

CHARLES UNIVERSITY

Faculty of Science

Department of Applied Geoinformatics and Cartography

Study program: Geography

Curriculum: Cartography and Geoinformatics

Bc. Jakub RŮŽIČKA

Automatic Detection of Driving Lanes Geometry Based on

Aerial Images and Existing Spatial Data

Automatizované odvození geometrie jízdních pruhů na základě leteckých

snímků a existujících prostorových dat

Master thesis

Supervisor: RNDr. Lukáš Brůha, Ph.D.

Prague 2020

Declaration

Hereby I declare that I have written this thesis myself and that I quoted all references

accordingly. Neither this thesis nor its part was used to obtain other academic degree

of the same or other levels.

I hereby agree with using this thesis for academic purposes and I agree with its inclusion

in the evidence of academic works.

In Prague on 4 May 2020 .

 Jakub Růžička

Acknowledgment

Hereby I would like to thank the thesis supervisor, RNDr. Lukáš Brůha, Ph.D., for his

support, helpful advice and shared knowledge without which it would not be possible for me

to write the thesis.

I would not be able to test the proposed method without relevant data; therefore I thank

the Prague Institute of Planning and Development for their kind provision of aerial images

as well as to the whole OpenStreet Map community for their contribution to VGI.

The thesis would not have been written without Prof. Dr. Ioannis Giannopoulos, Head

of Research Group, Department of Geodesy and Geoinformation of Technical University

in Vienna, whose seminar ignited my interest in the field of autonomous driving and use

of GIS in traffic infrastructure.

I would like to thank my friends from EGEA (the European Geography Association

for students and young geographers) and especially to my colleagues from the Board

of EGEA 2019/2020 (Ksenia Simonova, Jeroen Royer, Johanna Zempel and Merli Ilves)

for their support and understanding in times when I was working on the thesis.

Finally, I would like to thank my family for the motivation and support they were giving me

all the time throughout my studies and to my friends who advised me, supported me and kept

my spirits high. I would not have finished without you.

This thesis was written in the difficult times of the worldwide COVID-19 pandemic. Thus,

I would like to dedicate this thesis to everyone who took their part in fighting against

the disease. This includes paramedics, medical staff, fire fighters, police and other people

in the front line as well as everyone who volunteered and offered their help in order

to overcome the pandemic.

Abstrakt

Cílem této práce je vytvoření metody odvození geometrie jízdních pruhů na základě

leteckých snímků a existujících prostorových dat. Navržená metoda používá současně

dostupná data, ve kterých identifikuje vodorovné dopravní značení (VDZ). Polygony, které

jsou klasifikovány jako VDZ, jsou následně zpracovány jedním z navržených algoritmů, který

vytvoří jejich liniovou reprezentaci (vektor), která je jedním z dílčích výsledků. Tyto linie

jsou dále analyzovány a na jejich základě dochází k vytvoření linií symbolizujících hranice

mezi jednotlivými jízdními pruhy, které představují druhý dílčí výsledek. Kromě toho je

snaha o automatizované rozlišení mezi plnou a přerušovanou čárou, což přináší větší

informační hodnotu vytvořeného datového souboru.

Navrhnuté algoritmy byly otestovány ve 20 zájmových územích a výsledky testování jsou

uvedeny v této práci. Celková správnost a stejně tak i prostorová přesnost testovaných dat

dokazuje, že navrhovaná metoda je efektivní. V průběhu testování byly identifikovány určité

nedostatky navrhovaného procesu, které jsou v textu blíže popsány, stejně tak je v textu

navrženo jejich eventuální řešení. Práce je doprovázena více než 70 obrázky, které ilustrují

text a přinášejí jasnější pohled na probíraná témata.

Práce je rozdělena na následující kapitoly: nejprve Úvod a Přehled aktuální literatury, které

přinášejí širší kontext analyzovaného problému, autorovu motivaci a současný stav řešení

problému v odborné literatuře. Následně jsou popsány technické a právní normy definující

pravidla značení VDZ a stejně tak jsou prezentovány i teoretické postupy použité dále v práci.

Dále jsou prezentovány navržené algoritmy spolu s citacemi kódu, komentáři autora

a obrázky. Problémy metody a její eventuální nedostatky jsou uvedeny a diskutovány

v následné kapitole, stejně jako zhodnocení polohové přesnosti metody. Závěrečnou kapitolou

je potom Diskuse, která slouží jako všeobecné shrnutí.

Klíčová slova: GIS, algoritmus, silnice, silniční infrastruktura, jízdní pruhy, vodorovné

dopravní značení, detekce vodorovného dopravního značení

Abstract

The aim of the thesis is to develop a method to identify driving lanes based on aerial images

and existing spatial data. The proposed method uses up to date available data in which it

identifies road surface marking (RSM). Polygons classified as RSM are further processed

to obtain their vector line representation as the first partial result. While processing RSM

vectors further, borders of driving lanes are modelled as the second partial result.

Furthermore, attempts were done to be able to automatically distinguish between solid and

broken lines for a higher amount of information contained in the resulting dataset.

Proposed algorithms were tested in 20 case study areas and results are presented further in this

thesis. The overall correctness as well as the positional accuracy proves effectivity

of the method. However, several shortcomings were identified and are discussed as well

as possible solutions for them are suggested. The text is accompanied by more than 70 figures

to offer a clear perspective on the topic.

The thesis is organised as follows: First, Introduction and Literature review are presented

including the problem background, author’s motivation, state of the art and contribution

of the thesis. Secondly, technical and legal requirements of RSM are presented as well

as theoretical concepts and methods used in the process. Furthermore, proposed algorithms

are presented together with code samples, author’s commentary and figures. Identified

problems and potential shortcomings of the method are than presented together with

positional accuracy assessment. Finally, the thesis is concluded with Discussion.

Key words: GIS, algorithm, roads, road infrastructure, driving lanes, road surface marking,

road surface marking detection

6

Table of contents

Abstrakt ... 4

Abstract ... 5

Table of contents ... 6

List of abbreviations ... 8

Figures and Tables ... 9

 List of figures ... 9 1.1.

 List of tables ... 11 1.2.

1. Introduction ... 12

2. Literature review ... 14

 Detection of roads in satellite/aerial images ... 14 2.1.

 Detection of road surface marking by computer vision ... 14 2.2.

 Detection of driving lanes in aerial images .. 15 2.3.

 Contribution of the thesis ... 16 2.4.

 Objectives ... 17 2.5.

3. Requirements and regulations of road surface marking ... 18

 Czech legislative framework .. 18 3.1.

3.1.1. Yellow RSM ... 18

3.1.2. White RSM ... 20

4. Used concepts and methods .. 23

 Image classification .. 23 4.1.

4.1.1. Image Segmentation ... 23

4.1.2. Classification of segments .. 24

 Methods performed on raster .. 25 4.2.

4.2.1. Thinning ... 25

 Methods performed on vectors ... 25 4.3.

4.3.1. Skeletonization ... 26

4.3.2. Buffer .. 26

4.3.3. Douglas–Peucker line simplification .. 26

5. Proposed method description ... 28

 Data description .. 28 5.1.

5.1.1. Aerial imagery .. 28

5.1.2. Vector files ... 30

7

 Image analysis .. 30 5.2.

5.2.1. Image segmentation .. 31

5.2.2. Classification of segments .. 31

 RSM geometry detection .. 32 5.3.

5.3.1. Creating RSM lines .. 33

5.3.2. Interconnecting RSM lines ... 36

5.3.3. Bridging long gaps ... 42

 Small RSM polygons .. 49 5.4.

 RSM attributes detection .. 53 5.5.

6. Results ... 58

 Input data .. 58 6.1.

 Case study area ... 59 6.2.

 HW and SW requirements .. 61 6.3.

 Classification results ... 61 6.4.

 RSM identification ... 66 6.5.

 RSM geometry detection .. 74 6.6.

 Bridging gaps .. 78 6.7.

 Over- and underpasses .. 80 6.8.

 Identifying broken lines .. 81 6.9.

 Positional accuracy assessment .. 85 6.10.

7. Discussion ... 87

References ... 90

Scientific publications .. 90

Other sources .. 92

Used data .. 92

List of appendices ... 93

8

List of abbreviations

AD autonomous driving

ADAS advanced driver assistance system

ČÚZK Český úřad zeměměřický a katastrální, Czech Office for Surveying,

 Mapping and Cadastre

ČR Česká republika, the Czech Republic

ČSN České státní normy, Czech national norms (translated by the author)

DN digital number

FID feature identifier

GIS geographic information system

GNSS global navigation satellite system

HW hardware

LEGION locally excitatory globally inhibitory oscillator networks

LIDAR light detecting and ranging

OBIA object-based image analysis

RANSAC random sample consensus

RMSE root mean square error

RTK real-time kinematic

ŘSD Ředitelství silnic a dálnic, Road and Motorway Directorate of the Czech

 Republic

RSM road surface marking

SW software

TP Technické podmínky, Technical norms (translated by the author)

VGI volunteered geographic information

ZABAGED
®
 Základní báze geografických dat, Fundamental Base of Geographic

 Data of the Czech Republic

ZM10 Základní Mapa 1 : 10 000, Base Map 1 : 10 000 (translated by

the author)

9

Figures and Tables

 List of figures 1.1.

If not stated otherwise, all figures were created by the author and show data as referenced in

References.

Figure 1: Surface road marking signs V 12a and V 12d .. 19

Figure 2: Surface road marking sign V 12c ... 19

Figure 3: Box junction V 12b ... 19

Figure 4: Surface road marking V 11a and V 11b ... 19

Figure 5: Combination of a solid and a broken line ... 21

Figure 6: Diagonal hatching marks, arrows show direction of travel 21

Figure 7: Warning arrows signalising transition from a broken to a solid line 21

(Source: Mapy.cz; https://mapy.cz/zakladni?base=ophoto; 16/02/2020)

Figure 8: White zigzag lane at the edge of a lane .. 22

Figure 9: Schema of segmentation criteria ... 23

Figure 10: Schema of classification logic .. 24

Figure 11: Thinning of a raster: original raster and thinned raster ... 25

Figure 12: Comparison of medial axis and straight skeleton ... 26

Figure 13: Buffer of a point, line and polygon ... 26

Figure 14: Sequences of Douglas–Peucker algorithm ... 27

Figure 15: Aerial image with appropriate spatial resolution .. 29

Figure 16: Vector line with adequate geometry parameters .. 30

Figure 17: Segmentation result (on the left) and classification result (on the right) 32

Figure 18: Merging neighbouring polygons: before and after ... 33

Figure 19: Inappropriately shaped polygons and created lines (zoomed in) 34

Figure 20: RSM representation after thinning .. 34

Figure 21: Thinned polygon and its skeleton ... 35

Figure 22: Lines before simplification and simplified lines... 35

Figure 23: Attributes of first 10 line segments with their orientation 37

Figure 24: Examples of RSM line segments with significant difference in orientation 37

Figure 25: A segment to be deleted because of difference in orientation 38

Figure 26: Illustration of Step 5 ... 39

Figure 27: Directional arrows to be deleted based on length criterion 40

10

Figure 28: A short gap caused by a shadow of a directional sign stand................................... 41

Figure 29: A short gap before and after bridging ... 42

Figure 30: Gap vertices with GapID and road points with FieldNr ... 45

Figure 31: Decision tree of Step 5 .. 47

Figure 32: Result of the algorithm: RSM lines with gaps and bridging lines 49

Figure 33: Isolated object to be deleted ... 51

Figure 34: Connecting points into lines ... 52

Figure 35: Illustration of step 1 .. 54

Figure 36: Selected RSM line segments compared to the rest of the dataset 55

Figure 37: Illustration of Step 3 ... 56

Figure 38: Resulting broken line and redundant line segments ... 57

Figure 39: Difference between vegetative and non-vegetative season imagery 59

(Source: IPR Praha; https://www.geoportalpraha.cz/cs/data/datove-sady/ortofotomapy;

13/03/2020)

Figure 40: Overview of case study areas ... 60

(Base map source: ČÚZK – ZM10, 20/03/2020)

Figure 41: Results of classification .. 62

Figure 42: Objects commutable with RSM .. 63

Figure 43: ‘Dust polygons’ misclassified as RSM ... 64

Figure 44: Small patches of sunlight reflection and other misclassified objects 65

Figure 45: A concrete pavement misclassified as RSM lines .. 66

Figure 46: Identified RSM in an image .. 66

Figure 47: Diagonal hatching ... 67

Figure 48: Metal crash barrier classified as RSM line ... 68

Figure 49: Divergence of straight RSM lines ... 68

Figure 50: Protective metal railing with bright red and white paint .. 69

(Source: Mapy.cz; https://mapy.cz/zakladni?x=14.4925736&y=50.1235412&z=18&pano=

1&pid=69604554&yaw=6.072&fov=1.257&pitch=0.309; 28/03/2018)

Figure 51: Oscillating resulting line (black) and a line before simplification.......................... 70

Figure 52: Effect of shadows of trees and lampposts on created RSM lines 71

Figure 53: Limited fluency in curves ... 71

Figure 54: Pedestrian crossing with resulting RSM lines .. 72

Figure 55: Horizontal directional arrows with resulting RSM lines .. 73

Figure 56: Bus bays with resulting RSM lines ... 73

11

Figure 57: Gap with no visible RSM line .. 74

Figure 58: Successfully detected driving lanes .. 75

Figure 59: Incorrect RSM lines length leading to a gap in resulting line 75

Figure 60: Changing amount of driving lanes .. 76

Figure 61: Oscillating line caused by a drainage cover and by a shadow of car...................... 77

Figure 62: Bus bays with gaps ... 77

Figure 63: Successfully bridged gaps and modelled driving lanes boundaries 78

Figure 64: Undesired shifting of the bridging line ... 79

Figure 65: Incorrectly bridged gaps in junctions ... 79

Figure 66: Logically incorrect bridging solution ... 80

Figure 67: Motorway crossings with two surface levels .. 81

Figure 68: Modelled broken line (black) from ‘small’ RSM polygons 82

Figure 69: Modelled broken line (black) which is not continuous .. 83

Figure 70: Modelled broken line (black) in a 60 m long case study area 83

Figure 71: Diagonal hatching creating an undesired broken line ... 84

Figure 72: RSM lines which are too long to be considered broken line segments 84

Figure 73: Input data and result .. 87

 List of tables 1.2.

Table 1: Different line and break intervals of broken white lines (TP 133) 20

Table 2: Red, Green and Blue bands and intervals of their wavelengths 29

Table 3: Parameters of image segmentation .. 31

Table 4: Classification criteria used in the classification ... 32

Table 5: Case study areas with description .. 60

Table 6: Amount of manual edits after classification .. 64

Table 7: Calculated RMSE values of modelled RSM lines ... 85

Table 8: Calculated RMSE values of modelled driving lanes borders..................................... 86

12

1. Introduction

High resolution spatial data are a key element of modern Geoinformatics. They allow us to do

precise analyses up to sub-object level such as identifying a location within a building

or determining the exact train location up to track level on a multi-track railway. Not only

technical solutions with sub-meter accuracy in location measurement are needed to identify

the exact location of things; precise spatial data with high resolution with similar scale are

necessary to use the positional accuracy which modern methods can offer. There are several

specific fields such as cadastre, safety, navigation or traffic management, where high

resolution spatial data are needed. Especially in recent era and in the future, high precision

navigation, automation of traffic control or autonomous driving will need to be able

to determine the exact location of vehicles on the road up to single driving lanes or of trains

on railway tracks.

Current methods of positioning using global navigation satellite systems (GNSS) such as real-

 time kinematic (RTK) method are able to determine the position up to centimetre-level

accuracy. These positioning methods are getting widely available as their price lowers. Thus,

it is not a problem anymore to measure accurate location; however, getting data with the same

level of detail remains problematic. For instance, there is no openly accessible geospatial

dataset on the Czech market which would offer sub-object accuracy of buildings or roads. No

better result would one get if searching among international products. For institutions these

products mean a fortune as their creation is an extensive process with high acquisition costs.

Focusing on road infrastructure, there is vast amount of existing spatial data in both Czech

and international context; however, none of these open datasets have sub-object level

of detail. In Czech national context the open public data are managed by the Czech Office

for Surveying, Mapping and Cadastre (Český úřad zeměměřický a katastrální, ČÚZK) and

the Road and Motorway Directorate of the Czech Republic (Ředitelství silnic a dálnic ČR,

ŘSD). ČÚZK manages the Fundamental Base of Geographic Data of the Czech Republic

(Základní báze geografických dat, ZABAGED
®

) which is the Czech national geospatial

database and contains (among others) vector data of traffic infrastructure. Roads are

characterised with a centreline (for divided multi-way roads such as motorways one centreline

per roadway) with positional accuracy up to 5 meters (ČÚZK 2018). ŘSD manages its own

database of road infrastructure. However, even though this is supposed to be a specialised

road infrastructure database, it does not contain roads network with the scale of traffic lanes.

Even worldwide projects based on volunteered geographic information (VGI) such

as OpenStreet Map do not use sub-object level of detail.

To obtain the geospatial information of road infrastructure with a sub-object level of detail,

existing road network data have to be combined with a data source in which traffic lanes can

be separated from each other. One way to do so would be using GPS tracks and on board

sensors of vehicles on the road to identify driving lanes; this process was used to create high

definition maps for testing highly autonomous driving (Aeberhard et al. 2015). Yet, this

mapping method would be very challenging and costly when large-scale areas should be

mapped in this way. Furthermore, such data would not necessarily represent the correct

driving lanes as marked on the road but habitual lanes which drivers are used to use (e.g.

cutting sharp curves or crossing drawn lane separators in order to smoothen driven trajectory).

13

Strictly speaking, this is not a correct solution because it may contain habitual lanes, which

can contradict with official driving lanes marked on the road surface.

Luckily, aerial imagery would serve well as source of information since traffic lanes can be

easily identified due to road surface marking. Current segmentation and classification

methods are capable of identifying the different spectral values of the marking and

the surrounding road surface. Geometry analysis of identified road surface marking polygons

is necessary to consequently obtain a consistent and logical network of driving lanes. Yet,

only little research has been done so far in obtaining such data from aerial images.

High resolution road data with sub-object level of detail have multiple usages in the real

world. In navigation for example, the data can be used to identify the correct driving lane

which the driver should choose and display it to the driver. Traffic control is another field

where such datasets can be used: automatic reactions to traffic situations, traffic modelling

or measuring traffic intensity are only several examples. However, the most significant usage

is autonomous driving. As Fischer et al. (2018) present, high resolution road data combined

with a GNSS unit can be successfully used for localisation of autonomous vehicles and can

even be used as one of the steering methods.

14

2. Literature review

A lot of research has been done in the field of satellite or aerial image analysis in order

to obtain road infrastructure; an overview can be found in Wang et al. (2016). However, most

of the authors have studied obtaining roads as a whole and they do not go beyond road level

of detail. On the other hand, extensive research has been done in detecting road surface

marking in computer vision (i.e. from the perspective of a car or a driver) and working

technical solutions are being implemented in modern cars in a form of advanced driver

assistance systems (ADASs). Yet, these solutions have different approach and their technical

solutions would not have much use when applied to aerial images due to different

characteristics (perspective, time frame, coverage etc.). To sum up, there are only few papers

which describe detection of single driving lanes or detection of surface marking in aerial

images, what is the aim of this paper; these are presented in the section 2.3.

 Detection of roads in satellite/aerial images 2.1.

A lot of research has been done to detect roads or road networks in high resolution aerial

images, therefore, only a limited amount of work is presented here. Hormese and Saravanan

(2016) suggest a method of road detection which consists of three fully automatic steps:

image segmentation, decision making based on continuity and vectorisation of segments

identified as roads. Cheng et al. (2016) come with a method consisting of multiscale

collaborative representation and graph cuts to create homogeneous segments, tensor voting

and non-maximum suppression algorithm to extract a smooth centreline and a fitting based

centreline connection algorithm to connect the road centreline around its intersections.

Leninisha and Vani (2015) use a geometric active deformable model based on flowing water

(starting from a manually set seed point), Yuan et al. (2009) use Locally Excitatory Globally

Inhibitory Oscillator Networks (LEGION) to extract road networks, Shahi et al. (2015)

propose a new spectral index (Road Extraction Index, REI), or Xia et al. (2018) use deep

convolution network to detect roads in high resolution satellite images. Bakhtiari et al. (2017)

suggest using support vector machine together with mathematical morphology method

to extract roads in satellite images. Zhang et al. (2018) combine high resolution aerial images

with LiDAR data to increase effectiveness of road centreline detection in complex urban

scenes. A step forward is done by Máttyus et al. (2017) who estimate road network topology

using deep learning and shortest path method directly from aerial imagery.

 Detection of road surface marking by computer vision 2.2.

Several different methods are used in technical solutions to detect road surface marking even

in real-time while driving on a road. Mostly they combine optical camera with image

analysing software and differ in approaches towards identifying the road marking. They use

thresholding (Gontran et al. 2006), frequency analysis (Kreucher and Lakshmanan 1999),

structure analysis (Lai and Yung 2000) or multilevel image classification (Jeong and

Nedevschi 2005). López et al. (2010) identifies ridges of prospective marking polygons

instead of edges and applies Random Sample Consensus (RANSAC) to fit them to the model.

15

Lee et al. (2017) use Convolutional Neural Network to detect different kinds of road marking

even in bad weather or during the night.

 Detection of driving lanes in aerial images 2.3.

Jin, Feng and Li (2009) first extract rural roads form aerial images using maximum likelihood

clustering algorithm and then driving lanes are detected within extracted roads using texture

enhancement and morphological operations. The identified lines of driving lanes are finalised

using a thinning algorithm, the short dangling branches are removed; and Douglas-Peucker

simplification method and Bezier interpolation simplify and smoothen the lines. However,

the test area was not big or complex enough to satisfactorily prove the method.

Jin and Feng (2010) propose combining low resolution satellite images to detect road

centreline first and then apply Anisotropic Gauss filtering in a high resolution aerial image

to extract road surface marking. Extracted marking is then combined with the road which is

derived from the centreline to form a correct resulting image. Their method has detection rate

of about 97.8% and quality of 94.6%; yet, the testing area of approximately 8 km
2
 is too small

for proving real-life effectiveness. Furthermore, authors themselves state that this method

largely depends on straight road sections.

Fischer et al. (2018) feel the need of such data for autonomous driving (AD) usage,

specifically for ego positioning (determining the position of the vehicle) and scene

understanding. They test a method of surface marking detection on a motorway which

combines vector data (in this case OpenStreet Map) with aerial image to create a buffer along

road centrelines in which the detection is done. To identify the marking they use Random

Forest classifier and Gabor Filtering. Their results are promising; yet their testing area was

limited to motorway environment with expected higher number of errors in non-motorway

environments and the method would require image pre-processing if used on a country scale.

A method of Baumgartner and Hinz (2003) extracts road networks from high-resolution aerial

imagery in complex urban areas. They integrate detailed knowledge about the context

of roads using explicitly formulated scale-dependent models of road networks. Proposed

method has according to the authors 75% completeness and 95% correctness; however,

the method is highly dependent on the model(s) and cannot handle some specific cases (such

as traffic jams or complicated junctions) in the image.

In his diploma thesis, Seo (2012) presents a new method combining aerial images with images

depicting road vectors on a background. The method uses two levels of image features: low-

level and mid-level (smaller scale). On a low-level, pixels of aerial images are parsed

and grouped according to their quantized orientations. The grouping is iteratively repeated

until the size of the groups (segments) is big enough to fulfil a predefined condition. These

segments are combined with vectors depicting images to identify ridge, extremity

and bifurcation points of road lanes. On a mid-level, first potential road-depicting regions

are identified; and then driving directions are estimated. Finally, features from both levels are

combined to define a sub-region of interest in which lane-marking detection results from

previous steps are used to generate road lanes. As author states, 79% of the resulting road-

lanes were correctly extracted yet in some specific cases (overpasses, railway bridges

or undetected road sections) the method shows shortcomings or failures.

16

Jin et al. (2012) propose a complex two-step method of extracting road network with sub-

object resolution on lane level from aerial images in rural regions. First, they extract road

network from high resolution aerial images using homogeneity histogram thresholding

algorithm, such data are thinned and vectorised to make a vector road network. Secondly, they

classify the extracted road surface with support vector machine to eliminate other ground

details and then use Gabor filters to detect road surface marking. Authors identify obstruction

of visible surface markings by cars or shadows as the main shortcoming of the method.

The literature presented in Section 2.1 could serve as a knowledge-base for the first step

of this paper – the image classification. The most appropriate method presented could be

taken into account when performing image classification on input aerial imagery; however,

image classification has its limitations in software equipment that is available. Therefore only

those methods could be used which were offered in the available software (see Chapter 6

for details).

Due to the fact that high resolution imagery is broadly available for the whole Czechia as well

as there is available spatial data describing existing road infrastructure, both data sources can

be used in the process. Therefore, it is not necessary to use multiple-scale imagery to first

identify roads themselves in the imagery like Jin, Feng and Li (2009) or Jin and Feng (2010).

 Contribution of the thesis 2.4.

This paper builds upon the listed literature in the following way. Fischer et al. (2018) offer

a detailed overview of road surface marking classification and present an elaborate method

with promising results. To further process and analyse data extracted from the classification,

Seo (2012) presents in his diploma thesis a method of combining vector data with classified

aerial images. However, he uses raster representation with background for vector data and

the analysis is therefore performed in raster data model. These two works are the closest

to the method presented in this thesis and the ones on which this thesis builds upon.

The main contribution of the thesis lies in analysing the classified RSM in a vector data model

and therefore the contribution of this thesis starts there, where most of the previously

presented papers end. Together with vector polylines of road infrastructure, it will be possible

to combine information from vectorised classification output (the classification was exported

and further used in the process as a polygon vector dataset) to get a relevant result of lines

representing RSM on roads.

Furthermore, vector representation allows using geometry topology rules and thus repairing

topological errors which arise during the classification, during the analysis or because

of neglected maintenance of RSM (fading RSM, road patches etc.); or simply because

of shades in the images (trees, cars, buildings). Moreover, the thesis brings up an easy method

of connecting appropriate RSM lines in places where the lines are blocked from view

in the original aerial image (locations under a bridge or in a shadow of a building).

Third contribution of this work is distinguishing between different types of RSM (broken and

solid lines); none of the previously mentioned papers describes that. This information is

17

appended to line segments as attributes to be available for further usage. Several shortcomings

of the proposed method were identified and thus offer space for further improvement.

 Objectives 2.5.

This diploma thesis has two main objectives. The first one is to propose a method that

automates creation of data representing road infrastructure at the level of detail of single

driving lanes. Vector data representation of RSM polygons will be used during the process

and both geometric and semantic (attributes) description will be provided as a result.

Furthermore, multiple real-life situations including non-trivial situations such as highway

junctions or underpasses will be solved in order to create a holistic method which will be able

to process complex traffic infrastructure. To conclude, the crucial contribution lies

in geometry analysis of polygons classified as RSM, not in improving current classification

methods or coming up with a new classification method.

The second objective is to test the proposed method in a case study area and discuss its

effectiveness and correctness as well as adjust input data and (numerical) parameters in order

to obtain as precise results as possible. It is expected that multiple datasets will be entering

the analysis as input data and that several conditions will be stated which have to be fulfilled

to obtain relevant (and correct) results.

18

3. Requirements and regulations of road surface marking

Road surface marking (RSM) is part of the road infrastructure and is necessary for a common

usage of roads just like traffic lights of traffic signs. There is a common standard for RSM

worldwide; yet there are differences in colours, breaking interval, width or in specific

phenomena marked on the road surface. Every state should have legally binding regulations

concerning RSM so that the marking has the same characteristics everywhere on public roads

within the state’s national borders. Thanks to the regulations it is possible to create a set

of machine-readable rules for RSM so that an algorithm is able to identify different types

of RSM and detect what they stand for. This is used in the proposed method as supplementary

information stored in attributes of RSM lines and is used as additional source of information

in the process of creating the resulting network of driving lanes.

 Czech legislative framework 3.1.

In Czech legislative framework, requirements and regulation of RSM are defined and

described in documents called Technické podmínky (TP, the term does not have an official

English translation). TP are issued by the Ministry of Traffic of the Czech Republic

as binding requirements and regulations of planning, construction and management of traffic

infrastructure in Czechia based on modern findings and trends in the field. Some of

the documents are publically accessible (http://www.pjpk.cz/technicke-podminky-tp/).

Technické podmínky Nr. 133, Zásady pro vodorovné dopravní značení na pozemních

komunikacích (“Principles of road surface marking on roadways”, translated by the author)

define details of use, placement and visual characteristics (meaning, size, colour, texture etc.)

of RSM. Technical solution for RSM is defined in Czech Technical Standard Nr. 1436 (ČSN

EN 1436), yet it is not important for the analysis.

There are four acceptable colours in TP 133; each for different kinds of marking – white,

yellow, red and blue. Blue is allowed to be used only in case of a sign V 10g Omezené stání

(Restricted parking) and red for marking of escape lanes and of areas for pedestrians

or cyclists (bicycle lanes, highlighting of dangerous crossings etc.). Yellow (in detail further)

is in general reserved for two different phenomena: parking/standing restrictions and

temporary marking. White marking (in detail further) is the most common one which is used

for general lane and area marking including arrows, text and other information on the road.

The width of the line is always 0.125 m, unless it is not stated differently (TP 133).

3.1.1. Yellow RSM

Yellow colour is used in five situations, four of them describe different parking/standing

situations (see below) and the fourth is temporary marking in areas of road reconstruction

or temporary traffic marking changes; in that case the yellow marking is superior to the white

one if they contradict.

 No-parking areas, i.e. areas in which the driver is allowed to stop the vehicle

for a short period of time without leaving it (V 12a, V 12d).

19

 No-standing areas, i.e. areas in which the driver is not allowed to stop the vehicle

unless the traffic situation or safety requires it (V 12c).

 Box junctions, i.e. areas in which it is not allowed under any circumstances to stop

the vehicle and thus block the way for other vehicles (the middle of a junction,

emergency vehicles exit etc.; V 12b).

 Areas of bus or tram stops (V 11a, V 11b) can be according to TP 133 marked

either in yellow or in white.

Figure 1: Surface road marking signs V 12a (left) and V 12d (right)

Figure 2: Surface road marking sign V 12c

Figure 3: Box junction V 12b

BUS BUS TRAM TRAM

Figure 4: Surface road marking V 11a (left) and V 11b (right)

20

3.1.2. White RSM

White marking is used for any other information (besides those mentioned earlier) which is

to be given to the driver on the road. It is used not only for lane and area marking (which is

further described below as it carries the most valuable information for road lane detection)

but also for pictograms, directional arrows, horizontal traffic signs, speed limits, text and

any other information which is relevant for safe driving.

 An edge line (V 4) marks the edge of the road and thus separates a driving lane from

a shoulder. An edge line is a solid white line with a width of 0.25 m (in specific cases

also 0.125 m is allowed, TP 133). Theoretically, an edge line should be marked

on both sides of all paved roads except roads in municipalities with a vertical curb.

Yet, it is quite common not to have an edge line marked on minor country roads

in Czechia.

An edge line can be broken when there is acceleration or deceleration lane (V 2b)

or a reserved lane (V 2b) or a parking lane (V 10d).

 A solid white line (V 1a) is used to separate driving lanes where it is not allowed

to change lanes. It is usually used for separating driving lanes in opposite directions

(when the road is wider than 6 m) or for separating driving lanes in the same direction

before/after a junction or a manoeuvre. It is not to be crossed beside special

circumstances. The width of the line is supposed to be 0.125 m (TP 133).

 A double solid line (V 1b) is used to emphasise the fact that it is not allowed to change

lines. It is used in dangerous areas such as sharp curves, frequent traffic accident areas

or to separate opposite directions with multiple driving lanes in one direction.

The width of the lines and the space between the lines is 0.125 m (TP 133).

 A broken white line (V 2a, V 2b) separates driving lanes where it is allowed to change

lanes. It is not marked on those roads whose width is less than 6 m. The width

of the line is 0.125 m and 0.25 m (in specific cases) and the breaking interval changes

under different circumstances (see Table 1).

Line

[m]

Break

[m]

Width

[m]
Use between

6 12 0.125 motorway lanes of the same direction

3 6 0.125 road lanes of the same direction (> 1 lane)

3 6 0.125 road lanes of the opposite direction (road width > 7 m)

3 3 0.125 a road lane and a lane for slow vehicles

3 1.5 0.125 road lanes of the opposite direction (road width 6–7 m)

3 1.5 0.125 road lanes before a junction/solid line

3 1.5 0.25/0.125 normal and reserved lanes (bus lane, taxi lane etc.)

3 1.5 0.125 road lanes and tram corridor in road level

1.5 1.5 0.125 road lanes within junction

1.5 1.5 0.25 acceleration/deceleration lane and main lane

0.5 0.5 0.25 normal and parking lane/(bus) stop lane

Table 1: Different line and break intervals of broken white lines (TP 133)

21

 It is allowed to use a combination of a solid and a broken line when it is relevant

from which side the line can be crossed. The solid line is in the axis of the road

adjacent to neighbouring lines and the broken line is drawn to the side from which

the crossing is allowed.

 Diagonal hatching marks area which is prohibited to drive over because of fluent

streamlining of traffic. Such areas serve as in-level separators within junctions; they

highlight beginning and ending of acceleration/deceleration lanes, physical separators

or barriers or highlight beginning and ending of a new parallel lane. The hatching

lines are usually 0.5 m wide with offset of 0.5 m, 1 m or 1.5 m and angle to the edge

of the adjacent driving lane of 45° in the direction of travel of the adjacent lane.

 Transition from a broken white line to a solid white line can be signalised beforehand

by either shortening the gap between lines of the broken line to 1.5 meter (see Table

1) or by adding warning arrows on the line. The size and shape has been changed

in 2013; the old version still exists on Czech roads and that is the reason why both

versions are being presented here.

Figure 5: Combination of a solid and a broken line

Figure 6: Diagonal hatching marks, arrows show direction of travel

Figure 7: Warning arrows signalising transition from a broken to a solid line, old (left) and new (right)

versions

22

 In areas where special attention is necessary (such as areas where vehicles slow down

suddenly and before dangerous pedestrian crossings) a white zigzag line can be drawn

to increase drivers’ attention. The lane is 0.125 m wide and the zigzag is drawn

on the right side of the lane 0.5 m or 1 m into the lane.

Figure 8: White zigzag line at the edge of a lane

23

4. Used concepts and methods

The process of obtaining driving lanes’ centrelines from aerial images is complex and consists

of multiple steps which use both aerial images and geospatial data (vector lines of current

road infrastructure) as input. Following theoretical concepts and methods were used during

the process described in this thesis; they are listed with a brief explanation in this chapter.

Next chapter (5.) describes their sequence in practise, reasons for choosing them and what is

their contribution on the way to final results.

 Image classification 4.1.

In order to identify road surface marking in aerial images image classification is used.

From vast amount of classification methods an object-based image analysis (OBIA) was

chosen. Using objects for image classification instead of pixels has become widely popular

in scientific research in the new millennium due to growing resolution of available imagery

and changing needs of the analysis (Blaschke 2009). Yet, one of the earliest use of OBIA date

back to 1970s to the work of R. L. Kettig and D. A. Landgrebe (Kettig and Landgrebe 1976),

who combined Rodd's conjunctive partitioning algorithm with a minimum distance sample

classifier. Since then multiple methods of segmentation and segment classification were

successfully developed for usage for image classification (Blaschke 2009).

4.1.1. Image Segmentation

The initial step of image classification is image segmentation. For image segmentation,

bottom-up or top-down approaches can be used. The bottom-up approaches start with single

pixels (or pixel groups) and group them consecutively into objects until the requested

homogeneity criteria of objects are met. Top-down approach, on the other hand, starts with

the whole image as initial object and divides it in smaller groups until the requested

homogeneity criteria of objects are met. Various criteria can be used as homogeneity criteria,

among others intensity, colour, texture or shape.

Criteria

Shape

defines textural
homogeneity of

resultant objects

Smoothness

similarity between the
image object borders
and a perfect square

Compactness

closeness of an object by
comparing it to a circle Colour

Digital Number (DN)
value (interval)

of resultant objects

Figure 9: Schema of segmentation criteria

24

An iterative segmentation (a multi-resolution segmentation) can be used in order to divide

the image iteratively into continuously smaller segments (i.e. segments are further segmented

into smaller segments). With this approach it is guaranteed that the borders between segments

which are created on higher levels (in previous phases) stay the same on this and all

subsequent levels.

In this work, multi-resolution image segmentation based on colour and shape (smoothness

and compactness) of objects was used, see details in Section 5.2.1

4.1.2. Classification of segments

The segments of an image are to be classified to classes according to criteria which are set

by the user. There are multiple characteristics of segments which can be decisive criteria

(band values, geometrical, positional or textural characteristics, hierarchy, thematic attributes

etc.) and even segment related or linked and scene or region related features can (among

others) be used as decisive criteria. However, relevant are those which determine the most

the desired output (RSM in our case) from the background.

Due to the complexity of input images multiple criteria are expected to be needed

to efficiently separate objects containing RSM. RSM is characteristic with its colour

(compared to surrounding road surface) which leads to brightness being one of the most

relevant criteria. Yet, other objects appear in the images such as vehicles, truck trailers,

buildings or tiled pavements which have similar brightness values and thus other criteria have

to be added to distinguish efficiently between RSM and these objects.

Geometric characteristics seem to be most useful when it comes to this problem because

geometric extent of RSM is easily quantifiable and different enough in comparison

to the previously mentioned (undesirable) objects to successfully distinguish between them

and RSM. From the set of available geometric characters, width and length/width ratio seem

to be the most relevant because RSM consists of narrow lines with specified width and length

(yet with different length for different types of marking). Furthermore, the width of RSM

lines can be easily recalculated to pixels when the pixel size of the image is known.

 Variable 1

compared segment
characteristics

Operator

 < > = etc.

Threshold
value

Variable 2

compared segment
characteristics

Operator

< > = etc.

Threshold
value

Figure 10: Schema of classification logic

AND

/OR

AND

/OR

…

25

The list of used criteria and further details regarding image classification are presented

in Chapter 5.

 Methods performed on raster 4.2.

Several times during the process the data were converted to a raster to perform analysis

or editing which is better to be performed in raster data model. The fact that the input (aerial

image) of the whole process is a raster image means that, as long as the original cell size is

preserved, there is no relevant resolution loss caused by conversion.

4.2.1. Thinning

Thinning is applied in order to regularise the shape of RSM and thus to minimise drawbacks

of the segmentation and complex shape of classified RSM polygons. Mostly these drawbacks

are adjacent objects which share a segment with RSM (because the part of RSM represents

the majority of the segment yet the smaller object does not have a separate segment).

Thinning is performed on a binary raster (raster with two values: RSM and background).

The method shrinks object boundaries closer together until the desired reduction

(simplification) is performed; the desired reduction width is in this case equal to original

image (raster) resolution to avoid presence of concave polygons.

 Methods performed on vectors 4.3.

Vector representation of data is used mostly during the process with all three geometry types

– points, lines and polygons. Vectors serve as a better representation of real life objects

in geospatial databases because their costs (storage size, analysis difficulty, resolution etc.)

are lower (better) than those of raster representation. The output driving lanes, for the same

reasons, use vector representation as well.

Figure 11: Thinning of a raster: original raster (left) and thinned raster (right)

26

4.3.1. Skeletonization

Skeletonization is used to convert polygons to lines. There are two geometry structures

which are mostly used as skeletons of polygons – straight skeleton and medial axis. Straight

skeleton “is defined as the union of the pieces of angular bisectors traced out by polygon

vertices during the shrinking process.” (Aichholzer et al. 1995, page 753). Compared to that,

medial axis is defined as a set of points which have more than one closest point

on the polygon’s boundary (Blum 1967) resulting in a possibility of curved segments

of medial axis in concave polygons. Straight skeleton, on the other hand, is only composed

of straight line segments. Yet, straight skeleton and medial axis are identical for convex

polygons (Aichholzer et al. 1995) and all skeletonised polygons are convex when being

skeletonised in this work, therefore there is no difference between a straight skeleton and

a medial axis of a polygon in this work.

4.3.2. Buffer

Buffer in Geoinformatics is a synonym for a neighbourhood zone of an object. It encompasses

the input object in all directions in a specified distance (buffer radius or buffer distance).

Buffer of a point is a circle (with the original point in the centre), buffer of a line is a polygon

(with the original line as skeleton without dangles) and buffer of a polygon is a polygon. Point

buffer is constructed as a simple circle around the point, line and polygon buffers are

constructed with line (border) expansion.

4.3.3. Douglas–Peucker line simplification

As one of the most used simplification algorithms, the Douglas–Peucker algorithm is widely

implemented in geographic information system (GIS) software. It is a recursive algorithm

which starts with the simplest representation of a line (a connection between start and end

Figure 12: Comparison of medial axis (left) and straight skeleton (right) of a concave polygon

Figure 13: Buffer of a point (left), line (middle) and polygon (right)

27

point) and consecutively keeps adding points into the line until no points are left to be added

which fulfil a pre-set condition (simplification parameter); its full description can be found

in (Douglas and Peucker 1973). Figure 14 illustrates run of the algorithm.

Figure 14: Sequences of Douglas–Peucker algorithm, simplification parameter is illustrated with thin grey lines:

original line (top left), first recursion (top right), second recursion (bottom left) and resulting line (bottom right)

28

5. Proposed method description

In this section the new proposed method of detection of driving lanes geometry from aerial

images and existing spatial data is described. The method combines the information contained

in aerial imagery (brightness value of pixels) with information from an existing vector dataset

containing polylines of roads. As well as these spatial data, relevant information describing

parameters of and rules for road surface marking are another necessary input without which

the method could not provide correct results.

The following section is organised as follows: first, the input data are described including

conditions which have to be fulfilled in order to run the algorithm and obtain a correct result

in the end. Secondly, the aerial image analysis (segmentation and classification) including its

parameters is presented. Thirdly, the proposed algorithms of RSM geometry detection

including all their steps and parts are described and finally, an algorithm classifying RSM

lanes and assigning attributes is presented.

 Data description 5.1.

As mentioned before there are two different sources of input information: aerial imagery and

vector layers. It would be possible to use only aerial imagery as input data and run a two-step

image classification as Jin, Feng and Li (2009), Jin and Feng (2010) or Jin et al. (2012)

suggest to first identify roads in the imagery, extract and vectorise them and then use

identified segments of roads only for RSM detection. Yet, this method is highly dependent

on the quality of input imagery and its classification and therefore it seems more convenient

to rather use existing (and topologically correct) data such as Fischer et al. (2018) suggests

in his work. Such data are available with almost worldwide coverage and despite bad quality

in some regions they have more than sufficient quality and coverage in developed regions

of the world.

5.1.1. Aerial imagery

When working with aerial imagery the most relevant parameters are spatial resolution (also

called ground resolution), coverage, and spectral information. If these parameters do not

coincide with the goal of the analysis, the result of the analysis will not be correct/will not

bring correct and relevant information. Therefore, it is important to pay attention to all these

parameters at the same time.

Spatial resolution of an aerial image is the amount of detail captured in the image. It is

characterised by a number which describes the area on the ground (length of a rectangle edge)

which is equal to one pixel of the image. For the purpose of extracting RSM lines in the

images, the pixel size must be smaller than the width of the narrowest line of RSM, ideally

at least two times smaller for an accurate analysis. Considering Czech national standards and

regulations presented in Chapter 3 of this paper the minimal width of a RSM line is 0.125 m

and therefore an acceptable spatial resolution of input imagery must be at least 0.125 m

(12.5 cm). With modern state-of-the-art aerial scanners it is possible to have images

with spatial resolution of up to 2.5 cm (Holmes 2012) and thus it is possible to meet

the requirement of minimal spatial resolution as well as to have several times better resolution

29

to get a very accurate classification result. This is the main reason why satellite imagery

cannot be used as input image source because despite the fact that its acquisition is faster and

cheaper, its spatial resolution does not reach desired minima yet.

Coverage of an aerial image means the size of the area which is covered by chosen aerial

images. It is important to choose the source of aerial images according to desired result so that

both the input images and the desired result have the same coverage. Many countries have

such imagery which is provided by their national mapping agencies or private companies. It is

possible though to combine different image sources but this will lead to bigger resource

consumption during the image classification. More preparation steps foregoing image

classification would have to be taken such as image alignment and adjustment of pixel values

(so that pixels with same objects have same DN values) or the classification would have to be

done for each images source separately and only the results of classification joined

afterwards.

To be able to perform image segmentation and image classification, spectral information

contained in the image must be relevant. There are multiple spectral bands available

in visible, thermal or infrared spectra. For the purpose of identifying RSM (which is marked

in white or yellow on a grey or a black surface), the visible spectrum (Red, Green and Blue

spectral bands) is sufficient for the analysis.

Spectral band Red Green Blue

Wavelength [nm] 650-700 500-550 450-500

Table 2: Red, Green and Blue bands and intervals of their wavelengths

Figure 15: Aerial image with appropriate spatial resolution (10 cm); 1:1 view (left) and in detail (right)

30

5.1.2. Vector files

The vector files representing up to date road infrastructure are besides aerial images the other

important information source. Polylines depicting centrelines of roads carry the information

about the position of roads as well as can carry other relevant information as attributes such

as number of driving lanes, information about the direction of traffic, width or category

of the road etc. Parameters which have to be taken into account when choosing an appropriate

data source are scale, completeness and correctness.

Scale, completeness and correctness can be described in this section together as ‘geometry

parameters’ as they relate to geometry rather than attributes. Scale or minimum mapping unit

represents (similarly as in aerial images) the spatial resolution of a dataset. Connected with

vector spatial data, it is the size of the smallest object (length of the shortest polyline) from

the specific dataset. Practical meaning of this parameter portrays positional accuracy

of the dataset expressed in coordinates compared to the position of the object in the real life.

It is desirable that the scale of input vector data is similar to the one of input aerial images;

using data with too small scale would lead in errors in the result (missing parts of identified

RSM), data with too big scale can always be generalized to appropriate scale. When it comes

down to completeness and correctness, it is necessary to make sure that the chosen data are

topologically correct and comprise all roads on which RSM is being detected.

The method was designed so that no attributes are necessary to be connected to the input

vector file. However, having several attributes such as number of driving lanes, information

about the direction of traffic, width or category of the road would make the analysis faster

and would lower necessary manual inputs; this leaves an open space for future improvements

of the method.

 Image analysis 5.2.

The aim of image analysis is to identify polygons representing RSM in an aerial image.

As stated in Chapter 4, an object-based image analysis (OBIA) was used. Both image

segmentation and classification of segments were performed in existing software specialised

Figure 16: Vector line with adequate geometry parameters

31

on analysis of aerial or satellite imagery. It was necessary though to examine the imagery

and to find out fitting criteria which will lead to desired result (polygons representing RSM).

5.2.1. Image segmentation

To successfully perform the process of image segmentation, it was necessary to find

acceptable values/weights of the four criteria which are used during segmentation (scale,

colour, smoothness and compactness). Since the segmentation is a bottom-up process,

the scale parameter defines size of resulting segments, i.e. how much (into how big segments)

will the pixels be grouped. A multi-phase segmentation is used in order to be dividing

the image iteratively into continuously smaller segments (yet, as stated in Section 4.1.1.

the boarders between segments on higher levels stay the same).

The segmentation was run on input images multiple times with different settings

and the results were compared in order to identify the setting with the best segmentation

result. The best segmentation result is the one which creates segments from RSM polygons

which do not include surrounding road surface in the same segments, i.e. isolates the best

pixels with RSM from the rest of pixels. Two iterations (with scale factors 100 and 20) were

found out to contain enough detail for classification of RSM; all parameters

of the segmentation can be found in Table 3.

First iteration Second iteration

Number of cycles 1 Number of cycles 1

Image Layer Weights R: 1, G: 1, B: 1 Image Layer Weights R: 1, G: 1, B: 1

Scale Parameter 20 Scale Parameter 100

Shape 0.1 Shape 0.1

Compactness 0.5 Compactness 0.5

Table 3: Parameters of image segmentation

5.2.2. Classification of segments

The second step of image classification is the classification of segments into two final classes:

road surface marking (RSM) and the rest (background). Due to a high complexity of input

images it was found out as almost impossible to create just one class for RSM and therefore

multiple subclasses (all of them representing the class RSM) with varying characteristics were

created. From a vast amount of available decisive criteria, combinations of three of them (one

combination per subclass) were chosen to contain the most relevant information (mean

brightness, width and length/width ratio).

For each of the chosen combination variables, threshold values and operators need to be set

in order to complete the classification successfully. The most effective way of finding

the combinations is to manually choose several sample segments and examine their respective

values. After the variables, threshold values and operators are found, they are set as input

parameters of the classification process and all segments in the image are classified based

on the threshold values and operators into either the RSM class or the background class.

32

Criteria and threshold values as well as operators used for the classification are presented

in Table 4.

Variable Operator
Threshold

value
Operator Variable Operator

Threshold

value

brightness > 175 AND length/width > 3

brightness > 145 AND length/width > 4

brightness > 150 AND width < 7

Table 4: Classification criteria used in the classification

 RSM geometry detection 5.3.

Polygons representing RSM (output of image classification) serve as the main information

carrier for detection of geometry of driving lanes as they separate individual driving lanes.

In specific cases it is not required to draw RSM on roads, in such cases the method would not

withstand.

Premise for successful geometry detection is to inspect and prepare data from

the classification and to resolve errors of misclassification. The amount of errors depends

o input data as well as on classification settings and therefore will not be further discussed

in this chapter; discussion of specific input data and specific classification settings which were

used as case study for the purpose of this paper can be found in Chapter 6.

Proposed algorithms are described in the following way. First, the accompanying text states

why and with which effect the respective step is used and how does it influence the input data.

Each step is documented with accompanying code in Python 3. The important steps are

illustrated graphically as well.

Figure 17: Segmentation result (on the left) and classification result (on the right)

33

5.3.1. Creating RSM lines

 Step 1: Merging neighbouring polygons

Due to the fact that the classification output is split into vast amount of polygons, it is

necessary as a first step to organise them better for vector analysis. Therefore, neighbouring

polygons are merged first into one aggregated polygon with the same outer boundaries

as the small partial polygons had. This does not change location of the input data; it only

reduces their amount and simplifies further work.

>>> # merge neighbouring input polygons into one polygon if they touch (share
part of borders)
>>> arcpy.Dissolve_management(input, dissolved, "", "", "SINGLE_PART",
"DISSOLVE_LINES")

Step 2: Selecting suitable polygons

Because of the fact that skeletonization is used in the following steps, it is necessary to select

only those features which have appropriate shape for the operation. Appropriate shape means

that the features have evident main direction; i.e. there is a significant difference between

their height and length. Objects with shape not fulfilling this criterion will have their skeleton

created in various directions which would create a zigzagging line in the result with

a significant positional accuracy error. As the most appropriate condition to limit such small

polygons, a condition of border length (attribute Shape_Length) being higher than 4 meters

was set. Another algorithm (Section 5.4.) was created to analyse polygons which are removed

from the process by this selection.

>>> # select only those polygons which are big enough to represent polygons
of road surface marking (the value (min. border length 4 m) is based on the
data examination)
>>> arcpy.Select_analysis(dissolved, selected, "\"Shape_Length\" > 4")

Figure 18: Merging neighbouring polygons: before (left) and after (right)

34

Step 3: Thinning

Width of the polygons varies and this would negatively influence resulting shape

of the skeleton. Therefore, all polygons representing RSM are first converted to raster and

consecutively thinned up to the resulting width of one cell. With this step, the RSM

representing shapes are simplified as their outer border is smoothed.

>>> # conversion to raster with same resolution as original raster, therefore
no information loss or generalisation
>>> arcpy.PolygonToRaster_conversion(selected, "OBJECTID", raster,
"CELL_CENTER", "NONE", "0,1")
>>> # thin rasterised lines of road surface marking to the width of 1 pixel
>>> thinned = arcpy.sa.Thin(raster, "NODATA", "NO_FILTER", "SHARP", "1")

Step 4: Skeletonization

As the next step skeletonization is used to convert RSM to lines. RSM is currently represented

with a raster and an in-built tool or Arcpy module which uses skeletonization is used in order

to convert the input raster to line. The output line does not contain all parts of skeletons

Figure 20: RSM representation after thinning

Figure 19: Inappropriately shaped polygons and created lines (zoomed in)

35

of input polygons (to which is the raster internally converted) but filters them according

to the overall shape and continuity of the raster (Figure 21).

>>> # raster values conversion (necessary for the following tools)
>>> integer = arcpy.sa.Int(thinned)
>>> # conversion of raster representing road surface marking to polylines
representing road surface marking
>>> arcpy.RasterToPolyline_conversion(integer, polyline, "ZERO", "0",
"SIMPLIFY", "VALUE")

Step 5: Simplifying generated line

Automatically generated polyline does not have a regular simplified shape in places where

the input classified polygons representing RSM had irregular shape (dangling bays which

disrupt regular rectangular shape of the polygon) therefore it is simplified with an inbuilt tool

(Douglas–Peucker approach). The simplification tolerance used was set to 0.3 meters because

this is the maximum distance which together with the width of RSM lines does not cause

undesired positional error resulting from oversimplification.

>>> # simplify generated lines
>>> arcpy.SimplifyLine_cartography(polyline, outsm, "POINT_REMOVE", "0,3",
"RESOLVE_ERRORS", "NO_KEEP", "CHECK", "")

Figure 22: Lines before simplification (left) and simplified lines (right)

(a)

(b)

Figure 21: Thinned polygon (solid black outline and dark grey fill) and its skeleton (red line) in (a). Selected

skeleton lines (the result of step 4) are shown in yellow in (b)

36

5.3.2. Interconnecting RSM lines

The second proposed algorithm forms the next step of the analysis. In this step, the lines

which represent detected RSM are connected and transformed into a continuous network

of polylines to represent borders of driving lanes. Such polylines no longer copy the exact

location of RSM lines but form a linked network of boundaries of driving lanes instead.

Step 1: Calculating orientation of RSM line segments

In the first step, orientation of each line segment, which represents RSM (result

of the algorithm described in 5.3.1.), is calculated. The input dataset is splitted into single line

segments first and orientation is consecutively counted for each segment with an inbuilt tool.

The orientation is saved as a new attribute called DirMean. Orientation is an important

attribute for further use in Steps 3 and 4.

>>> # split lines representing road surface marking in vertices so that
following tools can be performed
>>> arcpy.SplitLine_management(input, splitted)
>>> # copy ID into a field accessible for Directional Mean tool
>>> arcpy.CalculateField_management(splitted, "arcid", "!OBJECTID!", "", "")
>>> # count orientation of line segments
>>> arcpy.DirectionalMean_stats(splitted, lindir, "ORIENTATION_ONLY",
"arcid")

Step 2: Calculating orientation of road line segments

The second step is the same as Step 1 with one significant difference – the input data. Instead

of lines representing RSM, Step 2 splits and calculates orientation of polylines representing

roads. Vector road representation is the second (and the only vector one) input dataset besides

aerial imagery. No attributes are required for this step, see Section 5.1.2. for details.

>>> # split roads at vertices so that following tools can be performed
>>> arcpy.SplitLine_management(insil, splittedrds)
>>> # copy ID into a field accessible for Directional Mean tool
>>> arcpy.CalculateField_management(splittedrds, "arcid", "!OBJECTID!", "",
"")
>>> # count orientation of roads polyline segments
>>> arcpy.DirectionalMean_stats(splittedrds, lindirrds, "ORIENTATION_ONLY",
"arcid")

Step 3: Calculating orientation difference

The difference in orientations (calculated in the previous steps) is used to delete redundant

line segments of RSM which are not relevant for the geometry of driving lanes such as stop

lines, directional arrows, diagonal hatching lines and others. It is calculated as an absolute

value of differences of orientations counted in Steps 1 and 2 and saved as an attribute

(overwriting previous values in existing column CompassA).

>>> # join road segments and road surface marking segments based on proximity
(both with calculated orientation to be able to count their angle)
>>> arcpy.SpatialJoin_analysis(lindir, lindirrds, joined, "JOIN_ONE_TO_MANY",
"KEEP_ALL", "", "CLOSEST", "10", "")

37

>>> # calculate angles between road surface marking segments and road
segments to find out which segments don't have similar direction as roads (to
be deleted later)
>>> arcpy.CalculateField_management(joined, "CompassA", "abs(!DirMean! -
!DirMean_1!)", "PYTHON3", "", "")

Step 4: Deleting RSM segments with different orientation

Based on the difference of orientation counted in previous step RSM line segments with high

difference in orientation are removed from the dataset. As a threshold value an angle of 35°

is used. This may seem too high as a threshold but due to two following reasons it was proven

necessary to use such a high number.

The first reason is inaccuracy of the input roads dataset in junction areas where the adjoining

segments have almost orthogonal angle yet the RSM segments form a continuous curve.

The second reason is the requirement of not deleting those segments of RSM which are not

parallel to road axes where organisation of driving lanes changes (see Figure 24

for illustrations of example situations). It came up during data examination that some line

Figure 24: Examples of RSM line segments with significant (yet smaller than 35°) difference in orientation (road

polylines in red); area of a junction (left) and changing organisation of driving lanes (right)

Figure 23: Attributes of first 10 line segments with their orientation counted in the column DirMean

38

segments have reverse direction leading to two threshold values (35° and 360°-35 °) on both

sides of 360° spectra.

>>> # initialise the field relevant for the cursor
>>> field = ["CompassA", "Shape_Length"]
>>> # use cursor to delete specific rows (segments with different (<35°) angle
between road surface marking and joined road segments)
>>> with arcpy.da.UpdateCursor(joined, field) as cursor:
>>> for row in cursor:
>>> # difference between orientation of RSM segments and road segments
 is > 35° (counted for both directions, therefore < 325°)
>>> if (row[0] > 35 and row[0] < 145) or (row[0] > 215 and row[0]
 < 325):
>>> cursor.deleteRow()
>>> # to delete short redundant lines
>>> elif row[1] < 0.5:
 cursor.deleteRow()

Step 5: Connecting single lines of RSM into driving lanes boundaries

The crucial step of this algorithm is connecting self-standing lines of RSM into continuous

lines representing boundaries of driving lanes; in other words, bridging gaps between broken

lines or gaps in solid lines (results of imperfect image classification). This step is solved with

an inbuilt buffering tool which is applied twice in two different directions with two different

buffering distances. Intersecting buffers are merged into one polygon afterwards and this

polygon is skeletonised in order to obtain a line.

>>> # dissolve segments to be able to identify gaps between road surface
marking lines
>>> arcpy.Dissolve_management(joined, dissolved, "", "", "SINGLE_PART",
"UNSPLIT_LINES")
>>> # create transects (short parallel lines) at the end of dissolved
segments
>>> arcpy.GenerateTransectsAlongLines_management(dissolved, transects,
"1000", "0,5", "END_POINTS")
>>> # delete transects which are in the same location
>>> arcpy.DeleteIdentical_management(transects, "Shape", "1", "")
>>> # create buffer around transects to connect road marking segments with
gap < 7 m in between
>>> arcpy.Buffer_analysis(transects, buffer, "3,5", "FULL", "FLAT", "ALL",
"", "PLANAR")

Figure 25: A segment to be deleted (light blue) because of difference in orientation

39

>>> # create narrow buffer along road marking segments
>>> arcpy.Buffer_analysis(joined, buffer2, "0,2", "FULL", "FLAT", "ALL", "",
"PLANAR")
>>> # union of buffers (created above) into one polygon which will be
skeletonised
>>> arcpy.Union_analysis([buffer, buffer2], union, "", "", "NO_GAPS")
>>> # dissolve boundaries of neighbouring buffers
>>> arcpy.Dissolve_management(union, dissolved2, "", "", "SINGLE_PART", "")
>>> # densify line to prevent errors in the next step
>>> arcpy.Densify_edit(dissolved2, "DISTANCE", "1", "", "")
>>> # create centre line of buffers (convert polygons to (centre-) lines)
>>> arcpy.PolygonToCenterline_topographic(dissolved2, centreline, joined)

Step 6: Deleting redundant line segments

There are lines representing not only driving lanes borders in the dataset now but also lines

representing other objects marked on the road surface such as directional arrows, pedestrian

crossings etc. which are to be removed in this step. The criterion which decides whether lines

should/should not be deleted is their length – the lines which are not part of driving lanes

borders are short and can be easily identified. Dangles are removed in this step too.

>>> # removing dangles (shorter than 5 m) from the skeleton
>>> arcpy.TrimLine_edit(centreline, "5", "DELETE_SHORT")
>>> # dissolve the skeleton so that short redundant lines (e.g. arrows on the
road surface) can be deleted
>>> arcpy.Dissolve_management(centreline, lines, "", "", "SINGLE_PART", "")
>>> # using cursor to delete short redundant lines (e.g. arrows drawn on the
road surface)
>>> with arcpy.da.UpdateCursor(lines, "Shape_Length") as cursor:
>>> for row in cursor:
>>> # deletes redundant lines in the middle of lanes which are not RSM
but directional arrows for example; these have length < 13 meters
>>> if row[0] < 13:
>>> cursor.deleteRow()

Figure 26: Illustration of Step 5: input RSM (thick grey lines), merged buffers (light yellow polygons), generated

centreline (red)

40

Two different types of gap errors occur in lines which were created by the currently described

algorithm. Ones of them are short gaps with length of several meters (condition in this work

is shorter than 3 meters) which were created because the buffers of neighbouring RSM line

segments (Step 5) were not intersecting. This can be caused by a slight rotation of the line

segments or by other objects (for example shadows or cars) covering the original RSM line

in the aerial image. The other types of gaps are long gaps with multiple meters or even

completely unclassified RSM lines. Such gaps are caused either by a bad visibility

of the actual RSM lines on roads (neglected road cleaning or fading marking) or by being

covered or shadowed by other objects (long trucks or busses, building shadows, bridges etc.).

Bridging such long gaps is more complicated than bridging short gaps; therefore there are two

different approaches for bridging.

First, the short gaps are bridged as follows (Steps 7, 8 and 9 of the currently described

algorithm). Then, the extensive process of bridging long gaps is performed which consists

of three components (5.3.3.).

Step 7: Identifying gap vertices

Dead ends of lines (result of Step 6) are converted to points and the nearest points

(from the same point layer) are identified as attributes for the created point layer. There is

a distance condition of 3 meters – that means that points which do not have a neighbour

within 3 meters do not have a joined neighbour. Such points are not vertices of a short gap

and will be skipped in the next step.

>>> # convert dead ends of RSM lines into points
>>> arcpy.FeatureVerticesToPoints_management(lines, points, "DANGLE")
>>> # connect start points with their nearest located endpoints within 3
meters (maximum bridging distance)
>>> # NOTE: Lines around central separators which are narrower than this
distance will be connected as well if they have closely located dead ends.
>>> arcpy.Near_analysis(points, points, "3", "LOCATION", "NO_ANGLE",
"PLANAR")

Figure 27: Directional arrows (red) to be deleted based on length criterion

41

Step 8: Connecting gap vertices

Vertices created in Step 7 are now interconnected with their nearest neighbour and a line is

created to interconnect them. Such line has only two vertices (start and end point) which are

vertices of the same (short) gap. Created line is added to the output dataset.

>>> # define attributes used in cursor
>>> fields = ['SHAPE@X', 'SHAPE@Y', 'NEAR_FID', 'NEAR_X', 'NEAR_Y']
>>> # initialise index i
>>> i = 1
>>> # loop through all gaps
>>> with arcpy.da.SearchCursor(points, fields) as cursor:
>>> for row in cursor:
>>> # if the start vertex does have a closely located end vertex
>>> if row[2] > 0:
>>> # initialise empty list of points
>>> pointGeometryList = []
>>> # initialise empty point object
>>> point = arcpy.Point()
>>> # create point object with the coordinates of gap start point
>>> point.X = row[0]
>>> point.Y = row[1]
>>> pointGeometry = arcpy.PointGeometry(point)
>>> # add the point to the list
>>> pointGeometryList.append(pointGeometry)
>>> # create point object with the coordinates of gap end point
>>> point2 = arcpy.Point()
>>> point2.X = row[3]
>>> point2.Y = row[4]
>>> pointGeometry = arcpy.PointGeometry(point2)
>>> # add the point to the list
>>> pointGeometryList.append(pointGeometry)
>>> # name the line properly according to its index
>>> name = "aa" + str(i)
>>> # create line with a proper name of the points in the list
 (it is the line which bridges gap between start and endpoint)
>>> arcpy.PointsToLine_management(pointGeometryList, name, "",
 "", "NO_CLOSE")
>>> # append the line to existing dataset of original lines
>>> arcpy.Append_management(name, lines, "NO_TEST", "", "", "")

Figure 28: A short gap caused by a shadow of a directional sign stand

42

>>> arcpy.Delete_management(name)
>>> # increase index
>>> i = i + 1
>>> # if there's no closely located end vertex for a start vertex,
 just increase index and go on
>>> else:
>>> i = i + 1

Step 9: Simplifying resulting lines

The last step consists of two operations – dissolving created lines so that the gaps are not

separate line segments and simplifying created lines with a Douglas–Peucker algorithm.

>>> # dissolve the output line
>>> arcpy.Dissolve_management(lines, out, "", "", "SINGLE_PART", "")
>>> # simplify resulting lines
>>> arcpy.SimplifyLine_cartography(out, output, "POINT_REMOVE", "0.3",
 "RESOLVE_ERRORS", "NO_KEEP", "CHECK", "")

5.3.3. Bridging long gaps

Long gaps are gaps which are longer that 3 meters and thus were not bridged in 5.3.2. Their

bridging is more complex because the newly created line has to reflect the shape of the road.

In other words, if the gap is in a curve, then the line has to be curved as well. To observe this

condition, input data layer is needed which will include information about the shape of roads.

The vector dataset representing road infrastructure (described in 5.1.2.) can fully serve

the purpose and can be used for bridging long gaps. It will, however, need special attention

because the resulting points need to be ordered according to their appearance along the line.

Identifying long gaps

Similarly as when identifying short gaps in Step 7 of 5.3.2, long gaps are identified using dead

ends of RSM lines which are converted to points. However, due to the complexity of RSM

Figure 29: A short gap before (on the left in red) and after (on the right in black) bridging

43

on roads and due to the complexity of road junctions, manual input is necessary in here

to decide which points are vertices of which gaps. Furthermore, if no line was created at all

(the whole line was in shadows and thus not classified), then the points have to be created

manually as well.

An algorithm was created to create dead end vertices and add appropriate attribute fields

to the newly created vertices layer. This algorithm first converts dead ends of RSM lines into

points, then creates a selection of those points which are within the case study area (to remove

the points which mark ends of lines at the borders of the case study area) and creates

an attribute called GapID as the last step. GapID is then filled in manually during the editing

process. The result of the editing process is shown in Figure 30.

>>> # convert dead ends of RSM lines into points
>>> arcpy.FeatureVerticesToPoints_management(inlines, linepoints, "DANGLE")

>>> # select only those dead ends which are within test area (not even on
the border)
>>> select = arcpy.SelectLayerByLocation_management(linepoints,
 "COMPLETELY_WITHIN", clip, "", "NEW_SELECTION", "NOT_INVERT")

>>> # export selected features as feature class
>>> arcpy.CopyFeatures_management(select, output,"")

>>> # add attribute field to the output, values have to be added manually
after running the script
>>> arcpy.AddField_management(output, "GapID", "INTEGER", "", "", "", "",
 "NULLABLE", "REQUIRED", "")

Editing road data

Input polyline road dataset is converted into points which are then ordered with the following

script. The resulting point dataset should be checked manually because eventual missing

points or incorrect ordering would cause the following tool (Bridging long gaps

in the following section) to fail or to produce incorrect results.

Step 1: Converting road polylines to points

First, the input polyline dataset representing roads is cropped according to the borders

of the case study area. Secondly, the cropped road segments which touch are dissolved into

single objects and are cut in the location of RSM dead ends (vertices). Thirdly, vertices

of the line segments are converted into a point layer and attributes of dissolved lines (FID) are

joined to them.

>>> # clip roads with the boarder of the test area
>>> arcpy.Clip_analysis(inrds, clip, clipped)
>>> # dissolve them into single elements if they touch
>>> arcpy.Dissolve_management(clipped, dissolved, "", "", "SINGLE_PART", "")
>>> # add road vertices where gap vertices are
>>> arcpy.SplitLineAtPoint_management(dissolved, vertices, splitted, "5")
>>> # convert road lines to points
>>> arcpy.FeatureVerticesToPoints_management(splitted, points,"ALL")
>>> #join road attribtues to points
>>> arcpy.SpatialJoin_analysis(points, dissolved, joined, "JOIN_ONE_TO_MANY",
 "KEEP_ALL","", "INTERSECT", "", "")

44

Step 2: Counting order of points along lines

The second step is the crucial one which determined order of points in which they appear

along road lines. This is decided by a distance of the point to the start point of the respective

line. To count such distance, two loops are nested into each other, the outer one over

(dissolved) road lines and the inner one over road vertices. The first point of each line (start

point) is copied to a list which is appended to resulting points at a later stage (Step 3).

The inner loop contains a condition which decides whether the currently accessed point does

or does not belong to the currently accessed line; in a positive case, the point is used to cut

the dissolved polyline to be able to get the length of its segment between this point and start

point.

>>> # create feature class for data created in loops
>>> out = arcpy.CreateFeatureclass_management("C:\\...\\Default.gdb", "out",
"POLYLINE", "", "DISABLED", "DISABLED", "5514", "")
>>> # initialise variables for loops
>>> line = 0
>>> pointList = []
>>> # outer loop over road lines
>>> with arcpy.da.SearchCursor(dissolved, ["OBJECTID", "SHAPE@"]) as cursor:
>>> for row in cursor:
>>> # assign variables
>>> line = row[0]
>>> geom = row[1]
>>> # add start points of the line into list
>>> pt1 = arcpy.Point()
>>> pt1.X = geom.firstPoint.X
>>> pt1.Y = geom.firstPoint.Y
>>> pt1Geometry = arcpy.PointGeometry(pt1)
>>> pointList.append(pt1Geometry)
>>> # inner loop over road points
>>> with arcpy.da.SearchCursor(joined, ["JOIN_FID", "Shape@X",
 "Shape@Y"]) as cursor:
>>> for row in cursor:
>>> # if road point is on road line
>>> if row [0] == line:
>>> # create point object and assign coordinates
>>> point = arcpy.Point()
>>> point.X = row[1]
>>> point.Y = row[2]
>>> pointGeometry = arcpy.PointGeometry(point)
>>> # split original dissolved line with created point
>>> arcpy.SplitLineAtPoint_management(geom, pointGeometry,
 clipline, "1")
>>> # select the line between start point and split point
>>> select = arcpy.SelectLayerByAttribute_management

 (clipline, "NEW_SELECTION", """ OBJECTID = 1 """, "")
>>> # append selected line into created dataset
>>> arcpy.Append_management(select, out, "NO_TEST", "",

 "", "")
>>> # delete temporal splitted line
>>> arcpy.Delete_management(clipline)

45

Step 3: Creating points with appropriate attributes

A new attribute is created and counted for the lines which were created in the previous step

for storing their length. The lines are then converted to points (only their endpoints are

converted) and line starting points (isolated in a list in the outer loop of the previous step) are

appended to them.

>>> # add field to dataset
>>> arcpy.AddField_management(out, "LineLength", "DOUBLE", "", "", "", "",
"NULLABLE", "REQUIRED", "")
>>> # count line length (distance of points along lines) in the added field
>>> arcpy.CalculateField_management(out, "LineLength", "!Shape_Length!",
"PYTHON3", "", "")
>>> # convert line end points to points
>>> arcpy.FeatureVerticesToPoints_management(out, points2, "END")
>>> # copy points from the list (first points of road lines) into resulting
points
>>> for point in pointList:
>>> arcpy.Append_management(point, points2, "NO_TEST", "", "", "")

Step 4: Sorting

In the last step possible duplicate points are deleted first. Then, road line FID is joined to all

points and finally, the points are sorted according to two attributes: road line FID first

(ascending) and their distance (along line) from the line start point (ascending as well).

>>> # delete identical points (with the same position)
>>> arcpy.DeleteIdentical_management(points2, "SHAPE", "0.1", "")
>>> # join road line ID attribute to resulting points
>>> arcpy.SpatialJoin_analysis(points2, dissolved, joined2,
"JOIN_ONE_TO_MANY", "KEEP_ALL", "", "INTERSECT", "", "")
>>> # sort resulting points according to joined road polyline ID and distance
along the line
>>> arcpy.Sort_management(joined2, output, [["JOIN_FID", "ASCENDING"],
["LineLength", "ASCENDING"]], "")

Figure 30: Gap vertices (on the left in yellow) with GapID and road points (on the right in blue) with

FieldNr after correct manual editing.

46

Bridging long gaps

Both gap vertex dataset and road point dataset are the only input data for the main bridging

algorithm. The algorithm consists of several steps as follows and creates lines which cover

identified gaps.

Step 1: Counting coordinates of vertices

Firstly, input vertices are copied so that the input data remain unchanged. After that, X and Y

coordinates of vertices are counted and added as attributes to the layer.

>>> # copy input vertices so that the input file remains unchanged
>>> arcpy.CopyFeatures_management(vertices, vertices2,"")
>>> # add attributes (X and Y coordinates of a vertex)
>>> arcpy.AddField_management(vertices2, "VertX", "DOUBLE", "", "", "", "",
 "NULLABLE", "REQUIRED", "")
>>> arcpy.AddField_management(vertices2, "VertY", "DOUBLE", "", "", "", "",
 "NULLABLE", "REQUIRED", "")
>>> # calculate attributes (X and Y coordinates of a vertex)
>>> arcpy.CalculateGeometryAttributes_management(vertices2, [["VertX",
 "POINT_X"], ["VertY", "POINT_Y"]], "METERS", "", "5514", "")

 Step 2: Counting coordinates of road points

Secondly, the input road points are sorted according to their logical order on the road

(attribute FieldNr) and their X and Y coordinates are counted and added as attributes as well.

>>> # sort rows in the table according to their logical order along RSM lines
>>> arcpy.Sort_management(roadpoints, sorted, "FieldNr", "")
>>> # calculate X and Y coordinates of the points
>>> arcpy.AddGeometryAttributes_management(sorted, "POINT_X_Y_Z_M", "METERS",
"", "5514")

Step 3: Identifying neighbourhood

After calculating X and Y coordinates in Steps 1 and 2 both point datasets are ready to be

interconnected according to their spatial proximity. For each gap vertex the nearest road point

is identified and then the relevant information of vertices (ID, X and Y coordinates) are joined

to road points according to the identified neighbouring relationship (which is now stored

as NEAR_FID attribute of the vertex dataset).

>>> # identify the nearest neighbour of each RSM dead end (gap vertex)
>>> arcpy.Near_analysis(vertices2, sorted, "", "", "", "PLANAR")
>>> # join the calculated information (nearest neighbour) to the points which
are the closest to the vertices
>>> joined = arcpy.AddJoin_management(sorted, "OBJECTID", vertices2,
"NEAR_FID", "KEEP_ALL")
>>> # copy the joined table for usage in next steps
>>> arcpy.CopyFeatures_management(joined, joined2, "", "", "", "")

Step 4: Initialising variables

This step consist of several simple operations and serves as preparation for the main part

of the algorithm which consist of two nested loops (Step 5). First, the input road points are

sorted according to their logical order along roads (attribute FieldNr) and a stop condition

47

value (imax) is calculated; this number describes number of gaps in the dataset. As the last

preparation step an empty output feature class is created.

>>> # sort rows in table according to their logical order along RSM lines
>>> arcpy.Sort_management(joined2, sorted2, "_sorted_FieldNr", "")

>>> # calculate number of gaps in the test area (imax)
>>> imax = int(int(arcpy.GetCount_management(vertices2).getOutput(0))/2)

>>> #initialise index i
>>> i = 1

>>> # create output feature class
>>> out = arcpy.CreateFeatureclass_management("C:\\Users… ", "out",
"POLYLINE", "", "DISABLED", "DISABLED", "5514", "")

Step 5: Bridging long gaps

The main part of the algorithm consists of two nested loops: an outer while loop which

iterates over all gaps with index i and an inner for loop which iterates over all road points with

a search cursor. Necessary variables are initialised before the first iterations of the loops.

The output of this step is a polyline dataset with lines filling all gaps in the current case study

area. A decision tree of Step 5 is illustrated in Figure 31 for a clearer explanation.

>>> # define attributes used in cursor
>>> fields = ['_vertices2_GapID', '_sorted_POINT_X', '_sorted_POINT_Y',
 '_vertices2_VertX', '_vertices2_VertY']
>>> # loop over all gaps

while i <= imax:

for row in cursor:

Step 4

Step 6

if row[0] == i:

YES

NO

if edit == True: if edit == False:

Calculate shift vector
Copy point into array

Set edit = True

point is either start or end vertex

point is start vertex

Export array as gap

point is end vertex

YES

NO

NO

YES

Move point
Copy point into array

point is in the gap

Figure 31: Decision tree of Step 5

48

>>> while i <= imax:
>>> # initialise variables
>>> edit = False
>>> pointGeometryList = []
>>> vector = [0, 0]
>>> # loop over sorted road points
>>> with arcpy.da.SearchCursor(sorted2, fields) as cursor:
>>> for row in cursor:
>>> # the point is a vertex (start od end point) of the gap that
 is currently being edited
>>> if row[0] == i:
>>> # calculate the shift vector
>>> vector = [row[3] - row[1], row[4] - row[2]]
>>> # initialise empty point object and assign coordinates
>>> point = arcpy.Point()
>>> point.X = row[3]
>>> point.Y = row[4]
>>> # create point object with coordinates of gap start point
>>> pointGeometry = arcpy.PointGeometry(point)
>>> # add the point to the list
>>> pointGeometryList.append(pointGeometry)
>>> # if the point is start point (first vertex) of currently
 edited gap, change editing parameter to True (to allow
 copying of following points in gap)
>>> if edit == False:
>>> edit = True
>>> # if the point is end point (a second vertex) of currently
 edited gap
>>> else:
>>> # name line properly according to its index
>>> name = "gap" + str(i)
>>> # create line of the points in the list
>>> arcpy.PointsToLine_management(pointGeometryList, name,
 "","", "NO_CLOSE")
>>> # append line to previously created dataset
 of resulting gap lines
>>> arcpy.Append_management(name, out,"NO_TEST","", "", "")
>>> # delete temporal feature class
>>> arcpy.Delete_management(name)
>>> # increase index
>>> i = i + 1
>>> # no need to continue scrolling through rest of road
 points after the gap is finished
>>> break
>>> else:
>>> # editing parameter is True, therefore gap editing is on
>>> (the point is between start and end point of the gap)
>>> if edit == True:
>>> # initialise empty point object and assign coordinates
>>> point = arcpy.Point()
>>> point.X = row[1] + vector[0]
>>> point.Y = row[2] + vector[1]
>>> # create point object with coordinates of the point
>>> pointGeometry = arcpy.PointGeometry(point)
>>> # add the point to the list
>>> pointGeometryList.append(pointGeometry)
>>> # no action as the point is not in the currently edited gap
>>> else:
>>> pass

49

Step 6: Simplifying resulting line and adding attributes

In the final step the resulting line is simplified with Douglas–Peucker algorithm and

an attribute (LineType) is added to the output dataset. This attribute was set to “unknown”

for all gap lines because it cannot be automatically decided whether the original unclassified

RSM line was broken or full. The attribute needs to be filled in manually for a correct result.

>>> # simplify resulting lines
>>> arcpy.SimplifyLine_cartography(out, output, "POINT_REMOVE", "0.3",
"RESOLVE_ERRORS", "NO_KEEP", "CHECK", "")
>>> # add attribute field to the output
>>> arcpy.AddField_management(output, "TypeLine", "TEXT", "", "", "20", "",
"NULLABLE", "REQUIRED", "")
>>> # fill the attribute field with line type "unknown"
>>> with arcpy.da.UpdateCursor(output, "TypeLine") as cursor:
>>> for row in cursor:
>>> row[0] = "unknown"
>>> cursor.updateRow(row)

 Small RSM polygons 5.4.

‘Small’ polygons are those polygons which were removed from the process of RSM geometry

detection in the second step (Selecting suitable polygons) of the algorithm presented in 5.3.1.

The reason is as follows: their shape is too square and their length/width ratio is close to 1.

Therefore the algorithm (especially in Steps 3 (thinning) and 4 (skeletonization) does not

provide correct results – resulting skeletons are rotated from their supposed direction and this

leads to undesired zigzags (see Figure 19). Therefore, a different approach was used to obtain

such RSM lines; the approach is described in this section.

Step 1: Merging neighbouring polygons

First step is the same as in the previously described algorithm of RSM geometry detection.

Neighbouring polygons are merged together in order to reduce the number of further steps

Figure 32: Result of the algorithm: RSM lines with gaps (black) and bridging lines (red)

50

and to avoid duplicates (see Step 1 in 5.3.1 for details).

>>> # dissolve neighbouring input polygons into one polygon if they touch
(share part of borders)
>>> arcpy.Dissolve_management(input, dissolved, "", "", "SINGLE_PART",
"DISSOLVE_LINES")

Step 2: Selecting ‘small’ polygons

Step 2 is the exact opposite of Step 2 of the previously described algorithm. Here, only

‘small’ polygons (i.e. those which were not selected 5.3.1.) are selected for further analysis.

>>> # select only those polygons which are too small (and square shaped) and
their skeleton does not create a straight line which causes the tool to fail
(max. border length 4 m)
>>> arcpy.Select_analysis(dissolved, small, "\"Shape_Length\" <= 4")

Step 3: Converting ‘small’ polygons to points

Selected polygons are converted from polygons to an easier representation. Because

conversion into a line caused problems on the previous algorithm, conversion to a point

(centroid) is used.

>>> # convert dissolved polygons representing single lines of road surface
marking to centroids (points)
>>> arcpy.FeatureToPoint_management(small, points, "CENTROID")

Step 4: Deleting isolated points

Because of the fact that there may not only be polygons representing RSM

in the classification dataset but other redundant (small) polygons as well, a deleting

mechanism is implemented. It uses a distance to the nearest neighbour as a decision parameter

whether to delete or not to delete a respective point. ‘Small’ polygons of RSM are always

closely located to each other when representing a broken line (and according to Czech

regulations (TP 133) it is not acceptable to mark a broken line with only one line segment);

therefore all points which are isolated (have no nearest neighbour within 1.5 meters) are

deleted.

>>> # find nearest neighbour of centroids within 1,5 m radius (to identify distant
points with no neighbours which are not part of road surface marking)
>>> arcpy.Near_analysis(points, points, "1.5", "NO_LOCATION", "ANGLE", "PLANAR")
>>> # initialise a field for cursor
>>> fields = ["NEAR_DIST"]
>>> # loop through data with a cursor and delete rows which have no neighbour
within 1.5 meters (to delete distant points with no neighbours which are not part
of road surface marking)
>>> with arcpy.da.UpdateCursor(points, fields) as cursor:
 for row in cursor:
 if row[0] == -1:
 cursor.deleteRow()

51

Step 5: Connecting points into lines

Points created in Step 4 are to be connected into lines. However, one more operation is

needed to differentiate among different lines. If there are more broken lines in the analysed

image, it is needed to differentiate which point belongs to which line. Otherwise, all points

would be transformed into one line and that would obviously be an incorrect solution.

The determination is performed using a buffer zone around the points with a radius

of 0.75 meters. Such buffer zones are merged into one polygon (no matter its shape) in case

that they overlap and each of such merged polygons has its own unique attribute identifier

(FID). This unique identifier is copied to points which lie within the respective polygon

and serves as separation criterion for creating lines.

>>> # make dissolved buffer around centroids of road surface marking (with
radius 0.75 m)
>>> arcpy.Buffer_analysis(points, buffer, "0.75", "FULL", "ROUND", "ALL")
>>> # conversion from dissolved multipart buffer to single part buffer
features
>>> arcpy.MultipartToSinglepart_management(buffer, singlepart)
>>> # divide centroids according to which buffer they belong to (makes
difference if there are more lines which are not supposed to be connected)
>>> arcpy.SpatialJoin_analysis(points, singlepart, points2,
"JOIN_ONE_TO_MANY", "", "", "WITHIN", "", "")
>>> # create lines from centroids (separate output lines for separate marking
lines based on previous spatial join)
>>> arcpy.PointsToLine_management(points2, line, "JOIN_FID", "", "")

Figure 33: Isolated object (polygon with blue border and point in black) to be deleted

52

Step 6: Bridging short gaps

It can happen due to classification shortcomings that the created lines will have short gaps

in between which would not create a topologically correct solution. Therefore the same

approach of short gaps bridging as in Steps 7 and 8 of 5.3.1. is used here. First, gap vertices

are converted to points and their neighbourhood points within three meters (maximal allowed

gap length) are identified. After that, vertices are interconnected with their nearest neighbour

with a line which is added to the output dataset.

>>> # convert dead ends of RSM lines into points
>>> arcpy.FeatureVerticesToPoints_management(line, vertices, "DANGLE")
>>> # connect edit points with their nearest located endpoints within 3 m
 (maximum bridging distance)
>>> arcpy.Near_analysis(vertices, vertices, "3", "LOCATION", "NO_ANGLE",
 "PLANAR")
>>> # define attributes used in cursor
>>> fields = ['SHAPE@X', 'SHAPE@Y', 'NEAR_FID', 'NEAR_X', 'NEAR_Y']
>>> #initialise index i
>>> i = 1
>>> # loop through all gaps
>>> with arcpy.da.SearchCursor(vertices, fields) as cursor:
>>> for row in cursor:
>>> # if the edit vertex does have a closely located end vertex
>>> if row[2] > 0:
>>> # initialise empty list of points
>>> pointGeometryList = []
>>> # initialise empty point object
>>> point = arcpy.Point()
>>> # create point object with the coordinates of gap edit point
>>> point.X = row[0]
>>> point.Y = row[1]
>>> pointGeometry = arcpy.PointGeometry(point)
>>> # add the point to the list
>>> pointGeometryList.append(pointGeometry)

Figure 34: Connecting points into lines: original points (black dots), merged buffer zones (orange

polygon with a black border) and resulting line (red)

53

>>> # initialise empty point object
>>> point2 = arcpy.Point()
>>> # create point object with the coordinates of gap end point
>>> point2.X = row[3]
>>> point2.Y = row[4]
>>> pointGeometry = arcpy.PointGeometry(point2)
>>> # add the point to the list
>>> pointGeometryList.append(pointGeometry)
>>> # name the line properly according to its index
>>> name = "aa" + str(i)
>>> # create line with proper name of the points in the list
>>> arcpy.PointsToLine_management(pointGeometryList, name, "",
 "", “NO_CLOSE")
>>> # append the line to existing dataset of original lines
>>> arcpy.Append_management(name, line, "NO_TEST", "", "", "")
>>> arcpy.Delete_management(name)
>>> # increase index
>>> i = i + 1
>>> # if there's no closely located end, increase index and go on
>>> else:
>>> i = i + 1
>>> # dissolve the output line
>>> arcpy.Dissolve_management(line, out, "", "", "SINGLE_PART", "")

 Step 7: Simplifying generated line and attributes

Generated lines suffer from the fact that they consist of single points which might not form

a smooth curve and need to be simplified. Simplification is performed with the same inbuilt

simplification tool using Douglas–Peucker algorithm with the simplification tolerance

of 0.3 meters. After that, a new attribute of the dataset is created (TypeLine) and set for each

object determining the type of lines.

>>> # simplify resulting lines
>>> arcpy.SimplifyLine_cartography(out, output, "POINT_REMOVE", "0.2",
"RESOLVE_ERRORS", "NO_KEEP", "CHECK", "")
>>> # add attribute field to the output
>>> arcpy.AddField_management(output, "TypeLine", "TEXT", "", "", "20", "",
"NULLABLE", "REQUIRED", "")
>>> # fill the attribute field with line type "broken"
>>> with arcpy.da.UpdateCursor(output, "TypeLine") as cursor:
>>> for row in cursor:
>>> row[0] = "broken"
>>> cursor.updateRow(row)

 RSM attributes detection 5.5.

To distinguish between broken and solid lines, following algorithm was created

and incorporated in the process. As input data it uses two datasets created with previously

described algorithms and it creates a line representing only those segments of RSM where

a broken line is drawn on the road surface. The algorithm does not distinguish different types

of broken line in the way if it separates two lines in the same direction/different direction

or a normal line/acceleration lane etc.

54

Step 1: Identifying sampling breakpoints on RSM lines

Sampling breakpoints are those points in which RSM changes from broken to solid or vice

versa. Such breakpoints are crucial for the algorithm because they will form a boundary

between line segments representing a broken line on one side of the point and line segments

representing a solid line on the other side. To find these start/end points, the RSM lines

(created in 5.3.1.) are converted to vertices and driving lanes boundaries (created in 5.3.2.) are

split in these points into new line segments. For the purpose of connecting correct points into

lines later in the process (Step 3 of this chapter), the unique identifier of input RSM lines

is joined to the points.

>>> # create vertices (points) at start and end points of road marking lines
>>> arcpy.FeatureVerticesToPoints_management(mline, points, "BOTH_ENDS")
>>> # split polylines of borders of driving lanes at start/end points of road
marking lines (the boarders represent result geometry but it is needed to
have vertices in the locations of start/end points of road marking lines)
>>> arcpy.SplitLineAtPoint_management(rsm, points, splittedrsm, "0.5")
>>> # join attribute information to start/end points about to which line they
belong (to be used in PointsToLine_management)
>>> arcpy.SpatialJoin_analysis(points, rsm, ptsjoined, "JOIN_ONE_TO_MANY",
"KEEP_ALL", "", "CLOSEST", "0.3", "")

Step 2: Selecting RSM line segments

The first selection selects only those segments which represent RSM lines drawn on the road

and were classified as RSM polygons. The second selection selects from the selected

segments (first selection of this step) only those segments with a proper length (according

to Table 1).

Figure 35: Illustration of step 1: RSM lines (grey), boundaries of driving lanes (red) and vertices

of RSM lines (black points).

55

>>> # select only segments of borders of driving lanes representing
identified lines of road surface marking and not gaps
>>> rsmselect = arcpy.SelectLayerByLocation_management(splittedrsm,
"HAVE_THEIR_CENTER_IN", mline, "0.3", "NEW_SELECTION", "NOT_INVERT")
>>> # select only segments of borders of driving lanes representing broken
lines and not parts of solid lines (therefore length parameters)
>>> rsmselect2 = arcpy.SelectLayerByAttribute_management(rsmselect,
"SUBSET_SELECTION", """ SHAPE_Length > 2.5 AND SHAPE_Length < 3.5 OR
SHAPE_Length > 1.2 AND SHAPE_Length < 1.8 OR SHAPE_Length > 5.5 AND
SHAPE_Length < 6.5""", "NON_INVERT")

Step 3: Creating a single broken line

Based on the location of the line segments selected in the previous step, breakpoints created

in Step 1 are selected. From them a polyline is created which represents a boundary between

driving lanes (an actual broken line). For the selection of breakpoints, a “within a distance”

criterion is used with a distance of 0.3 meters from the selected lines (result of Step 2).

Finally, selected points are converted to a line.

>>> # select only those start/end points of road marking lines which are
close to selected segments of borders of driving lanes from previous step
>>> ptsselect = arcpy.SelectLayerByLocation_management(ptsjoined,
"WITHIN_A_DISTANCE", rsmselect2, "0.3", "NEW_SELECTION", "NOT_INVERT")
>>> # create a line from selected points
>>> arcpy.PointsToLine_management(ptsselect, brokenline, "JOIN_FID", "",
"NO_CLOSE")

Figure 36: Selected RSM line segments (blue) compared to the rest of the dataset (black)

56

 Step 4: Editing generated lines

The generated line is first simplified with an inbuilt tool using Douglas–Peucker algorithm

and then cut into segments in vertices selected in Step 3.

>>> # simplify resulting lines
>>> arcpy.SimplifyLine_cartography(brokenline, simplified, "POINT_REMOVE",
"0.3", "RESOLVE_ERRORS", "NO_KEEP", "CHECK", "")
>>> # cut line in selected vertices of RSM
>>> arcpy.SplitLineAtPoint_management(simplified, ptsselect, splitted, "0,3")

Step 5: Creating resulting line

First, an empty feature class is created to store the result and then using a loop over all line

segments only those with appropriate length are copied to the resulting feature class.

The length criterion is set to “> 1 m” to remove short gaps with no connection to broken lines

and “< 10 m) to remove long segments of solid lines.

>>> # create empty feature class to store the result
>>> out = Arcpy.CreateFeatureclass_management("C:\\... ", "out", "POLYLINE",
"", "DISABLED", "DISABLED", "5514", "")
>>> # initialise fields for cursor
>>> fields = ['SHAPE_Length', 'SHAPE@']
>>> # copy only those line segments with appropriate length (either spaces
between broken lines (> 1 m) or broken lines (< 10 m)
>>> with arcpy.da.SearchCursor(splitted, fields) as cursor:
>>> for row in cursor:
>>> if row[0] > 1 and row[0] < 15:
>>> arcpy.Append_management(row[1], out, "NO_TEST", "", "", "")
>>> # dissolve resulting lines
>>> arcpy.Dissolve_management(out, output, "", "", "MULTI_PART",
"UNSPLIT_LINES")

Figure 37: Illustration of Step 3: selected breakpoints (blue), other breakpoints (black), original RSM

lines (grey) and created broken lines (black).

57

Step 6: Deleting redundant lines and assigning attributes

Finally, an attribute field is created in the table and filled in for all lines as well

as redundant isolated lines which were created because of acceptable length of their

segments are deleted.

>>> # add attribute field to output
>>> arcpy.AddField_management(output, "TypeLine", "TEXT", "", "", "20", "",
"NULLABLE", "REQUIRED", "")
>>> # final edits (attributes + deleteting too short features)
>>> with arcpy.da.UpdateCursor(output, ["TypeLine", "Shape_Length"]) as
cursor:
>>> for row in cursor:
>>> # delete lines which are too short (< 15 meters)
>>> if row[1] < 15:
>>> cursor.deleteRow()
>>> # fill the attribute field with line type "broken"
>>> else:
>>> row[0] = "broken"
>>> cursor.updateRow(row)

Figure 38: Resulting broken line (black) and redundant line segments which were deleted in Step 6 (red)

58

6. Results

In this chapter results of developed algorithms described in Chapter 5 are presented together

with a discussion of eventual shortages and limitations of the process as well as possible

solutions to them are suggested. All examples presented in this chapter are visualised results

of the algorithms with input data described in 5.1.

The chapter is organised as follows: first, it is described which datasets and what case study

area were used for the analysis (and for which reasons); secondly, used software (and relevant

technical circumstances) are presented. After that, the successive partial results of single

algorithms are presented (in the same logical order as the algorithms are presented in Chapters

5.2 to 5.5). Finally, in the end of the chapter, positional accuracy of the result is summarised

and described.

 Input data 6.1.

Two input datasets were necessary to evaluate the proposed process successfully – aerial

imagery and a vector dataset of road infrastructure. The main aim when choosing specific data

sources was to choose the most universal dataset with no specific characteristics. Similar data

should be available with as wide coverage as possible and thus should allow wide application

of the proposed method. The only limitation would then be different rules and norms for RSM

lines shape, width, texture and colour.

First input dataset is aerial imagery with one necessary requirement – minimum spatial

resolution. For a successful identification of RSM on the road surface it is demanded to have

a maximal pixel size of 0.125 m (12.5 cm). There are several datasets which are country-wide,

fulfil the spatial resolution criterion and are publically presented online on geoportals

or mapping platforms such as data from TopGIS, s. r. o. published on mapy.cz

(https://mapy.cz/letecka?), maps by Google, Inc. (https://www.google.cz/maps/) or imagery

from the Czech Office for Surveying, Mapping and Cadastre

(https://geoportal.cuzk.cz/geoprohlizec/?wmcid=22524).

In the end none of the nation-wide imagery sources presented above were chosen. Instead,

data from Prague Institute of Planning and Development was chosen. The data is available

for student assignments free of charge and can be downloaded and saved to a local repository.

Furthermore, the Institute offers a dataset which was created during non-vegetative season

and therefore limits shadows of trees. The spatial resolution of such dataset is 0.1 m (10 cm)

with the data coverage for the area of Prague.

The second dataset does not need to meet many special requirements either. The main

requirements are spatial resolution and accuracy, plus useful information about a type of road

(motorway/normal road) and overpasses/underpasses; however, such information can be

added manually if necessary.

Such information is contained in OpenStreet Map data which have worldwide coverage (with

changing quality characteristics such as completeness and correctness though). However,

for areas in Central Europe, the quality characteristics are sufficient and therefore, the OSM

roads dataset was used.

59

 Case study area 6.2.

There were several conditions for selecting the case study area which cover:

(1) sufficient (yet not too high) complexity of roads and driving lanes including junctions,

curves, multiple lanes in one direction, changing types of RSM lines, overpasses

and underpasses etc.

(2) there must be RSM lines marked on the roads

(3) sufficient quality of RSM in the images (RSM lines need to be visible enough to be

classified successfully)

(4) sufficient coverage of RSM in the image (RSM lines must not be shaded too much

by buildings, trees or cars for most of the algorithms)

(5) there must not be bright (mainly concrete) surfaces since these would cause a lot

of misclassified polygons (their reflectance and shape might be too close to white RSM

polygons’ reflectance)

An area of Střížkov, Prosek, Letňany and Ďáblice city quarters in the north-east of Prague,

Czechia, was chosen for which appropriate input datasets were available. The area contains

a motorway as well as major roads and minor roads with multiple driving lanes within both

urban area and non-urban landscape. Furthermore, the author knows the chosen locality well

(and could eventually easily visit it for field inspections). Multiple (20) areas with average

size of 5,083 m² were chosen which cover various different types of RSM and road

infrastructure including a motorway, over- and underpasses and multiple (changing) driving

lanes. Chosen localities are visualised in Figure 40 and an overview of all case study areas

is presented in Table 5.

Figure 39: Difference between a vegetative season imagery (left) and non-vegetative season imagery (right)

60

Number Area [m
2
] Description

1 2655 Motorway with three driving lanes in each direction

2 1170 Motorway slip road with two driving lanes

3 3554 Motorway slip road with two driving lanes in each direction

4 2016 Major road with five driving lanes (incl. a turning lane)

5 2794 Major road with four driving lanes (incl. a turning lane)

6 3886 Major road with separated directions (two driving lanes each)

7 11272 Motorway slip road with two driving lanes in each direction

8 1906 Major road with three driving lanes (incl. a turning lane)

9 1692 Major road with two driving lanes

10 1848 Motorway with two driving lanes in each direction

11 1457 Major road with four driving lanes

12 1791 Major road with four driving lanes

13 637 Major road with two driving lanes

14 1480 Major road with four driving lanes

Figure 40: Overview of case study areas

61

Number Area [m
2
] Description

15 848 Major road with two driving lanes

16 1803 Minor road with two driving lanes

17 2673 Major road with three driving lanes (incl. a turning lane)

18 7482 Major road with five driving lanes (incl. a turning lane and bus stops)

19 17899 Motorway overpass

20 32789 Motorway overpass

 HW and SW requirements 6.3.

 To run the proposed algorithms one does not need specialised hardware. All algorithms were

developed and tested on a personal laptop with an Intel Celeron B800 processing unit

(1.5 GHz) with an operating system of Windows 10 Home 64 Bit.

As for software, three different programs were used during the process. The code was written

in PyCharm 2019.3.3 (Community Edition), powered by open-source software

and JetBrains s.r.o. Chosen scripting language was Python 3.6 (the most up to date version

of Python at the time of writing). The code itself uses an ArcPy library which offers access

from Python to all geoprocessing tools of ArcGIS Pro (ESRI 2020). The library as well

as the ArcGIS Pro is licensed.

e-Cognition Developer version 9.5.0. by Trimble was used for classification

and segmentation. A powerful desktop computer with a licence was used to run both

processes.

Visualising, data editing, data control, accuracy measurements as well as the rest of geospatial

operations were done in ArcGIS Pro 2.5.0 on the same personal laptop as running algorithms.

 Classification results 6.4.

The classification results are presented in Figure 41. The output of the classification

was inspected manually to evaluate the result. Minor edits were necessary to delete redundant

polygons which had similar characteristics and thus were classified as RSM polygons despite

the fact that they represent cars, ruts, parts of buildings or concrete pavements. Yet, manual

inspection is still a common (and necessary) part of research workflow when working

with automatically classified data in order to obtain relevant results.

Several causes of misclassification were identified in the input images and are discussed here.

They can be, in general, divided into two groups – (1) objects commutable with RSM close

to or on the road surface and (2) objects misclassified in the image with no relationships

to roads.

Table 5: Case study areas with description

62

Figure 41: Results of classification, classified RSM polygons in red (correct classification results

on the left, incorrect on the right)

63

Objects commutable with RSM which are depicted in the image close to the roads represent

traffic signs, railings, crash barriers, drainage covers and other parts of the road surface and its

surroundings. These would be very difficult to eliminate as long as they have similar shape

and brightness value as RSM lines.

Secondly, dust, grit and dirt covering edges of roads have higher reflectance than tarmac

or concrete and were misclassified as RSM (forming wide edges of driving lanes, especially

on the edge of roadways). Such polygons do not have a significant influence on the quality

of the result because the proposed method is able to handle wider input polygons that RSM

lines thanks to merging. These ‘dust polygons’ (Figure 43) result only in a minor positional

inaccuracy of resulting RSM lines; in some cases they are even beneficial as a substitution

for RSM lines which are not visible enough or are not even drawn on the road surface.

Objects misclassified in the image with no relationship to roads such as buildings, pavements

or other objects with similar brightness and shape characteristics are to be removed from

the classified RSM which represents a possible improvement of the current method.

The removal (within roads buffer with equal diameter) was done manually because no road

data with wide international coverage containing such information in attributes were found.

However, the removal could be automated by excluding all polygons identified as RSM

with no spatial connection to roads (i.e. which do not lie within a specified distance from

the lines of road axes). To do this, information about road width (for all road polylines)

is necessary as well as higher positional accuracy of road centrelines (the line has to always

be in the middle of the road). Another way of reducing manual input here would

be performing a two-step classification – classifying only roads in the first step

and identifying white (and yellow) RSM only after that in the second step (see Chapter 2

for details).

a

a
a

a

b

c

c

c

Figure 42: Objects commutable with RSM: (a) advertising billboards, (b) toll gates or directional sign stands

or (c) cars and trailers

64

As can be seen in Table 6 the amount of manual edit differs in different case study areas. This

is caused by the fact that different areas cover different types of surface and therefore

different classification shortcomings appear. A brief explanation of the most significant

shortcomings is further discussed.

Case

study

area

Classified RSM

before manual edits

(Area [m
2
])

Classified RSM

after manual edits

(Area [m
2
])

Change ratio

[%]

1 94,33 89,17 5,47

2 37,28 36,38 2,40

3 279,83 235,48 15,85

4 139,58 110,37 20,93

5 238,11 154,72 35,02

6 312,85 225,07 28,06

7 967,38 533,02 44,90

8 109,13 87,26 20,04

9 34,81 32,11 7,75

10 148,85 131,62 11,58

11 300,80 78,95 73,75

12 226,21 82,14 63,69

13 150,08 54,89 63,43

14 90,92 90,12 0,88

15 62,07 50,30 18,96

16 132,42 71,03 46,36

Figure 43: ‘Dust polygons’ misclassified as RSM can have both beneficial (left) and undesirable (right) effect

65

Case

study

area

Classified RSM

before manual edits

(Area [m
2
])

Classified RSM

after manual edits

(Area [m
2
])

Change ratio

[%]

17 164,76 123,31 25,16

18 1074,65 547,09 49,09

19 641,05 297,36 53,61

20 1865,64 1385,55 25,73

Table 6: Amount of manual edits after classification

The areas which have the change ratio lower that 10 % needed only minor changes such

as removing small patches of sunlight reflections from cars, drainage covers or small objects

which were classified as RSM (Figure 44).

Areas with high numbers of change ratio show a need for a lot of manual edits. However,

the reason for a vast amount of misclassified segments is the same in all three areas –

a concrete pavement with high reflectance in bright sunlight with long and narrow shape

(and thus the same length/width ration as RSM lines). The situation is illustrated in Figure 45

on the following page.

The rest of case study areas did not need a vast amount of manual editing. Furthermore,

the algorithms are built in a way so that they do eliminate minor classification errors

such as small and remote misclassified patches. However, deleting pavements classified

as RSM lines is necessary for a correct result.

Figure 44: Small patches of sunlight reflection and other misclassified objects (red)

66

 RSM identification 6.5.

The aim of the first algorithm described in 5.3.1. is to create lines which represent RSM. Input

data are classified polygons of RSM (after correcting classification errors manually).

The algorithm produces correct results in general with the overall positional accuracy

of 0.126 meters (as presented in Section 6.10.). However, several shortcomings were

identified which are further discussed on the following pages.

Figure 45: A concrete pavement misclassified as RSM lines

Figure 46: Identified RSM in an image

67

Diagonal hatching

The algorithm creates oscillating lines occasionally when a straight line touches diagonal

hatching lines. Resulting line is simplified by Douglas–Peucker method yet with connections

to diagonal hatching lines the overall shape is not changed much after simplification.

One possible solution would be to remove all diagonal hatching lines from RSM lines before

the simplification is applied and then add them into the simplified layer again. However, then

the hatching lines would not be touching the straight line and there would be gaps within

RSM marking lines.

The solution depends on specific usage (and thus needs) of the resulting data. If all RSM lines

(including diagonal hatching) are supposed to be in the result as a properly interconnected

network, then the network either has to be simplified together (as it currently is) or all gaps

created by straight line simplification have to be bridged as another step. In this paper,

the firstly presented result (interconnected network with occasional line oscillation)

is preferred.

Crash barriers and outer separators

There are several road infrastructure objects which look in aerial images like RSM lines

but represent other objects than RSM. These are, among others, crash barriers (both metal

and concrete ones), outer separators, toll gates, directional sign stands, acoustic walls

or curbs. Some of them (road curbs for example) are useful (and desirable) if being classified

as RSM because as a matter of fact they represent an edge of the road. In some cases where

the RSM lines are missing, they serve as a substitute of missing lines.

However, when such substituting objects are further from the line (or the place where the line

should have been drawn) they cause a spatial shift of the created line from the position

of the actual border of a driving lane to the outside of the paved surface (roadway shoulder).

Figure 47: Diagonal hatching: oscillating line (on the left) and correctly created straight

line (on the right)

68

The solution of the problem would be to delete such polygons after classification

as misclassified redundant features and to approach such areas as gaps and bridge them with

suggested bridging algorithms. However, this solution would require more manual editing

(assigning gap vertices and inspecting road points) which would lead to a longer editing time.

Traffic islands

Traffic islands which are marked on the road surface with RSM (including diagonal hatching)

and are not physically divided from the road surface with raised kerbs, curbs or other physical

obstructions are another problem for the algorithm. In cases that the (for the algorithm input)

classified RSM polygons of a straight line and diagonal hatching are not clearly identified.

Figure 48: Metal crash barrier classified as RSM line causing spatial shift of the border a driving lane

Figure 49: Divergence of straight RSM lines; comparison between incorrect (left) and correct solution

(classified RSM in grey, created RSM lines in red).

69

If the classification of a straight line is successful, than the resulting RSM lines are created

in a correct way. Otherwise, the resulting line contains undesired curves and oscillation

in places where the island begins (i.e. where two straight lines of RSM diverge, Figure 49).

However, it is possible that in Figure 49 specifically the mistake is caused by the fact that

the line divergence is close to the border of the case study area.

Possible solution would be similar to the one presented in the Diagonal hatching section

of this chapter with all its advantages and disadvantages.

Railing

In one case, a protective metal railing with a bright red and white paint appeared in a case

study area which was classified as RSM and has length parameters (length of lines and length

of gaps with regular alternation). Therefore, the algorithm processed it as a broken line and

identified it despite the fact that it is not located on the road surface anymore. The railing was

not removed during manual editing due to the same reasons (the author mistook it

for a broken line of a right-turn lane).

Possible solution to this is (beside manual removal) automated deleting of all classified

objects which are not located on road surface anymore (as suggested in Chapter 6.4.);

or implement a two-step classification (see Chapter 5.1. for more detail).

Straight line oscillation

In some cases the generated RSM line slightly oscillates although the classified RSM

polygons are in line and the oscillation is thus a mistake. It was found out that the oscillation

is caused due to the operation of line simplification. The simplification tolerance was set

Figure 50: Protective metal railing with bright red and white paint; from driver’s perspective (left)

and in aerial image (right)

70

to 0.3 meters to prevent unnecessarily breaking of continuous curves into straight line

segments (Figure 53). However, there are vertices on the original line (which is to be

simplified) which are already further than 0.3 from the connection of start and end vertices

and thus another vertex is created on the resulting lines causing the resulting line to oscillate.

The problem is caused by missing RSM which is replaced by ‘dust polygons’ (see Figure 43

for explanation) which are wider and more irregular in shape than RSM. Finding a solution

to this problem is complicated and such solutions have their drawbacks. In case of using

a bigger simplification tolerance during line simplification smoothness of resulting curves will

be limited even more. On the other hand, manual editing would be more time and manpower

consuming. The theoretical solution would be to connect these short oscillating lines to their

neighbouring lines (then they would be simplified correctly) but this would mean adding more

steps to the algorithm; and it is not desirable in all cases to be connecting short gaps between

RSM lines.

Shadows

Shadows of trees, buildings, traffic lights, lampposts and other object shading road surface

and RSM cause the resulting line being cut into multiple shorter line segments (in case

of narrow shadows of traffic lights or lampposts) or vanishing completely (trees, buildings

and other wide objects).

Effect of shadows can be reduced by choosing imagery with less (shorter) shadows. However,

it is not possible yet to eliminate all shadows in images, therefore there are further measures

taken in the following algorithms to deal with this problem.

Figure 51: Oscillating resulting line (black) and a line before simplification (red), zoomed in

71

Insufficient arc continuity

It was found out that in some curves the created RSM line loses its fluency. This effect is

caused by line simplification, more precisely by setting a simplification tolerance parameter.

The parameter has to be set consciously because it influences complexity of the result

and eliminates errors of classification in one hand, yet it decreases fluency of arcs and causes

breaking arcs into straight line segments on the other.

Figure 53: Limited fluency in curves; resulting line (black) and a line before

simplification (red), zoomed in

Figure 52: Effect of shadows of trees (left) and lampposts or cars (right) on created RSM lines

72

This shortcoming is not possible to be fully solved, it can only be mitigated. With a standard

width of driving lanes of 3 (3.5) meters and a standard width of passenger cars around

2 meters and of a bus or a truck around 2.5 meters, a 0.3 meters difference in width

of a driving lane is still acceptable. Furthermore, it should never happen that RSM lines

of one driving lane will be curving towards each other and thus the simplification parameter

of 0.3 meters would have to be multiplied twice (i.e. both lines would be further from each

other that the simplified line).

Pedestrian crossings

Proposed algorithm was not designed to model pedestrian crossings correctly as they are not

relevant for driving lanes. However, they are marked with white RSM polygons, which mean

that they were classified and analysed (unless removed during manual editing) together with

the rest of classified polygons. The process did not have to be adjusted to proper modelling

of pedestrian crossings, therefore the only solution is to delete them further in the process

so that they do not collide with RSM lines and thus do not cause errors.

Horizontal directional arrows

Horizontal directional arrows are together with other horizontal marking such as pictograms,

horizontal traffic signs, speed limits, text and other relevant information drawn on road

surface. Their colour is white in most cases and therefore these objects were correctly

classified as RSM during the classification.

However, just like pedestrian crossings, they are not relevant for driving lanes and therefore

are to be deleted further in the process so that they do not collide with RSM lines and thus do

not cause errors as well.

Figure 54: Pedestrian crossing with resulting RSM lines

73

Bus stops

Bus stops are next to the pedestrian crossings and horizontal directional arrows another type

of objects which are marked on road surface and thus correctly classified as RSM. Unlike

pedestrian crossings or directional arrows, bus stops can be relevant for RSM and driving

lanes in cases that a bust stop forms a bus bay (also called bus lay-by in some regions). Then,

it may be desired to create another (although short) driving lane connected to the main driving

lane.

To solve this and to fully put bus bays in the database of driving lanes, a more complex

solution would be necessary which may lead to another input dataset of bus stops.

Furthermore, the classification result would have to be improved because not all segments

of bus stop marking were classified as RSM.

Figure 55: Horizontal directional arrows with resulting RSM lines

Figure 56: Bus bays with resulting RSM lines

74

Gaps with no visible RSM lines

In places where the real RSM lines are either not drawn on road surface or are fading

or covered, no RSM lines were modelled by the algorithm. This represents an important

disadvantage of reconstruction of driving lanes boundaries from RSM and solving this issue

as presented in 5.3.3. is one of the key contributions of this thesis.

 RSM geometry detection 6.6.

The crucial step on the way from identified RSM lines to driving lanes geometry

is the detection of RSM geometry. In other words, in this step single lines that are drawn

on road surface are interconnected together into a (in an ideal case) continuous network

depicting boundaries of driving lanes.

The algorithm was designed in a way so that it is able to bridge short gaps between

neighbouring RSM lines. Yet, there naturally are several shortcomings which are presented

I the following section with a brief discussion about their reasons and solutions.

Figure 57: Gap with no visible RSM line (on the very left)

75

Incorrect length of RSM lines

 Despite the fact that the length of RSM lines is officially defined in a binding document

called Technické podmínky Nr. 133, Zásady pro vodorovné dopravní značení na pozemních

komunikacích (TP 133), it was found out that the length can differ slightly. The length

of a line is an important parameter because it informs drivers about context of the traffic

situation (see Table 1 for more details). Several times the identified RSM line was longer

(by more than 30 cm) than the official length leading to deleting or not selecting the line

as an RSM line.

Figure 58: Successfully detected driving lanes (black)

Figure 59: Incorrect RSM lines length leading to a gap in resulting line

76

The other extremity (a line too short) is presented in Figure 59 which in combination with

a car shadow leads to a resulting gap. The shortening of the line was in this case caused

by a road patch.

The algorithm itself was built to handle wrong length of one RSM lines; however, in this case

two consecutive lines appear which are both too short – the first one is too short because

of the patch and the other one is too short because it is shadowed by a car.

Changing amount of driving lanes

A situation when two driving lanes merge into one or when one driving lane is splitting into

two is appears commonly on roads and therefore should be counted on with. In such cases,

the algorithm takes advantage of the fact that the line which creates a border

of the starting/ending lane always has a smaller angle that 35° and therefore can be

distinguished from diagonal hatching or other undesired objects.

Out of six such situations in case study areas, five were modelled correctly. Only one case

(Figure 60) was not modelled correctly which presumably can be caused by two reasons.

Firstly, the situation is at the edge of the case study area and the algorithm tends to create

worse results at the edges (caused by a loss of neighborhood connections on the side

of the border) and secondly, the diagonal hatching in this situation was not classified properly.

Line oscillation

Three cases of undesired line oscillation were identified in the resulting lines. In all cases,

an object was blocking the straight line and was not classified as RSM (which leads to a gap

after running the first algorithm to identify RSM lines). In this step, the gap is bridged (if it is

shorter than 3 meters); yet if there were other objects in the surrounding of the bridged gap

classified as RSM (road debris etc.) than this can cause an oscillation of the resulting line.

The resulting line is not simplified in this step; therefore all (even minor) oscillations can

appear). Lampposts, toll gates, directional sign stands, traffic lights or cars can cast such

shadows as well as objects of drainage covers or patches can cause such oscillation.

Figure 60: Changing amount of driving lanes, correct (left) and incorrect (right) modelling

77

Bus bays

As described in the previous section, bus stops are marked by longer lines (compared

to pedestrian crossings lines, which have been eliminated) and might be relevant for driving

lanes in case of bus bays. Therefore, their lines were not completely removed.

However, due to not correct classification result, the bus stops tend to have incomplete

structure with gaps. A disadvantage of the process is that not all gaps are bridged during

the reconstruction process, especially those gaps which are not parallel with road vector lines.

Figure 61: Oscillating line caused by a drainage cover (left) and by a shadow of car (right)

Figure 62: Bus bays with gaps

78

 Bridging gaps 6.7.

A specialised algorithm was created to bridge gaps longer than 3 meters. It combines

information from classified RSM (vertices of modelled RSM lines) with polylines or existing

roads (second input dataset) and thus is able to copy the shape of road polylines into resulting

lines as well. The algorithm is able to solve the problem of bus bays if the input information

about gap vertices is set correctly.

For most of the cases it creates correct solutions in places where the RSM is not marked

or was not classified; such cases are presented in Figure 63. However, under several

circumstances is the result of the bridging algorithm not fully correct; such cases are

described and analysed on the following pages.

Figure 63: Successfully bridged gaps (red) and previously modelled driving lanes boundaries (black)

79

Undesired shifting

Resulting gap line will always copy the shape of input road vector lines. Therefore,

if the input line is not straight where the RSM line is straight, the modelled gap will not be

straight either.

This shortcoming is dependant on the quality of input data and therefore the input data is

supposed to be reviewed if it is fully fit for the purpose.

Merging driving lanes

In some cases the created lines did not correctly bridge the gaps which lied in junctions where

two driving lanes split/merge. The cause of incorect solution is the fact that the input road line

(although logically and topologically correct) is not keeping the same distance from the RSM

line throughout the whole gap. Two such situations are presented in Figure 65.

Figure 64: Undesired shifting of the bridging line (in red compared with shape of input road line

(in yellow)

Figure 65: Incorrectly bridged gaps in junctions (bold red) compared to the shape of input road

line (yellow) and correctly bridged gaps (thin red lines)

80

Missing continuity

The fact that the resulting bridging line copies the shape of input road line may occasionally

cause missing continuity of the result. This has the same cause as the previous problem

(in this case only the other way around), the input road lines are not fully copying the correct

direction of the road (and thus RSM) and cause lack of continuity in the result as shown

in Figure 66.

As stated above, the problem is caused by the geometry (low spatial accuracy) of input data.

 Over- and underpasses 6.8.

One of the most significant contributions of this thesis is a solution of modelling driving lane

boundaries even though the RSM line is hidden from view in the input aerial image such

as in shadows, under bridges or in tunnels. The solution is simple (as presented in 5.3.3.)

and requires fulfilment of two conditions – firstly, a vector data model must be used;

and secondly, an input dataset of existing road infrastructure containing information about

the direction of roads in areas hidden from view has to be used as a supplementary input

dataset.

Both conditions were met in the workflow and thus results are presented. From the problems

presented above, one is relevant to be mentioned with underpass motorway junctions –

missing continuity. Missing continuity (as stated above) occurs in such situations when

Figure 66: Logically incorrect bridging solution (bold red) compared with shape of input road

line (yellow) and the correctly bridged gaps (thin red lines)

81

a driving lane which is situated under a bridge does not have the same direction as the vector

line representing the road (as illustrated in Figure 66).

Different road levels (underpass and overpass, i.e. surface level and bridge level) were

analysed separately and merged into one resulting dataset only after the analysis was

performed. The algorithm is not capable of working on more than one surface levels; such

adjustment would involve one more loop over levels; besides that a level information would

have to be added to attributes of both gap vertices and road points as well as resulting RSM

lines.

Two motorway bridges were covered in case study areas of this paper and the results are

presented below (Figure 67). They both represent a typical situation where two road levels

cross with part of a highway junction covered in the first case as well.

 Identifying broken lines 6.9.

To be able to distinguish between solid and broken lines, two specialised algorithms were

created. One of them processes small RSM polygons which were too small for the ‘normal’

procedure (explained in Step 2 of the Section 5.3.1.) which is described in 5.4. and assigns

the information about broken line to all created lines automatically. The other one is presented

in the Section 5.5. and based on length criterion selects only those RSM line segments that

match the defined length intervals.

The only limitations of the first algorithm (5.4. Small RSM Polygons) are classification

errors. The algorithm incorporates the same short gap bridging process as the algorithm

designed for ‘normal’ RSM polygons (5.3.). Therefore, it is able to bridge gaps shorter than

3 meters (this parameter can be set manually before running). However, it is not able

to correct those gaps which are on the border of a broken line and thus have no neighbour

on the other end.

Figure 67: Motorway crossings with two surface levels (surface level in black and bridge level in red)

82

The second algorithm was created to identify regular broken lines. This problem is more

complicated than the previous one because there are more different kinds of broken lines

allowed to mark different kind of driving lanes (see Table 1 for more details). The algorithm

has to be built in a way to identify successfully all of them. However, it should not identify

parts of solid lines or other similarly looking line segments as broken lines.

The main decision criterion is the length of RSM lines and the gaps between them (which are

regularised as well). Therefore, all line segments with appropriate length will be perceived

as broken line segments at first and will be connected. However, such connections which are

too long are deleted in the following step and finally, too short standalone (isolated) lines are

deleted as well. This should assure correctness of the algorithm in most of the cases.

However, it was found out that (especially for small case study areas which are only around

50 meters long) this might be a problematic solution because they only contain less than ten

RSM lines. If it happens, that two of them are shaded or damaged, the whole case study area

is not analysed properly. The same problem was discovered if two consecutive broken lines

are shaded or damaged (Figure 69).

It is worth stating that the algorithm perceives a broken line as a connection from a first RSM

segment to the last one; therefore the gap between the last segment of the broken line and the

solid line is not identified as part of a broken line. Similarly, at the border of a case study area,

a broken line only starts with a start of a first RSM line (Figure 70).

Two shortcomings of the proposed algorithm were identified which are further discussed

in this chapter.

Figure 68: Modelled broken line (black) from ‘small’ RSM polygons (red)

83

Diagonal hatching

One problem of the proposed method of broken line identification can occur due to diagonal

hatching. In some cases its ends are identified as line dead ends (when the classification was

not performed properly) and if this phenomenon appears repeatedly along a line, it results into

modelling a broken line.

The problem is to be overcome with a proper classification or with manual editing

of the result. It is not possible to prevent the algorithm from creating such lines in cases that

the space between hatching lines has the same length as broken lines and their gaps.

Figure 69: Modelled broken line (black) which is not continuous because two consecutive RSM lines

are shaded (1) and covered by a patch (2)

1

2

Figure 70: Modelled broken line (black) in a 60 m long case study area (red borders)

starting from the first RSM line which is drawn on the road (and classified)

84

RSM lines length

In some cases it was found out that the RSM lines drawn on roads do not have proper length

as they are supposed to have according to Czech national regulations causing the algorithm

to create incorrect results (not to identify a broken line). This is clearly a mistake of workers

when painting the physical lines.

The incorrect length problem can be solved by widening intervals for identified RSM lines;

however, this solution might lead to other undesired line segments being identified as RSM

lines. The correct length already has a tolerance of 0.3 m (for 1.5 m long lines) respectively

0.5 m (for 3 and 6 m long lines) and it was tested that making the interval wider would lead

to new undesired modelled broken line segments.

Figure 71: Diagonal hatching creating an undesired broken line (red)

compared to a correctly modelled broken line (black)

Figure 72: RSM lines which are too long to be considered broken line

segments (red): 3.58 m (left) ad 3.94 m (right) instead of 3 m

85

 Positional accuracy assessment 6.10.

To assess positional accuracy of the result, a root mean square error (RMSE) was used.

In each case study area, in average 13 points (per area) were identified. Such points were

located in identifiable locations of RSM lines and driving lane borders such as end of lines

or on line axes and in the aerial image. The location of points was not distributed randomly

but as regularly as possible with a presumption to cover each case study area evenly.

Root mean square error is a generally used statistical measure which assesses differences

between two populations. It is calculated as:

𝑅𝑀𝑆𝐸 = √
∑ 𝑑2

𝑇

where d stands for a distance between measured point and its representation created

by the algorithm and T for number of assessed control points. RMSE values for each target

area as well as combined overall RMSEs for all areas together are presented in Tables 7

(for modelled RSM lines) and 8 (for modelled driving lanes boundaries).

Two resulting datasets were assessed using RMSE. The first represents RSM lines as they

were identified on road surface (result of the algorithm presented in 5.3.1.); the other

represents modelled boundaries of driving lanes (combining results of 5.3.2, 5.3.3. and 5.4).

Same points were identified in these datasets and their position was compared to the manually

identified position in an input aerial image. Because of the manual selection of points, minor

positional errors within pixel size (10 cm) are expected to appear.

Positional accuracy of modelled RSM lines

Case Study Area RMSE [m] Case Study Area RMSE [m]

1 0.0517 11 0.0949

2 0.0704 12 0.0480

3 0.1271 13 0.1661

4 0.0620 14 0.1283

5 0.1018 15 0.0851

6 0.1170 16 0.0775

7 0.0925 17 0.1336

8 0.0899 18 0.1211

9 0.3005 19 0.1440

10 0.0869 20 0.1681

 Total RMSE 0.1263

Table 7: Calculated RMSE values of modelled RSM lines

86

The average of around 0.11 meters (11 centimetres) and the overall RMSE of 0.126 meters

(12.6 centimetres) means positionally accurate results. The only area with a high RMSE

is the case study area 9 where a crash barrier was identified as a RMS line leading

to positional inaccuracy. Otherwise, if we take into account the conditions (pixel size, width

of RSM lines and line simplification tolerance), the total positional RMSE of 0.126 meters

means that the results are satisfactory.

Positional accuracy of modelled driving lanes boundaries

Case Study Area RMSE [m] Case Study Area RMSE [m]

1 0.1155 11 0.1627

2 0.1003 12 0.0746

3 0.1528 13 0.2115

4 0.0769 14 0.1254

5 0.1234 15 0.0903

6 0.1472 16 0.0969

7 0.1212 17 0.1383

8 0.1005 18 0.1311

9 0.3148 19 0.2065

10 0.1484 20 0.1427

 Total RMSE 0.1486

Table 8: Calculated RMSE values of modelled driving lanes boundaries

It can be seen that with the average RMSE of around 0.14 meters (14 centimetres)

the algorithm has sufficient positional accuracy, taking into account the pixel size

(10 centimetres) and the line simplification tolerance of 30 centimetres. Exceptionally high

is the value in the case study area 9 (where a crash barrier was modelled as RSM; see page 67

for more details) 13 (where a railing on a pavement was identified as broken line; see page 69

for details) and 19 (where the marking was fading and thus not classified properly).

The overall RSME of 0.149 meters is a sufficient result after considering accompanying

conditions.

87

7. Discussion

A semi-automated method of identifying driving lanes in aerial images has been developed

and presented in this thesis. Two different data sources are needed to successfully perform

the method and obtain relevant results. First input dataset is high resolution aerial imagery

in which road surface marking is identifiable. The other information source are polylines

depicting road network which help in minimising performance costs as well as serve

as positional information input in places where the original line is not visible in an aerial

image (such localities are called ‘gaps’ in this paper).

Firstly, input aerial images are split into segments and based on the segmentation

a classification according to predefined criteria is performed (object-based image analysis).

The aim of such classification is to identify polygons which represent road surface marking

(RSM) marked on the surface of a road. Such data serves as the main input for proposed

algorithms. The algorithms represent a key contribution of this thesis as they identify

boundaries of driving lanes and create a representation of a road with the scale of single

Figure 73: Input data and result: aerial image (top left) and polylines representing road infrastructure

(top right) as input data and polylines representing driving lanes (bottom, in black) as result

88

driving lanes.

The method consists of multiple algorithms out of which each is specialised in one step

of the process. First algorithm creates polylines representing RSM lines out of classified

polygons. Second algorithm interconnects such polylines and models borders of driving lanes.

Next algorithm is able to create vector lines in places where no RSM was classified (shadows,

under bridges, misclassification etc.). A special algorithm was necessary to analyse very short

(shorter than 0.5 meters) broken lines as these caused the previously mentioned algorithms

to fail. The purpose of the last created algorithm is to improve information volume contained

in the resulting dataset; it aims to identify broken lines and save the information in attributes

of the respective lines.

Proposed algorithms were tested in a case study area of the suburban part of Prague, Czechia

with various different types of road infrastructure (motorway, main roads with multiple

driving lanes, bus bays, over- and underpasses, changing amount of driving lanes etc.). This

served both for finding optimal numerical parameters for operations of the algorithms as well

as for testing effectivity and correctness of the algorithms themselves. The results as well

as eventual shortcomings of the algorithms (or of input data) are presented in the previous

chapter.

Positional accuracy of modelled RSM lines as well as of modelled driving lanes boundaries

was examined and calculated using RMSE. With the overall RMSE of 0.126 metres for RSM

lines and 0.149 meters for modelled driving lanes boundaries it can be stated that the results

have sufficient positional accuracy; especially when taking into account the pixel size of input

images, width of RSM lines drawn on road surface as well as the line simplification tolerance.

Therefore it can be stated that the objectives of the thesis were achieved. Algorithms

for creating vector data representing roads on driving lanes scale were developed. Testing

on a case study area proved their effectiveness; several shortcomings, however, are leading

to possibilities for future improvement of the method which are discussed in the following

paragraphs.

First, more testing in a bigger case study area is necessary for a more thorough evaluation

of the method. A lot of shortcomings presented in this thesis were localised close to borders

of a case study area and might be caused by missing context of the surroundings (missing

neighbourhood connections). From the already identified disadvantages of the method

diagonal hatching, undesired line oscillation and dependency on input road vector data can be

mentioned.

Diagonal hatching causes several problems of the algorithms. It can be identified as a broken

line when the hatching distance equals broken line length and it may cause driving lane

borders to oscillate. The problem might occur due to the fact that diagonal hatching lines are

analysed as separate lines instead of parts of one bigger object. Therefore a possible limitation

connected to number of lines coming from each vertex might serve as an applicable

identification of diagonal hatching lines and thus limiting them from the problematic

calculation procedures.

Multiple reasons can cause a resulting line to oscillate undesirably; therefore a line

simplification is incorporated into the process. However, not always does the simplification

bring correct results, this may be caused by the incorrect classification of aerial images

89

(leading to the fact that either objects which are not RSM lines are classified as RSM or parts

of RSM are not classified). Solving this on the geometry level would possibly require working

with much larger surroundings that neighbourhood to be able to identify undesired sudden

oscillations in an otherwise straight line.

Similar solution might solve the problem with missing continuity around gap bridging lines,

which appears in places where the input road dataset does not exactly copy the direction

of a driving lane. In this case as well it might be beneficial to use a larger area to identify

a directional trend of RSM lines rather than their immediate vector towards the road depicting

polyline.

Finally, the broken line detection might be improved to provide correct results in areas close

to case study area borders. Possible solution here would be not to analyse length of lines only

but their neighbourhood as well. If a line segment was not identified as a broken line directly

based on length criterion but it is relatively short and both its neighbours are broken lines,

then it would most probably be part of a broken line as well. On the other hand,

if a standalone segment with no other segments in its neighbourhood (i.e. its neighbours are

both solid lines) is identified according to its length as broken line, it would most probably be

a solid line segment too. Similar approach could possibly deal with line segments on dead

ends (i.e. with only one neighbour) as well.

To conclude, this thesis should be perceived as a pioneer work in vector analysis of road

surface marking lines. According to its author, the area itself is promising for obtaining such

data from aerial images rather than from driver’s perspective cameras (high costs for large

areas) or GPS traces (inaccurate data). However, image classification as well as the visibility

of surface marking itself in aerial imagery would have to be improved as a prerequisite

for a fully successful analysis of this kind.

90

References

Scientific publications

 Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., Pilat, Y., Homm, F.,

Huber, W., Kaempchen, N. (2015): Experience, Results and Lessons Learned from

Automated Driving on Germany’s Highways. IEEE Intelligent transportation systems

magazine, volume 7, issue 1, pages 42–57

 Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, D. (1995): A Novel Type of

Skeleton for Polygons. Journal of Universal Computer Science, volume 1, issue 12, pages

752–761

 Bakhtiari, H. R. R., Abdollahi, A., Rezaeian, H. (2017): Semi-automatic road extraction

from digital images. The Egyptian Journal of Remote Sensing and Space Sciences,

volume 20, pages 117–123

 Baumgartner, A., Hinz, S. (2003): Automatic extraction of urban road networks from

multi-view aerial imagery. ISPRS Journal of Photogrammetry & Remote Sensing,

volume 58, pages 83–98

 Blaschke, T. (2009): Object based image analysis for remote sensing. ISPRS Journal of

Photogrammetry and Remote Sensing, volume 65, issue 1, pages 2–16

 Blum, H. F. (1967): A transformation for extracting new descriptors of shape. In:

Proceedings of Symposium on Models for Perception of Speech and Visual Form.

Cambridge, Mass., M.I.T. Press (editor: Weiant, W., D.), pages 362–380

 Cheng, G., Zhu, F., Xiang, S., Wang, Y., Pan, Ch. (2016): Accurate urban road centerline

extraction from VHR imagery via multiscale segmentation and tensor voting.

Neurocomputing, volume 205, pages 407–420

 Český úřad zeměměřický a katastrální (2018): Katalog objektů ZABAGED
®
. ČÚZK,

Praha 2018, verze 3.0 ve znění dodatku č.1a č. 2. [online]

https://geoportal.cuzk.cz/Dokumenty/KATALOG_OBJEKTU_ZABAGED_2018.pdf

 Douglas, D. H., Peucker, T. K. (1973): Algorithms for the Reduction of the Number of

Points Required to Represent a Digitized Line or Its Caricature. The Canadian

Cartographer, volume 10, issue 2, pages 112–122

 Fischer, P., Azimi, S. M., Roschlaub, R., Krauß, T. (2018): Towards HD Maps from

Aerial Imagery: Robust Lane Marking Segmentation Using Country-Scale Imagery.

ISPRS International Journal of Geo-Information, volume 7, page 458.

 Gontran, H., Skaloud, J., and Janvier, N. (2006): Open-source software operated CMOS

camera for real-time mapping. In the International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Science, Paris, France.

 Hormese, J., Saravanan, C. (2016): Automated Road Extraction From High Resolution

Satellite Images. International Conference on Emerging Trends in Engineering, Science

and Technology (ICETETS) 2015. In: Procedia Technology, volume 24, pages 1460–

1467

 Jin, H., Feng, Y., Li, Z. (2009): Extraction of road lanes from high-resolution stereo

aerial imagery based on maximum likelihood segmentation and texture enhancement.

91

Digital Image Computing: Techniques and Applications, Melbourne, Australia,

December 2009.

 Jin, H., Feng, Y. (2010): Automated road pavement marking detection from high

resolution aerial images based on multi-resolution image analysis and anisotropic

Gaussian filtering. Proceedings of the 2nd International Conference on Signal Processing

Systems (ICSPS), Dalian, China. Volume 1, pages 337–341.

 Jin, H., Miska, M., Chung, E., Li, M., Feng, Y. (2012): Road Feature Extraction from

High Resolution Aerial Images Upon Rural Regions Based on Multi-Resolution Image

Analysis and Gabor Filters. Remote Sensing – Advanced Techniques and Platforms

(editor Dr. Boris Escalante). InTech, Shanghai, China, pages 387–414

 Jeong, P., Nedevschi, S. (2005): Efficient and robust classification method using

combined feature vector for lane detection. IEEE Transactions on Circuits and Systems

for Video Technology, volume 15, issue 4, pages 528–537

 Kettig, R. L. , Landgrebe, D. A. (1976): Classification of Multispectral Image Data by

Extraction and Classification of Homogeneous Objects. IEEE Transactions on

Geoscience Electronics, volume 14, issue 1, pages 19–26

 Kreucher, C., Lakshmanan, S. (1999): LANA: a lane extraction algorithm that uses

frequency domain features. IEEE Transactions on Robotics and Automation, volume 15,

issue 2, pages 343–350

 Lee, S., Kim, J., Yoon, J. S., Shin, S., Bailo, O., Kim, N., Lee, T.–H., Hong, H. S., Han,

S.–H., Kweon, I. S. (2017): VPGNet: Vanishing Point Guided Network for Lane and

Road Marking Detection and Recognition. 2017 IEEE International Conference on

Computer Vision (ICCV), Venice, Italy, pages 1965–1973

 Leninisha, S., Vani, K. (2015): Water flow based geometric active deformable model for

road network. ISPRS Journal of Photogrammetry and Remote Sensing, volume 102,

pages 140–147

 Máttyus, G., Luo, W., Urtasun, R. (2017): DeepRoadMapper: Extracting Road Topology

from Aerial Images. 2017 IEEE International Conference on Computer Vision (ICCV),

Venice, Italy, page 3458–3466

 Seo, W.-Y. (2012): Augmenting Cartographic Resources and Assessing Roadway State

for Vehicle Navigation. PhD Thesis, April 2012, The Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA 15213, USA.

 Shahi, K., Shafri, H. Z. M., Taherzadeh, E., Mansor, S., Muniandy, R. (2015): A novel

spectral index to automatically extract road networks from WorldView-2 satellite

imagery. The Egyptian Journal of Remote Sensing and Space Sciences, volume 18, pages

27–33

 Ministry of Traffic of the Czech Republic, Department of Roadways: TP 133 Zásady pro

vodorovné dopravní značení na pozemních komunikacích. Technické podmínky, editor

Ing A. Seidl, 2013. [online] www.pjpk.cz/data/USR_001_2_8_TP/TP_133.pdf

 Wang, W., Yang, N., Zhang, Y., Wang, F. (2016): A review of road extraction from

remote sensing images. Journal of Traffic and Transportation Engineering (English

Edition), volume 3, issue 3, pages 271–282

 Xia, W., Zhang, Y., Liu, J., Luo, L., Yang, K. (2018): Road Extraction from High

Resolution Image with Deep Convolution Network – A Case Study of GF-2 Image. 2nd

92

International Electronic Conference on Remote Sensing, Proceedings, volume 2, article

number 325

 Yuan, J., Wang, D., Wu, B., Yan, L., Li, R. (2009): Automatic Road Extraction from

Satellite Imagery Using LEGION Networks. Proceedings of International Joint

Conference on Neural Networks, Atlanta, Georgia, USA. Pages 3471–3476

 Zhang, Z., Zhang, X Sun, Y., Zhang, P. (2018): Road Centreline Extraction from Very-

High-Resolution Aerial Image and LiDAR Data Based on Road Connectivity. Remote

Sensing, volume 10, issue 8, article number 1284

Other sources

 ESRI (2020): ArcGIS Pro Python reference. Redlands, California. Cited 02/04/2020.

https://pro.arcgis.com/en/pro-app/arcpy/main/arcgis-pro-arcpy-reference.htm

 Holmes, O. (2019): High Resolution Digital Aerial Imagery vs High Resolution Satellite

Imagery – Part 1. Glynde, Australia. Posted 20/01/2012, cited 02/03/2020.

https://aerometrex.com.au/technical/high-resolution-digital-aerial-imagery-vs-high-

resolution-satellite-imagery-part-1/

 Ministry of Traffic of the Czech Republic, Road and Motorway Directorate of the Czech

Republic: Politika jakosti pozemních komunikací. Prague, Czechia. Last update

22/05/2018, cited 17/01/2020. http://www.pjpk.cz/technicke-podminky-tp/

Used data

 Aerial images: Prague Institute of Planning and Development (IPR Praha), licensed under

CC BY-SA 4.0 [http://creativecommons.org/licenses/by-sa/4.0/], provided

on 24/01/2020.

 Vector road dataset: OpenStreet Map contributors (OSM), licensed under CC-BY-SA 2.0

[https://creativecommons.org/licenses/by-sa/2.0/], downloaded on 18/02/2020

93

List of appendices

This chapter represents a list of appendices which are attached to the thesis with a brief

explanation of their meaning and of how to work with them.

Created codes

Original codes created by the author to perform the analysis of RSM as presented

in the thesis. All of them are written in Python 3 and use arcpy module with an advanced

license (including Spatial Extension). Input data as well as a path to a database for temporal

files (Default database for example) and to a resulting dataset must be correctly set in the code

prior to running it. The order of running the codes to comply with the process is identified

by the number in the name of respective codes.

Following codes are appended:

1_PolygonToMarkingLine.py

Code to create polylines representing RSM lines on road surface

Input data: polygon file with classification result (road marking polygons)

Output data: polyline file representing road surface marking

2_MarkingLinesToRSM.py

Code to create polylines representing (boundaries of) driving lanes

Input data:

 polygon file representing road surface marking (result

of 1_PolygonToMarkingLine.py)

 polyline file representing roads

Output data: polyline file representing boundaries of driving lanes

3_IdentifyGapVertices.py

Code to create points representing vertices of gaps in boundaries of driving lanes

Input data:

 polygon file with borders of case study area

 polyline file with lines representing boundaries of driving lanes (result

of 2_MarkingLinesToRSM.py)

Output data: point file representing vertices of gaps in boundaries of driving lanes

4_IdentifyRoadPoints.py

Code to create and order points representing roads (vertices of road polylines)

Input data:

 point file representing vertices of gaps in boundaries of driving lanes (result

of 3_IdentifyGapVertices.py)

 polygon file with borders of case study area

 polyline file representing roads

Output data: point file representing roads

94

5_EditLongGaps.py

Code to bridge gaps in boundaries of driving lanes

Input data:

 point file representing vertices of gaps in boundaries of driving lanes (result

of 3_IdentifyGapVertices.py)

 point file representing roads (result of 4_IdentifyRoadPoints.py)

Output data: polyline file representing bridged gaps in boundaries of driving lanes

6_ShortMarkingLineSegments.py

Code to create polylines representing short RSM line segments (< 1 meter)

Input data: polygon file with classification result (road marking polygons)

Output data: polyline file representing broken lines with short line segments (< 1 meter)

7_IdentifyBrokenLine.py

Code to identify broken lines in boundaries of riving lanes

Input data:

 polygon file representing road surface marking (result

of 1_PolygonToMarkingLine.py)

 polyline file with lines representing boundaries of driving lanes (result

of 2_MarkingLinesToRSM.py)

Output data: polyline file representing broken lines of RSM

Resulting data

Two datasets are appended to the thesis as ESRI shapefiles. These are:

 1_RSM

Polyline shapefile representing identified RSM lines (result

of 1_PolygonToMarkingLine.py) with no relevant attributes.

 2_DrivingLanes

Polyline shapefile representing boundaries of driving lanes (combined result

of 2_MarkingLinesToRSM.py merged with gaps modelled by 5_EditLongGaps.py

and short line segments created by 6_ShortMarkingLineSegments.py). Attribute

TypeLine distinguishes between solid and broken lines can have 4 options – “broken”

(identified by 7_IdentifyBrokenLine.py or created

by 6_ShortMarkingLineSegments.py); “solid” (lines not identified as broken lines

by 7_IdentifyBrokenLine.py); “unknown” (lines representing long gaps which are not

seen in the aerial image and thus are unknown) and “ “ (empty information for short

line segments located mostly at the end of case study areas which were too short

to be analysed by 7_IdentifyBrokenLine.py).

