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1. Introduction
Prior to Harry Markowitz’'s work portfolio formations were purely

intuitive. He provided an effective and rigorous idea to form a portfolio using
mathematical and statistical methods and to obtain a portfolio with higher return
and lower risk then individual stocks. His theory was formed in 1952 and was
heavily celebrated. Markowitz explained effect of covariance on total portfolio
performance and introduced an idea of diversified portfolios performing better
then individual shares. Although his idea was revolutionary and he has been
awarded a Nobel Prize in the year 1990, practical use of his theory has been rare
(Michaud, 1989).

There were many prior financial crises to the one of 2011. However in our
research we’ll use the one most recent since the data are easily accessible and its
aftermath is still felt in the financial and banking sector around the world.

In august 2011 we saw significant decline in stock prices around the
world. Once again there was a panic in capital markets around the world as we
can see in then current newspaper articles as "Dow plunges as $2.5tn erased from
equities™, “Global Bonds Gain $132 Billion as Stock Rout Cuts $7.8 Trillion" and the
shock was global "Istanbul Stock Index Falls 5% In Early Trading, Extending
Losses"3 and "Japan follows Switzerland by weakening currency”. Effects on
portfolios were large and wiped out significant values of investors’ wealth. Even
though we are sure investors used different investment strategies we believe
there was a need for shift in strategy since there were large changes in markets
around the world. Investors are mostly worried only about losing value. It is not
only return that is changing during such an upheaval but there is a growth in
volatility (Schwert, 1990) and growth in asset correlations (Forbes, Rigobon,
2002) as well. Investors should take all the new information into account and
amend their portfolios since their portfolios can lose their optimality.

It's been a long time since Harry Markowitz introduced his revolutionary
work on Modern Portfolio Theory (MPT) but it is still one of the most influential
financial hypotheses. We will study its performance on the background of the

recent market turmoil using a Monte-Carlo framework. We will compare MPT to

' The Irish Times. 9 August 2011. Retrieved 10 August 2011.
* McDonald, Sarah (9 August 2011). Bloomberg Businessweek. Retrieved 10 August 2011.
’ Candemir, Yeliz (9 August 2011 The Wall Street Journal (Istanbul). Retrieved 9 August 2011.
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Black-Litterman model in practical example and artificial Monte Carlo framework.
We will decide which one is more efficient and more suitable for practical use.

The focus of this study will be on portfolio formation strategy and
influences of variability of returns and variance-covariance matrices. We expect
to show that optimal portfolio formation is time variable and it is difficult to keep
an efficient portfolio for a long time without extensive trading. Since investor is
maximizing return and minimizing transaction costs it is desirable to keep
number of trades on the lowest possible number while maintaining portfolio

efficiency.
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2. Theoretical framework
Harry Markowitz (1952) work caused a revolution in investment

management. Prior to Markowitz’s work managers decided on structures of their
portfolios based on their subjective feeling about future returns and risks of each
individual stock. In the year 1952 professor Harry Markowitz laid basics of
Modern Portfolio Theory and in connection with starting computerization it was
possible to employ mathematics and statistics to financial markets. However it is
important to mention that contrary to popular belief investors did diversify their
portfolios prior Markowitz’s work just without extensive rigorous attitude as he
offered.

“My ventures are not in one bottom trusted, Nor

to one place; nor is my whole estate. Upon the

fortune of this present year; Therefore, my

merchandise makes me not sad. “

William Shakespeare, “Merchant of Venice”,

1598, Actl, Scene 1

The Shakespeare cited above is a practical example how a Venice
merchant Antonio diversified his risk intuitively between different assets and
also inspired naming of this essay. Markowitz (1999) himself clarifies he is not
the one who invented diversification. On the other hand he is definitively the one
who hugely improved its understanding and practical use.

In this article we will cover the stability of portfolios towards changes in
returns, expected returns and real and estimated covariance matrixes. We will
run analysis to evaluate Modern Portfolio Theory’s mean variance optimization
performance and compare these portfolio formations with outcomes of modern
Black-Litterman model that is an extension to original Markowitz’s idea trying to
overcome some of the original practical problems.

Portfolio formations of Markowitz and Black-Litterman are based on the
idea of efficient market hypothesis (EMH). This theory states that markets are
informationally efficient. Therefore no investor can consistently achieve excess
returns over average risk-adjusted returns given the information known at the
moment of investment. EMH usually takes three main forms. Weak, stating that

prices of traded assets already reflect all past information. Semi-strong EMH
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states that asset prices reflect all past information and all publicly available
information. Strong EMH claims that asset prices include all publicly and privately
available information. Practical impact of this theory is that we cannot beat the
market by stock picking.

Although there have been a lot of analysts trying to find a profitable active
trading strategies, we will base our reasoning on articles of Malkiel (2003) and
Cochrane (2001) who argued in favour of passive investment management. As
Malkiel (2003, page 1) put it “I conclude that the evidence strongly supports passive
investment management in all markets... Recent attacks on the efficient market
hypothesis do not weaken the case for indexing.” We believe that passive strategies
are the most efficient for majority of investors since transaction costs are
lowering total portfolio return without significant gain to overall performance.
Consequently it is more profitable for majority of investors to form an efficient
portfolio and not to trade excessively.

Harry Markowitz gave a revolutionary idea how to form an efficient
portfolio and it deserves deeper study how this portfolio performs and how
immune it is to changes in market conditions. In the practical part of this essay we
will base our research on Monte-Carlo simulation of 10.000 random market
conditions and optimum portfolios formed. The data collected will allow us to
study effects of changes in investment environment and efficiency of Markowitz’s
portfolio formation. We will also compare it to a portfolio formed by a Black-

Litterman method.
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2.1.Modern Portfolio Theory

2.1.1. Historical perspective
As was already mentioned the foundation of MPT was established in 1952.

It was in Markowitz’s doctoral dissertation on statistics and the most persuasive
aspect of his work was his description of influence of number of assets included in
a portfolio on portfolio’s total variance and inter-asset covariance relationships
Megginson (1996). His dissertation findings were published in the year 1952 in
The Journal of Finance as “Portfolio Selection”. The book followed afterwards and
in the year 1959 was published under the name of Portfolio Selection: Efficient
Diversification. Finally in the year 1990 Markowitz was together with Merton
Miller and William Sharpe awarded The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel* for his contributions to the fields of economics
and corporate finance.

Obviously there were other contributors to the development of such an
extensive theory. One of the most important was James Tobin. He in his essay
“Liquidity Preference as Behavior Toward Risk” from the year 1958 and published
in Review of Economic Studies introduced an idea of Efficient Frontier and Capital
Market Line. These are now inseparable parts of Modern Portfolio Theory and are
concepts based on Markowitz’s prior work. Tobin’s idea is that investor will
maintain stock portfolios in the same structure as long as he maintains identical
expectations regarding the future. Consequently the investor’s portfolio will be
different only in their relative proportion of stocks and bonds in accordance to
individual risk aversion.

Another breakthrough contribution has been independently developed by
three academics and is now known as Capital Asset Pricing Model (CAPM). The
first to develop an idea of CAPM was Jack Treynor (1962) but his paper hadn’t
been published until 1999. The most notable contributor to CAPM developments
and Nobel prize laureate is William Sharpe he published his work Capital asset
prices: A theory of market equilibrium under conditions of risk in Journal of Finance
in the year 1964. He introduced an idea of Sharpe ratio measuring risk premium
per unit of risk. Sharpe also further developed Tobin’s concepts of Capital Market

Line and Efficient Frontier. Another notable theoretics in the field of CAPM were

* http://www.nobelprize.org/nobel_prizes/economics/laureates/1990/#
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John Lintner (1965) and Jan Mossin (1966) who further developed the theory that

evolved into incredibly important outgrowth of original Markowitz’s work.

2.1.2. Theory framework
MPT is a theory and a tool for selection and construction of investment

portfolio with properties of simultaneous minimization of investment risk and
maximization of expected returns. The revolutionary part of the MPT framework
is an ability to measure risk component of asset via various mathematical
formulations and minimise it using the concept of diversification. This concept of
not putting all eggs in one basket aims to properly select a weighted collection of
assets that put together exhibit lower risk factors than isolated investment into
each of the assets.

Therefore diversification is the core concept of MPT.

Markowitz’s portfolio theory is generally regarded as being a normative
theory. Fabozzi, Gupta, & Markowitz (2002) defined this as “the one that describes
a standard or norm of behaviour that investors should pursue in constructing a
portfolio..” (p. 7). Contrarily Sharpe’s asset pricing theory is considered as
positive theory hence studies investors’ actual behaviour and bases its
conclusions on observed market performance. Jointly these two theories provide
an efficient framework to identify and measure an investment risk in connection
with relationships between return and risk.

Markowitz demonstrated that investor’s portfolio selection problem could
be simplified to two critical dimensions. First is the expected return of a portfolio
and second is the variance (used as a measurement of a risk) of a portfolio (Royal
Swedish Academy of Sciences, 1990). Crucial for the MPT is the risk reduction
potential allowed for by employing the concept of diversification. As McClure
(2010) comments on diversification that there is a potential to reduce total
portfolio risk since portfolio risk is defined by variances of individual assets and
covariances of pairs of assets. In a word of Harry Markowitz (1952) the portfolio
selection is to be based on total risk reward characteristics, opposed to simply

betting on individual assets with attractive risk-reward characteristics.
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2.1.3. Risk and return
One of the most important and discussed concepts of MPT is a risk and its

measurement. For the MPT purposes is usually defined as “deviation away from
the mean historical returns during a particular time period. For example, U.S. stocks
may average 11 percent returns over time. However, they may see a 33 percent gain
one year and an 11 percent loss another year to arrive at that average” (Bofah,
2013). Nevertheless Markowitz thinks about risk in the context of a portfolio. “the
essential aspect pertaining to the risk of an asset is not the risk of each asset in
isolation, but the contribution of each asset to the risk of the aggregate portfolio”
(Royal Swedish Academy of Sciences, 1990). Risk of an asset can be studied in two
very different ways. Firstly on a stand-alone basis, so the asset is studied as
isolated and secondly on a portfolio basis. If considered on a portfolio basis we
can split the risk into two basic components. Systematic risk, also called market or
common risk, and unsystematic risk, or because of his characteristics called
diversifiable risk (Lowering portfolio risk, 2013). MPT assumes that all portfolios
are subjects to these two kinds of risk. Systematics risk is a macro-level risk that
is difficult or better put impossible to diversify away. This type of risk affects
large number of assets and good examples are e.g. inflation, interest rates,
unemployment, exchange rates, global economic conditions, and gross national
product. Some of these risks can be partially diversified away at higher costs to
investor or swapped for another kind of risk but portfolio in general can’t get rid
of them completely. Contrarily diversifiable (unsystematic) risk is a micro-level
form of risk that affects only single asset or just a small fraction of a market (Ross,

Westerfield, & Jaffe, 2002).

Figure 1 Unsystemic and Systemic risk,
2006
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It is the best explained by the example taken from the work of Myles (2013) “the
ill-received change in the announced consumer pricing structure of NetFlix resulted
in extremely negative consumer response and defections, which resulted in lower
earnings and lower stock prices for NetFlix. However, it did not impact the overall
stock performance of the Dow Jones or S&P, or even that of entertainment and
media industry companies for that matter—with the possible exception of its
biggest rival Blockbuster Video, whose value increased significantly as a result of
NetFlix’ faltering market share. Other examples of unsystematic risk might include a
firm’s credit rating, negative press reports about a business, or a strike affecting a
particular company”. It can be seen in the example given above that if investor
held just a particular stock of Netflix he would suffer heavy losses. On the other
hand if he held well diversified portfolio of media companies Blockbuster would
probably offset the losses inflicted by Netflix on his portfolio. Nevertheless
Blockbuster went into administration on January 20135 so it would be better to
diversify on wider scale in a full spectrum of S&P index. In figure 1 we can see
graphical explanation how adding stocks to portfolio lowers total risk until it
converges to just market or systemic risk.

Although in reality unsystematic risk can be reduced significantly by
adding securities within a portfolio (McClure, 2010) it can never be fully
eliminated irrespective how many assets are added into portfolio. The reason is
that returns on any asset are to at least some degree correlated. Consequently the
absolute diversification takes a form of limit going to infinite and never reaching
the level of just systematic risk (Royal Swedish Academy of Sciences, 1990).

It is important to mention even though it is not a part of the MPT that
systematic risk can be also reduced. A pair of negatively correlated assets can be
used to offset potential losses. For example when there is a global recession
investors usually store they cash in gold and short-term treasury notes so their
prices are soaring as money flow in from stocks whose prices are falling. This
financial operation is called hedging and is usually used at expense of possible
future returns. On the other hand diversification is ordinarily lowering riskiness

of portfolio without negative effects on potential return.

5 http://www .bbc.co.uk/news/business-21047652
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Risk and return trade-off is the main hypothesis relating to Markowitz’s
basic concept of the riskier assets providing greater potential return in order to
attract investors. Investors will hold a security only if their prediction of return
sufficiently compensate them for the risk taken (Ross, Westerfield, Jaffe, 2002). In
general risk is a probability that actual return of an investment will negatively
differ from investor’s expectations. It could be statistically measured by standard
deviation. Therefore assets with higher standard deviation are expected to yield
higher returns so the investors are sufficiently compensated and willing to buy
and hold such investments. Sharpe and Markowitz use important term of risk
premium, which is the return in excess of the risk-free rate of return that a risky
investment is expected to yield. Since the future return is not guaranteed it is only
a potential of excess yield that attracts investors. Riskier assets not always pay
out risk premium over risk free assets and yield can even be negative. This is
what makes them risky investments. Nevertheless historical analysis proved that
for investors to earn higher returns it is necessary to invest into riskier assets
(Bradford, Miller, 2009).

Markowitz in his work on Modern Portfolio Theory used volatility as a
measure of risk. It is statistically defined as standard deviation, variance of

returns, or in CAPM model as beta.
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2.1.4. Basic assumptions and their violations for MPT framework

The MPT framework is using many assumptions about individuals and
markets. The explicit one is normal distribution of daily returns. Also omission of
taxes and transaction fees in his basic theory makes live easier for MPT critics.
Here are few examples that were be discussed further.

(Mandelbrot and Hudson (2004)) pointed that extreme events occur far
more frequent then normal distribution would predict that is questioning that
assets are normally distributed.

Cadle (2011) discussed the problem of fat tails in return distribution.
Linear correlation assumption is not credible when there is a significant
probability of extreme events. “The presence of fat tails in the distribution of stock
returns implies that linear correlation coefficients do not correctly measure the
covariation between stock returns.” Thus the discussion about correlation matrix
stability is necessary.

The assumption of investors maximizing utility in terms of money, even
though the key assumption of EHM, is criticised by modern behavioural
economists. Investors sometimes show irrational decision-making and herd
behaviour. This is more or less a problem of investors’ rationality that is in
connection with investors’ risk aversion very important for EHM.

However modern research in behavioural economics points out that
investors are commonly irrational. (Barberis and Thaler (2003)) in their work on
Behavioral Finance list many examples of irrational investors’ behaviour, e.g.
excessive trading, naive diversification, etc. Investors tend to go for popular
sectors. The markets are driven by sentiment and we have a long history of
booms and busts. Many people base their decision-making just on rumours and
popular beliefs. Several centuries of Tulipomanias, Real Estate and Gold rushes,
Junk bond busts, dotcom bubles and Asian crises have proved that markets are
heavily affected by sentiment and politics. There is another dubiety of efficient
access to information and their fair usage. Behavioural finance studies a
possibility of information bias. We can read in the news some stories about fund
managers being investigated by SEC for insider trading, thus using publicly
unavailable information for trading. So there isn’t equal access to all information

and abuse has to be criminally punished. Practically this means society is
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enforcing efficient markets where there are none.

Consequently it is difficult for investors to estimate future returns that is
crucial for portfolio formation in MPT framework. There is even a strong
discussion about the method to be used. For example Amit Goyal and Ivo Welch
(2006) argued that none of the regressions of variables could outperform out of
sample estimation by historical average. On the other hand Campbell and
Thompson (2007) opposed that many variables are predicting with better
precision when correct restrictions are imposed.

Essentially for the MPT to be fully viable there mustn’t be any barriers to
trade such as taxes, limits, investors must be price takers and every market
participant must be able to borrow and lend at risk-free rate. In reality trades are
usually subject to transaction costs and taxes. Transaction costs have a major
impact on markets. Correspondingly taxes and costs are important whether to be
a short term or long-term investor. Every investor faces some limits. It could take
a form of available cash or a form of institutional and legal barriers. Liquidity is a
major reason for traders to keep out thinly traded assets. Usually only the
governments and largest corporations are allowed to borrow at T-bill rates. Short
selling has been massively discussed in recent market turmoil and is illegal or
heavily restricted in several countries around the world.

Some of the more specific discussions follow.

2.1.4.1. Returns follow joint-normal distribution
Despite the normal distribution assumption we can observe market swings

even 6 standard deviations from the mean far more frequently then would
statistical normal distribution predict. This suggest that markets would be better
described as some fat tail distribution and the MPT can be customized to use one.
The problem with customized distribution is the need for symmetrical

distribution and it is empirically proved that returns don’t follow such pattern.

2.1.4.2. The efficient market hypothesis
The efficient market theory (EMH) is another drawback of the MPT. Of all

three major versions mentioned earlier in the essay (they were weak, semi-
strong, strong) we can discuss whether weak and semi-strong are valid but there
is some strong evidence against validity of strong assumption of efficient markets

hypothesis (Andrei, 2000) used in MPT framework. Intuitively we can feel that it
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is difficult for actual prices to reflect any even privately held information,
assumption needed to fulfill strong version of EMH. For example there have been
a strong criticism for late 2000s global financial markets performance based on
markets being inefficient with tendency to create bubbles and crashes. On the
other hand proponents argued that efficient doesn’t mean we can foresee future
but rather it is a simplification of the world with all his uncertainty and it renders
markets efficient for practical investment purposes (Chamberman, 1983).

Anyway one of the strongest arguments against strong efficient market
hypothesis is the report of illegal insider trading operations making huge profits
as is the one cited below.

“The Securities and Exchange Commission alleged that $276 million in illegal
profits or avoided losses were made by investment advisers and their hedge funds,
by trading ahead of negative news in July 2008 on a clinical trial involving an
Alzheimer’s drug developed by Elan Corp. (US:ELN) and Wyeth, now a subsidiary of
Pfizer Inc. (US:PFE)”®

Additional outcome of the 2000s crisis was the realization that assets tend
to grow in correlation when there is a market upheaval and assets decline in
value all at once. We can see this behavior at graph 3 in the chapter of our empirical
analysis of Markowitz’s portfolio theory. The main idea of Modern Portfolio Theory
of diversification is thus failing since the assets are subject to global decline and
losses in one asset are not offset by gains in others as predicted by Markowitz in

1952.

6 http://articles.marketwatch.com/2012-11-20/economy/35223226 1 expert-network-firm-hedge-fund-
manager-sec-complaint, 20. 11. 2012
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2.1.4.3. Utility maximization and rationality
Figure 2 The utility functions (Policonomics.com)

a) Risk averse UF

b) Risk taking UF

c) Risk neutral UF

Every investor is a subject to his individual utility maximization. Simply
put everyone is trying to make as much money as possible. This is the key
assumption of efficient markets hypothesis. MPT framework employs idea of
utility (expressed in numerical form) to decide on combination of risk free asset
and optimized portfolio. The basic utility takes three basic forms and
distinguishes between risk averse, risk taking and risk neutral individual and
their respective utility functions are shown in figure 2. Markowitz assumed that
investors are risk averse and rational so MPT doesn’t account for ideas of herd
behaviour or investors accepting lower returns for higher risk as described by

modern behaviourist.
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2.1.4.4. Investors are perfectly foreseeing
The main problem that is also well theoretically covered is the problem of

prediction of future return distributions. MPT framework originally didn’t offer
any solution for this and just assumed that investors’ beliefs match true future
distributions. This also reveals that MPT was more built as a theoretical concept
then actual tool. The problem of estimation of future is not only about returns but
also about variance-covariance matrix and its stability. Since MPT takes variance
as a measure of risk and is trying to diversify away any unsystematic risk using
correlation between assets a precise out of sample estimation is very important
and almost impossible to obtain.

Since investors’ expectations are generally biased by their own beliefs and
inability to predict future returns the assets’ prices doesn’t offer the unbiased

information they were supposed to.

2.1.4.5. Institutional restrictions
In the MPT framework there are no taxes and transaction costs, investors

are price takers and are subject only to risk free rate when lending or borrowing
unlimited amounts of money, all securities can be split to fractions of any size and
traded so as well.

In reality every investor is limited by his individual budget and credit
constraints. Therefore some portfolios suggested by MPT could not be feasible.
Moreover only national governments and large corporation are usually allowed to
borrow at or near risk free rate. The trades are usually subject to taxes and
transaction costs and it is usually suggested to individual investors to keep
amount of trades as low as possible. On the other hand large investors can buy or
sell large bunches of stocks that could shift prices of individual stocks or certain
markets. Consequently they are not price takers and their own action can forbid
them from obtaining optimum portfolio since market reality is changing while
they are trading.

Taxes and transaction costs are difficult to predict for use in long-term
portfolios. Especially in less developed and efficient markets the change can be
swift and have very large consequences. The optimum portfolio could be
relocated by an action of government, trader, market maker or some other

important market participant.
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Splitting of assets is usually not possible and the smallest portion is usually
given. There can also be a minimum order size given for some assets so investor is
not able to obtain specific amount suggested by MPT.

There are many theoretical and practical models handling some of the
above-mentioned difficulties. Some can be solved by sophistication and polishing
of mathematical expression used to obtain optimum portfolio. It is easy to account
for restraints and costs of trade. Contrarily other shortcomings as non-normality
and fat tails are more difficult to solve and model would be probably too complex

for practical use.

2.1.5. Criticism of Modern Portfolio Theory
“Now, under the whole theory of beta and modern portfolio theory, we would

have been doing something riskier buying the stock for $40 million than we were
buying it for $80 million, even though it’s worth $400 million - because it would
have had more volatility. With that, they've lost me.”

Warren Buffett (Lecture of What Every Lawyer Should Know About Business,
Stanford Law School, 1990)

Warren Buffett is one of the most well known public figures in constant
criticism of efficient market hypothesis and Modern Portfolio Theory. The
quotation above is an example of his investment into The Washington Post
Company in 1974 of $40 million that he personally valued on $400 million. He
pointed out that buying it for $80 million would show less variance and thus in
MPT framework would be considered less risky. Mr. Buffett is one of the more
moderate critics, there are some that suggest to deny the framework whatsoever,
but he suggest caution and recommend business schools to teach the

shortcomings of this framework so the graduates are aware of these.

2.1.5.1. Volatility
As we already discussed Modern Portfolio Theory uses the term of

volatility as a measure of riskiness. The greater the volatility the greater is a risk
of the asset. Standard deviation is statistically a measure of how much variation
exists in data set from its mean. Buffett’s note from his guest lecture at Stanford
Law School reveals one of the most obvious problems of the standard deviation

employed as measurement of risk: It doesn’t fully distinguish between upward
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and downward movement of a value. Investors are very concerned by downward
movement but do they get nervous if their stocks are going upwards? Volatility
regards upwards and downwards movements equally bad. “Suppose the price of a
stock goes up 10 percent in one month, 5 percent the next, and 15 percent in the
third month. The standard deviation would be five with a return of 32.8 percent.
Compare this to a stock that declines 15 percent three months in a row. The
standard deviation would be zero with a loss of 38.6 percent. An investor holding the
falling stock might find solace knowing that the loss was incurred completely “risk-
free” (Keppler, 1990, p. 1). Subsequently in Buffett's example the widening of a
gap between buying and selling price would be in terms of volatility considered a
growth in risk even though it is just obviously a better deal.

On the other hand this definition of risk is simple, mathematically
explainable and thus compelling to financiers. It is based on logical assumptions
of investors and markets’ rationality with prices being set according to risk
adversity thus investors being paid accordingly for risk they have in their assets.
So is really statistical risk analysis good enough to replace rigorous analysis of
company’s financial and even non-financial indicators?

Let us denote that in this work we will use a standard deviation as a

measure of volatility.

2.1.5.2.  Risk and return correlation
The main problem of the concept is that correlation between risk and

return is actually weak. Murphy (1977) conducted a research on Efficient Markets
and found that realised returns appear to be higher than expected low low-risk
securities and lower than expected for high-risk securities ... or that the [risk-
reward|] relationship was far weaker than expected. Other important studies have
concluded that there is not necessarily any stable relationship between risk and
return; that there often may be virtually no relationship between return achieved
and risk taken; and that high volatility unit trusts were not compensated by greater
returns". This research was strongly disputing existence of strong positive
correlation between risk and return. For investors this is needed so they are fairly
awarded for risk taken and have incentives to hold riskier assets in their
portfolios.

Eugen Fama, one of the foremost proponents of Efficient Market

hypothesis, with K. R. French conducted an extensive research on risk and return.
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Journal of Finance (p. 449,) published their paper in the year 1992 as The Cross-
Section of Expected Stock Returns. They openly denounced the CAPM beta as a
correct measure of risk saying, “...we find that this simple relation between [ and
average return disappears during the more recent 1963-1990 period... In short, our
tests do not support the central prediction of the Sharpe-Lintner-Black model, that
average stock returns are positively related to market .” Eugen Fama came to
similar conclusions about CAPM beta as Murphy came to with risk and return
correlation. The validity of concepts that investors are fairly rewarded was from
the point of view of their papers very weak. Fama'’s research also recommended
better predictors for future returns. E.g. companies provide highest return when
they have low price to earnings ratio (P/E), low price to book ratio and smaller
capitalization. These three attributes were, according to their research, better

related to stock returns then beta.

2.1.5.3. Portfolio time variance
The above mentioned are not the only troubles with volatility concept.

The fact well known to every option trader is that volatility is changing rapidly
even in intraday trading. This can be seen in Figures 3 and 4 where is depicted the
VIX index of Chicago Board Options exchange that measures implied volatility of
S&P 500 index options. At 5-year horizon changes in values are tremendous.
Nonetheless we can observe some significant swings even on average trading day,
as was The 10t of February 2013. We don’t think that real financial situation of
companies included in the S&P 500 index could be changing so rapidly so the
volatility index is a reflection of real market developments. Volatility is not only
important for option traders and Black-Scholes option pricing model but also for
Modern Portfolio Theory. First of all it is part of the variance-covariance matrix
used to calculate weights for optimal portfolios. Second and even more obviously
it is the beta in the CAPM model of Sharpe, Lintner and Mossin. Since stocks don’t
posses a fixed volatility it is important for forming of portfolios to have a reliable

tool for its prediction.
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Figure 3 CBOE volatility index (VIX), 5 years, retrieved: 10. 2. 2013,
http://www.marketwatch.com/investing/index/vix

Figure 4 CBOE volatility index (VIX), 1 day, retrieved: 10. 2. 2013,
http://www.marketwatch.com/investing/index/vix

In figure 5 we can see a lot of noise in daily returns. Thus their
predictability is tricky but there has been a lot of studies on this topic so we
would just say there is high variability in daily returns and dependent on chosen
method their prediction could be very time variable similarly as in case of

volatility.

Figure 5 finance.yahoo.com, retrieved at: 11. 2. 2013

2.1.5.4. Statistical significance
The disputes about Efficient Markets Hypothesis, Modern Portfolio Theory

and validity of volatility as a measure of risk are going to take long time to resolve.

Supporters of EMH usually point out that no investor in history has ever turned in
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a statistically significant outperformance over a long time. Famous investors as
Warren Buffett and John Templeton are considered just statistical outliers and
their superior performance is accounted to pure luck. Lawrence Summers,
Secretary of the Treasury of the United States under Clinton administration once
proclaimed that it would require 50.000 years of data to disprove the EMH to the
satisfaction of the Stalwarts. Statistical significance is just a weak tool when there
is only little data available. Statistics is supposed to be used with large datasets
and its performance when handling small samples is inconclusive. A manager
with thirty years long career earns only 120 quarterly figures of his performance.
He would need to outperform the market heavily for his performance to be

statistically significant.

2.1.5.5. Stability
As we have shown before volatility and thus variance and covariance are

very fluctuating variables. Practically the most important problem of Markowitz’s
mean variance optimization (MV), how is the practical solution to Modern
Portfolio Theory sometimes called, is its instability and time variability. Since all
input variables needed for successful use of MV optimization are varying heavily
it is difficult to define optimal portfolio. It is not only a matter of correct out of
sample estimation of values but also the Markowitz's model is very sensitive to
changes and even small adjustment to value of input variables could cause very
large changes in portfolio weights. Michaud (2008, p.5) comments on this as “The
procedure overuses statistically estimated information and magnifies the impact of
estimation errors. It is not simply a matter of garbage in, garbage out, but rather a
molehill of garbage in, a mountain of garbage out.” This is one of the most
important shortcomings of a Mean Variance optimization as introduced by
Markowitz. (Michaud, 1989) commented on rare usage of this method by
professional portfolio managers and also offered explanation by pointing out to
unintuitive portfolio weights offered by mean variance optimization. (Black and
Litterman, 1992) added that Markowitz’s optimization maximizes errors. Since
model is overweighting stocks with higher expected return and lower expected
variance the possible error in out of sample estimation and its impact on portfolio
is maximized. The same is true for opposite. Assets with worse predicted
performance are systematically underweighted in portfolios thus the loss of their

potential if there is a mistake in estimation is maximized. According to Michaud
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(2008) this was crucial reason for numbers of sophisticated institutional
investors to abandon this statistical method of portfolio formation and rely on

intuition.
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2.2.Black-Litterman model

2.2.1. Developments

Fischer Black and Robert Litterman first introduced the Black-Litterman
model (B-L model) in an internal Fixed Income document of Goldman Sachs in the
year 1990 under a name of Asset Allocation: Combining Investors Views with
Market equilibrium. The paper was introduced to academia in the Journal of Fixed
Income in 1991. The extended version of the paper was published in 1992 in the
Financial Analysts journal. As the name of the article suggests it offered a
sophisticated method to overcome Markowitz’s unintuitive and highly
concentrated portfolios by including investors’ market views. Markowitz’s Mean
Variance optimization is very input sensitive as we have shown in previous
chapters with weights varying significantly with changes in input variables. These
were the main reasons why majority of portfolio managers didn’t use Markowitz’s
optimization of maximizing return for given level of risk. Black and Litterman
created a model that allows for Bayesian approach to combine investors’ opinions
about expected returns with the prior distribution of expected returns. This gives
a portfolio which is a combination of market equilibrium with investors opinions
and portfolio weights are much more intuitive.

Main goal of Black-Litterman is to create a portfolio that is more stable,
efficient and accounts for investor’s believes. (Lee (2000)) also pointed out that B-
L optimization is also reducing the problem of error-maximization as was
described by (Michaud (1989)). This is overcome by spreading errors throughout
the whole vector of expected returns. (Best and Grauer (1991)) showed that small
changes in input variables of one asset can force half of the assets out of portfolio.
(Black and Litterman (1992)) and further (He and Litterman (1999)) studied
various possibilities to predict input variables. They demonstrated that most of
historical based Mean-Variance optimized portfolios contain extremely large long

and short positions.
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2.2.2. Main contributions
The most significant contributions of Black-Litterman model to asset

allocation problems are intuitive a prior portfolio and a clear way to employ
investors views. The first is important since it allows for use of CAPM equilibrium
market portfolio as an initial point of optimization. Prior work started with even
uniform prior distribution or global minimum variance portfolio. Later method is

based on Stein’s estimator and takes form of y;=x+c; (xj—x) (Frost, Savarino,

1986) and takes shrinkage approach to shrink expected returns towards a
common mean (Jorion, 1985). This would improve performance of Markowitz’s
Mean Variance optimized portfolios. Basic idea is that in mean and variance there
is a connection between assets and thus it is more efficient to forecast their return
in a group then individually. Nevertheless these methods were more precise then
simple sample mean (Stein, 1955) they still lacked intuitive connection back to
market. B-L model allowed for use of distribution of returns from the CAPM
market portfolio as an initial point for portfolio optimization.

The second and maybe even more revolutionary was ability of the model
to input investors views and believes and to blend them with prior information
extracted from capital markets. The B-L model allows for use of partial or
complete information spanning a whole market, a set of assets or just an
individual stock. Black and Litterman provided a quantitative and effective tool to
blend Bayesian and non-Bayesian processes of portfolio formation.

“When used as part of an asset allocation process, the Black-Litterman model
leads to more stable and more diversified portfolios than plain mean-variance
optimization.” (Walters, 2009)

The interesting part of the Black-Litterman model is that benchmark
portfolio is used as reference point for optimization. This means that portfolio
manager is evaluated based on the same portfolio he bases his portfolio structure
on. According to behavioural finance the actual utility of an investor is based on
past reference and evaluates losses and gains in relation to a benchmark. This is
the reason why portfolios structured by B-L model are considered more intuitive

and logical.
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2.2.3. Shortcomings of Black-Litterman model
The B-L model is “data consuming”. It needs an investor to input a lot of

data so the model functions properly. First an investor needs to define his
universe of assets and find market capitalization of every asset included. Secondly
it is also necessary to define variance-covariance matrix from historical returns. It
is common to use a proxy for selected market (e.g. S&P 500 for US large
capitalization companies). And the third is a need to find a value of a proxy for

risk free rate.

Figure 6 B-L information mixture

The market capitalization for liquid assets if widely available and thank to
information technology it is easily obtainable even for individual investors. On the
other hand for illiquid asset classes like private equity, commodities and real
estates the capitalization data could be unreliable or unavailable even for
professional investors.

Very important and distinguishing step of B-L portfolio formation is
quantifying of investor’s views. B-L allows for inputting of quantitative,
qualitative, complete, incomplete and even conflicting opinions (Walters, 2007).
See Figure 67 for graphic example of what the mixing might look like in a single
dimension. Here we can perceive how combination of prior and conditional
information forms posterior information. On the other hand however ideal it
could seem obtaining of the correct market prediction is obviously difficult and in
efficient markets shouldn’t be even possible (as discussed before). “With all the
technical analysis tools that are currently available for use for this purpose it
remains a relatively hard task to achieve. This is because of the markets volatility.
Few professionals have been able to master and achieve accurate predictions for

these markets. These predictions have enabled traders in the markets to make

7 http://www.blacklitterman.org/intro.html
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decisions which would otherwise have taken them long.”® However difficult it is to
obtain correct prediction of future returns B-L model allows for not even setting a
predicted value but also its reliability. Or put in different words how certain is the
investor about his forecast. Consequently Investors’ views take the form of
conditional distribution (Black and Litterman, 1992).

One of the most confusing aspects of the B-L model is the tau variable
(uncertainty ratio). This can be defined as a level of confidence in the CAPM
distribution (Xu, Chen, Tsui, 2008). There is another problem in connection to tau.
The Black-Litterman model assumes that assets follow the same probability
distribution. At least it could be any distribution investor decides. Anyway Black
and Litterman (1990) introduced this parameter to scale the variance of the
expected return. He and Litterman used a value of 0.025 where Satchell and
Scowcroft remark that many people use a value close to 1. Other authors as
Meucci, Krishnan and Mains, completely eliminate t. When He and Litterman
(1999) proposed a version of the B-L. model generating an estimate of the return
as well as an estimate of variance. The variance of posterior distribution is largely
affected by changes in the value of tau and omega (covariance matrix of views). If
we are not interested in estimating variance we can eliminate t and change omega
as required. Walters (2010) concludes in his work on tau as follows “Most of the
Black-Litterman literature makes use of the Alternative Reference model explicitly
or implicitly, and most investors would be well served to explicitly use the

Alternative Reference Model rather than struggling with t.”

¥ http://www.forextokens.com/forex-strategy/22-forex.html
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3. Research methodology

3.1. Modern Portfolio Theory (MPT)

MPT is a theory that explains maximization of expected return for given
level of risk, or vice versa minimize risk for given expected return. It gives
mathematical solution to originally intuitive problem of choosing a collection of
assets that form a portfolio of lower risk than any individual asset. This is possible
because of different dependencies between asset prices. The concept of the MPT
is that selection of assets shouldn’t be done limited only to assets’ attributes.
Assets should rather form a clever selection where change in a return of one asset
is balanced by change in a price of another asset in the portfolio. This is a general
idea of a correlation that is a statistical measure of interdependency between
different assets. Since investing is in general considered to be a trade off between
risks and returns, Markowitz in his revolutionary work argued that investor is
able to form better portfolio by finding such asset classes that give the lowest
variance for given return. This concept is called diversification.

Technically MPT takes asset’s returns as normally distributed and defines
risk as a standard deviation of return. It forms portfolio weights by combining
assets in order to get weighted portfolio return of assets that are not perfectly
positively correlated. Hence MPT seeks to reduce total variance of portfolio when
maintaining a portfolio return.

As we have already discussed in previous chapters even though theory was
very influential, recently it has been widely criticised. Criticism is mainly based
on non-Gaussian distribution of asset returns and investors’ irrationality causing
market inefficiencies. Correlations between assets are not fixed but are influenced
by external events. Even though we ignore those problems, most common
solutions to MPT still give unintuitive and extreme portfolio weights that are

difficult to be fully trusted by investors.
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Graph 1 Graphical depiction of MPT

In order to make our research simpler and also to relieve are
computational power a bit we decided to base our research on six major
companies included in S&P index and widely covered by analytics. In the Graph 1
we can see an example of practical solution for these American companies based
on data sample from the year 1984 to 2011. The important part is the Efficient
Frontier. It is a line connecting combinations of assets with the lowest possible
variance for given return. These portfolios are the most efficient. Interesting part
is that all the individual stocks lay under this line, which means they are
suboptimal in variance for their return when invested on their own compared to

when formed into a portfolio.
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3.1.1. Solutions to Mean Variance optimization

Investor can use many solutions to Mean Variance optimization to minimize
risk and maximize return. The most accessible to common investor is the use of
Excel Add-in Solver. It requires matrix algebra solution that is solved by random
generating of numbers by computer. Another possible but not commonly used
solution is to use mathematical optimization of function on given set by Lagrange

Multipliers

3.1.1.1. Matrix algebra solution
Investor forming a portfolio can use many mathematical solutions. The
simplest one is to use matrix algebra as follows. This is based on forming the
problem as a combination of expected return vectors, expected covariance
matrices and asset weights vector. This means to transform linear algebra
solution to matrix algebra solution. We start with linear formulation of
maximizing portfolio return and minimizing variance.
E(R,) =WTR
o =WTVW
Where W = matrix of weights of assets in portfolio
R = returns of assets
V = variance-covariance matrix

o = portfolio variance

Subscripts
mw = minimum variance portfolio
ef = efficient portfolio

sr = sharpe ratio portfolio

Matrix algebra solution can be easily performed in a statistical package. We can
set the general solution for given portfolio weights and than use some random
number generator to find the optimum portfolio weights minimizing portfolio
return. The structure of such practical optimization follows:
1. Find the global minimum variance portfolio, compute its mean and
variance
R

— T
pmw — me * R
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optimized to minimum portfolio variance

Determine an efficient portfolio with target return equal to the largest
expected return of the given set of assets, compute its mean and variance
Ryer = WS *R
O = Wop  V x W,y
Optimized to minimum Portfolio Variance given the Portfolio Return =

Return of the best performing stock

Compute the covariance between the returns on the global minimum
variance portfolio and the returns on the efficient portfolio

Umw,ef = WrrT;W * 1V x Wef

Compute portfolio frontier using result that any portfolio on the frontier is

a convex combination of any two frontier portfolios
Get maximum Sharpe Ratio Portfolio

Rpsr = Wer * R

Osr = Wer % V x Wy

. . . E(R)-R
Subject to maximized sharpe ration %

Construct Capital Allocation Line by combining Weights of Maximum

Sharpe Ratio Portfolio with Risk-free asset

Obtain optimal weighting of tangential portfolio and risk free asset with

o . . E(Rp)-R
respect to individual utility function. Formula used %.
* P
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In the example above we can see that only necessary inputs are expected
returns, expected variance and covariance, risk-free rate and a coefficient of
individual risk aversion. In general there are more assumptions of the model.
Although we need only these few numerical values, their correct estimation is

more complicated.

3.1.1.2.  Lagrange multipliers solution
To minimize or maximize desired functions the most commonly used

method is a random procedure such as already mentioned Solver in MS Excel, or
some other statistical package. In our case this method is not optimal since we
will use Monte-Carlo simulation further in our work. This would result in double
optimization problem where two dynamic random variable functions were
running at the same time. For this reason we've decided to use Lagrange
multiplier solution for finding the efficient portfolio on the Efficient Frontier. This
solution is theoretically covered in Appendix 6. LM solution is static and allows to
input random function for any of the variables. We will solve the part for finding a
portfolio with minimum variance for given return, thus portfolio on Efficient
Frontier and minimum variance portfolio. For general discussion we won'’t cover
the utility optimizing portfolio and impacts of changes in risk free rate. Our
research will focus on changes in inner assets variables such as expected return,

variance and actual return and variance.
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3.2.Black-Litterman model solution
To reduce extreme portfolio positions Black-Litterman optimization starts

with equilibrium returns as a neutral starting point. Investor can use either CAPM
or reverse optimization that allows for extraction of expected returns from
known information. These returns are called implied expected equilibrium
returns (II) and we will use this method of estimation in our analysis. For

estimation on matrix I1 we use formula below.

InH=46xX+w,
w = Vector of market capitalization weights
X = Fixed covariance matrix

d = Risk-aversion coefficient

After defining market equilibrium returns we need to input investors’

views into our model. Black and Litterman suggested use of following formula:
-1
EIRI=|(w=)" + P'QP| [(w=)" 1+ P20

E[R] = A posterior vector of returns that includes investors’ views. Form of n x 1,
where n stands for number of assets in the model.

T = A scalar that could be used for better calibration of the model. Walters (2010)
argued that for most investors is beneficial to omit this variable.

X = covariance matrix (n x n form)

P = Matrix of actual stocks we have views on. It Identifies the assets involved in
the views. Matrix takes form of k x n where k is a number of views.

2 = Represent level of confidence of individual to his expressed views (k x k
matrix).

I = Implied Equilibrium Return Vector mentioned before (n x 1 column vector).

Q = Vector of actual expected returns of each of the views (k x 1 column vector).
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3.3. Monte Carlo methods

“Picking numbered pieces of paper from a hat can also be used to generate
random numbers” (Dunn, Shultis, (2011), p. 69).

The quotation from the book Exploring Monte Carlo Methods simply
describes basic idea of Monte Carlo simulation. We form a hypothesis or
mathematical problem. Use the correct formulas to get a bottom line result. Than
we substitute variables in our calculation by random numbers and study
influences of these changes to final outcome. This gives us an opportunity to see
all possible results, their probabilities and allows us for study of uncertainty or
extreme events. This technique is widely used in risk management, finance,
project management, engineering, manufacturing, insurance, oil and gas, and so
on. Its wide use was allowed by development in computer technologies since this
simulation is the best performed by computerized simulation.

More technically Monte Carlo is a class of algorithms simulating events by
generating pseudorandom numbers. We have decided to use Latin Hypercube
Sampling? for generating of our samples. ,Monte Carlo methods (or Monte Carlo
experiments) are a class of computational algorithms that rely on repeated random
sampling to compute their results. Monte Carlo methods are often used in
simulating physical and mathematical systems.“l0. Its name given after famous
casino city isn’t coincidental. Basic idea is to generate enough of random
observation to test behaviour of some variable, function or equation. One of the
first important usages was project Manhattan during the Second World War.
Monte Carlo is a summary name for all methods using pseudorandom repeated
sampling.

All of those methods follow this structure:
1. Define group, or distribution that we will generate random numbers from
2. Generate enough observations to so a hypothesis is evidential
3. Run deterministic calculations using generated values
4. Aggregate results and interpret as final solution
5. In a case of more variables in the model we need to define cross-

correlations for model to give sensible results

? Guide to Using Palisade @Risk v. 5.5, p. 649, 02/2009
10 princeton.edu, [31. August 2013], WWW:
<http://www.princeton.edu/~achaney/tmve/wikil 00k/docs/Monte Carlo method.html >
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3.3.1. Latin Hypercube Sampling
For a method of Monte Carlo we need to deliver a series of random

numbers. In our research we used software Palisade @Risk 5.5 that uses LHSL.
McKay, Beckman and Conover have first described this method in the year 1979.
The purpose of this statistical tool is to create acceptable sets of variables from
multidimensional distribution. It is based on simple Latin Square Sampling, which
generates numbers from matrix of a form n x n with n different values. Each of the

values is used in one column only once. For example matrix can look like this 3 x 3

1 2 3
2 3 2
31 1

Hypercube is just a multidimensional extension to standard matrix. Maximum number

matrix with three different values.

of combinations is given by a formula

ﬁ(M _ n)N—l

N is a number of variables we generate and number of dimensions of matrix
M is a number of equal splits of hypercube to probability intervals

n is a number of unique numbers in each column

Advantage of this process is repeatability. It is a basic difference to purely random
process that is impossible to repeat. Another difference from random sampling is a
need of advance definition of number of generated values. In latin hypercube we need

to define parameters of sampling and then we can generate numbers.

' Latin Hypercube Samplig
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3.3.2. Anderson-Darling test

We have defined that we will deliver values for Monte Carlo simulation by
Latin Hypercube Sampling. We need to discuss what values will the basic matrix
acquire. We will need to define original statistical distributions that input
variables follow. For our purposes we will use the Anderson-Darling test that
tests which theoretical distribution is the closest match to estimated values.
(Anderson and Darling (1952)) introduced this test in 1952 in Annals of
Mathematical Statistics.

[ have decided to use Anderson-Darling compared to other common tests
such as Kolmogorov-Smirnov and Chi.squared for its better performance in fat
tailed distributions. This is common for financial data since occurrence of extreme
events is more common then most of the theoretical distributions predict.

T. D. Andersen a D. A. Darling has introduced this test in a year 1952. The
basic test statistics takes a form of

A>=-n-S

S = z 2k~ 1 [InF(Y) + In(1 — F(Yy41-1))]

n
k=1
Hy = estimated variables follow given distribution

H, = estimated variables don't follow given distribution
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4. Research data

Name Symbol Industry
General Electric GE Conlomerai
Company
The Dow Chemical DOW Chemical Industry
Company
Baxter Baxter Health Care Supplies
Caterpillar Caterpillar Industrial Goods
Procter and Gamble Proc Gam Consumer Goods
Apple Computers Apple Personal Electronics

Table 1 List of selected companies

In previous chapters we introduced multiple steps theoretical procedure to
obtain data sample for our study. This is based on defining original distributions,
picking random numbers, generate portfolios and gather final data for our
analysis. For better practical implementation we decided to base our research on
a real market situation that every investor can face.

As already mentioned our research includes six major American
companies. Reasons for those six are long historical data samples, wide coverage
by analysts, which we will use when forming Black-Litterman model, and
different industries they operate in. By using very liquid and well-covered
companies we also expect to overcome some of the problems as inefficient
markets and unreal pricing. Since companies are selected through different
industries we expect to find low correlations and thus diversification should be
very efficient. In Table 1 we can see the list of those companies with industry they
operate in and symbols we use in our graphs and tables.

Although the vast discussion whether it is appropriate to use historical values as
estimator of future performance, most of the investors still use it. The efficiency of
different out of sample estimation is disputable and difficult to defend. If there is
some “magical” tool it probably won’t be available to academics. Efficient markets
hypothesis revealed that making a strategy publicly available would also render it
inefficient. Research by (Goyal and Welch (2007), p. 20) studied predictability of

future returns by using dividend price ratios, dividend yields, earnings-price
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ratios, dividend payout ratios, net issuing ratios, book-market ratios, interest
rates, and consumption based macroeconomic ratios. They dismissed practical

efficiency of those in all historical periods. They noted in their work

“Our paper has systematically investigated the empirical real-world out-of-
sample performance of plain linear regressions to predict the equity premium. We
find that none of the popular variables has worked—and not only post-1990. In our
monthly tests, we can solidly reject regression model stability for all variables we

examined”.

On the other hand Markowitz never offered a solution how to obtain
expected values needed for his optimization. Investors in general believe that
Modern Portfolio Theory is a tool, but it is in general more an idea. Common
usage of historical data isn’t part of the original paper, but just a practical solution
to a problem of obtaining reliable estimates of future returns and covariance
matrix. (Markowitz (1991), p.14) even mentions this in his paper as he tries to

dispel this common misbelief.

“Portfolio selection should be based on reasonable beliefs about future
returns rather than past performances per se. Choices based on past performances
alone assume, in effect, that average returns of the past are good estimates of the
likely’ return in the future; and variability of return in the past is a good measure of

the uncertainty of return in the future.”
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4.1.Assumptions testing
Markowitz stated assumptions of the MPT. We will cover statistically
testable properties of our time series. In the graph 2 we can see daily returns of
all the stocks in our portfolio. We can clearly observe volatility clustering which is
happening in several historical periods. This volatility clustering is in contrary to
assumption of stability of variance-covariance matrix. Our data sample starts on

17/9/1984 and ends on 19/8/2011.

Graph 2 Daily returns of selected stocks

Graph 3 Average correlation of all six stocks

In the Graph 3 is an Average Correlation of all six stocks. There is
observable that correlation between stocks is changing rapidly and is in general
higher in the years of some economic turmoil. It is higher in 1987’s Black Monday,

1990-1991’s Savings & Loans crisis, 1994-1995’s economic crisis in Mexico, 1997-
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1998’s Asian Financial crisis, 2001’s dot com bubble and 2008-2010’s financial
crisis. This points to major changes in optimum portfolio during crisis. When a
financial turmoil starts, portfolio formed in “better” times might be inefficient. If
investor wants to face transaction costs he can set new weights for his portfolio’s
positions but how often should this be done? Another interesting outcome of this
graph is a growing trend with pretty high R? of regression. However Augmented
Dickey-Fuller test revealed first order autoregressive process in the correlation
data, so we can’t conclude much of this regression. The problem of this volatile
correlation is that it is considered by portfolio managers to be stable. Correlation
is a function of covariance and variance, so volatile correlation means volatile
variance-covariance matrix as well. Pafka and Kondor (2002) based their
research on covariance matrices and concluded that

“..covariance matrices determined from empirical financial time series
appear to contain such a high amount of noise that their structure can essentially be
regarded as random. This seems, however, to be in contradiction with the
fundamental role played by covariance matrices in finance, which constitute the
pillars of modern investment theory and have also gained industry-wide

applications in risk management”

Table 2 Basic statistics and Jarque-Bera normality test

APPLE BAXTER CATERPILL | DOW GE PROC_GAM
AR

Mean 0.000384 0.000385 0.000496 0.000350 0.000384 0.000519
Median 0.000396 0.000000 0.000000 0.000000 0.000000 0.000000
Maximum 0.249488 0.127750 0.137240 0.168972 0.179921 0.197826
Minimum -0.712692 -0.304933 -0.243050 -0.214960 -0.188677 -0.360283
Std. Dev. 0.032782 0.018976 0.020846 0.020288 0.018408 0.015855
Skewness -5.534393 -1.500362 -0.382667 -0.491367 -0.139921 -2.690087
Kurtosis 117.0722 25.71587 10.25562 12.58691 11.73863 71.27047
Jarque-Bera 3720485. 148710.5 15077.33 26306.72 21652.18 1328387.
Probability 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

In Table 2 are basic descriptive statistics. We can see that companies have
experienced daily losses in terms of tens of per cent. But more importantly there
are results of Jarque-Bera normality test. The statistic has a y’ distributions with
2 degrees of freedom under the null hypothesis of normally distributed errors.
Normality has been rejected for all stocks since p-value is zero to six decimal
places. Chris Brooks (2008) offers an explanation that even though normality was

rejected, for large samples it is appropriate to appeal to a central limit theorem

49




and expect test statistics to follow appropriate distribution even without error

terms normality.

Table 3 Test for randomness

GE DOW Baxter Caterpilla | Proc Gam | Apple
r

Runs Test for | Data Set | Data Set | Data Set | Data Set | Data Set | Data Set
Randomness #1 #1 #1 #1 #1 #1
Observations 6798 6798 6798 6798 6798 6798
Below Mean 3622 3499 3585 3511 3523 3398
Above Mean 3176 3299 3213 3287 3275 3400
Number of Runs 3409 3360 3401 3215 3418 3159
Mean 0.00038 0.00035 0.00039 0.00050 0.00052 0.00038
E(R) 3385.369 | 3397.058 | 3389.821 | 3396.309 | 3395.476 | 3399.999

5 0 7 5 3 7
StdDev(R) 41.0445 41.1863 41.0985 41.1772 41.1671 41.2220
Z-Value 0.5757 -0.8998 0.2720 -4.4032 0.5471 -5.8464
P-Value (two- | 0.5648 0.3682 0.7856 <0.0001 0.5843 <0.0001
tailed)

On the other hand in the Table 3 we can observe that returns are randomly
distributed. Only with exception of Apple and Caterpillar in their cases Runs test
for randomness rejected entire randomness and there are some
interdependencies. Actually using Akaike information criterion we found that
Apple is AR (2) process and Caterpillar is ARMA (2,3) process. We have now
covered statistically testable assumptions of Markowitz’'s Modern Portfolio
Theory. Randomness is important for our research. Since we plan to run two
different and independent processes. One random variable will be used for to
obtain expected returns as prior information for portfolio formation and second
as posterior information to test portfolio’s outcome.

We run tests for unit root and autocorrelation in data series of daily values
for selected stocks. The results can be seen in Appendix 4 for Augmented Dickey
Fuller test for Unit root and in Appendix 5 for autocorrelation. We found out that
for daily values the data were of first order autocorrelation and non-stationary.

For these reasons we used a transformation in the form of
V _ .
InE; = In ().
Vii

Where E -daily earnings of a stock i

Vii— value of a stockiatatimet
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Vi-11 — value of a stock I at a time t-1

In the table 4 we can see the resulting graphs. In daily values it is possible
to observe statistical problems with analysis only with a plain eye. On the other
hand in a logarithmic expression is observable a very strong presence of volatility
clustering. Even though some companies such as GE show this more then other.
For this reason we used a Garch model to test for time variability of variance and
covariance. The results are observable in the table 5 and the estimation outputs
are in the Appendix 8. In general we can comment that the conditional covariance
matrix of the assets returns is strongly autoregressive. This practically rejects the
assumption of constant covariance matrix over time. Bollerslev, Engle and
Wooldridge (1988) came with the similar conclusion but with wider application.
In their research they also covered bond returns and they commented, “The
expected return or risk premia for the assets are significantly influenced by the
conditional second moments of returns.” As commented above conditional

standard deviation spikes coincide with financial crunches.
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Table 4 Daily values and Logarithmic daily changes of analysed stocks
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Table 5 Garch - Conditional standard deviation
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4.2. Distribution fitting
As we mentioned before as an input to Monte Carlo simulation we needed to

define source distribution that will provide numbers for Latin Hypercube
Sampling. For our practical example we used the Anderson Darling test for its
ability to recognize distributions with fat tails. We tested variables of our six
stocks. All returns followed lognormal distribution. As explained above we tested

daily values by Augmented Dickey Fuller and found strong autocorrelation, we

transformed data to take a form of InE; =In (%). Hence lognormal
ti

distribution was expected. Distributions of variances and covariances were
mostly Loglogistic or Pearson. The distribution fitting is one of shortcomings of
our method. Since most of the theoretical distributions don’t include fat tails we
basically removed those from our tests. Even though Anderson Darling test
accounted for fat tails, these are not usually included in theoretical distributions.
However some extreme events in our simulations appeared anyway, but they
were a result of coincident combination of extreme positions between different
distributions and accounted for less then 1 % of total sample. After careful
consideration we have removed these outliers in order to get better performance

of OLS regressions.
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Figure 7 Fitted distributions used for Monte
Carlo simulation
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4.3.Cross Correlation

The reason for defining correlations between each of the variable is the best
explained on an example. If we simulate agriculture production and amount of
rain in each year to project our future revenue, it is not logical to have
observations with high yield and low rain in the same year. In our case we have
27 variables that give us a matrix in form of 27x27. The table itself is in Appendix
1. We used the same correlations for actual and expected values but each process
was run individually without defined correlations between actual and expected
variables. This was allowed by testing for returns being uncorellated. Interesting
outcome is a very low correlation between return and variance of individual
stocks. (Murphy (1977), p.20) studied a relationship between risk and return,
pointing out "realised returns appear to be higher than expected for low-risk
securities and lower than expected for high-risk securities ... or that the [risk-
reward|] relationship was far weaker than expected." The author continued on:
"Other important studies have concluded that there is not necessarily any stable
relationship between risk and return; that there often may be virtually no
relationship between return achieved and risk taken; and that high volatility unit
trusts were not compensated by greater returns”. This is very serious for basic
assumptions of Efficient Markets Hypothesis and Markowitz’s portfolio theory
itself. Since there is only weak correlation between riskier asset and higher
return, investors might not be rewarded properly for holding riskier assets.
(Fama and French (1992), p. 427) examined 9,500 stocks and Fama stated “What
we are saying is that over the last 50 years, knowing the volatility of an equity
doesn't tell you much about the stock’s return.” This provoked newspaper articles

announcing, "Beta as the sole variable in explaining returns on stocks ... is dead.”’?

2 http://finance.wharton.upenn.edu/~acmack/Chapter _10_app.pdf
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4.4. Data trimming
First of all we used OLS regression on the full sample of 10.000

observations that were created in the Monte Carlo simulation. The resulting
coefficients were highly insignificant and R? of the model was very low. We can
observe this in Appendix 3, table 15. We run analysis for outliers in Eviews with
total results shown in Appendix 9 and just return outliers for all stocks are
graphically depicted in Table 9 below. Analysing this we realised that the most of
the data is consistent but just a few outliers are strongly negatively influencing
our model. Since we created all the data artificially in the Monte Carlo simulation
using theoretical distributions of each of the stocks those outliers are the result of
distribution’s tails meeting at one data point. Even thought we realise extreme
events occur in financial markets and they are even more common then predicted
by theoretical distributions, our model is not made to simulate them and would
perform rather poorly when predicting these. For this reason we have decided to
trim our data to 99% interval. Thus we removed approximately 100 of
observations out of 10.000. R?improved significantly for most of the models as is
observable in Appendix 3. It also improved significance of our independent

variables and enhanced our case of study.
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Table 6 Stability diagnostics - Leverage Plots for return variables
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4.5.Data sample periods

To illustrate a problem that investor faces when deciding which sample to
use to run portfolio optimization we formed two different data samples. This
problem is noted by Fabozzi, Gupta, & Markowitz in the year 2002 as “A
particularly glaring drawback of using the historical performance of returns to
forecast expected returns is the uncertainty of the time-frame over which to
sample...” Thus we decided to use two different samples. One was taken from data
between 7. 9. 1984 and 19. 8. 2011 (In our analysis is called FULL sample).
Second was taken only for 500 observations from 27. 8. 2008 to 19. 8. 2010 (this
sample is called 500 sample). All data were taken as logarithms of daily
performances to avoid autocorrelation. For Markowitz’s model in both both
samples we formed a portfolio on efficient frontier for given daily return of 0.05
% by minimizing the variance of a portfolio. We evaluated performance of each

portfolio on an investment period from 19. 8. 2010 to 19. 8. 2011.
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5. Results

5.1. MPT framework
The solutions to MPT framework given above will give us an optimum

portfolio weights for given expected returns, variances and covariances. These
weights are changing as inputs vary. This means when our estimation of future
returns and covariances changes we will form different portfolio. Monte-Carlo
simulation allows us to input large number of random expected returns, variances
and covariances into our calculations to get large number of different portfolios.
We can afterwards analyse weights and return of each of these portfolios as well
as other attributes. Regression analysis allows us to study dependencies of
portfolio weights and actual returns on changes in input variables. This will give
us a sensitivity analysis of final portfolio weights and returns on input variables.
For a test of sensitivity of weights and returns we have formed a Monte-Carlo

method based analysis based on following steps:

1. Solve Markowitz’s portfolio optimization using Lagrange multipliers

2. Define source distributions for returns and variance-covariance matrix
using historical data for selected stocks

3. Calculate cross-correlation matrix between returns, variances and
covariances (define two identical correlation matrixes, one for actual and
one for expected values)

4. Generate randomly expected returns, expected variances and expected
covariances from defined distributions

5. Get optimum weights for Markowitz’s minimum variance portfolio for
generated variables

6. Get optimum weights for Markowitz’s efficient portfolio for generated
variances and given daily return of 0.1 %

7. Generate randomly actual returns, variances and covariances from defined
distributions and calculate return of both portfolios

8. Repeat steps from 4 to 7 10.000 times

9. Collect data as an Eviews table of 10.000 observations.

10. Filter outcome to 99 % of original distribution to remove outliers to

improve performance of OLS estimation
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11.Run regression sensitivity and correlation analysis to reveal and describe

possible dependencies

5.1.1. Static solution for data sample 1984-2011
Firstly we will present our results for static data. Portfolios presented are

based on actual data observed in the market. This portfolio is based on large
number of observations therefore should allow for very precise return prediction.
Mean Variance Optimization based on this sample suggested forming portfolio
with weights that could be considered reasonable. Investor should sell General
Electrics for 17 % of his total portfolio, buy Dow Chemical Company for 3 %, buy
Baxter for 4 %, invest 30 % in Caterpillar, 76 % in Procter and Gamble and only 4
% in Apple. The results could be observed in Table 4. In Graph 4 we can see the
efficiency of Mean Variance Optimization since all the stocks have higher variance

for given return then the portfolio they form.

W(GE) | W(DOW) | W(BAXTER) | W(CAT) | W(PG) | W(APPLE)

efficient

-17% | 3% 4% 30% 76% 4%
(max R)

Graph 4 Depiction of individual stocks and Efficient Frontier for data sample of 1984 to 2011
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5.1.2. Static solution for data sample 2008-2010
Second portfolio was based only on the recent data sample of 500

observations taken prior to the investment. The portfolio structure is very
different and takes into account good performance of Apple, which was on the
other hand one of the worst performing in the long-term sample. It also suggested
short selling of General Electrics and Dow Chemical Company. This was caused by
their bad performance during US recession of the year 2009. In general suggested

portfolio is very different, apart from Procter and Gamble that takes major part in

both portfolios.

W(GE) | W(DOW)| W(BAXTER) | W(CAT) | W(PG) | W(APPLE)
efficient

-27% -13% -1% 15% 86% 40%
(maxR)

Table 7 Efficient portfolio based on data sample from 2008 to 2010

Graph 5 Depiction of individual stocks and Efficient Frontier for data sample of 2008 to 2010
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5.1.3. MPT framework static solution total performance

We compared the performance of both data samples of the period of crisis
year 2011. Despite the losses in stock markets at the end of summer 2011 both
portfolios performed pretty well. Both delivered positive return and even reached
lower level of variance then predicted by Markowitz model. The full sample
portfolio delivered a return that was near to given value of 0.05 %. This portfolio
could be considered more predictable. On the other hand second portfolio

outperformed the first and more then doubled its Sharpe ratio with higher return

Total return | Daily return | Est.var. | Real var. | Sharpe ratio

Full sample 10.92% 0.044% 0.021% 0.0091% | 0.046

500 sample 22.22% 0.089% 0.033% 0.0078% | 0.100

for lower variance.

Graph 6 Monte-Carlo simulation for daily return of Full and 500 portfolios

Table 8 Comparison of both portfolios performance

By using Monte-Carlo simulation we found that full sample portfolio
underperformed the 500 one in long-term as well. Full sample portfolio managed
to maintain given level of return with lower variance. In general we can say that
full sample portfolio addressed the given task better.

Why did one portfolio over performed second and Mean Variance

Optimization failed to keep portfolio on efficient frontier and given return? We
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believe the answer lays in the precision of estimated returns and variances. The
sensitivity of return and weight of each asset to changes in returns and covariance
matrix are crucial to structure and return of a portfolio. In chapter 2.4.3 we have
discussed time variance of variables. In table 4 and 5 we can observe a very
different structures of portfolios that are based just on different time frames. The
out of sample estimation obviously gives very different results for different time
frames and since Mean Variance optimization is very input sensitive as pointed

out by Michaud (2008) the given results for optimal portfolio weights.

5.1.4. MPT Sensitivity analysis

Graph 7 Cumulative ascending probability of weight
of each stock in an efficient portfolio

Based on our methodology introduced in prior chapters we run the
analysis of effects of changes in expected and actual returns, variances and
covariances. Since we conclude from the original Markowitz’s formulas that there
will be large effects of changes in expected values on final portfolio weights, we
expect to find an explanation why these sensitivities are important for unintuitive

differences in portfolio weights.

5.1.4.1. Portfolio weights
From our Monte-Carlo test we found out that Markowitz’s mean variance

optimization is systematically overweighting or underweighting some of the
stocks in our portfolio. In Graph 7 we can see this practically on cumulative
ascending probability function that shows the probability distribution of weight
in each of the simulated portfolios. In appendix 2 we can see this more practically

as we have attached each of the individual distributions. What is interesting is a
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regression of each of our randomized input on final weight of each individual
stock in a portfolio. The results are graphically depicted in Appendix 2. It shows
large importance of estimated covariance but low influence of estimated returns
on final portfolio formation. Weights in Markowitz’s portfolio are mostly defined
by variance and covariance with individual stocks. This is given by portfolios
based either on minimizing general variance or minimizing variance for given
return, thus the role of expected stock return is low. Important is to mention that
significant impact on weight of a stock in portfolio has a covariance between two
different stocks. That practically means that Individual stock can be underweight
or overweight in portfolio when variance or covariance changes for different
stocks. The most used stock in our portfolio was Procter and Gamble. We can see
in table 2 that it has the lowest variance from all six stocks. On the other hand the
least used was the stock of Apple. Despite its very good performance in recent
months its poor performance throughout the 27 years of data Markowitz’s
portfolio optimization would underweight this stock. Apart from using shorter
sample of data investor could use some statistical tools like exponential
smoothing to emphasize Apple’s recent good performance. The most important
conclusion from this chapter is large impact of expected variance covariance
matrix and negligible effect of expected returns. This is surprising since
covariance matrix is usually considered given and most portfolio managers
predict only future returns. Since we defined cross-correlations between
variance, covariance and returns, the reason might be that changes in expected
returns appear in changes in covariance matrix as well. The final portfolio weights
are strongly influenced by changes in covariance matrix so managers should take

into consideration influences of stability of covariance matrix.
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5.1.4.2. Portfolio performance
Graph 8 shows that performances of efficient portfolio and minimum

variance portfolio are very similar. Originally the Efficient portfolio daily
performance was -0.031 % (-7.75 % p.a.). It clearly missed daily return target of
0.1 %. Minimum variance portfolio performed on -0.236 % (-59 % p.a.). We
trimmed data distribution on 99 % confidence level. That removed outliners and
gave us more intuitive result of 0.043 % (10.75 % p.a.) of daily return for Efficient
Portfolio and 0.0337 % (8.425 % p.a.) for minimum variance portfolio. It also
shows lower variance for minimum variance portfolio. In untrimmed sample
outliners caused higher variance in minimum risk portfolio then in efficient
portfolio, this is clearly unfeasible. In Appendix 3 we can see that R? coefficient of
determination is very low. This suggests that some outliers are far from original
regression. In the second regression we reached an R? of 0.5152 proving that

trimming was appropriate method of improving our model.

Graph 8 Daily performance distribution of MC simulated portfolios

For the test what influences return in Markowitz’s portfolios we formed
three regression equations.
Rp = actual return of a portfolio
R = actual return of stocks
Rest = prior estimation of future stocks’ returns
Rave = average return of stocks

V = actual variance-covariance matrix
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Vest= prior estimation of variance covariance matrix
VARavg = average variance of stocks
COVavg = average covariance of stocks
1. Ry=a+P1*R+ By xR + B3V 4+ x VSt 4 ¢
2. Ry=a+p*[R" =R+ B+ [V&E =V]+¢
3. R,=a+f;*R™I + B, *VARY™I + B3 * cov?I + ¢

Results from regressions are in the Appendix 3 each of the tables denoted with
number of the correspondent equation. Equation 1 shows that the most
important for total portfolio performance are returns of each individual stock.
The coefficients are approximately equal to: for Procter & Gamble 0.36, Dow
Chemicals 0.26, Baxter 0.15, Caterpillar 0.11, GE 0.10 and Apple 0.05. This shows
that 1 % change in return is positively correlated with total portfolio return and
affects portfolio from 0.05 % to 0.36 %. What is interesting is very high
significance and regression coefficient of some expected covariances. For example
1 % change in expected covariance of Baxter and Caterpillar would change return
of our portfolio by 6.2 %. (Pagan and Schwert (1990)) used a series of tests to
rule out the covariance stationarity in stock market data. Their conclusion is
important because it might mean the importance of precise covariance matrix
estimation for Markowitz’s Mean Variance optimization. On the other hand our
test in equation 1 revealed only few significant covariance variables. We have
shown before that expected covariances are very significant for the weight of each
individual stock in portfolio. We think this is the connection to high correlation
between portfolio return and expected covariance of some particular stocks.
Higher expected covariance means higher weight of a stock that could bring
higher total performance to portfolio. We suppose that the most important
conclusion is very low significance of actual covariance and variance. A priory
estimated variables are significant due to their high impact on stock portfolio
weights. Posterior variance and covariance non-significance means that return is
not significantly influenced by changes in covariance matrix and thus is only
dependent on future return of individual stocks.

Second equation allowed us to test for effect of estimation error.
Coefficient of determination is lower in this model. On the other hand coefficients
on variable defined as [estimated - actual return] are very significant. We can also

see that coefficients are positive which means positive correlation between return
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and estimation error. We believe that explanation for this is what studied Jobson
and Korkie (1980) as Markowitz’s error maximizing optimization. Overestimation
of return leads to overweight of a stock in portfolio. If actual return is lower the
portfolio could be shifted towards higher risk thus lower Sharpe ratio but higher
return. Return variables are strongly significant but actual values aren’t high. The
percentage change in portfolio return for 1 % error in estimation is for Apple
value of 0.03, Baxter 0.08, Caterpillar 0.05, Dow 0.12, GE 0.05 and Procter &
Gamble 0.16. Results also revealed significant impact of error in estimation of
covariances on total return. This is mostly the case for stocks that failed
randomness test in previous chapters.

Third equation aggregated all values as average. Equation became simpler
and gave us more intuitive results. In this case we have included regressions of
both portfolios. Results were almost identical in both previous examples, but in
the third equation efficient portfolio and minimum variance portfolio performed a
bit differently. Average return has significant positive impact on both portfolios of
approximately 0.88. Expected average covariance has in case of minimum
variance portfolio negative coefficient of -2.58 significant at 90 % level of
confidence. For efficient portfolio is this coefficient strongly insignificant. The rest
of coefficients like average variance and average covariance are again without

real impact on portfolio performance thus insignificant.

Graph 9 Correlation coefficients of

portfolio returns with individual variables

In Graph 9 is depicted practically what we have revealed by regression analysis.
There exists strong correlation of portfolio return with actual future returns of
individual stocks, low correlation with expected covariance matrix and no
correlation with future correlation matrix. The last finding is particularly

important. Although we have shown in previous chapters that covariance is
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unstable in time and difficult to predict. This finding was supported by findings of
Jobson and Korkie (1980), our results showed that future variances and
covariances are not important so they prediction is redundant.

The importance of these two variables resides in their importance for definition
of initial portfolio. Since portfolio weights are insensitive to expected return,
portfolio is mostly defined by variance covariance matrix. Although changes in
covariance have high values of coefficients, actual changes are so small that these

coefficients are also insignificant.
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5.2.Black-Litterman framework

5.2.1. B-L static solution

We based our practical experiment of Black-Litterman model on the same
stocks and data sample as in Markowitz’s portfolio tests. For a value of coefficient
of risk aversion we used the value of 2.5 suggested by (He and Litterman (1999))
as a World Average Risk Tolerance. As a risk free rate we used the value of 0 that
allowed us to account excess return as a stock return. It is also in accordance with
today’s capital markets where US short-term government bonds yields are close
to 0 (As of 19t of august 2011). To calculate implied expected returns we used
data in table 7. We used our stocks as a closed universe of investments so their
weights sum up to 100 %.

As a proxy for investors believes we used Mean value of analysts’ target
value. We set a view for each stock so our matrix P took a form of diagonal 6 x 6
representing discrete opinions about each stock without their mutual influences.
This is very simplified attitude, but since stock analysis is not a part of this work it
should be adequate for our analysis. We can see the form that matrix P took in
Table 8. In table 9 are estimated excess returns. These were calculated as
difference between today’s value of a stock and mean target value of each stock.
For matrix () representing confidence in estimated values we used a value of 0.5

for all views.

Table 9 Black-Litterman data input,

retrieved on 9th of September 2011

Capitalizatio = Mean target Last trade

n (bil. USD) value value
GE 165.26 22.32 15.59
DOW 31.77 40.23 26.9
Baxter 31.16 65.8 54.84
Caterpillar  56.23 126.4 87.04
Proc Gam 172.86 70.2 62.91
Apple 356.13 493.2 384.14

Table 10 Matrix P of investors believes

o O O
o O~ |O
o - OO0
— O O O
o O OO
o O OO

71




GE

DOW
Baxter
Caterpillar
Proc Gam
Apple

Analyst

estimated return

43.169%
49.554%
19.985%
45.221%
11.588%
28.391%

Table 11 Matrix V, estimated excess return

We solved portfolio optimization using Black-Litterman and inputs given
above. First we obtained Implied daily returns. In Table 10 we can compare
implied return obtained from Black-Litterman optimization with Mean daily
return from historical analysis. Implied returns obtained from Black-Litterman
model are in comparison to Mean returns obtained by analysis of historical
values. We used two data samples as in previous chapters. One is with data since
1984. Second is only last 500 observations, approximately for past 2 years.
Implied returns are not as different on both samples as are in case of historical
estimation. This is given by their definition by actual market capitalization.
Impacts of differences between full sample and 500-sample variance-covariance
matrix are small. On the other hand differences in historical Mean returns are
very large and this points to difficulties with sample selection for prediction of

returns from historical values.

Table 12 Implied and mean returns for Full and 500 observations samples

GE Dow Baxter Caterpillar  Proc Gam Apple
Izn;f(l,ied FtUMN 5 136%  0.131%  0.040%  0.121% 0.054%  0.125%
'FTJ'L'I'_ied et 0 042%  0.024% 0.024%  0.038% 0.028%  0.130%
g"oefo“ returm - 0105% -0.043% -0.076% 0.016% -0.018%  0.073%
F'Vl'JeL";‘_" UM 0.038% 0.035% 0.039%  0.050% 0.052%  0.038%

All our stocks are considered by analysts to be undervalued. Because of
this if we account for they opinion, expected returns grow significantly. Weights

stay stable and changes in portfolio are not that tremendous.
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Table 13 Implied returns including analysts' opinions

GE Dow Baxter Caterpillar Proc Gam Apple
R ith
eturns WIth , 11957% 0.47008%  0.12872%  0.39876%  0.16488% 0.27032%
opinion 2010
W?'g.hts with 21.225%  16.809% 7.676% 16.652% 11.832%  25.805%
opinion 2010
R ith
eturns WIth , 11700% 0.09307%  0.06836%  0.11992%  0.06480% 0.22541%
opinion FULL
Weights with
o 21.244%  16.865% 7.667% 16.678% 11.820%  25.725%
opinion FULL
Table 14 Portfolio weights for different methods of optimization
GE DOW Baxter Caterpillar Proc Gam Apple
Mark
ar et. 20.32%  3.91% 3.83% 6.91% 21.25% 43.78%
portfolio
B-L 2010 21.225% 16.809% 7.676%  16.652% 11.832%  25.805%
B-L FULL 21.244% 16.865% 7.667% 16.678% 11.820%  25.725%
Markowitz o o 0 0 0 0
2010 27% 13% 1% 15% 86% 40%
Markowi
arkowitz 17% 3% 4% 30% 76% 4%
FULL
Weights of individual stocks in
various portfolios
100.00%
80.00% “GE
60.00% “DOW
40.00% Baxter
0,
20.00% K Caterpillar
O Q Q
-20.00% 5 &Q» @VV %:Qk -@& Proc Gam
& & S &
-40.00% 3 & Apple
& ¥ W

Graph 10 Portfolio weights with different methods of portfolio optimization

Table 12 and especially Graph 10 shows differences in portfolio weights

when using different types of optimizations. Both Markowitz’s portfolios show

very large and unrealistic positions. Market portfolio on the other hand is

emphasizing Apple above to DOW and Baxter. Markowitz also suggests large

short positions in stocks of GE. If we look on suggested portfolio by Black-

Litterman optimization, both portfolios aren’t surprisingly extreme and most of

investors would find them intuitive. We added Market portfolio that is based

purely on individual capitalization. By comparing Market portfolio to Black-
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Litterman reader can get better idea of influences of B-L optimization on final
portfolio.

Graph 11 shows comparison of performance of portfolio optimized by
Black-Litterman and Markowitz’s methods. For a better comparison we added a
performance of Market portfolio. Black-Litterman portfolios show lower variance
of returns with probability distribution without too fat tails. On the contrary
Markowitz’s portfolio performance is flatter and thus exhibits higher probability
of extreme events. It would be interesting to study impacts of changes in

investor’s opinions and confidence levels, but it is not a subject of this work.

74




Graph 11 Monte-Carlo simulation of Black-Litterman, Markowitz and Market portfolios performance

5.2.2. Black-Litterman dynamic solution

To compare Black-Litterman model to Markowitz and get better idea of its

performance we decided to make our model dynamic. We still use a formula for
- _l -
BL model of T = §*X* w and E[R]=[(TZ) l+P'Q'1P] [(TZ) 1H+P'Q'1Q]

but instead of static numbers derived from market we use theoretical
distributions randomly representing those numbers.

For the variance-covariance matrix ¥ and expected returns matrix Q we
used theoretical distributions as defined in the section 4.3. For the matrix Q)
representing a level of confidence in our expected returns we set a uniform
distribution giving confidence levels from 10% to 100%. We omitted 0%
confidence. First of all the biggest advantage of using BL model is the ability to
input opinions about expected market situation. Second when (1 is set to 0 model
gives extreme solutions since it is only defined by market capitalization, variance
covariance matrix and individual risk aversion. Matrix P giving the stocks we have
views on is set as singular diagonal matrix of 6x6. For simplicity we have only
separated views for returns of each stock regardless the performance of other
stocks in portfolio. Tau is set to 1 as in static solution and risk aversion is static

and set to 0,4.
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In figure 7 is observable the slight superiority of Black-Litterman model
(red graph) to Markowitz’s efficient portfolio return (blue graph) obtained in

Monte Carlo simulation.

Figure 8 B-L and Markowitz simulated returns
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Table 15 Regression coefficients for weights of Markowitz and B-L optimization

GE

DOW

Baxter

Caterpillar

Markowitz optimization

Black-Litterman optimization

WBL /...
Regression Coefficie.

GE Return
Apple return
Caterpillar return
DOW returns
Baxter return

Proc Gam return

Omega
E var GE -o,czl
E var Apple Hoo2
= o =3 o = © @ <
S < S 5 S S S =
Coefficient Val...
WBL/D..
Regression Coefficie..
DOW returns 0
snerenn] [l
Omega .o,m
Caterpillar return { -0,03 .
GE Return ~u,03.
Baxter return 1 -0,02 I
Proc Gam return -c,uzl
- o - ~ n © ~ o
= S s S s S s = = =)
Coefficient Val...
W BL / Bax...
Regression Coefficie.
Baxter return 0,81
appleretun | [l
cereun| [l
Caterpillar return -u,oa.
DOW returns { -0,03 l
Omega In,us
proc Gam return 1 -0,02ff|
€ covar GE/Baxter { -0,02]]
- o - ~ < n © ~ @ e
= = = S s = S = S S =
Coefficient Val...
W BL / Caterpil...
Regression Coefficie...
Apple return
GE Return
socerren | [l
DOW returns -
Proc Gam return .
Omega .u,oa
- o - ~ < 0 I ~ £ e
=) =) = S 5 S = = S S =
Coefficient Val...
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W BL / Proc G...

Regression Coefficie.

Caterpillar return
Proc Gam omega oosll
© n N 4 @ 4 N om v owm e o~
S ¢ ¢ 3 3 S S & S & & s
Coefficient Val...
W BL/ Ap...
Regression Coefficie
Apple return 0,45
Proc Gam return
Omega o0 ll
E var Caterpillar Hoo2
Apple E var Apple 002l

<

=< [
5 S
Coefficient Val...

0,2
0,0
0,3
04
0,5

fut X
<

The outcome of our simulation is in the table 16. The most important part
is the comparison of regressors influencing resulting weight of a stock in a
portfolio. In Markowitz’s case there is a strong presence of expected variance
covariance matrix and it is the most influential element. On the other hand
positions in Black-Litterman model are almost exclusively influenced by
predicted future returns and slightly by matrix (0. We believe this is the most
important reason for Black-Litterman superiority to Markowitz’s optimization
since it is not influenced by variables as variance and covariance that are difficult
to control in classic MPT framework. The only important variables used for
construction of Black-Litterman portfolio are those that are studied by investor

prior to investment decision.
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6. Conclusion
Based on a general arguing of researchers towards passive investment we

have performed a comprehensive analysis of basic method of passive portfolio
optimization. Namely we focused on Markowitz’s Modern Portfolio Theory and its
extension Black-Litterman model. Our analysis revealed some drawbacks of
Modern Portfolio Theory and its practical use. Most of portfolio analysts take
variance-covariance matrix as time invariant and thus fixed. We discussed that
covariance actually changes significantly, especially in times of financial crisis.
Weights of individual stocks in Markowitz’s optimization are oversensitively
influenced by changes in expected variances and covariance. Their standard
deviation from mean portfolio weight is actually between 20 and 30 %. This
points to large changes in portfolio weights dependent on changes in expected
covariance matrix. The nature of our Monte-Carlo tests led to a finding that
portfolio is very differently structured depending on which day is an analyst
forming a portfolio. This is clearly inappropriate. On the other hand our Monte-
Carlo simulation of random Markowitz’s portfolio also revealed that actual
covariance is insignificant for final return of a portfolio. This leads to a conclusion
that portfolio formation is mostly based on expected variance-covariance matrix,
although the return of portfolio is based almost purely on actual stocks return.

When we tested the impact of out of sample estimation error on return of
portfolio we found low positive coefficients of very high significance. This says
that positive error in estimation has positive impact on final return. Black and
Litterman (1992) named a problem of error maximization in Markowitz, which
we think is a connection to our coefficients in error test. Since the asset with
positive out of sample estimation error tend to be outweighed in our portfolio it
will scale down a risk free asset proportion from the portfolio while providing
higher expected Sharpe ratio.

We have also taken two different portfolios. One based on short-term data
sample based on the years 2008, 2009 and 2010. This portfolio gave a large
position to Apple with its very good performance. On the other hand when we
have taken a sample from 1984 to 2010 it gave to Apple a very low position. We

showed that the selection of data sample is very important to portfolio formation.
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To show the contrast we formed a portfolio based on Black-Litterman
model and analysts’ consensus target price recommendation. This portfolio
showed much better stability. Positions are more intuitive and Monte-Carlo test
revealed that actual returns distribution is less variable with fewer extreme
events in comparison to Markowitz’s optimized portfolios. Dynamic model of the
Black-Litterman model revealed extended practicality and superiority to
Markowitz’s portfolio with strong connection between prior information
processing and resultant portfolio. In particular it is much better performing in an
environment of inconstant variance covariance matrix which we have proved is
the case of our chosen stocks and we believe it applies to the whole financial
market.

Markowitz’s Modern Portfolio Theory and idea of diversifications are very
important and efficient for portfolio formations. But actual portfolios are highly
concentrated, positions are unstable and maintaining such a portfolio on efficient
frontier would mean a lot of trading bringing excessive transaction costs. On the
other hand Black-Litterman portfolios bring stability and possibility of inputting
of analysts’ views to portfolio formation. Black-Litterman model has some
parameters that need to be defined and their proper definition can be difficult.
These are drawbacks for practical use of B-L model, but its superior performance
to Markowitz’s portfolios justifies further studies in the field.

During this essay we realized that Black-Litterman approach to portfolio
selection is simple, intuitive and results include private information as well as all
information included in prices. This is very conforming when we realize that
markets are not perfect and thus B-L framework allows amending investor’s

portfolio to imperfect markets.
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Appendix 1 Cross Correlation Table
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Appendix 2 Weight Distributions for Efficient Portfolio and

regression coefficients for each weight
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Appendix 3 OLS regressions of portfolio returns on theoretical

variables
Table 16 Full sample regression, 10000 observations, equation 1

Dependent Variable: TOTAL_PORTFOLIO_RETURN
Method: Least Squares

Date: 09/01/13 Time: 22:34

Sample: 1 10000

Included observations: 10000

Variable Coefficient Std. Error t-Statistic Prob.
C 0.002590 0.005259 0.492436 0.6224
COVAR_BAXTER_APPLE 58.70529 52.07807 1.127255 0.2597

COVAR_BAXTER_CATERPILLAR 2.397932 19.24206 0.124619 0.9008
COVAR_BAXTER_PROC_GAM -52.25624 48.29058 -1.082121 0.2792
COVAR_CATERPILLAR_APPLE 35.49807 28.10062 1.263249 0.2065
COVAR_CATERPILLAR_PROC_G  -15.37868 45.89502 -0.335084 0.7376

COVAR_DOW_APPLE 4.836414 48.53340 0.099651 0.9206
COVAR_DOW_BAXTER 7.103086 49.84154 0.142513 0.8867
COVAR_DOW_CATERPILLAR -38.29909 34.07450 -1.123981 0.2610
COVAR_DOW_PROC_GAM 57.14868 68.46130 0.834759 0.4039
COVAR_GE_APPLE 3.935485 21.58992 0.182283 0.8554
COVAR_GE_BAXTER -6.347560 16.25673 -0.390457 0.6962
COVAR_GE_CATTERPILLAR 0.129934 0.843871 0.153974 0.8776
COVAR_GE_DOW 14.76020 36.13293 0.408497 0.6829
COVAR_GE_PROC_GAM 11.56421 18.23863 0.634050 0.5261
COVAR_PROC_GAM_APPLE -40.35005 50.70263 -0.795818 0.4262
VAR_APPLE -0.933241 1.392434 -0.670223 0.5027
VAR_BAXTER 0.055878 6.488514 0.008612 0.9931
VAR_CATERPILLAR -3.927365 6.798708 -0.577663 0.5635
VAR_DOW -6.193604 6.795678 -0.911403 0.3621
VAR_GE 0.902770 4.706948 0.191795 0.8479
VAR_PROC_GAM 2.978336 5.663653 0.525868 0.5990
APPLE_RETURN 0.075398 0.036780 2.049997 0.0404
BAXTER_RETURN 0.104258 0.059432 1.754225 0.0794
CATERPILLAR_RETURN 0.141770 0.056479 2.510112 0.0121
DOW_RETURNS 0.177337 0.054619 3.246780 0.0012
GE_RETURN 0.075349 0.068878 1.093953 0.2740
PROC_GAM_RETURN 0.492402 0.076247 6.458022 0.0000
E_VAR_APPLE -0.425157 1.360619 -0.312473 0.7547
E_VAR_BAXTER 1.044870 6.154877 0.169763 0.8652
E_VAR_CATERPILLAR 2.916496 7.142357 0.408338 0.6830
E_VAR_DOW -3.618580 4.054709 -0.892439 0.3722
E_VAR_GE 6.531472 5.749587 1.135990 0.2560
E_VAR_PROC_GAM 5.389546 5.438950 0.990917 0.3218

APPLE_ESTIMATED_RETURN 0.017203 0.036693 0.468854 0.6392
BAXTER_ESTIMATED_RETURN 0.098672 0.058822 1.677468 0.0935
CATERPILLAR_ESTIMATED_RE -0.057452 0.056942 -1.008953 0.3130

DOW_ESTIMATED_RETURNS -0.020360 0.054904 -0.370835 0.7108

GE_ESTIMATED_RETURN -0.088031 0.069934 -1.258772 0.2081
PROC_GAM_ESTIMATED_RETU

R -0.004166 0.076138 -0.054722 0.9564

E_COVAR_BAXTER_APPLE -58.73131 52.15539 -1.126083 0.2602

E_COVAR_BAXTER_CATERPILL 1.813892 17.61643 0.102966 0.9180
E_COVAR_BAXTER_PROC_GAM  -58.79795 47.52331 -1.237245 0.2160
E_COVAR_CATERPILLAR_APPL 0.896368 27.29276 0.032843 0.9738
E_COVAR_CATERPILLAR_PROC 20.08264 46.00715 0.436511 0.6625

E_COVAR_DOW_APPLE 52.36029 48.27816 1.084554 0.2781
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E_COVAR_DOW_BAXTER -3.555710 47.38172 -0.075044 0.9402
E_COVAR_DOW_CATERPILLAR 34.68307 31.17734 1.112445 0.2660
E_COVAR_DOW_PROC_GAM 37.90794 69.40236 0.546205 0.5849
E_COVAR_GE_APPLE -26.75496 21.65884 -1.235291 0.2168
E_COVAR_GE_BAXTER 0.714380 21.40014 0.033382 0.9734
E_COVAR_GE_CATTERPILLAR -9.013437 8.550691 -1.054118 0.2919
E_COVAR_GE_DOW -67.88495 31.51295 -2.154192 0.0312
E_COVAR_GE_PROC_GAM 2.049395 19.08284 0.107395 0.9145
E_COVAR_PROC_GAM_APPLE 86.25067 50.05473 1.723127 0.0849
R-squared 0.019163 Mean dependent var -0.000310
Adjusted R-squared 0.013837 S.D. dependent var 0.093992
S.E. of regression 0.093340 Akaike info criterion -1.899661
Sum squared resid 86.64349 Schwarz criterion -1.860005
Log likelihood 9553.307 Hannan-Quinn criter. -1.886238
F-statistic 3.598107 Durbin-Watson stat 1.994916
Prob(F-statistic) 0.000000
Table 17 Trimmed sample regression, 9916 observations, equation 1
Dependent Variable:
Efficient portfolio return
Method: Least Squares
Date: 09/08/11 Time: 16:00
Sample: 19916
Included observations: 9916
Variable Coefficient Std. Error t-Statistic
PROC_GAM_RETURN 0.357249 0.008576 41.65806
DOW_RETURN 0.238523 0.006145 38.8188
BAXTER_RETURN 0.146801 0.006677 21.98596
CATERPILLAR_RETURN 0.109375 0.006368 17.17653
GE_RETURN 0.102812 0.007758 13.25235
APPLE_RETURN 0.054428 0.004134 13.16553
E_COVAR_BAXTER_CATERPILL 6.207749 1.979202 3.136491
E_COVAR_GE_APPLE 5.627881 2.44528 2.301529
E_COVAR_PROC_GAM_APPLE -11.70707 5.661023 -2.068012
E_VAR_APPLE -0.314955 0.152894 -2.059952
PROC_GAM_ESTIMATED_RETUR 0.0176 0.008547 2.059334
E_VAR_PROC_GAM -1.085989 0.610986 -1.777438
E_COVAR_GE_PROC_GAM -3.521847 2.149421 -1.63851
VAR_BAXTER 1.019526 0.728442 1.399599
COVAR_PROC_GAM_APPLE 7.693223 5.698685 1.35
COVAR_CATERPILLAR_APPLE 4.248734 3.153283 1.3474
E_COVAR_GE_BAXTER -3.168406 2.413617 -1.312721
E_COVAR_GE_CATTERPILLAR -1.241484 0.95979 -1.293496
COVAR_BAXTER_APPLE -7.207329 5.85825 -1.230287
E_VAR_GE 0.787213 0.645569 1.219409
COVAR_GE_PROC_GAM 2.443018 2.044492 1.194926
E_COVAR_BAXTER_APPLE 6.54052 5.900498 1.108469
CATERPILLAR_ESTIMATED_RE -0.006882 0.006388 -1.077321
E_COVAR_DOW_BAXTER -5.591955 5.353615 -1.044519
COVAR_GE_APPLE -2.484279 2.421712 -1.025836

Prob.

OO O O o o

0.0017
0.0214
0.0387
0.0394
0.0395
0.0755
0.1013
0.1617
0.177

0.1779
0.1893
0.1959
0.2186
0.2227
0.2321
0.2677
0.2814
0.2963
0.305
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E_COVAR_BAXTER_PROC_GAM  -5.464756 5.403313

VAR_CATERPILLAR -0.715198 0.764346
COVAR_DOW_APPLE -4.90251 5.454699
E_COVAR_DOW_APPLE 4.682888 5.438915
E_COVAR_CATERPILLAR_PROC 4.152804 5.199371
COVAR_GE_BAXTER -1.400979 1.822515
E_COVAR_DOW_PROC_GAM 5.959536 7.836453
COVAR_GE_CATTERPILLAR -0.069544 0.09449
COVAR_BAXTER_PROC_GAM -3.921986 5.427757
COVAR_CATERPILLAR_PROC_G  3.576798 5.154891

C 0.000395 0.000594
APPLE_ESTIMATED_RETURN -0.002725 0.004122
E_COVAR_GE_DOW -2.278465 3.552526
COVAR_DOW_CATERPILLAR 2.195891 3.835123
E_VAR_DOW -0.243546 0.454334

VAR_GE 0.285736 0.535256
DOW_ESTIMATED_RETURNS 0.003139 0.00617
BAXTER_ESTIMATED_RETURN 0.002914 0.006612

VAR_DOW -0.2995 0.768075
COVAR_GE_DOW -1.513031 4.06102
E_VAR_CATERPILLAR 0.281619 0.803391
VAR_PROC_GAM 0.182839 0.63536
COVAR_DOW_BAXTER -1.469983 5.597313
E_COVAR_CATERPILLAR_APPL -0.77039 3.080993

VAR_APPLE 0.032624 0.15674
E_VAR_BAXTER -0.10656 0.699053
E_COVAR_DOW_CATERPILLAR -0.514189 3.510737
COVAR_DOW_PROC_GAM 0.623179 7.688407
GE_ESTIMATED_RETURN -0.000532 0.007845
COVAR_BAXTER_CATERPILLAR 0.135384 2.156764

R-squared 0.515259 Mean dependent var
Adjusted R-squared 0.512604 S.D. dependent var
S.E. of regression 0.010442 Akaike info criterion
Sum squared resid 1.075132 Schwarz criterion
Log likelihood 31193.68 Hannan-Quinn criter.
F-statistic 194.1076 Durbin-Watson stat
Prob(F-statistic) 0

Table 18 Regression of Estimation Errors, trimmed, 9916 observations, equation 2

Dependent Variable:
TOTAL_PORTFOLIO_RETURN
Method: Least Squares

Date: 09/08/11 Time: 17:38
Sample: 1 9900

Included observations: 9900

Coefficien
Variable t Std. Error

-1.011371
-0.935698
-0.898768
0.860997
0.798713
-0.768706
0.760489
-0.735989
-0.72258
0.693865
0.664837
-0.661129
-0.641365
0.572574
-0.53605
0.53383
0.508713
0.440725
-0.389936
-0.372574
0.350538
0.287773
-0.262623
-0.250046
0.208139
-0.152435
-0.146462
0.081054
-0.067868
0.062772

t-Statistic

0.3119
0.3495
0.3688
0.3893
0.4245
0.4421
0.447
0.4618
0.47
0.4878
0.5062
0.5085
0.5213
0.5669
0.5919
0.5935
0.611
0.6594
0.6966
0.7095
0.7259
0.7735
0.7928
0.8026
0.8351
0.8788
0.8836
0.9354
0.9459
0.9499

0.00043
0.014956
-6.280491
-6.240545
-6.266964
0.868992

Prob.
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DIFF__RET__APPLE
DIFF__RET__BAXTER
DIFF__RET__CATERPILLAR
DIFF__RET__DOW
DIFF__RET__GE
DIFF__RET__PROC_GAM

C
DIFF__COVAR_PROC_GAM_APP
DIFF__COVAR_GE_APPLE
DIFF__VAR_APPLE
DIFF__COVAR_BAXTER_CATER
DIFF__COVAR_DOW_BAXTER
DIFF__VAR_PROC_GAM
DIFF__COVAR_GE_DOW
DIFF__COVAR_GE_PROC_GAM
DIFF__COVAR_BAXTER_PROC_
DIFF__VAR_BAXTER
DIFF__COVAR_GE_CATTERPIL
DIFF__COVAR_GE_BAXTER
DIFF__COVAR_CATERPILLO1
DIFF__COVAR_CATERPILLAR_
DIFF__COVAR_DOW_CATERPIL
DIFF__COVAR_BAXTER_APPLE

DIFF__COVAR_DOW_PROC_GAM

DIFF__VAR_GE
DIFF__COVAR_DOW_APPLE
DIFF__VAR_CATERPILLAR
DIFF__VAR_DOW

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)

0.03071
0.07864
0.054173
0.118629
0.050064
0.166313
0.000369
-9.667363
3.927872
-0.193928
1.917126
-5.073281
-0.580451
-2.899512
-1.523219
-3.681753
-0.456898
0.076337
1.254746
-1.846247
3.050912
1.912034
2.665835
2.97858
-0.075685
1.053758
-0.017722
0.007707

0.262991
0.260975
0.012609
1.569632
29262.28
130.4696
0

0.003522
0.005615
0.005445
0.005281
0.006674
0.00722

0.000127
4.860756
2.068061
0.132044
1.722331
4.638727
0.534146
3.131475
1.762256
4.621142
0.611258
0.106175
1.748389
2.646805
4.378642
2.975073
5.030384
6.576341
0.256953
4.573691
0.656674
0.451423

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

8.720609
14.0046
9.94879
22.46209
7.501592
23.03655
2.91103
-1.98886
1.899302
-1.468669
1.113099
-1.09368
-1.086689
-0.925925
-0.864357
-0.796719
-0.747471
0.718967
0.717659
-0.697538
0.696771
0.642685
0.529947
0.452924
-0.29455
0.230396
-0.026987
0.017073

o O O O o

0
0.0036
0.0467
0.0576
0.142
0.2657
0.2741
0.2772
0.3545
0.3874
0.4256
0.4548
0.4722
0.473
0.4855
0.486
0.5204
0.5962
0.6506
0.7683
0.8178
0.9785
0.9864

0.000372
0.014668
-5.905915
-5.885551
-5.899019
0.501283
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Table 19 Regression of average variables, 9824 observations, equation 3

Dependent Variable:
TOTAL_RETURN_MINRISK
Method: Least Squares

Date: 09/08/11 Time: 16:23
Sample: 19824

Included observations: 9824

Variable

RETURN_AVG_
E_COVAR_AVG_
E_VAR_AVG_

C

E_RET_AVG_
COVAR_AVG_
VAR_AVG_

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)

Coefficient

0.877633
-2.577602
0.614897
-0.0003
0.006184
-0.356497
0.027013

0.471882
0.47156
0.010422
1.066271
30899.13
1461.943
0

Std. Error

0.009375
1.600904
0.46845

0.000245
0.009373
0.941189
0.402316

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

Table 20 Regression of average variables, 9916 observations, equation 3

Dependent Variable:

TOTAL_PORTFOLIO_RETURN
Method: Least Squares
Date: 09/08/11 Time: 16:20
Sample: 19916

Included observations: 9916

Variable

RETURN_AVG_
E_COVAR_AVG_
COVAR_AVG_
VAR_AVG_
E_RET_AVG_
E_VAR_AVG_

C

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid

Coefficient

0.890921
-1.185832
-0.65493
0.246073
0.002532
-0.104193
-9.18E-06

0.447346
0.447011
0.011122
1.225759

Std. Error

0.009952
1.688939
1.002721
0.427937
0.009956
0.494735
0.00026

Mean dependent var

S.D. dependent var

Akaike info criterion

Schwarz criterion

t-Statistic

93.61478
-1.610091
1.31262
-1.222988
0.659808
-0.378773
0.067143

t-Statistic

89.52144
-0.702117
-0.653153
0.575022
0.25429
-0.210604
-0.035259

Prob.

0

0.1074
0.1893
0.2214
0.5094
0.7049
0.9465

0.000302
0.014337
-6.289114
-6.283989
-6.287378
0.766212

Prob.

0

0.4826
0.5137
0.5653
0.7993
0.8332
0.9719

0.00043
0.014956
-6.159056
-6.153972
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Log likelihood
F-statistic
Prob(F-statistic)

Table 21 Total return of minimized risk portfolio and its independent variables

Dependent Variable:
TOTAL_RETURN_MINRISK
Method: Least Squares
Date: 09/08/11 Time: 16:04
Sample: 19916

Included observations: 9824

Variable

E_COVAR_DOW_PROC_GAM
APPLE_RETURN
BAXTER_RETURN
CATERPILLAR_RETURN
DOW_RETURNS

GE_RETURN
PROC_GAM_RETURN
E_COVAR_GE_CATTERPILLAR
E_VAR_GE
E_COVAR_CATERPILLAR_PROC
E_VAR_PROC_GAM
E_COVAR_DOW_BAXTER
E_COVAR_GE_PROC_GAM
PROC_GAM_ESTIMATED_RET
UR
DOW_ESTIMATED_RETURNS
APPLE_ESTIMATED_RETURN
E_COVAR_CATERPILLAR_APPL
E_COVAR_GE_DOW
COVAR_GE_BAXTER
E_COVAR_DOW_CATERPILLAR
E_COVAR_BAXTER_CATERPILL
COVAR_CATERPILLAR_APPLE
E_COVAR_GE_BAXTER
GE_ESTIMATED_RETURN
E_COVAR_BAXTER_PROC_GA
M

COVAR_GE_PROC_GAM
VAR_CATERPILLAR
COVAR_GE_APPLE
E_VAR_DOW
COVAR_GE_DOW
E_COVAR_PROC_GAM_APPLE
C

E_VAR_BAXTER

E_VAR_APPLE

30543.6
1336.806
0

Coefficient

-32.88687
0.043292
0.127286
0.135306
0.232297
0.107484
0.342485

-2.765399
1.705417
12.78349

-1.235779
10.17764
3.915374

0.015059
0.010095
-0.005549
-3.998152
4.377627
-2.028269
3.927119
-2.043441
3.054203
-2.253102
-0.007154

-4.678606
1.560902
-0.578149
-1.829103
-0.334746
-2.783281
-3.327394
0.000342
0.394541
0.086335

Hannan-Quinn criter.
Durbin-Watson stat

Std. Error

7.326981
0.003857
0.006238

0.00594
0.005732
0.007255
0.008001
0.892376
0.600292
4.871972
0.569729
5.012867
2.006706

0.007972
0.005762
0.003839
2.885715
3.316696
1.694396
3.281499
1.847667
2.941265

2.25193
0.007327

5.067455
1.902874
0.711214
2.257807
0.422335

3.79141
5.287969
0.000554
0.651354
0.145188

t-Statistic

-4.488461
11.22529
20.40388
22.77869

40.523
14.81615
42.80651

-3.098917

2.84098
2.623884

-2.169066
2.030302
1.951145

1.888885
1.751951
-1.445457
-1.385498
1.319876
-1.197045
1.196746
-1.105957
1.038398
-1.00052
-0.976409

-0.923266
0.820287
-0.812905
-0.810124
-0.792608
-0.734102
-0.629239
0.616538
0.605725
0.594643

-6.157334
0.777641

Prob.

O O OO o oo

0.0019
0.0045
0.0087
0.0301
0.0424
0.0511

0.0589
0.0798
0.1484
0.1659
0.1869
0.2313
0.2314
0.2688
0.2991
0.3171
0.3289

0.3559
0.4121
0.4163
0.4179

0.428
0.4629
0.5292
0.5376
0.5447
0.5521
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COVAR_BAXTER_PROC_GAM
E_COVAR_DOW_APPLE
VAR_GE

VAR_DOW
E_COVAR_BAXTER_APPLE
VAR_APPLE
BAXTER_ESTIMATED_RETURN
COVAR_DOW_PROC_GAM
COVAR_BAXTER_APPLE
COVAR_DOW_APPLE
COVAR_DOW_BAXTER
E_COVAR_GE_APPLE
COVAR_CATERPILLAR_PROC_
G

VAR_BAXTER
COVAR_DOW_CATERPILLAR
COVAR_PROC_GAM_APPLE
E_VAR_CATERPILLAR
VAR_PROC_GAM
CATERPILLAR_ESTIMATED_RE
COVAR_BAXTER_CATERPILLAR
COVAR_GE_CATTERPILLAR

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)

-2.953604
2.746199
0.255567
0.325305

-2.475241
0.064367
0.002233
2.556168
1.639744

-1.36814
1.383014
0.591984

1.213116
-0.156693
0.352478
0.231191
-0.018916
-0.014811
9.39E-05
-0.026093
0.000209

0.545072
0.542558
0.009696
0.9185
31631.91
216.7545
0

5.057672
5.0913
0.497744
0.714473
5.524412
0.146
0.006166
7.170228
5.457653
5.085415
5.228544
2.285173

4.80264
0.678306
3.57452
5.317283
0.748502
0.591255
0.005965
2.00535
0.087811

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

-0.583985
0.539391
0.513451
0.455307

-0.448055
0.440869

0.36221
0.356498
0.300449

-0.269032
0.264512
0.259054

0.252594
-0.231007
0.098609
0.043479
-0.025272
-0.02505
0.015736
-0.013012
0.00238

0.5592
0.5896
0.6076
0.6489
0.6541
0.6593
0.7172
0.7215
0.7638
0.7879
0.7914
0.7956

0.8006
0.8173
0.9215
0.9653
0.9798

0.98
0.9874
0.9896
0.9981

0.000302
0.014337
-6.428523
-6.388255
-6.414881
1.806937
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Appendix 4 Unit root tests for selected stocks

Table 22 Unit root test for daily values

Null Hypothesis: APPLE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=34)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic 1.649123 0.9996
Test critical values: 1% level -3.431134
5% level -2.861771
10% level -2.566935
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(APPLE)
Method: Least Squares
Date: 09/01/13 Time: 13:23
Sample (adjusted): 9/10/1984 8/19/2011
Included observations: 6798 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
APPLE(-1) 0.000679 0.000412 1.649123 0.0992
C 0.004504 0.039241 0.114791 0.9086
R-squared 0.000400 Mean dependent var 0.048507
Adjusted R-squared 0.000253 S.D. dependent var 2.372621
S.E. of regression 2.372321 Akaike info criterion 4.565909
Sum squared resid 38247.25 Schwarz criterion 4.567917
Log likelihood -15517.52 Hannan-Quinn criter. 4.566602
F-statistic 2.719608 Durbin-Watson stat 1.942492
Prob(F-statistic) 0.099169
Null Hypothesis: BAXTER has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic - based on SIC, maxlag=34)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -0.788162 0.8219
Test critical values: 1% level -3.431134
5% level -2.861771
10% level -2.566935

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(BAXTER)

Method: Least Squares

Date: 09/01/13 Time: 13:27

Sample (adjusted): 9/12/1984 8/19/2011
Included observations: 6796 after adjustments
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Variable Coefficient Std. Error t-Statistic Prob.
BAXTER(-1) -0.000274 0.000347 -0.788162 0.4306
D(BAXTER(-1)) -0.015770 0.012117 -1.301526 0.1931
D(BAXTER(-2)) -0.056006 0.012128 -4.617892 0.0000
C 0.013970 0.010123 1.380065 0.1676
R-squared 0.003468 Mean dependent var 0.007069
Adjusted R-squared 0.003028 S.D. dependent var 0.502507
S.E. of regression 0.501745 Akaike info criterion 1.459139
Sum squared resid 1709.874 Schwarz criterion 1.463156
Log likelihood -4954.156 Hannan-Quinn criter. 1.460526
F-statistic 7.879801 Durbin-Watson stat 2.002457
Prob(F-statistic) 0.000030
Null Hypothesis: CATERPILLAR has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=34)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -0.126898 0.9448
Test critical values: 1% level -3.431134
5% level -2.861771
10% level -2.566935
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(CATERPILLAR)
Method: Least Squares
Date: 09/01/13 Time: 13:28
Sample (adjusted): 9/10/1984 8/19/2011
Included observations: 6798 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
CATERPILLAR(-1) -4.29E-05 0.000338 -0.126898 0.8990
C 0.012372 0.011419 1.083488 0.2786
R-squared 0.000002 Mean dependent var 0.011361
Adjusted R-squared -0.000145 S.D. dependent var 0.674265
S.E. of regression 0.674314 Akaike info criterion 2.050053
Sum squared resid 3090.139 Schwarz criterion 2.052061
Log likelihood -6966.130 Hannan-Quinn criter. 2.050746
F-statistic 0.016103 Durbin-Watson stat 2.032502
Prob(F-statistic) 0.899025
Null Hypothesis: DOW has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=34)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.858565 0.3524
Test critical values: 1% level -3.431134
5% level -2.861771
10% level -2.566935
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*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(DOW)

Method: Least Squares

Date: 09/01/13 Time: 13:28

Sample (adjusted): 9/10/1984 8/19/2011
Included observations: 6798 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
DOW(-1) -0.000868 0.000467 -1.858565 0.0631
C 0.019633 0.010045 1.954630 0.0507
R-squared 0.000508 Mean dependent var 0.003505
Adjusted R-squared 0.000361 S.D. dependent var 0.417177
S.E. of regression 0.417102 Akaike info criterion 1.089320
Sum squared resid 1182.325 Schwarz criterion 1.091328
Log likelihood -3700.599 Hannan-Quinn criter. 1.090013
F-statistic 3.454264 Durbin-Watson stat 2.065722
Prob(F-statistic) 0.063132
Null Hypothesis: GE has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic - based on SIC, maxlag=34)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.461415 0.5533
Test critical values: 1% level -3.431134
5% level -2.861771
10% level -2.566935
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(GE)
Method: Least Squares
Date: 09/01/13 Time: 13:29
Sample (adjusted): 9/12/1984 8/19/2011
Included observations: 6796 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
GE(-1) -0.000543 0.000371 -1.461415 0.1439
D(GE(-1)) -0.035205 0.012117 -2.905420 0.0037
D(GE(-2)) -0.051795 0.012123 -4.272628 0.0000
C 0.010313 0.007008 1.471515 0.1412
R-squared 0.004144 Mean dependent var 0.002059
Adjusted R-squared 0.003704 S.D. dependent var 0.356818
S.E. of regression 0.356156 Akaike info criterion 0.773693
Sum squared resid 861.5462 Schwarz criterion 0.777710
Log likelihood -2625.010 Hannan-Quinn criter. 0.775080
F-statistic 9.420930 Durbin-Watson stat 1.999426

Prob(F-statistic) 0.000003
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Null Hypothesis: PROC_GAM has a unit root
Exogenous: Constant
Lag Length: 4 (Automatic - based on SIC, maxlag=34)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -0.363756 0.9129
Test critical values: 1% level -3.431134
5% level -2.861771
10% level -2.566935
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(PROC_GAM)
Method: Least Squares
Date: 09/01/13 Time: 13:29
Sample (adjusted): 9/14/1984 8/19/2011
Included observations: 6794 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
PROC_GAM(-1) -9.83E-05 0.000270 -0.363756 0.7161
D(PROC_GAM(-1)) -0.068542 0.012122 -5.654143 0.0000
D(PROC_GAM(-2)) -0.072048 0.012149 -5.930151 0.0000
D(PROC_GAM(-3)) 0.027490 0.012149 2.262725 0.0237
D(PROC_GAM(-4)) -0.052495 0.012125 -4.329408 0.0000
C 0.012781 0.009096 1.405109 0.1600
R-squared 0.013272 Mean dependent var 0.008715
Adjusted R-squared 0.012545 S.D. dependent var 0.463415
S.E. of regression 0.460499 Akaike info criterion 1.287870
Sum squared resid 1439.458 Schwarz criterion 1.293897
Log likelihood -4368.895 Hannan-Quinn criter. 1.289950
F-statistic 18.25973 Durbin-Watson stat 2.001460
Prob(F-statistic) 0.000000

Table 23 Apple stock as an example of unit root test for logarithmic daily returns

Null Hypothesis: APPLEDF has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=34)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -78.38917 0.0001
Test critical values: 1% level -3.431134
5% level -2.861771
10% level -2.566935

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(APPLEDF)

Method: Least Squares

Date: 09/01/13 Time: 13:44

Sample (adjusted): 9/11/1984 8/19/2011
Included observations: 6797 after adjustments
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Variable Coefficient Std. Error t-Statistic Prob.

APPLEDF(-1) -0.949758 0.012116 -78.38917 0.0000

C 0.000366 0.000397 0.922319 0.3564

R-squared 0.474878 Mean dependent var -5.73E-08

Adjusted R-squared 0.474801 S.D. dependent var 0.045184

S.E. of regression 0.032745 Akaike info criterion -3.999829

Sum squared resid 7.285906 Schwarz criterion -3.997821

Log likelihood 13595.42 Hannan-Quinn criter. -3.999136

F-statistic 6144.862 Durbin-Watson stat 1.996924
Prob(F-statistic) 0.000000
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Appendix 5: Autocorrelations test

Table 24 Apple daily values autocorrelation

Date: 09/01/13 Time: 13:52
Sample: 9/07/1984 8/19/2011
Included observations: 6799

Autocorrelation Partial Correlation

AC

PAC

Q-Stat

Prob

|******* |*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******

|*******

|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******
|*******

|*******

|******* | |

|*******

0.998
0.996
0.994
0.992
0.990
0.988
0.986
0.984
0.982
0.981
0.979
0.977
0.975
0.972
0.970
0.968
0.966
0.964
0.961
0.959
0.957
0.955
0.953
0.951
0.949
0.947
0.945
0.943
0.941
0.939
0.937
0.935
0.934
0.932
0.930
0.928

O~NOO O WN -

WWWWWWWNRNNNNNNMNNNNNN_2 22 Ao aaa
AR WON 200N, WN_AOOCOONOOOODWN-O©

0.998
-0.023
-0.028

0.005
-0.008

0.011

0.031
-0.004

0.027

0.006
-0.033
-0.037
-0.017
-0.019
-0.005

0.014
-0.019
-0.014
-0.008

0.019
-0.001

0.013
-0.003

0.026

0.012

0.017
-0.003
-0.003

0.016
-0.005

0.004
-0.005

0.019

0.001

0.017
-0.006

6776.5
13528.
20252.
26949.
33620.
40264.
46884.
53479.
60051.
66600.
73126.
79625.
86098.
92542.
98959.
105348
111709
118041
124344
130620
136868
143089
149283
155452
161596
167716
173812
179884
185932
191957
197959
203937
209892
215826
221738
227629

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Table 25 Apple daily logarithmic values autocorrelation

Date: 09/01/13 Time: 13:53
Sample: 9/10/1984 8/19/2011
Included observations: 6798

Autocorrelation Partial Correlation

AC

PAC

Q-Stat

Prob

1 0.050
2 -0.025
3 -0.010

0.050
-0.028
-0.008

17.167
21.574
22.304

0.000
0.000
0.000
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4 0.012

5 0.023

6 0.007

7 0.010

8 -0.014

9 -0.015
10 -0.001
11 -0.017
12 0.030
13 0.001
14 0.019
15 0.002
16 0.001
17 0.010
18 -0.019
19 0.016
20 -0.015
21 -0.012
22 -0.002
23 -0.008
24 0.015
25 -0.008
26 0.023
27 -0.005
28 0.015
29 0.025
30 -0.013
31 0.003
32 0.003
33 0.004
34 0.016
35 0.007
36 -0.004

0.012
0.021
0.006
0.011
-0.014
-0.014
-0.000
-0.019
0.032
-0.003
0.022
0.001
0.002
0.008
-0.020
0.016
-0.018
-0.009
-0.001
-0.006
0.014
-0.007
0.024
-0.007
0.018
0.021
-0.013
0.003
0.004
0.002
0.016
0.008
-0.006

23.265
26.789
27.142
27.865
29.164
30.775
30.779
32.863
39.125
39.128
41.709
41.727
41.737
42.376
44.740
46.410
47.986
48.929
48.949
49.351
50.866
51.282
54.939
55.133
56.771
60.962
62.070
62.134
62.192
62.313
64.146
64.500
64.616

0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.002
0.001
0.002
0.002

Table 26 Baxter daily values autocorrelation

Date: 09/01/13 Time: 13:54
Sample: 9/07/1984 8/19/2011
Included observations: 6799

Autocorrelation Partial Correlation

AC

PAC

Q-Stat

Prob

|******* |*******
|******* | |

|******* | |

1 0.999
2 0.999
3 0.998

0.999
0.004
0.015

6792.6
13577.
20353.

0.000
0.000
0.000

Table 27 Baxter daily logarithmic values autocorrelation

Date: 09/01/13 Time: 13:55
Sample: 9/10/1984 8/19/2011
Included observations: 6798

Autocorrelation Partial Correlation

AC

PAC

Q-Stat

Prob

1 0.001
2 -0.063
3 -0.040

0.001
-0.063
-0.041

0.0034
27.380
38.518

0.954
0.000
0.000




Appendix 6 Lagrange multiplier solution to Markowitz model

We face the problem of minimizing

n

1 Z

2 iWj0ij
ij=1

Subject to

~ gb
=7

I O

- "Bﬁ

...
1l
Jy

Where wiis weight of i-th asset
ojj is a covariance between i-th and j-th asset
ri is a return of i-th asset

Ip is a desired portfolio return

So we form the Lagrangian

Lw,A,y) = ZW’ al]+ﬂ< iwl i>+y<1—iwi>

i,j=1 i=1

Melichar¢ik, Olsarova and Uradni¢ek (2005) proved that matrix 0;j is positive-
definite, thus L(w, 4, y) reaches its minimum when its first partial derivatives
equal to 0.

Thus

ZWO'U ri—y=0

i,j=1
Lets define w as a column vector of weights w;, r as a column vector of expected

returns 73, V as variance-covariance matrix of g;; and [ as a column vector of ones.
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Partial derivatives of L with respect to w, r, A gives us a system of n+2 linear

equations with n+2 variables.

aL—V A =0

aW— w r Yi =
JL
a_’rp—WT—O
oL
—=1-wlI=0
ay W

Let w), be a column vector of solutions to previous system of equation, then we get
w, = AV "lr +yV-l
Thus
r,=ArTV L +yITV 7y
1=ATV U +yITV 1
Define
A=1"V"1r =Ty -1
B=rTV"1r>0
C=1"v1>0
D =BC — A*?
Gives a simplified system of equations
1, =AB + YA
1=14+yC
System of equations has just one solution when determinant of D # 0. Since
vector r doesn’t have all variables equal=
Ar—BlI # 0
Since matrix V ~1is positive-definite we can write
(Ar —=BDTV~Y(Ar —BI) >0
= A’B — BA* — A’B+B*C >0
B(BC —A*)>0
BC—A*>0

Directly expressing A and y we get just one solution

1
A= 5 (C—4)
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1
y=5(B—Arp)

Thus we get a solution to Markowitz problem in form of

w, =g + hr,
1
g= B[B(V‘ll — AWV 1r]

1 -1 -1
h=5lev=tr =A@

For global minimum variance portfolio we face similar problem that forms

Lagrangian

n n
1

i,j=1 i=1
We minimize this equation by taking partial derivatives with respect to wij

and equalize to 0

L~
L=

We define again all the variables as column vectors

oL _ %4 [=0
ow WV
oL
—=1-wll=0
ay W
w, =YV
1=yITV1
C=1"v1>0
Thus 1=Cy
So at the end we get the formula for weights of Global Minimum Variance
portfolio
1
Wp = EV_ll
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Appendix 7: Garch test results

Dependent Variable: APPLE
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 09/01/13 Time: 16:25
Sample: 9/10/1984 8/19/2011

Included observations: 6798
Convergence achieved after 36 iterations

Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)"2 + C(4)*"GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.
C 0.000922 0.000189 4.875241 0.0000
Variance Equation
C 0.000311 3.38E-06 91.79840 0.0000
RESID(-1)"2 0.238745 0.003735 63.92162 0.0000
GARCH(-1) 0.530812 0.004869 109.0170 0.0000
R-squared -0.000270 Mean dependent var 0.000384
Adjusted R-squared -0.000270 S.D. dependent var 0.032782
S.E. of regression 0.032787 Akaike info criterion -4.089895
Sum squared resid 7.306541 Schwarz criterion -4.085879
Log likelihood 13905.55 Hannan-Quinn criter. -4.088509
Durbin-Watson stat 1.898943
Dependent Variable: BAXTER
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 09/01/13 Time: 16:30
Sample: 9/10/1984 8/19/2011
Included observations: 6798
Convergence achieved after 15 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)*RESID(-1)*2 + C(3)*GARCH(-1)
Variable Coefficient Std. Error z-Statistic Prob.
Variance Equation
C 6.34E-05 2.68E-06 23.62563 0.0000
RESID(-1)"2 0.240958 0.005915 40.73794 0.0000
GARCH(-1) 0.608333 0.011733 51.84631 0.0000
R-squared -0.000413 Mean dependent var 0.000385
Adjusted R-squared -0.000265 S.D. dependent var 0.018976
S.E. of regression 0.018978 Akaike info criterion -5.220709
Sum squared resid 2.448452 Schwarz criterion -5.217698
Log likelihood 17748.19 Hannan-Quinn criter. -5.219670
Durbin-Watson stat 1.997142

Dependent Variable: CATERPILLAR
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 09/01/13 Time: 16:36
Sample: 9/10/1984 8/19/2011

Included observations: 6798
Convergence achieved after 19 iterations
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Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)*RESID(-1)"2 + C(3)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.
Variance Equation
C 1.34E-05 1.08E-06 12.34463 0.0000
RESID(-1)"2 0.061522 0.002597 23.68896 0.0000
GARCH(-1) 0.907106 0.004739 191.3992 0.0000
R-squared -0.000567 Mean dependent var 0.000496
Adjusted R-squared -0.000420 S.D. dependent var 0.020846
S.E. of regression 0.020851 Akaike info criterion -5.040025
Sum squared resid 2.955477 Schwarz criterion -5.037014
Log likelihood 17134.05 Hannan-Quinn criter. -5.038986
Durbin-Watson stat 1.942122
Dependent Variable: DOW
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 09/01/13 Time: 16:37
Sample: 9/10/1984 8/19/2011
Included observations: 6798
Convergence achieved after 19 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)"2 + C(4)*GARCH(-1)
Variable Coefficient Std. Error z-Statistic Prob.
C 0.000635 0.000183 3.473702 0.0005
Variance Equation
C 2.77E-06 3.58E-07 7.731768 0.0000
RESID(-1)"2 0.067143 0.002835 23.68096 0.0000
GARCH(-1) 0.927842 0.002822 328.8425 0.0000
R-squared -0.000198 Mean dependent var 0.000350
Adjusted R-squared -0.000198 S.D. dependent var 0.020288
S.E. of regression 0.020290 Akaike info criterion -5.306612
Sum squared resid 2.798146 Schwarz criterion -5.302597
Log likelihood 18041.18 Hannan-Quinn criter. -5.305227
Durbin-Watson stat 2.028145
Dependent Variable: GE
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 09/01/13 Time: 16:38
Sample: 9/10/1984 8/19/2011
Included observations: 6798
Convergence achieved after 11 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)*RESID(-1)*2 + C(3)*GARCH(-1)
Variable Coefficient Std. Error z-Statistic Prob.
Variance Equation
C 1.08E-06 1.93E-07 5.571686 0.0000
RESID(-1)"2 0.048877 0.002222 22.00024 0.0000
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GARCH(-1) 0.948955 0.002302 412.2234 0.0000
R-squared -0.000435 Mean dependent var 0.000384
Adjusted R-squared -0.000288 S.D. dependent var 0.018408
S.E. of regression 0.018410 Akaike info criterion -5.521847
Sum squared resid 2.304122 Schwarz criterion -5.518836
Log likelihood 18771.76 Hannan-Quinn criter. -5.520808
Durbin-Watson stat 2.034545
Dependent Variable: PROC_GAM
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 09/01/13 Time: 16:40
Sample: 9/10/1984 8/19/2011
Included observations: 6798
Convergence achieved after 17 iterations
Presample variance: backcast (parameter = 0.7)

GARCH = C(1) + C(2)*RESID(-1)*2 + C(3)*GARCH(-1)
Variable Coefficient Std. Error z-Statistic Prob.
Variance Equation
C 1.53E-06 8.70E-08 17.58149 0.0000

RESID(-1)"2 0.062640 0.001221 51.28368 0.0000

GARCH(-1) 0.935089 0.001153 811.1139 0.0000
R-squared -0.001072 Mean dependent var 0.000519
Adjusted R-squared -0.000924 S.D. dependent var 0.015855
S.E. of regression 0.015862 Akaike info criterion -5.760006
Sum squared resid 1.710412 Schwarz criterion -5.756994
Log likelihood 19581.26 Hannan-Quinn criter. -5.758967
Durbin-Watson stat 2.080084
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Appendix 8: Outliers analysis

Table 28 Stability diagnostics - Leverage Plots for all used variables
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Appendix 9: Portfolio weights and regression coefficients from
B-L Monte Carlo
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