
MASTER THESIS

Jan Špaček

Generation of realistic skydome images

Department of Software and Computer Science Education

Advisor: Ing. David Futschik
Supervisor: doc. Alexander Wilkie, Dr.

Study programme: Computer Science
Study branch: Artificial Intelligence

Prague 2020

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources. It has not been used to obtain another
or the same degree.

I understand that my work relates to the rights and obligations under the Act No. 121/2000
Sb., the Copyright Act, as amended, in particular the fact that the Charles University
has the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In: Ostrava, date: 2020-05-20 .
Author’s signature

i

Dedicated to the memory of Jaroslav Křivánek.

ii

Title: Generation of realistic skydome images

Author: Jan Špaček
Department: Department of Software and Computer Science Education

Advisor: Ing. David Futschik
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering
Czech Technical University in Prague

Supervisor: doc. Alexander Wilkie, Dr.
Department of Software and Computer Science Education
Faculty of Mathematics and Physics
Charles University in Prague

Abstract: We generate realistic images of the sky with clouds using generative
adversarial networks and propose a novel architecture for generating
images in very high resolutions.

Keywords: Deep learning, machine learning, generative adversarial network,
deep convolutional network, deep generative model, skydome, fish-
eye.

iii

Contents

Contents 1

Acknowledgements 3

1 Introduction 4

2 Related work 6
2.1 Deep learning . 6

2.1.1 Feedforward networks . 6
2.1.2 Training . 6

2.1.2.1 Loss functions . 7
2.1.2.2 Optimization algorithms 7
2.1.2.3 Backpropagation . 9

2.1.3 Deep neural networks . 9
2.1.3.1 Fully-connected layer . 10
2.1.3.2 Batch normalization . 10
2.1.3.3 Regularization . 12

2.1.4 Convolutional networks . 13
2.1.4.1 Convolution . 13
2.1.4.2 Convolution layer . 15
2.1.4.3 Pooling layers . 15
2.1.4.4 Normalization . 15
2.1.4.5 Residual connections . 16
2.1.4.6 Motivation . 16
2.1.4.7 Architectures . 17

2.2 GAN . 18
2.2.1 Loss . 19

2.2.1.1 Logistic loss . 19
2.2.1.2 Non-saturating logistic loss 20
2.2.1.3 LSGAN . 20
2.2.1.4 WGAN . 21
2.2.1.5 R1 and R2 regularization 22

2.2.2 DCGAN . 22
2.2.3 ProGAN . 23
2.2.4 StyleGAN . 28
2.2.5 StyleGAN 2 . 32
2.2.6 Other GANs . 33

2.3 Super-resolution . 33

3 Prior work 37
3.1 Dataset . 37
3.2 Model . 37

4 Methods 41
4.1 ProGAN . 41
4.2 StyleGAN . 42

1

4.2.1 Networks . 42
4.2.1.1 Building blocks . 43
4.2.1.2 Latent mapping network F Mapper 46
4.2.1.3 Synthesizer network G Synthesizer 46
4.2.1.4 Generator network G Net 48
4.2.1.5 Discriminator network D Net 49

4.2.2 Losses . 50
4.2.2.1 Discriminator loss D loss 50
4.2.2.2 R1 penalty D r1 reg . 51
4.2.2.3 Generator loss G loss . 51

4.2.3 Training . 52
4.2.3.1 Data preprocessing and augmentation 52

4.3 SuperGAN . 53

5 Results 55
5.1 ProGAN . 56

5.1.1 Single day . 56
5.1.2 Single image . 56
5.1.3 Larger dataset . 56
5.1.4 Conclusion . 56

5.2 StyleGAN . 62
5.2.1 Resolution 512 × 512 . 62
5.2.2 Resolution 1024 × 1024 . 62
5.2.3 Conclusion . 69

5.3 SuperGAN . 69

6 Conclusion and further work 71

References 73

2

Acknowledgements
This thesis is dedicated to Jaroslav Křivánek, who was the supervisor of the project before
he tragically lost his life at the end of 2019.

I am very grateful to my advisor, David Futschik, who provided much-needed deep learning
experience and insight, consulted the progress of the work with me for several months,
and reviewed the thesis thoroughly. His help was essential for the research presented in
this thesis.

I would like to thank Štěpán Hojdar, for starting this project and collecting the dataset;
Chaos Czech, for providing support of this research; Alexander Wilkie, for supporting the
project and my thesis; the KSVI and KSI departments, for supplying the GPUs and the
thousands of kilowatt-hours of burned electricity; and the university library, for providing
me with all the great books.

Na závěr děkuji svým rodič̊um za podporu nejen při psańı této práce, a Páji za všechen
čas nestrávený nad klávesnićı a monitorem.

3

1. Introduction
Artists that create visualizations of architecture (see example in figure 1.1) need realistic
sky as a background image (environment map). They require images that have high
dynamic range (HDR), resolution at least 16K, and capture the whole skydome.

In practice, 3D artists use photographs of real skies as environment maps. Such images
must be stitched from a large number of photos taken with a high-end digital camera at
varying angles (because each photo only captures a small section of the sky) and multiple
exposures (to obtain an HDR image from several low dynamic range images using the
bracketing technique [1]). There are websites [2] that provide collections of such images
that can be downloaded (see example in figure 1.2), but the number of images found on
these sites is necessarily limited.

There are good computer models that can generate clear sky [3, 4], but there is no practical
method that could generate a sky with clouds. Various heuristic procedural methods are
used to generate clouds in computer games and similar applications, but these methods
cannot produce photorealistic results.

With recent advances in volumetric rendering [5], it might soon become possible to
render photorealistic clouds. However, synthesizing volumetric density data for clouds
is a hard problem. There are some heuristic approaches (such as [6]) for procedural
generation of volumetric clouds, but the results are of low quality. Accurate physical
simulations of volumetrics such as smoke and fire produce very realistic results and are
already used by 3D artists, but these methods cannot be used to simulate clouds forming,
evolving and dissolving over a wide area. Moreover, providing artistic control over a full
atmospheric simulation is challenging, because the atmosphere is a very complex system,
so modifications of physical variables such as temperature, pressure or humidity have
non-intuitive and unpredictable effects due to the chaotic nature of the atmosphere.

In this project, we explore a different approach and try to train a generative model from
examples of real images of the sky, applying recent breakthroughs in deep generative
models [7, 8, 9]. Using these techniques, novel content can be created quickly and no
physical simulation of the atmosphere is necessary, because the model works directly
on the level of HDR images. Essentially, we want to find out whether we can replace
physically-based simulation and rendering derived from first principles (inductive approach)
with a machine learning model trained to fit real data (deductive approach).

This thesis expands on the work by Štěpán Hojdar [10]. Our contributions are as follows:

• We significantly improve the quality of the generated images at medium resolutions
(up to 1K).

• We propose a novel way of generating high-resolution images and use it to generate
images at resolutions up to 4K. This approach could scale up to the target resolution
of 16K-32K and is not limited to the generation of sky images, so it could be used
to generate other kinds of high-resolution content.

4

Figure 1.1: Architectural visualization “House on the Hill” by Artem Kotov (http://
rigidstyle.com).

Figure 1.2: A sample HDR environment image from HDRI Haven [2] (Rooitou Park). This
is a full 360° image in equirectangular projection, which also includes ground. Our aim is to
reproduce only the sky.

5

http://rigidstyle.com
http://rigidstyle.com

2. Related work
This chapter will introduce the reader to a selected number of topics from deep learning
that are relevant to this work. We assume prior background in computer science and
basics of machine learning.

2.1 Deep learning
In this section we describe deep learning and modern neural networks. A reference that
covers almost all of the material in this section is the excellent textbook by Goodfellow,
Bengio and Courville [11]. We do not attempt to trace the development of basic ideas
in deep learning to the original publications and refer the reader to [11] for extended
biography and more detailed discussion of these topics.

2.1.1 Feedforward networks
Feedforward networks are general function approximators of the form

y1, . . . , yM = f(x1, . . . , xn)
where xi are the inputs and yj are the outputs. The network f is defined as a sequence
of operations that compute the outputs yj from the inputs xi. Internally, the network f
may compute some intermediate values before producing the outputs yj . The structure of
the operations that form the network is fixed, but we can define some intermediate values
as unknown weights w (or parameters), which must be learned from data.

The inputs, outputs, and intermediate values are K-dimensional arrays of real numbers or
integers1. Traditionally, they are called tensors because they generalize scalars, vectors
and matrices to higher dimensions, but no algebraic structure is associated with them.

Feedforward networks are used as models in machine learning. As an example, a feedforward
network for classification takes the sample features as inputs x and produces a vector of
class probabilities as the output y.

A network can be represented as bipartite directed acyclic graph, where the two partitions
are the tensors and the operations. Input tensors and parameters have no incoming edges,
other tensors have exactly one incoming edge from the operation that computes their
value. Each operation has one incoming edge for every input tensor and one outgoing edge
for every output tensor.

Note that in this very general view, feedforward networks are not very different from SSA
form [12] (used in compilers for imperative programming languages) and similar notations
that represent computation as a graph.

2.1.2 Training
To use a feedforward network, we must determine values of the unknown parameters. This
process is called training.

1Though integers can be used only in a limited way, because they are not differentiable; see below for
description of network training.

6

2.1.2.1 Loss functions

We want to find “good” values of the parameters. To specify what “good” means, we need
a loss function L(w) which maps network parameters w to a single scalar. Low values
of the loss function correspond to better parameters, so our aim will be find parameters w
that minimize the loss L(w).

The loss function can be arbitrary, the only restriction is that it should be differentiable
with respect to the network parameters almost everywhere. In machine learning, where our
goal is to fit some model to data, the loss measures the quality of the fit, which depends on
the training dataset D. In this case, the loss function is typically defined as an expectation
over the dataset:

L(w) = LD(w) = Ex∼PD [Lx(w)]
where PD(x) is the distribution of samples x in the dataset D and Lx(w) is the loss for
a single sample x.

We typically cannot evaluate L(w) directly, because the dataset is too large or even infinite.
However, we can estimate the loss by sampling a list x1, . . . , xn ∼ PD and computing the
estimator ˆ︁L: ˆ︁L = mean

i
Lxi

(w)

The list x1, . . . , xn is called a minibatch (or simply batch) of size N . In practice, the
feedforward network can process whole minibatch at once: we stack the N tensors for each
sample into a single tensor with an extra dimension of size N .

Some examples of common loss functions in machine learning are:

• For classification, where the network estimates P (c | x) (probability of class c,
given the input features x), we typically use cross-entropy between the predicted
distribution (produced by the network) and the ground truth distribution (from
training data).

• For regression, where the network estimates E[y | x] (expected value of variable y
given the input features x), the standard choice is to use mean squared error: square
of the difference between the predicted value and the true value.

In many cases, the loss is not directly the performance metric that we want to optimize,
typically because the metric is not differentiable (classification accuracy), is intractable
(the total reward of an agent in reinforcement learning), or because it is hard to describe
formally (“the image looks good”).

2.1.2.2 Optimization algorithms

Once we have the network and the loss function, training is reduced to a minimization
problem:

arg min
w

L(w)

This problem is well studied in the optimization literature [13, 14]. If the loss is not
convex, which is typical, it is not feasible to find a global minimum, but we can find a local
minimum that works well in practice. All optimization methods used in deep learning are

7

iterative methods that update the parameters w in small steps, gradually decreasing the
loss. To determine the direction and length of these steps, the methods use the gradient
g = ∇w L = ∂L

∂w
.

If we estimate the loss L from a minibatch x1, . . . , xn, we can also estimate the gradient
g using estimator ˆ︁g: ˆ︁g = mean

i
∇w Lxi

(w) = ∇w
ˆ︁L

This means that we simply treat the minibatch estimator ˆ︁L as the loss function. The
optimization algorithms should converge to a local minimum even if these stochastic
estimates are used instead of the true gradient.

We will briefly describe the most important optimization algorithms. The algorithms used
in deep learning are quite straightforward, because we work with models with large number
of parameters that cannot be efficiently and reliably trained using more sophisticated
methods

Stochastic gradient descent (SGD): this is the simplest algorithm, where the step is
simply the gradient ˆ︁g scaled with learning rate, which is given as a hyperparameter:

η : learning rate
for t = 0, 1, . . . doˆ︁gt ← ∇w

ˆ︂Lt

wt ← wt−1 − η · ˆ︁gt

Stochastic gradient descent with momentum: to stabilize gradient descent, it is
often beneficial to introduce momentum: instead of taking the step in direction of current
gradient, we use an exponential moving average v of gradients from previous steps.

η : learning rate
α : momentum
for t = 0, 1, . . . doˆ︁gt ← ∇w

ˆ︂Lt

vt ← α · vt−1 − η · ˆ︁gt

wt ← wt−1 + vt

RMSProp: to dynamically adapt the learning rate of different parameters, the RMSProp
algorithm [15] accumulates exponential moving average r of squared gradients, which is
then used to scale the update:

η : learning rate
ρ : decay rate
for t = 0, 1, . . . doˆ︁gt ← ∇w

ˆ︂Lt

rt ← ρ · rt−1 + (1− ρ) · ˆ︁g2
t (elementwise)

wt ← wt−1 − η · ˆ︁gt /
√

rt (elementwise)

Adam: the Adam algorithm [16] (“adaptive moments”) estimates the first and second
moment of the gradient, so it in effect combines RMSProp with momentum:

8

η : learning rate
β1, β2 : decay rates of the first and second moment
for t = 0, 1, . . . doˆ︁gt ← ∇w

ˆ︂Lt

vt ← β2 · vt−1 + (1− β2) · ˆ︁g2
t (elementwise)

mt ← β1 ·mt−1 + (1− β1) · ˆ︁gt

wt ← wt−1 − η ·mt /
√

vt (elementwise)

2.1.2.3 Backpropagation

The last missing piece of the puzzle is computing the gradients. Fortunately, derivatives
in feedforward networks can be efficiently and exactly calculated using the method of
backpropagation. To understand backpropagation, it is useful to return to the notion
of the network as a graph described in subsection 2.1.1. We can describe the loss function
L(w) using exactly the same kind of operations as the network, so we end up with a graph
that has the network parameters wi as inputs and the scalar loss L as its sole output. Our
goal is to compute the derivatives ∂L / ∂wi.

We will describe backpropagation as an inductive process which starts at the output and
ends at the inputs. For this reason, this computation is often referred to as the backward
pass, in contrast to the evaluation of the graph, which is the forward pass.

To start the induction, we note that the gradient of the output L is one, ∂L / ∂L = 1.
Now, assume that for some operation F with inputs x1, . . . , xn and outputs y1, . . . , ym,
we have already computed the gradients ∂L / ∂yj for all outputs yj. From the chain rule
of calculus, we obtain:

∂L
∂xi

=
∑︂

j

∂L
∂yj

· ∂yj

∂xi

(2.1)

where ∂yj / ∂xi are the partial derivatives of function F . If the variable xi is an input of
multiple operations (or if it appears as an input of the same operation multiple times),
the gradients from each operation are summed together. Note that when the variables
are K-dimensional tensors, their gradients are also K-dimensional tensors with the same
shape.

Therefore, for every function F that appears as an operation in the graph, we need
to be able to compute 2.1. The backpropagation algorithm then correctly handles any
combination of operations. The algorithm is completely general and can be used to evaluate
gradients for any graph, not only for training feedforward networks.

2.1.3 Deep neural networks
In the previous subsections, we have described feedforward networks as arbitrary compu-
tational graphs to emphasize that the framework is quite general. However, the networks
used in deep learning share many common traits and are, for historical reasons, called
neural networks.

Neural networks are organized into layers, which are typically sequentially ordered. The
input of the network flows into the first layer, and the output of the last layer is used as

9

the output of the network. The values that flow inside the network are called activations
or features.

2.1.3.1 Fully-connected layer

The most basic type of layer is the fully-connected layer (also dense layer or linear
layer). The input to this layer is a vector x of size N , and the output is a vector y of size
M . The layer has two parameters, a weight matrix A of shape M × N and bias b of size
M , and performs affine transformation of x, followed by the element-wise application of
activation function f :

y = f(Ax + b)

The purpose of the activation function f is to make the layer non-linear. Many activation
functions were proposed, but the most important ones are:

• ReLU (rectified linear unit; also positive part function in mathematics): relu(x) =
x+ = max(x, 0) (see plot in figure 2.1a). This function keeps positive values un-
changed, but clips all negative values to zero. The derivative is trivial (relu′(x) =
[x > 0]), so the layer is easy to train, because it is “almost linear”. ReLU is typically
the default choice of an activation function in deep learning.

• Leaky ReLU: lrelu(x) = max(x, αx) (see plot in figure 2.1b), where α is a hyperpa-
rameter between 0 and 1. Like ReLU, this function keeps positive values unchanged,
but the negative values are multiplied by α (so the negative value “leaks through”
the function). The motivation behind Leaky ReLU is that some learning happens
even for negative activations.

• Sigmoid (more precisely logistic sigmoid): sigmoid(x) = exp(x) / (1 + exp(x))
(see plot in figure 2.1c). The sigmoid function is useful to produce values interpreted
as probabilities, because it maps any real number into (0, 1). Note that for inputs
with large absolute value, the derivative diminishes to almost zero and we say that
the function saturates. Saturation is a problem for gradient-based learning, because
the gradient flowing through the function vanishes and learning cannot proceed. For
this reason, sigmoid is usually used only at the output of a network, to convert
arbitrary activations into probabilities.

• Softplus: softplus(x) = log(exp(x) + 1) (see plot in figure 2.1d). The softplus
function can be thought of as a “softened” variant of the positive part function x+:
for positive x, softplus(x) ≈ x, and for negative x, softplus(x) ≈ 0. It is not typically
used as an activation function on its own, but it arises when we take logarithm of
a sigmoid activation: log(sigmoid(x)) = −softplus(−x).

2.1.3.2 Batch normalization

Another type of layer is batch normalization, introduced by Ioffe and Szegedy in [17].
The authors observed that as the layers close to input are trained, the distributions of
activations flowing into layers deeper in the network often significantly vary during training,
so the deeper layers have to adapt to the changing inputs and thus learn slowly. Batch
normalization is a way of normalizing the activations that helps to reduce this phenomenon,
makes the effect of parameter updates more localized, accelerates learning, and makes it
easier to train deeper networks.

10

−5 0 5
0

2

4

6

(a) The relu function.

−5 0 5

0

2

4

6

(b) The lrelu function.

−5 0 5
0.00

0.25

0.50

0.75

1.00

(c) The sigmoid function.

−5 0 5
0

2

4

6

(d) The softplus function.

Figure 2.1: Plots of the most important activation functions.

In fully-connected layers, batch normalization is usually inserted after the matrix multipli-
cation and before the activation function. For each feature i, it computes the mean and
variance over all N samples in the minibatch and normalizes the input activations xin(n, i)
to normalized activations y(n, i) with zero mean and unit variance:

y(n, i) = xin(n, i)− µ(i)
σ(i)

µ(i) = mean
n

xin(n, i)

σ(i)2 = mean
n

(xin(n, i)− µ(i))2

It is important that these operations are part of the computation graph of the network,
so they participate in the backpropagation algorithm. In particular, this means that the
gradient descent algorithm will not update the parameters in a way that simply shifts the
bias or scales the variance, because such step would not change the output of the layer.

However, forcing the output of the layer to be normalized may reduce the expressive power
of the network in the presence of nonlinear activation functions. For this reason, the
normalized activations y(n, i) are typically scaled and shifted again using learned scale
factors a(i) and biases b(i):

xout(n, i) = y(n, i) · a(i) + b(i)

At test time, normalization over minibatch would be problematic, so the activations are

11

normalized using an exponentially smoothed average of µ(i) and σ(i) computed from
minibatches during training.

2.1.3.3 Regularization

The dichotomy between training performance and testing performance is a core issue in
machine learning. We train our models to fit the training data, but our goal is to find
models that generalize to unseen samples and perform well on the testing data, which is
not available for training. Regularization is any method that aims to find more general
models that do not necessarily perform better on the training data.

Most regularization methods define some measure of model complexity and add it to the
loss function. In this way, the training explicitly searches for a solution that balances the
two requirements: it must fit the data well, but it also should not be too complex and thus
likely to overfit. The relative weight given to the regularization term in the loss function
can be controlled and the optimal weight is typically determined through experimentation.

L2 regularization (or L2 penalty) is a basic method with regularization term LL2 that
penalizes the sum of squares of parameters:

LL2 = 1
2
∑︂

i

∥wi∥2
2

This regularization is quite common in other areas of machine learning and statistics,
where it is sometimes referred to as ridge regression. The basic intuition is that large
parameter values are more likely to cause overfitting, so L2 regularization pushes them
towards zero.

Weight decay is a related regularization method that simply scales the weights with
a constant in range (0, 1) after each training iteration, which directly moves all weights
towards zero. In fact, it can be shown that for gradient descent, weight decay is equivalent
to L2 regularization. However, this equivalence does not hold for adaptive optimization
algorithms such as Adam [18].

The observation that models of lower complexity tend to generalize better corresponds to
the principle of Occam’s razor, which states that the simplest explanation is most likely
to be true. Equivalently, in the Bayesian view, we can think of regularization as a prior
probability distribution over the space of possible models which assigns higher probability
to simple models. Learning then searches for the model that maximizes the posterior
probability of the model, given the training data; the posterior probability incorporates the
prior, so simple models are preferred. Indeed, the connection between some regularization
methods and Bayesian priors can in some cases be formulated exactly.

Some aspects of training may also improve generalization as a side-effect, and can thus be
viewed as indirect regularization methods. This includes stochastic gradient descent with
large learning rate (which helps the network to avoid local minima of the loss function) and
batch normalization (which helps generalization by making the layers more independent).

12

2.1.4 Convolutional networks
Convolutional networks (also convnets or convolutional neural networks, CNNs) are
feedforward networks that are especially suited to process images. Images are represented
as tensors of shape (C, H, W)2, where C is the number of channels, W is the width
and H is the height. Intermediate activations in the network, where the channels do not
correspond to channels of the input image (such as RGB), are usually called feature
maps and their channels are features.

2.1.4.1 Convolution

The two-dimensional convolution operation is the workhorse of convolutional networks.
In its most basic form, it maps a tensor xin : (Cin, H, W) to tensor xout : (Cout, H −Kh +
1, W −Kw + 1) as follows:

xout(cout, y, x) =
∑︂

j,i,cin

xin(cin, y + j, x + i) · k(cout, cin, j, i) (2.2)

where k : (Cout, Cin, Kh, Kw) is a parameter that specifies the kernel (or weights). Each
pixel (y, x) of the output image y depends only on a patch of Kh × Kw pixels of the input
image, weighted by the elements of the kernel. The same kernel is used over the whole
image, so the output values do not depend on the exact (y, x) coordinates. This property
is called translation invariance, because if the input image is translated (shifted), the
output image is translated by the same amount but is otherwise unchanged.

Note that the formula 2.2 in fact describes a cross correlation and not a convolution
(because the kernel k is not flipped), but this distinction is not important for our purposes.

In convolutional networks, we typically use square kernels (K = Kh = Kw) with sizes
between 2 × 2 and 7 × 7, most typical size being 3 × 3. A special case is the 1 × 1 convolution,
which effectively reduces to pixel-wise matrix multiplication:

xout(cout, y, x) =
∑︂
cin

xin(cin, y, x) · k(cout, cin)

Convolutions can be defined for any number of dimensions. In particular, one-dimensional
convolution maps a tensor x : (Cin, T) to tensor y : (Cout, T − K) using kernel k :
(Cout, Cin, K). One-dimensional convolutions are not used in networks that process images,
but they are easier to illustrate (in figure 2.2a).

Padding (illustrated in figure 2.2b): For kernels of shape Kh × Kw larger than 1 × 1, the
output from convolution is smaller than the input; height is reduced by Kh − 1 and width
by Kw − 1. This is often undesirable, so we make the input image artificially bigger by
padding it with extra pixels at the sides of the image: (K − 1) / 2 pixels are necessary to
ensure that the output image has the same size as the input image. The extra pixels are
usually filled with zeros (zero padding).

Stride (illustrated in figure 2.2c): The convolution operation may also specify a stride
Sh, Sw, which replaces the term x(cin, y+j, x+i) in formula 2.2 with x(cin, Shh+j, Swx+i).

2The shape (H, W, C), which is more common in other areas of computer image processing, is also
sometimes used.

13

(a) Convolution with kernel size 3.

(b) Convolution with kernel size 3 and zero padding 1.

(c) Convolution with kernel size 3 and stride 2.

(d) Transposed convolution with kernel size 3.

(e) Transposed convolution with kernel size 3 and stride 2.

Figure 2.2: Examples of various types of one-dimensional convolutions with kernel size 3.

14

In effect, we apply the kernel k only at spatial positions where y is a multiple of Sh and x
is a multiple of Sw. Strided convolutions are used to downsample images: for example,
a 4 × 4 convolution with stride 2 and padding 1 will halve the resolution of the image.
Note that by setting stride Sh = Sw = 1, we obtain the basic convolution.

Transpose (illustrated in figures 2.2d and 2.2e): Convolution is a linear operator [19],
therefore it has a transpose, referred to as the transposed convolution (some authors
incorrectly use the term deconvolution to refer to the transpose). The transpose occurs
naturally when computing the gradient, but it is sometimes useful on its own. Intuitively,
the transpose turns the convolution on its head: in standard convolution, the flow of values
into every output pixel is weighted by the kernel; while in transposed convolution, the
flow of values out of every input pixel is weighted by the kernel.

For convolutions with stride 1, the transposed convolution is in fact almost the same as
standard convolution, only the kernel is reshaped and the pixels at the border are handled
differently. For higher strides, however, the transposed convolution upscales the image, so
that a transposed 4 × 4 convolution with stride 2 and padding 1 will double the resolution
of the image.

2.1.4.2 Convolution layer

The convolution layer in convolutional networks is a direct analogy of the fully-connected
layer in neural networks, with matrix multiplication replaced by convolution. The layer
has the weights w (the convolution kernel) and bias b as parameters, and it maps input
feature map xin into output feature map xout as follows:

xout = f(conv(xin, w) + b)

where f is an activation function. Of course, the convolution operation may have stride,
padding, or it may be transposed. Multiple convolution layers are often stacked into
a convolution block, which contains multiple convolutions in a sequence, separated by
activation functions.

2.1.4.3 Pooling layers

To produce a vector or a scalar from an image, it is necessary to downscale the feature
maps several times. We can either apply a strided convolution or we can use a pooling
layer, which combines values from multiple pixels in the pooling region (typically 2 × 2)
into a single pixel. Max pooling takes the maximum value of each feature in the region
of each pixel, while average pooling takes the mean value.

2.1.4.4 Normalization

Batch normalization can be easily applied to convolutional networks, with the statistics
for each feature are calculated over all spatial positions.

Instance normalization [20] normalizes each feature over all spatial locations, separately
for every sample in the minibatch. The most important advantage over batch normalization
is that it can be applied when the batch size is small, and there is no difference between
training and testing.

15

conv-layer

conv-layer

(a) stacked

conv-layer

conv-layer

+

+

(b) residual connections

Figure 2.3: Comparison of sequentially stacked convolutions and convolutions with residual
connections.

2.1.4.5 Residual connections

In a standard convolutional network with convolution layers C1, . . . , CN , the layers are
stacked in sequential order as follows (illustrated in figure 2.3a):

xn = Cn(xn−1)

so we have xN = CN(CN−1(. . . C1(C0(x0)) . . .)). When residual connections [21] are used,
we directly add the input of the convolution to its output (illustrated in figure 2.3b):

xn = Cn(xn−1) + xn−1

This makes the network easier to train, because the gradient can directly propagate from
xn to xn−1.

2.1.4.6 Motivation

To understand how convolutional networks can learn something useful, consider the
problem of deciding whether an image contains a cat (example in figure 2.4). The input
to the network is the image as a tensor with RGB intensities of each pixel and the output
is a probability that the image depicts a cat. Each convolution layer will then process the
image into features at progressively higher level, until the last layer produces the estimated
probability.

This first few layers of the network may learn the basic structure of an image, such as
edges and some representation of texture. The following layers will combine these features
to recognize higher-level phenomena, such as corners at positions where two edges meet
(“pointy” feature) and more specific textures, such as fur (“furry” feature). Deeper layers
may start to detect specific cues, such as the cat’s ears (“ear” feature as a combination
of “pointy” and “furry”), eyes (“eye” feature that recognizes “round” and “yellow”), and

16

(a) A cata.

ahttps://commons.wikimedia.org/wiki/
File:Felis_catus-cat_on_snow.jpg

(b) A Coulommiers cheesea (not a cat).

ahttps://commons.wikimedia.org/wiki/
File:Coulommiers_lait_cru.jpg

Figure 2.4: Comparison of a cat and a piece of cheese.

the M-shaped stripes on the forehead that are typical of tabby cats. The final layers will
combine these features into an overall measure of catness.

In fact, features in any deep neural network, including convolutional networks, are noto-
riously hard to interpret, so the description in the previous paragraph is very idealized.
For example, recent work [22] shows that contrary to the previous belief, convolutional
networks recognize objects mostly by their texture and not by their shape.

2.1.4.7 Architectures

We will now describe some network architectures of convolutional networks that were
created for image classification and then adapted for other purposes. Progress in this area
is connected to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [23],
a competition focused on classification accuracy on the ImageNet dataset [24] using
1000 classes.

AlexNet: The network from [25] is an early example of a deep convolutional network. It
significantly outperformed other classification methods in the ILSVRC and became one of
the most cited works in the field of deep learning. The network exhibits many properties of
modern networks, such as ReLU non-linearity and GPU training, but with 5 convolution
layers, it is quite shallow by today’s standards. The convolutions are followed by three
fully-connected layers, which transform the feature maps into class probabilities.

VGG: The VGG network [26] simplified the architecture by using only 3 × 3 convolutions
and 2 × 2 max-pooling, and reached the depth of up to 16 convolutions, followed by
3 fully-connected layers (which account for most of the parameters of the network).

ResNet: Residual connections were introduced in [21, 27] to create the ResNet architecture.
Two or three convolution layers form a block and a residual connection is routed around
the block. This improves the flow of gradient in the network and allowed the authors to
train extremely deep networks with up to 152 layers. The convolutions end with global
average pooling and a single fully-connected layer that produces the class probabilities.

17

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/File:Coulommiers_lait_cru.jpg
https://commons.wikimedia.org/wiki/File:Coulommiers_lait_cru.jpg

The increased depth allows the network to achieve higher accuracy than VGG, even though
it uses fewer parameters.

2.2 GAN
Generative adversarial networks (GANs) were introduced by Goodfellow et al. in [28]
as a general framework for training a generative model of a probability distribution
P (x) = Preal(x) for which we do not have an explicit model, but a dataset of samples x
from Preal(x) is available. We will describe GANs in detail because we use this approach
in our work to model the sky.

A GAN consists of two feedforward networks, the generator G and the discriminator D.
The generator is a function xfake = G(z), where z is a latent vector that is sampled
from the latent distribution z ∼ Pz(z). The latent distribution is fixed by the designer of
the network, typical choices are standard Gaussian or uniform distributions. Our aim is
to make the distribution Pfake(x) generated by xfake = G(z), z ∼ Pz(z) equivalent to the
true data distribution Preal(x), so that the generator G can be used to synthesize samples
from Preal(x) using z as a source of randomness.

The purpose of the discriminator network D is to act as a loss function for the training of
G. The discriminator is trained as a classifier to distinguish between the real samples xreal
from Preal(x) (sampled from the dataset) and the fake samples xfake synthesized by the
generator. The output D(x) of the discriminator is a score that measures how real or
fake the input x looks to the discriminator. Therefore, we obtain a computable measure
of “realness” of any given sample x, which can be used for training the generator G to
produce fake samples that cannot be told apart from the real samples by the discriminator.

The discriminator D is trained as a standard classifier network. We draw a sample xreal from
the dataset and another sample xfake from the generator (using xfake = G(z), z ∼ Pz(z)),
and train D to assign high scores to xreal and low scores to xfake. Note that during training
of D, the generator G serves only as a means to generate the fake sample, we do not
backpropagate through G and do not update its weights.

train D : maximize D(xreal), minimize D(xfake)
where xreal ∼ Preal(x), xfake = G(z), z ∼ Pz(z)

To train the generator, we generate a random latent sample z and evaluate xfake = G(z).
Then we compute the discriminator score D(xfake) = D(G(z)) for the fake sample and
train G to maximize this score. Note that we backpropagate through D and G, but we
only update the parameters of G, the parameters of D are not modified.

train G : maximize D(G(z))
where z ∼ Pz(z)

In each iteration of the training process, we train both D and G, trapping them in an
endless adversarial game: as D gets better at separating the real and fake samples, G
gets better at synthesizing samples that seem more real, until the networks reach an
equilibrium: G learns to produce perfect samples and D is no longer able to separate the
real from the fake.

18

In reality, there is no guarantee that the two networks reach this equilibrium. A common
failure is mode collapse, a situation where the generator G learns to ignore the latent
sample z and produces a single sample x∗ that (approximately) maximizes D(x∗); the
networks then engage in a game of mouse and cat, where D attempts to “catch” x∗ and
assign a low score to it, while G “escapes” by quickly moving x∗ to a region of higher
score.

Another situation where the training diverges is when D becomes so strong that it
confidently scores all outputs of G as uniformly fake and does not provide a useful gradient:
in that case G cannot learn and the generated samples do not improve. On the other
hand, when D is too weak, it may not be able to distinguish the real from the fake, so the
generator G will not improve.

2.2.1 Loss
The stability of training of GANs is highly influenced by the exact formulation of the loss
function used to train D and G. Various loss functions and regularization methods have
been proposed, we are going to describe the most important contributions.

2.2.1.1 Logistic loss

Logistic loss (also saturating logistic loss, saturating loss, standard loss, SGAN) is the
original loss function proposed in [28]. We define a value function V (D, G):

V (D, G) = log(sigmoid(D(xreal))) + log(1− sigmoid(D(G(z)))
where xreal ∼ Preal(x), z ∼ Pz(z)

We interpret sigmoid(D(x)) as the probability that x is real according to the discriminator
D. When D(x) > 0, we have sigmoid(D(x)) > 1

2 and x would be classified as real; when
D(x) < 0, we have sigmoid(D(x)) < 1

2 and x would be classified as fake.

Note that in line with common practice in statistics and machine learning, we define
the value function in terms of log-probabilities, which makes the resulting optimization
problem better behaved and more numerically stable.

The discriminator is trained to maximize V (D, G): it simultaneously maximizes

sigmoid(D(xreal)) = P (xreal is real | D)

and
1− sigmoid(xfake) = P (xfake is fake | D)

so that it learns to correctly classify the samples. Negating the value function to obtain
loss function and rewriting log-sigmoids as softpluses, we obtain:

L(D) = − log(sigmoid(D(xreal))) + log(1− sigmoid(D(G(z))))
= softplus(−D(xreal)) + softplus(D(xfake))
where xreal ∼ Preal(x), xfake = G(z), z ∼ Pz(z)

On the other hand, the generator is trained to minimize V (D, G): it minimizes

1− sigmoid(D(G(z)) = P (G(z) is fake | D)

19

so that it learns to generate xfake = G(z) that are not classified as fake by the discriminator.
Note that the first term of V (D, G) does not depend on G, so we can drop it from the
loss function of G to obtain:

L(G) = log(1− sigmoid(D(G(z)))) =
= −softplus(D(G(z)))
where z ∼ Pz(z)

2.2.1.2 Non-saturating logistic loss

Non-saturating logistic loss (also non-saturating loss, modified standard loss) solves
the saturation problem of the previous loss. The problem is clear from the plot of the
softplus function (in figure 2.1d). The slope of the function is close to 1 for positive values,
but it diminishes almost to zero for negative values. Therefore, when the discriminator
learns to assign negative values to D(xfake), the term softplus(D(G(z)) in L(G) is pushed
to the region of small slope of the softplus function, the gradients of G with respect to
L(G) vanish and G stops learning.

This problem was already discussed in the original paper [28] and the proposed fix is
simply to replace the generator loss with

L(G) = softplus(−D(G(z)))
where z ∼ Pz(z)

Note that L(D) saturates when D becomes very good (D(xreal)) is high and D(xfake) is
low), while the modified L(G) saturates when G becomes very good (D(xfake) is high).
This effect helps to stabilize the training, because it is now harder for one network to
overwhelm the other network.

2.2.1.3 LSGAN

Least-squares loss (LSGAN), introduced by Mao et al. in [29, 30], discards the
probabilistic interpretations of the score from the discriminator and simply trains the
discriminator to assign score +1 to real images and −1 to fake images:

L(D) = (D(xreal)− 1)2 + (D(xfake) + 1)2

where xreal ∼ Preal(x), xfake ∼ G(z), z ∼ Pz(z)

A natural way to train G would be to try to make D(G(z)) close to +1, but the authors of
this loss reported in [30] that they obtained better results by training G to make D(G(z))
close to 0:

L(G) = D(G(z))2

LSGAN does not suffer from saturation and is reported to produce better behaved gradients,
which make the training more stable. In our initial informal experiments, we found LSGAN
to be more stable than both logistic losses (both saturating and non-saturating). However,
it seems that the popularity of LSGAN waned in the last few years, being replaced with
other loss functions.

20

2.2.1.4 WGAN

Wasserstein GAN (WGAN) was derived by Arjovsky et al. in [31] using a mathematical
analysis of probability distances. Standard GAN can be shown to minimize the Jensen-
Shannon divergence between Preal(x) and Pfake(x), but the authors of [31] argue that better
convergence is obtained by minimizing the Wasserstein-1 distance (also called Earth-Mover
or EM distance) and show that this distance may be approximated (up to a multiplicative
constant) with:

W (Preal(x), Pfake(x)) = max
w

E[fw(xreal)]− E[fw(xfake)]

where w ∈ W , xreal ∼ Preal(x), xfake ∼ Pfake(x)

where {fw, w ∈ W} is a family of K-Lipschitz continuous functions. Therefore, fw plays
the role of the discriminator D, which is trained to maximize E[D(xreal)]− E[D(xfake)] in
order to estimate the Wasserstein distance. Negating W to transform maximization to
minimization, we obtain the loss function:

L(D) = D(xfake)−D(xreal)
where xreal ∼ Preal(x), xfake = G(z), z ∼ Pz(z)

The generator G, on the other hand, is trained to minimize the Wasserstein distance to
make Pfake(x) close to Preal(x). The first term of W (Preal(x), Pfake(x)) can be dropped
because it does not depend on G, so the generator is trained to minimize:

L(G) = −D(G(z))
where z ∼ Pz(z)

We can see that the loss functions that we obtained are almost trivial: D learns to assign
low scores to fakes and high scores to reals, and G learns to generate samples that produce
high scores. However, to make the Wasserstein approximation valid, we must ensure that
D remains approximately K-Lipschitz continuous. The original paper [31] uses weight
clipping: the weights of the network D are clipped to a small range (such as [−0.01, 0.01]),
which can be shown to enforce the Lipschitz constraint.

However, as the authors of [31] themselves stated, “weight clipping is a clearly terrible
way to enforce a Lipschitz constraint”. Indeed, the method was quickly improved by
Gulrajani et al. in WGAN-GP [32], which uses gradient penalty to enforce the
Lipschitz constraint. The gradient penalty places a soft constraint on the norm of the
discriminator with respect to its input:

Lgp = ∥∇ˆ︁x D(ˆ︁x)∥2
2

where ˆ︁x ∼ uniform(xreal, xfake), xreal ∼ Preal(x), xfake ∼ Pfake(x)

where we evaluate the penalty at points ˆ︁x randomly sampled on line segments between
pairs of real and fake samples. We therefore obtain the WGAN-GP discriminator loss:

L(D) = D(xfake)−D(xreal) + λ · ∥∇ˆ︁x D(ˆ︁x)∥2
2

where ˆ︁x ∼ uniform(xreal, xfake), xreal ∼ Preal(x), xfake ∼ Pfake(x)

where λ is the weight given to the gradient penalty.

21

We can see that the scores D(x) from the discriminator have no interpretation in terms of
probabilities and their scale is determined solely by the gradient penalty, which ensures
that the discriminator cannot reap unlimited rewards by making the absolute value of the
scores arbitrarily large. Also note that there are no issues with saturation of L(D) and
L(G), because in both cases the gradient from the loss flows directly to the network.

Note that L(D) does not change when a constant is added to the output of D(x), so the
outputs may “drift” very far away from zero, causing numerical problems. Therefore, in
practice we add “epsilon penalty” to the loss in the form of ϵ ·D(xreal)2, where ϵ is a very
small constant, to limit the drift.

2.2.1.5 R1 and R2 regularization

The convergence of GAN training was explored by Mescheder et al. in [33]. They
show that several GAN loss functions, including WGAN and WGAN-GP, are not always
locally convergent, demonstrate their divergence on simple examples, and discuss several
regularization strategies. They propose R1 and R2 regularization, which place a penalty
on the norm of the gradient of D(x) with respect to x:

LR1 = ∥∇xreal D(xreal)∥2
2

where xreal ∼ Preal(x)
LR2 = ∥∇xfake D(xfake)∥2

2

where xfake ∼ Pfake(x)

The R1 regularization penalizes the discriminator gradients on the real distribution, while
the R2 regularization penalizes the gradients on the current fake distribution.

2.2.2 DCGAN
GANs can be readily adapted to images. The original GAN paper [28] presented experi-
ments that generated images using fully-connected and convolutional networks, but the
architecture was improved by Radford et al. in DCGAN (Deep Convolutional GAN) [34],
which utilized several improvements from the state-of-art classification networks, such as
eliminating fully-connected layers, batch normalization, ReLU activation function, and
greater depth.

The discriminator D (illustrated in figure 2.5a) is quite similar to the convolutional nets
that achieved great performance in image classification. The input RGB image is passed
through multiple convolution layers which gradually decrease the resolution of the features
using strided convolutions. Leaky ReLU is used as the activation function, and batch
normalization is employed to normalize the features after each convolution block except the
first one. The output of the last convolution layer with resolution 4 × 4 is flattened from
three dimensions to one and processed by a single fully-connected layer, which outputs
the score of the input image.

The generator G (illustrated in figure 2.5b) is almost a mirror image of the discriminator
D. The latent vector z is processed by a single fully-connected layer and reshaped to
a 4 × 4 feature map, which is then processed by the convolutional layers. The convolutions
are transposed convolutions with stride, so they perform upsampling. ReLU is used as

22

the activation function, and all convolutions except the last one are followed by batch
normalization.

The DCGAN paper also demonstrated that the generator learned to capture some semantic
aspects of the images in the latent vectors. For example, on a network trained to generate
human faces, we can find the vector that corresponds to the concepts of smiling woman,
neutral woman, and neutral man (see figure 2.6). By computing the vector smiling woman−
neutral woman + neutral man, we obtain an image that plausibly represents the concept
smiling man This is similar to the semantic structure found in word embeddings generated
by the word2vec algorithm [35] in the field of natural language processing.

2.2.3 ProGAN
An important milestone in the evolution of GANs was the progressive GAN (ProGAN)
architecture by Karras et al. [7] from Nvidia Research. This work combined several
improvements of the networks and the training method to generate high-quality images in
large resolutions up to 1024 pixels (see figure 2.7 for some examples).

Progressive growing: The main contribution of this work is the method of progressive
growing (illustrated in figure 2.8). At the beginning, the networks are trained with images
at resolution 4 × 4, so both the generator G and the discriminator D are quite small.
During training, the resolution of the networks is gradually increased by adding new
convolution blocks to both networks, until both networks are grown to their full size. The
output of blocks at higher resolution is gradually blended with the output of blocks at
lower resolution in both networks, so that there are no discontinuous changes that could
disrupt training (as seen in figure 2.8a). For each resolution, we have a block that projects
feature maps into RGB intensities in G (G-to-rgb in figure 2.8a) and a block that projects
RGB intensities into feature maps in D (D-to-rgb in figure 2.8a).

This method is an example of curriculum learning, a general principle of starting with
easy tasks (low resolution) and gradually moving to harder tasks (high resolution). This
makes the training more stable and also improves the quality of the generated images.
Another benefit is that the training iterations at lower resolution are quite fast, so we can
train the networks for more iterations in the same amount of time.

Minibatch standard deviation: to increase the amount of variation in the generated
images, the discriminator is augmented with a minibatch standard deviation layer. This
layer computes standard deviation of every feature at every spatial position over all images
in the minibatch. The deviations are then all averaged together to produce a single scalar
value, which is inserted back into the discriminator as another feature, replicated over all
spatial positions and over all images in the minibatch.

This layer allows the discriminator to perceive the amount of variation among the samples
in the minibatch, so it encourages the generator to increase variation and avoid mode
collapse.

Equalized learning rate: Linear layers in deep feedforward networks (both fully-
connected and convolutional) are usually initialized from the normal distribution scaled so
that the layer approximately preserves the variation of the input signal [36]. Let x(j) be

23

image

conv

batch-norm

leaky-relu

conv

batch-norm

leaky-relu

conv

batch-norm

leaky-relu

conv

batch-norm

leaky-relu

reshape

dense

score

5×5, stride 2

5×5, stride 2

5×5, stride 2

5×5, stride 2

(a) Each block in the discriminator contains
a 5 × 5 convolution with stride 2, which down-
scales the image. The convolutions are followed
with batch normalization and the Leaky ReLU
activation function. In the last block, the fea-
ture map is flattened into a vector and processed
with a fully-connected layer to yield the score.

latent z

dense

relu

reshape

convT

batch-norm

relu

convT

batch-norm

relu

convT

batch-norm

relu

convT

tanh

image

5×5, stride 2

5×5, stride 2

5×5, stride 2

5×5, stride 2

(b) The generator is a mirror image of the dis-
criminator. Each block contains a 5 × 5 trans-
posed convolution with stride 2, which upscales
the image. ReLU is used as the activation func-
tion. In the first block, the 100-dimensional la-
tent z is processed with a fully-connected layer
and reshaped into feature map.

Figure 2.5: Architecture of DCGAN [34].

24

Figure 2.6: Latent vectors for smiling woman, neutral woman, and neutral man were obtained
by averaging latents for multiple images that displayed these concepts. Using arithmetic on these
vectors, the latent vector for smiling man was computed. (Reproduced from figure 7 of [34].)

the input to a fully-connected layer of size M , let y(i) be the output of size N , and let
A(i, j) be the weight matrix of size N × M , so we have:

y(i) =
∑︂

0≤j<N

A(i, j) · x(j)

Assume that var(x(j)) = σ2, var(A(i, j)) = a2, E[x(j)] = E[A(i, j)] = 0, and that
elements of x and A are uncorrelated. We then have:

var(y(i)) =
∑︂

0 ≤j<N

var(A(i, j)) · var(x(j)) =

=
∑︂

0 ≤j<N

a2 · σ2 =

= Na2 σ2

Therefore, we can ensure that var(y(i)) = var(x(j)) by setting a = 1√
N

, which means that
we initialize the weight matrix A(i, j) from N (0, 1

N
). For a two-dimensional convolution

with N input channels and kernel K × K, a similar derivation shows that we should
initialize the weights from N

(︂
0, 1

K2N

)︂
. This method is called the Kaiming He initialization

after the first author of [36].

This initialization method ensures that the scale of network activations is approximately
the same in the whole network; otherwise, the activations could either grow or diminish
exponentially as they flow through the network, so some layers of the network would learn
much faster than other layers, because the magnitude of stochastic gradient descent update
is directly proportional to the magnitude of the gradient.

However, the authors of the ProGAN paper note that this reasoning does not apply to
Adam and other optimizers that use the gradient to determine only the direction of the

25

Figure 2.7: Uncurated images of synthetic celebrities generated by the ProGAN network.
(Reproduced from figure 11 of [7].)

26

D-from-rgb

latent score

G-block-first

G-block

G-block

G-block

G-block

G-to-rgb

G-to-rgb

G-to-rgb

G-to-rgb

G-to-rgb

D-from-rgb

D-from-rgb

D-from-rgb

D-from-rgb

D-block

D-block

D-block

D-blockupscale downscale

mix

image image

mix

4×4

8×8

16×16

32×32

64×64

generator G discriminator D

D-block-last

(a) Progressive growing. The dashed paths indicate the low-resolution image that is currently mixed with
the high-resolution image to smooth the training. The gray paths have been used earlier in the training,
but are not relevant anymore.

upscale

conv

leaky-relu

pixel-norm

conv

leaky-relu

pixel-norm

N×N

2N×2N

2N×2N

2N×2N

(b) Convolution block in G (G-block).

conv

downscale

leaky-relu

conv

leaky-relu

2N×2N

N×N

N×N

(c) Convolution block in D (D-block).

Figure 2.8: Architecture of ProGAN [7].

27

update, but the magnitude of the update is determined by the learning rate. Therefore,
if the scale of the parameters in the network is not the same (as happens with the He
initialization), some parameters may learn too slowly while other parameters learn too
fast.

For this reason, the weights in ProGAN are initialized from N (0, 1) and multiplied by
1

K
√

N
at runtime, before they are used in the convolutions. This ensures that the scale of

the activations does not spiral out of control, but all parameters have the same scale and
are thus learned at the same rate.

Pixelwise feature normalization in G: neither G nor D use batch normalization, but
G uses pixelwise normalization of the feature maps: for each spatial position, the vector
of features is normalized to have unit length:

y(c, y, x) = x(c, y, x)− µ(y, x)
σ(y, x)

µ(y, x) = mean
c

x(c, y, x)

σ(y, x)2 = mean
c

(x(c, y, x)− µ(y, x))2

Note that µ(y, x) and σ(y, x) are computed variables, not parameters of the network. As
in batch normalization, this computation is a part of the network and participates in
backpropagation.

The convolutional blocks in G and D (illustrated in figures 2.8b and 2.8c) are composed
from two 3 × 3 convolutions followed by Leaky ReLU activations. In the generator,
pixelwise normalization is applied between the convolution and the activation function.
The blocks that project between feature maps and RGB intensities (G-to-rgb in G and
D-from-rgb in D) are 1 × 1 convolutions.

The networks are trained using the Adam optimizer with the WGAN-GP loss. The images
are not generated directly from G, but from a smoothed copy Gs that is updated with the
weights of G using exponential moving average with decay 0.999.

2.2.4 StyleGAN
StyleGAN by Karras et al. [8]3 improves ProGAN to generate images of higher quality
(see figure 2.9 for some examples). All these improvements are focused on the generator,
architecture of the discriminator was almost unchanged.

Mapping network: The latent vector z sampled from normal distribution is not used
directly, but a multi-layer mapping network F transforms it into intermediate latent
vector w. This allows the generator to learn a custom latent representation, which better
captures the semantics of the generated images. The mapping network F is composed
from 8 fully-connected layers with Leaky ReLU activations.

AdaIN (style modulation): Adaptive instance normalization (AdaIN) layers modulate
the feature maps in G using the latent w and replace pixelwise feature normalization from

3The same team that developed ProGAN.

28

Figure 2.9: Uncurated set of samples generated by the StyleGAN network. (Reproduced from
figure 2 of [8].)

29

ProGAN. Each feature map x is first normalized to unit variation and zero bias (instance
normalization) and then scaled and biased with style vectors sscale and sbias, which are
computed from a learned affine transform with weights Ascale, Abias and biases bscale, bbias:

xout(c, y, x) = xin(c, y, x)− µ(c)
σ(c) · sscale(c) + sbias(c)

µ(c) = mean
y,x

xin(c, y, x)

σ(c)2 = mean
y,x

(xin(c, y, x)− µ(c))2

sscale = Ascale ·w + bscale

sbias = Abias ·w + bbias

The authors observed that when the generator can use the latent vector w to modulate
the features with the AdaIN operation, it is no longer necessary to inject the latent into
the first convolutional block: instead, a learned constant 4 × 4 feature map is used at the
beginning of the network.

Noise inputs: To make it easier for the network to generate stochastic variation (such as
positions of individual hairs in the images of human faces), white noise image sampled
from N (0, 1) is added to the feature maps after each convolution. The noise has only
a single channel, which is broadcasted to all feature maps and multiplied using learned
per-feature scaling factors s (initialized to zeros).

xout(c, y, x) = xin(c, y, x) + s(c) · n(y, x)
n(y, x) ∼ N (0, 1)

Bilinear up/down: Bilinear interpolation is used in the generator to upscale the feature
maps. It is implemented as nearest-neighbor interpolation followed by a simple feature-wise
blur. In the discriminator, the feature maps are blurred before being downscaled with
average pooling. This is the only improvement that affects the discriminator network.

Otherwise, the generator G remains the same as in ProGAN. Notably, progressive growing
and equalized learning rate are still used, and the network has two 3 × 3 convolutions in
each convolutional block. Instead of WGAN-GP, the authors used the non-saturating
logistic loss with R1 regularization. They also trained the networks for a longer time on
a bigger dataset with higher quality, and tuned some of the training hyperparameters.

An important property of the style-based architecture is that the influence of style is
localized to the scale on which it is applied: the styles at the low resolutions affect high
level features of the scene (such as gender, age, or pose in the case of human faces), and
the styles at higher resolutions affect low level features (such as ethnicity, or skin and hair
color). This effect can be demonstrated by using different latent vectors w for different
parts of the network (see figure 2.10): the authors refer to this operation as style mixing.
To encourage the locality of style and to ensure that the network produces meaningful
images in this case, style mixing was performed even during training (this is called mixing
regularization in the paper).

30

destination

so
ur

ce

Co
ar

se
sty

le
sc

op
ie

d
M

id
dl

es
ty

le
sc

op
ie

d
Fi

ne
sty

le
s

Figure 2.10: The effect of replacing styles of the destination images with the styles of the
source images at varying resolutions: coarse (4 × 4 to 8 × 8), middle (16 × 16 to 32 × 32), fine
(64 × 64 to 1024 × 1024). (Reproduced from figure 3 of [8].)

31

Figure 2.11: Uncurated set of samples generated by the StyleGAN 2 network. (Reproduced
from figure 12 of [9].)

2.2.5 StyleGAN 2
Karras et al. improved their GAN architecture once more to yield StyleGAN 2 [9] (see
figure 2.11 for examples).

Weight demodulation: The authors note that the instance normalization scheme in
StyleGAN causes artifacts, so they replace it with a novel technique that fuses style modu-
lation and normalization. Given style scaling factors sscale, we can fuse the multiplication
by sscale into convolution weights w as follows:

w′(cout, cin, j, i) = w(cout, cin, j, i) · sscale(cout)

To approximately preserve the variation of input activations (and ensure that the activations
do not vanish or blow up), we normalize the weights w′ as follows:

w′′(cout, cin, j, i) = w′(cout, cin, j, i)
σ(cout)

σ(cout)2 =
∑︂

cin,i,j

w′(cout, cin, i, j)2

The weights w′′ are then used as the convolution kernel. This approach is reminiscent
of equalized learning rate, but we rescale the convolution weights dynamically, not with
a fixed constant.

Path length regularization: To make the mapping w → G(w) smoother, the paper
proposes a new regularization term:

Lpl =
(︂⃦⃦⃦

JT
w · y

⃦⃦⃦
− a

)︂2

where y ∼ N (0, 1)

where Jw = ∂G(w)
∂w

is the Jacobian matrix of the generator with respect to the latent vector
w, y is a white noise image, and the constant a is computed from exponential running

32

average of
⃦⃦⃦
JT

w · y
⃦⃦⃦
. This regularization term ensures that small changes to the latent w

correspond to small changes in the generated image G(w).

Lazy regularization: Instead of adding the terms for R1 regularization and path length
regularization to the loss function in every iteration, we can compute them only once every
K iterations and scale them with K. This saves significant amount of time and does not
impact image quality.

Skip and residual connections: The authors experimented with adding skip connections
and residual connections to both G and D. The best results were obtained with skip
connections in G and residual connections in D; with these architectural modifications,
progressive growing was no longer necessary and the networks were trained directly on the
target resolution.

The authors demonstrate that the improved architecture achieves better results on several
metrics and synthesizes images of higher quality. They show that the proposed path length
regularization increases generator smoothness, which improves image quality and makes it
easier to reconstruct a latent vector W that generates a particular image.

2.2.6 Other GANs
We will also briefly mention some other applications of GANs to create novel content in
computer graphics.

• pix2pix [37] trains a GAN to translate images from one domain to another (such
as edges to photos, day to night, facade labels to images, or RGB to grayscale in
figure 2.12).

• CycleGAN [38] performs the same task, but does not need to be trained on paired
images and can thus be trained on more domains (such as horses to zebras, or
Cezanne to photos in figure 2.13).

• TileGAN [39] creates large textures by seamlessly tiling images generated by
a modified ProGAN architecture (such as a satellite image in figure 2.14).

• SinGAN [40] trains a multi-scale generative model on a single image and uses it
for various tasks, such as texture synthesis or super-resolution (see figure 2.15).

Some of these methods train the generator using multiple loss functions, for example
pix2pix uses a combination of L2 loss and adversarial loss.

2.3 Super-resolution
The goal of super-resolution is to transform input image into higher resolution. There
are straightforward algorithms such as bilinear or bicubic interpolation, but more advanced
algorithms can produce results that are much more visually pleasing. These methods are
of special interest to us, because we would like to generate images in very high resolution.

SRCNN [41], the first application of convolutional networks to super-resolution, first
upscales the input image to the target resolution using bilinear interpolation, transforms

33

Labels to Street Scene Labels to Facade BW to Color

Aerial to Map

Day to Night Edges to Photo

input output

input outputinput output input output

input output input output

Figure 2.12: Image translations performed with pix2pix. (Reproduced from figure 1 of [37].)

Monet Photos Zebras Horses Summer Winter

Monetphoto zebrahorse

summer

winter

photograph Monet Van Gogh Cezanne Ukiyo-e

Monet photo zebra horse

summer

winter

Figure 2.13: Image translation performed with CycleGAN. The model was trained with
unpaired images, so it could learn mapping for which no paired samples are available (such as
zebras and horses). (Reproduced from figure 1 of [38].)

Figure 2.14: A crop from a high-resolution image generated by TileGAN. Note the tiled
structure of this image. (Reproduced from supplementary material of [39].)

34

Training image Random samples from a single image

Figure 2.15: Samples from the SinGAN model trained on a single image. (Reproduced from
figure 6 of [40].)

the RGB intensities into features with a convolution, processes the feature maps with
a stack of convolutions, and finally converts them back to RGB with another convolution.
The network was trained using mean-squared error. In effect, the convolutions learn to
sharpen the blurred image. The network architecture was improved in EDSR [42].

EnhanceNet [43] applied adversarial loss to super-resolution: they train a discriminator
D to distinguish real high-resolution images from fakes produced by the super-resolution
network. They use two other losses (perceptual loss and texture matching loss) that
use features from the VGG network and are directly related to the content and style
representations in neural style transfer. A similar approach is used by SRGAN [44], which
uses a different network architecture. Further improvements to the network architecture
and loss function were introduced in ESRGAN [45]. See figure 2.16 for a sample of results
achieved by these methods.

For a more detailed introduction to the field of neural super-resolution, we refer the reader
to the survey [46]. We note that super-resolution is a well-studied technique that is already
used commercially, such as in Nvidia DLSS4 for increasing resolution of computer games.

4https://developer.nvidia.com/dlss

35

https://developer.nvidia.com/dlss

Figure 2.16: Comparison of various superresolution methods on a few image samples. HR is
the ground truth, bicubic interpolation is the baseline analytic algorithm, remaining methods are
deep convolutional networks. Note the amount of detail synthesized by the GAN-based methods.
(Reproduced from figure 7 of [45].)

36

3. Prior work
In this chapter, we will describe the thesis of Štěpán Hojdar [10], because we directly build
upon his work.

3.1 Dataset
The major contribution of Hojdar is the method of shooting photos and processing them
into a format suitable for training. He uses a digital camera with a fisheye lens that can
capture a full 180° view, attached to a tripod and pointing upward (see figure 3.1 for an
example of captured image). In this setup, a single photo captures the whole sky, but we
still need a bracketing sequence of several photos shot in quick succession with varying
exposure in order to recover the high dynamic range. The camera was programmed to
periodically capture the whole sequence, so it could automatically operate without any
intervention from the operator. In this way, manual labor was reduced only to replacing
the battery and downloading the photos from the SD card.

The RAW images from the camera are then processed into 16-bit TIFF images, using the
open-source software RawTherape1. It performs demosaicing and partly compensates for
camera artifacts such as vignetting and chromatic aberration.

The TIFF images from a bracketing sequence are then merged together to produce a single
HDR image and converted from the lens projection into a standard fisheye projection.
This step is performed via PtGui2, a commercial software for creating panoramas.

In his work, Hojdar tested multiple projections and concluded that the most suitable one
is the stereographic fisheye projection. This projection maps the spherical angles (θ, ϕ)
(where θ is the polar distance and ϕ is the azimuthal angle) into the polar coordinates
(r, ϕ) (where the radius r ranges from 0 to 1) using the formula:

r = tan
(︄

θ

2

)︄

The end result of the whole dataset capturing pipeline is a set of HDR images in OpenEXR
format, which show the sky in stereographic fisheye projection. In total, more than
30 000 images were captured, but only a part of this amount was fully processed. See
figure 3.2 for example photos from this dataset.

3.2 Model
To train the GAN, Hojdar used the original ProGAN code3 [7]. To process HDR images,
he applied a standard log transform xout = log(xin + c) to the input HDR image xin,
where c = 10−4 is a small constant to avoid taking logarithm of zero. To ensure that the
networks focus only on the inscribed circle in the fisheye images, a circular mask is applied

1https://rawtherapee.com/
2https://www.ptgui.com/
3https://github.com/tkarras/progressive_growing_of_gans

37

https://rawtherapee.com/
https://www.ptgui.com/
https://github.com/tkarras/progressive_growing_of_gans

Figure 3.1: An image of the sky captured by the digital camera with fisheye lens used by [10].
(Reproduced from figure 3.1 of [10].)

Figure 3.2: A curated sample of processed images from the sky dataset from [10] (this sample
includes images captured after the thesis [10] was submitted).

38

Figure 3.3: Sample of artifacts in images generated by the network of [10]. The first row shows
“checkerboard” artifacts, the second row shows “oil stain” artifacts. (Reproduced from figures 5.30
and 5.31 of [10].)

to the output of the generator and the input of the discriminator, so all pixels outside of
the unit circle are set to zero.

However, the results produced by this network were not of sufficient quality and contained
many artifacts (see figures 3.4 and 3.3). The images contain many “oil stain”-shaped
artifacts in place of clouds, suffer from checkerboarded areas, and sometimes are just
completely broken.

39

Figure 3.4: Random sample of images generated by the network of [10] in resolution 256 × 256.
(Reproduced from figure 5.24 of [10].)

40

4. Methods
In this chapter we will describe our GAN models and the improvements that we made in
order to increase quality and resolution of the generated images relative to the work by
Hojdar [10].

To implement our models we use PyTorch1 [47], a deep learning framework with a Python
API. PyTorch provides a large library of operations on tensors and implements backpropa-
gation. It also includes many optimization algorithms for training feedforward networks
and provides lightweight APIs that simplify definition of neural networks, data loading
and preprocessing, and other support for machine learning tasks.

Large deep networks require a huge amount of computation and must be trained on a GPU.
PyTorch provides a unified interface for running the computations on any device, either
the CPU or a GPU (multiple GPUs may also be used in parallel). The GPU support
is implemented using CUDA2 and the cuDNN3 library, so only GPUs from Nvidia are
supported.

4.1 ProGAN
We started with the ProGAN model [7] used by Hojdar [10]. We reimplemented the official
ProGAN code4 from scratch in PyTorch, which allowed us to deeply understand every
detail of the models and of the training procedure, and also to significantly simplify the
code, which was a necessary prerequisite for further experimentation.

We have made some minor improvements to the model:

• The original ProGAN code always generates images in the target resolution, even
when training at lower resolutions, so the image is needlessly upscaled and then
downscaled5. We fixed this and generate the image only at the resolution that is
actually needed. However, this had two subtle implications:

– The gradient penalty in the WGAN-GP loss pushes the norm of the gradient
∂D(x) / ∂x to be close to 1. However, the input x changes size during training,
which changes the scale of this gradient, so we must multiply the norm by
N / Ntgt, where N is the current resolution and Ntgt is the target resoution.

– The circular mask was always applied at the target resolution in [10]. We found
that applying the mask at the lower resolutions worked well only if the masks
were created by downsampling of the binary mask at the target resolution, so
they have smooth edges.

• We center the log-transformed HDR images to have zero mean. This is a standard
preprocessing step for convolutional networks and we found that it noticeably
improved the generated results.

1https://pytorch.org/
2https://docs.nvidia.com/deeplearning/sdk/index.html
3https://docs.nvidia.com/deeplearning/sdk/index.html
4https://github.com/tkarras/progressive_growing_of_gans
5This is probably because the output of a network in TensorFlow must have fixed size.

41

https://pytorch.org/
https://docs.nvidia.com/deeplearning/sdk/index.html
https://docs.nvidia.com/deeplearning/sdk/index.html
https://github.com/tkarras/progressive_growing_of_gans

• To augment the dataset, Hojdar [10] precomputes and stores 10 fixed rotations for
every input image. We rotate the images at runtime, so we reduce disk usage by
90 % and can do arbitrary rotations. We also support images stored in float16
(half-precision) and fast compression with the Zstandard algorithm6, which further
reduces disk usage.

Section 5.1 presents extensive experiments that we performed with this architecture to try
to improve the quality of generated images.

4.2 StyleGAN
We were unable to produce high-quality images with ProGAN, so we switched to the
improved StyleGAN architecture [8, 9]. Again, we did not use the original code7 directly,
but reimplemented the model in PyTorch; however, we could reuse much of the ProGAN
code. We did not use all improvements from StyleGAN 2, only the demodulated convolution
weights in the generator (this corresponds to configuration B from [9]).

We will now describe the networks, the loss functions and the training procedure. Even
details that may seem insignificant are often crucial when training GANs, so we will describe
the architecture thoroughly, including code snippets from the actual implementation.

4.2.1 Networks
PyTorch provides a lighweight API for organizing code that implements neural net-
works. This API is based on modules, which are standard Python classes derived from
torch.nn.Module. Modules may contain named parameters and named submodules, so
they can be hierarchically composed. A parameter of a module is registered by wrapping
a Tensor object (with the values of the parameters) in a Parameter object and assigning
it as an attribute (instance variable) of the module, typically in the constructor method

init using the syntax self.name = value. The same applies to submodules, which
are also automatically registered when assigned to an attribute.

The PyTorch API is located in the namespace torch, but we import several parts of this
interface using shortened names for convenience:
import torch
import torch.nn as nn
import torch.nn.functional as F

In the code, we use nf as a shorthand for “number of features”8, for example parameter
nf in is the number of input features, nf out is the number of output features, and
nf latent is the number of features in the latent vector. We also use the name res as
a shorthand for resolution as a logarithm with base 2, for example res=6 means resolution
26 = 64. max res is the maximum resolution of the network.

The presented code snippets are simplified and omit some technical details of our imple-
mentation. However, all aspects that affect the models and their training are preserved.

6https://github.com/facebook/zstd
7https://github.com/NVlabs/stylegan2
8We inherited this convention from the original ProGAN code.

42

https://github.com/facebook/zstd
https://github.com/NVlabs/stylegan2

4.2.1.1 Building blocks

Fully-connected layer Dense

The Dense (fully-connected) module uses equalized learning rate, so the weight matrix is
initialized from N (0, 1) and appropriately scaled at runtime.
class Dense(nn.Module):

def __init__(self, nf_in, nf_out, lr_mul=1):
self.weight = nn.Parameter((1/lr_mul) * torch.randn(nf_out, nf_in))
self.weight_scale = lr_mul / math.sqrt(nf_in)

def forward(self, x):
return self.weight.matmul(x) * self.weight_scale

Convolution Conv2d

The Conv2d (two-dimensional convolution) module also uses equalized learning rate and
adds zero padding to ensure that the size of the output matches the size of the input.
class Conv2d(nn.Module):

def __init__(self, nf_in, nf_out, kernel):
self.weight = nn.Parameter(torch.randn(nf_out, nf_in, kernel, kernel))
self.weight_scale = 1 / math.sqrt(nf_in * kernel**2)
self.padding = (kernel - 1) // 2

def forward(self, x):
weight = self.weight * self.weight_scale
return F.conv2d(x, weight, padding=self.padding)

Modulated convolution ModulatedConv2d

The ModulatedConv2d module implements the weight demodulation scheme from Style-
GAN 2. The parameter self.weight stores the convolution kernel, and self.mod weight
with self.mod bias are parameters of the affine transform that maps the latent vec-
tor latent into style modulation scaling factors mod. Note that both self.weight and
self.mod weight use equalized learning rate and must be scaled with self.weight scale
and self.mod weight scale, respectively.
class ModulatedConv2d(nn.Module):

def __init__(self, nf_in, nf_out, nf_latent, kernel, demodulate=True):
super(ModulatedConv2d, self).__init__()
self.weight = nn.Parameter(torch.randn(nf_out, nf_in, kernel, kernel))
self.weight_scale = 1 / math.sqrt(nf_in * kernel**2)
self.mod_weight = nn.Parameter(torch.randn(nf_in, nf_latent))
self.mod_weight_scale = 1 / math.sqrt(nf_latent)
self.mod_bias = nn.Parameter(torch.zeros(1, nf_in))
self.padding = (kernel - 1) // 2
self.demodulate = demodulate

First, we get the sizes of the various tensors; n is the minibatch size, h and w are the height
and width of the input feature map, kh and kw are the height and width of the convolution
kernel:

def forward(self, x, latent):
n, nf_latent = latent.size()
n, nf_in, h, w = x.size()

43

nf_out, nf_in, kh, kw = self.weight.size()

latent.size() == (n, nf_latent)
x.size() == (n, nf_in, h, w)
self.weight.size() == (nf_out, nf_in, kh, kw)

Then we compute the style modulation scaling factors mod:
mod_weight = self.mod_weight * self.mod_weight_scale
mod = latent.matmul(mod_weight.t())
mod = mod + (self.mod_bias + 1)
mod.size() == (n, nf_in)

The convolution weights (kernel) have size (nf out, nf in, kh, kw), but each sample
in the minibatch has its own scaling factors, so the modulated weights have shape (n,
nf out, nf in, kh, kw). Therefore, self.weight and mod must be reshaped using the
.view() method before they are multiplied together9.

weight = self.weight.view(1, nf_out, nf_in, kh, kw)
mod = mod.view(n, 1, nf_in, 1, 1)
weight = weight * mod * self.weight_scale
weight.size() == (n, nf_out, nf_in, kh, kw)

The weights are now demodulated to ensure that weighs flowing into each output feature for
every sample in the minibatch have unit norm. The function torch.rsqrt(x) computes
the reciprocal square root 1/sqrt(x) (elementwise) and is more efficient than square
root followed by a division. The demodulate parameter may be used to turn off the
demodulation.

if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum(dim=(2,3,4), keepdim=True) + 1e-8)
demod.size() == (n, nf_out, 1, 1, 1)
weight = weight * demod

When we modulate the convolution weights, we have a different convolution kernel for each
sample in the minibatch, but the standard convolution primitive supports only a single
kernel. We can work around this limitation by using grouped convolution: to convolve
n kernels in tensor of size (n, nf out, nf in, kh, kw) with n feature maps in tensor
of size (n, nf in, h, w) to get n feature maps in tensor of size (n, nf out, h, w),
we use a grouped convolution with n groups and reshape the kernel to size (n*nf out,
nf in, kh, kw) and the input to size (1, n*nf in, h, w). We will get output of size
(1, n*nf out, h, w), which can be easily reshaped to size (n, nf out, h, w).

x = x.view(1, n*nf_in, h, w)
weight = weight.view(n*nf_out, nf_in, kh, kw)
x = F.conv2d(x, weight, groups=n, padding=self.padding)
x.size() == (1, n*nf_out, h, w)
x = x.view(n, nf_out, h, w)
return x

Activation, upscaling and downscaling

The lrelu (Leaky ReLU) function is used as the activation function in all networks. The
activations are scaled to approximately preserve input variance (we have var(lrelu(x)) =

9Dimensions of size 1 are automatically broadcasted in the multiplication, so we get a tensor of size (n,
nf out, nf in, kh, kw) by multiplying (1, nf out, nf in, kh, kw) with (n, 1, nf in, 1, 1).

44

1
2 · var(x) · (1 + α2) for any random variable x with a distribution that is symmetric around
zero).
def lrelu(x, alpha=0.2):

scale = math.sqrt(2.0 / (1 + alpha**2))
return F.leaky_relu(x, alpha, inplace=True) * scale

Upscaling is performed by upscale2d using bilinear interpolation:
def upscale2d(x, factor=2):

return F.interpolate(x, mode="bilinear", scale_factor=factor, align_corners=False)

Downscaling is performed by downscale2d with average pooling:
def downscale2d(x, factor=2):

return F.avg_pool2d(x, (factor, factor))

Minibatch standard deviation

The minibatch standard deviation layer was introduced in the ProGAN discriminator to
encourage variation in the generator outputs. It computes standard deviation for every
channel and every spatial position over the minibatch, averages the standard deviations
into a single scalar, and broadcasts it over all samples in the minibatch and all spatial
positions to form an extra feature, which is then concatenated to the feature map. Instead
of the whole minibatch, the statistics may be computed over a group of a smaller size,
given by the parameter group size.

The layer is implemented in function minibatch stddev. First, we reshape the input
feature map of size (n, nf, h, w) into (g, n/g, nf, h, w), where g is the size of the
group:
def minibatch_stddev(x, group_size):

n, nf, h, w = x.size()
g = min(group_size, n)
y = x.view(g, -1, nf, h, w)

then we compute per-group standard deviation of size (n/g, nf, h, w):
y = y - y.mean(dim=0, keepdim=True)
y = y.pow(2).mean(dim=0)
y = (y + 1e-8).sqrt()
y.size() == (n//g, nf, h, w)

average the deviations to get tensor of per-group deviations of size (n/g, 1, 1, 1):
y = y.mean(dim=(1,2,3), keepdim=True)
y.size() == (n//g, 1, 1, 1)

and broadcast these values over the groups:10

y = y.repeat_interleave(g, dim=0)
y = y.expand(n, 1, h, w)
return torch.cat((x, y), dim=1)

10The method .repeat interleave(g, dim=0) repeats each value in the first dimension g times.

45

4.2.1.2 Latent mapping network F Mapper

The network F Mapper transforms latents z ∼ N (0, 1) to latents w used by the synthesizer
network. It is a straightforward sequence of fully-connected layers. To stabilize training, the
parameters of this network are learned with a smaller learning rate than other parameters
in the generator. This is accomplished by dividing all parameters with lr mul, which is
equivalent to multiplying the learning rate by lr mul when the Adam optimizer is used,
because Adam effectively normalizes the optimization step.

One block of the F Mapper network is implemented in the F Block module:
class F_Block(nn.Module):

def __init__(self, nf_in, nf_out, lr_mul):
self.dense = Dense(nf_in, nf_out, lr_mul=lr_mul)
self.bias = nn.Parameter(torch.zeros(1, nf_out))
self.bias_scale = lr_mul

def forward(self, x):
return lrelu(self.dense(x) + self.bias*self.bias_scale)

The module F Mapper then applies these blocks in sequence:
class F_Mapper(nn.Module):

def __init__(self, nf, blocks, lr_mul):
self.blocks = nn.ModuleList([

F_Block(nf, nf, lr_mul=lr_mul)
for __ in range(blocks)

])
self.nf = nf

def forward(self, latent_z):
w = latent_z
for block in self.blocks:

w = block(w)
return w

4.2.1.3 Synthesizer network G Synthesizer

The network G Synthesizer is the main part of the generator that transforms the mapped
latent w into a fake image.

Module G Layer

The basic building block is the G Layer module, which applies a modulated convolution
and adds noise and bias. The original StyleGAN supports only a single noise channel per
layer, which is scaled with a feature-wise scaling factor before being broadcasted to all
features. However, we found that the network is able to learn richer images if it has access
to multiple noise channels, which are converted to feature maps with a 1 × 1 convolution.
The parameter nf noise determines which scheme to use.
class G_Layer(nn.Module):

def __init__(self, nf_in, nf_out, nf_latent, nf_noise):
self.conv = ModulatedConv2d(nf_in, nf_out, nf_latent, 3, demodulate=True)
self.bias = nn.Parameter(torch.zeros(1, nf_out, 1, 1))
if nf_noise == 1:

self.noise_weight = nn.Parameter(torch.zeros(1))
else:

46

self.noise_weight = nn.Parameter(torch.zeros(nf_out, nf_noise, 1, 1))

def forward(self, x, latent_w, noise):
if self.noise_weight.dim() == 1:

n = self.noise_weight * noise
else:

n = F.conv2d(noise, self.noise_weight)
x = self.conv(x, latent_w)
return lrelu(x + n + self.bias)

Modules G BlockFirst and G Block

The first block, implemented as module G BlockFirst, starts the convolution stack with
a learned constant and transforms it with a single instance of G Layer:
class G_BlockFirst(nn.Module):

def __init__(self, nf_in, nf_out, nf_latent, nf_noise):
self.const = nn.Parameter(torch.randn(1, nf_in, 4, 4))
self.layer = G_Layer(nf_in, nf_out, nf_latent, nf_noise)

def forward(self, latent_w, noise):
x = self.const.expand(latent_w.size(0), -1, -1, -1)
return self.layer(x, latent_w, noise)

The remaining blocks are implemented as module G Block. The input feature map is first
upscaled and then processed with two instances of G Layer:
class G_Block(nn.Module):

def __init__(self, nf_in, nf_out, nf_latent, nf_noise):
self.layer0 = G_Layer(nf_in, nf_out, nf_latent, nf_noise)
self.layer1 = G_Layer(nf_out, nf_out, nf_latent, nf_noise)

def forward(self, x, latent_w, noise0, noise1):
x = upscale2d(x)
x = self.layer0(x, latent_w, noise0)
x = self.layer1(x, latent_w, noise1)
return x

Module G ToRgb

The feature maps at each resolution are projected to RGB intensities (in the log domain)
with G ToRgb, which applies a single modulated convolution followed by bias:
class G_ToRgb(nn.Module):

def __init__(self, nf_in, nf_latent):
self.conv = ModulatedConv2d(nf_in, 3, nf_latent, 1, demodulate=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))

def forward(self, x, latent_w):
return self.conv(x, latent_w) + self.bias

Synthesizer network G Synthesizer

The synthesizer network G Synthesizer contains a G BlockFirst/G Block and a G ToRgb
for all resolutions:
class G_Synthesizer(nn.Module):

def __init__(self, max_res, nf_latent, nf_noise, block_nfs):

47

self.nf = lambda res: block_nfs[res-1]
self.nf_latent = nf_latent
self.nf_noise = nf_noise
self.blocks = nn.ModuleList()
self.to_rgbs = nn.ModuleList()

for res in range(2, max_res + 1):
nf_in, nf_out = self.nf(res-1), self.nf(res)
if res == 2:

block = G_BlockFirst(nf_in, nf_out, self.nf_latent, self.nf_noise)
else:

block = G_Block(nf_in, nf_out, self.nf_latent, self.nf_noise)
to_rgb = G_ToRgb(nf_out, self.nf_latent)
self.blocks.append(block)
self.to_rgbs.append(to_rgb)

G Synthesizer is able to generate the RGB image for a given latent w at any resolution
res, with optional mixing of the lower resolution controlled by the parameter mix: when
mix=0, the high resolution is returned without any modifications, but higher values of mix
will blend a corresponding amount of the lower resolution into the returned image. The
parameter noise contains a list of noise channels.

def forward(self, latent_w, res, mix, noise):
x = self.blocks[0](latent_w, noise[0])
for r in range(3, res+1):

x_down = x
x = self.blocks[r-2](x, latent_w, noise[2*r-5], noise[2*r-4])

rgb = self.to_rgbs[res-2](x, latent_w)
if mix > 0:

rgb_down = self.to_rgbs[res-3](x_down, latent_w)
rgb_down = upscale2d(rgb_down)
rgb = torch.lerp(rgb, rgb_down, mix)

return rbg

4.2.1.4 Generator network G Net

The generator network G Net simply binds together F Mapper and G Synthesizer. It also
implements sampling of random latents (both z and w):
class G_Net(nn.Module):

def __init__(self, max_res, nf_latent, nf_noise, block_nfs,
mapper_blocks, mapper_lr_mul):

self.synthesizer = G_Synthesizer(max_res,
nf_latent=nf_latent, nf_noise=nf_noise, block_nfs=block_nfs)

self.mapper = F_Mapper(nf_latent, blocks=mapper_blocks, lr_mul=mapper_lr_mul)
self.max_res = max_res

def random_latent_z(self, batch_size):
z = torch.randn(batch_size, self.mapper.nf)
return z * torch.rsqrt(z.pow(2).mean(dim=1, keepdim=True) + 1e-8)

def random_latent_w(self, batch_size):
z = self.random_latent_z(batch_size)
return self.mapper(z)

def forward(self, latent_z, res, mix):

48

w = self.mapper(latent_z)
return self.synthesizer(w, res, mix)

4.2.1.5 Discriminator network D Net

The architecture of the discriminator is very similar to the generator, with modulated
convolutions replaced by plain convolutions.

Modules D Block and D BlockLast

The convolution block at every resolution is implemented in module D Block, which
downscales the feature map after the second convolution:
class D_Block(nn.Module):

def __init__(self, nf_in, nf_out):
self.conv0 = Conv2d(nf_in, nf_in, 3)
self.bias0 = nn.Parameter(torch.zeros(1, nf_in, 1, 1))
self.conv1 = Conv2d(nf_in, nf_out, 3)
self.bias1 = nn.Parameter(torch.zeros(1, nf_out, 1, 1))

def forward(self, x):
x = lrelu(self.conv0(x) + self.bias0)
x = lrelu(downscale2d(self.conv1(x)) + self.bias1)
return x

The last convolutional block, D BlockLast, applies the minibatch standard deviation layer
before the first convolution. The 4 × 4 feature map is then flattened to a vector and
processed by two dense layers to produce the scalar score.
class D_BlockLast(nn.Module):

def __init__(self, nf_in, nf_out, mbstd_group_size):
self.mbstd_group_size = mbstd_group_size
self.conv0 = Conv2d(nf_in + 1, nf_in, 3)
self.bias0 = nn.Parameter(torch.zeros(1, nf_in, 1, 1))
self.dense1 = Dense(4*4*nf_in, nf_out)
self.bias1 = nn.Parameter(torch.zeros(1, nf_out))
self.dense2 = Dense(nf_out, 1)
self.bias2 = nn.Parameter(torch.zeros(1, 1))

def forward(self, x):
x = minibatch_stddev(x, self.mbstd_group_size)
x = lrelu(self.conv0(x) + self.bias0)
x = x.view(x.size(0), -1)
x = lrelu(self.dense1(x) + self.bias1)
x = self.dense2(x) + self.bias2
return x

Module D FromRgb

The module D FromRgb projects RGB image into feature map with a 1 × 1 convolution:
class D_FromRgb(nn.Module):

def __init__(self, nf_out):
self.conv = Conv2d(3, nf_out, 1)
self.bias = nn.Parameter(torch.zeros(1, nf_out, 1, 1))

49

def forward(self, rgb):
return lrelu(self.conv(rgb) + self.bias)

Discriminator network D Net

The module D Net then puts all pieces together to form the discriminator network. It
evaluates the appropriate part of the network based on the resolution of the input image,
optionally merging the feature map from lower resolution according to the parameter mix:
class D_Net(nn.Module):

def __init__(self, max_res, block_nfs, mbstd_group_size):
self.nf = lambda res: block_nfs[res-1]
self.mbstd_group_size = mbstd_group_size
self.blocks = nn.ModuleList()
self.from_rgbs = nn.ModuleList()

for res in range(2, max_res+1):
nf_in, nf_out = self.nf(res), self.nf(res-1)
if res == 2:

block = D_BlockLast(nf_in, nf_out, self.mbstd_group_size)
else:

block = D_Block(nf_in, nf_out)
self.blocks.append(block)
self.from_rgbs.append(D_FromRgb(nf_in))

def forward(self, rgb, res, mix):
x = self.from_rgbs[res-2](rgb)
for r in reversed(range(2, res+1)):

x = self.blocks[r-2](x)
if r == res and mix > 0:

rgb_down = downscale2d(rgb)
x_down = self.from_rgbs[r-3](rgb_down)
x = torch.lerp(x, x_down, mix)

return x

4.2.2 Losses
The loss functions implement the non-saturating logistic loss with R1 regularization of the
discriminator.

4.2.2.1 Discriminator loss D loss

The loss function for the discriminator D is implemented as function D loss. A minibatch of
real images is given as parameter real imgs, and the fake images fake imgs are generated
from random latents z. If the networks are growing and the output of generator G is a mix
between the low resolution and high resolution, we apply the same mix to the real images
using the function fade reals (given below). We also multiply both images with the
circular mask of appropriate resolution and use the .detach() method on fake imgs and
real imgs to make PyTorch forget the operations that produced these images and treat
them as leaves of the computation graph.
def D_loss(G, D, real_imgs, res, mix, circular_masks, r1_gamma):

latent_z = G.random_latent_z(real_imgs.size(0))
fake_imgs = G(latent_z, res, mix)
real_imgs = fade_reals(real_imgs, mix)

50

fake_imgs = (fake_imgs * circular_masks[res]).detach()
real_imgs = (real_imgs * circular_masks[res]).detach()

As the next step, we evaluate scores for both real and fake images using D and compute
the non-saturating logistic loss:

fake_scores = D(fake_imgs, res, mix)
real_scores = D(real_imgs, res, mix)

fake_loss = F.softplus(fake_scores)
real_loss = F.softplus(-real_scores)
loss = fake_loss + real_loss

Finally, we compute the R1 regularization term and add it to the loss:
r1_reg = D_r1_reg(D, real_imgs, res, mix, r1_gamma)
return loss + r1_reg

The function fade reals, applied to the real images before they are given to the discrimi-
nator D, simply mixes the downscaled image with the original:
def fade_reals(x, mix, upscale_mode):

x_down = upscale2d(downscale2d(x), upscale_mode)
return torch.lerp(x, x_down, mix)

4.2.2.2 R1 penalty D r1 reg

The R1 gradient penalty for the discriminator D is computed in function D r1 reg. The func-
tion torch.autograd.grad computes the gradient of the sum of scores real score sum
with respect to the input images real imgs11:
def D_r1_reg(D, real_imgs, res, mix, r1_gamma):

real_scores = D(real_imgs, res, mix)
real_score_sum = real_scores.sum()

r1_grads = torch.autograd.grad(
output = real_score_sum,
input = real_imgs,

)

We can now compute the squared L2 norm and rescale it to account for the lower resolution
of the images:

r1_norms = r1_grads.pow(2).sum(dim=(1,2,3))
r1_norms_scaled = r1_norms / 2**(D.max_res - res)

The R1 regularization term is then weighted by the parameter r1 gamma:
return r1_norms_scaled * (0.5*r1_gamma)

4.2.2.3 Generator loss G loss

The generator loss, computed in G loss, is quite straightforward. We generate a minibatch
of random fake images using the generator G and multiply them with the circular mask:
def G_loss(G, D, batch_size, res, mix, device, circular_masks):

latent_z = G.random_latent_z(batch_size, device=device)

11We have simplified the real function torch.autograd.grad, which in fact takes a list of inputs, a list
of outputs, and a list of gradients w.r.t. the inputs (which are 1 by default).

51

fake_imgs = G(latent_z, res, mix)
fake_imgs = fake_imgs * circular_masks[res]

We then score the images using the discriminator D and compute the non-saturating logistic
loss:

fake_scores = D(fake_imgs, res, mix)
loss = F.softplus(-fake_scores)
return loss

4.2.3 Training
We start the training with 600k images at resolution 16 × 16, and then grow the network
in phases. At the beginning of each phase, we gradually mix the high resolution into
the upscaled low resolution for 600k training images, and then train only at the high
resolution for another 600k images. The last phase at the target resolution runs until
it is stopped manually. Batch size is decreased with increasing resolution to fit into the
available memory.

The training code periodically dumps a sample of fake images and network snapshots to
disk. If the training process is terminated, it can be resumed from this snapshot. We
log training statistics into TensorBoard12, so we can easily visualize them. Following the
practice from ProGAN, we maintain a “stabilized” generator Gs with weights that are
exponential moving averages of weights from the true generator G, and generate images
from Gs instead of G.

4.2.3.1 Data preprocessing and augmentation

To ensure that data loading does not become a performance bottleneck, we preprocess
the EXR images and store them in a format that can be loaded more quickly: we rescale
every image to resolutions 22, 23, . . . , 210, and store each resolution directly as an array of
floats of size (H, W, 3). These arrays are compressed with a fast compression algorithm to
save disk space and I/O bandwidth, and stored in a single binary file.

During training, we map this binary file into memory and let the operating system manage
the transfers between disk and memory13. Training samples are randomly drawn from the
dataset and each image is processed as follows:

1. Random rotation is applied to the image using the OpenCV library14.

2. The image is transposed from shape (H, W, 3) and BGR order (used by OpenCV)
into shape (3, H, W) and RGB order (used by our networks).

3. Random vertical flip and random horizontal flip are applied with probability 0.5.

4. The image is transformed from linear intensities xlin into the log domain xlog using
the relationship

xlog = log(xlin + c)− µlog

where c = 10−4 is a small constant to avoid taking logarithm of 0, and µlog = −4.2
is the average logarithm value of all images in the dataset.

12https://www.tensorflow.org/tensorboard
13In fact, our training machines have enough RAM to store the whole dataset in memory.
14https://opencv.org/

52

https://www.tensorflow.org/tensorboard
https://opencv.org/

upscale

upscale

upscale

upscale

downscale

Figure 4.1: In SuperGAN, the full-size image xfull is generated at resolution Rfull and scored
with D to compute loss Lfull (highlighted in orange). A smaller patch xpatch is then computed at
resolution R and scored with Dpatch to compute loss Lpatch (highlighted in purple). The patch
xpatch is then downscaled to resolution Rfull and compared with the corresponding patch in xfull
to compute loss Lsuper (highlighted in blue).

Augmenting the dataset with arbitrary rotations is very important for generalization,
because convolutional networks are not rotation-independent, so every rotation is processed
in a unique way and the effective size of the augmented dataset is much bigger than its
real size.

4.3 SuperGAN
The architectures from the DCGAN family (which includes both ProGAN and StyleGAN)
cannot be directly applied at resolutions beyond 1K, because they must always generate
the whole image. At resolution 32K, a single feature map with 16 channels (which is
already a small number) consumes 64 GiB of memory, so we would need hundreds of
gigabytes of memory just to generate and discriminate a single image, which is well beyond
the capabilities of current hardware.

SuperGAN is our modification of the StyleGAN architecture, inspired by super-resolution
methods, which aims to synthesize images at resolutions higher than 1K. Because it is not
possible to generate high-resolution images during training due to memory limitations,
we generate the full image only up to given resolution Rfull and generate only patches at
higher resolutions R > Rfull.

Our model is trained in the same way as StyleGAN at resolutions R ≤ Rfull, using the
same generator G and discriminator D. At resolutions R > Rfull, we compute the full
generated image xfull at resolution Rfull:

xfull = xRfull = GRfull(z)

Then we generate a random patch xpatch of the generated image at resolution R:

xpatch = xR(y0:y1, x0:x1) = GR(z)(y0:y1, x0:x1)

53

where x(y0:y1, x0:x1) represents the “slicing” operation on image x and the extent
y0:y1, x0:x1 is sampled randomly. Due to the convolutional nature of the generator G, we
can compute xpatch efficiently, because each pixel of the output image xR depends only on
a few neighboring pixels in the preceding feature maps (see figure 4.1 for an illustration).
Moreover, we can reuse the feature maps that we computed when we have generated xfull,
so we need to compute only a small patch from all feature maps between Rfull and R.

To train the generator, we use a weighted combination of three losses:

L = Lfull + Lpatch + λsuperLsuper

Lfull is the usual non-saturating logistic loss computed from D(xfull), which ensures that
the low-resolution image xfull is realistic.

Lpatch is the same non-saturating logistic loss, but applied to the patch xpatch and computed
with the patch discriminator Dpatch. This loss guides the generator to synthesize realistic
details at the high resolution R.

Lsuper is L2 distance between the patch xpatch downscaled from R to Rfull and the cor-
responding patch from xfull. This ensures that xR is actually an upscaled version of
xRfull = xfull. The constant λsuper is a weight that influences the balance between the
superresolution loss Lsuper and the adversarial losses Lfull and Lpatch.

The discriminator D is trained as in StyleGAN to separate xfull and the real images at
resolution Rfull, using the logistic loss and R1 regularization. The patch discriminator
Dpatch is trained in the same way, but it learns to separate the patches xpatch and patches
from real images.

The networks G and D have the same architecture as in our modified StyleGAN. The
discriminator Dpatch uses the same convolutional blocks as D, but it is fully-convolutional,
so it can be applied to patches of arbitrary size and the output is a two-dimensional map
of scores, which is averaged to produce the final score. However, we add zero padding to
each convolution block in Dpatch, so the output of the network does depend on the size
and position of the input patch, so Dpatch is not a pure fully-convolutional network. In
our experiments, Dpatch had 5 convolution blocks with 128 or 256 channels.

54

5. Results
For all our experiments, we used training images captured by Hojdar using the methods
from [10]. We used only images from a single site, a rooftop in Prague (see figure 5.1 for
an example image), because images from other sites contain large number of trees and
other objects that occlude the sky.

Žižkov
 tow

er North

W
est

Ea
st

South

sun
ris

e

sunset

Figure 5.1: An example image from the Prague rooftop with directions for North, East, South,
and West. Note that the camera points upward, so the directions are reversed relative to the
usual map view. We also show the Žižkov tower in the background and approximate sun position
at sunrise and sunset.

55

5.1 ProGAN
We performed many experiments with the ProGAN network described in section 4.1. We
knew from [10] that the network is able to memorize a single image perfectly, but it is
unable to fit a larger dataset without severe artifacts. We therefore experimented with
various dataset sizes and augmentation methods, trying to find the “phase transition”
between overfitting (memorization) and underfitting (artifacts). All experiments were
performed at resolution 256 × 256.

5.1.1 Single day
We created a small dataset of 714 images captured on a single day at the Prague site
(figure 5.2 shows sample images from this dataset). When the networks are trained on
these images without augmentation, the synthesized images do not suffer from artifacts,
but they are almost perfect copies of the training images (see figure 5.3). However, when
augmentation is enabled, the generated images contain serious artifacts (see figure 5.4).

These experiments show that the generator is able to memorize and perfectly reproduce
hundreds of similar images. Augmentation with arbitrary rotations increases the effective
size of the dataset so much that the model is no longer able to fit the data well.

5.1.2 Single image
The previous experiment suggests that rotations are hard to model for our network. This
is not surprising, because convolutional networks are not rotation-invariant. We trained
three models on a single image augmented with arbitrary rotations and flips (see figure 5.5)
and found that the network was able to learn rotations of a single image quite well. We
also verified that interpolations of the latent vector resulted in smooth rotations with few
abrupt changes, so the networks succeeded in learning some representation of rotation.

5.1.3 Larger dataset
Even though rotations provide a useful augmentation method, we do not really require
our networks to learn arbitrary rotations of the sky. If the training images are always
rotated in the same way relative to the Earth, they should be easier to generate, because
the set of positions where the Sun can possibly appear is limited. We therefore trained the
networks using a larger dataset of 7809 images from the Prague rooftop site, without any
augmentation. We found that the generated images are again of very low quality, suffering
from the usual artifacts.

5.1.4 Conclusion
We tried to improve the ProGAN architecture in multiple ways: cutout regularization [48]
in the discriminator, injection of guiding features to the generator (such as the angle θ
between the given pixel and the zenith), or producing the discriminator output from all
resolutions. None of these modifications had a significant effect. We conclude that the
ProGAN architecture does not seem to be powerful enough for our purposes.

56

Figure 5.2: Sample images from the small dataset of 714 images captured on 2019-07-14 from
the Prague rooftop. We picked a sunny day with rapidly moving cumulus clouds, so there is
large variation in the cloud positions, but the appearance of the clouds is very consistent.

57

Generated Nearest real Generated Nearest real

Figure 5.3: When trained on just 714 images 256 × 256 without augmentation, the ProGAN
generator simply memorized the training images. We show 10 random generated images and
their nearest neighbors in the training data.

58

Figure 5.4: When trained on the 714 images 256 × 256 with arbitrary rotations and flipping,
the images generated by ProGAN suffer from serious artifacts. We highlighted some of the
artifacts in red rectangles and encourage the reader to zoom in.

Figure 5.5: The three images that we used to test whether the ProGAN network is able to
learn rotations of a single image. We picked images with “interesting” cloud cover.

59

Figure 5.6: Sample from the larger dataset of 7809 images from the Prague rooftop.

60

Figure 5.7: Generated images produced by the ProGAN model trained on the larger dataset of
7809 images without augmentation.

61

5.2 StyleGAN
Disappointed with ProGAN, we turned our attention to StyleGAN. This architecture has
significantly higher computational requirements, so we reduced the number of features
in both networks from 512 to 128, our StyleGAN networks therefore have approximately
10× less parameters than our ProGAN networks. Initial experiments were quite promising,
and optimizing several aspects of the networks (such as the R1 penalty weight and usage of
bilinear interpolation for upsampling in the generator) improved the results even further.

In our initial experiments, we have made a mistake that caused the generator to completely
ignore the latent vector and rely solely on the injected noise for all variation. However,
the generator was still able to generate quite good images.

5.2.1 Resolution 512 × 512
Final results from our StyleGAN network at resolution 512 × 512 are presented in figures 5.8
and 5.9. The images are of high quality, with few artifacts. We also projected a few images
from figure 5.8 into equirectangular projection in figure 5.10 to be better able to assess
the appearance of generated clouds near the horizon.

To verify that the generator did not just memorize training samples, in figure 5.11 we
show 10 randomly generated images together with their nearest neighbor in the training
data. The distances were evaluated with a simplified LPIPS metric [49]: we compute
features after the fifth convolution from the VGG-19 network, normalize the features
in each pixel, and compute L2 distance between the normalized feature maps. Using
a perceptual metric is more appropriate than simple L2 distance between pixel values,
because some image modifications significantly increase L2 distance without changing the
content (small translations), or significantly change the appearance but do not affect L2

distance much (slight blur). We rotate each training image 12 times to account for the
arbitrary rotations used as augmentation.

We also attempted to “invert” the generator and for a random sample of training images find
their nearest neighbor in the space of possible synthetic images. We tried the “projection”
method from [9], but this did not produce reasonable results, perhaps because we did
not use the path-length regularization. In the end, we simply generated 16 000 synthetic
images and selected the one with smallest simplified LPIPS distance to each training
image. The result of this experiment in figure 5.12 shows that the generator learned to
cover the training data very well.

5.2.2 Resolution 1024 × 1024
We also trained the StyleGAN network at resolution 1024 × 1024 (see figure 5.13 for
example results). We found that the deeper network did not learn as well as the shallower
network at resolution 512 × 512. This might be caused by the greater depth of the network,
which makes it harder to train. Using skip or residual connections, as described in
StyleGAN 2 [9], should improve the results; we will return to this topic in chapter 6.

62

Figure 5.8: Curated sample of images generated by our StyleGAN generator at resolution
512 × 512.

63

Figure 5.9: Random sample of images generated by our StyleGAN generator at resolution
512 × 512.

64

Figure 5.10: Some 512 × 512 fisheye images synthesized by StyleGAN from figure 5.8 projected
into equirectangular projection, which is more natural for assessing the appearance near horizon.
We used a simple projection method without antialiasing, so the projections are not of the highest
possible quality.

65

Generated Nearest real Generated Nearest real

Figure 5.11: To demonstrate that the StyleGAN generator trained on 7809 images at resolution
512 × 512 did not just memorize training data, we show 10 random generated images and their
nearest neighbors in the training data, evaluated using the simplified LPIPS metric described in
the main text.

66

Real Nearest generated Real Nearest generated

Figure 5.12: To show that the StyleGAN generator trained on 7809 images at resolution
512 × 512 covers the training data well, we randomly sampled 10 images from the training dataset
and found the nearest synthetic images that the generator is able to produce.

67

Figure 5.13: Two sample images at resolution 1024 × 1024 generated by our StyleGAN network.
We also include equirectangular projections of these images.

68

5.2.3 Conclusion
Our StyleGAN network is able to synthesize images in high quality in resolutions up to
512 × 512. We discuss possible improvements of the architecture that could increase the
quality and resolution in chapter 6.

5.3 SuperGAN
We have made some preliminary experiments with our SuperGAN architecture at 4×
upscaling, which seemed promising (see figure 5.14). However, at higher upscaling ratios,
the quality deteriorates, probably because the patches xfake evaluated by the patch dis-
criminator Dpatch become too small relative to the full-size image xfull. A possible solution
to this problem would be to use multiple patch discriminators at different resolutions.
Moreover, the generator G becomes too deep and hard to train without skip connections.
Further work is therefore needed to improve the quality of the synthesized images.

69

Figure 5.14: Images generated by our SuperGAN network with Rfull = 128, Rmax = 512, patch
size 96.

70

6. Conclusion and further work
We moved closer to our goal of generating high-resolution skydome images by significantly
improving the quality of images at resolutions up to 512 × 512 relative to prior work [10].
We achieved this by using the StyleGAN architecture [8, 9], modified to generate HDR
fisheye images. We found that the ProGAN architecture [7] used in [10] is significantly
weaker, either overfitting to our dataset of producing severe artifacts, perhaps because the
network architecture is quite weak. We also experimented with a novel architecture for
synthesizing images at very high resolutions, which overcomes the memory and compute
limitations that prevent ProGAN and StyleGAN from reaching resolutions beyond 1K.

We identified four areas of research that would have to be explored before the sky model
could be used as a useful tool by 3D artists:

High resolution architecture: We successfully generated images at resolution 512 × 512,
but further research is needed to develop an architecture that could synthesize images at
resolutions 16K-32K. A model using the super-resolution approach proposed in this work
may be able to scale to these resolutions if the architecture is improved.

As we mentioned in section 5.3, multiple patch discriminators will probably be needed
to achieve high upscaling rations. Moreover, it will probably be necessary to use skip
connections in the generator and residual connections in the discriminator (as described in
StyleGAN 2 [9]) to successfully train deeper networks.

High resolution data: To train at very high resolutions, we need high-resolution training
data. The dataset collection approach of Hojdar [10] can capture images only at resolutions
up to 4K, so a different approach is needed for higher resolutions:

• Train Dpatch on patches from standard photos that capture only a small section of
the sky. Such photos can be shot very easily without any specialized equipment1.
However, it is unclear whether a discriminator Dpatch trained on such patches could
successfully guide the generation of high-resolution fisheye images.

• Train Dpatch on images in lower resolution. Clouds have a high degree of self-similarity,
so we hypothesize that patches at resolutions 4K-32K are very similar regardless of
the precise resolution. This would mean that Dpatch could be successfully trained on
4K images, which can be captured in large amounts with the fisheye lens using the
Hojdar method. However, if this hypothesis was false and patches from 4K images
were not similar to patches from 32K images, the discriminator would not perform
well and the generated images would be of low quality.

• Train Dpatch on a small number of high-resolution images. It is possible to stitch
a large fisheye image of the whole sky from many small images, each capturing
only a part of the sky. This is the approach that artists currently use for obtaining
environment maps, but it takes a lot of manual labor and special equipment. However,
a trained person should be able to acquire at least a hundred of such images in

1We even collected a small dataset of such details as part of the work on this thesis, but did not use it
in the end.

71

a matter of a few weeks. Large number of patches can be extracted from a single
32K image, so the patch discriminator Dpatch could be successfully trained even on
a small dataset.

Artifacts in dataset: Images in our dataset contain some undesired objects near the
horizon, such as antennas, towers, buildings, or trees). The number of such disturbances
can be reduced by capturing the dataset from a suitable place high above the ground, but
some objects will inevitably remain. If these objects are present in the training data, the
generator will learn to synthesize them, which is undesirable. A possible solution would
be to use some image segmentation technique to detect these objects in the photos and
remove them with some image inpaiting method. However, any artifacts produced by the
inpainting method would be learned by the model.

Another issue with the dataset is that the sun is severely overexposed, leading to some
artifacts and clipped dynamic range of generated images. It is unclear how this could be
solved, because capturing the sun correctly with a digital camera requires a neutral-density
filter, so the shooting process cannot be easily automated.

Control: To make our method useful to 3D artists, the generator cannot produce
completely random images, but there has to be a way to control the synthesis with a small
number of intuitive parameters, such as position of the sun, atmospheric conditions, or
the current season. The generator may learn some semantic representation of skies in an
unsupervised way, as demonstrated in the early work on DCGAN [34] and in StyleGAN [8].
However, we can probably obtain better results if we train the generator in a supervised
way to synthesize images conditioned on these parameters. Extending the architecture to
model conditional probability distribution P (x | y) is straightforward [50], but the dataset
would have to be annotated with the parameters y.

Another way to customize the generated images, which could perhaps complement the
parameter-based approach described above, is to provide a “semantic paintbrush”: the user
creates a segmentation map and the generator synthesizes images that follow this segmen-
tation. Such approach was demonstrated in GauGAN [51], but it requires segmentation
maps of the training images.

72

References
[1] Erik Reinhard et al. High dynamic range imaging: acquisition, display, and image-

based lighting. Morgan Kaufmann, 2010 (cit. on p. 4).
[2] HDRI Haven. https://hdrihaven.com/ (cit. on pp. 4–5).
[3] Lukas Hosek and Alexander Wilkie. “An Analytic Model for Full Spectral Sky-Dome

Radiance”. In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH
2012) 31.4 (July 2012). https://cgg.mff.cuni.cz/projects/SkylightModelling/
(cit. on p. 4).

[4] Alexander Wilkie and Lukas Hosek. “Predicting Sky Dome Appearance on Earth-like
Extrasolar Worlds”. In: 29th Spring conference on Computer Graphics (SCCG 2013).
https://cgg.mff.cuni.cz/projects/SkylightModelling/. Smolenice, Slovakia,
May 2013 (cit. on p. 4).

[5] Jan Novák et al. “Monte Carlo methods for physically based volume rendering”.
In: ACM SIGGRAPH Courses. Aug. 2018. isbn: 978-1-4503-5809-5. doi: 10/c5fj
(cit. on p. 4).

[6] Yoshinori Dobashi, Yusuke Shinzo, and Tsuyoshi Yamamoto. “Modeling of clouds
from a single photograph”. In: Computer Graphics Forum. Vol. 29. 7. Wiley Online
Library. 2010, pp. 2083–2090 (cit. on p. 4).

[7] Tero Karras et al. “Progressive growing of GANs for improved quality, stability, and
variation”. In: arXiv preprint arXiv:1710.10196 (2017) (cit. on pp. 4, 23, 26–27, 37,
41, 71).

[8] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator architecture
for generative adversarial networks”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, pp. 4401–4410 (cit. on pp. 4, 28–29,
31, 42, 71–72).

[9] Tero Karras et al. “Analyzing and improving the image quality of StyleGAN”. In:
arXiv preprint arXiv:1912.04958 (2019) (cit. on pp. 4, 32, 42, 62, 71).

[10] Štěpán Hojdar. Using neural networks to generate realistic skies. https://is.cuni.
cz/webapps/zzp/detail/213909/. 2019 (cit. on pp. 4, 37–42, 55–56, 71).

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http :
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 6).

[12] Wikipedia contributors. Static single assignment form — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Static_single_
assignment_form&oldid=946746964. [Online; accessed 10-April-2020]. 2020 (cit.
on p. 6).

[13] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006 (cit. on p. 7).

[14] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004 (cit. on p. 7).

[15] Yoshua Bengio. “RMSProp and equilibrated adaptive learning rates for nonconvex
optimization”. In: corr abs/1502.04390 (2015) (cit. on p. 8).

[16] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. arXiv: 1412.6980. url: https://arxiv.org/abs/1412.6980 (cit. on p. 8).

[17] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167. url:
https://arxiv.org/abs/1502.03167 (cit. on p. 10).

73

https://hdrihaven.com/
https://cgg.mff.cuni.cz/projects/SkylightModelling/
https://cgg.mff.cuni.cz/projects/SkylightModelling/
https://doi.org/10/c5fj
https://is.cuni.cz/webapps/zzp/detail/213909/
https://is.cuni.cz/webapps/zzp/detail/213909/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://en.wikipedia.org/w/index.php?title=Static_single_assignment_form&oldid=946746964
https://en.wikipedia.org/w/index.php?title=Static_single_assignment_form&oldid=946746964
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

[18] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2017.
arXiv: 1711.05101 (cit. on p. 12).

[19] Sheldon Axler. Linear algebra done right. Third edition. Springer, 2015 (cit. on
p. 15).

[20] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Instance normalization:
The missing ingredient for fast stylization”. In: arXiv preprint arXiv:1607.08022
(2016) (cit. on p. 15).

[21] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778
(cit. on pp. 16–17).

[22] Robert Geirhos et al. ImageNet-trained CNNs are biased towards texture; increasing
shape bias improves accuracy and robustness. 2018. arXiv: 1811.12231 (cit. on
p. 17).

[23] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi:
10.1007/s11263-015-0816-y. url: https://arxiv.org/abs/1409.0575 (cit. on
p. 17).

[24] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR09.
2009. url: http://www.image-net.org/papers/imagenet_cvpr09.pdf (cit. on
p. 17).

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classification
with deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105 (cit. on p. 17).

[26] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2014. arXiv: 1409.1556 (cit. on p. 17).

[27] Kaiming He et al. “Identity mappings in deep residual networks”. In: European
conference on computer vision. Springer. 2016, pp. 630–645 (cit. on p. 17).

[28] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems. 2014, pp. 2672–2680 (cit. on pp. 18–20, 22).

[29] Xudong Mao et al. “Least squares generative adversarial networks”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 2794–2802
(cit. on p. 20).

[30] Xudong Mao et al. “On the effectiveness of least squares generative adversarial
networks”. In: IEEE transactions on pattern analysis and machine intelligence 41.12
(2018), pp. 2947–2960 (cit. on p. 20).

[31] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”. In:
arXiv preprint arXiv:1701.07875 (2017) (cit. on p. 21).

[32] Ishaan Gulrajani et al. “Improved training of Wasserstein GANs”. In: Advances in
neural information processing systems. 2017, pp. 5767–5777 (cit. on p. 21).

[33] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. “Which training methods
for GANs do actually converge?” In: arXiv preprint arXiv:1801.04406 (2018) (cit. on
p. 22).

[34] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation
learning with deep convolutional generative adversarial networks”. In: arXiv preprint
arXiv:1511.06434 (2015) (cit. on pp. 22, 24–25, 72).

[35] Tomas Mikolov et al. “Efficient estimation of word representations in vector space”.
In: arXiv preprint arXiv:1301.3781 (2013) (cit. on p. 23).

74

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1811.12231
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1409.0575
http://www.image-net.org/papers/imagenet_cvpr09.pdf
https://arxiv.org/abs/1409.1556

[36] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1026–1034 (cit. on pp. 23, 25).

[37] Phillip Isola et al. “Image-to-image translation with conditional adversarial networks”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 1125–1134 (cit. on pp. 33–34).

[38] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-consistent
adversarial networks”. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 2223–2232 (cit. on pp. 33–34).

[39] Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. “TileGAN: synthesis of
large-scale non-homogeneous textures”. In: ACM Transactions on Graphics (TOG)
38.4 (2019), pp. 1–11 (cit. on pp. 33–34).

[40] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. “SinGAN: Learning a genera-
tive model from a single natural image”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2019, pp. 4570–4580 (cit. on pp. 33, 35).

[41] Chao Dong et al. “Image super-resolution using deep convolutional networks”. In:
IEEE transactions on pattern analysis and machine intelligence 38.2 (2015), pp. 295–
307 (cit. on p. 33).

[42] Bee Lim et al. “Enhanced deep residual networks for single image super-resolution”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition
workshops. 2017, pp. 136–144 (cit. on p. 35).

[43] Mehdi SM Sajjadi, Bernhard Scholkopf, and Michael Hirsch. “EnhanceNet: Single
image super-resolution through automated texture synthesis”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 4491–4500 (cit. on
p. 35).

[44] Christian Ledig et al. “Photo-realistic single image super-resolution using a generative
adversarial network”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 4681–4690 (cit. on p. 35).

[45] Xintao Wang et al. “ESRGAN: Enhanced super-resolution generative adversarial
networks”. In: Proceedings of the European Conference on Computer Vision (ECCV).
2018 (cit. on pp. 35–36).

[46] Zhihao Wang, Jian Chen, and Steven CH Hoi. “Deep learning for image super-
resolution: A survey”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020) (cit. on p. 35).

[47] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035 (cit. on p. 41).

[48] Terrance DeVries and Graham W Taylor. “Improved regularization of convolutional
neural networks with cutout”. In: arXiv preprint arXiv:1708.04552 (2017) (cit. on
p. 56).

[49] Richard Zhang et al. “The unreasonable effectiveness of deep features as a perceptual
metric”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 586–595 (cit. on p. 62).

[50] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In:
arXiv preprint arXiv:1411.1784 (2014) (cit. on p. 72).

[51] Taesung Park et al. “Semantic image synthesis with spatially-adaptive normalization”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 2337–2346 (cit. on p. 72).

75

	Contents
	Acknowledgements
	Introduction
	Related work
	Deep learning
	Feedforward networks
	Training
	Loss functions
	Optimization algorithms
	Backpropagation

	Deep neural networks
	Fully-connected layer
	Batch normalization
	Regularization

	Convolutional networks
	Convolution
	Convolution layer
	Pooling layers
	Normalization
	Residual connections
	Motivation
	Architectures

	GAN
	Loss
	Logistic loss
	Non-saturating logistic loss
	LSGAN
	WGAN
	R1 and R2 regularization

	DCGAN
	ProGAN
	StyleGAN
	StyleGAN 2
	Other GANs

	Super-resolution

	Prior work
	Dataset
	Model

	Methods
	ProGAN
	StyleGAN
	Networks
	Building blocks
	Fully-connected layer Dense
	Convolution Conv2d
	Modulated convolution ModulatedConv2d
	Activation, upscaling and downscaling
	Minibatch standard deviation

	Latent mapping network F_Mapper
	Synthesizer network G_Synthesizer
	Module G_Layer
	Modules G_BlockFirst and G_Block
	Module G_ToRgb
	Synthesizer network G_Synthesizer

	Generator network G_Net
	Discriminator network D_Net
	Modules D_Block and D_BlockLast
	Module D_FromRgb
	Discriminator network D_Net

	Losses
	Discriminator loss D_loss
	R1 penalty D_r1_reg
	Generator loss G_loss

	Training
	Data preprocessing and augmentation

	SuperGAN

	Results
	ProGAN
	Single day
	Single image
	Larger dataset
	Conclusion

	StyleGAN
	Resolution 512×512
	Resolution 1024×1024
	Conclusion

	SuperGAN

	Conclusion and further work
	References

