the system.
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Figure 3.10: Visualization of the method for the trimer with rotated relaxation
by 20◦ in both angles - a slice at a certain θ3 the values of M for different θ1 and
θ2, the peak corresponds to the numerically found preferred basis.
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Conclusion
Coherence seems to play a key role in fast energy transfer in photosynthetic an-
tennae, yet the causes for its existence are often mixed together in interpretation.
In this thesis, two ways that coherence is created in chlorophyll aggregates are
discussed - short-lived coherence due to excitation by light in the semiclassical
approximation and exciton delocalization as a consequence of site coupling, which
has a much longer lifetime. By studying the evolution of sample systems with re-
laxation to states rotated from the eigenstates it was possible to at least partially
distinguish these two types of coherence. The concept of a preferred basis was
proposed as a floating eigenbasis between the system eigenbasis and the basis of
relaxation. Numerical methods for determining such a basis were developed. On
the dimer system, the time evolution of such a basis was indirectly confirmed by
comparing analysis of the whole evolution with the analysis of the state of the
system after evolution is completed.

The numerical methods developed in this thesis could potentially be used
in correctly interpreting coherence from experimental data. At this stage, the
method has been successfully tested at analyzing simulated evolution of sam-
ple systems. However, in order to be more relevant to experiment, it would be
needed to extend the method to analyze not just simulated evolution, but also
the spectroscopic measurements directly.
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A. Derivation of the Lindbladian
as a general CPT-map generator
The Lindblad superoperator can be derived from studying general Markovian
transformations between density matrices. In this chapter based on Refs. [13, 9],
a general form of Markovian CPT-maps and the Lindblad form will be derived.

Let B(H) denote the space of bounded operators on a Hilbert space H. Posi-
tivity of an operator A on a Hilbert space H is defined as ⟨ϕ|A|ϕ⟩ ≥ 0,∀|ϕ⟩ ∈ H.
Let ρ(H) denote the space of density matrices in Hilbert space H (including mixed
states), and V : ρ(H) → ρ(H) a map from this space onto itself. Such a map has
to preserve the characteristics of density matrices: the unit trace

Tr[Vρ] = Tr[ρ],∀ρ ∈ ρ(H) (A.1)

and positive definity, which is a more complex condition.

Definition 1. A map V is positive iff ∀A ∈ B(H) s.t. A ≥ 0 ⇒ VA ≥ 0

This condition is, however, not sufficient. In composite states, the density
matrix can be a partial trace of a larger full system density matrix. A stronger
condition is needed:

Definition 2. A map V is completely positive iff ∀n ∈ N,V ⊗ 1n is positive.

A map that is completely positive and trace-preserving is called a CPT-map
for brevity. In order to derive a general form of CPT-maps on ρ(H), we need a
few theorems.

Lemma 1. Any map V : B(H) → B(H) that can be written in the form Vρ =
V †ρV with V ∈ B(H) is positive.

Proof. If ρ is positive, then it can be written as ρ = A†A, with A ∈ B(H) .
Therefore

Vρ = V †ρV ⇒
⟨︂
ψ
⃓⃓⃓
V †ρV

⃓⃓⃓
ψ
⟩︂

=
⟨︂
ψ
⃓⃓⃓
V †A†AV

⃓⃓⃓
ψ
⟩︂

= ∥AV |ψ⟩∥ ≥ 0. (A.2)

Theorem 2 (Choi). A linear map V : B(H) → B(H) is completely positive iff it
can be expressed as

Vρ =
∑︂
i

V †
i ρVi (A.3)

with Vi ∈ B(H).

Proof. If V can be written in the form of eq. (A.3), then it is completely positive
as a trivial consequence of Lemma 1.
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Let d be the dimension of H with basis |i⟩. Now we define another Hilbert
space HA of the same dimension with basis |i⟩A. A maximally entangled state in
HA ⊗ H is defined as

|Γ⟩ ≡
d−1∑︂
i=0

|i⟩A ⊗ |i⟩. (A.4)

The map V can be extended onto the bipartition of the two Hilbert spaces as
V ′ : HA ⊗ H → HA ⊗ H:

V ′ ≡ 1B(HA) ⊗ V . (A.5)

Since V is completely positive, V ′ is positive. Applying V ′ to the previously
defined maximally entangled state results in

V ′|Γ⟩⟨Γ| =
d−1∑︂
i,j=0

|i⟩⟨j| ⊗ V|i⟩⟨j|. (A.6)

To see the action of the map on a vector |ψ⟩ ∈ HA ⊗ H we expand it into a basis

|ψ⟩ =
d−1∑︂
i,j=0

αij|i⟩A ⊗ |j⟩. (A.7)

Finally, we can define V|ψ⟩ ∈ B(H) as a transformation from |Γ⟩ to |ψ⟩. Explicitly

(︂
1A ⊗ V|ψ⟩

)︂
|Γ⟩ =

d−1∑︂
i,j=0

αij (1A ⊗ |j⟩⟨i|)
(︄
d−1∑︂
k=0

|k⟩ ⊗ |k⟩
)︄

=
d−1∑︂

i,j,k=0
αij(|k⟩ ⊗ |j⟩)⟨i|k⟩ =

d−1∑︂
i,j,k=0

αij(|k⟩ ⊗ |j⟩)δi,k (A.8)

=
d−1∑︂
i,j=0

αij|i⟩ ⊗ |j⟩ = |ψ⟩.

This way it is possible to relate vectors from HA ⊗ H to operators acting on
H. Going back to the extended map V ′, since it is positive, its action on |Γ⟩⟨Γ|
can be decomposed as

V ′(|Γ⟩⟨Γ|) =
d2−1∑︂
l=0

|vl⟩ ⟨vl| , (A.9)

with |vl⟩ ∈ HA ⊗ H. As before, these are related to operators on H as

|vl⟩ = (1A ⊗ Vl) |Γ⟩. (A.10)

Now it is possible to calculate the product of arbitrary |i⟩A ∈ HA with |vl⟩

⟨i|A |vl⟩ = ⟨i|A (1A ⊗ Vl) |Γ⟩ = Vl
d−1∑︂
k=0

⟨i|k⟩A ⊗ |k⟩. (A.11)

To get the general form of a CP-map, we apply V to a basis element |i⟩⟨j| of
B(H). Using previous results we get
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V(|i⟩⟨j|) = (⟨i|A ⊗ 1A) V2(|Γ⟩⟨Γ|) (|j⟩A ⊗ 1A)

= (⟨i|A ⊗ 1A)
⎡⎣d2−1∑︂
l=0

|vl⟩ ⟨vl|

⎤⎦ (|j⟩A ⊗ 1A) (A.12)

=
d2−1∑︂
l=0

[(⟨i|A ⊗ 1A) |vl⟩] [⟨vl| (|j⟩A ⊗ 1A)] =
d2−1∑︂
l=0

Vl|i⟩⟨j|Vl.

Expanding ρ into this basis we get the desired result

Vρ =
d2−1∑︂
l=0

V †
l ρVl. (A.13)

Choi’s theorem decribes the most general form of CP-maps. For CPT-maps,
we need another constraint.

Theorem 3 (Choi-Kraus). A linear map V : B(H) → B(H) is completely positive
and trace-preserving iff it can be expressed as

Vρ =
∑︂
i

V †
i ρVi (A.14)

with Vi ∈ B(H) and ∑︂
l

VlV
†
l = 1H. (A.15)

Proof. Choi’s theorem ensures complete positiveness. It is only needed to prove
that only under condition (A.15) the map is also trace-preserving. If V can be
expressed as in (A.4), then it preserves trace using cyclic properties of the trace

Tr[Vρ] = Tr
⎡⎣d2−1∑︂
l=0

VlρV
†
l

⎤⎦ = Tr
⎡⎣⎛⎝d2−1∑︂

l=0
V †
l Vl

⎞⎠ ρ
⎤⎦ = Tr[ρ]. (A.16)

Evaluating the trace of a map on an element of some basis of B(H) we get

Tr[V(|i⟩⟨j|)] = Tr
⎡⎣d2−1∑︂
l=0

Vl|i⟩⟨j|V †
l

⎤⎦ = Tr
⎡⎣d2−1∑︂
l=0

V †
l Vl|i⟩⟨j|

⎤⎦
=
∑︂
k

⟨k|

⎛⎝d2−1∑︂
l=0

V †
l Vl|i⟩⟨j|

⎞⎠ |k⟩ =
⟨︄
j

⃓⃓⃓⃓
⃓⃓
⎛⎝d2−1∑︂

l=0
V †
l Vl

⎞⎠⃓⃓⃓⃓⃓⃓ i
⟩︄
.

(A.17)

This result should be equal to δi,j, since

Tr[V(|i⟩⟨j|)] = Tr[|i⟩⟨j|] = δi,j. (A.18)

Therefore condition (A.15) is both sufficient and necessary for preserving the
trace.
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Choi-Kraus’s theorem gives the most general form of CPT-maps. It is worth
noting that operators Vi can be time dependent, as long as they condition (A.15)
still holds. The next step is find equations for system evolution from these maps.

In order to find a master equation, it is necessary to find a generator L so
that

d

dt
ρ(t) = Lρ(t). (A.19)

Then the map can be written as V(t) = eLt.
Firstly, we choose an orthonormal basis {Fi}d

2
i=1 of B(H)

⟨⟨Fi|Fj⟩⟩ ≡ Tr
[︂
F †
i Fj

]︂
= δi,j, (A.20)

where ⟨⟨A|B⟩⟩ = Tr[A†B] is the standard operator scalar product in Fock-
Liouville space. As the last basis element we choose a normalized identity element
on H: Fd2 = 1√

d
1H. Because of this choice, all other basis elements have to be

traceless. We can now expand operators Vi from Choi-Kraus’s theorem into this
basis

Vl(t) =
d2∑︂
i=1

⟨⟨Fi|Vl(t)⟩⟩ |Fi⟩⟩. (A.21)

Applying into the form of V from eq. (A.14) on a general density matrix we get

V(t)ρ =
∑︂
l

⎡⎣ d2∑︂
i=1

⟨⟨Fi|Vl(t)⟩⟩Fiρ
d2∑︂
j=1

F †
j ⟨⟨Vl(t)|Fj⟩⟩

⎤⎦ =
d2∑︂

i,j=1
ci,j(t)FiρF †

j , (A.22)

where the coefficients ci,j(t) = ∑︁
l ⟨⟨Fi|Vl⟩⟩ ⟨⟨Vl|Fj⟩⟩ contain the summation over

operators. Substituting this result into eq. (A.19) yields

dρ

dt
= lim

∆t→0

1
∆t(V(∆t)ρ− ρ) = lim

∆t→0

⎛⎝ d2∑︂
i,j=1

ci,j(∆t)FiρF †
j − ρ

⎞⎠
= lim

∆t→0

⎛⎝d2−1∑︂
i,j=0

ci,j(∆t)FiρF †
j +

d2−1∑︂
i=1

ci,d2FiρF
†
d2

+
d2−1∑︂
j=1

cd2,j(∆t)Fd2ρF †
j + cd2,d2(∆t)Fd2ρF †

d2 − ρ

⎞⎠ (A.23)

= lim
∆t→0

1
∆t

⎛⎝d2−1∑︂
i,j=1

ci,j(∆t)FiρF †
j + 1√

d

d2−1∑︂
i=1

ci,d2(∆t)Fiρ

+ 1√
d

d2−1∑︂
j=1

cd2,j(∆t)ρF †
j + 1

d
cd2,d2(∆t)ρ− ρ

⎞⎠ .
To eliminate time dependence, we define constants

gi,j ≡ lim
∆t→0

ci,j(∆t)
∆t

(︂
i, j ̸= d2

)︂
gd2,d2 ≡ lim

∆t→0

cd2,d2(∆t) − d

∆t .

(A.24)
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Eq. (A.23) then takes on the form

dρ

dt
=

d2−1∑︂
i,j=1

gi,jFiρF
†
j + 1√

d

d2−1∑︂
i=1

gi,d2Fiρ+ 1√
d

d2−1∑︂
j=1

gd2,jρF
†
j + gd2,d2

d
ρ. (A.25)

By defining a new operator F ≡ 1√
d

∑︁d2−1
i=1 gi,d2Fi we get

dρ

dt
=

d2−1∑︂
i,j=1

gi,jFiρF
†
j + Fρ+ ρF † + gd2,d2

d
ρ. (A.26)

It is now useful to separate coherent Hermitian dynamics from incoherent parts.
The operator F is split into hermitian (H) and anti-Hermitian (G) parts

F = F + F †

2 + i
F − F †

2i ≡ G− iH. (A.27)

Substituting back into eq. (A.26) we obtain

dρ

dt
= gi,jFiρF

†
j + {G, ρ} − i[H, ρ] + gd2,d2

d
ρ. (A.28)

Defining the last auxiliary operator of this proof G2 ≡ G+ gd2,d2

2d simplifies

dρ

dt
=

d2−1∑︂
i,j=1

gi,jFiρF
†
j + {G2, ρ} − i[H, ρ]. (A.29)

To this point, we have only used the condition for complete positivity of the map.
To include the property of preserving trace, we need to impose a condition

Tr
[︄
dρ

dt

]︄
= Tr

⎡⎣d2−1∑︂
i,j=1

F †
j Fiρ+ 2G2ρ

⎤⎦ = 0. (A.30)

Therefore G2 has to fulfill

G2 = 1
2

d2−1∑︂
i,j=1

gi,jF
†
j Fiρ. (A.31)

Substituting this condition back we get

dρ

dt
= −i[H, ρ] +

d2∑︂
i,j=1

gi,j

(︃
FiρF

†
j − 1

2
{︂
F †
j Fi, ρ

}︂)︃
. (A.32)

Since gi,j from a Hermitian matrix, it can be diagonalized. While also scaling
the operator H we obtain the Lindblad form

d

dt
ρ(t) = L(ρ) = − i

ℏ
[H, ρ] +

∑︂
k

γk

[︃
LkρL

†
k − 1

2
{︂
L†
kLk, ρ

}︂]︃
. (A.33)
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B. Excitation by a δ-pulse
Consider a two-level system in an initial state |ψ(t0)⟩ at time t0 with transi-
tion dipole moment µ between the two states under a laser pulse with E⃗(t) =
E⃗0δ (t− tp) 1

2

(︂
e−iω(t−tp) + eiω(t−tp)

)︂
located at time t = tp in the semiclassical ap-

proximation described in Chapter 1. The Hamiltonian for the system and laser
interaction in the basis of the two levels is

H = HS − µ⃗ · E⃗(t)
(︄

0 1
1 0

)︄
. (B.1)

The operator
(︄

0 1
1 0

)︄
will be denoted k onward. In the interaction picture,

the Hamiltonian takes on the form

H(I) = −J0δ (t− tp)
(︄

1 0
0 eiω(t−t0)

)︄(︄
0 eiω(t−tp)

e−iω(t−tp) 0

)︄(︄
1 0
0 e−iω(t−t0)

)︄
=

= -J0δ (t− tp)
(︄

0 e−iω(tp−t0)

eiω(tp−t0) 0

)︄
,

(B.2)
where J0 = µ⃗·E⃗0

2 . This Hamiltonian form can be conveniently written as

H(I) = −J0δ (t− tp) k̃, (B.3)

where U (t0, tp) kU (tp, t0) ≡ k̃ and U(t, t0) is the backward time evolution op-
erator from t0 to t. It is important to note that k̃ is time-independent. The
Schrödinger equation for the system in the interaction picture is

∂

∂t
|ψI (t)⟩ = − i

ℏ
H

(I)
I (t)|ψ(I) (t)⟩ (B.4)

The initial condition is the same for both the Schrödinger and the interaction
picture, as U(t0, t0) = 1. The formal solution takes on the form of a time-ordered
exponential

|ψ(I)(t)⟩ = exp
(︃

− i

ℏ

∫︂ t

t0
dτH

(I)
I (τ)

)︃
|ψ (t0)⟩ (B.5)

When evaluating the integral, it is useful to look at expansions to different orders.
In the second order, the integral can be solved by per partes method

∫︂ t

t0
dτH(t)(τ)

∫︂ τ

t0
dτ ′H(τ) (τ ′) =

∫︂ t

t0
dτδ (τ − tp)

∫︂ t

t0
dτ ′δ (τ ′ − tp) J2

0 k̃
2 =

= J2
0 k̂

2
∫︂ t

t0
dτδ (τ − tp) Θ (τ − tp) = J2

0 k̂
2 [Θ (τ − tp) Θ (τ + γp)]tt0 − (B.6)

−J2
0 k̂

2
∫︂ t

t0
dτΘ (τ − tp) δ (τ − tp)

⇒ I2 = J2
0 k̂

2
∫︂ t

t0
dτδ (τ − tp) Θ (τ − tp) = 1

2Θ2 (t− tp) J2
0 k̃

2 (B.7)
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For higher orders, a recurrent relation can be written

In =
∫︂ t

t0
dτδ (τ − tp) In−1 (−J0) k̃ (B.8)

From the per partes calculation and form of I2 it can be seen that

In = 1
n!Θ

n (t− tp)
(︂
−J0k̃

)︂n
(B.9)

satisfies eq. (B.6). The evolution operator then has the form

U (t, t0) = 1 +
∞∑︂
n=1

1
n!Θ

n (t− tp)
(︂
−J0k̃

)︂n
(B.10)

Returning back from the interaction picture, the

|ψ(t)⟩ = U0 (t1, t0)
⃓⃓⃓
ψ(I)(t)

⟩︂
= U0 (t, t0)U (t1, t0) |ψ (t0)⟩

= U0 (t1, t0)
(︄

1 +
∞∑︂
n=1

1
n! Θ̂ (t− tp)U0 (t0, tp) k̂

n
U0 (tp, t0) (−J0)n

)︄
|ψ (t0)⟩

(B.11)
Since |ψ(tp)⟩ = U0 (tp, t0) |ψ(t)⟩ and U0 (t, t0)U0 (tp, t0) = U0 (tp, t0), the solution
then becomes

t > tp : |ψ(t)⟩ = U0 (t, tp) e− i
ℏJ0kU0 (tp, t0) |ψ (t0)⟩

t < tp : |ψ(t)⟩ = U0 (t, t0) |ψ (t0)⟩

The exponential can be easily calculated by diagonalizing, as the matrix has a
simple and known spectrum. The obtained operator for excitation then becomes

Ex̂ = e− i
ℏJ0k = 1

2

(︄
1 1

−1 1

)︄(︄
exp iJ0

ℏ 0
0 exp −iJ0

ℏ

)︄(︄
1 −1
1 1

)︄
(B.12)

Ex̂ =
(︄

cos J0
ℏ −i sin J0

ℏ
−i sin J0

ℏ cos J0
ℏ

)︄
. (B.13)
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