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Abstract
Microscopy is embedded in the history of life sciences and vice versa. Recent
advances in the field present new challenges as new revolutionary technologies
arise. Sample preparation, microscope operation and data analysis have become
particularly demanding requiring specific interdisciplinary expertise. Bioimaging
data analysis is computationally demanding, as microscopy technologies can eas-
ily acquire data of exceptional size, often in terabytes. Correct analysis requires
computer vision knowledge, as well as knowledge of studied biological systems
and last, but not least deep understanding of microscopy technology. Tools avail-
able for the analysis of the imaging data vary from open-source customizable
software with a coverage of multiple tasks to a task specific proprietary software.
To choose the best tools for the analysis, analysts should know their options and
tasks at hand. In bioimage analysis the tasks needed to be employed depend
on the desired outcome and the acquisition technology. Amongst the possible
tasks to consider belong deconvolution, segmentation and registration. Amount
of approaches and algorithms available is progressively growing, resulting in a
complex field, difficult to be easily familiar with. This thesis covers different
microscopy technologies with emphasis on light sheet fluorescence microscopy,
particularly stressing the details of image acquisition and how it influences the
analysis. It also reports on different approaches to main image analysis tasks and
tools available, to illustrate the depth and immensity of the field.

Keywords: microscopy, big data, bioimage analysis, light sheet fluorescence
microscopy, segmentation, deconvolution, 3D reconstruction, quantification of
the imaging data
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Abstrakt
Mikroskopia je odbor, ktorý je súčasťou biologických vied a ich histórie. Rast to-
hto odboru, vznik nových revolučných technológií, so sebou prináša nové výzvy.
Príprava vzoriek, obsluha mikroskopu a spracovanie biologických obrazových dát
sa stávajú neustále náročnejšími a vyžadujú medzidisciplinárnu expertízu špecific-
kú pre dané oblasti. Dnešné mikroskopické technológie generujú obrovské množ-
stvo dát, často v terabajtoch, vďaka čomu sa analýza biologických obrazových
dát stáva výpočtovo náročná. K analýze je potrebná znalosť počítačového vi-
denia, mikroskopických technológií a skúmaných biologických systémov. K dis-
pozícii sú nástroje v rôznorodej škále, od open-source riešení, ktoré pokrývajú
veľké množstvo úkonov, k proprietárnym softwarom zameraným na jeden úkon.
Analytici by sa mali orientovať v možnostiach spracovania a v úkonoch, ktoré
plánujú vykonať, aby vybrali najlepšie nástroje. Úkony potrebné vykonať závisia
od požadovaného výsledku a technológie, ktorá bola použitá na získanie obra-
zových dát. Medzi možné úkony patrí dekonvolúcia, segmentácia a registrácia dát.
Neustále vznikajú nové prístupy a algoritmy na analýzu, vďaka čomu je analýza
obrazových dát zložitá. Táto práca sa zaoberá rôznymi mikroskopickými tech-
nológiami so zameraním na light sheet fluorescence mikroskopiu, problematiku
získavaniu snímok a ako to ovplyvňuje analýzu. Na ilustráciu rozsiahlosti oblasti
analýzy biologických obrazových dát sa práca zaoberá rôznymi dostupnými prís-
tupmi a úkonmi analýzy.

Klíčové slová: mikroskopie, big data, analýza biologických obrazových dát,
light sheet mikroskopie, segmentace, dekonvoluce, 3D rekonstrukce, kvantifikace
obrazových dát
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Introduction
The field of microscopy has been developing for four centuries. For the last al-
most one and half century the light microscopy have been thought to be limited
in the resolution by physical principles, eg. Abbe’s diffraction limit. In the
last two decades we can witness several optical technologies breaking diffraction-
based limitations, such as Stimulated Emission Depletion (STED) technology [1],
Photo-activated localization microscopy (PALM) or Single Molecule Loclization
Microscopy (SMLM) principle. Recent advances in light microscopy have mate-
rialized in novel super-resolution microscopy, virtual slide microscopy, light-sheet
microscopy, novel sample preparation and labelling approaches and many others.
Electron microscopy, which uses electron beams to obtain high resolution images
does not stand behind. Generally speaking, recent advances have been made to
diminish noise, artefacts and aberrations during or after image acquisition, which
led to Nobel prize for cryogenic electron microscopy (cryo-EM) in 2017. On top
of that light and electron microscopy can be combined (CLEM) to get the best
out of the two approaches.

Currently big data have become a challenging part of data analysis in many
different fields, life sciences and physics, agriculture, or economics. Challenges
big data bring to the scene are various. Storing recent data is more costly, com-
putation time is longer, requirements for computation hardware are increasing
and traditional algorithms or tools may not be efficient enough, thus becoming
obsolete.

Imaging biological samples in higher resolution comes with long acquisition
times and large file sizes. Images from multiple types of microscopes are now
imaged in z-stacks, thus providing information in three dimensions, instead of
just two. Furthermore, live cell time-dependent imaging adds another dimension
to the dataset, increasing imaging time, size of the dataset, computation time
and the requirements for visualization abilities.

Bioimage analysis is very complex field as different approaches have to be
applied to analyse particular microscopy images. Analytical demands differ based
on the desired outcome of the experiment and as the field of image data mining
grows the complexity of the tasks increases. Microscopy also requires a high level
of interdisciplinarity. To understand the underlying technologies applied and
meaning of the results obtained, it is necessary to combine biology with physics,
chemistry and computer science as well [2].

Bioimage data analysis comprises of several different tasks including enhance-
ment of the quality of data or detection of cells or organelles. Image pre-processing
focuses on quality of the raw data, signal-to-noise ratio, resolution or detection of
artefacts in the acquired image. Subsequent quantitative analysis focuses on
quantifying imaged data, measuring distances between objects or their sizes,
counting cells or organelles, tracking the development and movement of cells,
or finding ratio of an organelle, object or dye in the whole volume.

I got recently involved in different tasks in bioimage data analysis focusing on
images acquired applying Light Sheet Fluorescence Microscopy (LSFM). These
tasks include image registration, deconvolution, segmentation and further quanti-
tative analysis. We examine different algorithmic approaches, as well as different
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commercial or open-source software for data analysis. The purpose of this thesis
is to give an overview of available technologies and options in microscopy, differ-
ent approaches and tasks in data analysis and to illustrate the varying challenges
amongst which are the computation and storage requirements, as one could un-
derestimate their importance in the microscopy field.
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1. Microscopy
In a very general way microscope uses a beam to illuminate the observed sample
to project the magnified image of the object onto the eye retina of the observer
or the detection device. The device detects the spatially resolved intensity of the
signal and forms the image.

1.1 Types of Microscopy
There are many different types of microscopes, which will be briefly described to
showcase the variety of the imaging field.

1.1.1 Optical and electron microscopy
Microscopes are distinguished into two main groups: optical (often referred to
as light) and electron microscopes. There exist another groups, for example
scanning probe microscopes, that use probes to scan the surface of an object and
record properties or shapes of its surface, amongst which belongs atomic force
microscope or scanning near-field optical microscope.

Optical microscopy

Optical microscopes use light as a source of illumination to visualize the observed
object. Often light from the visible spectrum is used, for fluorescence microscopy
wider wavelength range of illumination source may be used, extending from UV
(ultraviolet) to NIR (near-infrared). To achieve image magnification convex lenses
are used. Compound microscopes use multiple lenses [3].

A setup of an optical microscope may be the finite tube length or infinity optics
microscope, the difference is the plane, at which the lenses project the image. In
the finite tube length microscope, there are two lenses - objective and ocular lens
in the microscope. Objective lens is at a working distance from the sample and
forms a magnified, real image at the intermediate image plane. The intermediate
image plane is fixed and occurs in the focal plane of the ocular. As the image
is located at the focal length of the ocular lens, the image is further magnified
and projected into infinity, which then forms a real image when observed by eye.
In the infinity optics microscope, the objective lens projects the image into the
infinity and the real image is formed at the intermediate image plane by a tube
lens in the body of the microscope. Objectives are usually made from different
lenses with different properties, depending on to what extent are they corrected
for various aberrations. Modern microscopes have multiple accessories available
and thus the light can travel in more than one pathway - to the ocular or to the
specialized digital detectors [4].

The wide-field detector is mounted on the microscope. The surface, which
detects light signal, is placed at the intermediate image plane or at the projected
image of the intermediate image plane. The photosensitive surface may be a
CCD (charge-coupled device) or sCMOS (scientific Complementary Metal Oxide
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Semiconductor) chip. The chip has a grid of photosensitive pixels, which simulta-
neously capture light signal from the object. Each pixel captures the light signal
(a number of photons incident on the pixel) as a charge, which is converted to
analogue voltage, which is further converted to a digital number.

Electron microscopy

Electron microscopes use beam of accelerated electrons as a source. Electrons are
emitted from a cathode, accelerated by a high voltage, beam is then focused and
lands on the sample. Electron microscopy requires vacuum for a proper function.
Electron microscopy is introduced in more depth in [5].

There are two main types of electron microscope: transmission (TEM) and
scanning (SEM). In TEM the electrons pass through the sample and the imaging
happens in pass-through mode, whereas in SEM imaging is made from scattered
electrons or emitted X-rays. In TEM electrons are transmitted through very
thinly sliced object, and the contrast comes from the interaction of the object
with electrons.

In SEM one can observe multiple characteristics of the target object based
on the type of detector used. A detector of backscattered electrons detects high-
energy electrons scattered elastically from the object. Heavy atoms reflect more
electrons, hence position with heavier atoms is brighter in the image. Detector
of secondary electrons detects low-energy electrons, which originated by inelastic
scattering of electrons by being ejected from valence band of the object atoms.
These electrons carry information about the topology of the surface, where areas
perpendicular to the electron beam are less intense. X-ray spectroscopy may be
added to evaluate, which elements are present in the object, seldom used in life
science. With their high magnification and high resolution electron microscopes
produce relatively large data, namely when combination of several probes is ap-
plied (correlation with fluorescence, element analysis or spectroscopy) or imaging
is performed in 3D.

1.2 Fluorescence microscopy
In life sciences the ability to image specific molecules or different components
of a specimen is very desirable. The high specificity could fulfil fluorescence
microscopy.

1.2.1 Fluorescence
Fluorescence and phosphorescence are types of luminescence. Luminescence oc-
curs after a valence electron is excited to a higher energy state. It exhibits as an
emission of light. Rate of fluorescence is fast at 108 s−1 as the return of excited
electron is spin-allowed, whereas rate of phosphorescence is much slower (range
of 103 − 100 s−1), however light may not be emitted at all, instead radioactive
decay or quenching processes occur [6]. Fluorophores are molecules, which can
emit light upon absorption of energy.

After the molecule absorbs energy, it is excited to a higher energy level. Usu-
ally energy from a light source is used as opposed to thermal energy from heat
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induction [6]. Light absorbed by the molecule has energy equal to the differ-
ence between energy of the ground state and the higher energy state. Substances
can be characterised by their absorption and emission spectra as seen in Figure
1.1. These spectra are plots of the light intensity emitted in respect to their
wavelength.

Figure 1.1: Normalised absorption and emission spectrum of rhodamine 6G show-
casing Stokes shift.2

Jabłoński diagrams (Figure 1.2) are used to depict the processes between
absorption and emission of light. Horizontal lines represent energy states and
vertical lines represent transitions [6].

Figure 1.2: Theoretical example of Jabłoński diagram.

When fluorescent molecules absorb light, they are excited to a higher energy
state S1 or S2. As energy states have multiple vibrational levels, excitation usually
occurs to a higher vibrational level. Afterwards, process called internal relaxation
occurs, during which molecules relax to the lowest vibrational energy level of the
state S1. Then, the molecule returns to the ground state and photon is emitted
[6].

Typical emission spectrum is a mirror image of absorption spectrum from
state S0 → S1, as a result of the similarity between the vibrational structure of
the molecule. Spacing between vibrational energy levels of the excited singlet
states is similar to the spacing of the ground state, as the structure of nuclei is
not altered by excitation [6].

The emission spectrum usually does not depend on the excitation wavelength,
as the excess energy used to excite the molecule to the higher energy level is

2Courtesy of wikipedia.org
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dissipated when the molecule relaxes to the lowest vibrational energy level of S1.
Thus, emission spectra usually only depict emission of light when the transition
from the lowest vibrational energy level of S1 occurs. Some compounds can emit
light when a transition from state S2 to the ground state occurs [6].

As shown in Figure 1.2, energy absorbed by the molecule is higher than the
emitted energy, thus the wavelength of the absorbed light is shorter than that
of the emitted light. This is called Stokes’ Shift [6] and it is caused by losses of
energy during fluorescence.

Fluorophores

Fluorophores are used in fluorescence microscopy as probes or dyes, as most of
the molecules in the imaged cells are not very fluorescent. Specific labels for
selected molecules can be targeted in the experiment [7]. The fluorophores are
often aromatic molecules, amongst which belong certain proteins (Green Fluo-
rescent Protein, Yellow Fluorescent Protein, etc.), quinine, rhodamine, and other
compounds. Before use of particular fluorophores, many characteristics need to
be considered, such as emission and excitation wavelength, excited state lifetime,
Stokes’ shift and more [6].

Green fluorescent protein is derived from a naturally occurring protein in a
jellyfish Aequorea victoria. It is used in many imaging experiments, as the protein
is expressed by a genetically modified imaged specimen and there is no need to
add any external organic dyes to the biological system. Gene encoding GFP
may be incorporated in to the genome in multiple ways, it may be fused to a
gene for another protein as a protein tag to study gene expression [8, 9]; or it
may be incorporated to a protein expressed in a specific compartment of the
cell [9]. Many other fluorescent proteins have been derived and are used widely
in fluorescence microscopy, overview of important characteristics of numerous
fluorescent proteins is in [10].

DAPI is widely used fluorescence dye or a probe. It has a high affinity to
double-stranded DNA and binds to AT-regions in the minor groove [11, 12].
Thus, the molecules after staining the tissue are located in the cell nuclei (may
be in mitochondria or chloroplasts as well). DAPI can be used for chromosome
staining or nuclei visualization, which can be used to count cells [13].

1.2.2 Fluorescent microscopy
Fluorescence microscopes employ excitation light to illuminate the sample, which
excites the fluorophores and leads to light emission. Intensity of the emitted light
is detected. Image is then acquired as assigning each position the intensity from
the detector.

Fluorescence microscope must contain multiple filters, which transmit only
narrow range of wavelengths and block all other wavelengths. Through the ex-
citation filter only specific excitation wavelength passes through to reach the
dichroic mirror, which directs the light towards the objective lens and thus the
sample. Fluorophores in the sample are excited and upon deexcitation, they
emit light. Emitted light, which is of a longer wavelength than the excitation
wavelength due to Stoke’s shift [14, 6], is transmitted through the dichroic mir-
ror to the emission filter and reflected excitation light is directed towards the
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light source. Emission filter blocks residual reflected excitation light and lets the
emitted light pass through.

Wide-field vs. confocal

To capture the image, two main acquisition setups could be applied. Either the
whole scene can be captured at once with a camera in a wide-field mode, or a
point scanning mode may be used, where the signal originates from a certain
small position and by changing the observed position, the whole image is then
scanned and collected.

Wide-field microscopes illuminate the whole sample. Fluorescence signal from
excited fluorophores in the focal plane is detected, however light emitted from out-
of-focus planes is detected as well. For thick samples wide-field microscopy is not
optimal, as blurry low-contrast images are produced.

Point scanning microscopes, mainly confocal microscopes, do not detect signal
from the whole plane in the sample at once. The sample is illuminated by a
focused laser beam (point light source) at a specific plane. The light is then
collected through a pinhole, which is employed to collect light only from the
correct in-focus plane and specific position in the plane [14]. The whole focused
planes is scanned and a 2D image is created. The focal plane position can be
changed and another plane could be imaged. This method reduces signal from
out-of-focus planes. However, the pinhole also partially blocks the focal plane
signal and the detected intensity of light collected is reduced. Fluorophores in
the out-of-focal planes are still photobleached and the scanning process is slower
than wide-field acquisition.

Epifluorescence

Imaging by fluorescence microscope often uses epifluorescence principle, where the
sample is excited by an illumination source passing through the same objective
as the emitted light that is detected. Such microscopes must employ dichroic
mirror and filters to illuminate the object by the correct light and to detect the
right signal, not the excitation light.

One-photon vs. two-photon

In the above described microscopes, it has been assumed that the fluorophores
are excited by one photon of energy E, which corresponds to the energy needed
to excite valence electron to a higher state. The energy E corresponds to the
wavelength λ by E = hc

λ
, where c is the speed of light and h is the Planck’s

constant. However, the electron may be excited by two photons with half of the
energy E, if they are absorbed nearly simultaneously [14].

The hardware for the two-photon microscope tends to be more expensive,
thus it should offer some improvements to justify the increased price. It has been
shown that it reduces out-of-the focal -plane bleaching of the fluorophores. It
also increases imaging depth and cell viability. These effects have been shown to
depend on used wavelength of the laser [15].

8



1.3 Microscopy shortcomings
Microscopy is a complex field, which brings non-trivial challenges and problems.
Microscopy images are only as good as the sample, the technology, the setup, the
user and the settings. No image is a perfect representation of the real magnified
sample, as it may be distorted in multiple ways.

There are multiple parameters we have to optimize for each acquisition: mag-
nification, resolution and signal-to-noise ratio (SNR). Magnification is a ratio
between the real size of the object and the imaged size. Highest magnification
in the order of hundred thousand can be achieved by using electron microscopy,
especially TEM. Resolution is the smallest distance between two points, which
are still recognizable as two points. Both of these parameters are impacted by
the wavelength of the illumination source used. Signal-to-noise ratio is a ratio
of imaged signal to the background noise and can be approximated by multiple
algorithms or by visual inspection. Excellent quality of image is considered for
SNR around 40, acceptable is around 10.

The main degradation of image quality is convolution. Convolution is a math-
ematical operation noted with ∗, defined as a mapping of two functions f and g,
which creates a third one as:

Resulting function carries the information, how the shape of one function is mod-
ified by the other. In microscopy the resulting image I is the convolution of
the imaged object O and point spread function (PSF): I = O ∗ PSF . PSF is a
function, which expresses how microscope distorts a point light source observed
by a microscope as a result of diffraction and various abberations. Diffraction
originates from the interaction of light and objects and is the distortion of beam
of light [3]. For example, light incident on an edge of an object seems to bend
behind the edge and some light illuminates geometric shadow [14]. Diffraction is
caused by the wave properties of light. In a microscope this originates from light
passing into the circular aperture through tiny hole. Point object is distorted,
specific pattern, called Airy disk pattern, is created with a central spot (or a disk)
surrounded by concentric rings of lowering thickness. Bright disks are maxima
of intensity, numbered from the zeroth (central disk), and dark areas between
bright disks are minima numbered from the first dark disk. Central disk is called
the Airy disk [14, 3]. PSF is specific for a microscope and can be estimated or
approximated.

Resolution limit can be derived from the theory of diffraction and PSF. There
are multiple limits, which can estimate the lowest possible resolution, amongst
which are Abbe’s limit and Rayleigh criterion. Rayleigh criterion is derived from
the assumption, that two point light sources are still distinguishable, if the zeroth
maximum of PSF of the first point is exactly in the first minimum of the PSF of
the second point. Resolution limit d can be mathematically derived as:

d = 1.22 λ
2NA

,
where λ is the wavelength of detected light, NA is the numerical aperture. Nu-
merical aperture can be found as NA = n sin θ, where θ is the angle at which light
is collected and n is the refractive index of the lens immersion medium. Abbe’s
limit d is defined as:

d = λ
2NA

.
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Interference of light is the addition to multiple beams of light. However,
due to the wave property of light, the addition is not simple. When calculated
analytically, the resulting intensity varies, based on the position of intersection
of the light waves. The resulting intensity may be addition of the interfered
intensities called constructive interference, their subtraction called destructive
interference or any other partial combination [3]. Interference may be observed
in microscopy, when light from focal plane interacts with out-of-focus plane signal.

Another major degradation of an image is caused by a random process, noise.
Noise is caused either by photons or electronic devices, where photon noise is
usually more dominant source, especially in modern devices [16]. Photon noise
is caused by the probabilistic interpretation of quantum mechanics and the in-
determinacy of observed photons. The intensity, which the sensor is observing
and transforming into an image, is number of incident photons on a sensor pixel,
which fluctuates even though the specimen intensity is constant. Photon noise
follows Poisson distribution. Noise from electronic device can be usually assigned
to heat or imperfections in the material (semiconductor) of the sensor. Device
noise behaves according to Gaussian distribution. Noise distorts the image and
thus is taken into consideration, when image is deconvolved, as a random element.

Furthermore, several optical aberrations can reduce imaging quality. Aberra-
tions are caused by flaws in the optics and their quality and properties. Correctly
aligned optical apparatus of the microscope leads to minimizing the aberrations.
Amongst the aberrations belong chromatic and spherical aberration. Chromatic
aberration is caused by dispersion, the variation of the refractive index of the lens
with the wavelength of the light. Hence, different wavelengths are not focused
into a single point. This aberration is noticeable at the boundaries of light and
dark objects in the image, where a colourful range may be seen. As a result
of chromatic aberration location of a probe may be more difficult, when using
multiple probes [17]. Spherical aberration is caused by light being focused into
different points by spherical lenses. Light is refracted (or reflected) differently
based on the position of impact, whether light hits spherical surface off-centre or
closer to the centre [17].

Phototoxicity of light applied on the specimen can be damaging to the image
quality either by photobleaching of fluorophores or by decreasing cell viability
(the ratio of healthy physiologically behaving cells in a sample). Bleaching of
fluorophores is the loss of the ability to fluoresce [18], caused by photons induc-
ing covalent modifications of the molecules, usually via different higher-energy
molecular states, especially during the triplet state [19]. Light illumination in
higher light doses leads to damage or death of cells in live cell imaging [20].

One of the downsides to using fluorescence microscopy is the autofluorescence.
It is either shown as a low background signal, however it may be strong enough
to impose as a viable signal from a fluorescence molecule. Amongst autofluo-
rescent molecules are vitamin B, flavins, flavin proteins, reduced pyridine nu-
cleotides (NADH and NADPH), fatty acids, porphyrins, uncoupled cytochromes,
lipofuchsin pigments, serotonin and others [14]. Fixation of cells with aldehydes
may induce autofluorescence. The strength of the signal of the autofluorescent
molecule depends on excitation wavelength, cell type and the molecule [14]. In
[21] has been concluded, that induced stress in bacterial and eukaryotic cells
increases autofluorescence of the sample.
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2. Light Sheet Fluorescent
Microscope
In microscopy we are challenged with the triangle of compromise, since we can-
not achieve good resolution at a high speed of data collection with low system
sensitivity, as phototoxicity occurs. Light sheet microscope is one of the recently
developed microscopes, which is unique for its ability to collect data in three di-
mensions for a longer time without afflicting much damage to the sample. That
is achieved, as the microscope illuminates only one plane that is detected and
collected [2], which is called optical sectioning. For high speed of data collection,
wide-field detection device is used to image the whole illuminated plane. How-
ever, the speed and sectioning capabilities mean that huge data files are collected
during the experiment. The challenges brought by working with light-sheet mi-
croscope are numerous and not only linked to the computational difficulties with
the large data. To use LSM, new techniques need to be employed also to prepare
the samples, mount them and to image them.

2.1 Setup
There exists numerous possible geometries for the LSM [2]. These geometries are
offered by multiple companies, of which I will cover these:

• Carl Zeiss Microscopy

• LaVision BioTec

• Applied Scientific Instrumentation

• custom or opens-source design.

Selective-plane illumination microscope (SPIM)
The Lightsheet Z.1 from Carl Zeiss Microscopy has the setup of selective-plane il-
lumination microscope (SPIM). It offers illumination from two sides and multiple
excitation wavelengths. One thin section of the specimen is illuminated by the
excitation laser with desired wavelength. Laser is focused onto a single plane in
the specimen, the objective that detects the signal is placed perpendicular to the
objective that excites the sample [22]. The layout can be seen in Figure 2.1. This
setup allows the specimen to be rotated in the chamber and the lasers are split
into two beams by a dichroic mirror, thus the specimen can be illuminated from
two sides. This allows for multiview imaging in the LSFM, which can enhance
the quality of the final picture. When imaged from one side of the specimen, the
penetration of the beam worsens with distance passed, thus the quality of the
image at the side not illuminated may not be ideal and double side illumination
may help. Final stitching of all the multiview images is done by registration and
fusion algorithms [22]. For signal detection there are two types of cameras, either
two charge-coupled devices (CCD) or two scientific complementary metal-oxide
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semiconductor (sCMOS) are used. Two cameras are useful, as two different emis-
sion wavelengths can be detected simultaneously, and the picture would be in
two colour channels. The objects excited by excitation lasers may throw shadows
in the illumination plane, which would produce stripes in the image. To avoid
this artefact, the illumination beam uses pivoting of the plane to illuminate the
objects from multiple angles and thus gets rid of the stripes and shadows. This
geometry allows for long-term multi-view imaging, ideal for studying develop-
mental processes [23]. The Lightsheet Z.1 is available in 2 laboratories in Prague,
thus bigger emphasis will be put on this microscope.

Figure 2.1: Geometry and layout of components of Lightsheet Z.1. Image taken
from [22].

LaVision BioTec
Another setup is Ultramicroscope from LaVision BioTec, which was described in
[24], offers uni-directional and bi-directional illumination with up to 6 illumination
sheets possible from different angles [25]. Image is acquired in a wide-field mode
with a sCMOS camera. To image the whole sample, it is moved in a perpendicular
axis to the image plane. This setup offers great, homogenous illumination through
the whole sample and therefore minimizes artefacts like stripes and shadows.
Samples can be imaged intact in vivo or cleared after fixation, however the setup
is usually recommended for cleared samples [22]. Samples are put on a dedicated
platform, moved vertically and optically illuminated by horizontal sheets of light
[2]. This setup is not accustomed to multiview imaging and rotation of the sample.

Applied Scientific Instrumentation
Applied Scientific Instrumentation offers components for different setups in the
light-sheet microscopy domain, SPIM, iSPIM/diSPIM, oSPIM or ct-dSPIM.
Amongst the components are motorized and piezo stages, optomechanics, scan-
ners, lasers, lenses, objectives and others. The iSPIM offers imaging on an in-
verted microscope and diSPIM offers dual view on an inverted microscope. The
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o-SPIM is advertised to be for coverslip imaging, which generates the illumina-
tion sheet at an oblique angle and where the oil immersion objective is under
the sample dish. The setup of ct-dSPIM is suitable for imaging cleared tissues in
dual-view. These setups do not allow for rotation. This and further information
can be found at [26].

Custom and open-source geometry
With LSFM there is an option to not obtain commercial microscope, but to build
it in a lab with a custom geometry, which can be adjusted to the samples and
the experiment. There exist multiple geometries described. OpenSPIM [27] is
described in a great detail to instruct users to build the microscope themselves,
whereas projects like OpenSPIN [28] and DIY-SPIM [29] rely on contact with the
developers to build the microscopes [2, 30]. These options are more financially
available and customisable, however more difficult.

2.2 Samples
Samples imaged by light sheet fluorescence microscopes can be either live or fixed.
For the LSFM to be able to image them the specimen needs to be transparent,
in case samples are opaque, clearing protocols have been developed. However,
samples undergoing clearing have to be fixed, live imaging cannot be performed
on opaque samples. Luckily, some viable biological specimens are transparent,
for example zebra fish or some larvae. The Lightsheet Z.1 is good for both long-
term developmental studies and cleared fixed samples. Clearing is amongst the
techniques, that are now being studied extensively and customized protocols are
developed for best user results. Purpose of clearing is to achieve translucence
mostly extracting lipids out from the sample.

Figure 2.2: Possible ways of mounting a sample in a Lightsheet Z.1: (A) embedded
in gel, (B) clipped, (C) enclosed, (D) flat (not possible in Lightsheet Z.1). (E-H)
View from above on mounted samples (A-D). Picture taken from [31].
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The samples can be mounted many ways depending on the desired outcome.
Great benefit is the lack of the need to use coverslip for imaging, which offers whole
object imaging in an easier way as the sample is not cut and it is possible to image
from almost all sides. LSM also offers live imaging. Sample preparation and the
sample chamber is described in [31]. In the Lighsheet Z.1 is a sample holder, which
is connected to a positioning motor stage to allow for translation and rotation of
the sample. Sample then can be mounted in multiple ways, it can be embedded
in gel, hanging held by a hook, glued or in a capillary, on a coverslip or in a
container. The mounting possibilities are shown in Figure 2.2. If embedding in
gel is used, fluorescent beads may be used for multiview registration and fusion.
Sample is in a chamber ideally filled with aqueous solution, however even dry
sample in air can be imaged. Clearing is the process to change the refractive
index of the sample without disrupting the structure of the sampled tissue and
the fluorescent molecules needed for imaging. There are many techniques, using
organic chemicals, aqueous solutions or electrophoretic clearing.

2.3 Data
Data from LSFM are in the form of a series of images called z-stacks, which can
contain hundreds of two dimensional images. If multi-view imaging is performed,
the result of this procedure is multiple z-stacks. Multiple lasers can be used
during the illumination phase to excite different fluorescent molecules, resulting
in multiple images of the same plane, thus multiple z-stacks. Each z-stack can
be assigned different colour spectrum, which can be joined into RGB image.
During time-lapse imaging, the specimen is repeatedly imaged in time intervals,
consequently making large number of z-stacks. The whole imaging can last up to
days due to low phototoxicity of this technology.

To acquire all the information from the specimen correct minimal sampling
rate should be considered, which is derived from the Nyquist-Shannon sampling
theorem. Sampling rate for image acquisition is defining the voxel size (3D pixel).
Undersampling may lead to loss of signal and inability to reconstruct the original
signal (object).

Nyquist rate is calculated in [32] for Lightsheet Z.1 with these parameters:
NA = 1, excitation wavelength λex = 488nm, emission wavelength λem = 520nm,
lens immersion refractive index n = 1.48 and Gaussian light sheet SPIM excita-
tion mode with the width of Gaussian light sheet w = 11, 657. The recommended
sampling rate is: x = 130 nm, y = 130 nm, z = 464nm. Thus, volume of a voxel
is v = x · y · z. Number of voxels needed to image a sample of a volume V = 2
mm3 (for example zebra fish larvae) is n = V

v
. If the intensity of each voxel is

stored in a byte, then size of this uncompressed dataset would be approximately
255 GB. Twice as much if two colour channels are used, and even twice as much
that if dual-view.
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3. Bioimage Data Analysis
Image can be described as a two dimensional set of pixels with assigned value
(intensity), for example values 0 − 255 (stored as a byte), which can be viewed
as a two dimensional function f : Z2 → Z. Gray-scale image is then described
by one function of intensities, whereas colour image needs three functions for
the red-scale, green-scale and blue-scale to create the desired colour. Intensity
histogram H : Z → Z can be derived from the values of pixels as:

H(i = m) = Nm,

where Nm is the count of pixels with intensity m and i is the range of all pos-
sible intensities. Intensity histogram carries the information about the intensity
spectrum, showing number of pixels of a certain intensity.

In this chapter different algorithms of multiple analysis tasks and different
approaches will be discussed. Some algorithms will be examined in more detail
to illustrate the variety of approaches and options for data analysis. Approaches
vary in multiple ways, from simple image processing tasks, convolutional neural
networks to approaches like stereological methods.

3.1 Registration
The imaged object in three dimensions is transformed by the microscope to a
z-stack, which is a series of two dimensional images, where the third dimension
is saved in the continuity of the stack. The best quality in three dimensions can
be achieved by multiview imaging. This method, however, brings a challenge of
stitching different views into one resulting z-stack. This problem is known as
multi-view image registration and is used in 3D image reconstruction, generating
large field of view and satellite imaging [33]. Multiple methods and algorithms
have been proposed, such as [34, 35, 33] not only for microscopy images. This
work will cover one of them.

Method used in [34] uses fluorescent beads in the image acquisition for best
results of the registration. However, using the beads is not always possible, as the
beads must be submerged in a solid medium to stop them from changing their
position. These beads are then used as features in the algorithm, if beads are
not used other distinct objects in the images must be used, for example nuclei.
The algorithm calculates mutual distances amongst the features and defines each
feature by their neighbouring features. This is a translation and rotation invariant
local geometric descriptor, which is preserved for each feature across different
views. They transform their space into an orthogonal coordinate system, in
which each feature and its 3 closest neighbours can be described by a vector of
six values. In every view in the six-dimensional space, specific constellation of
four features would be described by descriptors whose Euclidean distance amongst
each other would be very small, even zero. Thus, they searched for closest feature
descriptors and false positives were discarded by random sample consensus and
robust regression filter. After registration, fusion of all the views into one z-stack
needs to be calculated, this operation is usually joined with deconvolution.
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3.2 Deconvolution
Deconvolution is an operation to increase quality and the resolution of a mi-
croscopy image; and to reconstruct the original object. As the image is acquired
by convolution of the object according to the point spread function, which has
been defined in Chapter 1.3, this leads to reducing the quality. To deconvolve an
image, point spread function needs to be known. If true PSF is known, as a func-
tion of the diffraction of a point light source in the microscope, then deconvolution
of the image would be just a mathematical operation. However, this point spread
function does not carry information about other possible degradations of the
quality, like noise or aberrations. An estimate of the whole degradation function
can be theoretically and experimentally derived, either iteratively approximated
or estimated by calibrating with imaging beads.

Deconvolution of functions as defined in mathematics is simply done in the
frequency domain. If we have a convolution f ∗ g of two functions f and g, then
Fourier transform of the convolution is defined as follows:

F(f ∗ g) = F(f) · F(g).

Thus, deconvolution is simply:

F(f) = F(f∗g)
F(g) .

Function f is derived by applying inverse Fourier transform, which is the object
O that is the desired reconstruction from the acquired image I divided by PSF
in the frequency domain. However, in image deconvolution the process is not as
simple due to the addition of noise.

PSF of the microscope can be derived experimentally. The microscope is used
for imaging fluorescent beads with an ideal diameter below 50 nm (usually 100 −
200 nm) first. During the experiment microscope should be used under the same
conditions as for PSF calibration. From these images the point spread function is
calculated. After acquiring the point spread function, the deconvolution is done
iteratively. A possible reconstructed object image is estimated, convolved with
the PSF and compared to the observed image. Their difference is calculated and
the process is repeated with a different estimation, which is recalculated based
on the difference. Iterations are stopped, when one of two constrains are met,
either maximum number of iterations or critical value of the difference, quality
criterion. After acquiring the PSF, only the noise needs to be estimated to find
the image of the reconstructed object.

As a first estimation of the reconstructed image, Wiener filter is employed.
Wiener filtering proposes minimizing the function, which expresses the difference
between observed image and the convolved estimation, as a least square loss:
||I − Ô ∗ PSF ||2 − ||n||2, where n expresses the noise and Ô is the estimation
of object [16]. Inverse filtering is filtering on the principle of the least square
function, however noise is not included.

Multiple algorithms may be used for the iterative process: constrained itera-
tive algorithms and statistical algorithms. Further statistical algorithm employ-
ing maximum likelihood estimation (MLE) is described, as this one is widely used,
for example by SVI Huygens. Statistical approaches are based on the Bayesian
theorem of conditional probability, where following is true: P (O|I) = P (I|O)×P (O)

P (I) .
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The object O is represented by its prior probability density P (O), image I by
P (I), the conditional probability P (I|O) to model the degraded object I given ob-
ject O and posterior probability P (O|I) of object O given the observed degraded
image I. The MLE algorithm finds the reconstructed object Ô, which maximizes
the posterior probability. The conditional probability P (I|O) is estimated from
a Poisson distribution:

PP oisson(x|µ) = µxe−µ

x! ,

where the result gives the probability that x is the observed noisy datum, when µ
is the noise-free average value. Every pixel of the image is assumed to be statis-
tically independent, the probability is the product of probabilities of individual
pixels as follows:

where Im and Om are individual pixels. To simplify the calculation negative
logarithm of the probability is minimized in further steps, this function is called
log negative likelihood. The minimum is found by setting the derivative to zero.
From the minimum, the update for the estimated object in k-th iteration is found
as:

where p is a constant and K is a constant to ensure energy conservation. Initial-
ization of Ô

0
m = Im.

Blind deconvolution is used for experiments, where the PSF is unknown, as
it has not been estimated from the beads. In each iteration the object and PSF
are estimated. The algorithm uses MLE as before, however the object estimate
Ô is updated each iteration as MLE estimate and PSF estimate PSFˆ is updated
accordingly. The initialization of the object estimate Ô = I is assigned to the
observed image and PSFˆ is initialized by a theoretical PSF of the microscope
[16].

In deconvolution proclaiming SNR of the observed image is used in the algo-
rithms. However, the estimate may change the result, as SNR too low may lead
to too smooth image, as small objects have been mistaken for noise and removed.
If declared SNR is too high artefacts, in the form of tiny objects or ring artefacts,
can arise or noise is enhanced.

Other deconvolution algorithms are available, using different than statisti-
cal approaches like in [36] or even improving deconvolution for novel microscopy
technologies, for example for LSFM in [37], which is available in MATLAB. MLE
approach is widely used, as it is robust to noise and simple. However, the con-
vergence of the reconstructed object is slow and the computation each iteration
is more demanding.

3.3 Segmentation
Segmentation is a very important task, when the desired outcome focuses on
certain objects in the images. Result of segmentation is a binary mask of the
image that carries the information, whether a specific pixel belongs to an object
or not. Segmentation and the final binary image can be described by a function
b : Z2 → Z:
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b(x, y) =

⎧⎨⎩0 if f(x, y) does not belong to an object
1 else

,

here x ∈ 0, ..., W and y ∈ 0, ..., H are possible positions in the image with resolu-
tion W × H.

Segmentation is a very complex task, main goal is typically segmentation of
particular cells or certain organelles. Segmentation of cells has shown to be very
difficult to be generalized, depending greatly on the imaging method and the
imaged tissue or cell type [38].

Approaches to this task vary gravely, depending on the level of expertise of the
user. The easiest approach used in many bioimage software is simple threshold
method using tools like watershed. Segmentation can be done by stereological
methods as well, which is implemented in a special software. Next approach
belongs to a simple image processing and requires some programming skill, as this
is not usually used in the bioimage programmes. The last approach is application
of neural networks, which usually requires some understanding of computer vision
and programming, as the inclusion of neural networks is new in many software
and sometimes lacks in the user-friendliness.

For the best results normalization of the image intensity should be always
applied, as the full spectrum of intensity will be better utilized. Normalization is
defined as:

f ′(x, y) = M ·f(x,y)
max f(x,y) ,

where M is the largest possible value for the intensity (usually taken 255),
x ∈ 0, ..., W and y ∈ 0, ..., H are possible positions in the image with resolu-
tion W × H, f(x, y) is the original image function and f ′(x, y) is the function
after normalization.

3.3.1 Threshold
Detecting objects in an image is a task of differentiating, which pixels belong to
the object. In some cases it can be easily identified if the intensity of the object
is different from the intensity of the background and other objects. To segment
desired objects only the threshold intensity needs to be found, usually lower
bound of the intensity is sufficient, however upper threshold for the intensity can
be found similarly. This can be done automatically or manually. Segmentation
using threshold intensity t is a binary function b : Z2 → Z defined as:

b(x, y) =

⎧⎨⎩0 if f(x, y) ≤ t
1 if f(x,y) > t

,

where the variables are defined as above.
By programming, the simplest approach is to iteratively try all the values of

possible intensity and choose the best result by confirming, whether the mask
extracts the objects correctly. Another approach is extracting the threshold from
the intensity histogram, where ideally a valley is seen between two peaks of in-
tensities, where the middle of the valley can be deducted to be approximation to
the best value. Automatic and unsupervised solution used in image processing
and computer vision is Otsu’s method [39]. This technique has been proposed
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to overcome difficulties such as, flat and wide valley or insufficiently defined two
peaks with hardly identifiable valley [39]. Two classes are created C0 for the back-
ground and C1 for the extracted objects. Then the algorithm minimises the sum
of the variances of pixels in those two classes, which means most similar intensity
of pixels are grouped into the same class. In the algorithm this optimization is
found as maximizing inter-class variance (minimizing intra-class variance), which
is calculated by iteratively changing the threshold intensity.

Life science imaging software often offer segmentation modules, which can be
applied by moving a threshold slider looking for the best differentiation of objects.
Sometimes this functionality is accompanied by a watershed tool. Watershed tool
offers gradual segmentation, where from a desired pixel of a certain intensity the
mask spreads over pixels with the same intensity and gradually higher as the
threshold is changed. More of these tools may be used, like brush or lasso, which
define the area of segmentation further and others. Some software offer more
automated version, where user needs to define properties, like expected size of
the object and the width of the boundary.

Biggest problem for these solutions may be inconsistent intensity throughout
the picture and grouped objects, where identifying border may be difficult [40].
These methods, however, may be effective for the whole volume of the objects
dyed fluorescently, for example DAPI for nucleus segmentation.

3.3.2 Image processing
There are many ways, in which image can be adjusted to better the quality of
segmentation and to find the threshold more effectively and with better accuracy.
There has been made attempts to make segmentation algorithms more generalized
having good results for multiple types of cell and imaging methods.

Method proposed in [38] has developed a framework for a more inclusive
cell segmentation. Firstly, they employed edge detection using Sobel operator
to obtain a gradient image, which emphasises edges. Afterwards, original and
gradient image are both normalized to achieve uniformly spread intensity over the
grey-scale. Both images are afterwards filtered in the frequency domain, which
is achieved by transforming the normalized histogram distribution H(i) with the
Discrete Fourier Transform (DFT) and the higher frequencies are eliminated to
adjust the histogram to be smoother. To obtain histogram inverse DFT must
be applied. Afterwards, peaks and valleys of the histogram are found and the
threshold is chosen depending on the properties of valley and peaks.

3.3.3 Stereology
Stereology is a field, which deducts three-dimensional information, such as vol-
ume (even volume of a specific region, like cartilage repair tissue [41]), size, shape
or cell count, from two-dimensional images creating a stack. Stereological meth-
ods employ various sampling techniques and tools to obtain quantitative data
[42]. Stereology employs probes (planes, lines, points or their combination) to
virtually section the images and obtain specific information about the interaction
of probes and features. For example, to calculate volume v of an imaged object,
virtually cut the object by a plane, calculate intersection area a of the object and
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the plane, and from knowledge of the height h of the object (calculated perpen-
dicular to the plane) an estimation of volume can be obtained as v = a · h. This
is one estimation of the volume, and if the procedure is repeated multiple times
(ideally infinite times) an unbiased estimation of the volume is derived as a mean
of all the estimations. This method is undermining the importance of the shape
on the volume and may create bad estimations, thus more complex sampling and
methods should be employed [43]. Instead of planes, lines may be used, to count
intersections of the probe (line) with the desired feature (cell or the edge of the
object to estimate surface). Sampling can be systematic or random, random-
ness is needed for unbiased estimations, however systematic sampling gives more
information about statistical variance and efficiency. Usually, the first probe is
chosen at random and subsequently some systematic sampling is employed, for
example parallel planes are projected equidistantly, or lines regularly spaced [43].

Cell counting using stereological methods may be done by using multiple types
of probes, such as optical fractionator or dissector. Dissector is used mainly for
thin samples or monolayer samples (in Petri dish). Dissector is modified square
with two halves. Cells touching one half are counted, cells touching the other are
not counted. From the sampled area cell density is calculated and cell count is
predicted. Optical fractionator is used for thick samples, where planes are used
as probes. If plane intersects top of a cell, the cell is counted. Counting only the
top prevents multiple counts of one cell. Cell density in a volume is used again
for the cell count estimate of the whole sample.

3.3.4 Neural networks
Theory in this section is taken from [44], which is a detailed source for neural
networks and deep learning. One of the popular machine learning models are neu-
ral networks, other machine learning models may be logistic regression, support
vector machines or Bayesian classifier, which has also been used for cell segmen-
tation [45]. Machine learning solves problem of predicting an outcome y from
data example x based on iteratively learned parameters θ, such that y = f(x; θ).
One kind of machine learning is supervised learning, where for each example from
the training data a target label is available. The example x is usually defined
by numerous features represented as a vector of real numbers. For example, an
airplane can be represented by its speed, flight range and number of seats, which
are stored as a vector of three real numbers. A black-and-white image of n × n
is represented as vector with n2 numbers, each representing intensity at a certain
pixel. Predictions assigned to each example may be categorical or continuous.
Categories are for example different types of airplanes, object appearing in an
image or whether specific pixel in the image belongs to an object. Continuous
values are represented by real numbers, for example capacity of an airplane tank.
Based on the input feature vector and target labels the network learns the pa-
rameters θ.

Neural networks are comprised of neurons with nonlinear activation functions,
for example max(0, x). Neurons are grouped into hidden layers and each layer is
defined as h = g(Wx), where g is the activation function, W their parameters,
which are iteratively changed and x input data. Altogether all hidden layers make
up the prediction function.
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Prediction function f(x; θ) : X → Y , a mapping from training data X to the
predictions Y , is trying to minimize the prediction error function L called loss.
Loss function describes how close the predictions are to the target labels and few
possible functions may be used, such as mean square error, mean absolute error
or negative log likelihood (cross entropy loss), which is used in [46] and is defined
as:

L = −(y log(p) + (1 − y) log(1 − p)),

where p is the probability of default class (the background), log is the natural
logarithm. This formulae applies to prediction problems with two possible classes
(the background or the object).

Improving the prediction function is done iteratively by computing gradient of
the loss function with respect to the parameters θ: ∆θL(X, Y ; θ) and propagating
the gradient through each neuron called gradient descent. Networks implementing
stochastic gradient descent do not calculate the gradient for all training examples,
however for a fixed batch of the examples as their average.

Convolutional neural networks (CNNs) are used for data with grid-like topol-
ogy, for example 2D images. CNNs use convolution (convolution is a mapping
as defined above) for image analysis, in this case a mapping between two image
spaces. Thus, it can be considered as a sliding window moving over the image.
The result is a new image calculated from the original image and the values in
the convolution window called kernel. Kernel is represented as a square matrix,
usually of dimensions 3 × 3, 5 × 5, etc. Convolution of an image and the creation
of new image is portrayed in Figure 3.1. It is conventional to apply activation
nonlinear function on the resulted image.

Figure 3.1: Convolution of input image 5×6 with a kernel 3×3 with valid padding
resulting in output image of 3 × 4.

Convolution layer can have multiple modes, valid or same padding and op-
tional stride can be set. Stride is the step size over the image with the sliding
window, for stride one the sliding window moves by one pixel between operations,
stride two moves by two pixel thus decreasing the pixel size of the created im-
age. Convolution mode, after which the resolution is lost for the border pixels,
is called valid padding. If resolution should be preserved, same padding should
be applied, which adds new pixels to the edge of the image with arbitrary value,
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usually 0. Pooling layers are used to downsample data, which means to decrease
their resolution W × H. Upsampling is increasing the resolution. Pooling is done
with a kernel, usually 2 × 2 and stride 2. From the original image in the window
of 2×2 is taken specific value as a new pixel, thus from 4 pixels is created 1, thus
decreasing the resolution. Values are taken by criterion, for example maximum
value (max-pooling), or average value.

U-Net

In [46] the architecture of the network used is called u-net, as it resembles u-
shape. The architecture is shown in Figure 3.2. The desired prediction of the
model is a class label for every pixel, in this case whether the pixel belongs to
the segmented object or not, creating a binary mask.
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Figure 3.2: The u-net architecture employed in [46] for segmentation. Image
taken from [46].

The u-net architecture builds upon fully connected network. Layers use con-
volution kernels and are derived into few parts, contracting path to downsample
the data and expansive path to upsample data. Altogether 23 layers are used.
As can be seen in Figure 3.2 in every level is a convolution with 3 × 3 kernel with
a function rectified linear unit (ReLU), max(0, x). To downsample max-pooling
layer with convolution kernel 2 × 2 with stride 2 is used. To upsample is used up-
convolution with kernel 2×2 and concatenation with copy of the cropped feature
vector from the same level of contracting path. Number of feature channels is
changed accordingly: doubles when data are downsampled, halves when upsam-
pled. The output layer takes the feature vector and outputs the predicted class.
As all the convolution layers used valid padding the feature vector got cropped
in the result and output layer.

3.4 Quantitative analysis
For quantitative analysis multiple variables may be observed. Segmented cells
may be counted or tracked, volume of segmented material may be measured in
ratio to the volume of the sample. Cell counting in 3D is a difficult task as one
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cell is present in multiple images in the stack. The simplest algorithm imagin-
able is to connect segmented components, when they are connected (neighbouring
pixels) in the z-direction . This algorithm however undermines grouping of touch-
ing objects and is unable to separate them. In [40], multiple approaches to 3D
cell segmentation have been reviewed with the conclusion of the superiority of
stereological cell counting over the automated algorithms.

Tracking is important for live cell imaging, distance passed and speed can
be derived from tracking cells. Tracking is done easiest for cell moving in the
direction of one slice, not in the z-direction.

3.5 Visualization
Visualization of the images is very important part of the experiment, as it needs
to encompass the results and the importance of the experiment. As there are
numerous technologies to image samples, there are even more ways to visualize
them. For visualization the pictures with the best quality are taken, enhanced by
denoising or deconvolution, however there is a line between enhanced images and
image with added artefacts as a result of those procedures. For two dimensional
images visualization tends not to be difficult, as only the final image needs to
be selected and the desired outcome needs to be shown properly, whether via
showing segmented objects or via showing the enhanced quality.

Three dimensional stacks of images impose a bigger challenge. There are mul-
tiple modes of displaying the whole volume of the image, and multiple projections
are used, for example maximum-intensity projection (MIP). Volume rendering
tends to be viable when showing surfaces of objects or segmented objects in the
whole volume, usually via MIP or by volume rendering the binary mask derived
as a result of segmentation or surface reconstruction. If the whole volume is not
needed to be shown, orthogonal and even user-defined slices may be shown as two
dimensional images from the z-stack. In these images either surface rendering (its
border) or segmented objects can be visualized nicely. Moving through the slices
can be shown by animation.

With LSFM time lapses of z-stacks of images, there is a fourth dimension,
which cannot be easily shown in one image, and either series of images may be
shown, the usage of animation is better suited for this task.

3.6 Workflow
Preparation of imaging data from LSFM and extraction of valuable results is
completed in few steps, the most usual steps are as follows:

• Multi-view registration

• Multi-view fusion and deconvolution

• Visualization

• Analysis - quantification of cells, tracking of cells

• Result demonstration
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4. Solutions Available
4.1 Overview of available software
There is a wide selection of software available on the market for bioimage analysis,
ranging from commercial products, software for the microscopes to open-source
free software. Commercial products tend to be directed for laboratories and imag-
ing facilities, whereas open-source free software can be used by novice analysts
or enthusiasts, as well as professionals.

4.1.1 FIJI
FIJI is an open-source free image processing distribution of ImageJ, developed
for further, more complex bioimage analysis. As it is open-source, algorithms
used, their documentation and tutorials are readily available. It is customizable
by adding custom plug-ins and other components. However, due to its graphical
user interface and easy navigation it is easy to use for beginners and for algorithm
developers alike [47]. FIJI offers both simpler image processing, like changing
colour intensity, cropping and such, and complex analysis. It offers MultiView
Fusion and Deconvolution for Light-sheet microscopy images and segmentation
by thresholding and other algorithms. Developers of FIJI are developing neural
network options as well for numerous purposes, like for denoising and segmen-
tation. It was build as a community for enthusiasts and image analysts with a
forum as a platform for advice and help.

4.1.2 Amira
Amira is a software from Thermo Fischer Scientific for visualization, manipula-
tion and analysis of life science images. It offers multiple algorithms suitable for
denoising, filtering, alignment of images and segmentation. Numerous visualiza-
tion techniques may be employed, it offers both 2D and 3D visualization options
and tool to create animations. 3D visualization can be by rendering 3D volume in
a MIP or other settings or by moving through the slices. Some of the algorithms,
for denoising and filtering, have been developed to run parallelly or on graphics
processing unit (GPU). It offers integration of Matlab and can be operated by
TCL scripting language or Python.

4.1.3 Imaris
Imaris is a software from Oxford Instruments. It offers analysis of 2D, 3D and
4D data, as well as their visualization in multiple possible ways - animation, vol-
ume rendering or slicer. It offers surface of objects reconstruction, segmentation,
simple measurements, colocalization, spots detection and filament tracking. The
whole workflow is done in a wizard helping to get through the process and offers
visual fine-tuning parameters, which can be adjusted and user right away sees
difference in the result. It is suitable for fluorescent images, especially z-stacks.
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It offers integration of Matlab and Python, by using module XTensions adding
plug-ins is possible [47].

4.1.4 Arivis
Arivis Vision4D is a software suitable for working with 2D, 3D and 4D images. It
is optimized for big data, as it is opened in a proprietary file format [47]. It offers
main tools, for alignment, cell segmentation, tracking, visualization, annotation
and is advised for stitching multiple datasets of the whole imaged object. It offers
integration of Matlab and Python, where user can write pipelines of operations.

4.1.5 SVI Huygens
SVI Huygens is a software for image deconvolution. It offers deconvolution of
datasets acquired on numerous types of microscopes, blind deconvolution, esti-
mation of PSF from imaging beads and offers a tool Fusion and Deconvolution
for LSFM. It also offers correction tools for chromatic aberration, crosstalk and
drift. Datasets can be visualized in Huygens, results of the deconvolution and
corrections can be easily compared in a side-by-side view, as well as observation
of their intensity histograms.

4.1.6 ZEN
ZEN is a software from Zeiss. It is useful for acquiring images from the mi-
croscopes, it allows visualization and detection of desired objects in the sample,
which can then be imaged. It offers tools for visualization of stacks, processing
tasks like intensity adjustment, multichannel view, deconvolution and fusion of
LSFM data.

4.2 Comparing software

4.2.1 Comparing deconvolution in SVI Huygens
I used SVI Huygens to deconvolve one dataset with multiple settings to observe
the results, compare the importance of choosing right parameters and illustrate
the importance of quality image acquisition. The dataset was acquired as 283
slices in dual-view mode and by illumination with two lasers on Lighsheet Z.1.
I have tried deconvolution on each view, from left and right, on both views at
once using Fusion and Deconvolution tool; and on already fused dataset (fused
by ZEN). I have changed one parameter, signal-to-noise ratio to acquire the best
improvement of the quality. Used SNR was 60, 30, 15 and 5. As opposed to
the first estimate, which was 20-30, the best results were acquired by setting
SNR = 5.

In Figure 4.1 one slice (number 49/283) from the z-stacks can be seen, mag-
nified. Images shown are taken from datasets: before deconvolution and after
deconvolution with two settings of SNR 5 and 30. Only one view is shown. In
the image deconvolved with SNR = 30 enhanced noise can be seen, whereas
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image with SNR = 5 shows reduced noise, reduced background intensity and
increased contrast.

In Figure 4.2 the slice 49 is shown again. Datasets used are without decon-
volution, showing one view and fused dataset. Slight degradation, in the form of
more prevalent background, of the fused dataset can be seen, as the multi-view
imaging has produced only one view with high quality and the other view is of
very low quality with lot of noise.

a) Original b) SNR = 5 c) SNR = 30

Figure 4.1: Images deconvolved in SVI Huygens.

a) Right view b) Left view c) Fused

Figure 4.2: Images acquired by Lightsheet Z.1 by multi-view imaging, from each
view and fused by ZEN.

4.2.2 Comparing computational capabilities
As the microscopy technologies evolve, the analysis tools evolve as well and are
accustomed to the new conditions. One of the main demands to analyse LSFM
data is the ability of the software to handle large data and the optimization to use
as much of the computational power as possible. Single dataset from Lightsheet
Z.1 can have size in the order of tens of gigabytes or even hundreds of gigabytes.

To compare how Imaris, FIJI and Amira handle data, dataset of size
7.77 GB has been opened and simple processing and visualization has been con-
ducted to observe their computational options. Machine used for these obser-
vation has parameters in Table 4.1. Different algorithms have been observed to
obtain information, whether they are parallelized; and whether they run on CPU
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or on GPU. Using GPU allows for much higher analysis and processing speed.
Amount of storage, which is needed to analyse the data has been noted as well,
and whether the file can be stored in RAM for faster acquisition and processing.

Task such as alignment, filtering and rendering have been observed. Align-
ment is used, when some images are slightly shifted, which may be result of drift
during acquisition. Alignment is not as needed for LSFM images compared to
images from SEM for example. Filters are used for denoising or blurring (which
leads to less noise). Many filters may be used, common are Gaussian filter or
median filter.

Intel Xeon CPU 3.70GHz, 8 cores, 16 threads
NVIDIA Quadro RTX 5000 GPU 16GB VRAM
RAM 128GB

Table 4.1: Technical parameters of used machine.

Amira gives several options of opening the dataset: whether the file should be
opened from RAM, disk or converted to a proprietary file format, which should
help with management of large datasets with lower storage available. To open
file formats, which belong to the BioFormats, for example .czi a proprietary file
format from Zeiss microscopes. After opening the dataset in RAM, Amira creates
new dataset after every operation, thus the amount of storage needed is high
and it is advisable to remove unneeded datasets from Amira. For alignment of
images Amira used 50% of CPU and increased memory, when using function
AutoAlign. However, only 8% of CPU, when using function Align. Thus, user
should test, which functions are parallelized, as their purpose and results are the
same. Alignment algorithms have not been written for use on GPU. To render
3D volume, Amira used around 95% of CPU.

Imaris can load only files in proprietary file format, and the conversion is done
before opening the file, converted file is the size of the original. The file is opened
in RAM memory, the amount of memory used is the size of the file. After each
operation, the memory usage increases, usually adds the size of the dataset as
new version is created. When rendering, Imaris uses GPU, for example when the
dataset is moved around. Tested filters were Gaussian and median. Gaussian
filter used on average 85% of CPU and the stored data on RAM increased by
original size. Median filter used only on average 13% of CPU and the size in
RAM also increased by that amount. Filtering algorithms have not been written
for use on GPU. While aligning images on average 95% of CPU was used and the
size increased by the size of original dataset.

Files are loaded in multiple formats, supports BioFormats. Files are loaded
and stored in RAM during the analysis. Dataset in the form of z-stack is au-
tomatically opened as a series of images, each view and channel separate. Size
used in RAM after opening the dataset is slightly higher than the size of dataset
at around 10GB. Gaussian filter uses 83% od CPU, none GPU and the size
on RAM increases by the size of dataset. Median filter uses 97% of CPU, none
GPU and the size increases the same. To enable processing on GPU, plugin
CLIJ has been developed. Amongst GPU-accelerated algorithms supported are
morphological filters, spatial transforms, image warping, local and global thresh-
olding, minima/maxima detection, logical operations on binary images, 3D-to-2D
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projections, and methods of descriptive statistics for quantitative measurements
[48]. However, it is recommended to use CLIJ for users with entry-level program-
ming skills. Using CLIJ does speed up the processing and analysis as is shown
compared to using CPU [48].
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Conclusion
Bioimage analysis is a key part of microscopy and studies dependent on images
acquired by microscopes. In this thesis, I have summarized different tasks in
the analysis, different problems in microscopy and different technologies behind.
Bioimage analysis is an important part of the experiment offering not only visu-
alization of results, but also quantitative data as well.

The microscopy technologies are diverse and the field is still growing. Since the
topic and options are very broad, the tasks in bioimage analysis and approaches
to solving the tasks are various. This has been shown by multiple approaches to
all of the tasks covered in this thesis.

I have described concept of microscopes, both light and electron, as the usage
of electron microscopy in life science is on the rise. I have focused in more depth on
fluorescence microscopy, engaging in describing the phenomenon of fluorescence
and its opportunity of studying tissues and histological samples. Furthermore, I
have covered the light-sheet fluorescence microscopy, which offers new possibilities
in developmental studies, however brings new challenges in the form of handling
large data.

In the image analysis part, I have summarized multiple tasks in the analysis
and some already employed algorithms. As seen in the thesis, many different
approaches exist and are used, from neural networks, which are developed by
computer vision engineers to simple image processing, which can be found in
multiple available software. Software available on the market has also been cov-
ered. Multiple different options with different tools and approaches have been
shown. I have also compared different computational and storage requirements
for using different software.

As microscopy is important part of many experiments and inseparable part
of life science, the demand for bioimage analysis is rising. New technologies are
bringing amounts of data that manually cannot be analysed and thus analysts
with the knowledge of multiple solutions, whether programmatically or by em-
ploying existing software, are needed. Either using neural networks or stereology,
segmentation is valuable and necessary task, to count or track cells, often observe
their division or apoptosis.
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List of Abbreviations

SNR Signal-to-noise ratio
LSFM Light sheet fluorescence microscope
SPIM Selective-plane illumination microscope
GFP Green fluorescent protein
CCD Charge-coupled device
sCMOS scientific Complementary metal–oxide–semiconductor
PSF Point spread function
MLE Maximum likelihood estimation
MIP Maximum intensity projection
DFT Discrete Fourier transform
CNN Convolution neural network
GPU Graphics processing unit
CPU Central processing unit
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