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Abstrakt

Peptidy, kromé své biologické funkce, predstavuji take dulezité modely nesbalenych, de-
naturovanych nebo nestrukturovanych proteinti. Pobobné dilezitymi modely pro exper-
imentéalni i teoretické studium sbalovani proteini jsou miniproteiny, jako napf. Trp-
cage. Chovani peptidi i proteint lze studovat v pocitacovych simulacich pomoci metod
molekularni dynamiky, které umoznuji sledovat déje v atomistickém rozliseni. Tyto
metody vSak celi vSak dvéma zasadnim problémtm — presnosti pouzivanych energetick-
ych funkci a nedostatecnému vzorkovani konformacnich stavii. V této disertaci jsem se
zabyval obéma okruhy problémii.

Vliv rozdilnych, bézné pouzivnych energetickych funkci (,force fields”) byl testovan na
modelu aminokyselinovych dipeptidi. Zadna sada parametri vSak nedokazala konzis-
tentné reprodukovat konformaé¢ni preference jednotlivych aminokyselin. Vysledky simu-
laci byly mezi sebou srovnany a byly hledany pfic¢iny jejich vzajemnych odlisnosti.

Abychom odhalili, jakym zpusobem ruzné podminky ovliviuji konformadcni stavy peptid,
zkoumali jsme vlastnosti aminokyselin v AAXAA peptidech. Simulace odhalily zasadni
rozdil ve vlivu tepelné a chemické denaturace (mocovinou) na charakter a zastoupeni
konformaci peptidi, stejné jako konformacnich preferenci jednotlivych aminokyselin.

K problematice vzorkovani konformac¢niho prostoru jsem pfispél zavedenim kolektivnich
soufadnic pro metadynamiku odvozenych z gyrac¢niho tenzoru a tenzoru setrvacnosti.
Efektivita téchto kolektivnich soutradnic popisujich velikost a tvar molekul byla testovana
v simulacich alaninovych polypeptida a Trp-cage miniproteinu. V téchto simulacich bylo
uspésné dosazeno reprodukovatelého nalezeni nativni konformace miniproteinu a pod-
statného zlepSeni ve vzorkovani konformac¢niho prostoru flexibilnich polyalaninovych pep-
tidi.

Zcela novy miniprotein byl vytvoren obracenim sekvence Trp-cage. Tento umély kon-
strukt vSak narozdil od Trp-cage nevytvari stabilni tfidimenzionélni strukturu v beznych
pufrech, ale strukturuje se az po pridani 2,2,2-trifluorethanolu (TFE). Stabilita a dalsi
vlastnosti molekuly retro Trp-cage byly studovany v MD simulacich, ale nepodafilo se
nalézt strukturu indukujici efekt TFE. Proto se stalo TFE predmétem nasSeho dalsiho
zajmu.

Nové parametry pro TFE, zalozené na predchozim modelu, byly optimalizovany, aby 1épe
a kvalitnéji popsali vlastnosti nejen samotného TFE, ale i jeho vodnych roztokii. Tento

cvyvee

teorie.



Abstract

Apart from biological functions, peptides are of uttermost importance as models for un-
folded, denatured or disordered state of the proteins. Similarly, miniproteins such as
Trp-cage have proven their role as simple models of both experimental and theoretical
studies of protein folding. Molecular dynamics and computer simulations can provide an
unique insight on processes at atomic level. However, simulations of peptides and minipro-
teins face two cardinal problems—inaccuracy of force fields and inadequate conformation
sampling. Both principal issues were tackled in this theses.

Firstly, the differences in several force field for peptides and proteins were questioned.
We demonstrated the inability of the used force fields to predict consistently intrinsic
conformational preferences of individual amino acids in the form of dipeptides and the
source of the discrepancies was traced.

In order to shed light on the nature of conformational ensembles under various denatur-
ing conditions, we studied host—guest AAXAA peptides. The simulations revealed that
thermal and chemical denaturation by urea produces qualitatively different ensembles and
shift propensities of individual amino acids to particular conformers.

The problem of insufficient conformation sampling was dealt by introducing gyration-
and inertia-tensor based collective coordinates to metadynamics. We validated this newly
implemented size- and shape- descriptors in simulations of alanine peptides and Trp-cage
miniprotein. Such facilitated dynamics led to reproducible folding of miniprotein and
extensive conformational sampling of flexible polyalanines.

A novel miniprotein were designed by idea of retro transformation of protein sequence.
The resulting retro Trp-cage molecule does not fold in water but the structure emerges
upon addition of a cosolvent—2,2, 2-trifluoroethanol (TFE) into buffer. However, this
behavior was not observed in simulations and therefore the force field model of TFE were
questioned.

We further developed a novel model of TFE based on generalized amber force field by
exhaustive optimization of force field parameters. The resulting model reproduces ex-
cellently the liquid state properties of pure TFE and behaves realistically in TFE /water
mixtures as we investigated by means of Kirkwood-Buff theory of solutions.
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Preface

This thesis was composed for the purpose of obtaining PhD degree in chemistry. It con-
cludes my work at Institute of Organic Chemistry and Biochemistry AS CR under super-
vision of Dr. J. Vondrasek in years 2009-2014. I tackled several topics and participated in
several projects in course of the doctoral study programme Modelling of Chemical Prop-
erties of Nano- and Biostructures at Faculty of Science, Charles University in Prague.
However, these projects were always linked conceptually to the goals of my thesis and
my research interests—behavior and properties of peptides and proteins scrutinized by
computational methods.

This thesis is divided in 6 chapters. The first, introductory chapter familiarizes reader with
basic paradigms in protein science, force fields used in computer simulations of proteins
and peptides and metadynamics as a method for free energy calculations and accelerated
conformational sampling.

The second chapter states the aims of this theses.

The third chapter provides an overview of my contribution to modeling intrinsic confor-
mational preferences of short peptides. The behavior of several force fields is demon-
strated on smallest possible model peptides with implication for modeling of unfolded or
intrinsically disordered proteins. The shift of propensities upon chemical denaturation
investigated in collaboration with prof. Daggett helps to reconcile the random coil model
in NMR spectroscopy.

The fourth chapter introduces collective coordinates for metadynamics based on tensor of
gyration. It also provides an application on conformational mapping of alanine peptides
and folding of a miniprotein.

The fifth chapter is dedicated to design and characterization of de novo retro Trp-cage
miniprotein. This artificial construct folds to transiently stable structure only in the
presence of helix promoting agents (2,2,2-trifluoroethanol, TFE). The performance of
structure prediction methods on this novel miniprotein is investigated. Similarly, the
ability of force field simulations to maintain the transient fold were questioned.

The last chapter provides results of our effort to improve TFE model for amber force
fields. The goal was to provide force field parameters which model reliably the properties
of TFE /water mixtures—the necessary condition for intended simulation of proteins and
peptides in mixture solvents.



1 Introduction and Methods

1.1 Changing paradigms in protein science

It is unnecessary to stress here the role that proteins play in maintaining a life as well as
importance of their research. Although proteins have been intensively studied since their
discovery in eighteen century, novel breakthroughs are continuously changing paradigms
in protein science. This section will briefly illustrate how the perspective on key topics
evolved to the current opinions.

1.1.1 Sequence to Structure to Function

Every textbook of biochemistry repeats a dogma that function (biological activity) of a
protein is facilitated by its three-dimensional structure which is coded by its amino acid
sequence. The way how the sequences find their native conformation is the fundamental
protein folding problem. However, this dogma were seriously disrupted by the uncovering
of intrinsically disordered proteins and their large prevalence in eukaryotic proteomes.?
Intrinsically disordered proteins contains regions which lacks uniquely folded structure
but are critical for function like association or ligand binding.

1.1.1.1 Globular Proteins and Their Folding

Despite the fact that protein folding has been intensively studied for more than 50 years,?
only an agreement on general principles has been reached by the research community.?3
Controversy still remains on cardinal issues like the importance of individual physical
mechanisms taking part in the folding process, existence of an unifying approach rec-
onciling different folding strategies and experimental observations,* presence and role of
folding intermediates,® residual structure in the unfolded ensemble® and a role of chaper-
ons.” Additionally, it should be noted that most studies of protein folding were conducted
on representative soluble globular proteins and much less is known e.g. about folding of
membrane proteins.® Moreover, the conditions in vivo differ from those in vitro and the
relevance of in vitro experiments for processes in live cells could be questioned.? !

Historically, yet the first folding experiments pioneered by Anfinsen demonstrated that
protein function and structure is coded in the sequence.!? It was recognized very soon
that a specific mechanism of folding must exist, otherwise a single protein would never
fold simply in biologically relevant time by a random sampling of possible conformations
(Levinthal’s paradox).!® Since then, protein folding problem raised three fundamental
questions which has been tackled by generations of scientist:?

e Folding code—How the amino acids code the unique three-dimensional structure?
Which physical forces or interactions are responsible for selection and stabilization
of the fold?
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e Kinetics—What is the mechanism that allows proteins to fold in amenable time?
e Predictability—Can the fold be predicted a priory by knowledge of the sequence?

The early proposed model of protein folding were hierarchic framework model.* It sup-
poses formation of secondary structure prior to the tertiary. Under the framework model
the folding is initiated by local establishment of secondary structure elements which are
brought into contact by diffusion-collision mechanism and further stabilized by mutual
interactions in the tertiary structure. However, this model postulates existence of interme-
diates in course of folding. Therefore it is inconsistent with behavior of two-state folders—
proteins which show simple kinetics of folding without detectable intermediates.!®

Highly cooperative two-state folding could be interpreted by means of nucleation-con-
densation mechanism. % It anticipates formation of nucleus involving even the long range
interactions. The final tertiary structure is accommodated immediately by fast collapse
around the folding nucleus.

Another approach how to deal with protein folding is based on the thermodynamic and
energetic view of the conformational space. Funnel-like shaped energy landscape for
protein folding was suggested.!” The native ordered conformation possesses the lowest free
energy content and represents the global minimum on the energy landscape. The native
structure could not be the only low energy region on the landscape and the other minima
can be considered as folding intermediates or traps. The complexity and ruggedness of the
free energy funnel determine the folding mechanisms. The folding on complex landscapes
introduces inevitably folding intermediates and also alternative folding paths. In contrast,
smooth funnels explains the cases of the two state folding or downhill folders without any
apparent barriers in folding pathways. 8

The recent advances in experimental single-molecule methods can probe energy land-
scapes and provide valuable information on protein folding.!® Nevertheless, the most
detailed view of folding events can be delivered by computer simulations.?’ The continu-
ous progress in technology and performance of computers (predicted by Moore law) allow
to run molecular dynamics on timescales up to one millisecond in full atom resolution.?!
However, the quality of computer simulations depends critically on the quality of a force
field. The commonly used force fields has been shown to catch the process of folding and
describe its reversibility for model proteins in extensive simulations.?? However, results
may differ in provided mechanistic and thermodynamic predictions.?3

1.1.1.2 Intrinsically disordered proteins

Disorder has been recognized as a vital property of many biologically active proteins.
Proteins lacking well formed tertiary structures was found in all kingdoms of life (eukary-
otes, eubacteria and archea). However, proteins of eukaryotes are estimated to contain
more disordered regions (10-45%) than the prokaryotes. The high content of disorder
correlates highly with regulatory and signaling functions, especially for proteins involved
in transcription and translation. On the other hand, disorder is rarely exhibited by en-
zymes, 12426

Disorder as well as a structure is coded in primary protein sequence and can be predicted. 27
The amino-acid composition of unstructured proteins/regions has typical features—de-
pletion in order-promoting (Ile, Leu, Val, Tyr, Trp, Phe, Cys and Asn) and enrichment

10
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Figure 1.1: Current view on intrinsically disordered proteins.
Disorder can affect the whole protein or only its parts. Various regions can be disordered at
different extent. The picture were adopted from Ref. 28.

in disorder-promoting (Ala, Arg, Gly, Gln, Ser, Glu, Lys and Pro) amino acids. Such
sequences possess statistically lower hydrophobicity and higher charge density due to the
abundance of charged residues. It is generally accepted that disordered proteins/regions
do not manifest funnel-like energy landscape as structured proteins but populate a range
of isoenergetic conformers. 28

The nature and the extent of disorder differ broadly among proteins. Disorder may be
manifested in the range of small fluctuating regions to completely unstructured protein
molecules. As number of characterized disordered proteins increased, it was recognized
that proteins may exhibit whole spectrum of states from fully ordered to the fully disor-
dered (see Fig. 1.1).

The structural disorder can be further classified by functionality into 6 categories.? i)
Entropic chains utilize the conformational flexibility and work as entropic springs, linkers
or spacers. The other 5 categories participate in molecular recognition and binding, both
transient and permanent. ii) Display sites for post-translational modification employ
the transient but specific recognition by modifying enzymes. iii) Similarly chaperones
recognize target protein or RNA molecules. The disordered proteins binding permanently
can be referred as effectors, assemblers and scavengers. iv) Effectors modify the activity of
partner enzymes and usually act as inhibitors. v) Assemblers are found as structural parts
of macromolecular complexes such as ribosom, cytoskeleton or chromatin. vi) Scavengers
bind and store small molecular ligands, e.g. casseins in milk protect calcium cations by
this mechanism.

Some disordered regions are able to structurize upon a binding to the ligand or interaction
partner.® Disordered proteins can often interact with several partners and thus provide
promiscuous binding. 332 This unique ability is attributed to the structural heterogeneity
in the unbound state. However, some proteins may still keep significant disorder upon
binding or may adapt structurally to different functions.3?

Because of lack of tertiary structure, disordered proteins/regions are unaccessible for usual
structure determining methods as X-ray diffraction and NMR spectroscopy. However, ad-

11
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vances in NMR techniques allow to overcome major difficulties in interpretation of spec-
tra and provide structural details at atomic resolution.?* The chemical shifts and scalar
coupling report about local structural features;*® Residual Dipolar Couplings,®® Nuclear
Overhouser Effect and Paramagnetic Relaxation Enhancements may reveal long-range
contacts.?” In order to get illustrative representation of the disorder the observed local
and long-range contacts are used for generation of structural ensemble model compatible
with experimental data.3%3°

Simulations of protein disorder by classic molecular dynamics are very computationally
demanding because the proper sampling of the ensemble needs at least time scales of mi-
croseconds. *° However, biases in force fields towards different secondary structure elements
can produce simulations incompatible with experimental data.*! The possible solution of
the problem could be overcome by using of experimental constrains during the simulation.
This drives the sampling to relevant regions of conformational space and thus suppresses
inaccuracies of energetic functions. 42

1.1.2 Structures, Dynamics, Ensembles
1.1.2.1 Structure

Since the first three dimensional structures of myoglobin and hemoglobin were deciphered
by Kendrew and Perutz in 50’s,%3 protein X-ray diffraction crystallography has evolved
into the the most precise source of structural information about proteins. Synchrotron
radiation and cryogenics allowed to reach even subatomic resolution that provide electron
density with recognizable valence electron shells.** Similarly, the progress in Nuclear Mag-
netic Resonance (NMR) techniques led to the first de novo solved 3D structure in 1984.4°
NMR is recently a method of first choice because it does not need crystallized proteins
and it is carried out in solution under physiological conditions. Moreover, NMR can be
applied on disordered or denatured proteins.3* It provides information about dynamics on
broad range of times scales*® and NMR spectra can be even measured in living cells.*”

Collection and deposition of solved protein structures in databases like Protein Data
Bank (PDB)*8 facilitated the survey and classification of protein folds.*®® The existence
of the conserved structural features of proteins supports the structure-centered view on
the protein function—one structure exerts one function. This observation seems to be
valid for large portion of proteins, mainly enzymes. For these proteins their functions can
be predicted even by knowledge of structural homologue. 5!

1.1.2.2 Dynamics

Although a static structures give an impression of proteins as rigid molecules, proteins
are in a constant motion. They are inherently flexible and they employ broad repertoire
of movements significant for their functions.®? The protein dynamics is a consequence
of the complex energy surface with many close or far isoenergetic basins allowing con-
formational transitions.?® As a result, different conformational transition on time scales
spanning 13 orders can be observed.®® The fastest motions involve bond vibration and
angle bending on femto- and picosecond time scales, followed by the fast rotations of side
chains realized in nanoseconds. The longer times are necessary for collective motion of

12
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the backbone and flanking of the loops. Folding or ligand binding or unbinding stay on
the opposite site of the time scales, because they may take up to several hours. Dy-
namics plays important role in regulation of protein functions by allostery—mechanism
which propagates information about binding of effector molecule to distant regions on the
molecule. %

The comprehensive picture of protein dynamics can be naturally obtained by molecular
simulations. In order to get a dynamic complement to the structure of known folds,
large scale simulations of protein motions were conducted by Dynameomics project®” and
MoDEL database.®® The analysis of such simulations revealed e.g. how different amino
acids influence the rigidity of secondary structure elements or an existence of surprisingly
rigid loops.*®

1.1.2.3 Ensembles

If the molecule exhibits large conformational flexibility or significant heterogeneity in the
sample the high resolution techniques for structure determination are barely applicable.
In such situation the molecules cannot be obviously represented just by a single average
structure. The representative set of plausible structures—ensemble has to be generated
in order to provide insight on the real behavior of the molecule. The valid ensemble
must reproduce the available experimental data as a whole rather than as an individual
structure. % These constraints can be obtained by NMR parameters and small angle X-ray
scattering (SAXS) that provide information about size distribution of the molecules in
solution. %!

The typical cases that demand ensemble approach are unfolded and denatured states of
proteins. Nevertheless, this concept may be applied also on folded proteins like ubiquitin
that exhibits surprisingly large conformation heterogeneity in solution.®? The ensemble
framework is currently the most general way how to describe and merge different concep-
tion of protein disorder, dynamics and allosteric effects. 9364

Unfolded and denatured states

The folded proteins exist in continuous equilibrium with its unfolded state that is usu-
ally strongly biased toward the folded one under physiological conditions. However, the
equilibrium can be shifted by change of thermodynamic conditions as for example by
temperature and pressure. The dependence of the folded protein population on tempera-
ture provides denaturation and stability curves which are essential tools for estimation of
thermodynamic parameters associated with protein folding.% Typical proteins manifest
a thermal stability maximum implying that the folded protein can be destabilized either
by high or low temperature (cold denaturation).

The equilibrium between folded and unfolded state can be also influenced by chemical
composition of the environment. The chemical compounds in solution (cosolvents) that
destabilize the folded state are called denaturants and those with the opposite effect are
protecting osmolytes. %

Urea and guanidinium hydrochloride belong to the most commonly used denaturants.
Effect of both compounds was intensively studied experimentally and theoretically. The

13
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early studies by Tanford suggested that proteins in high molar solution of guanidinium
expand their hydrodynamic radii to the values expected for random coils.5” These result
have been often misinterpreted and generalized for any kind of denaturation. In the fact,
later study proved that the behavior of random coils can be achieved only exceptionally
and the denatured molecules stay much more compact with significant residual struc-
ture.® The secondary structure elements can be still present under the mild denaturation
conditions but the global tertiary structure loses its compactness—this particular state is
referred as molten globule.%”

The effect of protecting osmolytes is the opposite. They help in stabilizing of the native
state and functionality of the protein under non-physiological conditions. They can be
naturally found in cells and organisms as a response on stress or adaptation on presence
of denaturation agents. The most common protective osmolytes include trimethylamine
N-oxide (TMAO), betaine, sarcosine, taurine and glycerol.”™ Apart from these natural
osmolytes some other compounds are routinely utilized for their stabilizing effect on
the protein and peptide structure e.g. trifluoroethanol (TFE) and hexafluoro-2-propanol
(HFIP).™

The effects of the cosolvents on stability of proteins can be analyzed thermodynamically.
The change of the free energy of folding upon addition of cosolvent can be incorporated
into thermodynamic cycle and then separated using Tanford transfer model. ™ This allows
to evaluate the individual contribution of amino acid side chains and the backbone. High
contribution of the backbone and its hydrogen bonding suggest that it plays a prominent
role in the folding process and protein stability. ™

The competition between internal protein—protein, protein—solvent and solvent—solvent
interactions determine preferences for compact (native) or extended (unfolded) struc-
ture. Solvation in good solvents results in preference of protein-solvent interaction and
promotes unfolding, whereas the poor solvents favour formation of compact structures. ™
Hence, destabilizing denaturants seem to increase the solvent “goodness” whereas protect-
ing osmolytes show the opposite effect. The interactions of cosolvents with proteins can be
further quantified by preferential interaction coefficients I" that express their affinities. ™

The mechanisms of protein thermal unfolding and chemical denaturation were extensively
studied by molecular dynamics. The extensive simulations of the unfolding process were
employed in Dynameomics project for characterization of folding intermediates and fold-
ing pathways based on the hypothesis of microscopic reversibility.” Molecular dynamics
also revealed that urea and guanidinium chloride actively disrupt the tertiary structure by
binding to amino acid side chains and backbones.” The explanation of atomistic mecha-
nism of protective osmolytes like TMAO or TFE is not completely clear because their effect
on protein behavior in simulations depends on the selected force field parameters.™

To conclude, the thorough characterization of ensembles of unfolded and denatured states
is necessary for our complete understanding of folding process since they represent the ref-
erence state for thermodynamic models. Importantly, progress in modeling of these states
will influence significantly practical applications like engineering of protein stability.”

14
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1.2 Force fields

The potential energy functions (force fields) used in this work for description of proteins,
peptides and solvents employ the most simplistic mathematical forms. They include a
harmonic potential for simulation of bond stretching and angle bending and a variant of
trigonometric series for representation of torsional terms. The non-bonded interactions
are uniformly modeled by Lennard-Jones 6-12 potential and electrostatics using partial
atomic charges interacting by Coulomb’s law. The complete energy function follows typ-
ically:

E = ZKB (r—rmo) —{—Z (0 — 6,)° ZZ (14 cos (ng —6,))

bonds angles torsions n
q:9;
+Z< AN
i<j rij €T

where 7, and 6, stands for equilibrium bond lengths and angles, respectively and Kz and
K4 for corresponding force constants. Torsion potential is usually expanded in cosine
terms with different multiplicities n, phase offsets d,, and magnitudes V,,. The atoms sepa-
rated by more than two covalent bonds are allowed to influence each other via nonbonded
interactions prescribed for each pair by partial atomic charges ¢ or Lennard-Jones parame-
ters A;; and B;;. The common practice is to treat non-bonded interactions between atoms
separated by 3 bonds (1-4 interaction) specially. They are often scaled down because of
their strength.

These simple forms were already applied in the first molecular mechanics and dynamics
studies pioneered on proteins®’8! and still are massively used for simulations of biomole-
cules although more complicated and more physically sounded terms have been developed,
e.g. polarizable multipoles for electrostatics.®? The most obvious shortcoming of this class
of force fields stems from the absence of explicit electrostatic polarization terms.® On the
other hand, these forms still approximate the potential energy surface sufficiently well
and in a robust manner what can be judged by the number of successful applications, e.g.
protein folding simulations. Additionally, the simplicity of the functional forms enables
their rapid calculation on modern computers and it allows to perform molecular dynamics
simulations of time scales yet relevant for biological processes.%

Although different force fields share more or less the same energy function forms, they
may differ substantially in parameters for individual types of interactions and the way how
they were obtained. This reflects the distinct parametrization strategies and properties
addressed during parameter development. Although the force fields was reviewed in the
past, 8% T regard as useful to summarize briefly the history and put into context the
recent development. The rest of this section will shed light on the differences between
the major families of the force fields for biomolecules, their variants and the origin of
parameters.

In the beginning the development of particular force fields were connected tightly to the
development of computer codes for simulations. However, the current simulations engines
allow using of various parameters deposited to their libraries and hence the ties between
force field parameters and the simulation codes were weakened.

15
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Figure 1.2: Force field genealogy.
The main force field families (AMBER, OPLS, CHARMM and GROMOS) comprise several
versions of published parameters. This chart expresses the protein-centric view on relationships
between individual variants and the year of the publication.

The roots of the current force fields for biomolecular simulations—AMBER, CHARMM,
OPLS, GROMOS and ENCAD can be traced mostly to the 80’s, when researchers gained
enough experience with force fields for organic molecules. 8% Nevertheless, the first highly
influential works on force fields for proteins and peptides were pioneered in groups of S.
Lifson and H. Scheraga which resulted in Consistent Force Field (CFF)® and Empirical
Conformational Energy Program for Peptides (ECEPP). %91

The comprehensive picture of force field genealogy for major force field families is pre-
sented in Fig 1.2.

1.2.1 Amber force fields

AMBER force fields were designed for AMBER (Assistant Model Building with Energy
Refinement) modeling package,®® which is still actively developed® and belongs to the
most popular simulation software.

Weiner's force field(84)°* This is the first complete set of parameters for simulation of
proteins and nucleic acids released for AMBER modeling program. It replaced and
improved the parameters for proteins previously used in Kollman’s group.?

In order to spare computation resources the aliphatic carbon groups were treated as
united atoms but polar hydrogens were represented explicitly. The parameters for
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bonds and angles originated from x-ray structures, microwave spectra and ab initio
calculations of model compounds. Torsional parameters were fitted to reproduce
data on conformational equilibria of small model molecules. The partial charges
were consistently derived by electrostatic potential fit procedure (ESP) on charge
density calculated by HF STO-3G method.?® To mimic missing explicit solvation
the electrostatic energies were evaluated by distance-dependent dielectric constant.
Lennard-Jones parameters of atoms were initially adopted from the CFF® or Trans-
ferable Interaction Potentials (TIP)%" for Monte Carlo simulations and further ad-
justed to reproduce molecular geometries. Additionally, scaling of Lennard-Jones
non-bonded 14 interactions was introduced in order to decrease overestimated tor-
sional barriers. Hydrogen bonds were treated separately by 10-12 potential.

The parameters of protein backbone were developed using N-acetyl-N'methylglicin-
amid (glycin dipeptide), N-acetyl-N'methylalaninamid (alanine dipeptide) and N-
methylacetamide (NMA) as the model compounds. The partial charges for backbone
atoms were fitted on HF/6-31G electrostatic potential of NMA. However, it was
necessary to scale electrostatic 1-4 interaction by factor 0.5 to reproduce geometries
and energy of all local minima of alanine dipeptide.

Weiner's force field(86)% The united atoms in the previous Weiner’s force field(84)
were soon found lowering the quality of the force field and they were replaced by ex-
plicit atomistic representation. Novel parameters for explicit hydrogens and carbons
were included as well as updated partial charges.

ff94% Next generations of amber force field were parametrized reflecting the feasibility
of simulation with explicit solvent molecules. The philosophy of the former versions
was kept but the ESP procedure was replaced by RESP!® at HF/6-31G* level
and an updated 1-4 scaling electrostatic factor of % was introduced. Distance
dependent dielectric constant and special treatment of hydrogen bonds were found
unnecessary and removed in order to make the force field compatible with TIP3P

water model. 10!

The RESP at HF/6-31G* was shown to overestimates dipole moments but this
effect fortuitously substitutes the polarization of molecules in condense phase im-
plicitly. In addition to new partial charges new Lennard-Jones parameters were
adopted in order to reproduce liquid state properties. The parameters for carbon
and hydrogen atoms were adjusted to reproduce density and vaporization enthalpy
of simple alkanes and benzene. Parameters for other atom types were taken from
OPLS force field. % Several atom types were devoted for hydrogens having differ-
ent van der Waals radii. They were assigned according to the number of geminal
electronegative atoms.

The bond and angle parameters were adopted from the previous force field and
adjusted for fit of important experimental frequencies. Some torsion parameters
were refitted on basis of MP2/6-31* calculations, but most of them were acquired
by the same procedure as discussed above.

Unlike in the previous versions of amber force fields the behavior of protein backbone
was adjusted by explicit torsional terms. The potential energy of model compounds
(alanine and glycine dipeptides) were fitted to reproduce ab initio conformation
energies of totally 7 minima calculated on MP2/TZP level.
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ff96 (C96)'% This variant based on f194 introduced new parametrization of backbone
torsions. It was recognized that the ff94 was strongly biased to form helical struc-
tures. The more thorough fit was performed with aim to reproduce better the dif-
ference between a-helix and [3-sheet conformations modeled by alanine tetrapeptides
(11 conformers in total).

ff991%4 This force field extends the ff94 by additional torsion terms that were fitted on
experimental data or high level ab initio data set of 82 training organic molecules.

The torsion parameters of protein backbone were also revised in order to reproduce
as close as possible the relative conformational energies of alanine dipeptide (7 con-
formers) and alanine tetrapeptide (11 conformers). The other parameters remained
untouched with exception of 2 novel atom types which do not concern the protein
or peptide molecules significantly.

ff031%° The force field adopted almost all parameters from ff94 but introduced new
methodology for calculation of partial charges. Instead of RESP at HF/6-31G*
level, the RESP procedure was performed at higher level (B3LYP /cc-pVTZ) and
the condense phase polarization effects in the fit were treated by implicit contin-
uum solvent. The chosen continuum method mimicked organic solvent with relative
permitivity e=4.

Afterwards, the torsional parameters of peptide backbone were fitted to reproduce
®/¢ ab initio scan of alanine and glycine dipeptide at MP2/cc-pVTZ level with the
same continuum solvent as were used for RESP.

GAFF 1% Generalized Amber Force Field (GAFF) was intended to cover pharmaceuti-
cally interesting substances in computer simulations with amber force fields. It
provided additional atom types to describe various organic compounds, parameters
for interaction potentials and heuristic models for their estimation.

The Lennard-Jones parameters were transfered from ff99 force field. Standard RESP
procedure at HF /6-31G* level and alternative cheaper AM1-BCC method was rec-
ommended for calculation of partial charges. Bond and angle parameters were
compiled from different sources—x-ray or neutron diffraction data and ab initio cal-
culations at MP2 level. Because gaff tried to be complete force field, i.e. to have
parameters for all possible combination of atom types, the missing parameters were
estimated by means of heuristics. The torsion parameters were determined by ab
initio energy profiles of more than 200 compounds at MP4/6-311G(d,p) level.

ff94-GS*® This variant of ff94 removed completely potential for ¢ and ¢ backbone tor-
sions. It was demonstrated that such ad hoc modified force field better described
thermodynamics of formation o-helices in model Fs peptide.

ff99-¢ %7 Variant of ff99 force field with backbone ¢ torsion adopted from ff94. It was
shown that this change qualitatively and quantitatively better describes thermody-
namics and kinetics of a-helix folding.

ffa9SB 1% The different amber force field were critically compared by Hornak et al. They
revealed inconsistency in ad hoc attempts to improve o-helix or (-strand forming
propensities by turning off or transferring ¢ or ¢ torsional parameters.
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Additionally the refitting of backbone torsion parameters in consisted fashion was
achieved for ff99. The resulting ff99SB variant contains torsion parameters opti-
mized to match 28 glycine tetrapeptide and 51 alanine tetrapeptide conformers at
LMP2/cc-pVTZ level. The novel parameters showed better agreement with exper-
imental NMR data on probe proteins and peptides and improved o-helix/B3-strand
balance.

ffa9SB*, ff03*1%° The ff99SB and ff03 force fields were modified by small correction term
to ¢ backbone torsion. The resulting variants better described fraction of helical
residues in a model helix-forming peptide and they also improved in reproduction
of its NMR spectra.

ffO3w!1? The shortcomings of simple TIP3P water model were recognized and more ad-
vanced TIP4P /2005 model were used for simulation of helix-coil transition. Upon
minor correction to backbone ¢ torsion parameter ff03 manifested more cooperative
transition with agreement in experimental data. The corrected ff03w accompanied
by TIP4P /2005 seemed to better describe unfolded or disorder states of proteins.

ffa9SB-ILDN!'? Isoleucine, leucine, aspartate and asparagine were identified as a amino
acid whose distribution of rotamers differ significantly between Protein Data Bank
and simulation with ff99SB. Torsional parameters for these residues were refitted to
match energy profiles at MP2/aug-cc-pVTZ level. The novel parameter improved
the agreement with structural database and also reproduced better NMR vicinal
J-couplings and RDC of small proteins.

ffa9SB-nmr!*? The optimized ¢ and ¢ backbone torsion parameters of ff99SB force field
were further refined to reproduce more precisely NMR chemical shifts and crystal
structures of proteins.

ffa9SB-¢ !4 The effort to replace TIP3P water by more realistic model requested mi-
nor changes in backbone potential. The modified ff99SB force field accompanied
by TIP4P/Ew!!® water model improved description of NMR parameters of small
peptides and ubiquitin protein.

ff13!16 The upcoming force field introduces novel procedure for calculation of partial
atomic charges—IPolQQ method which iteratively computes solvent density around
parametrized solute and use it for partial charge fitting at MP2/cc-pV(T+d)Z level.
TIP4P/Ew was chosen as default water model since it performs better for water
properties than TIP3P. In order to rectify hydration free energies of model com-
pounds Lennard-Jones parameters of several common polar atom types were further
optimized.

1.2.2 CHARMM

CHARMM is a branch of force field developed tightly with CHARMM package of programs
(Chemistry at Harvard using Molecular Mechanics).'"1!® The numbering of individual
version of force fields copies version of the software release.

charmm19!1%120 Thijg parameters updated the united atom force field initially used in the
original code!!” based on the former studies.?! However, charmm19 still employed
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united atoms for aliphatic carbons and sulfurs with nonpolar hydrogens but polar
hydrogen atoms capable of hydrogen bonding were modeled explicitly.

Similarly as the early amber force fields it was originally intended for simulations and
refinement without solvent which was substituted by distance dependent dielectric
constant for electrostatic interactions. No specialized hydrogen bond terms are
utilized since the partial charges were designed to agree with ab initio interaction
energies. The TIP3P water model was chosen as a standard for calibration of
the interactions at HF/6-31G level. Because of the fortuitous balance between
protein—protein, protein—water and water—water interactions charmm19 worked well
in simulation with explicit water molecules.

The Lennard-Jones parameters were adjusted to fit crystal packing and liquid den-
sities of model compounds. The bond and angle parameters were adjusted for
reproduction of molecular geometries and vibrational spectra of nucleic acid bases
and amino acids analogs.

charmm?22'?? The need for balanced interaction between biomolecules and water resulted
in all atom charmm?22 force field. The parameters for bonds, angles and torsion were
refitted iteratively to match the experimental geometries, vibrational frequencies as
well as ab initio calculated vibrations, torsion profiles and conformational energies.
The Urey-Bradley bending terms were added in certain cases to improve quality of
simulated spectra.

The improved protocol for assignment of partial charges was developed. They were
solely fitted on ab initio interaction energies between the particular molecular frag-
ment and water molecule as a probe in different positions and orientation. The
calculations used HF/6-31G* method and scaling factor of 1.16 that empirically
provided suitable values due to the error compensation. The Lennard-Jones param-
eters were adjusted in liquid phase simulations of aliphatic and polar compounds
to reproduce experimental densities and heats of vaporization. Additionally, crys-
tal simulations were utilized for parametrization on experimental lattice constants
and sublimation enthalpy. In contrast to the previous versions of force field the
Lorentz—Berthelot combination rules were adopted for Lennard-Jones parameters.

The parameters for protein backbone were based on optimization of NMA interac-
tion energies and liquid state properties. The particular attention was devoted to
reproduction of geometric, spectral and energetic parameters of NMA and alanine
dipeptide which were mainly taken from experimental data. The resulting protein
parameters were comprehensively tested in a gas phase and crystal simulations of
model peptides and proteins, namely crambin, BPTI and myoglobin.

charmm?27'23 This release of charmm force field focused on improvement of nucleic acids
parameters. The protein part was not modified and it is identical with charmm?22.
However, sometimes is charmm22/CMAP referred as charmm?27.

charmm22/CMAP'?* The backbone torsional parameters were revised to match ab ini-
tio energy surface of alanine, glycine and proline dipeptide at LMP2/cc-pVQZ level.
Because the sufficient fit could not be reached without cross-terms a new functional
form was introduced as the two dimensional correction grid for ¢ and ¢ torsion
(CMAP). The ab initio fit was further manually adjusted to remove systematic bias
observed in control simulations of crystalline proteins.
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charmm36!25 The most recent release of charmm force field improved internal param-
eters associated with peptide bonds and amino acid side chains. The non-bonded
parameters were not updated a remain the same as in charmm?22. The CMAPs of
proline and glycine were refitted on ab initio ¢/{ scans at RIMP2/CBS level. The
CMAP assigned to other amino acids was optimized to match NMR chemical shifts
and coupling constants of alanine pentapeptide and helical Ac-(AAQAA)3-NH, pep-
tide.

This effort was aiming to remove helical bias present in the charmm?22/CMAP force
field and to prepare more suitable force field for simulation of unfolded or disordered
proteins. Furthermore, the y; and y» torsions of amino acid side chains were opti-
mized to reproduce RIMP2/cc-pVTZ energy scans. The improved parameters were
shown to reproduce experimental NMR parameters significantly better for several
tested proteins (ubiquitin, protein G, cold shock protein A, apocalmodulin, intesti-
nal fatty acid binding protein and lysozyme). 2

charmm22*127 Because charmm?22/CMAP was found to favour helices in folding simu-
lations a more balanced modification were suggested. The CMAP correction was
replaced by new backbone parameters, based on LMP2 energy scan of alanine dipep-
tide and NMR data of polyalanine peptides. Additionally, the partial charges on
Asp, Glu and Arg were modified to improve description of salt bridges. The other
changes involved reparametrization of Asp side chain torsions similarly for ff99SB-

ILDN force field.

charmm general force field'?® The detailed procedure how to prepare parameters for
drug-like compounds compatible with charmm force fields was developed and ex-
plained in details. The parameters for large number of scaffolds and fragments were
already prepared by authors and can be assigned automatically. %

1.2.3 OPLS

Optimized Potentials for Liquid Simulations (OPLS)!3 started as an united atom force
field for Monte Carlo simulation of liquids—the successor of previously developed trans-
ferable interaction potentials (TIP).%” An emphasis was placed on reproduction of liquid
state properties—density and heat of vaporization. OPLS was later extended to treat
biomolecules such as proteins and nucleic acids.

OPLS-UA %2 First published version of parameters for proteins included the previously
elaborated parameters for model organic compounds such as alkanes, '3 amides!3!
and amino acid side chain analogs.

The corresponding charges and Lennard-Jones parameters were systematically op-
timized to reproduce density and heat of vaporization. Only polar hydrogen atoms
were treated explicitly, the others were involved in united atom types. TIP4P po-
tential '°! was chosen as the water model.

The OPLS-UA force field adopted parameters for bonds, angles and torsions from
amber,* since the OPLS were previously developed on rigid molecules. Therefore,
the resulting force field is sometimes referred as AMBER /OPLS. Due to the different
non-bonded parameters the 1-4 scaling factors from amber had to be reoptimized.
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This was achieved by matching conformational energies and geometries of butane,
ether, alanine and glycine dipeptides.

OPLS-AA 32 Tt was soon recognized that all atom representation allows more flexibility
in parametrization. The partial charges and Lennard-Jones parameters were there-
fore refitted in Monte Carlo simulations of 34 model liquids. Obtained parameters
were considered to be highly transferable on level of functional groups. This princi-
ple remained one of the corner stones of OPLS philosophy. Additionally, new torsion
parameters were developed to match ab initio gas-phase conformational energies at
HF/6-31G* level.

Special attention was paid to protein backbone resulting in specific torsional pa-
rameters fitted on aminoaldehydes and alanine dipeptide. All atom representation
also required new scaling factors and value of 0.5 was chosen for electrostatic and
Lennard-Jones terms. The bond and angle parameters were not changed and re-
mained the same as in the Weiner et al. % force field with the exception of those for
aliphatic hydrocarbons adopted from charmm?22.

OPLS-AA/L'3 An improved variant of OPLS-AA force field utilized ab initio quantum
calculation at LMP2/cc-pVTZ(-f) level to obtain new parameters for amino acids
and peptides. The backbone torsions were refitted on alanine dipeptide and tested
on alanine tetrapeptide. In addition, the torsion parameters of amino acid side
chains in dipeptide models were refined to match ab initio conformational energies.
The non-bonded parameters for sulfur in cysteine and methionine were revised and
updated considering ab initio calculations.

OPLS-AA/L-RSFF1!3* The backbone and side chain torsions for each amino acid were
modified to match ¢/¢ and rotamer propensities derived from coil library. Each
amino acid was optimized independently and possesses individual parameters. In
several cases Lennard-Jones interaction parameters were modified to describe cor-
rectly the coupling between side chain rotamers and backbone conformers. The
resulting force field was shown to reproduce reasonably NMR J-couplings of amino
acid dipeptides and a ability to fold both a-helical and [-strand proteins.

1.2.4 GROMOS

GROMOS (GROningen MOlecular Simulation) is an united atom force field developed
together with the simulation software of the same name.?> The force field is continuously
improved. The initial parameter set in GROMOSS87 was based on the work of Dunfield et
al.13¢ Parameters were initially optimized on crystal lattice constants and lattice energies
and further tested in simulations. GROMOS force fields are designed for use with SPC
water model. 137

The rather unusual approach of GROMOS force fields can be demonstrated on a treatment
of Lennard-Jones parameters. In general, each atom has defined radius for different types
of interaction with polar and non-polar partners as well as for hydrogen bonding. The
same holds for Lennard-Jones parameters of vicinal atoms (1-4) that often substitute
torsional terms. Dihedral potentials are employed only in necessary cases.

The individual parameter sets are named according to the number of atom types presented
in the force field.
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43A1, 43A2 and 45A3!3%139 These force fields contain revised Lennard-Jones param-
eters. They were obtained by matching state properties and thermodynamics of
model compounds at 298K. In particular, the parameters of hydrocarbons were
adjusted to reproduce free energy of hydration.

53A5 and 53A6'4’ These parameter sets resulted from extensive optimization of polar
atom types. It was achieved by fitting of liquid properties for 28 small molecules
containing important functional groups followed by matching solvation free energies
of 14 amino acid analogs in cyclohexane (53A5) or water(53A6).

54A7'! This variant introduced new torsional angle terms for protein backbone that im-
proves stability of proteins and peptides in simulations. Hydrogen bonding between
peptide bond moieties was optimized simultaneously. The other changes involved
new parameters for ions and one extra atom type for better treatment of phospho-
lipides.

54A8'*2 The non-bonded parameters for charged amino acid were revised and calibrated
on experimental thermodynamic data of hydration.

1.2.5 ENCAD

Encad force field'*? was developed for use in the computer simulation program EN-
CAD (Energy Calculation and Dynamic).'#* This force field is also massively used in
Dynameomics project.®’

ENCAD continued in legacy of original CFF® and employed simplistic design and generic
parameters. Emphasis was placed on consistent treatment of solutes and solvent, energy
conservation and truncation scheme for calculation of non-bonded interactions. The bond
and angle parameters were obtained from survey of crystallographic data and non-bonded
parameters were optimized to reproduce lattice constant and sublimation enthalpies. Wa-
ter molecules in simulations with ENCAD should be modeled by flexible F3C poten-
tial. 145

1.2.6 Performance of force fields

An important question raised naturally considering the number of different force fields
and their variant is: Which of them is the most reliable for simulation of proteins and
peptides? This results in massive comparison and test studies. The first validations are
usually provided by authors of the force field in question to show stability of folded globular
proteins. As a result all-atom force fields together with explicit representation of solvent
provide similar picture of stable globular proteins under physiological conditions. 46

The more stringent tests of force fields represent simulations of peptides. They can be
verified against experimental observables such as NMR shifts and coupling constants or
thermodynamics of secondary-structure formation. It was demonstrated soon that dif-
ferent force fields predict very distinct conformations to be populated. 19147150 Amber
194, 199, f194-GS, 199-¢ and ff03 have been shown to be biased toward helical confor-
mations. 1% ff99SB, charmm?22/CMAP, OPLSA-AA /L, GROMOS 43al and 53a6 produce
distributions underestimating the content of polyproline-like conformers and are biased
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Figure 1.3: Comparison of force fields against NMR experimental data.
This plot expresses the overall x? for 524 NMR measurements. The lower the y? value, the
better agreement for given combination of force field and water model was achieved. This figure
was adopted from Ref.151

toward helical or extended structures.*! The effort to match correctly helical content and
thermodynamics of helix formation led to specific corrections and “star” versions of the
established force fields, i.e. ff99SB*, ff03*, charmm?22* and ff03w. The performance of
contemporary force fields was recently benchmarked against experimental NMR measure-
ments on dipeptides, tripeptides, tetra-alanine and ubiquitin.®* The best agreement were
achieved by ff99sb-¢ and ff99sb-nmr variants updated by ff99sb-ILDN parameters for side
chains. See Fig. 1.3 for comprehensive summary of their analysis.

The atomistic description of protein folding process and unfolded states could be the
ultimate benchmark of force field quality.?” It is known that force fields preferentially
fold either a-helical or 3-strand structures and precise balancing must be undertaken to
improve this behavior. %215 Optimistic outlooks were presented recently by Lindorff-
Larsen et al ranking the current force fields according their ability to fold small proteins
and peptides and reproduce the structure and fluctuation of ubiquitin.!®® Their results
suggested that force fields are continuously getting better (see Fig. 1.4) in description of
structural and dynamic features of proteins as well as protein folding.

1.2.7 Remarks to force field development.

The presented overview of the empirical simple point-charge non-polarizable force fields
unmasked the trends in their developments in the last decades. As the extensive simu-
lations of proteins began to be feasible due to the enormous progress in computational
hardware the need for better calibrated force field intensified. Firstly, the force field were
improved by more advanced ab initio quantum calculations of backbone conformers or
¢/ profiles. This way led to many improvements, however, only the expensive high level
ab initio methods can produce precise reference values capable of matching experimental
data. !5 The current force fields still do not reach the precision needed for qualitative and
quantitative reproduction of experimental thermodynamic or structural data on protein
folding in solution. To address this problem directly the experimental data such as NMR
shifts or coupling constants started to be utilized in parametrization process.
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Figure 1.4: Force fields getting better.
The quality of reproduced data on protein folding, structure and fluctuations of proteins were
ranked. The lower rank means better agreement with experiments. The figure was adopted from

Ref. 155.

The shortcomings in parametrization of amino acid side chain propensities were recently
recognized and tackled in several works.'%!2> However, also the assumption than single
backbone parameters can describe propensities of all amino acids (neglecting Gly and
Pro) started to be questioned. 3!

The parametrization of a force field is an extremely laborious activity. Therefore their
development is gradual and the newer version often still contains parameters two or three
decades old. There is a clear imbalance between force field development and the fast
progress in the field of computational methods and algorithms. Nevertheless, the recent
activities indicate an efforts to revise aged Lennard-Jones parameters,'®” replace outdated
water models'™ or to develop new techniques for assignment of partial charges.’'% These
changes seem to be necessary since the protein folding simulations and characterization
of disordered or unfolded ensembles became the new frontiers for force fields.
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1.3 Metadynamics

1.3.1 Overview of the method

Metadynamics is a method for calculation of free energy profiles and accelerating of
rare events in molecular dynamics simulations. Since it was proposed by Laio and Par-
rinello, '*® metadynamics has been successfully applied on various problems and fields of
interest. The versatile usage of metadynamics has been already extensively reviewed else-
where. 199163 However, it is beneficial to illustrate at least the fields where metadynamics
has been successfully applied:

e Exploring of reaction mechanisms and pathways 164166

e Structural transition of biomolecules!%”

e Conformational preferences of flexible molecules such as peptides4%:150,168

e Docking ligands to proteins!'®17

e Protein protein interactions!™* 172

e Protein folding 73176

e Packing molecules in crystals7"17

e Study of phase transition in solids or liquids!™ 18!

e Study of adsorption of molecules on surfaces!8?

e Generation conformational ensembles of biomolecules constrained by experimental
data??

e Design molecular machines!®?

Metadynamics possesses some characteristics common to other methods for calculation
of free energy but also some unique features. The heart of the algorithm is dimensional
reduction. It assumes that the processes or system of interest can be described by small
number of parameters which are called collective coordinates (variables) or order parame-
ters. Nevertheless, this descriptors must be specified and provided on the beginning of the
simulation but no a priori knowledge about the underlying free energy profile is needed.
Afterwards, the selected descriptors are efficiently biased in course of simulation what sig-
nificantly improves sampling. The bias potential acting on collective coordinates is built
continuously in an adaptive fashion in order to explore unvisited regions. The updates
of the bias potential destabilize immediately the current configuration of the system and
force the transitions between one state to another one.

The fundamental idea of metadynamics is that the bias potential itself can be used as
an unbiased estimator of the free energy which is a function of the collective coordinates.
Such concept was firstly recognized heuristically because it did not result obviously from
any established relations of thermodynamics or statistical mechanics. However, after
successful practical demonstrations on various systems!'®® the rigorous derivations and
proofs for Langevin dynamics were provided. %% Recently, the equivalence between meta-
dynamics and established Wang-Landau method*® for enhanced sampling in Monte Carlo
simulations was demonstrated. 86
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One of the main advantage of metadynamics is the straightforward parallelization of
the algorithm. The same free energy landscape can be simultaneously reconstructed
by several metadynamics simulations sharing the same bias potential. This method—
multiple walkers metadynamics!8”—is approaching the desirable linear scaling limit.

1.3.2 Algorithms

The most general way how to introduce the metadynamics and its variant is to follow
the extended Lagrangian approach.!%* The Lagrangian of the simulated system can be
extended by set of extra degrees of freedom (auxiliary variables) s with fictitious mass
M and kinetic energy %M $2. The coupling between auxiliary variables and the actual
collective coordinate of the system S(x,t) is established by means of harmonic potential
$k(S(x) — s)? with stiffness k. The extended Lagrangian of the system can be written
as:

1 1
Lt (x,%,8,8) =T (%) — V (x) + 5Ms2 — 5k (S - s)?, (1.1)
where T' (%) states for the kinetic and V' (x) for the potential energy of an unextended
uncoupled system. Afterward, the free energy as a function of the auxiliary variables
follows:

A (s) = —%ln/eﬁ(v(x)Jr;k(s(x)S)Q)dx. (1.2)

Finally it was proven that the free energy of an enhanced system A®'(s) approaches the
free energy of uncoupled system A(S(x)) for large values of k:

A(S(x)) = lim A“*(s). (1.3)
k—o00

Simultaneously, metadynamics extends the Lagragian by additional history dependent
bias potential modified in course of simulation. In this scheme the bias potential exerts
influence solely upon the auxiliary variables. Coupling of auxiliary variables to collective
coordinates mediates indirectly the effect of bias potential to the rest of the system. The
bias potential is usually built from gaussian functions with the same dimensionality (d)
as the space of the auxiliary variables. Finally the bias potential is given by:

iSd (s —si(n)2

Vit s) =Y W][e . (1.4)

T<1 i=1

where T controls the “height” and o the “width” of the bell-shaped gaussian functions.

Metadynamics is based on validity of the assumption

A(S(x)) ~ — lim V" (s, t) + const. (1.5)

t—o00
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The obtained bias potential V%%*(s) plays a role of an estimator of unbiased free energy
A(S(x)). This key idea makes metadynamics different from other methods for free energy
calculations. Importantly, the relation 1.5 suggests that the free energy as an equilibrium
quality can be evaluated from non-equilibrium dynamics under the continuously updated
bias potential. 84

The placement of an updating gaussian is determined by the actual coordinates of the
auxiliary variables and it is recorded. If the system gets trapped in a deep minimum the
destabilizing effect of the stored gaussians acts as an energetic penalty and the system
is facilitated to escape from the current minimum by crossing the lowest barriers. Each
perturbation caused by a change of the bias potential pulls out the system from an equi-
librium. Consequently, the system tends to relax and adapt to new bias potential. If
the changes are gradual but continuous the configuration space can be explored very effi-
ciently. After visiting all accessible regions the collected bias potential should completely
compensate the underlying free energy landscape. The dynamics of auxiliary variables be-
come diffusive and ideally independent on the original potential. It means that the biased
probability distribution gets flat after deposition of sufficient amount of bias potential.
However, because of finite size of a gaussian each additional deposition disturbs the exact
compensation and introduces an error. Fortunately, metadynamics tends to cancel this
kind of error by preferential deposition of other gaussians on the distant positions. As a
result, the bias potential oscillates around the correct solution but does not converge in
time.

The solution to this fundamental convergence issue is provided by well-tempered meta-
dynamics.® The novel algorithm rescales the weight of the newly added gaussians by
a term dependent on the magnitude of the actual bias potential acting on the current
position:

ybias (s,t)

W(s) = We  Fpat (1.6)

The direct consequence of the scaling is that the bias potential converges smoothly as the
simulation progresses and hence the sampling converges to defined statistical ensemble.
However, under such conditions the bias potential does not fully mirror the underlying
free energy profile, but is related as:

T+ AT

Vhies(s t — 00) = — AT

A(S(x)) + const, (1.7)
where T' stands for temperature of the system and AT for a parameter that regulate the
extent of sampling. Classical molecular dynamics is obtained for AT — 0 and standard
metadynamics is recovered for AT — oo.

If the dynamics of the system and the auxiliary variables span different time scales, the
separation of both components can be achieved and the approximation of a mean field
can be formally introduced for dynamics of both parts. This procedure leads to two
approaches—the discrete and direct metadynamics. *%°

The direct metadynamics is the far most popular version of metadynamics. Allowing
formally the fictitious mass of auxiliary variables to be zero, their dynamics follow exactly
the actual collective coordinates of the system of interest. Similarly, the forces originated
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from bias potential act straightforwardly on the real particles associated with collective
coordinates. No parameters for auxiliary variables or the coupling are required. However,
efficient implementation of such approach requires modification of the MD code, because
the instantaneous evaluation of bias potential and associated forces is needed in each step
of molecular dynamic.

1.3.3 Collective coordinates

A choice of suitable collective coordinates (CVs) is a necessary condition for correct func-
tionality of metadynamics and its successful application on system of interest. For the
best performance the following properties and requirements on CVs must be fulfilled: %°

e (CVs must be continuous and differentiable function of atomic coordinates

e (Vs should distinguish all important states, conformers, structures, phases, reac-
tants, products or intermediates of the reactions or transitions.

e (Vs should describe important slow modes, which limit the rate of studied events

e Number of used CVs should not exceed the limit given by unfavorable scaling of
metadynamics for each additional dimension in space of auxiliary variables.

The basic type of collective coordinates are based on geometrical parameters. The in-
ternal coordinates such as distances, angles, dihedral angles between atoms or groups of
atoms can be straightforwardly used if they are able to distinguish different states or
conformers:

o = [ = ol = (raw = 720)2 + (ray = 7)o+ (e — 7322 (1.8)

Oupe = cos™ ! (M) (1.9)

|Fab| |Fb6‘

_ ’ﬁm’Fab : (T_'})c X ch)
abed = tan~! | ST 1.10
¢ e o ((Tab X rbc) : (Tbc X rcd) ( )

Furthermore, the mutual orientation of molecules can be described using Euler angles,
e.g. for ligand and receptor in course of binding. '¢°

Apart from the internal coordinates the coordination numbers contain information about
spatial distribution and contact between particles:

(1.11)

where parameter ry determines the reference length for the contact and exponents n and
m control diminishing at larger distances. For well chosen n and m the value of the
fraction in eq. 1.11 goes to one or zero rapidly for distance r,;, lesser or greater than the
reference, respectively. It may be employed to count chemical bonds between atoms,!%
hydrogen bonds or hydrophobic contacts. '™
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Analysis of normal or essential modes can identify independent collective motions in
biomolecules. The slowest ones are usually associated with important conformation or
functional changes. Metadynamics in essential coordinates allows to map such modes and
accelerate collective motions comprising many atoms. '8

Particular molecules, e.g. proteins or peptides offer natural and convenient descriptors for
their conformational states. It might be a content of the secondary structure elements,
sequential correlations between Ramachandran angles or radius of gyration what can be
used for construction of free energy landscape of folding. 17317

The complex process cannot be often described by simple combination of geometrical
criteria but it is still well characterized structurally as a series of consecutive events. The
class of path CVs!® provides a solution for these cases. Path CVs are capable of tracing
the free energy minimum pathways from the state A to B, using the 2 variables defined
as:

P IS () SN2
1 S22 (1= 1)e S-Sl

= 1.12
sX) =53 P e NISe0-SEx(0)P (1.12)
1 & 2
z(x) = ~3 lnz e SIS (1.13)
=1

Here, the reference frames x(1) are still required to delimit the path and guide the transi-
tions. The progress on the path is monitored by variable s(x) and similarly, the distance
from the laid out pathway describes variable z(x).

An interesting method emerges if the potential energy of the system is used as a collective
coordinate. The resulting well-tempered ensemble!®! provides extended sampling in com-
parison to the canonical ensemble from classical MD and does not distort substantially
ensemble averages of other properties. Another usage involves study of phase transitions
that can be induced in collective fashion.!8!

1.3.4 Selection of parameters

The quality and reliability of reconstructed free energy profiles are dependent on param-
eters that drive building of the bias potential. The shape of the hills corresponding to
the height of the gaussian W and its width ¢ influence directly the spatial and energetic
resolution of the resulting profile. The finite height of the gaussian determines the error
in the energy domain. It can be significantly reduced by employing well-tempered meta-
dynamics'® that guarantees convergence of the resulting profiles in the chosen range of
energies due to the auto-adaptive scaling of W.

Similarly, the o parameter regulates the spatial resolution of the free energy profiles for
collective coordinates. The large o produces broad gaussians which fill the regions on
a landscape quickly but smear out the fine details. On the other hand, using narrow
guassians leads to rough and spiky profiles and low efficiency of filling free energy basins.
The recently proposed algorithm!®? can deal with these issues and adaptively controls
the resolution. The dimensions and placements of the hills are chosen according to the
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dynamics of collective coordinates in the actual region. If the dynamics is diffusive,
the broad gaussian is deposited there because of flat character of underlying free energy
landscape and vice versa.

The third parameter—the deposition interval 7, controls the deposition rate and hence the
convergence and error of resulting free energy profiles. The deposition of gaussian cannot
be too fast because the system must relax sufficiently after each perturbation. If this
condition is not met an artificial behavior can manifest completely distorted dynamics.
The errors in the reconstructed landscapes are reduced by longer time gaps which also
unfortunately result in longer simulations. The proper relaxation facilitates the correct
sampling of microstates necessary for reliable calculation of the free energy.

The mean error (€) in the free energy estimates for Langevin metadynamics was approx-
imated as: 184193

W d
£ o Di , (1.14)

where D states for an intrinsic diffusion coefficient of the system in the space of collective
coordinates and d for the dimensionality of CVs.

This formula provides clear suggestion for reducing of the mean error. However, decrease
of W and ¢ implies higher computational costs as well as increase of deposition interval
7. Not surprisingly, the suitable parameters must be chosen as a compromise between
accuracy, stability and computational efficiency.

1.3.5 Problems of metadynamics and advanced computational schemes

Usually some experience and knowledge of the system of interest is necessary for making
efficient computational setup. It involves a correct choice of the collective coordinates
and corresponding parameters for construction of the bias potential. The correct decision
could not be obvious from the beginning if the properties of the system remains a priory
unknown. Therefore, a method of trial and errors often precedes the production runs of
the metadynamics.

The inappropriate choice of collective variables causes the most serious problems, partic-
ularly if the CVs corresponding to the slow modes are omitted. Metadynamics is capable
of acceleration of rare events and extended sampling only for the biased set of CVs. If
they cannot capture an important slow process, a hysteresis in the simulations appears.
As a direct consequence, free energy profiles show poor convergence that depends on the
starting conditions. These limitations can be overcome by combining metadynamics with

other approaches that help to sample the unbiased “transverse coordinates”. 1™

The algorithm of metadynamics performs excellently in combination with replica exchange
framework. !4 If each replica simulates the same system in different temperatures the
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Parallel Tempered Metadynamics (PTMetaD)!®! is obtained. The regular attempts to
switch systems between replicas are undertaken and accepted with probability given by:

Pl = ) mm{l, can | (= ;) (V105) = V) + - (V5 (s() = V2 (50)

+% (V}biaS(S(X]’)) - ijias(s(xi))) :| } (1.15)

J

This rule grants the correct statistical sampling in each replica. Moreover, the crossing of
all barriers is facilitated due to the higher temperature in some replicas. The exchange of
structures between replicas then prevents the low-temperature replicas from getting stuck
in one minimum and significantly improves sampling.

The bias exchange metadynamics'™ uses replicas which are simulated at the same tem-

perature but biased in different collective coordinates. Therefore, different barriers may
be crossed in each replica according to the utilized bias. Similarly to parallel tempered
metadynamics the exchange of systems between replicas facilitates the sampling in each
of them. Acceptance probability of exchange is given by detailed balance rule as:

Pli—j) = mm{L exp F (Vi (s(x0)) = V"5 (s(x)) + V7" (s(x)) — V7" (s(x:))) }

T
(1.16)

The another benefit of the method follows from the set of different free energy profiles
obtained from each replica.

From practical point of view, the parallel tempered metadynamics suffers from the same
unfavorable scaling as standalone parallel tempering method—the bigger the system, the
smaller difference in temperature is allowed for acceptable exchange ratio between them.
As a result prohibitively large number of replicas is needed for large systems. On the
other hand bias replica exchange does not manifest this behavior but various collective
coordinates must be employed for proper and balanced sampling.

Since metadynamics biases the probability distribution of selected collective coordinates,
the distribution of other microscopic and macroscopic properties is distorted in metady-
namics simulation. Recovering their unbiased distribution is non-trivial task in contrast
to those described by collective coordinates. However, the reweighting scheme was pro-
posed!® and allows to reconstruct the Boltzman distribution. This scheme provides the
opportunity to calculate equilibrium distribution of any quality without respect to the
collective coordinates used in simulations. 1%
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2 Aims of the thesis

The computational studies of peptides and miniproteins are challenging tasks for two
principal reasons: i) uncertain or unsatisfactory precision of the force fields and ii) high
demands on the conformational sampling in the computer simulations. In the present
thesis I attempted to deal with the following challenges:

1. Assessment of force fields for simulation of peptides.

2. Investigation of conformational preferences of amino acids in water environment and
in solutions with cosolvents.

3. Design and testing of collective coordinates for metadynamics of peptides.

4. Characterization and reproduction of experimental properties of designed minipro-
tein.

5. Thorough parametrization of a cosolvent for correct water-mixtures properties and
reliable usage for simulations of proteins and peptides.

Each topic e1-5 was elaborated as an individual study published or submitted to peer-
reviewed scientific journal. All related published articles or manuscripts are attached to
this thesis as Appendices A-F in the following order:

Appendix A: Vymétal, J.; and Vondrasek, J. Critical Assessment of Current Force Fields.
Short Peptide Test Case. Journal of Chemical Theory and Computation 2013, 9,
441-451.

Appendix B: Vymétal, J.; and Vondrasek, J. The DF-LCCSD(TO0) correction of the ¢/{
force field dihedral parameters significantly influences the free energy profile of ala-
nine dipeptide. Chemical Physics Letters 2011, 503(4-6), 301-304.

Appendix C: Towse, C.-L.; Vymétal, J.; Vondrasek, J.; and Daggett, V. Potential for
underestimating residual structure in denatured states and intrinsically disordered
proteins (submitted)

Appendix D: Vymétal, J.; and Vondrasek, J. Gyration- and inertia-tensor-based collec-
tive coordinates for metadynamics. Application on the conformational behavior of
polyalanine peptides and Trp-cage folding. The journal of physical chemistry. A
2011, 115, 11455-65.

Appendix E: Vymétal, J.; Reddy, B.S.; éerny, J.; Chaloupkova, R.; Zidek, L.; Sklenér,
V.; and Vondrasek, J. Retro Operation on the Trp-cage Miniprotein Sequence Pro-
duces an Unstructured Molecule Capable of Folding Similar to the Original Only
upon 2,2 2-trifluorethanol Addition. (submitted)

Appendix F: Vymétal, J.; and Vondrasek, J. Parametrization of 2,2,2-trifluoroethanol
based on Generalized Amber Force Field provides realistic agreement between ex-
perimental and calculated properties of pure liquid as well as water mixed solutions.
(submitted)

The following Chapter 3 summarizes the work on the topics e1 and 2. The subsequent
chapters originate from the other studies in Appendices and are devoted one by one to
the topics 3, e4, 5.
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3 Intrinsic conformational preferences of amino acids

3.1 Motivation

Short peptides are used traditionally as experimental and theoretical models of the un-
folded, denatured or intrinsically disordered states of proteins. "% Various studies!?? 203
proved that the sampling of conformational space by peptide backbone is neither random
nor uniform as could be inferred from random coil model?** employed in the last decades.

However, the conformational states preferred by short flexible peptides cannot be di-
rectly and unambiguously determined by any experimental method. The experiments on
alanine based peptides initiated intense debate about the character of favored conforma-
tions until the prevalence of the lefthanded polyproline-helix-1I-like (ppll) conformer was
broadly accepted.?05 210 ppll conformer is supposed to contribute significantly to struc-
tural diversity of amino acid dipeptides and short host peptides.?92:2117213 Furthermore,
the content of ppll seems to be induced by some denaturants—for example by urea. 24215
Therefore, ppll is supposed to participate prevalently in unfolded and denatured states
of proteins?'®2!® although this topic is still the subject of a controversy. 207219

Since the first three-dimensional structures of proteins were elucidate, different propensi-
ties of amino acids to form o-helices and B-strands were noticed.??° Distinct populations
of basins on Ramachandran plot were further observed for amino acids in irregular struc-
ture elements in proteins compiled in coil libraries.??! Different trends in conformational
preferences can be observed by spectroscopic methods in various host—guest peptides such
as GGXGG,?! GXG,202 AXAY or GPPXPPQY.2" However, amino acids themselves
in the form of dipeptides manifest distinguishable intrinsic backbone preferences.?!222

The individual intrinsic conformational preferences of amino acids are assumed to play
a role in protein folding and residual structure of unfolded proteins.!®® The propensities
of the most amino acids obtained from peptide models correlate with those derived from
carefully constructed coil libraries®** or p-strand statistics.?’* Nevertheless, the confor-
mational preferences can be modulated by effects of sequence neighbors.203221.223 The
importance of the systematic experiments mapping such interactions has been recognized
and the first studies appeared recently. 218224

Molecular dynamics can provide an insight into repertoire of conformations sampled by
short peptides. The systematic studies of amino acids in different sequential contexts have
been already conducted.?°1:225:226 However, these results critically depend on the quality
of used force fields and cannot be validated without direct confrontation with experimen-
tal data. We already tested the performance of force fields on the model molecule of
alanine dipeptide!®® and demonstrated that high level ab initio calculation as reference
for parametrization can improve agreement with experiment.!®® In order to point out the
differences between force fields we compared comprehensively backbone and side chain
conformational preferences of amino acid dipeptides in four common force fields.'®°
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Figure 3.1: Definition of backbone conformers.
The definition of conformers was based of free energy profiles in terms of ¢/ torsions. The
boundaries of the individual regions (ext, ppII, ag, oy and ay) are depicted in panel (a) and
superposed on a typical free energy profile (b).

Additionally, our interest in propensities under different conditions resulted in a collabo-
rative computational study that mapped the effect of denaturant on amino acids in the
host peptides (submitted, Appendix C).

3.2 Intrinsic propensities of dipeptides in different force fields

Although the amino acids dipeptides seem to be trivial targets for molecular dynamics the
reliable and converged sampling of all relevant conformational states (including backbone
and side chain conformers) was found to be harder than it is broadly expected. Because the
backbone preferences are inevitably coupled with the side chain conformations (rotamers),
both of them have to be sampled properly. To achieve this goal, we used bias exchange
metadynamics!™ that significantly improved the sampling due to the exchange of replicas.
Each replica was biased in different combination of collective variables represented by
backbone torsions ¢, ¢ and the two most important side chain torsion y; and y. (if
present in the particular dipeptide).

The typical ¢/ profile obtained by metadynamics for all residues (except glycine and
proline) is depicted in Fig. 3.1 together with a scheme how we partitioned the Ramachan-
dran plot and defined individual backbone conformers in terms of ¢ and ¢ torsions. The
designed 5-state model covered all regions of the Ramachandran plot as well as the re-
duced 3 state model that merges the ext and pplI region (E) and analogously o/, and
ar (H). The coarser partitioning resulted from insufficiently delimited minima and low
barriers manifested by several amino acids.

The output of bias exchange metadynamics was analyzed in terms of population of in-
dividual regions. We were interested primarily in the relative trends in propensities of
non-alanine amino acids. Since the alanine dipeptide represents standard benchmark

35



Intrinsic conformational preferences of amino acids
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Figure 3.2: Relative population of backbone conformers.
Relative propensities were calculated as difference between populations (in %) of corresponding
backbone conformers of given dipeptide and alanine dipeptide in each force field. Absolute
populations of alanine dipeptide are listed in the first row of the tables. For other dipeptides, the
difference from alanine dipeptide is represented by size of square and its color (less than alanine
dipeptide in blue, more in red). Colorless squares denote statistically insignificant differences.

molecule the performance and differences between individual force fields are often com-
pared. 149156 Much less attention has been devoted to other amino acids, foremost by
force field developers. It is therefore questionable if the force fields can provide consistent
picture of backbone and side chain propensities for other natural amino acids.

One of the important results of our study is presented in Fig. 3.2. The preferences of
amino acids were related to the alanine dipeptide in each force field in order to highlight
underlying trends. Results obtained by different force fields manifested backbone propen-
sities significantly different from alanine. However, the presented Hinton plots revealed
no consensus between any pair of force field that was confirmed by very low correlation
coefficients. The very similar conclusions were drawn also for propensities y; rotamers
(see Fig. 3.3). Interestingly, strong but completely different preferences were manifested
by force fields for aspartate and asparagine.

The fact that very dissimilar trends in backbone propensities were revealed even for
closely related force field such as ff03 and ff99SB suggested further examination. We
prepared an artificial hybrid force field that mixed ff99SB with partial atom charges
from ff03. The resulting backbone propensities correlated strongly with those obtained
from ff03 force field unlike the parental ff99SB, as it is proved in Fig 3.4. The role

36



Intrinsic conformational preferences of amino acids

X1 -rotamers

CHARMM22/
CMAP | FFO3  FF99SB OPLS-AA/L

tg g tgg tgg tg g legend

arg IDIEDIEDIID-

asn -..D-- = = s m|- 1%
asp” (] = o . . 5%
aspo I.IDIIDIIDII 10%
cys |mmemem(m =[]
gn E0eEde(ee(m[]s=
v DOOeDOe@dm
gluo E0eme[]emn[]m
i DOeDDeDdDm| -
his* OO ] B[ J= m

15%
20%

hist|em[dejD0eE0e|e[]s= 45%
e BEOE =0m = []=]@|O s0%
lew DO-O0O0=0@ =|(m[]]= 55%
Iy EO0e|D0e|m0e|m @ OO so%
lys* 0|0 e(m0e|m @ O] 6%
met [ @0e@0e@O0e]Jm =[] 7%
phe (m[JODOEBm|0@ =(m @ O] 5%
ser |ODOOm(s OO« O@fs = ][] so%
thr m@O= 00 a[Jm - O] s5%
trp E0e0n oo o0 s O o%
tyr MmO «COeedn a|m o O 5%
val D0eDE@eJs@m]s=

Figure 3.3: Propensities for y; torsion.
Propensities for individual y; rotamers, trans (t), gauche™ (g*), and gauche (g~ ), are represented
in Hinton plot. The area of the square is proportional to the population of the given rotamer.
The differences are also emphasized by colors.

of the partial charges became apparent if their direct influence on torsional potentials
via 1-4 electrostatic interactions is realized. These interactions are usually scaled by
factors without any physical justification. Therefore, the different charge distributions and
inconsistent treatment of 1-4 electrostatics can be a plausible explanation for disagreement
of predicted propensities.

Nevertheless, the final assessment of force fields should involve comparison with exper-
imental data. We compared the propensity scales reported by Grdadolnik et al?'? and
those obtained from simulations. None of the examined force fields was able to capture
the experimental trends correctly, see Fig 3.5. The inability of force fields to reproduce
experimental intrinsic propensities of amino acids does not imply that these force fields
must fail in description processes such as protein folding. The distinct propensities are
determined by very small free energy differences that can be easily overcome by another
driving forces maintaining protein stability. However, the intrinsic propensities may still
contribute significantly to a character of disordered proteins. Therefore the further force
field development should take them into account and focus on properties of the individual
amino acids.
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Figure 3.4: Trends in the hybrid force field (HYB), FF99SB and FF03.
The propensities of the most important conformers—exzt (a), pplI(b) and ag (c) correlate ob-
viously between FF03 and HYB, contrary to the FF99SB. The error bars express the range of
values obtained from different replicas.
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The correlation between experimental and force field propensities
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Figure 3.5: The correlation between experimental ppll content and predictions of individual
force fields.

The very similar pictures were obtained for examined conformers and regions on the Ramachan-
dran plot. The error bars express the range of values obtained from different replicas.
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3.3 The difference between thermal and chemical denaturation of
AAXAA host-guest peptides and their conformational
preferences

We investigated conformational preferences of amino acids on X position in AAXAA
host peptide under different conditions — physiological, thermal (498K) and chemical (8M
urea) denaturation. The AAXAA host peptides were chosen as a model of unfolded or
denatured protein sequence. The small side chain of alanine restricts the flexibility in
respect to the established GGXGG host peptides and thus may provide more realistic
picture of real protein chains.

The obtained conformational preferences showed clear bias to certain regions of confor-
mational space rather than random sampling under all conditions (see comparison in
Fig. 3.6). However, the conformational bias for individual amino acids was modulated
by specific conditions of denaturation. The increased temperature shifted the preferences
toward more uniform sampling of all regions for all amino acids. However, the effect of
urea on propensities did not result in uniform response. The population of ppll conform-
ers increased or decreased for particular amino acids. Nevertheless, the ppll regions were
never sampled exclusively by any amino acid.

The simulated MD ensembles were validated by chemical shifts calculated by SHIFTX2
program.??” The predicted shifts were in a close agreement with experimental *Hy and
"Ny chemical shifts obtained from all AAXAA peptides in urea at pH 3 (see Fig. 3.7
panel A and B). Because of rapid interconversion between states, the experimental ob-
servables represents average values of the conformational dependent chemical shifts. The
calculated chemical shifts from simulations exhibited bi-modal or multi-modal distribu-
tions for each amino acids (panel C and E) in apparent accordance with the presence of
sampled conformational basins. However, the detailed analysis revealed that there was no
correspondence of regions on Ramachandan plot to particular values of chemical shifts, as
it is demonstrate in panels D and F). Therefore, it is difficult to elucidate local conforma-
tional propensities on basis of “random coil” chemical shifts. This statement was further
supported by artificial increasing of ppll populations in the input data. The resulting
calculated chemical shifts manifested very low sensitivity on ppll content.

The results suggest that different denaturation conditions specifically shift conformational
preferences of amino acids. The content of ppll structures can be affected but still may not
become dominant. The surprising insensitivity of simulated chemical shifts on population
of ppll region admits the possibility that content of the residual structure in denaturated
and intrinsically disorder proteins might be underestimated.
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Figure 3.6: Conformational preferences of amino acids in AAXAA host peptide.
Ramachandran plots of the conformational populations of the guest residues in different environ-
ments: pure water at 298 K, 8M urea at 298 K, and pure water at 498 K. The conformational
regions are colored by increasing percentage population from gray, green, blue, red to black.
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Figure 3.7: 'Hy and "Ny chemical shifts for the guest X residues.
The calculated data from simulation in 8M urea are compared with the experimental values (A,
B). Error bars reflect standard deviation. Distributions of chemical shifts from simulations were
examined. Both 'Hy and Ny provided bi-modal or multi-modal distribution demonstrated for
exemplary amino acids in panels C and E, respectively. However, the peaks in distributions do
not correspond to the unique basins on Ramachandran plot as it is shown in panels D and F.
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4 Metadynamics in gyration-tensor-based collective
coordinates

4.1 Motivation

Simulations of complex biomolecular phenomena such as folding of proteins and peptides
can be very difficult task for classical molecular dynamics because of intrinsic barriers of
these processes. Methods like metadynamics allow to accelerate rare events on the reaction
coordinate very efficiently. However, the focus of the problem is then shifted toward a
choice of proper reaction coordinates for the complex events. The quest for universal
protein folding coordinates has succeeded only partially. It was demonstrated that many
protein folding/unfolding processes can be represented on one-dimensional coordinate
given by multidimensional reduction or embedding of relevant descriptors.?2* 23! However,
such characteristics always have to involve the detailed knowledge of the particular folded
state and its native contacts.

Bias exchange metadynamics'™ offers an alternative way how to avoid complex reaction
coordinates. Each parallel replica can efficiently sample one or small number of simple
collective coordinates. Due to the exchanges between replicas the overall conformation
space sampled in the simulation exceeds the extent of any individual collective coordinate.
Moreover, the system specific collective coordinates may be inferred later in the post-
production stage of simulation.?3? The free-energy profiles in the additional CVs can be
then reconstructed from metadynamics reliably by reweighting procedure.®® We focused
on search of simple, robust and molecule-type independent collective variables that could
extend the repertoire of the basic CVs applicable in bias exchange metadynamics.

From a general point of view a flexible molecule such as polypeptide can be naturally
characterized by its size and shape. This approach has a long history in polymer physics
and chemistry.?33723° The effective size is commonly described by radius of gyration, how-
ever, this property is only one of many descriptors derived from gyration tensor. The
others are able to express not only size but also proportions and shape of the molecule. In
this study we implemented the size and the shape descriptors—components of gyration
tensor, principal radii of gyration, asphericity, acylindricity and relative shape anisotropy
in a computer code for metadynamics and tested their performance on model peptides
and miniproteins. 168

4.2 Theory

Gyration tensor (S) and tensor of inertia (I) describe the distribution of mass in the
molecule determined by position of atoms:
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S = N Somyi 2y yis | (4.1)
DTz Y Yz ) Z?

Somi(yl 4+ 27) Y —may; > =T
I= S—mizys Yomi(x? 422 D —muwz ) (4.2)
> Mz So—miyiz oy m(al 4+ y7)

All summations are performed over N atoms with individual masses m;. The cartesian
coordinates x;, ; and z; must be related to the geometrical center and center of mass of
the molecule for gyration and inertia tensor, respectively.

Since both tensors are symmetric and positive semidefinite they can be diagonalized with
non-negative eigenvalues. The corresponding eigenvectors determine important axes of the
object—the geometric axes of an ellipsoid approximating the shape for gyration tensor or
principal axes of inertia for tensor of inertia. The three eigenvalues Sy, Sa, S3 (sorted in
descending order) are related to the length of individual elliptic semi axes and I3, I, I3
represent principal moments of inertia around corresponding principal axes.

Moments of inertia provide information on distribution of mass in perpendicular directions
to the corresponding axes. For more or less homogeneous objects it also reflects the
effective size that can be better expressed by radius of gyration around particular axis:

- Ia:v
rg = M W (43)

Here I** and m stand for moment of inertia around the given axis and the total mass,
respectively. This descriptor should be distinguished from the commonly used radius of

gyration in molecular simulations:
122 mir;

Useful relations emerge for both tensors and their eigenvalues if they are applied on the
systems composed from particles of the same mass. However, these relations are retained
if the components of gyration tensor get mass-weighted, i.e. multiplied by term m;x N/m.
This assumption results in the same system of eigenvectors and links all eigenvalues as
well as traces of both tensors:

I = m(S; + S), (4.5)
IQ = m(Sl + Sg), (46)
I3 = m(Sy + S3), (4.7)
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TrI=2mTrS = 2mR.. (4.8)

The principal radii of gyration 7y therefore follow and obey:

1
P L S (4.9

RQ

ro1 Ty + o = 79- (4.10)
In addition to the principal radii of gyration, eigenvalues of gyration tensor allow straight-
forward calculation of shape descriptors proposed by Theodorou and Suter 2**—asphericity

b, acylindricity ¢ and relative shape anisotropy x:

1
szl—é(Sg—i—Sg), (4.11)
Cc = Sg — 53, (412)
5159 + 5153 + 525,

RN e R ety (4.13)

(S 4 S5 + S3)°

Asphericity and acylindricity express obviously the deviation from spherical and cylindri-
cal symmetry. Interpretation of the last descriptor 2 also respects symmetry. It reaches
0 for spherical objects and approaches 1 for linear shapes. Anisotropy of planar objects
converges to }l.

The physical dimension of squared length for S;, b and ¢ follows directly from their defi-
nitions. This can be disadvantageous in a practical application such as CVs for metady-
namics. Therefore we recommend to use adapted versions:

S = /5, (4.14)

b = Vb, (4.15)

d =/ (4.16)
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4.3 Application

The gyration- and inertia-tensor-based collective coordinates (S]_s, r,1-3, V', ¢, k?) were
implemented and contributed to PLUMED?3¢—the popular open source plugin for meta-
dynamics.

Firstly, the performance of newly introduced collective coordinates was tested on polyala-
nine peptides of four different lengths (3, 6, 9, and 12 residues). Because we did not
expect that any of the collective coordinates in question could unambiguously describe all
important conformation states the bias exchange metadynamics was used. Each simula-
tion comprised of 8 replicas either biased in different CVs or unbiased (dubbed as neutral
replicas). Neutral replica approximates the canonical distribution but profits from ex-
tended sampling due to the exchanges with biased replicas. We finally combined different
CVs in four resulting protocols are summarized in Tab.4.1.

The one-dimensional free energy profiles as function of the collective coordinates in ques-
tion are presented in Fig.4.1. The smooth and often featureless character of all profiles
reflects clearly the flexible nature of alanine peptides. Only the shortest Alaz peptide
provided profiles with 3 distinguishable minima that corresponds to different conforma-
tional families. The other peptides favored a-helix as the most stable conformer that
always correspond to the profound minimum on the free energy profiles. The increasing
length of the helix due to elongation of sequence for Alag.15 is reflected by shift of the
minima in R, , S, ry1, rge, b’ and x? in panels A,B,F,G, H and J in Fig.4.1. On the other
hand, the cylindrical symmetry of the helix must result in constant (length-independent)
values of S%, S5, 743 and ¢’ as it is correctly depicted in panels C, D, E and I. We did not
observed any difference in performance of protocol P1 and P2. The rationale is that all
employed CVs are internally linked and always represent a distinct transformation of 3
unique eigenvalues of gyration or inertia tensors. However, such transformation are still
very useful for interpretation of molecular shapes.

The more stringent test was attempted to examine a folding of Trp-cage miniprotein
using only gyration-tensor-based CVs. It succeeded in almost each simulation employing
protocol P1-P4 for simulations 200 ns long. Once the native state appeared it had been
captured by neutral replica and usually remained folded to the end of the simulation. The
illustrative picture of the folded Trp-cage molecules is provided in Fig.4.2. Apart from this
structures with low backbone RMSD (<2A) from the experimental reference, simulations
produced also relatively stable compact structures with non-native core packing and higher
RMSD (2-4A), see Fig. 4.3. It is questionable if they have any relevance to folding or are
only artifacts of chosen CVs.

Table 4.1: Collective coordinates involved in bias exchange protocols.

’ Protocol \ Collective coordinates ‘
P1 R,,S1, Sy, S4, V', ¢, k%, 1 neutral replica
P2 R,,S1, S5, 8%, 41, Tg2, Tg3, 1 neutral replica
P3 R,.S1, S5, S%, 4 neutral replicas
P4 Ry, rg1, T¢2, T3, 4 neutral replicas
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Figure 4.1: Free energy profiles of alanine peptides (Alas 12).

The free energy profiles obtained for polyalanine peptides Alag, Alag, Alag and Alajs.

The

individual plots show the free energy as a function of Ry(A), S1(B), S5(C), S5(D), r¢3(E), rg2(F),

rg (G), b'(H), (1) and x*(J).
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Figure 4.2: Superposition of Trp-cage structures.
The native-like structure obtained from simulations are compared with experimental structure
of Trp-cage (thick).
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Figure 4.3: Distribution of folded molecules in simulations.
RMSD of structures in neutral replicas and the native structure of Trp-cage (1L2Y) was binned
and plotted for all simulation using protocol P1-P2. Native-like structures with low RMSD
(<2A) were present almost in all simulations.

The utilization of protocols P3 and P4 followed from testing whether more neutral replicas
facilitate the correct packing of core residues. Since the gyration-tensor-based CVs take
into account only the global shape of the molecule they cannot directly influence the
respective orientation of side chains in the core of compact structure. However, additional
neutral replicas did not increase fraction of native state molecules but increased chances
of their finding.

Although the folding simulations were successful we expect even better performance if
the protein-specific collective coordinates are added in the bias exchange metadynamics.
The fact that the gyration-tensor-based CVs are able to facilitate folding of Trp-cage only
on basis of molecular shape makes them valuable for bias exchange approach to protein
folding problem.
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5 Computational study of retro Trp-cage miniprotein

5.1 Motivation

The structure of folded proteins has unique features—network of intramolecular hydrogen
bonds maintained by secondary structure elements and native contacts between side chains
of amino acids. The planar peptide bonds can act both as hydrogen bond donors and
acceptors but the order of donor/acceptor pattern is governed by direction of polypeptide
chain. Interestingly, almost symmetrical image of the three-dimensional structure of a
protein can be constructed from natural L-amino acids, but the following criteria must
be taken into account: 237

1. The direction of the backbone is reversed, i.e. the protein sequence is reversed from
N-terminal to C-terminal.

2. The position of N-H and C=0 groups is swapped. As a consequence the direction
of hydrogen bonds is reversed.

3. Backbone torsion angles must be transformed by rules: ¢ — —¢ and ¥ — —¢.

All these conditions can be easily fulfilled by o-helical structures considering that the
transformation of torsions projects them back to the same helical region on Ramachandran
plot.

The effect of reverse protein sequence has been already tested experimentally. The “retro
transformation” can lead to different outputs. The reverse protein sequences can either
loss their ability to fold?%2% or the same (or topologically similar) fold can be pre-
served. 2407242

Trp-cage is a miniprotein derived from exendin-4 saliva protein from Gila monster lizard.?*3
Trp-cage has become rapidly a model protein due to its tiny size (20 residues), coopera-
tive and ultra-fast folding kinetics.?** The fold of Trp-cage consists of one o-helix, short
loop and polyproline stretch which interacts with a side chain of tryptophan in the he-
lix. This particular structural motif possesses surprisingly large energetic stabilization
by non-covalent interactions.?*> Nevertheless, the stability of the Trp-cage is considerably
linked also with stability of the N-terminal helix. 246

The existence of small stabilizing core rises a question if it can be restored after retro
transformation of the original sequence. Although the Trp-cage miniprotein ranks among
the most studied proteins both experimentally and theoretically, no efforts to characterize
its retro-variant have been yet reported. This challenge was addressed by our collaborative
study (submitted, Appendix E).
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5.2 Experimental characterization of retro Trp-cage

The amino acid sequence of retro Trp-cage was synthesized and studied by NMR and
CD spectroscopy. Both methods confirmed the unstructured character of the molecule in
aqueous buffer. However, changes were observed upon addition of 2,2,2-trifluouroethanol
(TFE). CD spectroscopy revealed an increase of helical content and provided typical re-
versible heat denaturation curve with melting temperature about 32°C. The structure
promoting effect of TFE allowed to conduct all NMR experiments necessary for determi-
nation of 3D structure of the miniprotein. The resulting structure was deposited in the
Protein Databank under the accession code 2LUF.

The elucidated structure of retro Trp-cage resembles the structure of original Trpcage
(C,-RMSD 3.3A) mostly in the corresponding helical region. N-terminal helix of Trp-cage
aligns with the helix in C-terminal part of its retro-variant. However, both structures differ
significantly in the other parts. The typical proline—tryptophan structural motif known
from Trp-cage was replaced by novel arrangement of core in retro Trp-cage. It involves the
dominant tryptophan—arginine side chain stacking familiar from other protein structures.
The both structures are compared in Fig. 5.1.

5.3 Modeling of retro Trp-cage

Prediction of three-dimensional protein structure from its sequence still belongs to the
most challenging tasks in protein modeling.?*” Because the reverse sequence of the Trp-
cage did not share any similarity to known proteins only ab initio template-free struc-
ture prediction methods could be utilized for de novo modeling of retro Trp-cage. Such
methods as Robetta?*® or PEP-FOLD?* employ a fragment based approach. The local
structure elements are first determined using fragment libraries and then assembled into
final model by Monte Carlo method or alternative techniques.

We used the online version of both structure prediction methods—Robetta and PEP-
FOLD to obtain three-dimensional model before the experimental structure was solved.
Both services provided sets of models accompanied by their ranking. Robetta and PEP-
FOLD succeeded in prediction of C-terminal helix. The overall fold of all models re-
sembled the structure of original Trp-cage (1L2Y) as well as its retro variant (2LUF)
which is apparent from Fig. 5.1. However, no model correctly assembled the core of the
miniprotein. The distorted tryptophan—arginine motif was predicted only once by PEP-
FOLD. Similarly, the canonical tryptophan—proline motif known from Trp-cage molecule
was not found by any of the predicting methods. In all cases, non-native arrangements of
tryptophan and proline side chains were proposed.

In order to shed light on stability and character of disordered state of retro Trp-cage in
water environment, we conducted a series of equilibrium MD simulations. All simulations
started from the experimental structure (2LUF) but used different force fields in order to
assess reproducibility of results.

All simulations rapidly deviated from the starting NMR structure. C,-RMSD around
2A could be still considered as a fluctuation around the experimental structure. The
higher values of C,-RMSD were connected to the refolding of N-terminal tail or repacking
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Retro Trp-cage (2LUF)

Retro Trp-cage Retro Trp-cage
predicted by PEP-FOLD predicted by Robetta

Figure 5.1: The experimental structure of retro Trp-cage (A), Trp cage (B) and retro Trp-cage
models (C, D).
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of the core. However, the C,-RMSD values exceeding 5A indicated the very loosened
structures or unfolding of C-terminal helix.

All four force fields involved in our study (ff031%, f99SB-ILDN''2| charmm?22/CMAP !#4
and OPLS-AA /L'%3) provided different results in the simulations. Unfortunately, it was
not possible to clearly distinguish the effects of the force fields from insufficient sampling
as can be inferred from Tab. 5.1. Four independent runs for each force field manifested
high diversity in maintaining structural features of retro Trp-cage and related properties.
Nevertheless, all force field were able to keep, at least transiently, the fold of the minipro-
tein in water as proved by C,-RMSD. This fact indicates that force fields are able to
capture the stabilizing interactions found in experimental NMR structure.

The helix favoring ff03 and charm22/CMAP force fields kept higher helical content than
ff99SB-ILDN and OPLS-AA /L (see Fig. 5.2), but all force fields provided similarly com-
pact structures as can be deduced from radii of gyration in Tab. 5.1. Interestingly,
the presence of the tryptophan—arginine structural motif did not correlate strongly with
RMSD from the experimental structure (2LUF). This founding suggests independence of
binding motif on presence of helical framework (see Fig.5.3).

Since retro Trp-cage forms a stable structure only upon addition of TFE in buffer we tested
the effect of this cosolvent on stability of miniprotein in simulations. The standardly
parametrized GAFF model was used in simulations with ff03 and ff99SB-ILDN force
fields. Considering the high variability of individual runs, no significant changes were
observed for ff03. However, the structures simulated by ff99SB-ILDN were dramatically
affected. The corresponding C,-RMSD from experimental structure increased as well as
radii of gyration (see Tab. 5.1). This changes indicated the rather denaturing effect of
TFE on protein structure in clear disagreement with experiment. It is not obvious what
caused the incorrect behavior in the solvent mixture. The probable explanations could
be incompatibility of force field parameters for protein, water model and TFE cosolvent,
which we decided to attempt as our next goal.

5.4 Conclusion

This study of retro Trp-cage confirmed the importance of fine structural details on sta-
bility of proteins. The same composition and the respective order of amino acids do not
guarantee the same ability to fold if the direction of protein backbone is reversed. On
the other hand, a latent structure can be still preserved in the sequence and manifested
under structure promoting conditions such as in TFE mixture solvents.

The delicate structure/disorder transitions are notoriously difficult task for force fields.
We believe that constructs like retro Trp-cage can help in the force field development as
a suitable targets for calibrating and balancing protein—water—cosolvent interactions.
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Solvent Force Field Simulation | Secondary structure
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Figure 5.2: Secondary structure in the course of the simulations.
The secondary structure were assigned by DSSP algorithm.?® The secondary structure elements
are coded by colors: a-helix — blue, 319-helix — gray, turn — yellow, 3-bridge — black, bend — red.
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Presence of Trp—Arg contact does not guarantee low C,-RMSD value and wvice versa.
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6 Optimization of force field parameters for
2,2,2-trifluoroethanol

6.1 Motivation

2,2 2-trifluoroethanol (TFE) is often used as a cosolvent in experimental studies of pep-
tides and proteins. Buffers containing TFE (up to 50% v/v) usually stabilize the a-helices
or induce their formation. Additionally, TFE improves solubility of peptides and proteins
and thus facilitates experiments in solutions.”* A mechanism how TFE stabilizes peptides
and proteins has not been completely elucidated. The proposed hypothesis expect either
direct or indirect effects on polypeptide in TFE /water mixture. The direct effects involve
preferential binding on surface of the molecule, local increase of TFE concentration in
vicinity of the protein and stabilizing hydrogen bonding of backbone due to the lower
effective dielectric constant of the mixed solvent. 2?2 The indirect mechanism influences
the thermodynamics of folding by chaotropic effect on solvation layers of folded and un-
folded states.?®® Furthermore, the activity of TFE can be pronounced in both cases by
transient self-aggregation of TFE molecules.?>*

We observed an inability of the standard GAFF model of TFE to stabilize structure of
retro Trp-cage construct in simulations as reported in the previous chapter. The almost
identical GAFF model was later introduced and tested with positive effects on stability
of helical peptides.?>*>?°% However, no properties of TFE/water mixtures were reported
by the authors although the good calibration of TFE-water interactions is the necessary
prerequisite for reliable computational model. The conclusions of the earlier studies by
Chitra and Smith suggest that the common TFE models often fail to describe the pure
liquid TFE phase as well as their mixtures with water.?*"2® Qualitatively different behav-

ior of TFE/water mixtures was recently observed also for different combination of water
models. 2%

The microscopic structure of liquid mixtures can be analyzed in framework of Kirkwood-
Buff theory.26° The unique feature of this approach is the fact, that the corresponding
values of Kirkwood—Buff integrals (KBI) can be evaluated from MD simulations as well as
calculated from experimental thermodynamic quantities. Kirkwood—Buff theory therefore
represents a valuable link between theory and experiment. 26!

The Kirkwood—-Buff integrals can be obtained from simulations by two methods. The
first—classical approach employs the definition of KBI for components of binary mixture
via radial distribution functions:

Gi; = /000 4mr?(gij(r) — 1) dr, (6.1)
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where g;; is the radial distribution function between particles ¢ and j. The alternative
way how to calculate KBI uses the definition through particle fluctuations in an embedded
region?%? characterized by volume V' and linear size Lg:

(NiNj) — (Ng) (N;) by
Ciglla) = Vs ( Ny <Ni>) ’ (6:2)

The final KBI can be extrapolated for infinite Lg using the relation:

Gy(L) = Gy + 7 (6.3)
We decided to optimize TFE model based on GAFF in order to better reproduce liquid
state properties and more importantly—the properties of TFE/water mixtures repre-
sented by Kirkwood-Buff integrals (submited, Appendix F). We expect that such care-
fully optimized force field parameters will be able to provide also more realistic picture of
ternary TFE /water/protein complexes and could shed a light on the atomistic mechanism

of stabilizing effects of TFE.

Because the precise calibration depends also critically on the water model we have cho-
sen TIP4P/Ew!! and TIP4P/2005'" as the references. Both models provide superior
description of water properties in comparison to the common 3-site models. Although
TIP4P/Ew and TIP4P /2005 are not accommodated by the amber force fields and their
usage is spurious they did not show overall performance worse than TIP3P. 151263 More-
over, the TIP4P /Ew is intended to replace obsolete TIP3P model in the newly developed
versions of amber force field.16:157

6.2 Parametrization

For the sake of compatibility with the amber family of force field the initial model was
adopted from GAFF and the partial charges from R.E.D. database.?%* These charges were
calculated as highly reproducible multi-conformational RESP fit.26°

The parametrization were scheduled to 3 stages.

Firstly, the parameters suitable for optimization were selected. We introduced perturba-
tions to different partial charges and Lennard-Jones parameters of atoms and tested their
impact on properties of liquid TFE in short simulations, namely—density, heat of vapor-
ization, self-diffusion coefficient and population of ¢trans conformer. Finally, we identified
5 parameters for further optimization. The final set included Lennard-Jones parameters
(o and €) of fluorine, partial charges on fluorine and hydrogen in hydroxyl group and a
parameter of C—C—O—H torsion.

Secondly, the different combinations of parameters were tested exhaustively in simulations
of pure TFE liquid. We developed a protocol for simultaneous optimization of all 5 param-
eters. The dependence of 4 optimized properties was iteratively fitted in analytical forms
and evaluated by an objective function. The analytic fit allowed us to predict the values
of parameters in the best agreement with experiment and verify them subsequently in
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simulations. Moreover, the exhaustive protocol guaranteed that the optimal combination
of parameters could be found and provided a valuable view of their ambiguity.

In addition to the classical amber force field parametrization strategy we employed more
precise approach to calculate vaporization enthalpy. This property is usually calculated
as a difference between average energy of the molecule in gas phase (U) 445 and in the

liquid (U) 1;4/N:

AHyop = (U) yas — (U} g/ N + RT. (6.4)

Since the partial atomic charges of amber force fields mimics condense phase charge
distribution, they are not transferable between phases. The energy costs for this pre-
polarization can be estimated and the affected properties (enthalpy of vaporization, free
energy of hydration) can be corrected by an additional term.?¢ Equivalent corrections
were used in parametrization of both TIP4P/Ew and TIP4P /2005 models.

Lastly, the parameters describing sufficiently pure liquid phase of TFE were tested in sim-
ulation of mixtures with TIP4P/Ew and TTIP4P /2005 water models. The Kirkwood-Buff
integrals were used for comparison with experiment because of their sensitivity on the re-
spective microscopic distribution of components in the mixture and their self-aggregation
tendencies. However, the correct evaluation of the KBIs requires long simulations of large
boxes. Therefore it could not be used routinely for development of parameters but only
to discriminate parameters incompatible with water models.

6.3 Results

The systematic search in 5-dimensional space of TFE parameters for optimization re-
quired approximately 2500 simulations of liquid TFE and allowed us to map values of
the selected force field parameters to the liquid state properties. Both ways to calcu-
late vaporization enthalpy led to parameters that were able to describe simultaneously
all optimized properties. However, if the polarization costs were considered, ambiguous
and more precise solutions were found as illustrated in Fig 6.1. This conclusions could
not be clearly drawn without the extensive protocol we employed. Obviously, there were
no unique parameters which could be chosen preferentially. Therefore 28 candidate pa-
rameters from all promising regions of parameter space (named as N-region, C-top and
C-bottom, see Fig. 6.1) were selected and tested in simulation of mixtures with water.

TFE/water mixtures modeled by candidate TFE parameters differed significantly in their
properties. Although TFE is fully miscible with water in all concentrations in experiments,
several parameters from N-; C-top and C-bottom region showed the opposite behavior.
This TFE models with low partial charge on hydrogen atom manifested separation of
both liquids and no meaningful KBIs could be calculated from such simulations. The
clear trends were observed—the higher polarity of O-H bonds, the lower values of Gpr
Kirkwood—Buff integrals which indicated lower self-aggregation of TFE molecules. The
visual demonstration of self-aggregation is provided in Fig. 6.2.

Nevertheless, the values of calculated G comparable to the experimental counterparts
were found only for parameters from C-bottom region with the most polar partial charges.
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With polarization correction

e

Houn

Figure 6.1: Exploration of TFE parameter space.
For sake of clarity the 5-dimensional parameter space were reduced to 2 dimensions. The panel
A and B show values of objective function using partial charge on hydrogen (nor) and fluorine
(Lo r) as parameters. The values of other three parameters were optimized for the best agreement
with experimental data, i.e. the lowest value of objective function. Alternative calculation of
vaporization enthalpy produced completely different results (compare panel A and B).

These 5 candidates were further investigated in details. The additional simulations of
TFE/water mixtures in different ratios of both components were conducted in order to
check the experimental trends. Almost all parameters exaggerated the Grr for lower
concentration of TFE but the overall trend were captured correctly. This test selected
the final set of parameters (dubbed as B15) that best reproduced the experimental KBIs
of mixtures with both water models (see Fig. 6.3).

The properties of final model B15 were thoroughly characterized. The pure liquid TFE
properties were reproduced excellently. Not only these involved in parametrization but
also shear viscosity, coefficient of thermal expansion, isothermal compressibility, static
dielectric constant and free energy of hydration were predicted by TFE model in good
agreement with experimental data (see Tab. 6.1).

Calibration of TFE model to realistic mixture properties with 2 advanced water models
(TIP4P/Ew and TIP4P/2005) showed clearly the importance of polarization correction
in course of parametrization process. The implicit correction to polarization cost in gas
phase significantly improved reproduction of liquid properties of TFE. More importantly,
it allowed to balance TFE-TFE, TFE-water and water—water interactions and thus reduce
the self-aggregation of TFE molecules at level supported by experimental data.
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Figure 6.2: Self-aggregation of TFE molecules.
The different TFE force field parameters manifested distinct self-aggregation tendencies. The
complete separation of both liquid phases was observed for models B1-B3. Models B4-B15
produced TFE clusters of decreasing size.
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Figure 6.3: Kirkwood—Buff integral G as function of TFE molar ratio.
Values of Gpr were calculated for 5 candidate parameters (B11-B15) and both TIP4P/Ew (A)
and TIP4P /2005 (B) water models. The clear trend can be observed for the polarity of the TFE
model (increasing continuously from B11 to B15) and KBI Gpp. The experimental values were
adopted from Ref. 261 and 267.

Table 6.1: The properties of pure liquid TFE at 298.15K and 100 kPa. Comparison of the
predicted and experimental values.

The density p, self-diffusion coefficient D, enthalpy of vaporization AH,,,, ratio of trans con-
former in liquid, coefficient of thermal expansion «, isothermal compressibility s, shear viscosity
n, static dielectric constant €, average dipole moment of the molecule (i) and free energy of hy-
dration AGg,p, are compared for predicted and experimental data.

’ property \ simulation \ expt® ‘
plkg.m ™3] 1382.5 1382.4
D[10%m?.s71] 0.70 0.68
AH,qp[kJ.mol 1] 42.9(47.5)° 42.9
%trans 39.9 40
a|103K™1 1.27 1.28
kr|GPa™l| 1.32 1.23
n|10°%kg.m~t.s7!] 1.52 1.72
€r 34 27
(1) [Debye] 3.69 2.46
AG go[kJmol™1 | -16.8 (-21.4)%¢ | -18.02
AG o [kJ.mol™1 | -16.6 (-21.2)>¢ | -18.02

“References to the original experimental studies are provided in the enclosed manuscript.

®The value in parenthesis represent a version without correction on polarization costs in gas
phase.

¢Obtained with TIP4P/Ew water model.

dObtained with TIP4P /2005 water model.
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7 Concluding remarks

This

thesis deals with several topics highly relevant for simulations of peptides and

miniproteins in water and mixtures with cosolvents. Here I would like to conclude the
most important results.

The force fields involved in this study are not able to reproduce fine intrinsic prop-
erties of amino acids. The propensities obtained from simulations reflected rather
artifacts of non-physical 1-4 electrostatic interactions and different charge distribu-
tions used in force fields.

Conditions of thermal and chemical denaturation generate different conformational
ensembles of model peptides which are neither random nor uniform and shifted from
the reference state under physiological condition. The chemical shifts were shown
to be less sensitive to the local backbone conformations and therefore they might
provide incorrect picture of denatured or unfolded states.

The gyration- and inertia-tensor based collective coordinates for metadynamics can
be efficiently used for extensive sampling in bias exchange metadynamics. This
collective coordinates were capable of exhaustive sampling of alanine polypeptides
and succeeded in reproducible folding of Trp-cage miniprotein.

Reverse sequence of Trp-cage does not fold in water but acquire a structure in 30%
solution of 2,2,2-trifluoroethanol (TFE). The resulting structure resembles the struc-
ture of Trp-cage but possesses different packing amino acids in the core. Robetta
and PEP-FOLD tools succeeded in correct prediction of helix in the structure but
failed to model native interactions within the core. The stability of miniprotein
was interpreted differently upon a choice of a force field. However, the attempt to
mimic closely the experimental conditions by standard GAFF model of TFE led to
behavior incompatible with experimental observations.

We exhaustively optimized force field parameters of 2,2 2-trifluoroethanol for bet-
ter description of pure liquid properties and realistic behavior in TFE /water mix-
tures. We demonstrated that the improvement over the standard GAFF parameters
were achieved by implicit polarization correction treating the polarization costs of
molecule in gas phase.
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