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Abstract 

The thesis is focused on phylogeny of the family Torymidae (Hymenoptera: Chalcidoidea) 

and evolution of their life-strategies. The study consists of general introduction 

to the phylogeny and classification of the family Torymidae chapter, four published papers 

in international journals and one manuscript prepared for submission. Firstly, our aim was 

to figure out the phylogenetic position of Torymidae as well as the position of other 

chalcidoid families inside superfamily Chalcidoidea (paper I and II). The supermatrix 

of sequencies of two ribosomal genes (18S rDNA and 28S rDNA) were developed for 649 

species of chalcidoid taxa. However, family Torymidae was considered as polyphyletic group 

with the subfamily Megastigminae unrelated to the subfamily Toryminae (paper I). 

Monophyly of Torymidae was corroborated in another study (paper II) focused on molecular 

and morphological characters. We used a web-based, systematics workbench mx database for 

scoring 233 characters of 300 members of all chalcidoid families. Contrary to our previous 

only DNA-based study, we revealed also potential sister relationships of Torymidae with 

Ormyridae+Colotrechninae or Cerocephalinae+Diparinae respectively. Other paper (paper V) 

was focused on detailed study of Torymidae phylogeny. A total of 5 genes (18S rDNA, 28S 

rDNA, EF1α, COI and Wg) of altogether 226 ingroup taxa representing 45 of the 67 

recognized genera from two accepted subfamilies (Megastigminae and Toryminae) 

of Torymidae were used to reconstruct Torymidae phylogeny. The monophyly of Torymidae 

was not confirmed again. We recovered only all known tribes and classified two new tribes 

(i.e. Boucekini, trib. nov. and Glyphomerini trib. nov.) of subfamily Toryminae. Mapping 

of selected characters onto phylogenetic tree postulated the larvae of Toryminae originally 

as exoparasitoids of gall-forming insects in Palaearctic region with several derived traits 

throughout the Toryminae phylogeny. The life strategy, hosts and distribution of the common 

ancestor of Megastigminae is still uncertain. Besides the phylogenetical studies, the thesis 

also contains two taxonomic papers (paper III and IV) where two new genera (Boucekinus 

Janšta & Hanson, 2011 and Chileana Janšta & Křížková, 2013) and 6 new species from South 

America are described. These new taxa represent phylogenetically and evolutionarily very 

interesting and important lineages of Torymidae. 

 



Abstrakt 

Dizertační práce se zabývá fylogenezí parazitických vosiček z čeledi Torymidae 

(Hymenoptera: Chalcidoidea) a evolucí jejich parazitických životních strategií. Celkově práce 

obsahuje obecný úvod do fylogeneze a klasifikace čeledi Torymidae, čtyři články 

publikované v mezinárodních vědeckých periodicích a jeden rukopis. Cílem práce bylo 

navrhnout fylogenetickou pozici Torymidae a ostatních čeledí v rámci nadčeledi Chalcidoidea 

(článek I a II). Proto byla sestavena supermatice sekvenčních (molekulárních) znaků dvou 

ribozomálních genů (18S rDNA a 28S rDNA) pro 649 druhů chalcidek. Nicméně bylo 

zjištěno, že čeleď Torymidae je pravděpodobně polyfyletickou skupinou, kdy podčeleď 

Megastigminae se jeví jako nepříbuzná podčeledi Toryminae (článek I). Monofylie 

Torymidae byla potvrzena až v navazující studii (článek II) zaměřené na společnou analýzu 

jak molekulárních, tak morfologických znaků. Pro tuto publikaci byla využita online databáze 

pro skórování 233 znaků u 300 zástupců ze všech čeledí Chalcidoidea. Na rozdíl od předešlé 

studie (článek I) byly také naznačeny možné příbuzenské vztahy čeledi Torymidae 

s čeleděmi/podčeleděmi Ormyridae+ Colotrechninae nebo Cerocephalinae+Diparinae. Další 

článek (článek V) byl zaměřen na detailní studii fylogeneze v rámci čeledi Torymidae. 

Celkem bylo sekvenováno 5 genů (18S rDNA, 28S rDNA, EF1α, COI a Wg) u 226 zástupců 

reprezentujících 45 ze 67 popsaných rodů ze dvou podčeledí (Megastigminae a Toryminae) 

čeledi Torymidae. V rámci studie byly uvnitř podčeledi Toryminae potvrzeny všechny dosud 

uznávané triby a navíc stanoveny dva nové triby (tj. Boucekini, trib. nov. a Glyphomerini trib. 

nov.). Nicméně monofylii čeledi Torymidae se opět nepodařilo prokázat. Namapováním 

vybraných znaků na fylogenetický strom bylo zjištěno, že larvy společného předka podčeledi 

Toryminae byly pravděpodobně původně ektoparazitoidi hálkotvorného hmyzu v palearktické 

oblasti. Životní strategie, hostitelé a rozšíření společného předka Megastigminae zůstaly 

nerozřešené. Mimo fylogenetické studie obsahuje dizertační práce také dva taxonomické 

články (článek III a IV), ve kterých jsou popsány dva nové rody (Boucekinus Janšta 

& Hanson, 2011 a Chileana Janšta & Křížková, 2013) a 6 nových druhů z čeledi Torymidae 

z Jižní Ameriky. Tyto nové taxony představují velmi zajímavé a důležité linie čeledi 

Torymidae.
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1. Aims of the study and list of papers 

1. Despite Chalcidoidea importance, our knowledge of phylogeny and evolution 

of the family Torymidae as well as other families within this superfamily was very 

insufficient. There was lack of more comprehensive phylogenetical studies 

of Chalcidoidea and their families using DNA data and broader morphological 

comparison for centuries. To acomplish this aim we decided to publish two papers: 

Paper I: Munro J. B., Heraty J. M., Burks R. A., Hawks D., Mottern J., Cruaud A., 

Rasplus J.-Y. & Jansta P. 2011: A Molecular Phylogeny of the Chalcidoidea 

(Hymenoptera). PLOS ONE 6(11): e27023. 

Paper II: Heraty J. M., Burks R. A., Cruaud A., Gibson G. A. P., Liljeblad J., Munro J., 

Rasplus J.-Y., Delvare G., Janšta P., Gumovsky A., Huber J., Woolley J. B., Krogmann 

L., Heydon S., Polaszek A., Schmidt S., Darling D. C., Gates M. W., Mottern J., Murray 

E., Dal Molin A., Triapitsyn S., Baur H., Pinto J. D., van Noort S., George J. & Yoder M. 

2013: A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). 

Cladistics 29(5): 466-542. 

2. Second aim of the study is to provide the first molecular study of the family 

Torymidae. This family is well known as ectoparasitoids of various larvae of gall-

forming insects, however, any of relevant phylogenetical reasearch has not been done 

to compare morphology-based phylogeny and to figure out possible evolution of life 

strategies inside family. The results are presented in following manuscript: 

Paper V: Janšta P., Cruaud A., Delvare G., Křížková B., Heraty J., Rasplus J.-Y: 

Molecular phylogeny of the family Torymidae (Hymenoptera: Chalcidoidea). Manuscript 

prepared for submission to Cladistics. 

3. Although many scientists worked on Torymidae the taxonomy of the family is still 

very poorly known. Many species and genera remain undescribed. As a results of our 

foregoing studies, we discovered some new and phylogenetically important taxa. The 

last aim was to provide descriptions of these peculiar taxa. We described two new 

genera and several species in following papers: 
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Paper III: Janšta P., Vilímová J. and Hanson P. 2011: Description of a new genus, 

Boucekinus (Hymenoptera: Chalcidoidea: Torymidae), with two new species and 

a discussion of its possible phylogenetic placement. Zootaxa 2762: 49-55. 

Paper IV: Janšta P., Křížková B., Vilímová J., Rasplus J.-Y. 2013: Description of a new 

genus, Chileana (Hymenoptera: Chalcidoidea: Torymidae), with four new species. 

Zootaxa 3745: 49-63. 
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2. Introduction 
 
Phylogenetic position of superfamily Chalcidoidea within the Hymenoptera 
 
 Chalcidoidea (commonly named as chalcidoids or chalcids) is extremely diverse 

superfamily within order Hymenoptera. More than 22500 species have been described 

and more than 500000 are estimated to exist (Heraty et al. 2013; Noyes 2013). Without any 

doubt, superfamily Chalcidoidea belongs to apocritan Hymenoptera and within clade 

Proctotrupomorpha (Heraty et al. 2011; Sharkey et al. 2012). 

 Rasnitsyn (1988) devided Apocrita, based on morfological and fossil characters, into 

four lineages (Ichnemonomorpha – today´s Ichneumonoidea, Vespomorpha – today´s 

Aculeata, Proctotrupomorpha and Evanimorpha). Later, based also on paleontological 

evidence, Evanimorpha were divided into three monophyletic lineages – Stephanomorpha, 

Ceraphronomorpha and Evanimorpha (Rasnitsyn and Zhang 2010). The most recent 

molecular or molecular and morphology combined studies (Sharanowski et al. 2010; Heraty 

et al. 2011; Sharkey et al. 2012) support monophyly of only some of morphological clades 

sensu Rasnitsyn (1988), i.e. Aculeata and Ichneumonoidea, which is sister to monophyletic 

Proctotrupomorpha. Superfamily Chalcidoidea was repeatedly included as a part 

of Proctotrupomorpha, together with Platygastroidea, Cynipoidea, Proctotrupoidea, 

Mymarommatoidea and Diaprioidea (Castro and Dowton 2006; Sharkey 2007; Heraty et al. 

2011; Sharkey et al. 2012). 

 There are several opinions on sister relationships of Chalcidoidea and the rest 

of Proctotrupoidea lineages. First phylogenetic hypothesis (Dowton and Austin 1994; Dowton 

et al. 1997) which were reconstructed based on molecular data (16S rRNA) postulated sister 

relationships of Chalcidoidea and Platygastridae (Platygasteroidea respectively). Also 

morphology and anatomy evidence showed similar results (Heraty et al. 1994). 

 Importantly, Gibson et al. (1999) and Ronquist et al. (1999) evaluated family 

Mymarommatidae as superfamily Mymarommatoidea and postulated it sister clade 

of Chalcidoidea. Heraty et al. (2011) were the first who sequenced representatives 

of superfamily Mymarommatoidea. Molecular analysis nested Chalcidoidea in one 

monophyletic clade as sister either Mymaromatoidea or Diaprioidea. Chalcidoidea 

as monophyletic clade together with Mymarommatoidea and Diaprioidea within 

Proctotrupomorpha based on molecular data were corroborated by Munro et al. (2011). 

Strongly supported monophyly of Mymarommatoidea as sister group of Chalcidoidea was 
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confirmed when combination of molecular and morphology evidences were used (Sharkey 

et al. 2012). 

 

 

Biology and history of classification of Chalcidoidea and position of the family Torymidae 
 
 As mentioned above, Chalcidoidea are very diverse group of insects. They range 

in size from 20 mm (42 mm including ovipositor) – Doddifoenus Bouček, 1988 (Krogmann 

and Burks 2009) to minute, only 0.13 mm long male of Dicopomorpha echmepterygis 

Mockford, 1997, the smallest insect known at all (Mockford 1997). Chalcid wasps are very 

plastic morphologically and many family and subfamily characters are not disjunctive 

(Gibson et al. 1999). Many morphological characters are strongly convergent and therefore 

enlarged femora, reduction of wings, antennal and tarsal segments and metallic coloration can 

be found in many very distantly related taxonomic groups (Bouček 1988). 

 Morphological diversity and enormous number of species of chalcidoids are reflected 

also by their biological and feeding strategies. The animal host range includes all life-history 

stages of 13 insects ordes as well as mites (genus Ixodiphagus Howard, 1907 attacks larvae 

of Ixodes rhicinus Linneaus, 1758), egg-sacs of spiders, cocoons of pseudoscorpions, and 

gall-forming Anguinidae (Nematoda) (Heraty et al. 2013). Moreover, phytophagous 

chalcidoids from 6 extant families are known: Agaonidae, Eulophidae, Eurytomidae, 

Pteromalidae, Tanaostigmatidae and Torymidae (Austin et al. 1998; Gibson et al. 1999). 

 Females and males of some species of Agaonidae, known as fig wasps, represent 

extreme case of adaptation to phytophagous life. Most females have mesosternal pollen 

pockets and mandibular combs for collecting of figs pollen grains and males are adapted 

to life inside fig syconium, i. e. they can be nearly blind with various apendages reduced, very 

different from females of Agaonidae and hardly recognizable as chalcidoids (Cruaud et al. 

2010). 

 Regardless to relatively numerous paleontological evidence of chalcids in mid- 

and lower Cretaceous amber including Alaskan, Campanian, Siberian, Charantes, 

and Burmese, only few have been examined critically. Therefore Chalcidoidea is one 

of the most extensively studied lineage in Mesozoic records (McKellar and Engel 2012). First 

Mymaridae are known from Lebanese amber, 120 – 125 Ma (Schmidt et al. 2010), both 

Mymaridae and Mymarommatoidea occured in Albian amber, 97 – 110 Ma (Poinar Jr. 

and Huber 2011), Eulophidae taxa have been found later, in mid Cretaceous Ethiopian amber 
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(Schmidt et al. 2010). The only known extinct family, the Khutelchalcididae (Chalcidoidea), 

was described from an impression fossil from lowermost Cretaceous or uppermost Jurassic 

deposits of Khutel-Khara in East Mongolia (Rasnitsyn et al. 2004), but Gibson et al. (2007) 

showed that it does not belong to the superfamily Chalcidoidea at all. According to Heraty 

and Darling (2009), greater diversity of Chalcidoidea does not appear until the Eocene. 

The most of extant families inluding Eucharitidae, Perilampidae, Pteromalidae and Torymidae 

appeared in that time. Ot the contrary, McKellar and Engel (2012) published records 

of ̔Eupelmidae? ̕ and ̔Torymidae? ̕ from Late Cretaceous amber. However, it is generally 

accepted that Chalcidoidea have undergone rapid post-Cretaceous diversification as well 

as angiosperms and other insects (Heraty and Darling 2009; Heraty et al. 2013). 

 The classification of superfamily Chalcidoidea into families has been very unstable 

during a history probably due to enormous morphological variability and convergence 

of chalcidoids characters. Number of recognized families varied from 9 to 24. First 

comprehensive critical evaluations of morphological characters have not been proposed till 

Bouček (1988) and Gibson et al. (1999). Second author established 20 families 

of Chalcidoidea but stated that there are hardly any reliable morphological synapomorphies 

for any of the recognized families. Later, Elasmidae has been added to Eulophidae (Gauthier 

et al. 2000). Finally, there are 22 extant families of Chalcidoidea generally accepted now 

(Agaonidae, Aphelinidae, Azotidae, Chalcididae, Cynipencyrtidae, Encyrtidae, Eriaporidae, 

Eucharitidae, Eulophidae, Eupelmidae, Eurytomidae, Leucospidae, Mymaridae, Ormyridae, 

Perilampidae, Pteromalidae, Rotoitidae, Signiphoridae, Tanaostigmatidae, Tetracampidae, 

Torymidae, and Trichogrammatidae) (Aguiar et al. 2013; Heraty et al. 2013). 

 

 Campbell et al. (2000) were first to publish preliminary phylogeny of Chalcidoidea 

based on molecular characters. They studied 28S rDNA of relatively small number (109 

species) of chalcid wasps from 18 families and confirm only some of morphologicaly 

established groups of the superfamily Chalcidoidea. Much more comprehensive molecular 

analysis of Chalcidoidea has been published by Munro et al. (2011) using sequencies of two 

gene regions of ribosomal DNA (18S rDNA and 28S rDNA) of 666 chalcidoid taxa and 56 

outgroups. They confirmed monophyly of several families (Agaonidae, Encyrtidae, 

Eucharitidae, Leucospidae, Mymaridae, Ormyridae, Signiphoridae and Trichogrammatidae), 

but others were postulated as paraphyletic (Perilampidae) or polyphyletic (Aphelinidae, 

Chalcididae, Eupelmidae, Eurytomidae, Pteromalidae, Tetracampidae and Torymidae). 

Mymaridae as sister group to remaining Chalcidoidea was very strongly supported. 
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In corcordance with Gibson and Huber (2000), the other most basal family after Mymaridae 

was nested Rotoitidae, a family known only from species Rotoita basalis Bouček & Noyes, 

1987 endemic to New Zealand and Chiloe micropteron Gibson & Huber, 2000 known only 

from Chile. 

 First phylogenetic analysis based on both morphological and molecular data has been 

published recently (Heraty et al. 2013). Using web based content management mx database 

(Yoder at al. 2006), they scored 233 morphological characters for 300 chalcidoid taxa 

and 4 outgroups. With some minor exclusions or inclusions, they indicated monophyly 

of nearly all of previously recognized families sensu Noyes (2013). Aphelinidae, 

Perilampidae, Pteromalidae and Trichogrammatidae were postulated as polyphyletic 

and families Azotidae, Eriaporidae and Cynipencyrtidae were suggested as newly recognized 

monophyletic groups/families. Mymaridae as sister group of Rotoitidae plus remaining 

Chalcidoidea were also supported based on combined characters analyses (Fig. 1) as well 

as Rotoitidae following Mymaridae as sister group to the rest of Chalcidoidea. 

Synapomorphies (usually present in most of the members) which supporting monophyly 

of Chalcidoidea are multiporous plate sensilla on flagellar segments, presence of an exposed 

prepectus between lateral sides of pronotum and mesonotum and position of mesothoracic 

spiracle. 

 

 

Taxonomy of Torymidae 

 As well as of many Chalcidoidea families, the taxonomy of Torymidae has changed 

since the family was described (Walker 1833) and genera Megastigmus Dalman, 1820, 

Priomerus Waker, 1833 (synonymum of Podagrion Spinola, 1811), Torymus Dalman, 1820 

and Callimome Spinola, 1811 (synonymum of Torymus), Ormyrus Westwood, 1832 

and Perilampus Latreille, 1809 were included. Förster (1856) described some other genera 

of Torymidae and excluded Ormyrus and Perilampus as members of family Ormyridae 

and Perilampidae, respectively. 

 Thomson (1876) divided Torymidae into three subtribes – Megastigmines, Torymides 

and again Ormyrides and characterised family based on presence of occipital carina, and some 

other characters. Ashmead (1899, 1904) upgraded Thomson´s subtribes to subfamily levels, 

reclassified some groups and distinguished Monodontomerinae, Idarninae [Agaonidae: 

Sycophaginae sensu Cruaud et al. (2011) and Heraty et al. (2013)], Toryminae, 

Megastigminae, Podagrioninae and Ormyrinae [Ormyridae sensu Bouček (1957)]. Few years 
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Fig. 1. The most recent phylogeny of superfamily Chalcidoidea based on morphological characters and 18S 
rDNA and 28S rDNA genes (from Heraty et al. 2013). 
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later, Crawford (1914) proposed Erimerinae, Peck et al. (1964) Thaumatoryminae, and Hill 

(1967) Epichrysomallinae as other new subfamilies of Torymidae. 

 Twenty four years later, Bouček (1988) postulated new classification of Torymidae 

and suggested synapomorphies of his concept of family. Idarninae and Epichrysomallinae 

excluded of family Torymidae and accepted only Monodontomerinae, Megastigminae, 

Toryminae and Thaumatoryminae. He delimited Torymidae by the following 

synapomorphies: (1) presence of horseshoe like occipital carina; (2) dorsally very short 

seventh female tergite [(eighth sensu Grissell (1995)] and separated from the eighth [(ninth 

sensu Grissell (1995)] tergite by a membraneous line; (3) the membrane (membraneous line) 

on sides expanded and bearing the mobile elongate cercus with long sensorial setae; 

(4) tergite eight [(nine sensu Grissell (1995)] short, flap-like and weakly sclerotised 

and (5) the postgenae expanded to the median line so that the hypostomal margins are 

medially strongly constricted or even fused below occipital foramen [not an exclusive 

character, because Bouček (1988) found it as synapomorphy of Agaonidae and Torymidae]. 

 Detailed history of classification of the family Torymidae is summarized in Bouček 

(1988) and later in Grissell (1995), who also critically discussed all synapomorphies used 

previously (Bouček 1988): 

 Presence of occipital carina (in Bouček sense synapomorphy No. 1) – the character is 

homoplasy, having been lost in some Torymidae and is found in some Pteromalidae, some 

Agaonidae, all Ormyridae and Echthrodape Burks, 1969 [Echthrodape is one 

of the mysterious genus of Chalcidoidea and before Grissell (1995) it was assigned 

to different families repeteadly]; 

 Dorsally very short eighth female tergite, separated from the ninth tergite 

by a membraneous line (in Bouček sense synapomorphy No. 2) – could be exclusive 

synapomorphy of Torymidae, but same structure was found also in genus Chromeurytoma 

Cameron, 1912 (Pteromalidae) and Echthrodape; 

 Elongated (excerted) cercus with long sensorial setae in females (in Bouček sense 

synapomorphy No. 3) – the same structure can be found in Echthrodape, few Pteromalidae 

(Chromeurytoma, Sycoryctinae, Epichrysomalinae, Sycoecinae), Eulophidae, Eupelmidae and 

Agaonidae (Sycophaginae); 

 Ninth female tergite is short and flap-like (in Bouček sense synapomorphy No. 4) – 

this state was recorded also in few Agaonidae (Sycophaginae), Pteromalidae (Chromeurytoma 

and Ceinae) and in Echthrodape; 
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 Postgenae expanded to the median line so that the hypostomal margins are medially 

strongly constricted or even fused below occipital foramen (in Bouček sense synapomorphy 

No. 5) – defined as synapomorphy of Torymidae and Agaonidae (Bouček 1988), but Grissell 

(1995) found out this state also in all Ormyridae, some Pteromalidae and in Echthrodape. 

 As showed on information mentioned above, Grissell (1995) doubted all of previously 

respected single synapomorphies. But he believed in monophyly of family in sense 

of combination of all five states. Combination of these characters as characteristic 

of Torymidae was adopted also by Gibson et al. (1999). 

 In molecular studies, Torymidae has never been recovered as one monophyletic group. 

Campbell et al. (2000) recognized even subfamily Toryminae within Torymidae 

as polyphyletic group. However, this study was made using very limited taxon sampling 

(6 species – 2 species of Megastigminae and 4 species of Toryminae) and only one gene 

(28S rDNA). Also Munro et al. (2011) failed to find Torymidae as monophylum, but 

Toryminae and Megastigminae resulted each monophyletic with very strong support. 

 Later, Heraty et al. (2013) have not doubted monophyly of family in any of combined 

analysis. Monophyly of the family was supported by combination of the following 

morphological characters: sulci extended from tentorial pits, mesepimeron with posterior 

margin notched, fore wing with basal lobe present and Rs absent, basitarsus with ordinary 

setae, metasomal tergites 8 and 9 articulating, cercus arising from membraneous area 

and valvifers without sclerotized bridge between them. 

 

 

Phylogenetic position Torymidae within Chalcidoidea 

 Historicaly, several groups have been added as sister clade to the family Torymidae 

more or less intuitively (Noyes 1990) or based on convergencies (Cruaud et al. 2010, 2011) 

but without any certain morphological support (i.e. Ormyridae, Agaonidae, Epichrysomalinae, 

Sycophaginae). 

 Bouček (1988) mentioned that Ormyridae could be very close relative 

to the Torymidae based on shape of occipital carina in corcondance with an intuitive 

cladogram of Noyes (1990), who put together Torymidae plus Ormyridae and Agaonidae plus 

Ormocerinae (Pteromalidae) as sister clade. Grissell (1995) added only species from 

the family Pteromalidae to his phylogenetic analysis of Toryminae without any knowledge 

of their phylogenetic position, just based on his and of his colleague Steve Heydon intuitive 

knowledge. Gibson et al. (1999) have not commented any potencially sister groups 
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of Torymidae, just stated that relationships and proper classification of Torymidae, Ormyridae 

and Agaonidae are one of the more perplexing issues of chalcidoid classification. No logical 

sister group, neither for Megastigminae nor Toryminae, have been revealed even by first more 

comprehensive molecular characters analysis (Munro et al. 2011). However, combined 

morphological and molecular evidence (Heraty et al. 2013) repeatedly settled Torymidae 

in one clade with Ormyridae plus Colotrechninae (Pteromalidae). Ormyridae has never been 

supported as a group within Torymidae. 

 

 

Suprageneric classification of Torymidae (based on morphology only) 

 Generally respected concept of suprageneric classification of Torymidae has followed 

Bouček (1988) for long time. As it was mentioned above, he accepted subfamilies 

Monodontomerinae, Megastigminae, Toryminae and Thaumatoryminae within the family. 

More comprehensive study was done by Grissell (1995) who made phylogenetic analysis 

of 24 morphological characters. It was first such study of family Torymidae (respectively 

Toryminae) and the first comprehensive one in the superfamily Chalcidoidea. 

 Grissell (1995) assumed the monophyly of family Torymidae although he doubted 

Bouček´s (1988) synapomorphies of family. He hypothesized monophyly of Megastigminae 

based on enlarged stigma of fore wing and bilobed clypeus [few genera deviate in having 

clypeus with one median tooth – Bortesia Pagliano & Scaramozzino, 1990 and Bootanelleus 

Girault, 1915 (Bouček 1988)] while the subfamily Toryminae was defined only 

by the absence of apomorphic features, i.e. by symplesiomorphies. Later, the group was 

divided into seven tribes based on morphology – Chalcimerini, Microdontomerini, 

Monodontomerini, Palachiini, Podagrionini, Torymini, and Torymoidini and some genera 

were left classified as incertae sedis within Toryminae (i.e. Cryptopristus Förster, 1856, 

Echthrodape, Exopristus Ruschka, 1923, Glyphomerus Förster, 1856, Stenotorymus Masi, 

1938, Thaumatorymus Ferrière and Novicky, 1954 and Zaglyptonotus Crawford, 1914). 

 

 Subfamily Megastigminae 

 Altogether 198 species in 12 genera (Bootanelleus – 13 spp., Bootania Dala Torre, 

1897 – 12 spp., Bootanomyia Girault, 1915 – 22 spp., Bortesia – 3 spp., Ianistigmus Bouček, 

1988 – 1 sp., Macrodasyceras Kamijo, 1962 – 2 spp., Malostigmus Bouček, 1988 – 1 sp., 

Mangostigmus Bouček, 1986 – 3 spp., Megastigmus Dalman, 1820 – 131 spp., 

Neomegastigmus Girault, 1915 – 7 spp., Paramegastigmus Girault, 1915 – 1 sp., Westralianus 
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Bouček, 1988 – 2 spp.) are recognized in this subfamily (Bouček 1988; Grissell 

and Desjardins 2002). 

 Megastigminae are distributed worldwide, but they are most diverse in Australian 

region (Bouček 1988; Noyes 2013). Bouček (1988) listed 8 genera distributed only there and 

two genera (Mangostigmus and Bootania) occur in both, Australian and Oriental regions. 

Macrodasyceras is restricted only to Japan (Grissell and Desjardins 2002) and genus 

Megastigmus shows worldwide distribution (Bouček 1988; Noyes 2013). Recently, all metalic 

coloured palaearctic species of Megastigmus were tranfered to the genus Bootanomyia 

Doğanlar (2011a) sensu Bouček (1988) and also new species of Westralianus from Turkey 

has been described (Doğanlar 2011b). 

 Majority of species of the genus Megastigmus has phytophagous larvae feeding 

in coniferous seeds. There are only few species reported from angiosperm seeds (Auger-

Rozenberg et al. 2006, Grissell 1999). All species of the genus Megastigmus which has been 

previously mentioned as parasitoids of various gallmakers (mostly larvae of Cynipidae), are 

now synonymized with Bootanomyia (Doğanlar 2011a). As it is known (Bouček 1988), there 

are only seedseaters within members of the genus Bootania and Macrodasyceras. 

Bootanelleus has some species which are either parasioids of gall makers or seedeaters. It is 

supposed that Bortesia, Mangostigmus and Neomegastigmus are also parasitoids 

of cecidomyiid larvae in galls. Westralianus altinoezus Doğanlar, 2011 were reared from 

unknown Lepidoptera genus galling on Crataegus monogyna, thus this genus is considered 

as zoophagous (Doğanlar 2011b). Biology of any of species from genera Malostigmus 

and Paramegastigmus is not known. 

 Grissell (1999) speculated that phytophagous strategy could be most primitive 

condition for Megastigminae and wasp species could arose first through gymnosperm, 

radiated to angiosperm seed, then to insects in seed pods and finally to insects in galls. Similar 

studies were not performed, only Auger-Rozenberg et al. (2006) discovered (based on cytb 

and 28S rDNA genes) that species of Megastigmus associated with coniferous seeds are 

monophyletic group, sister to angiosperm feeding group and entomophagous species. 

The only morphological characters of adults, which separate phytophagous genera from 

entomophagous, is non-metallic (respectively metallic) coloration (Bouček 1988). 

 

 Subfamily Toryminae sensu Grissell (1995) 

 As mentioned above, Grissell (1995) made the most comprehensive study 

on Toryminae based on morphology and merged several subfamilies (Erimerinae, 
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Monodontomerinae, Toryminae and Thaumatoryminae) into one subfamily Toryminae 

and divided the latter to seven tribes: Chalcimerini, Microdontomerini, Monodontomerini, 

Palachiini, Podagrionini, Torymini, and Torymoidini. However, some genera were left 

as incertae sedis. Today, we distinguish altogether 55 extant genera and 3 genera which are 

known only from fossil records (Grissell 1995; Janšta et al. 2011, 2013; Noyes 2013). 

 

 Tribe Microdontomerini contains 104 species described in nine genera (Grissell 1995, 

2005; Askew et al. 2007; Doğanlar and Doğanlar 2008; Narendran et al. 2012; Noyes 2013). 

Grissell (1995) suggested tribe Microdontomerini as monophyletic and more closely related 

to Torymoidini and Torymini than to Monodontomerini. It is defined by marginal vein 

2 to 4.5X as long as length of stigmal vein and 1.5 to 2.5X as long as postmarginal vein; 

occipital carina is absent or vaguely indicated. In this tribe following genera are classified: 

Adontomerus Nikolskaja, 1955 – 9 spp., Ditropinotus Crawford, 1907 – 2 spp., 

Eridontomerus Crawford, 1907 – 12 spp., Erimerus Crawford, 1914 – 1 sp., Idarnotorymus 

Masi, 1916 – 2 spp., Idiomacromerus Crawford, 1914 – 42 spp., Microdontomerus Crawford, 

1907 – 24 spp., Ophiopinotus Husain & Kudesia, 1987 – 1 sp., Pseuderimerus Gahan, 1919 – 

11 spp. But since some characters used to separate genera of Microdontomerini (Grissell 

1995) tend to be symplesiomorphic, status of few genera is questioned [i.e. Adontomerus 

and Idiomacromerus (Askew et al. 2007) and Microdontomerus and Idiomacromerus (Grissell 

2005)]. 

 The tribe has mostly holarctic distribution with some genera being only palaearctic 

(Adontomerus, Idarnotorymus and Idiomacromerus). Strictly nearctic genus is Erimerus. 

There are some records of Eridontomerus biroi Ruschka, 1923 from Argentina, but most 

probably it has been introduced by european colonialists (Janšta et al. – in prep.). 

 Questionable are that of Idiomacromerus gallicola (Risbec, 1952) from Afrotropical 

region and I. insuetus (Gahan, 1917) from neotropics, which are most probably either 

introduced or misidentified (Grissell 1995). Ophiopinotus is a controversal genus described 

probably from India, but there is no locality and no type depository mentioned in description 

and probably nobody had seen this taxon since the genus was described (Husain and Kudesia 

1987). Grissell (1995) assigned this genus to the Microdontomerini based on the wing 

venation, no occipital carina and angulate hind femur. 

 Generally, Microdontomerini has very broad host range. Adontomerus 

and Microdontomerus parasitise mostly larvae of bees, caterpillars and larvae of gall wasps 

(Hymenoptera: Cynipidae) in galls (Askew et al. 2004, 2006; Grissell 2005). With some 
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exceptions, larvae of Idiomacromerus are feeding on immature stages of gall-forming insects 

(Nieves-Aldrey et al. 2007; Noyes 2013). There is only one host record of I. gregarius 

(Silvestri, 1943), which recognize it as endoparasitoid of Mengenilla quaesita (Strepsiptera: 

Mengenillidae) (Silvestri 1943). Idiomacromerus iridis (Picard, 1930) is commonly reared 

from egg cases of Iris spp. (Mantodea) in Mediterranean (Janšta pers. obs., Delvare – pers. 

comm). Genera Ditropinotus, Eridontomerus, Erimerus, Pseuderimerus and Idarnotorymus 

are commonly mentioned as parasitoids of gall-forming Eurytomidae (Hymenoptera: 

Chalcidoidea) or Cecidomyiidae (Diptera) in grass stems (Grissell 1995; Burks and Redak 

2004; Janšta and Bouček 2006; Noyes 2013). 

 

 Altogether six genera and 111 species are known in tribe Torymoidini (Grissell 1995; 

Xiao et al. 2007; Xiao and Zhao 2010; Janšta et al. 2011). The tribe is considered being 

monophyletic (Grissell 1995) based on straight anterior metapleural margin and relatively 

long marginal vein (6-12 times longer than stigmal vein and 3-7 times longer than 

postmarginal vein). Grissell (1995) stated that phylogenetic position of this tribe is unclear. 

Characters of some species could shift Torymoidini close to Microdontomerini (to the genera 

Microdontomerus and Idiomacromerus), but the shape of marginal vein and occipital carina 

classify Torymoidini closer to Torymini. Currently, genera Aloomba Girault, 1921 – 1 sp., 

Boucekinus Janšta & Hanson, 2011 – 2 spp., Platykula Huber, 1927 – 1 sp., Pseudotorymus 

Masi, 1921 – 50 spp., Torymoidellus Bouček, 1988 – 1 sp. and Torymoides Walker, 1871 – 56 

spp. are recognized. 

 Species of genera Pseudotorymus and Torymoides have mostly palaearctic or holarctic 

distribution, but some of them are known from Australian region (half of known species 

of the genus Torymoides), Afrotropical, Neotropical and Oriental regions. Genus Aloomba 

and Torymoidellus are known exclusivelly from Australian region and Boucekinus 

and Platykula from neotropics, respectively from Neotropical and Nearctic regions (Bouček 

1988; Janšta et al. 2011). 

 Host range of nearly of all known genera is very wide. However, as it is known most 

of them are parasitoids of larvae of gall-inducing insects from Diptera (mostly Cecidomyiidae 

and Tephritidae) and Hymenoptera (Cynipidae and Eurytomidae). Some species attack larvae 

of Lepidoptera (Grissell 1995). 

 

 There has been described 11 genera and 78 species in tribe Monodontomerini 

(Sureshan and Narendran 1996; Grissell 2000; Zerova and Grissell 2000; Tarla et al. 2010; 
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Janšta et al. 2013). Following genera are classified in this tribe: Amoturoides Girault, 1932 – 2 

spp., Anneckeida Bouček, 1978 – 6 spp., Chileana Janšta & Křížková, 2013 – 4 spp., 

Chrysochalcissa Girault, 1915 – 5 spp., Monodontomerus Westwood, 1833 – 44 spp., 

Oopristus Steffan, 1968 – 3 spp., Perissocentrus Crawford, 1910 – 6 spp., Pradontomerus 

Bouček, 1978 – 1 sp, Rhynchodontomerus Novicky & De Santis, 1961 – 1 sp., Rhynchoticida 

Bouček, 1978 – 5 spp. and Zdenekius Grissell, 1993 – 1 sp. 

 The genus Monodontomerus is mostly distributed in Holarctic region. Amoturoides, 

Anneckeida, Chrysochalcissa and Rhychoticida are spread through Afrotropical, Australian 

and Oriental regions. Oopristus is known from Oriental and Palaearctic region. 

Pradontomerus is distributed only in Afrotropical region. The rest of genera is known only 

from New World. Zdenekius is genus endemic to Nearctic region, while Perissocentrus, 

Rhynchodontomerus and Chileana are distributed only in neotropics (Janšta et al. 2013; 

Noyes 2013). 

The tribe is morphologically defined by marginal vein 4 to 6.5 times the length 

of stigmal vein and 1.5 to 3 times length of postmarginal vein and the occipital carina dorsally 

flat, closer to the occipital foramen than to hind ocelli and touching or nearly touching 

the hypostomal carina at its median point (Grissell 1995, 2000). 

 The most of species of the tribe Monodontomerini (particularly genera 

Monodontomerus, Perissocentrus, Rhychodontomerus, Pradontomerus, part of Amoturoides) 

are exoparasitoids of larvae of solitary aculeate bees, wasps, sawflies and moths including 

their tachinid and ichneumonid parasitoids. Genera like Chrysochalcissa, Oopristus, 

Rhynchoticida and part of Amoturoides are egg parasitoids of various Heteroptera (Coreidae, 

Pentatomidae) or Orthoptera (Tettigonidae). Biology of the genus Anneckeida is still 

unknown (Bouček 1978; Grissell 1992, 1995, 2000). 

 

 Tribe Palachini was desigated by Bouček (1976) and includes 30 species in three 

genera (Grissell 1995; Bouček 1998; Narendran and Peter 2009). Genus Palachia Bouček, 

1970 (25 spp.) and genus Propalachia Bouček, 1978 (3 spp.) are known mostly from 

Afrotropical and Oriental regions while Palachia pulchra Bouček, 1970 is the only species 

known from Palaearctic region. Genus Neopalachia (2 spp.) is distributed in neotropics. 

Biology of species of this tribe is almost unknown. There is only one host records that 

Palachia mangalae Narendran, 1984 was reared from Mantis sp. egg case (Mantodea) 

(Narendran 1984). 
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 Grissell (1995) defined this tribe based on hind femur either narrow with 2 or more 

prominent teeth or enlarged with a row of teeth, hind tibia slightly to noticeably curved 

and with 2 apical spurs, hind-tibial apex truncate or diagonal, propodeum without spiracular 

sulcus or, if present, oriented towards the lateral corner, metasternal shelf present 

and metasomal terga not laterally emarginated. 

 

 The tribe Chalcimerini, firstly proposed by Bouček (1978), is monotypic tribe 

including only single genus with single species – Chalcimerus borceai Steffan & Andriescu, 

1962. Grissell (1995) confirmed his tribal status and defined its following autapomorphies – 

shortened marginal vein subequal in length to the stigmal vein and 0.5 times as long 

as the postmarginal vein, the hind femur enlarged with a single row of ventral teeth, and hind 

tibia greatly curved with apex diagonally truncate and ventrally prolonged into spine with 

1 thickened and truncate spur. Chalcimerus  borceai is ectoparasitoid of cynipids wasps 

(Aylax papaveris and Barbotinia oraniensis) in seed capsules of Papaver dubium 

and P. rhoeas (Bouček 1978; Nieves-Aldrey and Askew 2002; Askew et al. 2006).  

 

 In tribe Podagrionini seven genera and 139 of extant species are classified in total 

(Grissell 1995; Sureshan 2003; Narendran and Sudheer 2004; Delvare 2005; Zhao et al. 2007; 

Doğanlar and Doğanlar 2009; Narendran and Peter 2009; Narendran and Mercy 2010). Most 

of the species from genera of the tribe Podagrionini are spread mainly in tropics except 

for genus Podagrion Spinola, 1811 (96 spp.), which has some species distributed also 

in Holarctic region. Genus Propachytomoides Girault, 1914 (3 spp.) is distributed only 

in Australian region, Mantiphaga Ferrière, 1955 (6 spp.) and Micropodagrion Ferrière, 1955 

(1 sp.) are known only from Afrotropical region, Podagriomicron Narendran & Mercy, 2010 

(1 sp.) only from Oriental region (India), Palmon Dalman, 1825 (20 spp.) has pantropical 

distribution, and Podagrionella Girault, 1913 (12 spp.) is mentioned from paleotropics plus 

few species known from southern Palaearctic region and Australian region. 

 Grissell´s (1995) morfological diagnosis of this tribe is as follows: enlarged hind 

femur with numerous ventral teeth, the greatly curved hind tibia with apex diagonally truncate 

and ventrally prolonged into a spine, and a single hind-tibial spur; the long marginal vein 

3 to 9 times longer than the stigmal vein and 4 to 9 times longer than the postmarginal vein; 

the venter of the antennal club with an area of micropilosity; and metasomal terga 2-4 

laterally and dorsomedially emarginate. 
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 Species of Podagrionini have been repeatedly quoted as parasitoids on mantid eggs 

(Grissell 1995; Delvare 2005). Two host records for Lepidoptera are also mentioned but they 

seem to represent marginal cases compared with the hundreds of available data pointing out 

a specialisation to mantid eggs (Grissell, 1995). 

 

 Up to now, there is ten genera and 416 species included in tribe Torymini (Grissell 

1995; Sureshan 2007, 2010; Xiao et al. 2012; Noyes 2013). But most of them are assigned 

to the genus Torymus Dalman, 1820, where 390 species are presently described (Noyes 2013). 

Two genera, Austorymus Bouček, 1988 (1 sp.) and Ovidia Girault, 1924 (1 sp.) are known 

only from Australia, Allotorymus Huber, 1927 (1 sp.) from Nearctic region, Mesodiomorus 

Strand, 1911 (1 sp.) from Oriental region, Physothorax (10 spp.) and Plesiostigmodes (1 sp.) 

only from neotropics and Lissotorymus Kamijo, 1961 (1 sp.) only from Japan. Ecdamua 

Walker, 1862 (6 spp.) and Odopoia Walker, 1871 (7 spp.) have pantropical distribution with 

one exception, E. nambui Kamijo, 1979, which is known from Palaearctic region (Zavada 

2005; Stojanova and Ghahari 2009). Genus Torymus is distributed worldwide, but most 

of the species are restricted to Holarctic region (Grissell 1995). 

 Genera Diomorus Walker, 1834 and Nannocerus Mayr, 1885 were also treated 

as genera close to Torymus, i.e. classified in tribe Torymini sensu Grissell (1995) historically. 

However, both of these genera were synonymized with Torymus (Bouček 1993; Graham 

and Gijswit 1998), because there was not any morphological synapomorphy to support them 

as separate genera. 

 Genus Diomorus was distinguished from Torymus based only on single morphological 

synapomorphy, the tooth on hind femur, and biology. All species belonged formerly 

to the genus Diomorus are parasitoids of larvae of various aculeates in stems or old galls 

(Graham and Gijswit 1998). However, Bouček (1996) described T. pulcher [later 

synonymized by Zerova et al. (2000) with T. kononovae (Zerova & Seryogina, 1991)] which 

has intermediate morphological characters between genus Torymus and Diomorus. Therefore 

Graham and Gijswit (1998) synonymized Diomorus with Torymus. 

Bouček (1993) also downgraded Nannocerus as subgenus of Torymus which differs 

only by host specifity and no even by any of morphological synapomorphies. All of known 

species of Nannocerus are associated with New World Ficus spp. fruits, which is unique 

strategy within species of the genus Torymus. 

 Biology of most of the genera (i.e. Allotorymus, Austorymus, Mesodiomorus, Odopoia, 

Ovidia, Plesiostigmodes) from tribe Torymini is unknown. Major part of species belonging 
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to the genus Torymus is associtated with galls, where they attack larvae of gall wasps 

(Hymenoptera: Cynipidae) or migde flies (Diptera: Cecidomyiidae) (Graham and Gijswit 

1998; Zavada 2003; Noyes 2013). Some species of the genus Ecdamua are associated 

with nests of wood-boring aculeate wasps (Williams 1928; Zerova and Seryogina 2003), 

and species of Physothorax are associated with Ficus spp. fruits in New World, with only 

P. bidentulus has been confirmed as parasitoid of cecidomyiid larvae (Ficiomyia 

perarticulata) in galls inside Ficus citrifolia fruit (Bouček 1993). 

 Torymini is defined only by one morphological character, the forward projecting 

anterior metapleural margin (Grissell 1995). 

 

 Incertae sedis 

 Some taxa are treated as incertae sedis because they share synapomorphies with more 

than one tribe (Grissell 1995). Altogether eight genera and 22 species are placed as incertae 

sedis within Toryminae (Grissell 1995; Zerova and Seryogina 1999, 2000; Zerova et al. 2004, 

2008; Stojanova 2005). 

 The genera Cryptopristus Förster, 1856 (3 spp.) and Glyphomerus Förster, 1856 

(9 spp.) have holarctic distribution with the majority of species known only from Palaearctic 

region. Larvae of species of the genus Cryptopristus develope as hyperparasitoids on larvae 

of gall-forming Eurytomidae (Chalcidoidea) on grass stems or stem galling Cynipidae 

(Hymenoptera) (Zerova et al. 2008). The most of species of Glyphomerus have been reared 

from galls of Cynipidae associated with Asteraceae, Rosaceae, and Lamiaceae. Some species 

are known also as hyperparasitoids on larvae of gall-forming Eurytomidae. 

 Exopristus Ruschka, 1923 (1 sp.), Exopristoides Bouček, 1982 (2 spp.) 

and Thaumatorymus Ferrière & Novicky, 1954 (1 sp.) are strictly palaearctic genera. 

Exopristoides was synonymized by Grissell (1995) as Exopristus, but latter regarded 

as a valid genus which differs in structures on antennae, scutellum and gaster tergites (Zerova 

et al. 2004). The only one species in the genus, Exopristus trigonomerus (Masi, 1916), is 

known as parasitoid in various galls on Papaver sp. (Papaveraceae), Verbascum sp. 

(Scrophulariaceae) and Centaurea spp. or Cirsium sp. (Asteraceae) (Grissell 1995; Zerova 

et al. 2008). The genus Exopristoides is reported from Aylacini galls (Hymenoptera: 

Cynipidae) on stems of Phlomis tuberosa (Lamiaceae) and Hypecoum imberbe 

(Papaveraceae) (Askew et al. 2004; Zerova et al. 2004; Stojanova 2005). The only known host 

of Thaumatorymus notanisoides is Phanacis hypochoeridis (Cynipidae: Aylacini) 

on Hypochaeris sp. (Bouček 1977; Askew et al. 2004). 
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 Genus Echthrodape Burks, 1969 (2 spp.) is distributed in Australian and Afrotropical 

regions with one species reported as developing on larvae of Braunsapis sp. (Apidae) in dead 

stems (Burks 1969). Genus Stenotorymus Masi, 1938 (1 sp.) is known from Afrotropical 

and Oriental regions. There is not any host record on that genus (Grissell 1995). Genus 

Zaglyptonotus Crawford, 1914 (3 species) has New World distribution. Some species of this 

genus were reported from galls of Tephritidae (Diptera) in flower heads of Asteraceae 

(Sharkey et al. 1987). 

 

 Classification mentioned above is after Grissell (1995) and is generally accepted 

(Janšta et al. 2011, 2013; Munro et al. 2011; Heraty et al. 2013; Noyes 2013). However, 

Zerova and Seryogina (2003) distinguished only three tribes based on Ukrainian fauna 

(Podagrionini, Monodontomerini and Torymini) instead of six published before (Grissell 

1995). Tribe Podagrionini (sensu Zerova and Seryogina 2003) includes genera Podagrion 

and Chalcimerus based on curved hind tibia and hind femur with a row of teeth on hind 

margin, tribe Monodontomerini includes Ameromicrus [Torymoides sensu Grissell (1995)], 

Cryptopristus, Eridontomerus, Exopristus, Glyphomerus, Idarnotorymus, Idiomacromerus, 

Microdontomerus, Monodontomerus, Pseuderimerus, Pseudotorymus, and Torymoides 

[i.e. tribes Microdontomerini, Monodontomerini, Torymoidini and 2 genera placed as incertae 

sedis after Grissell (1995)] and to the tribe Torymini were assigned genera Torymus 

and Diomorus [previously synonymized with Torymus (Graham and Gijswit 1998; Zerova 

et al. 2000)]. Morphological synapomorphies supporting these tribes used by Zerova 

and Seryogina (2003) are the straigth margin of metapleuron for Monodontomerini versus 

forward projected anterior metapleural margin for Torymini. 

 

 

Immature stages of Torymidae and its phylogenetic implications 

 There exists little information about larval morphology of Torymidae and its potential 

use for phylogenetical studies. First more comprehensive studies were provided by Parker 

(1924) and Parker and Thompson (1925), who described eggs and larval stages for several 

various Chalcidoidea species including Podagrion pachymerum, Ditropinotus aureoviridis, 

Torymus nr. phyllyreae, T. druparum, Megastigmus dorsalis (all Torymidae). Latter, a general 

description of larval morphology of the family Torymidae (Finlayson and Hagen 1977) 

and then more detailed with some physiological notes on several species from different tribes 

of Torymidae (Sellenschlo 1982, 1983, 1984, 1989) were provided. Moreover, there is several 
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studies dealing with larval – different stages (and sometimes eggs) morfology of individual 

species (Askew 1961, 1966, 2002; Skrzypczyńska and Roques 1987; Askew et al. 2004, 2007; 

Nieves-Aldrey et al. 2007). But none of these authors used larval morphological data 

for phylogeny. 

 However, Gómez et al. (2008) provided first comparative morphological study 

and reconstructed phylogeny based on terminal-instar larvae of 22 species of Torymidae 

belonging to two subfamilies (Toryminae and Megastigminae) and four tribes 

(Microdontomerini, Torymoidini, Torymini and Chalcimerini). Larval morphology did not 

confirm monophyly of the family Torymidae as was postulated (Grissell 1995; Heraty et al. 

2013) and proposed it as two non-related but monophyletic subfamilies. 

 Larvae of Toryminae differs at least in three unique chracters from Megastigminae 

(Gómez et al. 2008). Furthermore, zoophagous species of Megastigmus have 

an autapomorphic character state, the presence of a medial frontal pit, which was mentioned 

before (Askew 1966; Nieves-Aldrey et al. 2008) and is not found in any of zoophagous 

species of Chalcidoidea. Larval morphology is useful for generic classification, neverthless 

only the tribe Microdontomerini and Chalcimerini were supported as monophyletic. 

 

 

Fossil evidence 

 One of the first fossils had been mentioned by Brues (1910) from Miocene Florissant 

shale in Colorado. He described four species in genus Paleotorymus (P. aciculatus Brues, 

1910, P. laevis Brues, 1910, P. striatus Brues, 1910 and P. typicus Brues, 1910) and Torymus 

bruesi (Brues, 1910) – transfered from the preoccupied species T. sackeni (Grissell 1976). But 

Grissell (1995), who re-examined more carefully all type specimens, distinguished that some 

specimens of P. typicus appear not to be the same taxon. At least holotypes of P. typicus 

and P. laevis seem to be genus Monodontomerus or some Diomorus species (now 

synonymum of the genus Torymus) according to wing venation. The two other species could 

be considered as members of family Pteromalidae upon wing venation (Grissell 1995). Heraty 

and Darling (2009) transferred one more species formerly described from compression fossils 

(Rubielos de Mora Basin, Spain) by Peñalver and Engel (2006) as Perilampus renzii Peñalver 

& Engel, 2006 to this genus. According to Heraty and Darling (2009) the wing venation 

of P. renzii is consistent with Grissell´s (1995) concept of Monodontomerini 

and Paleotorymus. 
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 Latter, Brues (1923) described Monodontomerus primaveus Brues, 1923 from Baltic 

amber. This is only one fossil species in that genus which includes 44 extant species. 

 Two other genera are known from Dominican amber (Grissell 1980). Gummilumpus 

bouceki (Grissell, 1980) is assigned to the tribe Palachiini and Zophodetus woodruffi Grissell, 

1980 seems to be very similar to Microdontomerus and tribe Microdontomerini (Grissell 

1995). 

 Species Palmon bellator Dalman, 1825 and Podagrion capitellatum (Dalman, 1825) 

and P. clavellatum (Dalman, 1825) were described from Gum copal inclusion (Dalman 1835), 

but unfortunately without type locality specified (Grissell 1995) and therefore does not allow 

consequent studies. 
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3. Summary of papers 

Paper I 

MUNRO J. B., HERATY J. M., BURKS R. A., HAWKS D., MOTTERN J., CRUAUD A., RASPLUS J.-

Y. & JANSTA P. 2011: A Molecular Phylogeny of the Chalcidoidea (Hymenoptera). PLOS 

One 6: e27023. DOI: 10.1371/journal.pone.0027023. 

Chalcidoidea (Hymenoptera) are extremely diverse with more than 23,000 species described 

and over 500,000 species estimated to exist. This is the first comprehensive phylogenetic 

analysis of the superfamily based on a molecular analysis of 18S and 28S ribosomal gene 

regions for 19 families, 72 subfamilies, 343 genera and 649 species. The 56 outgroups are 

comprised of Ceraphronoidea and most proctotrupomorph families, including 

Mymarommatidae. Data alignment and the impact of ambiguous regions are explored using 

a secondary structure analysis and automated (MAFFT) alignments of the core and pairing 

regions and regions of ambiguous alignment. Both likelihood and parsimony approaches are 

used to analyze the data. Overall there is no impact of alignment method, and few but 

substantial differences between likelihood and parsimony approaches. Monophyly 

of Chalcidoidea and a sister group relationship between Mymaridae and the remaining 

Chalcidoidea is strongly supported in all analyses. Either Mymarommatoidea or Diaprioidea 

are the sister group of Chalcidoidea depending on the analysis. Likelihood analyses place 

Rotoitidae as the sister group of the remaining Chalcidoidea after Mymaridae, whereas 

parsimony nests them within Chalcidoidea. Some traditional family groups are supported 

as monophyletic (Agaonidae, Eucharitidae, Encyrtidae, Eulophidae, Leucospidae, 

Mymaridae, Ormyridae, Signiphoridae, Tanaostigmatidae and Trichogrammatidae). Several 

other families are paraphyletic (Perilampidae) or polyphyletic (Aphelinidae, Chalcididae, 

Eupelmidae, Eurytomidae, Pteromalidae, Tetracampidae and Torymidae). Evolutionary 

scenarios discussed for Chalcidoidea include the evolution of phytophagy, egg parasitism, 

sternorrhynchan parasitism, hypermetamorphic development and heteronomy. 

Paper II 

HERATY J. M., BURKS R. A., CRUAUD A., GIBSON G. A. P., LILJEBLAD J., MUNRO J., RASPLUS 

J.-Y., DELVARE G., JANŠTA P., GUMOVSKY A., HUBER J., WOOLLEY J. B., KROGMANN L., 

HEYDON S., POLASZEK A., SCHMIDT S., DARLING D. C., GATES M. W., MOTTERN J., MURRAY 
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E., DAL MOLIN A., TRIAPITSYN S., BAUR H., PINTO J. D., VAN NOORT S., GEORGE J. & YODER 

M. 2013: A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 

29(5): 466-542. 

Chalcidoidea (Hymenoptera) is extremely diverse with an estimated 500 000 species. We 

present the first phylogenetic analysis of the superfamily based on both morphological 

and molecular data. A web-based, systematics workbench mx was used to score 945 character 

states illustrated by 648 figures for 233 morphological characters for a total of 66 645 

observations for 300 taxa. The matrix covers 22 chalcidoid families recognized herein 

and includes 268 genera within 78 of 83 subfamilies. Morphological data were analysed alone 

and in combination with molecular data from ribosomal 18S (2105 bp) and 28S D2–D5 

expansion regions (1812 bp). Analyses were analysed alone and in combined datasets using 

implied-weights parsimony and likelihood. Proposed changes in higher classification resulting 

from the analyses include: (i) recognition of Eriaporidae, revised status; (ii) recognition 

of Cynipencyrtidae, revised status; (iii) recognition of Azotidae, revised status; (iv) inclusion 

of Sycophaginae in Agaonidae, revised status; (v) reclassification of Aphelinidae to include 

Aphelininae, Calesinae, Coccophaginae, Eretmocerinae and Eriaphytinae; (vi) inclusion 

of Cratominae and Panstenoninae within Pteromalinae (Pteromalidae), new synonymy; (vii) 

inclusion of Epichrysomallinae in Pteromalidae, revised status. At a higher level, 

Chalcidoidea was monophyletic, with Mymaridae the sister group of Rotoitidae plus 

the remaining Chalcidoidea. A eulophid lineage was recovered that included Aphelinidae, 

Azotidae, Eulophidae, Signiphoridae, Tetracampidae and Trichogrammatidae. Eucharitidae 

and Perilampidae were monophyletic if Eutrichosomatinae (Pteromalidae) was included, 

and Eupelmidae was monophyletic if Oodera (Pteromalidae: Cleonyminae) was included. 

Likelihood recovered a clade of Eupelmidae + (Tanaostigmatidae + (Cynipencyrtus 

+ Encyrtidae). Support for other lineages and their impact on the classification 

of Chalcidoidea is discussed. Several life-history traits are mapped onto the new phylogeny. 

Paper III 

JANŠTA P., VILÍMOVÁ J. AND HANSON P. 2011: Description of a new genus, Boucekinus 

(Hymenoptera: Chalcidoidea: Torymidae), with two new species and a discussion of its 

possible phylogenetic placement. Zootaxa 2762: 49-55. 
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Boucekinus gen. nov. and two new species, B. masneri sp. nov. from Ecuador and B. tatianae 

sp. nov. from Costa Rica, are described; B. tatianae is designated as the type species. 

Boucekinus tatianae was reared from cecidomyiid galls on Anemopaegma chrysoleucum 

(Bignoniaceae) and B. masneri was collected by canopy fogging. The placement of this new 

genus within Torymidae is discussed. 

Paper IV 

JANŠTA P., KŘÍŽKOVÁ B., VILÍMOVÁ J., RASPLUS J.-Y. 2013: Description of a new genus, 

Chileana (Hymenoptera: Chalcidoidea: Torymidae), with four new species. Zootaxa 3745: 

49-63. 

Chileana Janšta & Křížková gen. nov. and four new species, C. cyanea Janšta & Křížková sp. 

nov., C. maculata Janšta & Křížková sp. nov., C. tricarinata Janšta & Křížková sp. nov. 

And C. penai Janšta & Křížková sp. nov., all from Chile, are described. The placement of this 

new genus within the tribe Monodontomerini is discussed and several characters suggest 

a close relationship to Zaglyptonotus. 

Paper V 

JANŠTA P., CRUAUD A., DELVARE G., HERATY J., RASPLUS J.-Y.: Molecular phylogeny of the 

family Torymidae (Hymenoptera: Chalcidoidea). Manuscript prepared for submission 

to Cladistics. 

We present the first molecular phylogenetic analysis of the family Torymidae (Hymenoptera: 

Chalcidoidea) using 4809 nucleotides from 5 genes (18S rDNA, 28S rDNA, EF1α, COI 

and Wg). Ten outgroups and 226 ingroup taxa were used, representing 45 of the 67 

recognized genera in the 2 known subfamilies of Torymidae (Megastigminae and Toryminae). 

All analyses produced similar topologies, and based on only molecular data, Torymidae is not 

a monophyletic group and Megastigminae is sister to Ormyridae ((Ormyridae 

+ Megastigminae) + Toryminae). Most of the tribes recognized by morphological characters 

within the subfamily Toryminae were supported by our results (i.e. Chalcimerini, 

Microdontomerini, Monodontomerini, Torymini, Torymoidini and Palachiini + Podagrionini). 

Two new tribes of Torymidae are erected: Boucekini, trib. nov. and Glyphomerini, trib. nov. 

As presently understood, the genus Glyphomerus is paraphyletic and 7 other genera classified 

as incertae sedis based on earlier studies of morphology were assigned to specific tribes 

(i.e. Cryptopristus, Echthrodape, Exopristoides, Exopristus and part of Glyphomerus 

to Microdontomerini; Thaumatorymus to Chalcimerini; Zaglyptonotus to Monodontomerini). 
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Life-strategies, hosts records and distribution of all taxa were mapped onto the reconstructed 

phylogeny. The larvae of Toryminae are ectoparasitoids of gall-forming insects 

in the Palaearctic region with several derived traits throughout the Toryminae phylogeny. 

The life strategy, hosts and distribution of the common ancestor of Megastigminae remains 

uncertain. 
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Abstract

Chalcidoidea (Hymenoptera) are extremely diverse with more than 23,000 species described and over 500,000 species
estimated to exist. This is the first comprehensive phylogenetic analysis of the superfamily based on a molecular analysis of
18S and 28S ribosomal gene regions for 19 families, 72 subfamilies, 343 genera and 649 species. The 56 outgroups are
comprised of Ceraphronoidea and most proctotrupomorph families, including Mymarommatidae. Data alignment and the
impact of ambiguous regions are explored using a secondary structure analysis and automated (MAFFT) alignments of the
core and pairing regions and regions of ambiguous alignment. Both likelihood and parsimony approaches are used to
analyze the data. Overall there is no impact of alignment method, and few but substantial differences between likelihood
and parsimony approaches. Monophyly of Chalcidoidea and a sister group relationship between Mymaridae and the
remaining Chalcidoidea is strongly supported in all analyses. Either Mymarommatoidea or Diaprioidea are the sister group
of Chalcidoidea depending on the analysis. Likelihood analyses place Rotoitidae as the sister group of the remaining
Chalcidoidea after Mymaridae, whereas parsimony nests them within Chalcidoidea. Some traditional family groups are
supported as monophyletic (Agaonidae, Eucharitidae, Encyrtidae, Eulophidae, Leucospidae, Mymaridae, Ormyridae,
Signiphoridae, Tanaostigmatidae and Trichogrammatidae). Several other families are paraphyletic (Perilampidae) or
polyphyletic (Aphelinidae, Chalcididae, Eupelmidae, Eurytomidae, Pteromalidae, Tetracampidae and Torymidae).
Evolutionary scenarios discussed for Chalcidoidea include the evolution of phytophagy, egg parasitism, sternorrhynchan
parasitism, hypermetamorphic development and heteronomy.
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Introduction

Chalcidoidea (Hymenoptera) are minute wasps that generally

range in size from 1-4 mm, with the smallest only 0.11 mm and

the largest up to 45 mm. With an estimated diversity of up to

500,000 morphologically distinct species and an even larger

number of cryptic species possible [1,2,3,4], this superfamily is

likely the most diverse group of insects. While several families are

phytophagous (e.g. all Agaonidae; some Eurytomidae, Eulophidae,

Pteromalidae, Tanaostigmatidae and Torymidae), most chalcid

wasps are parasitoids. They attack immature and adult stages of

virtually all insect orders, but have their greatest diversification on

the Hemiptera and Holometabola. Because the individual host is

killed as a result of parasitoid development, many chalcid species

are successfully used as biological control agents of agricultural

and ornamental pests (e.g. Aphelinidae and Encyrtidae) [3]. Both

economically and ecologically Chalcidoidea have tremendous

importance in both natural and managed ecosystems.

Despite their importance, our understanding of their taxonomy

and evolutionary relationships is clearly wanting. Partly because of

their small size, they are difficult to collect and study, and only

about 23,000 species have been described [4]. Nineteen families

are currently recognized, with their diversity spread across as

many as 80-89 subfamilies, in many cases without consensus on

their higher-level placement.

Chalcidoidea and their proposed sister group Mymarommatoi-

dea first appear in mid Cretaceous amber deposits (Mymaridae)

[5,6,7]. Most extant lineages do not appear until the Eocene,

suggesting an extremely rapid post-Cretaceous radiation [6].

However, the presence of Eulophidae and Trichogrammatidae in

Late Cenomanian amber from Ethiopia pushes chalcidoid

diversification back to the mid Cretaceous, about 93–95 Mya [8].

Synapomorphies uniting most of the members of Chalcidoidea

include an exposed prepectus, positioning of the mesothoracic

spiracle on the lateral margin of the mesoscutum, wing venation

reduced to submarginal, marginal, stigmal, and postmarginal

veins, and the presence of multiporous plate sensilla on one or

more of the antennal flagellomeres [9,10]. Molecular evidence

places Chalcidoidea as a monophyletic group nested within a

monophyletic Proctotrupomorpha and as the sister group to either

Diaprioidea or Mymarommatoidea [11,12,13], but see Shara-

nowski et al. [14] for an alternate proposal for Ceraphronoidea as

the sister group.

Both morphological and molecular evidence place Mymaridae

as the sister group of the rest of Chalcidoidea [10,11,13]. A few

intuitive hypotheses of relationships within the superfamily have
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been proposed based on limited morphological justification

[5,15,16]. However, for relationships within Chalcidoidea, there

has not been a morphology-based cladistic analysis across more

than just a few inclusive families [9]. A few molecular analyses

have addressed relationships broadly across the superfamily, but

these have used relatively few taxa to represent such a diverse

group [17,18].

Herein we present the first comprehensive phylogenetic analysis

of relationships within the Chalcidoidea using 18S rDNA and the

28S rDNA D2–D5 expansion regions sampled across 722 taxa.

The diversity of the superfamily is addressed by the inclusion of 72

subfamilies and 343 genera. Data were aligned according to a

secondary structural model, which allows for the unambiguous

partitioning of data into conserved regions and regions of

ambiguous alignment [19,20,21]. Different optimizations of the

alignment using MAFFT [22] are analyzed to compensate for

potential alignment artifacts and increase phylogenetic resolution.

Our analysis provides a new framework for evaluating the

composition and relationships of major groups and hopefully will

lead to a better understanding of their evolution.

Materials and Methods

Taxonomic sampling and specimen vouchering
Sequences were obtained for 722 taxa, with 56 outgroups and

666 ingroups (Table S1). Chalcidoidea are represented by all 19

families, 72 subfamilies, 343 genera and 649 species. Most species

are represented by a single specimen; however, to remove any

doubt of sequencing error, additional individuals of some species

that were difficult to place within any expected grouping (e.g.,

Idioporus, Cynipencyrtus and Diplesiostigma) were sequenced. Outgroup

taxa included exemplars of Ceraphronoidea (Ceraphronidae and

Megaspilidae), Cynipoidea (Cynipidae, Figitidae, Ibaliidae and

Liopteridae), Diaprioidea (Diapriidae, Maamingidae and Mono-

machidae), Mymarommatoidea (Mymarommatidae), Platygastroi-

dea (Platygastridae) and Proctotrupoidea (Heloridae, Pelecinidae,

Proctotrupidae, Roproniidae and Vanhorniidae). In the present

manuscript we follow the family and subfamily classification of

Chalcidoidea of Noyes [4], with additional resolution from the

following: Agaonidae follows Cruaud et al. [23], Aphelinidae

follows Hayat [24], Chalcididae follows Bouček and Delvare [25]

and Narendran [26]; Cleonyminae follows Gibson [27], Euchar-

itidae follows Heraty [28], Eulophidae follows Burks et al. [29];

Pteromalidae follows Bouček [30], Delucchi [31], Graham [32]

and Hedqvist [33], Toryminae follows Grissell [34], and

Trichogrammatidae follows Owen et al. [35].

The majority of taxa were sequenced and vouchered at the

University of California Riverside (UCR). Additional sequences

were provided by co-authors (AC and JYR: Agaonidae and some

Pteromalidae; PJ: Torymidae), the HymAToL project (various

outgroup taxa), Matt Yoder (NC State University; various

outgroup taxa), and Andy Austin (University of Adelaide; various

outgroup taxa). See Table S1 for a complete listing of contributed

sequences and voucher locations. Taxa sequenced at UCR are

represented by either a primary (remains of actual specimen

sequenced) or secondary (compared specimen from same collec-

tion series) specimen voucher. UCR voucher specimens were each

assigned a unique UCRC_ENT Museum identification number

and barcode. Additional voucher information is housed in a

FileMaker Pro database at UCR developed by JM, and is available

on request. UCR vouchers were imaged using a GT-Vision

automontage system, with images deposited on MorphBank 4.0

(http://www.morphbank.net/).

DNA Extraction, Amplification and Sequencing
Genomic DNA extraction at UCR followed a modified version

of the ChelexH protocol [36]. Primer sequences for PCR

amplification of 18S rDNA and the 28S rDNA D2, D3 and

D4+D5 expansion regions are provided in Table 1. Herein, the

amplified regions shall be referred to simply as 18Sa-c, D2, D3 and

D4+D5. In some cases, a shorter version of 18Sb was amplified

with internal primers (18Si, Table 1). Amplification and

sequencing followed established protocols at UCR [37]. UCR

sequencing was conducted at the San Diego State University

Microchemical Core Facility or the UCR Genomics Core Facility.

Protocols for the Rasplus lab sequences follow Cruaud et al. [23].

Sequence verification was conducted by comparing forward and

reverse sequences. All sequences are deposited on Genbank (Table

S1).

Secondary structure alignment
Sequences were manually aligned using secondary structure

models following Deans et al. [38] and Gillespie et al.

[20,21,39,40]. The 18Sa fragment began three bases (TAC) prior

to the core helix H9 and included the variable regions V1 and V2

and ended with helix H39’. Fragment 18Sb began four bases

(AUAA) prior to the core helix H406a (CGAUACGGGACUC),

and included the variable regions V3, V4 (expansion region E23-1

through E23-14) and V5, and ended with core helix H960’, just

prior to V6. 18Sc began with a conserved loop (AAACCTCA),

which preceded H984 and ended with the conserved loop (TGA)

between H1506 and H1506’, and included regions V6–V9.

Amplification of the 28S rDNA D2, D3 and D4+D5 expansion

regions began a single base (C) prior to helix H375 (GGGUUGC)

in the core region preceding D2 and terminated 2 bases following

helix H976 (UGG), subsequent to D5. The final alignment

contained 545 blocks of data, which accounted for base-pairing

helices and their prime, ambiguously-pairing regions of expansion

and contraction (REC), ambiguously-pairing regions of slipped-

strand compensation (RSC), non-pairing yet highly conserved

loops, and non-pairing and variable loop regions of ambiguous

Table 1. Primer sequences.

Primer Name Primer Sequence Reference

28S D2-3551 F 59 - CGT GTT GCT TGA TAG TGC AGC - 39 [17]

28S D3-4046 F 59 - GAC CCG TCT TGA AAC ACG GA - 39 [134]

28S D2-4057 R 59 - TCA AGA CGG GTC CTG AAA GT - 39 [37]

28S D3-4413 R 59 - TCG GAA GGA ACC AGC TAC TA - 39 [134]

28S D5-4625 R 59 - CCC ACA GCG CCA GTT CTG CTT ACC - 39 [135]

18Sa-1 F 59 - TAC CTG GTT GAT CCT GCC AGT AG - 39 [135]

18Sb-441 F 59- AAA TTA CCC ACT CCC GGC A -39 [11]

18Sa-591 R 59- G AAT TAC CGC GGC TGC TGG -39 [135]

18Si-673 F 59- ATC GCT CGC GAT GTT TAA CT -39 [11]

18Si-905 R 59- AGA ACC GAG GTC CTA TTC CA -39 [11]

18Sc-1204 F 59 - ATG GTT GCA AAG CTG AAA C - 39 [135]

18Sb-1299 R 59- TGG TGA GGT TTC CCG TGT T - 39 [11]

18Sc-1991 R 59 - GAT CCT TCC GCA GGT TCA CCT AC - 39 [135]

28S primers are named for the relative structural position of the primer (next
expansion region in direction of primer), for 18S and 28S their complementary
59 start position in D. melanogaster [131,132,133], and whether designated as a
forward (F) or reverse (R) primer.
doi:10.1371/journal.pone.0027023.t001
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alignment (RAA). For the purposes of this paper, we treat all three

of these regions together as RAA regions.

Comparison between secondary structure and
algorithmically generated alignments

Two important aspects of the dataset led us to compare the

results obtained with various alignment strategies. First, we are

confident of the alignment in the conserved stem-based and core

regions; however vagaries of the secondary structure model lead to

some local alignments that might not be optimal based on exact

pairing of compensatory base changes. Second, distribution and

size of RAAs are variable across Chalcidoidea. For such a large

matrix, by-eye alignment of these highly-variable ambiguous

regions from distantly related taxa is hard to justify. However,

these RAAs can be locally informative [11,29] and we prefer not

to exclude them from our analyses. To test different optimizations

of our secondary structure alignment and the impact of RAAs, we

created two submatrices: one including the conserved stem-based

and core regions and another including the regions of ambiguous

alignment.

The core secondary structure-derived (SS) submatrix was

created by manually removing regions of ambiguous alignment

(RAAs), leaving only the structurally aligned helices, core regions,

and conserved blocks. As alluded to previously, not all loops are

‘highly variable’ and conserved non-pairing regions, including

some loops found in the core, were retained in the SS submatrix.

The second submatrix (RAAs) included the regions of

ambiguous alignment sensu lato (RAAs, REC, RSCs, and unnamed

blocks). An initial 77 regions of ambiguous alignment were

identified. Where RECs and their pairing primes bounded an

RAA, the blocks were concatenated. Additionally, REC 4 H3q,

RAA 24 loop 9, REC 4’ H3q’, and RAA 25 were concatenated

into a single block. Concatenation reduced the number of isolated

RAA regions from 77 to 55. Each of these regions was aligned

independently and re-included in the corresponding gene region

for each of the following datasets.

Sixteen datasets were constructed from these submatrices

(Table 2) that can be grouped into four categories: 1) SS submatrix

without RAAs; 2–7) SS combined with algorithm-aligned RAAs;

8–10) algorithm-aligned SS submatrix without RAAs; 11–13)

algorithm-aligned SS submatrix and algorithm-aligned RAAs, and

14–16) algorithm-aligned dataset in which the SS and RAA

submatrices were not treated separately, but with each of the 6

gene regions individually isolated and independently algorithm-

aligned.

Automated alignments were performed with MAFFT

[22,41,42]. Both the online server (v.6) and the downloadable

program (v.6.244b) were used to create initial alignments that

utilized the following MAFFT algorithms: E-INS-i, G-INS-i and

L-INS-i. Alignments for each partition (core region and each of

the 55 regions of ambiguous alignment taken independently) were

generated using the default settings (gap opening penalty = 1.53

and offset value = 0.00).

The RAAs were aligned both with and without a guide tree that

was generated using the SSNR (core with no RAA) dataset. Our

purpose for using a guide tree was to optimize local alignments for

each of the RAAs within terminal clusters of independently

recognized taxa grouped through analysis of the SSNR, thus

aligning nearest neighbors, as opposed to aligning disparate taxa

across the entire dataset without any prior grouping. Maximum

likelihood (ML) analyses of this dataset were conducted with

RAxML v.7.2.7 using a partitioned GTR+C model [43] on the

Teragrid cluster, Abe [44] via the CIPRES portal V2.2 [45]. We

used 1000 rapid bootstrap (BS) replicates for each run, with initial

tests using the autoMRE criterion [46] showing 350 BS to be

adequate. A GTRCAT approximation of models was used for ML

bootstrapping [47]. Ten RAxML analyses utilizing different

starting seeds were executed, followed by ML optimization to

find the best-scoring tree. The 10 resulting trees were used to

generate a strict consensus tree that was converted to a MAFFT-

readable guide tree with the script newick2mafft.rb (http://mafft.

cbrc.jp/alignment/software/treein.html). This guide tree was

implemented in the MAFFT alignments of the isolated RAAs

utilizing the E-INS-i, G-INS-i and L-INS-i algorithms (SSGE,

SSGG and SSGL, Table 2).

The secondary structure-derived matrix with MAFFT-aligned

RAA regions (SSME) is deposited on Texas A&M’s Parasitic

Hymenoptera Research Labs’ jRNA Secondary Structure and its

Phylogenetic Implications website (available through http://

hymenoptera.tamu.edu/rna/) and as Supplemental Nexus File

S1. The 15 remaining datasets, with and without RAA regions, are

available from JMH upon request.

Dataset partitioning
Sequences were partitioned into six gene regions 18Sa, 18Sb,

18Sc, D2, D3, and D4+D5, with each partition including their

respective aligned RAA regions. The 18Sa-c partitions were

defined simply as the region sequenced, inclusive of the primers

used. The 28S rDNA expansion regions are also contiguous, being

bounded on either side by core sequence, which was amplified in

the PCR reaction. The decision as to where to define the end of

D2 and start of D3 and likewise, the end of D3 and start of

D4+D5, was arbitrarily made to fall within the core regions

between the expansion regions. The helix H1a’ (UUUCAGG),

was assigned to mark the end of D2; while the un-named, non-

pairing block of sequence (AC), which follows helix H1a’ and

proceeds helix H563 (CCGU) marked the start of D3. Helix H812

(CCCUCC) was assigned to mark the end of D3, while the un-

named, non-pairing block of sequence (GAAG), which follows

helix H812 and precedes helix H822 (UUUCC), marks the start of

D4+D5.

Phylogenetic analyses
Maximum Likelihood (ML) analyses and associated boot-

strapping (BS) were conducted on the 16 datasets with RAxML

v.7.2.7 using a partitioned GTR+C model [43] on the Teragrid

cluster, Abe [44] via the CIPRES portal V2.2 [45]. A GTRCAT

approximation of models was used for ML bootstrapping [47]. To

accommodate parameter variation in separate runs [48], 10

analyses were conducted using different seed numbers and 1000

rapid bootstrap (BS) replicates, with the tree with the best known

likelihood (BKL) score chosen from among these sets. For

comparison of alignments strategies, we examined the number of

parsimony informative and uninformative sites, overall length, and

the number of step changes mapped with PAUP 4.0* [49] onto

each tree using the SSME dataset. The SSME dataset was chosen

for the Parsimony analysis, because it provided what we

considered to be the optimal results in terms of clade retention

and used both the SS and RAA submatrices.

The parsimony analysis of the SSME dataset was conducted

with TNT v.1.1 [50,51]. Heuristic searches were performed using

a New Technology Search with default settings, except for using a

sectorial search, ratchet weighting probability of 5% with 50

iterations, tree-drifting of 50 cycles, tree-fusing of 5 rounds, and

best score hit of 10 times, followed by swapping to completion on

all trees found. Nodal supports were calculated using 1000

standard bootstrap replicates.

Phylogeny of Chalcidoidea
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To be consistent with our interpretation of bootstrap percentage

(BP), we use the following scale: a bootstrap percentage of $90%

is considered very strong, 80–89% means strong, 70–79% means

moderate, and 50–70% means low bootstrap support.

To better track relationships, each taxon includes a prefix which

is an abbreviation of it family-group (c.f. Table 3, S1), and the

suffix includes the DNA voucher code and letters correponding to

the gene regions sequenced, corresponding to the three regions of

18S (tuv), 28S-D2 (x), D3 (y) and D4-5 (z).

Results

Alignment models, tree length and clade support
Summaries of the 16 datasets generated from the two

submatrices are presented in Table 2. The core region (SS) was

2996 bp in length and only slightly shorter than the MAFFT

alignment of the same data (3,024–3,025 bp), with the differences

accumulated mostly in the 28S D2 region. The application of the

guide tree to the RAAs produced the longest alignment (4,369–

4,536 bp) with the greatest impact on the length of the 28S D2 and

D3 regions. Application of the guide tree greatly increased the

number of parsimony informative sites (1,675–1,773 bp), the

number of uninformative (autapomorphic) sites (550–565 bp), and

had the greatest impact on tree length using the SSME dataset as a

metric (32,220–32,236 steps) (Table 2). The MAFFT aligned

RAAs without a guide tree were added to both the core region

(SSME, SSMG and SSML) and to the MAFFT alignment of the

core region (MEME, MGMG and MLML). Using mapped state

changes and the SSME metric, the core + no guide tree RAAs

datasets produced the shortest tree topologies (31,951–31,957

steps). Both the alignment length, and the RAxML best score

differed very little within the different MAFFT variants of each

alignment model. The MAFFT alignment of all data without

regard to partition (MESR, MGSR and MLSR) produced an

alignment of intermediate length (4,099–4,139 bp).

Phylogenetic Analyses. A summary of supported clades

across six of the 16 analyses is presented in Tables 3 and 4, along

with a summary of the .50% majority rule consensus support

(MJR) across all 16 best known likelihood (BKL) RAxML trees.

We present the BKL tree from the SSME RAxML result (Figs 1–

7), with the caveat that this represents only one summary of

relationships found within Chalcidoidea. The clade support tables

are a better representation of the support for traditional subfamily

and family groups (Table 3) and for some higher-level relationships

(Table 4). When present, bootstrap support on Figures 1–7

generally corresponds with support across all analyses.

Surprisingly, there was little impact of alignment strategy (SS or

MAFFT) on the results, except for a slight increase in support for

various clades at all levels with the inclusion of RAAs (core and

RAA, Tables 3, 4).

Interestingly, the automated (MAFFT) alignments of all data

were comparable in clade support to any of the divided alignment

strategies based on recognizing the core and stem data. There was

slightly better clade support using G-INS-i when applied to data

that included RAAs.

Informativeness of RAAs
Within 28S and 18S, distinct structural differences occur

between RAA regions for the outgroups, Mymaridae, and the

remaining Chalcidoidea taxa. For example, RAA(11) shows a

pattern of increase in the number of bases and an associated

decrease in degree of conservation for Chalcidoidea in comparison

to the outgroup taxa (Fig. 8). Alternatively, RAA(15) reduces to a

single nucleotide for Chalcidoidea, with the exclusion of

Table 2. Alignment strategies for use of secondary structure and MAFFT alignments of both core/stem (SS) and ambiguous (RAA)
regions.

dataset core/stem RAA length inform. uninfo. 18Sa 18Sb 18Sc 28S 28S 28S RAxML No. of steps

alignment alignment D2 D3 D4-5 best score SSME data

SSNR SS no RAA 2996 853 356 500 757 633 591 333 182 -85277.62 32461

SSGE SS guide tree+E-INS-i 4369 1675 566 507 969 701 1302 519 371 -144234.60 32236

SSGL SS guide tree+L-INS-i 4369 1676 565 507 969 701 1302 519 371 -144255.37 32223

SSGG SS guide tree+G-INS-i 4536 1773 550 507 963 697 1451 531 387 -144123.77 32220

SSME SS no guide+E-INS-i 3917 1408 483 506 906 693 993 450 369 -150220.93 31951

SSML SS no guide+L-INS-i 3917 1408 487 506 906 693 993 450 369 -150223.77 31957

SSMG SS no guide+G-INS-i 3906 1433 468 506 906 694 1023 450 327 -147954.87 31951

MENR E-INS-i no RAA 3024 861 375 507 758 634 605 337 183 -85889.86 32522

MLNR L-INS-i no RAA 3024 861 374 507 758 634 605 337 183 -85852.51 32483

MGNR G-INS-i no RAA 3025 859 380 507 758 634 606 337 183 -85953.75 32527

MEME E-INS-i no guide+E-INS-i 3944 1415 502 513 907 694 1007 453 370 -150774.64 32247

MLML L-INS-i no guide+L-INS-i 3944 1415 501 513 907 694 1007 453 370 -150775.39 32236

MGMG G-INS-i no guide+G-INS-i 3934 1438 492 513 907 695 1038 453 328 -148553.26 32254

MESR E-INS-i (all data by partition) 4133 1536 553 506 901 693 1196 531 306 -145056.78 31983

MLSR L-INS-i (all data by partition) 4099 1507 545 506 901 693 1162 531 306 -145084.06 32187

MGSR G-INS-i (all data by partition) 4139 1519 551 506 901 694 1201 531 306 -145293.59 31997

The guide tree was generated from a RAxML analysis of the SSNR dataset (no RAA). Except for the all data alignments (no submatrix partition), each of the 55 RAA blocks
were aligned independently and reinserted into the appropriate gene partition for analysis. E-INS-i, G-INS-i and L-LINS-i are MAFFT alignment options. The RAxML best
score was obtained from 10 independent runs using CIPRES v.2.0. The number of informative and uninformative sites and parsimony steps were calculated in PAUP 4.0*
for each resulting tree using the SSME dataset.
doi:10.1371/journal.pone.0027023.t002
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Table 3. Summary of traditional clades within Chalcidoidea, diversity sampled, and support from various datasets and analyses.

core only core and RAA RAxML TNT

Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME

AG Agaonidae (76/757) 19 104 100 100 100 100 100 100 100 97

AGA ‘Agaoninae’a 12 48 – – – – – – – –

AG4 ‘Agaonidae group 49 2 3 – par 70 75 86 92 75 –

AGB ‘Blastophaginae’ 3 24 – – – – – – – –

AGK Kradibiinae 2 25 – par – – – – – –

AGT Tetrapusinae 1 4 100 100 100 100 100 100 100 100

AP Aphelinidae (33/1168) 21 87 – – – – – – – –

API Aphelinidae incertae sedis 4 4 n/a n/a n/a n/a n/a n/a n/a n/a

APA Aphelininae 7 22 88b 88b 97b 96b 91b 86b 100b 56b

APAY Aphytini 3 12 par par par 53 par par par +

APZ Azotinae 1 12 99 100 100 100 100 100 100 99

APC Coccophaginae 6 43 + + 81 + + + 94 –

APCP Pteroptricini 5 31 par par par par par par par –

APE Eretmocerinae 1 5 100 100 100 100 100 100 100 100

APR Euryischiinae 2 2 100 100 100 89 100 100 100 100

CAL Calesinae (1/4) 1 3 100 100 100 100 100 100 100 100

CH Chalcididae (87/1464) 20 37 – – – – – – – –

CHC Chalcidinae 8 19 – – – – – – – –

CHCB Brachymeriini 1 6 100 100 100 100 100 100 100 100

CHCC Chalcidini 2 8 100 100 100 100 100 100 100 100

CHCR Cratocentrini 3 3 – – – – – – – –

CHCP Phasgonophorini 2 2 98 100 100 100 100 99 100 100

CHD Dirhininae 1 5 100 100 100 100 100 100 100 100

CHE Epitranininae 1 3 + 90 99 95 94 98 100 56

CHH Haltichellinae 8 12 88 90 100 98 98 97 100 +

CHHA Haltichellini 5 9 + + + par – 56 + –

CHHY Hybothoracini 3 3 par par par 93 – par par par

CHS Smicromorphinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

EN Encyrtidae (460/3735) 12 14 + 50 81 72 73 78 100 +

ENE Encyrtinae 8 9 par par par + 72 + 89 +

ENT Tetracneminae 4 5 72 69 87 77 97 par 65 +

EU Eucharitidae (55/423) 22 46 100c 100c 100c 100c 100c 100c 100c 100c

EUE Eucharitinae 16 27 100 100 100 100 100 100 100 96

EUG Gollumiellinae 2 3 80 93 98 76 86 99 100 par

EUO Oraseminae 4 16 par + 71 + + + 75 +

EL Eulophidae (297/4472) 27 28 89d 92d 99d 98d 97d 98d 100d +d

ELI Eulophidae i.s. 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

ELE Entedoninae 8 8 – + 50 + 74 59 88 +

ELN Entiinae 5 6 – – 67 par + 58 81 +

ELU Eulophinae 9 10 66 + 96 95 91 85 100 –

ELO Opheliminae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

ELT Tetrastichinae 3 3 98 98 100 100 100 100 100 99

EP Eupelmidae (45/907) 19 25 – – – – – – – –

EPC Calosotinae 5 7 – – – – – – – –

EPE Eupelminae 12 14 + + + – + – – –

EPN Neanastatinae 2 4 – – – + – – – –

EY Eurytomidae (88/1424) 14 28 – – – – – – – –

EYE Eurytominae 9 14 100e 99e 100e 100e 100e 100e 100e 100e

EYH Heimbrinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
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core only core and RAA RAxML TNT

Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME

EYR Rileyinae 2 7 + + 97 90 87 87 100 +

LEU Leucospidae (4/134) 2 6 98 90 100 100 98 98 100 98

MY Mymaridae (103/1424) 13 15 98 95 100 99 98 97 100 61

MYI Mymaridae i.s. 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

MYA Alaptinae 3 3 – – – – – – – –

MYE Eubronchinae 1 2 99 100 98 99 100 87 100 84

MYM Mymarinae 8 9 – – – – – – – –

ORM Ormyridae (3/125) 2 3 66 56 67 + 61 52 100 +

PE Perilampidae (15/277) 14 34 +f +f – – – – – –

PEI Perilampidae i.s. 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PEA Akapalinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PEM Philomidinae 3 3 99 98 100 100 100 100 100 97

PEC Chrysolampinae 4 9 73 67 88 72 68 80 100 –

PEP Perilampinae 5 20 96 98 100 100 100 99 100 76

PT Pteromalidae (588/3506) 111 130 – – – – – – – –

PTI Pteromalidae i.s. 2 2 n/a n/a n/a n/a n/a n/a n/a n/a

PT01 Asaphinae 3 3 – – – – – – + –

PT02 Ceinae 1 2 93 93 100 98 98 99 100 98

PT03 Cerocephalinae 3 3 99 99 100 100 100 100 100 100

PT04 Chromeurytominae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT05 Cleonyminae 10 10 – – – – – – – –

PT05D Chalcedectini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT05C Cleonymini 3 3 68 56 84 54 + 52 100 +

PT05L Lyciscini 5 5 + + 92 55 + + 100 +

PT05O Ooderini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT06 Coelocybinae 4 4 – – – – – – – –

PT07 Colotrechninae 2 2 – – – – – – – –

PT08 Cratominae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT09 Diparinae 6 8 – – – – – – – –

PT09D Diparini 4 4 – – – – – – – –

PT09N Neapterolelapini 1 2 57 55 96 73 63 + 81 –

PT10 Epichrysomallinae 16 28 100 100 100 100 100 100 100 93

PT11 Eunotinae 6 7 – – – – – – – –

PT11E Eunotini 4 5 52g 75g 90g 86g 93g 98g 100g 61g

PT11M Moranilini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT11T Tomocerodini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT12 Eutrichosomatinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT13 Herbertiinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT14 Leptofoeninae 2 3 – – – – – – – –

PT15 Macromesinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT16 Miscogasterinae 9 10 – – – – – – – –

PT16M Miscogasterini 5 6 – – – – – – – –

PT16S Sphegigasterini 2 2 – – – – – – – –

PT16T Trigonoderini 2 2 – – – – – – – –

PT17 Ormocerinae 6 5 – – – – – – – –

PT17M Melanosomellini 3 3 – – par – + – – –

PT17S Systasini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT18 Otitesellinae 3 4 par – – – – – – –

PT19 Panstenoninae 1 2 96 89 98 98 84 77 100 96
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Mymaridae. Within the same region, RAA(4) shows a slight but

more subtle increase for Chalcidoidea excluding Mymaridae.

RSC(4) and RSC(49) both show support for Chalcidoidea

excluding Mymaridae based on a respective increase to a 4 base

motif (RSC 4), and an increase to a consistent AT or GT pattern

(RSC 49; not shown). These structural changes support both

core only core and RAA RAxML TNT

Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME

PT20 Pireninae 4 4 – – – – – – – –

PT21 Pteromalinae 17 18 – – – – – – – –

PT21P Pteromalini 4 4 – – – – – – par –

PT22 Spalangiinae 1 3 100 100 100 100 100 100 100 100

PT23 Sycoecinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

PT24 Sycophaginae 5 6 82 94 91 81 77 91 100 +

PT25 Sycoryctinae 2 2 – – – – – – – –

ROT Rotoitidae (2/2) 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

SI Signiphoridae (4/76) 8 26 81 80 95 98 97 97 100 52

SIS Signiphorinae 1 9 100 100 100 100 100 100 100 99

SIT Thysaninae 3 12 par par par par par par par par

TAN Tanaostigmatidae (9/92) 4 5 98h 95h 99h 100h 99h 100h 100h 77h

TE Tetracampidae (15/50) 6 7 – – – – – – –

TEM Mongolocampinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

TEP Platynocheilinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

TET Tetracampinae 4 5 100i 100i 100i 100i 100i 100i 100i 97i

TO Torymidae (68/986) 29 41 – – – – – – – –

TOM Megastigminae 3 6 66 67 99 99 97 97 100 92

TOT Toryminae 28 37 – + 67 + + 62 86 +

TOTI Toryminae i.s. 3 4 n/a n/a n/a n/a n/a n/a n/a n/a

TOTM Microdonteromerini 6 8 – – – par par – par par

TOTN Monodontomerini 6 8 80 par 100 91 89 81 100 97

TOTP Palachiini 2 2 – – – – – – – –

TOTO Podagrionini 4 4 par 57 par 90 par 55 62 +

TOTT Torymini 3 6 75 74 66 87 68 66 100 –

TOTY Torymoidini 4 5 par – – – – – 88 –

TR Trichogrammatidae (83/839) 12 21 – + 61 65 64 + 94 +

TRO Oligositinae 9 10 98 100 97 96 95 93 100 +

TROI Oligositinae i.s. 3 4 n/a n/a n/a n/a n/a n/a n/a n/a

TROC Chaeotostrichini 2 3 99 100 100 100 100 100 100 100

TROO Oligositini 1 2 100 100 100 100 100 100 100 100

TROP Paracentrobiini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

TRT Trichogrammatinae 3 11 + par par par par par par par

TRTI Trichogrammatinae i.s. 3 5 n/a n/a n/a n/a n/a n/a n/a n/a

TRTT Trichogrammatini 2 6 100 100 100 100 100 100 100 100

Number of clades with positive support: 56 59 60 58 58 59 62 52

Dataset abbreviations explained in Table 4. RAxML majority rule (MJR) is a consensus across all 16 submatrices. Support values are bootstrap percentages. The number
of clades with positive support is summed for all clades with either a + (presence) or numerical support; par = paraphyletic; – = not monophyletic. Estimated diversity
(genera/species) after family group names from Noyes [4]. Taxa represented by a single OTU or incertae sedis (i.s.) were considered not applicable (n/a) for clade support.
a = without Agaonidae Group 4 (Wiebesia and Blastophaga R1757);
b = without Azotinae or Eretmocerus;
c = excluding Akapalinae and Philomidinae;
d = without Trisecodes;
e = excluding Buresium;
f = including Idioporus;
g = excluding Idioporus;
h = not including Cynipencyrtus;
i = excluding Diplesiostigma.
doi:10.1371/journal.pone.0027023.t003
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monophyly of Chalcidoidea and a sister group relationship

between Mymaridae and the remaining Chalcidoidea. No RAA

patterns were observed that would add support for relationships in

the outgroup taxa. However within Chalcidoidea, additional

structural changes within variable regions add support to some

relationships (i.e., an increase in 18S loop(4) size in Perilampidae

and Eucharitidae; and deletion of a contiguous variable region

(RAAs 23-25) in Eulophinae + Tetrastichinae). Six variable regions

in Agaonidae demonstrate substantial growth in size, both across

and within the family, that distinguish them from all other

Chalcidoidea. The different sizes of the variable regions might be

expected to have the greatest impact on results from datasets

contrasting the inclusion or exclusion of RAAs, or the MAFFT

alignment without reference to the SS core structure; however,

overall there appeared to be no impact, with all results consistently

supporting monophyly of Chalcidoidea and a sister group

relationship between Mymaridae and the remaining Chalcidoidea.

Inclusion of the RAAs contributed to the monophyly of

Encyrtinae, Entedoninae and Entiinae (Table 3). Their inclusion

increased the BS support for a number of clades, including

Agaoninae group 4, Encyrtidae, Eulophinae, Rileyinae, Lyciscini,

Eunotini, Signiphoridae and Megastigminae (Tables 3, 4). At a

higher group level, the inclusion of the RAA regions provided a

greater amount of support for Eucharitidae + Perilampidae, and

the genus Jambiya as the sister group of Eucharitidae. In no cases

did the inclusion of RAAs result in a substantial decrease in

support for a clade.

Phylogenetic Relationships
Relationships across the 16 ML analyses overall were the same

regardless of alignment method or the inclusion or exclusion of

RAAs (Figs. 1–7, Tables 3, 4). The parsimony analysis of the

SSME dataset produced more than 10,000 most parsimonious

trees of 31,607 steps (RI = 0.62); however the strict consensus was

well resolved (Supplementary Fig. S1) and in general accord with

the likelihood results.

Outgroup relationships generally favored a paraphyletic

Diaprioidea as sister group to Chalcidoidea (Fig. 1), but in a few

cases Mymarommatoidea were the proposed sister group. A core

Proctotrupomorpha clade of Proctotrupoidea sensu stricto, Dia-

prioidea, Mymarommatoidea and Chalcidoidea were supported in

all results. Both Ceraphronoidea and Platygastroidea were

distantly related in all analyses.

Chalcidoidea were always monophyletic with strong support, as

was a sister group relationship between Mymaridae and the

remaining Chalcidoidea (Table 4). Chiloe micropteron (Rotoitidae)

Table 4. Higher group relationships supported across various analyses.

core only core and RAA RAxML TNT

Group Relationships SSNR MENR SSME SSGE MGSR MGMG MJR SSME

Pantolytomiya + Chalcidoidea 2 + 2 + 2 + 62 2

Diaprioidea (part) + Chalcidoidea 2 2 +a 2 2 2 56 2

‘Diapriidae’ + Chalcidoidea + 2 2 2 2 2 2 2

Mymarommatoidea + Chalcidoidea 2 2 2 2 + 2 2 2

(Proctotrupoidea + Diaprioidea) sister to Chalcidoidea 2 2 2 2 2 2 2 +

Chalcidoidea 99 95 100 100 98 98 100 100

remaining Chalcidoidea minus Mymaridae 91 55 97 95 55 85 94 +

remaining Chalcidoidea minus Rotoitidae and Mymaridae + + + 76 + + 94 2

Mymaridae: 42segmented taxa 74 78 75 87 57 80 88 +

Mymaridae: 5-segmented taxa + + 76 62 83 + 88 +

Eulophidae: (Opheliminae + Perthiola) + Entiinae 2 2 + + 2 2 56 +

Eucharitidae + Perilampidae 2 2 + + + + 2 +

Perilampidae (with Akapalinae, Philomidinae and Idioporus) + + par + + + 2 2

Jambiya + Eucharitidae 2 2 + + + + 2 +

Jambiya + Perilampidae 2 + 2 2 2 2 2 2

pteromaloid complexb + + + + + + 2 +c

Spalangiinae + Agaonidae 2 2 + 2 2 2 2 2

Sycophaginae + Agaonidae + 2 2 2 2 2 2 2

remaining Agaonidae minus Tetrapusinae + 55 + 2 2 + 2 +

Aphelininae + Coccophaginae +d 2 2 2 2 2 2 2

Azotinae + Trichogrammatidae + + + 2 + + 62 2

Azotinae + Signiphoridae 2 2 2 2 2 2 2 +

Agaoninae + Blastophaginae (excluding group 4) + + 65 61 + + 62 +

a = Monomachidae + Diapriidae as sister groups;
b = includes Cratominae, Miscogastrinae, Otitesellinae, Panstenoninae, Pteromalinae and Sycoryctinae;
c = without Heterandrium (Otitesellinae);
d = including Platygerrhus (Microgasterinae: Trigonoderini).
Dataset abbreviations explained in Table 4. RAxML majority rule (MJR) is a consensus across all 16 submatrices. Support values are bootstrap percentages.
Abbreviations: + refers to presence of clade but without numerical support; par = paraphyletic.
doi:10.1371/journal.pone.0027023.t004
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was consistently supported in the likelihood results as the sister

group of the remaining Chalcidoidea excluding Mymaridae (94%

MJR), but with bootstrap support only in the SSGE results (BS 76).

However, in the parsimony results Chiloe was deeply nested within

Chalcidoidea (Supplementary Fig. S1).

Relationships within Chalcidoidea were highly variable along

the backbone of the tree and should be regarded as a broad

polytomy, but with consistent and sometimes strong support for

many traditional taxon groupings at the family, subfamily, and

tribe levels (Table 3). There is sometimes a lack of support for

families that can be defined by several justifiable synapomorphies

such as Chalcididae, and there is consistent support for some other

families such as Eulophidae that are founded on what might be

considered as weak loss or reductive features [9].

Discussion

Comparison of alignment strategies
Overall, there was little impact of the application of different

MAFFT alignments to either the RAA regions, the core

secondary structure data, or to the different gene regions without

reference to secondary structure. This is optimistic for the future

inclusion of new taxa to our data set where we can avoid the

labor-intensive approach of having to align new taxa to our

existing secondary structure model. Inclusion of the RAAs

contributed to monophyly and clade support for a number of

taxa, and also increased support at higher levels. Furthermore,

structural differences found in various RAAs (Fig. 8) provide clear

support for Chalcidoidea, a sister-group relationship between

Mymaridae and other Chalcidoidea, and for some of the higher-

level groups within Chalcidoidea. Clearly, RAAs do provide some

phylogenetic signal and their inclusion in analyses is warranted

despite some authors recommending complete [52] or partial

[19] deleting of these regions.

Outgroup relationships
We found either Mymarommatoidea or Diaprioidea as the

sister group of Chalcidoidea. These equivocal results were similar

to results from a recent analysis of Hymenoptera that used more

extensive molecular data from four gene regions and nearly

complete 28S and 18S data [11]. Molecular data from both studies

clearly support a monophyletic group of Diaprioidea, Mymar-

ommatoidea and Chalcidoidea within the Proctotrupomorpha.

With the inclusion of morphological data in a combined analysis,

Mymarommatoidea is the sister group of Chalcidoidea [13], as

hypothesized by Gibson [10]. Unfortunately, the biology of

Mymarommatoidea remains unknown, making it difficult to

compare with Chalcidoidea.

Phylogenetic relationships within Chalcidoidea
Chalcidoidea are well supported as monophyletic. Mymaridae

are strongly supported as monophyletic and the sister group of the

remaining Chalcidoidea. This hypothesis was first proposed by

Gibson [10] based on morphology, and substantiated by Heraty et

al. [11] and Sharkey et al. [13]. Chiloe micropteron (Rotoitidae) was

the sister group of the remaining Chalcidoidea in all of the

likelihood results, but not using parsimony. With more extensive

gene sampling, Heraty et al. [11] recovered the same relationships

in likelihood analyses of the eye-aligned data, and with parsimony

only in the data aligned by eye. Mymaridae and Mymaromma-

tidae are both common in early to mid Cretaceous amber deposits

[5,6,8], which support their early origin and sister group

relationships. Rotoitidae is unknown in any fossil deposits, but

has a potentially archaic pattern of distribution, with genera

known only in New Zealand and southern Chile [6], suggesting a

late cretaceous origin [53].

After Rotoitidae, the relationships within Chalcidoidea become

vague. The backbone of the chalcidoid tree has little support, with

taxonomic groups shifting in different analyses from the base to

somewhere more apical in the topology. As well, there are few

consistent sister group relationships supported among the higher-

level groups. One of the few relationships that can be substantiated

based on larval morphology, Eucharitidae + Perilampidae [54],

occurs in some but not all results, and never has bootstrap support.

This is not simply an artifact of our ribosomal dataset; similar

results with poor backbone support were also found by Desjardins

et al. [18] using 4 nuclear protein coding genes and far fewer taxa.

We do recover support for many of the traditional higher-level

groups within Chalcidoidea, mostly at the subfamily and tribe

level, but also for a few diverse family groups such as Agaonidae,

Eulophidae, Eucharitidae and Trichogrammatidae. We also

recovered consistent support for a novel pteromaloid complex

that is a mix of morphologically very distinct subfamily groups. For

some of the traditionally well-supported groups such as Chalcidi-

dae, the majority of the included taxa were monophyletic in only

one analysis. A similar rare grouping was also found for a

monophyletic Signiphoridae + Azotinae.

We found some taxa that could not be placed within any

traditional higher-level group. There were also a few singleton

taxa that defied placement, including Diplesiostigma, Cynipencyrtus

and Idioporus. Interestingly, Idioporus is also difficult to place based

on morphology, although neither Perilampidae (likelihood) or

Rotoitidae (parsimony) were ever suggested as being related based

on a morphological study by LaSalle et al. [55]. Calesinae are

currently incertae sedis within Chalcidoidea [56], and our results to

not offer any potential sister groups for this clade. Pteromalidae, as

expected, is polyphyletic and affects greatly the composition and

relationships of other taxa. Our results will be reevaluated in a

combined morphological analysis, which is currently underway

(Heraty et al. in prep), but it is clear that the family level

relationships of Chalcidoidea are in need of major revision.

For the discussions below, some historical information on

relationships is presented for each family group followed by the

results of the current study. A more detailed review of classification

history and biology can be found in Gibson et al. [9] and Hanson

& Gauld [57]. We try not to discuss relationships of taxa within

supported clades, but most often species within the same genera

and species groups were monophyletic, and relationships within a

clade were generally the same across different analyses (Figs 1–7).

Agaonidae. Agaoninae and Sycophaginae (as Idarninae),

once included in Torymidae, were moved to Agaonidae by

Bouček [30]. Agaonidae sensu lato were comprised of Agaoninae,

Epichrysomallinae, Otitesellinae, Sycoecinae, Sycophaginae and

Figure 1. Phylogenetic tree from secondary structure alignment of stem data and E-INS-i alignment of RAAs (3917 aligned; SSME).
RAxML analysis with seed 38652 and 1000 rbs bootstrap replicates (support .50% above branches). Phylogram of entire tree on left colored to match
inset. Taxon names with prefix indicating classification (see Table 3) and suffix indicating DNA voucher number and gene regions included for 18Sa-c
(tuv) and D2 (x), D3 (y) and D4-5 (z). Monophyletic families indicated by gray shading; polyphyletic families other than Pteromalidae indicated
according to inset color scheme.
doi:10.1371/journal.pone.0027023.g001
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Figure 2. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.g002
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Figure 3. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.g003
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Figure 4. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.g004
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Figure 5. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.g005
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Figure 6. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.g006
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Figure 7. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.g007
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Sycoryctinae [58]. Bouček noted that there were no unique

morphological characters to define Agaonidae sensu lato, yet argued

against limiting the family to the pollinating group (Agaoninae)

and suggested a sister-group relationship of at least Agaoninae +
Sycophaginae. Grissell [34] suggested that Agaonidae (sensu lato)

may form a derived clade within the Torymidae. Rasplus et al.

[59] revised the Agaonidae, having determined that it was not

monophyletic, limiting the family to include only Agaoninae

(Agaonidae sensu stricto). Cruaud et al. [23] analyzed relationships

within Agaonidae s.s. and proposed up to four subfamilies,

Figure 8. Examples of structural support from two sections of 28S-D2 (indicated by bar) for outgroups and a sampling of
Chalcidoidea. RAA(11) shows an increase in the number of nucleotides and a decrease in the degree of conservation for
Chalcidoidea including Mymaridae (highlighted). In all Chalcidoidea excluding Mymaridae, RAA(15) undergoes a dramatic decrease to either 1
or no nucleotides and RAA(4) shows a slight increase in size. The bordering alignment around RAA(15) demonstrates compensatory changes in
helices 3m, 3n and 3o.
doi:10.1371/journal.pone.0027023.g008
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Tetrapusinae, Agaoninae group 4 (potential subfamily),

‘Blastophaginae’ and ‘Agaoninae’, but with the latter two groups

likely collapsing into a single subfamily Agaoninae.

Agaonidae (sensu stricto) was monophyletic in all analyses with

likelihood BS values of 100% and parsimony support of 97%.

Tetrapusinae were recovered with 100% BS in all analyses

(Table 3), and were either sister group to the remaining

Agaoninae, as reported in [23], or nested within Agaonidae

(Table 4). Agaonidae Group 4 was monophyletic in all of the

likelihood results, but not parsimony. Kradibiinae were never

recovered as monophyletic, although both genera, Kradibia and

Ceratosolen, were each monophyletic. Agaoninae were rendered

paraphyletic in all analyses by Blastophaginae, but a monophyletic

group of Agaonidae + Blastophaginae, excluding Agaonidae

Group 4, was recovered in most results with low support (Table 4).

None of the other subfamilies previously placed in Agaonidae

were placed near to Agaonidae, although in the SSNR dataset

(core only), Sycophaginae were placed as the sister group of

Agaonidae but without bootstrap support.

Aphelinidae. Woolley [60] suggested that monophyly of

Aphelinidae was not certain, and noted the historical tendency

to group all parasitoids of adult and nymphal Hemiptera into

Aphelinidae without an understanding of relationships. Presently,

most authors recognize that Aphelinidae may be paraphyletic if

not polyphyletic [9,17,61]. Characters uniting the Aphelinidae

may also not be apomorphic [24,62]. Based on only a few taxa,

Aphelinidae were paraphyletic in the molecular analysis of

Campbell et al. [17]. Previous authors have placed aphelinids

within various families, including Eulophidae [63,64], Encyrtidae

[65,66], Pteromalidae [62] or as a distinct family [67]. Rosen and

DeBach [68] noted that Aphelinidae share morphological affinities

with both Encyrtidae (shape of the mesopleura and structure of the

pro- and mesotibial spurs) and Eulophidae (thoracic sclerite

morphology and antennal segmentation). Gibson [69]

hypothesized an Aphelinidae + Signiphoridae relationship on the

basis of the structure of the mesotrochantinal plate and

metasternum, a relationship also proposed by Domenichini [70].

Woolley [71] found strong morphological evidence uniting

Azotinae + Signiphoridae. Compere and Annecke [67] and

Rosen and DeBach [68] considered Aphelinidae to be more

closely related to Signiphoridae and Encyrtidae. Viggiani and

Battaglia [72] proposed that Aphelinidae were morphologically

allied with Eulophidae and Trichogrammatidae. Relationships

within Aphelinidae are just as, if not more, complex

[24,63,73,74,75,76,77,78,79,80,81,82]. The most recent

treatment of Aphelinidae [24] recognizes the following

subfamilies and tribes; Aphelininae (tribes Aphelinini, Aphytini,

Eretmocerini and Eutrichosomellini), Eriaphytinae, Azotinae,

Coccophaginae (tribes Coccophagini, Physcini and Pteroptricini),

Eriaporinae and Euryischiinae. Noyes [4] uses Eretmocerinae,

which we follow herein. Calesinae were excluded from

Aphelinidae by Hayat [24].

Our results lend support to the idea that Aphelinidae are not

monophyletic (Figs 1–6). At best, the two subfamilies Aphelininae

(excluding Eretmocerus) + Coccophaginae were monophyletic in the

SSNR analysis. Aphelininae, Azotinae (Ablerus), Eretmocerinae

(Eretmocerus) and Euryischiinae were each recovered with very

strong BS support in all analyses (Table 3). Coccophaginae were

monophyletic in the majority (94%) of likelihood analyses, but

Coccobius was excluded from the other taxa in the parsimony results

(Table 3). In the majority of cases, the aphelinine tribes Aphelinini

(Aphelinus), Aphytini, and Eutrichosomellini (all Aphelininae) are

monophyletic, although Eutrichosomellini often renders Aphytini

paraphyletic. Within Coccophaginae, Coccophagus consistently

rendered Pteroptricini paraphyletic. Within Pteroptricini, Encarsia

is consistently rendered paraphyletic by Dirphys.

There was no consistent or plausible sister group taxon for

Aphelininae or Coccophaginae. In the majority of analyses,

Euryischiinae is sister to Cecidellis sp. (Coelocybinae: Pteromalidae),

which can be justified morphologically (RGB). The monogeneric

Eretmocerinae is monophyletic with strong support in all results,

but has no association with other aphelinid taxa. Azotinae were

always monophyletic, with 100% bootstrap support, with former

members of Azotus rendering Ablerus paraphyletic, which is an

expected result. Azotinae were the sister group to Trichogramma-

tidae in the likelihood results, but without bootstrap support

(Table 4). Monophyly of Azotinae + Signiphoridae is supported by

several morphological synapomorphies [71], but this group was

recovered only in the parsimony results (Table 4).

Calesinae (unplaced to family)
Cales (Calesinae) were excluded from Aphelinidae and left

unplaced in Chalcidoidea by Hayat [83]. Mottern et al. [56]

recently reviewed the Calesine, and discussed its unique

morphology and potential relationships with various taxa,

including Aphelinidae, Eretmocerinae, Eulophidae, Mymaridae

and Trichogrammatidae.

Calesinae were monophyletic with 100% BS support in all

analyses (Fig. 6). Included in our analysis are two morphological

and geographically distinct species, Cales berryi from New

Zealand, and Cales noacki from South America, including Chile.

This same pattern of distribution was used as an argument for the

archaic placement of Rotoitidae. Although Cales was intermediate

between Mymaridae and other Chalcidoidea in Campbell et al.

[17], it was always well nested within Chalcidoidea in all of our

results. No consistent outgroups were identified in any of our

results.

Chalcididae. Bouček and Halstead [84] noted that the

classification of Chalcididae has changed little over the years. A

sister-group relationship with Leucospidae or even the inclusion of

Leucospidae within Chalcididae was suggested by Gibson [16,85].

Monophyly of Chalcididae has not been previously doubted,

largely based on four morphological synapomorphies [86,87].

Traditional classifications have included Chalcidinae with the

tribes, Chalcidini, Cratocentrini, Phasgonophorini and sometimes

Brachymeriini, with other subfamilies including Dirhininae,

Epitraninae, Haltichellinae and Smicromorphinae [30,88]. In a

phylogenetic analysis of the family, Wijesekara [86] proposed that

Smicromorphinae were nested within Chalcidinae, with

Chalcidinae including Smicromorphinae sister to the remaining

chalcidids, followed by a sequence of Cratocentrinae,

Brachymeriinae (Brachymeriini + Phasgonophorini), and finally

Dirhininae (Dirhinini + Epitranini) + Haltichellinae (Haltichellini

+ Hybothoracini). Noyes [4] did not recognize Brachymeriinae,

which is the convention followed herein.

Chalcididae were not monophyletic in any of our analyses. The

MENR analysis produced the closest approximation to a

monophyletic Chalcididae, with a grouping of Dirhinus (Dirhini-

nae), Epitranus (Epitraninae), Chalcidinae, Brachymeria (Brachymer-

iinae), Phasgonophorini and Trigonura (Cratocentrini). However,

this group surprisingly also included two pteromalid subfamilies

(Macromesinae and Leptofoeninae) and excluded Cratocentrus and

Acanthochalcis (Cratocentrini). Otherwise, the various groups were

inconsistent in their grouping in the other analyses. At the

subfamily level, Epitraninae, Dirhininae and Haltichellinae were

all monophyletic with very strong BS support (Table 3).

Smicromorphinae included only a single taxon, and was either

independent from other chalcidids or it grouped with Cratocen-
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trini or Phasgonophorini, but never with Chalcidini as proposed

by Wijesekara. The subfamily Chalcidinae were never monophy-

letic, but the tribes Brachymeriini, Chalcidini and Phasgonophor-

ini all had very high BS support across all analyses (Table 3).

Interestingly, our Old World representatives of Chalcis (the type

genus of the superfamily; occurring Worldwide) render the

widespread New World genus Conura paraphyletic in all analyses.

While monophyly of Haltichellinae was supported in all analyses,

monophyly of the two tribes, Haltichellini and Hybothoracini,

varied.

Our results do not offer much resolution for the relationships

within Chalcididae, but do offer support for recognition of

Brachymeriinae, Dirhininae, Epitraninae, Chalcidinae (as Chalci-

dini), Haltichellinae and Smicromorphinae. Both Phasgonophorini

and Cratocentrini are less easily placed, and we could not recover

the monophyly of the Cratocentrini (Trigonura and Acanthochalcis +
Cratocentrus) in any of our analyses. Leucospidae never grouped

with any of the chalcidid families, which contradicts hypotheses

that they are the sister group of Chalcididae, or that they might

render Chalcididae paraphyletic.

Encyrtidae. The monophyly of Encyrtidae is not questioned

and there is strong morphological evidence to support this family

[89]. An Encyrtidae + Tanaostigmatidae sister-group relationship

has often been proposed, with this clade in turn being sister to

Eupelmidae [69,89,90,91]. Noyes et al. [89] followed the division

of Encyrtidae into the subfamilies Tetracneminae and Encyrtinae

[92,93,94] and noted that while Tetracneminae is undoubtedly

monophyletic, Encyrtinae may represent a paraphyletic

assemblage.

Encyrtidae were monophyletic across all analyses, with

moderate to very strong BS support from the likelihood analyses

with RAAs included (Table 3). Tetracneminae were monophy-

letic with moderate to very strong support across most analyses,

with Encyrtinae forming either a paraphyletic or monophyletic

sister group. The extraordinary branch lengths found within

Encyrtidae (Fig. 3) occur in the results of both SS and SS + RAA

analyses, and thus are not simply the result of having several taxa

with long RAA inserts. Our results never supported a close

relationship with Cynipencyrtus, Tanaostigmatidae or any of the

eupelmid subfamilies.

Eucharitidae. Several morphological features support the

monophyly of Eucharitidae [28]. Largely on the basis of the highly

sclerotized first instar larva (planidium), Heraty and Darling [54]

proposed a sister-group relationship for Eucharitidae and

Perilampidae. Based on molecular and morphological evidence,

Gollumiellinae form the sister group of Oraseminae +
Eucharitinae [6,37]. Akapalinae and Philomidinae were

proposed as belonging to Eucharitidae by Bouček [30].

Philomidinae share planidial larvae with Eucharitidae [95], but

immatures of Akapalinae are unknown.

Eucharitidae sensu stricto (Gollumiellinae, Oraseminae and

Eucharitinae) were monophyletic with 100% BS support across

all analyses. Akapalinae were grouped with Perilampinae in all of

the likelihood results, but as the sister group of Eucharitidae s.s. in

the parsimony analysis. Philomidinae were never grouped with

Eucharitidae.

While Eucharitinae were always very strongly supported,

Oraseminae was occasionally paraphyletic to Eucharitinae.

Gollumiellinae was paraphyletic only in the parsimony analysis.

Monophyly of Psilocharitini (Psilocharis and Neolosbanus) is not

supported, which is similar to results from other molecular studies

[37].

A Eucharitidae + Perilampidae sister group was retrieved in

most of the likelihood analyses that included RAAs, and also in the

parsimony analysis (Table 4); however, without bootstrap support.

Morphological support for this group rests on the presence of a

sclerotized planidial first-instar larvae [54,95], and we place some

degree of confidence in results that support their monophyly. With

the inclusion of Philomidinae in this clade, it would support a

single origin of planidia larvae within Chalcidoidea (Fig. 9).

However, parsimony results supported a monophyletic Perilampi-

dae + Eucharitidae, without Philomidinae, which was grouped

instead with some Phasgonophorini (Chalcididae) and Rileyinae

(Eurytomidae).

Eulophidae. Monophyly of Eulophidae generally has not

been challenged, although morphological support is based almost

entirely on character reduction [29]. Based largely on molecular

evidence, Elasmidae was synonymized with Eulophidae by

Gauthier et al. [96]. At a higher level, Schauff et al. [97]

suggested a grouping of Eulophidae, Elasmidae and

Trichogrammatidae, but made note that there was no strong

evidence for such a relationship. Eulophinae were suggested to be

the most basal of the four subfamilies due to their ‘‘less-specialized

features’’ [97]. In a combined analysis, Burks et al. [29] proposed

that Eulophinae + Tetrastichinae were the sister group of

(Opheliminae + Entiinae) + Entedoninae. The only eulophid

with three-segmented tarsi, Trisecodes, was removed from

Entedoninae and placed as incertae sedis within Eulophidae [29].

The whitefly parasitoid group Euderomphalini were sister group

to Entedonini in Entedoninae, which was contrary to their

placement in Entiinae by Gumovsky [98].

Eulophidae were monophyletic with strong to very strong

support in all of our analyses (Fig. 4, Table 3), but with the

exclusion of Trisecodes, which in all analyses was sister group to taxa

outside Eulophidae. Support was consistently very high for

Tetrastichinae, and increased with the inclusion of RAAs for

Entedoninae, Entiinae and Eulophinae. As proposed by Gauthier

et al. [96], Elasus (formerly Elasmidae) was always nested within

Eulophinae. As well, Tetrastichinae and Eulophinae (including

Elasmus) have a unique deletion of a contiguous variable region

(RAAs 23-25). Perthiola (Anselmellini) was always the sister group

Ophelimus with high bootstrap support. Anselmellini were placed

outside of Eulophinae by Gauthier et al. [96]. With added

resolution from the RAAs, Perthiola + Opheliminae grouped either

with Entiinae (54% of likelihood trees and parsimony; Table 4) or

with Entedoninae. Without the RAAs, these four groups were

monophyletic but unresolved. Our results support the hypothesis

of relationships suggested by Burks et al. [29], and substantiate the

potential inclusion of Anselmellini within Opheliminae.

The exclusion of Trisecodes from Eulophidae as proposed by

Burks et al. [29] is justified. This genus was usually placed (81% of

likelihood analyses and parsimony), but without strong support, as

the sister group of Tetracampinae (excluding Diplesiostigma), and

was never grouped with other Eulophidae.

Importantly, there was no relationship supported for Eulophi-

dae with any of the aphelinid subfamilies, including Calesinae,

which have many similar reductive features [56]. The analyses

without RAAs (SSNR, MENR) did support a Eulophidae +
(Azotinae + Trichogrammatidae) clade, but otherwise there were

no consistent outgroups, and never any groups that have been

previously proposed in the literature.

Eupelmidae. While there is strong morphological support for

the monophyly of each of the three subfamilies of Eupelmidae, it

has been proposed that the family might represent a grade rather

than a clade [9,69,99,100]. The grade was implicated to include

Encyrtidae and Tanaostigmatidae, and potentially Aphelinidae,

which all share an expanded acropleuron and other associated
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features; however, there is also a possibility of closer relationships

of one or more subfamilies to Cleonyminae (Pteromalidae) [69].

Eupelmidae were never monophyletic. Also, its subfamilies

Calosotinae, Eupelminae, and Neanastatinae were almost never

monophyletic. The SSME dataset was one of the rare instances in

which Neanastatinae were monophyletic (Fig. 1), but in the same

results both Calosotinae and Eupelminae occur twice in very

different parts of the tree (Figs 3–6). Eupelminae were monophy-

letic in some analyses, including both datasets that did not include

the RAAs (Table 3). Calosotinae were never monophyletic, with

Calosota and Balcha grouping distantly from Archaeopelma, Licrooides

and Eusandalum. None of the Eupelmidae ever grouped with

Tanaostigmatidae or Encyrtidae.

Eurytomidae. The monophyly of Eurytomidae was recently

questioned as no synapomorphies defining the family are known

[101]. Indeed, the molecular analyses of Campbell et al. [17] and

Chen et al. [102] and the morphological analyses of Lotfalizadeh et

al. [103] failed to recover a monophyletic Eurytomidae. Stage &

Snelling [104] recognized Heimbrinae, Rileyinae and Eurytominae,

with the latter including the previously recognized Buresiinae. Chen

et al. [102] proposed elevating Rileyinae to family status, while

Lotfalizadeh et al. [103] found Rileyinae to consist of two clades of

unrelated taxa (Rileya and Macrorileya + Buresium). Both molecular

and morphological investigations found Eurytoma to be polyphyletic

[102,103].

Eurytomidae was never recovered as monophyletic in any of

our analyses. However, Eurytominae (excluding Buresium) were

monophyletic in all of our analyses with very high support

(Table 3). Rileya (Rileyinae) were monophyletic in all analyses, but

with very high support only in the likelihood analyses when RAAs

were included. Both Heimbra (Heimbrinae) and Buresium (Eur-

ytominae) never grouped with the other eurytomid genera. No

logical outgroups were identified.

Leucospidae. Leucospidae are generally recognized as a

monophyletic group of four genera closely related to Chalcididae

[86,105]. However, characters proposed to support the

monophyly of this combined lineage are all problematic and

potentially convergent [9,86].

Leucospidae were monophyletic and had greater than 90%

support across all analyses. Our one species of Micrapion (South

Africa) consistently rendered Leucospis (worldwide representation)

paraphyletic. No close association with Chalcididae was found.

Mymaridae. Although there was some early doubt about the

monophyly of Mymaridae [106], the family has been well

substantiated based on morphology and molecular evidence

[17,107,108]. Huber [108] noted that the higher classification of

Mymaridae is unstable, and as per the advice of Huber and

Triapitsyn (personal communication) Mymaridae subfamilies have

been abandoned and genera grouped according to their number of

tarsal segments. Gibson [10] was the first to propose morphological

evidence that Mymaridae might be the sister group of the remaining

Chalcidoidea, but without firm resolution.

Mymaridae were found to be monophyletic in all analyses with

very strong support (Fig. 1, Table 3). The 4-segmented tarsi group,

represented by the genera Borneomymar, Gonatocerus, Litus and

Ooctonus, were consistently monophyletic across all analyses with

moderate to strong support (Table 4). The remaining genera,

Acmopolynema, Anagrus, Anaphes, Australomymar, Ceratanaphes, Erythme-

lus, Eubroncus, Mymar and Stethynium, formed the 5-segmented tarsi

group. This group is supported in most analyses (88% of likelihood

analyses), with moderate to strong BS support only when RAAs

were included. There was no support for Mymarinae or Alaptinae.

Eubronchinae were monophyletic, but these were represented by

only a single genus. Mymaridae were strongly supported as the

sister group of the remaining Chalcidoidea in all analyses.

Ormyridae. Hanson [109,110] noted that the status and

relationships of Ormyridae are uncertain. Members of the family

have been included as a subfamily in Pteromalidae [111],

Torymidae [112], or as their own family [30].

The two genera, Ormyrus and Ormyrulus, were monophyletic in

all of our analyses but with low to very strong BS support (Fig. 3).

In 56% of the likelihood analyses, all based on use of the core SS

alignment and with or without RAAs, supported a sister-group

relationship with Moranila (Pteromalidae: Eunotinae: Moranilini),

but otherwise there were no consistent outgroup associations, and

never any close association with either of the torymid subfamilies.

Perilampidae. The limits of Perilampidae are not clear, with

variable inclusion of the subfamilies Chrysolampinae, Philomidinae

and Perilampinae, and treatment of each or all groups as a separate

family or subfamily of Pteromalidae [9,100,113]. Akapala (Akapalinae)

were initially placed in Perilampidae, but later transferred to

Eucharitidae [30]. More recently, Jambiya was described and

included within Perilampidae, but an association with either

Chrysolampinae or Perilampinae could not be made [114]. Jambiya

has an enlarged ovipositor, which is also a feature of basal lineages of

Eucharitidae, and a relationship with that family cannot be rejected.

A proposed relationship between Perilampidae, Philomidinae and

Eucharitidae is based on presence of a planidial larva [54,95].

In likelihood results, Perilampidae sensu stricto (Chrysolampinae

+ Perilampinae) was never recovered. With RAAs excluded, a

monophyletic ‘Perilampidae’ was recovered with low support that

included Chrysolampinae (67-73% BS), Perilampinae (96-98%

BS), Akapalinae, Philomidinae and Jambiya. This group also

included the pteromalid genus Idioporus (Pteromalidae: Eunotinae:

Eunotini). In these analyses, Eucharitidae and Perilampidae were

not monophyletic. With the inclusion of RAAs, the results are

more variable, but often recover Perilampidae and Eucharitidae as

monophyletic, Jambiya as sister group to Eucharitidae, but again

with Philomidinae, Akapalinae and Idioporus nested within a

paraphyletic or monophyletic Perilampidae, but still with

Chrysolampinae and Perilampinae each monophyletic (Fig. 5). A

monophyletic Perilampidae s.s. (Chrysolampinae + Perilampinae)

was recovered only in the parsimony analysis. These results also

supported Jambiya as the sister group of Akapalinae + Euchar-

itidae. Philomidinae were distantly placed with Phasgonophorini

(Chalcididae) and Rileyinae (Eurytomidae). Thus, while Euchar-

itidae s.s. is well supported, there is conflicting support for the

definition of Perilampidae and a definitive association with

Eucharitidae.

Pteromalidae. Pteromalidae are essentially a dumping-

ground for presumably monophyletic groups that cannot be

assigned to established families and which lack family status in

their own right [9]. Herein, we recognize the 30 subfamilies of

Noyes [4], as well as the three non-pollinator fig-wasp associated

subfamilies assigned to Pteromalidae (Otitesellinae, Sycoecinae and

Sycoryctinae) or placed as incertae sedis (Epichrysomallinae and

Sycophaginae) by Rasplus et al. [59]. Historically, many pteromalid

subfamilies were elevated to family status, only to once again resume

subfamily status within Pteromalidae [9]. There has been no

comprehensive morphological analysis of the family. Molecular

Figure 9. Five life history traits mapped onto SSME likelihood tree. Colored squares refer to presence of a trait in a clade, but not in
a member sampled in this study.
doi:10.1371/journal.pone.0027023.g009
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analyses have supported the concept of a polyphyletic assemblage,

but even the most comprehensive studies have sampled relatively

few taxa across the spectrum of the family [17,18]. We were able to

sample 25 of these 36 subfamilies, and where possible sample more

extensively within groups (Table 3). We limit our discussion below to

significant groupings or results. Notably, many of the taxa are

‘almost’ monophyletic, often with the exclusion of one or more taxa,

and many of these cases will need to be evaluated elsewhere.

Pteromalidae were expected to be polyphyletic [9,15], and were

never retrieved as monophyletic. Several subfamilies were

monophyletic and very strongly supported across all analyses

including Ceinae (Spalangiopelta), Cerocephalinae, Epichrysomalli-

nae, Panstenoninae (Panstenon), Pteromalinae, Spalangiinae (Spa-

langia) and Sycophaginae. In no case did support increase with the

addition of RAAs. Of interest is the a novel grouping of the

pteromalid subfamilies Cratominae (Cratomus), Miscogastrinae

(except Nodisoplata), Otitesellinae, Panstenoninae, Pteromalinae,

Sycoecinae (Diaziella) and Sycoryctinae. This grouping occurs in

all analyses, including parsimony, but without bootstrap support.

A clade of Miscogastrinae and Pteromalinae was strongly

supported by Desjardins et al. [18], but none of these other

subfamilies were included as part of that study. This ‘pteromalid

complex’ is peculiar for its small amount of molecular divergence

and high degree of morphological complexity, especially for the

non-pollinating fig wasps Otitesellinae and Sycoryctinae. The low

divergence and stability across various analyses suggest that the

subfamilies in this group might eventually be synonymized under

Pteromalinae. The taxononic placement of Nodisoplata, which was

placed outside of this complex, needs to be reconsidered. The two

other two fig-wasp associated subfamilies, Epichrysomallinae and

Sycophaginae, were monophyletic but not associated with any

consistent outgroup taxon. In one analysis without RAAs (SSNR),

Sycophaginae were the sister group of Agaonidae, but without BS

support. This result was proposed by Copland and King [115].

Coelocybinae, Ormocerinae, Pireninae and Pteromalinae

were never monophyletic. Cleonyminae were polyphyletic. In

all analyses, Cleonymini and Lyciscini were each monophyletic

with low support in all analyses, with Lyciscini gaining

increased support from the inclusion of RAAs. Chalcedectini

(Chalcedectus) had variable relationships, but never with other

Cleonyminae. Ooderini (Oodera) had sister-group relationships

that varied from Leucospidae to Encyrtidae, and on two

occasions, Lyciscini. Cratominae (Cratomus) had variable

relationships throughout the analyses, but often occurred in

the pteromalid complex as suggested by its morphology.

Diparinae were never monophyletic, as also found by

Desjardins et al. [18]. Eunotinae were never retrieved as

monophyletic, and the tribes Moranilini and Tomocerodini,

each represented by a single taxon, were inconsistently allied

with other families. Eunotini were monophyletic and strongly

supported in all of the analyses. Surprisingly, Leptofoeninae,

which have strong morphological support, were never mono-

phyletic. Ormocerinae were never monophyletic. Sycoryctinae

and Otitesellinae were consistently polyphyletic which is a

result supported by morphology [59]. Within Otitesellinae, the

two Grasseiana species form a monophyletic group, while

Heterandrium sp. and Otitesella sp. were inconsistently allied with

other taxa. Panstenoninae were nested within Pteromalinae.

Pireninae and Pteromalinae were never monophyletic. Spalan-

giinae were always monophyletic, but were never recovered

with a consistent sister group.

For Pteromalidae, our results are similar to those of Desjardins

et al. [18] based on an analysis of four protein coding genes. The

family is polyphyletic with respect to most Chalcidoidea and few of

the higher-level assemblages can be consistently grouped with

other pteromalid or chalcidoid groups.

Rotoitidae. In their description of the family, Bouček and

Noyes [116] noted that Rotoitidae may be the sister group of

Tetracampidae and Eulophidae. Other potential associations have

included Eulophidae, Mymaridae, Trichogrammatidae and

Tetracampidae [15,16]. Based on an analysis of both

distribution and ovipositor morphology, Gibson & Huber [117]

concluded that Rotoitidae might be the second most ancestral

lineage of Chalcidoidea after Mymaridae, but noted that features

of the antenna and mesosoma conflict with this conclusion.

Rotoitidae were represented by one species, Chiloe micropteron. In

all but one of the likelihood analyses, it was basal and sister to the

remaining Chalcidoidea after Mymaridae, with BS support for a

monophyletic Chalcidoidea after Rotoitidae only in the SSGE

results. The alternate likelihood result placed it as the sister group

of Mymaridae, thus still basal within the superfamily. Parsimony

results have Chiloe nested within Chalcidoidea as the sister group of

Idioporus (Eunotinae: Eunotini) in a clade with Systolomorpha

(Pteromalidae: Ormocerinae: Melanosomellini) and Trichogram-

matidae. No morphological features would support this alternative

hypothesis.

Signiphoridae. There is little doubt over the monophyly of

Signiphoridae; however, Thysaninae may be paraphyletic with

respect to Signiphorinae [71,118]. Gibson [69] suggested a

relationship between Signiphoridae and Aphelinidae, or

members within Aphelinidae. Woolley [71] proposed a

Signiphoridae + Azotinae sister group based on an unsegmented

antennal club, presence of an epiproct [70] posterior to the

syntergum in all female Azotinae and Signiphoridae, and

apodemes projecting forward from the anterolateral angles of

sterna 3 to 6 of the metasoma of females. Pedata and Viggiani

[119] alluded to an azotine + signiphorid relationship with the

discovery of tubercles above the spiracles of third instar Ablerus

perspeciosus and Signiphora flavella larvae.

Signiphoridae and Signiphorinae (Signiphora) both monophyletic

with very strong support across all analyses (Table 3). Thysaninae

were paraphyletic in all of our results. The placement of Clytina

was puzzling, with C. giraudi rendering Chartocerus paraphyletic in

all analyses, while Clytina sp. D1023 was consistently the sister

group of Thysanus.

Signiphoridae were not placed with Azotinae, or any logical

outgroup, in any of the likelihood analyses. In these analyses,

Azotinae was consistently the sister group of Trichogrammatidae.

However, in the parsimony analysis, Azotinae and Signiphoridae

were monophyletic and did not group with Trichogrammatidae.

Tanaostigmatidae. Tanaostigmatidae sensu LaSalle [90] is a

distinct monophyletic group. LaSalle and Noyes [91] transferred

Cynipencyrtus from Encyrtidae to Tanaostigmatidae, yet noted that

this genus was morphologically and biologically distinct from other

members of the family. It has been argued that Cynipencyrtus could

be sister to Encyrtidae, sister to Tanaostigmatidae + Encyrtidae, or

sister to Tanaostigmatidae alone [9,69,99]. There is strong

morphological support for monophyly of the Tanaostigmatidae

+ Encyrtidae clade, but weaker support for the inclusion of

Eupelmidae within this group [9].

Tanaostigmatidae sensu stricto (without Cynipencyrtus) was always

monophyletic with strong support. Cynipencyrtus was variously allied

with other taxa throughout the different analyses, and tanaos-

tigmatids were never the sister group of Encyrtidae. This disparate

grouping may be an artifact of the larger analysis, as we have been

able to recover Tanaostigmatidae + (Cynipencyrtus + Encyrtidae) in

a study with a smaller and more selective sampling of taxa

(Mottern & Heraty, unpublished).
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Tetracampidae. Tetracampidae probably represents a

polyphyletic assemblage with three extant subfamilies [120].

There is considerable argumentation for placement of the

different subfamilies as Aphelinidae, Eulophidae or Pteromalidae

[9,30,55].

Tetracampidae were never monophyletic in our analyses.

Excluding Diplesiostigma, Tetracampinae were monophyletic and

very strongly supported. Diplesiostigma varied in placement in every

analysis, but never occurred with other Tetracampidae. The two

representatives of Mongolocampinae and Platynocheilinae were

clustered in a monophyletic group in all analyses with very high

support, and most likelihood results grouped them with Eunotini

(Pteromalidae: Eunotinae; excluding Idioporus), however with low

support.

Torymidae. Placement of Torymidae is uncertain, and it was

proposed that the family arose from within the pteromalid lineage

[121]. Historically, Torymidae have included Agaoninae and

Sycophaginae ( = Idarninae), which were removed by Bouček [30].

Torymidae were revised by Grissell [34] and include only two

subfamilies, the largely phytophagous Megastigminae and the

mostly parasitic Toryminae, with the latter divided into seven

tribes that encompassed the previously recognized Erimerinae,

Monodontomerinae and Thaumatotoryminae and several taxa as

incertae sedis. Campbell et al. [17] failed to find a monophyletic

group, despite what they and Gibson et al. [9] noted to be strong

morphological support for the family.

Torymidae were never monophyletic, but Megastigminae and

Toryminae were each monophyletic with very strong support

(Table 3). Support for tribes within Toryminae was variable.

Torymini were monophyletic with low to very strong support in

all analyses except parsimony, and Podagrionini were either

monophyletic mostly with low support (62% of likelihood

analyses) or paraphyletic. Monodontomerini were monophyletic

with strong bootstrap support in all analyses, but with the

inclusion of the unplaced Zaglyptonotus and exclusion of Chry-

sochalcissa which clusters deep within Microdontomerini. Echthro-

dape (Toryminae incertae sedis) was previously placed in Euchar-

itidae and Perilampidae and then Torymidae by Grissell [34].

This genus was recovered as the sister group of Microdontomer-

ini. The unplaced Glyphomerus exemplars remained unplaced

within Toryminae with no particular association with other

tribes. The two representatives of Palachiini grouped either with

Torymoidini or Podagrionini, but never together. None of the

groups seemed to be impacted by the inclusion or exclusion or

RAAs. No logical sister groups were identified for either

subfamily.

Trichogrammatidae. Trichogrammatidae are well defined

and according to Bouček and Noyes [116], are possibly the only

monothetic family of Chalcidoidea. Owen et al. [35] assessed

higher-level groups and generic relationships based on molecular

and morphological evidence and recognized a paraphyletic

Trichogrammatinae and monophyletic Oligositinae. Of the

groups sampled herein, Ceratogramma (Trichogrammatinae;

unplaced to tribe) were recognized as the sister group of the

remaining Trichogrammatidae.

Trichogrammatidae were monophyletic in nearly all of our

analyses (94% of the MJR consensus trees), but with low BS

support in likelihood analyses only after the inclusion of RAAs.

Ceratogramma was sister to the remaining Trichogrammatidae in all

results, except for one analysis when it was excluded from the

family (Table 3, SSNR). Our internal relationships mirror those of

Owen et al. [35]. Trichogrammatidae were sister to Azotinae in all

but the parsimony analysis, which placed them as a sister group of

Idioporus, Rotoita and Systolomorpha.

Conclusions
Is the diverse and unsupported backbone of Chalcidoidea the

product of a rapid radiation event [48,122]? Mymaridae first

appear in the early to mid Cretaceous [6]. Based on what appear

to be valid fossils of Eulophidae and Trichogrammatidae, there are

records of higher-level chalcidoids in only one mid-Cretaceous

deposit [8], with records of the same age other than Mymaridae

more questionable [6]. The diversification of chalcidoid families

does not appear until the Eocene, with modern genera common in

Oligocene and Miocene amber deposits [6]. Chalcidoids are

mostly parasitoids, and their host groups in the Hemiptera and

Holometabola were all undergoing an explosive radiation during

the same period at the end of the Cretaceous [123], and a similar

tracking of host diversification is not unexpected.

Using an array of nuclear protein coding genes but with fewer

taxa, Desjardins et al. [18] found similar results that showed a

weak backbone of relationships across their chalcidoid groups

sampled. Given a scenario of explosive radiation of Chalcidoidea

during a relatively short time period, it may be difficult to resolve

higher group relationships with confidence [122]. However, the

trees that we have recovered can help to evaluate some scenarios

within a context of which groups are consistently supported and

their relationships on the various tree topologies. These molecular

results provide a unique perspective for examining relationships

and hypotheses of chalcidoid evolution, especially in a group

prone to morphological convergence.

What is the ancestral mode of host association for Chalcidoidea?

Bouček [124] proposed Cleonyminae or some other wood-beetle

parasitoids as having the most ancestral forms, but hypothesized

that phytophagy could be plesiomorphic for the superfamily. This

latter assumption was based on his observation that phytophagous

species tend to be primitive within their respective groups. The

placement of Chalcidoidea as sister group to either Diaprioidea or

Proctotrupoidea sensu stricto and the basal sister group placement of

Mymaridae argue against Bouček’s hypothesis of a phytophagous

ancestor. As well, the phytophagous groups are scattered across

the tree and almost never basal within a particular lineage, as in

with gall-forming Opheliminae derived from within Eulophidae,

or seed-feeding Megastigminae, which are distantly placed from

their proposed sister group, the Toryminae (Fig. 9).

Noyes [15] argued for a monophyletic Mymaridae + (Rotoitidae

+ Tetracampidae) as the sister group of the remaining Chalcidoi-

dea. Our results somewhat support his hypothesis, placing

Mymaridae and Rotoitidae at the base of the chalcidoid tree

(Fig. 1), but with a different phylogenetic ordering, and with

Tetracampidae both polyphyletic and placed more distally on the

various topologies. Morphological evidence supports a sister group

relationship between Mymaridae and the remaining Chalcidoidea

[10,16,61]. Our results and more comprehensive analyses of

Hymenoptera [11,13] strongly support this hypothesis. Likelihood

results place Rotoitidae as the sister group of the remaining

Chalcidoidea after Mymaridae.

Mymaridae are virtually all egg parasitoids, primarily of

Auchenorrhyncha, Heteroptera and Coleoptera [125]. The only

known exception is for two species of Stethynium attacking larvae of

Ophelimus (Eulophidae) [126]. We included S. ophelimi in our

analysis, and its derived placement within the family suggests a

secondary derivation of larval parasitism (Fig. 1). Egg parasitism is

likely the ancestral trait for Mymaridae. Within the remaining

Chalcidoidea, egg parasitism occurs in all Trichogrammatidae and

a few other scattered taxa (Fig. 9). None of our results placed these

chalcidoid egg parasitoids close to the root of Chalcidoidea. Is it

possible for egg parasitism to be ancestral for the superfamily?

Mymarommatoidea may be egg parasitoids of Psocoptera [127].
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The small body size of Rotoitidae suggests that they also might be

egg parasitoids, but there is not even a suspected host for this

group [9]. Diaprioidea are primarily larval parasitoids of fly larvae

or pupae with a few taxa hyperparasitic on Dryinidae or

Formicidae [128]; none are egg parasitoids. Even if Mymarom-

matoidea are resolved as the sister group of Chalcidoidea (only in

some of our results), the biology of these and Rotoitidae will need

to be resolved before we can confidently consider egg parasitism as

a basal trait for the superfamily.

Associated with an extreme diversity of host use, larval

morphology is extremely diverse in Chalcidoidea [129]. Two

types of hypermetamorphic development occur in Hymenoptera

[130]. Type II involves deposition away from the host of a

sclerotized planidiform first-instar larva that transforms in later

instars to a typical weakly sclerotized sac-like hymenopteriform

larva. Within Hymenoptera, this occurs only in one genus of

Ichneumonidae (Euceros) and in Perilampidae (including Philomi-

dinae) and Eucharitidae [95]. Although not recovered across all

analyses, our results offer support for the single development of this

trait within Chalcidoidea (Fig. 9).

Another important trait is the use of sessile Sternorrhyncha as

hosts within Chalcidoidea, which ultimately leads to their

importance in biological control programs. Mapping sternor-

rhynchan parasitism, either as primary parasitoids or hyperpar-

asitoids, onto our current ‘best’ hypothesis shows a general

scattering of host use that suggests multiple independent host shifts

to this group. Probably most significant is the lack of grouping in

any of our analyses of Encyrtidae and the aphelinid subfamilies

Aphelininae, Azotinae, Coccophaginae, Eretmocerinae and Eur-

yischiinae, which have in the past been treated as a single family

[66]. Our results suggest that any traits associated with successful

host use of Sternorrhyncha are independent events, and especially

within Aphelinidae, should not be considered as phylogenetically

linked. This is also important when we consider the single origin of

heteronomy, or alternate host use by different sexes, which occurs

only in the monophyletic Coccophaginae (Fig. 9).

Our results present the most comprehensive phylogenetic

analysis of relationships Chalcidoidea based only on molecular

data.. While not robust across the backbone of relationships within

Chalcidoidea, they offer some firm insights into the origin and

evolution of this important and highly diverse group of insects.

Monophyly of many of the traditional groups is supported, and the

secondary structure alignment and data set will be useful for future

studies. Many changes in the higher classification of taxa within

Chalcidoidea are suggested by these results. However, we reserve

any judgment on these changes until our combined morphological

and molecular analyses are complete.
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116. Bouček Z, Noyes JS (1987) Rotoitidae, a curious new family of Chalcidoidea

(Hymenoptera) from New Zealand. Systematic Entomology 12: 407–412.

117. Gibson GAP, Huber JT (2000) Review of the family Rotoitidae (Hymenoptera:

Chalcidoidea), with description of a new genus and species from Chile. Journal

of Natural History 34: 2293–2314.

118. Woolley JB (1997) Chapter 18. Signiphoridae. In: Gibson GAP, Huber JT,

Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea

(Hymenoptera). Ottawa: National Research Council of Canada Research

Press. 794 p.

119. Pedata PA, Viggiani G (1991) Preliminary morpho–biological observations on

Azotus perspeciosus (Girault) (Hymenoptera: Aphelinidae), hyperparasitoid of

Pseudaulacaspis pentagona (Targioni Tozzetti) (Homoptera: Diaspididae). Redia

74: 343–350.

120. Gumovsky AV, Perkovsky EE (2005) Taxonomic notes on Tetracampidae

(Hymenoptera: Chalcidoidea) with description of a new fossil species of

Dipricocampe from Rovno amber. Entomological Problems 35: 123–130.

121. Grissell EE (1997) Chapter 21. Torymidae. In: Gibson GAP, Huber JT,

Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea

(Hymenoptera). Ottawa: National Research Council of Canada Research

Press. 794 p.

122. Banks JC, Whitfield JB (2006) Dissecting the ancient rapid radiation of

microgastrine wasp genera using additional nuclear genes. Molecular

Phylogenetics and Evolution 41: 690–703.

123. Grimaldi DA, Engel MS (2005) Evolution of the Insects. New York: Cambridge

University Press. 755 p.

124. Bouček Z (1988) An overview of the higher classification of the Chalcidoidea

(Parasitic Hymenoptera). In: Gupta VK, ed. Advances in Parasitic Hymenop-

tera Research. Leiden, The Netherlands: E. J. Brill. pp 11–23.

125. Huber JT (1986) Systematics, biology, and hosts of the Mymaridae and

Mymarommatidae (Insecta: Hymenoptera). Entomography 4: 185–243.

126. Huber JT, Mendel Z, Protasov A, LaSalle J (2006) Two new Australian species

of Stethynium (Hymenoptera: Mymaridae), larval parasitoids of Ophelimus maskelli

(Ashmead) (Hymenoptera: Eulophidae) on Eucalyptus. Journal of Natural

History 40: 1909–1921.

127. Huber JT, Gibson GAP, Bauer LS, Liu HP, Gates M (2008) The genus

Mymaromella (Hymenoptera: Mymarommatidae) in North America, with a key

to described extant species. Journal of Hymenoptera Research 17: 175–194.

128. Masner L (1995) The proctotrupoid families. In: Hanson P, Gauld ID, eds.

Oxford Oxford University Press pp. pp 209–246.

129. Parker HL (1924) Recherches sur les formes postembryonaires de chalcidiens.
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Abstract 

We present the first molecular phylogenetic analysis of the family Torymidae (Hymenoptera: 

Chalcidoidea) using 4809 nucleotides from 5 genes (18S rDNA, 28S rDNA, EF1α, COI 

and Wg). Ten outgroups and 226 ingroup taxa were used, representing 45 of the 67 

recognized genera in the 2 known subfamilies of Torymidae (Megastigminae and Toryminae). 

All analyses produced similar topologies, and based on only molecular data, Torymidae is not 

a monophyletic group and Megastigminae is sister to Ormyridae ((Ormyridae 

+ Megastigminae) + Toryminae). Most of the tribes recognized by morphological characters 

within the subfamily Toryminae were supported by our results (i.e. Chalcimerini, 

Microdontomerini, Monodontomerini, Torymini, Torymoidini and Palachiini + Podagrionini). 

Two new tribes of Torymidae are erected: Boucekini, trib. nov. and Glyphomerini, trib. nov. 

As presently understood, the genus Glyphomerus is paraphyletic and 7 other genera classified 

as incertae sedis based on earlier studies of morphology were assigned to specific tribes 

(i.e. Cryptopristus, Echthrodape, Exopristoides, Exopristus and part of Glyphomerus 

to Microdontomerini; Thaumatorymus to Chalcimerini; Zaglyptonotus to Monodontomerini). 

Life-strategies, hosts records and distribution of all taxa were mapped onto the reconstructed 

phylogeny. The larvae of Toryminae are ectoparasitoids of gall-forming insects in the 

Palaearctic region with several derived traits throughout the Toryminae phylogeny. The life 

strategy, hosts and distribution of the common ancestor of Megastigminae remains uncertain. 

182



Introduction 

 Chalcidoidea is an extremely diverse superfamily within the order Hymenoptera. More 

than 22,500 species have been described and their overall diversity is estimated at more than 

500,000 species (Heraty 2009; Noyes 2013). Twenty-two families are now recognized 

(Aguiar et al. 2013; Heraty et al. 2013). Their morphological diversity and enormous number 

of species are reflected also by their biological and feeding strategies. Most Chalcidoidea are 

parasitoids and thus are among the most important natural enemies of other insects. Despite 

their functional importance in natural ecosystems, the taxonomy, biology and phylogeny 

of most chalcidoid families is poorly known (Huber 2009). Until now, only a few 

comprehensive phylogenetic studies of entire families/or subfamilies have been published. 

Most of these studies are based on morphology (Gibson 1995 - Eupelminae; Grissell 1995 -

 Toryminae; Heraty 2002 - Eucharitidae; Lotfalizadeh et al. 2007 - Eurytominae), and only 

a few used molecular characters (Owen et al. 2007 - Trichogrammatidae; Cruaud et al. 2010 - 

Agaonidae, 2011b - Sycophaginae, 2013 - Sycoecinae; Burks et al. 2011 - Eulophidae; Segar 

et al. 2012 - Sycoryctinae; Murray et al. 2013 - Eucharitidae). 

 Torymidae is one of the mid-sized families of Chalcidoidea. The family includes 67 

valid genera and about 1100 described species (Grissell 1995; Janšta et al. 2013). Monophyly 

of the family is supported only in analyses that include adult morphological characters 

(Grissell 1995; Gibson et al. 1999; Heraty et al. 2013). Although, each of these authors 

acknowledged the monophyly of Torymidae, there is no synapomorphy defining the family. 

In contrast, the monophyly of Torymidae based only on molecular or larval characters, has 

never been recovered (Campbell et al. 2000; Gómez et al. 2008; Munro et al. 2011). 

 The classification of Torymidae has changed several times since the family was 

described (Walker 1833) and the family also has included members from several other 

families (Ashmead 1904; Wiebes 1961; Hill 1967). Bouček (1988) summarized the 

classification history of Torymidae, proposed a new one, and suggested five synapomorphies 

defining the family. Grissell (1995) questioned all of the proposed synapomorphies, but 

suggested that the family was monophyletic based on a combination of the five character 

states.  

 Historically, several families (i.e. Ormyridae, Agaonidae, Epichrysomallinae, 

Sycophaginae) have been proposed to be sister to Torymidae based either on intuitive analysis 

(Noyes 1990) or on convergences (Cruaud et al. 2010, 2011b), but without any morphological 

support. Bouček (1988) mentioned that Ormyridae could be closely related to Torymidae 

based on shape of the occipital carina. The same hypothesis was also proposed by Noyes 
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(1990) in his intuitive cladogram that groups together Torymidae plus Ormyridae 

and Agaonidae plus Ormocerinae (Pteromalidae). Grissell (1995) added Pteromalidae as the 

outgroup to his phylogenetic analysis of the Toryminae (Toryminae and Megastigminae are 

the only recognized subfamilies of Torymidae). Gibson et al. (1999) noted that relationships 

and the proper classification of Torymidae, Ormyridae and Agaonidae are one of the more 

perplexing issues of chalcidoid classification. Because of variable results, no sister group was 

proposed for Torymidae as a result of the comprehensive phylogenetic analyses 

of Chalcidoidea using molecular (Munro et al. 2011) or combined molecular 

and morphological data (Heraty et al. 2013). However, this latter analysis repeatedly placed 

Torymidae in a clade with Ormyridae and Colotrechninae (Pteromalidae). 

 Grissell (1995) proposed the most comprehensive phylogenetic analysis of the 

Torymidae (primarily Toryminae), based on 24 morphological characters and 46 taxa. He 

hypothesized the monophyly of both Megastigminae and Toryminae. Toryminae were divided 

into seven tribes (Fig. 1): Chalcimerini included 1 genus and 1 species (i.e. 1/1), 

Microdontomerini (9/104), Monodontomerini (11/68), Palachiini (3/30), Podagrionini 

(7/139), Torymini (10/416) and Torymoidini (6/111) (Grissell 1995, 2000, 2005; Sureshan 

and Narendran 1996; Bouček 1998; Zerova and Grissell 2000; Sureshan 2003, 2007, 2010; 

Narendran and Sudheer 2004; Delvare 2005; Askew et al. 2007; Xiao et al. 2007, 2012; Zhao 

et al. 2007; Doğanlar and Doğanlar 2008; Narendran and Peter 2009; Doğanlar and Doğanlar 

2009; Narendran and Mercy 2010; Tarla et al. 2010; Xiao and Zhao 2010; Janšta et al. 2011, 

2013; Narendran et al. 2012; Noyes 2013). Some genera were treated as incertae sedis within 

Toryminae, and remain unplaced: Cryptopristus Förster, 1856 (3 species), Echthrodape 

Burks, 1969 (2), Exopristoides Bouček, 1982 (2), Exopristus Ruschka, 1923 (1), 

Glyphomerus Förster, 1856 (9), Stenotorymus Masi, 1938 (1), Thaumatorymus Ferrière and 

Novicky, 1954 (1), and Zaglyptonotus Crawford, 1914 (3) (Grissell 1995; Zerova 

and Seryogina 1999, 2000; Zerova et al. 2004, 2008; Stojanova 2005). The subfamily 

Megastigminae is comprised of 198 species in 12 genera (Bouček 1988; Grissell 

and Desjardins 2002; Doğanlar 2011a, 2011b; Noyes 2013). There has not been a rigorous 

phylogenetic study of that subfamily based on either morphological or molecular characters, 

although monophyly of the 3–4 included genera was supported by Munro et al. (2011) 

and Heraty et al. (2013). 

 Most torymid genera are distributed in the Old World and in Australian region, 

(Grissell 1995; Janšta et al. 2013; Noyes 2013), with only a few spreading to the New World: 

Megastigmus, Cryptopristus, Glyphomerus, Ditropinotus, Eridontomerus, Idiomacromerus, 
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1995). Recently, many new amber fossils (mostly from Baltic amber) of undetermined 

Torymidae have been recorded (Krogmann – pers. comm.). Surprisingly, the oldest comes 

from Burmese amber (mid-Cretaceous, latest Albian, ca. 100 Mya) and appears to be a genus 

belonging to the tribe Monodontomerini (Janšta – pers. observ.). 

 

 The main aims of our study are to (i) propose the first phylogenetic hypothesis for 

Torymidae based on molecular data using broad taxon sampling, (ii) test the monophyly 

of the family, (iii) compare the phylogeny of Torymidae to previous morphological results 

and test the current classification, (iv) test the monophyly of most genera, (v) discuss 

the origin of host specialization, and (vi) assess the biogeography of the family, subfamilies 

and tribes. 
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Microdontomerus, Pseuderimerus, Monodontomerus, Podagrion, Palmon, Torymus. Only 

a few genera are endemic to the Neotropical and the Nearctic regions, including Boucekinus 

and Platykula (Torymoidini); Erimerus (Microdontomerini); Zaglyptonotus (Toryminae 

incertae sedis); Chileana, Perissocentrus and Zdenekius (Monodontomerini); Allotorymus, 

Physothorax and Plesiostigmodes (Torymini); and Neopalachia (Palachiini).  

 The biology of torymid species is still largely unknown but a few well defined patterns 

are apparent. Most larvae of Toryminae (Chalcimerini, most of Microdontomerini, Torymini, 

Torymoidini) are ectoparasitoids of various gall makers (mainly Cynipidae 

and Cecidomyiidae). Palachiini and most of Podagrionini are endoparasitoids of mantid eggs 

or larvae. Most Monodontomerini are ectoparasitoids on larvae of bees or endoparasitoids 

of eggs of Heteroptera and pupae of Lepidoptera (Grissell 1995). Only a few species are 

phytophagous (part of Torymini). Within Megastigminae, nearly all genera are ectoparasitoids 

of various gall makers with the exception of the Megastigmus species, which are mostly 

phytophagous (Grissell 1999). 

 Little is known about the larval morphology of Torymidae. There are several 

individual studies concerning larval morphology and descriptions of various immature stages 

(Askew 1961, 1966, 2002; Sellenschlo 1982, 1983, 1984, 1989; Skrzypczyńska and Roques 

1987; Askew et al. 2004, 2007; Nieves-Aldrey et al. 2007), but none have discussed larval 

characters in a phylogenetic framework. The only phylogenetic analysis based on terminal-

instar larval characters was by Gómez et al. (2008). In this study, larval morphology did not 

support the monophyly of Torymidae as postulated previously (Grissell 1995) but instead 

suggested that Megastigminae and Toryminae were distantly related. As well, within 

Megastigminae, the zoophagous species of Megastigmus exhibit an autapomorphic character 

(Askew 1966; Nieves-Aldrey et al. 2008) not found in any of the phytophagous species. 

 Only a few fossil Torymidae have been documented. The oldest torymid fossils were 

discovered in Baltic amber – 44 Mya (Brues 1923 – Monodontomerus primaveus Brues, 

1923) and the Dominican amber (15-45 Mya, Cruaud et al. 2010). Two extinct genera are 

known from the Dominican amber (Grissell 1980). Gummilumpus bouceki (Grissell, 1980) 

which is assigned to the tribe Palachiini and Zophodetus woodruffi Grissell, 1980 that 

appeared to be closely related to Microdontomerini (Grissell 1995). The extinct genus 

Paleotorymus and extant Torymus were documented also from the Eocene-Oligocene 

boundary of Florissant shales in Colorado (Grissell 1976, 1995) and from Miocene 

compression fossils in Spain (Peñalver and Engel 2006; Heraty and Darling 2009). However, 

the assignation of some species of Paleotorymus to Torymidae was questioned (Grissell 
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of Heteroptera or Orthoptera. We believed that these genera clustered within one subclade 

of Monodontomerini closely related to Monodontomerus (Bouček 1978; Grissell 1995). This 

peculiar biology is unique in Monodontomerini and is only shared by Palachiini and 

Podagrionini. 

 

 Since its description (Bouček 1976), Palachiini was considered closely related to 

Podagrionini. Palachiini differs from Podagrionini in having a shorter hind coxa, slender hind 

femur bearing weak teeth, and a truncated hind tibia bearing two apical spurs (Bouček 1978). 

In all our analyses Palachiini is polyphyletic, forming a poorly supported grade that includes 

some species of Podagrionella (Fig. 3c). As discussed by Bouček (1978), Propalachia 

appears more plesiomorphic than Palachia. We recovered Propalachia as sister to all other 

Palachiini (only represented by Palachia) and Podagrionini. Palachiini and Podagrioni share 

a unique modification of the metasternum (Grissell 1995). The genera Palachia, Palmon and 

Propachytomoides are monophyletic in our results, and are also well-defined morphologically 

(Grissell 1995). Podagrion is also recovered monophyletic in MP and BA but not ML, but 

this may also be artefactual. 

 Within Podagrion (subclade 9a), we failed to recover the discrete genera suggested by 

Delvare (unpublished) (genus Neogrion – for New World species, Afrogrion for part of 

African species and Australgrion for part of Australasian species). Podagrionella appears 

polyphyletic, but is formed several monophyletic groups that roughly reflect previously 

accepted genera, i.e. Iridophagoides, Iridophaga and Podagrionella (Bouček 1976, 1988). 

However, because the backbone support within Podagrionini is low, we prefer not to split 

Podagrionella into distinct genera at this time. 

 

Evolution of life strategies 

  

Many of the most basal genera of Megastigminae (Bortesia, Bootanelleus or Bootanomia) are 

ectoparasitoids of gall making Cynipidae or Cecidomyiidae (Figs 4a, b), with the 

phytophagous Megastigmus nested within a lineage of parasitoids. Phytophagy was proposed 

as ancestral for Megastigminae by Grissell (1995). Ancestral reconstruction of states on our 

results yields an ambiguous evolutionary pattern, probably because our knowledge of the 

biology of many genera of Megastigminae is still fragmentary. Furthermore, outgroups 

(Ficomila, Sycophaga and Odontofroggatia all of them are phytophagous) were not chosen 
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Material and methods 

Taxon sampling 

A total of 226 ingroup taxa (2/3 of the known genera) were used for this study. The chosen 

taxa represent the two accepted subfamilies of Torymidae, as well as all tribes of Toryminae 

recognized prior to our study (Grissell 1995, Fig. 1). To test the monophyly of Torymidae, we 

included in our analysis species of Ormyridae (Ormyrus spp. and Ormyrulus sp.) that are 

considered as closely related to Torymidae (Heraty et al. 2013). We also include species 

belonging to more distant taxa: Eurytomidae (Ficomila sp.); Agaonidae, Sycophaginae 

(Sycophaga sp.); Pteromalidae, Epichrysomallinae (Odontofroggatia spp.) that were 

sometimes historically included into the Torymidae (Bouček 1988; Grissell 1995; Gibson 

et al. 1999). A total of 10 outgroup species belonging to four families were used (Tab. 1).  

 

Most specimens sampled were initally preserved in 70 or 96% EtOH, although a few extracts 

were made from dry, card-mounted specimens (Tab. 1). Specimen vouchers are deposited in 

the Center for Biology and Management of Populations, INRA, Montferrier-sur-Lez, France 

(CBGP); Charles University, Faculty of Science, Department of Zoology, Prague, Czech 

Republic (PJ); Department of Entomology, University of California, Riverside, CA, USA 

(UCRC); and the National Museum of Natural History, Smithsonian Institution, Washington, 

DC, USA (USNM).  

 

Molecular methods 

DNA extraction either followed a modified Chelex protocol (CP) (Walsh et al. 1991) 

or isolation using the Qiagen DNAeasy ® kit (QP) following the manufacturerʹs protocol. 

If we had more than one specimen from a specific taxon and locality, we used destructive 

DNA extraction (D) to obtain a higher quantity of genomic DNA. We used non-destructive 

DNA extraction (N) for rare taxa or for taxa that belong to taxonomically difficult groups 

(Tab. 1).  

 Five loci were sequenced: two nuclear protein coding genes, the F2 copy of elongation 

factor-1α (EF-1α, 517 bp) and Wingless (Wg, 403bp); two ribosomal nuclear genes, 18S 

rDNA (V3-V5 expansion region, ~933bp) and 28S rDNA (D2-D3 and D4-D5 expansion 

regions, ~1450bp); and mitochondrial cytochrome c oxidase subunit I (COI, 1506bp). Primer 

sequences and amplification protocols followed Cruaud et al. (2010) for COI and Wg, Cruaud 

et al. (2011) for EF-1α, and Munro et al. (2011) for 18S rDNA and 28S rDNA. 
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 PCR products were either sent as non-purified products to Macrogen Inc. for 

purification and sequencing, or purified using the QIAquick PCR Purification Kit ®, and then 

sequenced using the BigDyeTerminator v3.1 ® kit (Applied Biosystems) and an 3130xl 

Genetic Analyzer at Charles University in Prague, an ABI3730XL sequencer at Genoscope, 

Evry, France, or sequenced at the San Diego State University Microchemical Core Facility 

or the UCR Genomics Core Facility. All sequences are deposited in GenBank (!change for 

NUMBERS!). All regions sequenced for specific taxa are listed in Tab. 1. 

 

Alignment 

Contigs were assembled and subsequently edited using the software Geneious version 6.1.6 ® 

(available from http://www.geneious.com/). All gene regions were aligned using MAFFT 

(Katoh and Standley 2013) version 7.110 (available from 

http://mafft.cbrc.jp/alignment/server/) using the E-INS-i strategy for ribosomal genes and L-

INS-i strategy for coding genes. Alignments of protein-coding sequences (EF-1α, Wg, COI) 

were translated into amino acid using Geneious 6.1.6 to detect stop-codons that may indicate 

pseudogenes or misalignments. Ribosomal ambiguous alignment regions (non-pairing bases) 

were realigned using secondary structure models (Gillespie et al. 2005; Munro et al. 2011). 

Possible substitution saturation for each gene and nucleotid position, respectively, was 

checked by plotting the number of transition (Ts) and transversion (Tv) vs F84 model 

of distance using DAMBE (Xia 2013). 

 

Phylogenetic analyses 

Parsimony and probabilistic methods were used to reconstruct trees under different optimality 

criteria. Maximum parsimony analysis (MP) were conducted using PAUP* 4.0b10 (Swofford 

2003) and 1000 random addition of sequences with TBR swapping. Gaps were treated as 

missing characters and all substitutions were equally weighted. Nodal supports for MP trees 

were assessed with 1000 bootstrap replications. Bootstrap percentage (BP) ≥ 70% were 

regarded as strong nodal support (Farache et al. 2013). 

 For both Bayesian (BA) and maximum likelihood (ML) analyses, jModelTest 2.1.4 

(Posada 2008; Darriba et al. 2012) was used to calculate models of evolution for individual 

genes or nucleotides position respectively under the Akaike information criteria (AIC). ML 

and BA analyses were conducted using different partitioning dataset and implementing 

separate nucleotide substitution models for subsets of the data. ML analyses were 

implemented in RAxML 7.6.3 using GTRCAT approximation with 1000 bootstrap replicates 
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(Stamatakis 2006). Several runs with different seeds settings were run to estimate the best 

likelihood score. Bootstrap percentages (BP) of more than 95% were considered as strong 

support and BP < 70% as weak (Cruaud et al. 2011b). For Bayesian Analyses (BA), a parallel 

version of MrBayes 3.2.2 (Huelsenbeck et al. 2001; Ronquist and Huelsenbeck 2003) was 

used. Parameter values for the partitioning strategy were initiated with default uniform priors 

and branch lengths estimated using default exponential priors, with the dataset partitioned 

by genes and nucleotide position (Cruaud et al. 2010). We ran two independent runs of 30 

million generations, sampling every 10,000, with the first 25% of samples discarded as burn-

in. Posterior probabilities (PP) ≥ 0.95 were considered as strong support, PP < 0.90 as weak 

(Farache et al. 2013). All ML and BA analyses were conducted on the CIPRES Science 

Gateway (Miller et al. 2010). 

 

Character mapping 

To infer biogeography and the evolution of life-history strategies, we conducted MP ancestral 

state reconstruction using Mesquite 2.75 (Maddison and Maddison 2011). All reconstruction 

was performed on the resulting RAxML (ML) tree. We assembled a matrix of three characters 

from our own collecting data or several literature sources (Hanson 1992; Grissell 1995; 

Gómez et al. 2008; Janšta et al. 2013; Noyes 2013). 

 We divided taxa based on life-strategy of larvae (Fig. 4a) – i.e. phytophagous species 

feeding in plant seeds, zoophagous ectoparasitoids feeding on larvae of gall-forming insects, 

zoophagous ectoparasitoids feeding on larvae of non-galling insects, zoophagous 

endoparasitoids feeding on larvae of non-galling insects, endoparasitoids of insect eggs; based 

on information about larvae host records at higher taxonomic level of hosts – i.e. 

phytophagous species feeding in plant seeds, zoophagous species feeding on larvae 

of Cynipidae, Cecidomyiidae, other Diptera, Aculeata, Eurytomidae, Coleoptera, in pupae 

of Lepidoptera and in eggs of Heteroptera and Mantodea; and based on distribution of taxa 

added to analysis according to biogeographical regions – i.e. Afrotropical region, Palaearctic 

region, Oriental region, Australian region, Nearctic region and Neotropical region. 

 In cases where we did not have enough biological data to summarize life-strategy 

or host records for specific parasitoid taxa included into analysis (i.e. for species which hosts 

are unknown or we were not able to determine them to the species level), we generalized 

it based on genus-level characteristic from literature. Thus, when species of the genus are 

known as parasitoids of more then one higher taxa mentioned above, we add into analysis all 

these main hosts possibilities for specific taxa of parasitoid. 
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Results 

Alignment and phylogenetic analyses 

A total of 4809 bp was used for our analysis: 18S rDNA = 933bp, 28S rDNA = 1450bp, EF-1α 

= 517, COI = 1506 and Wg = 403. Under parsimony with gaps treated as missing, there were 

1347 constant, 1900 variable and 1562 informative characters. Alignment of protein coding 

genes revealed no stop codons or frame shifts. For the mitochondrial locus (COI), the third 

codon position (nt3) showed a strong bias in base composition (A+T 92%) and saturation 

(Fig. 2a). Wingless had a base composition bias (C+G 72%) and was saturated for the nt3 

position (Fig. 2b). Therefore we decided to recode these nucleotides positions as purines 

(R) or pyrimidines (Y) (Phillips and Penny 2003; Cruaud et al. 2011a).  

 

 Prior to testing for an optimal partitioning strategy, we selected sequence evolution 

model for the entire concatenated dataset, every single gene, stems and loop region 

in ribosomal genes as well as for each position in coding genes using AIC criterion 

in jModelTest 2.1.4. An optimal partitioning was then selected after comparing the Bayes 

factors (BF) of each partitioning strategy (Cruaud et al. 2010). The best BF scores was for 

separating the dataset into ten partitions as follows – RNA(1) + EF-1α nt1(2) + EF-1α nt2(3) 

+ EF-1α nt3(4) + COI nt1RY(5) + COI nt2(6) + COI nt3RY(7) + Wg nt1(8) + Wg nt2(9) 

+ Wg nt3RY(10). Models choosen for these partitions for BA were GTR+I+Γ (for 1, 2, 4, 5, 

6), GTR + Γ (8) and GTR (3, 7, 9, 10). 

 The parsimony analysis (MP) of the entire dataset resulted in four most parsimonious 

trees with a tree length of 14,669 steps (CI = 0.17, RI = 0.60). The 50% majority-rule 

consensus was computed from all best trees. Bayesian analysis (BA) and Maximum 

Likelihood (ML) results yielded almost the same topology (Fig. 3a-c), but with a slightly 

different topology from MP analysis. Deviations of topology under different phylogenetic 

approaches are discussed below.  

 

Monophyly of Torymidae 

In all analyses, Torymidae was not recovered as a monophyletic group, with a monophyletic 

Toryminae recovered as sister to Megastigminae + Ormyridae (node support ML/BA/MP 

68/0.97/-). Megastigminae were monophyletic (95/0.99/96) (clade 1), and each of the 

included genera were monophyletic, but with low support for Megastigmus. Bootanomyia 

(Megastigminae) is monophyletic in all topologies, but with no MP support (84/0.97/-). 
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Phylogenetic position of other genera was congruent in all results with Bortesia 

+ Bootanelleus sister to all other Megastigminae (95/0.99/96). 

 

Phylogeny of Toryminae  

Nodal support for a monophyletic Toryminae was high in all analyses (99/1/70). All analyses 

recovered a monophyletic Thaumotorymus + (Chalcimerus + Exopristoides) (clade 2) with 

high support (100/1/92) that was sister group to all other Toryminae. The Torymoidini 

+ Torymini sensu Grissell (1995) was recovered sister (95/1/-) to a relatively poorly 

supported clade (74/1/-) composed of all other Toryminae tribes (Microdontomerini, 

Monodontomerini, Podagrionini, Palachiini, and genera treated by morphology as incertae 

sedis). 

 Torymoidini was paraphyletic in all analyses (clade 2 & 3, Fig. 3b), with some 

Torymoidini (Boucekinus + Platykula + one undescribed genus from Chile) (clade 3) 

(100/1/70) sister group to a monophyletic group of other Torymoidini (clade 4) (91/1/-) 

+Torymini (97/1/57). Pseudotorymus was paraphyletic within clade 2 in all analyses. A well 

supported clade (100/1/83) including all African Pseudotorymus species was recovered as 

sister to a clade (100/1/60) clustering all Pseudotorymus species from the Holarctic region 

(100/1/82) and a monophyletic Torymoides (93/1/57) showing Australian species basal to 

Palaearctic species. Support for Torymoidini + Torymini excluding clade 3 was relatively 

strong (83/.99/-). 

 The tribe Torymini (clade 5, Fig. 3b) was recovered as monophyletic in all analyses 

(97/1/57). Ecdamua was sister to all other Torymini but without any support. The genus 

Torymus was polyphyletic, and included species of Physothorax and Plesiostigmodes. The 

New World species of Torymus plus the New World genera of Torymini (Physothorax and 

Plesiostigmodes) plus the subgenus Nannocerus of Torymus sp. were clustered in a poorly 

supported clade (79/1/56) (subclade 5a). 

 The remaining Toryminae were subdivided into two clades with contrasted support 

(Fig. 3c). A poorly supported clade included Glyphomerini, Microdontomerini (clade 7) and 

awell supported clade grouping all Podagrionini, Palachiini and Monodontomerini. 

Glyphomerini (including only the genus Glyphomerus) was recovered paraphyletic. Two 

species of Glyphomerus (incl. G. stigma from Europe) grouped in a strongly supported clade 

(clade 6) (100/1/100) while the other species of Glyphomerus were nested within all species 

of Microdontomerini and formed a well supported clade (clade 7) (99/1/77). The position of 

Glyphomerini was unstable in different analyses. They were recovered neither sister to tribe 
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Microdontomerini (clade 7) (ML and BA) or to Monodontomerini (clade 8) and Palachiini 

+ Podagrionini (clade 9) (MP). Except for the ML results, the support in both cases 

of topology was considered as weak (72/-/-). 

 

 Within clade 7, all included genera were monophyletic, with the exception 

of Eridontomerus and Pseuderimerus. Eridontomerus was rendered paraphyletic 

by Ditropinotus, and Pseuderimerus was rendered paraphyletic by Erimerus. Several genera 

previously classified as incertae sedis were placed in our clade 7 with very high support, 

namely Cryptopristus, Echthrodape, Exopristus and Glyphomerus in part. 

  

 Monodontomerini (clade 8) were monophyletic and included the genera Zaglyptonotus 

(98/1/61) and Zdenekius. Zdenekius was recovered sister to all other Monodontomerini only 

by ML (84/-/-). Monodontomerini was subdivided with strong support into South American 

(93/1/74) and Palaearctic (99/1/95) subclades (subclade 8a and 8b respectively). 

  

 Palachiini was recovered as polyphyletic with respect to Podagrionini in all analyses, 

but was recovered monophyletic in ML and BA (clade 9) (95/1/-). Propalachia (Palachiini) 

was sister to the rest of Palachiini plus Podagrionini in the ML and BA results (94/1/-). 

Within clade 9, Propalachia, Palachia, Propachytomoides and Palmon were monophyletic. 

Podagrion was monophyletic only when Mantiphaga (1003 TOTO Mantiphaga sp1 UAE) 

was included. Podagrionella was separated into several distantly related clades mostly 

according to former (now synonymized) subgenera. 

 

Characters mapping 

We mapped the life-strategies of larvae (Fig. 4a), information about hosts associations for 

larvae (Fig. 4b), and the distribution of taxa according to their biogeographical regions (Fig. 

5). Despite the noticeable disproportion in taxa from different regions and clades, we tried to 

include taxa from all regions where they are known (e.g. for genus Torymus, which is 

distributed in all regions, species were included from across its entire range). 
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Discussion 

The monophyly of Torymidae (Megastigminae + Toryminae) was never recovered in our 

analyses, however this result lacks support and need to be confirmed by future studies. This 

contradicts earlier studies (e.g., Bouček 1988; Grissell 1995; Heraty et al. 2013; but see 

Campbell et al. 2000 and Munro et al. 2011). However, the monophyly of the family has not 

yet been supported by morphology (exclusive synapomorphy). 

 Our results suggest that 1) Toryminae and Megastigminae should be raised to family 

rank (Torymidae and Megastigmidae) or 2) Ormyridae must be downgraded to a subfamily 

of Torymidae (Ormyrinae). Ormyridae and Colotrechnus (Pteromalidae: Colotrechninae) 

were sister to a monophyletic Torymidae in Heraty et al. (2013), but with weak morphological 

support. 

 

 The larval morphology of Megastigminae and Toryminae are very different (Gómez 

et al. 2008), which also supports treating them as distinct family groups. Synapomorphies 

based on larval characters for individual subfamilies were postulated as body segments almost 

bare, without setae or only with very short setae; mandibles with four or five teeth; labrum 

divided into several small lobes in Megastigminae and body segments strongly hairy; 

mandibles with a single tooth; labrum undivided for Toryminae (Gómez et al. 2008). 

 

Megastigminae 

Phytophagy has been considered as the ancestral feeding strategy for Megastigminae (Grissell 

1995). However, our analysis highlighted the derived position of the phytophagous 

Megastigmus. The ancestral feeding strategy remains equivoqual but phytophagy appears to 

have originated at least twice in the genera Bootanelleus and Megastigmus (Figs 4a, b). 

 Our results confirm that the metallic zoophagous species of Megastigmus (mostly 

Palaearctic) were correctly placed within the Australian genus Bootanomyia, as advocated by 

Doğanlar (2011a). Larvae of Australian Bootanomyia are not known, nevertheless exclusive 

autapomorphy (the presence of a medial frontal pit) of zoophagous larvae formerly included 

into Megastigmus, (now Bootanomyia) were observed repeatedly (Askew 1966; Nieves-

Aldrey et al. 2008). A similar character has not been observed in phytophagous Megastigmus 

(Nieves-Aldrey et al. 2008). 

 Most genera and species of Megastigminae are restricted to the Australian region 

(Bouček 1988). However, based on our sampling of taxa and outgroups, the ancestral 

distribution of Megastigminae remains equivocal (Fig. 5).  
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Toryminae 

The monophyly of Toryminae has been demonstrated by several studies based on both 

molecular and morphological characters (Grissell 1995; Campbell et al. 2000; Munro et al. 

2011; Heraty et al. 2013) and is corroborated by our results. Despite its monophyly, no 

distinct apomorphy defined the clade, and the group is defined by an exclusive combination of 

five characters (Bouček 1988; Grissell 1995). 

 Our analyses corroborated the monophyly of nearly all tribes defined by Grissell 

(1995), but our relationships differ from what he proposed (Fig. 1). 

 Clade 2 is sister to all other Toryminae tribes. This clade includes Chalcimerus and 

two previously unclassified genera, Exopristoides and Thaumatorymus. Chalcimerus was 

formerly treated as the sister group to Podagrionini. This position was supported by several 

synapomorphies (enlarged hind leg with toothed femora, curved tibiae bearing only one apical 

tibial spur). However, these putative synapomorphies are homoplastic across Chalcidoidea 

(Heraty et al. 2013) and erroneously suggested a relationship between Podagrionini and 

Chalcimerus. There is no synapomorphy suggesting a close relationship between 

Thaumatorymus, Exopristoides and Chalcimerus. The only character shared between 

Chalcimerus and Exopristoides is the so called “primitive” wing venation (Grissell 1995). 

Because of similar biology [all are known to be parasitoids of gallwasps (Cynipidae) of the 

tribe Aylacini] and similar distribution (all species are restricted to the West Palaearctic 

region), we treat them as one tribe, Chalcimerini. 

 Members of the clades 3, 4 and 5 share one synapomorphy, which is the Torymus-like 

wing venation (Grissell 1995; Janšta et al. 2011). Torymini (clade 5) is characterized by the 

sinuate metapleural shelf (Grissell 1976). However, relationships within Torymini are still 

unresolved. Torymus and few New World genera form a paraphyletic assemblage that was 

recovered as sister to Ecdamua, with species belonging to clade 5 subdivided into two distinct 

subclades (subclade 5a and 5b). 

 Subclade 5a included the formerly recognized Diomorus (previously synonymized 

under Torymus; Graham and Gijswit 1998; Zerova et al. 2000) and some New World species 

of Torymus including the subgenera Nannocerus, Physothorax and Plesiostigmodes. Within 

this clade, larvae of Torymus (=Diomorus) are ectoparasitic on larvae of aculeate wasps, 

which is a biology also shared with species of Ecdamua (Graham and Gijswit 1998; Zerova 

and Seryogina 2003), with Ecdamua the sister group of clade 5a+b. Based on our personal 

observations, Physothorax and Torymus (Nannocerus) species are associated with figs. 

Bouček (1993) reported parasitism by Physothorax bidentulus on larvae of gall-forming 
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Cecidomyiidae inside Ficus syconia. Thus we assume that most species of Physothorax, 

Plesiostigmodes and Torymus (Nannocerus) develop as gall-maker parasitoids within figs. 

These species are only known from the neotropics (with a few species reaching Florida, 

i.e. P. bidentulus; Noyes 2013). The morphological differences between these three 

genera/subgenera are 1) number of ventral teeth on the hind femur: one in T. (Nannocerus), 

two in Plesiostigmodes and sometimes more than two in Physothorax; 2) winged males in 

Physothorax versus non-winged males in Physothorax and T. (Nannocerus), and 3) presence 

of two annelli (discoidal basal antennal flagellomeres) in Plesiostigmodes versus a single 

anellus in the others (Ashmead 1904; Bouček 1993). Our data do not allow us to question the 

monophyly of the discussed genera and subgenus, but the number of anneli or anneliform 

segments is a very labile character within these groups (Bouček 1993). Torymini is the only 

group of Torymidae containing species with apterous males. Apterism probably evolved as an 

answer to the association with figs as previously observed in many other fig wasps (Cruaud 

et al. 2010, 2011b; Segar et al. 2012). 

 Subclade 5b included the remaining species of Torymus and Allotorymus splendens. 

Allotorymus differs from Torymus by exhibiting an elongated pronotum and a strongly clavate 

flagellum, but most other characters are also shared with species from the Torymus laetus 

species group (Grissell 1976; Graham and Gijswit 1998; Zavada 2003). 

 Our sampling of Torymini is not representative of the overall diversity of the tribe 

(only five of ten known genera), therefore we hesitate to make the taxonomic changes until 

the relationships are confirmed by an analysis including more genera. Comparing to the other 

tribes, branch length and genetic distance between Torymus species and species-groups 

(especially those from the Old World) strongly suggest that the genus underwent a rapid 

diversification. 

 

 Torymoidini were subdivided into two clades (clade 3 and clade 4) that form a grade 

to Torymini. Clade 3 comprises only the New World genera, Boucekinus, one undescribed 

genus from Chile, and Platykula. As previously noticed (Janšta et al. 2011), Boucekinus 

appears to be morphologically similar to Platykula. Although the biology is only known for 

Boucekinus, we propose clade 3 as a new tribe (Boucekini trib. nov.). Torymoidini (clade 4) 

is now restricted to only Pseudotorymus and Torymoides. Pseudotorymus was paraphyletic in 

our analyses, with the most basal clade contains all Palaearctic species of Pseudotorymus. The 

second Pseudotorymus clade is sister to Torymoides and contains only Afrotropical species. 

Risbec (1951) described the genus Senegalella which was only reported from the Afrotropical 
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region and differed from Pseudotorymus only by the absence of setae on the dorsal surface 

of hind coxa. Grissell (1995) also found some undescribed species of Senegalella in the 

Oriental region, northern Africa and southern Europe and based on these distribution records 

synonymized Senegalella with Pseudotorymus. According to our results, Senegalella (genus 

with bare hind coxa dorsally) appears to be a valid genus, sister to Torymoides. 

 The torymoid clade (clades 3-5) is sister to Microdontomerini + Glyphomerus stigma 

and Monodontomerini+Palachiini+Podagrionini. The position of G. stigma (together with 

G. cf. stigma from Canada) was unstable in our analyses, but support values are always low. 

In the MP analysis, the Glyphomerus clade is recovered sister to Monodontomerini 

+ Palachiini + Podagrionini. Grissell (1995) included Glyphomerus as incertae sedis within 

Toryminae and placed it in a basal multifurcation. He found no morphological support to 

allocate Glyphomerus to any of the torymid tribes and defined the genus on a combination of 

several „plesiomorphic characters“. We decide here to classify in the genus as a new tribe 

(Glyphomerini trib. nov.) due to clear genetic distance from other members of the subfamily 

Toryminae. 

  

 We consider the monophyletic clade 7 to be the Microdontomerini sensu novum. 

Echthrodape was not included in previous phylogenetic analyses and was considered as 

incertae sedis within Toryminae by Grissell (1995). In our analyses, Echthrodape is sister to 

all other Microdontomerini. While there is no morphological character to supporting its 

inclusion in Microdontomerini, we consider it as part of Microdontomerini. Microdontomerini 

also includes several genera (Cryptopristus, Exopristus, other Glyphomerus species) 

previously treated as incertae sedis by Grissell (1995). The relationships of Glyphomerus was 

discussed above and it is clear from our results that the genus is polyphyletic. Glyphomerus 

stigma differ from other species of the genus by the wing venation and the length of the malar 

space (Stojanova 2005). There are two other congeneric species with short malar space which 

are associated with gallwasps on Rosa spp. (Noyes 2013) that potentially could be part 

of clade 6 (tribe Glyphomerini). Cryptopristus and Exopristus were previously considered as 

close relatives to either Monodontomerini, Chalcimerini, Palachiini or Podagrionini (Grissell 

1995), because they share the same modification of the hind femora, however - as stated 

above - this character is very homoplastic. Following Echthrodape, Exopristus is sister to the 

rest of Microdontomerini but with no morphological support. Cryptopristus is sister to the 

genus Idarnotorymus. Both genera have a distinct emargination of the hind margin of the 

metasomal tergites and are respectively parasitic of gallmaking Eurytomidae in stems 
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of Poaceae or of Aylacini (Cynipidae) in stems of Salvia syriaca (Grissell 1995; Zerova et al. 

2008). 

 The genera Microdontomerus, Adontomerus, and Idiomacromerus sensu Grissell 

(1995) are monophyletic. However Pseuderimerus were paraphyletic with respect to Erimerus 

and Eridontomerus paraphyletic with respect to Ditropinotus. Pseuderimerus and Erimerus 

share two common characters: 1) a single apical spur on the hind tibia and 2) males with 

reduced eyes (Grissell 1995; Burks and Redak 2004). However, the paraphyly 

of Pseuderimerus could be artefactual and linked to the low number of sequenced genes. 

 Eridontomerus and Ditropinotus were considered as distinct genera by Grissell (1995). 

However, all the characters that separate them appears to be highly homoplastic and there is 

no synapomorphy that reliably distinguishes these genera (Janšta – pers. observ.). Moreover, 

all species of these genera share the same biology and are recurrently reported as larval 

parasitoids of Eurytomidae (Chalcidoidea) in grass stems (Grissell 1995; Janšta and Bouček 

2006) (Fig. 4b). 

 

 Monodontomerini (clade 8) was monophyletic in all our analyses. The tribe is well 

defined by the morphological characters proposed by Grissell (1995), although Chileana and 

Zaglyptonotus bear an occipital carina that is not known in other Monodontomerini (Janšta et 

al. 2013). Both Zdenekius and the Neotropical genus Rhynchodontomerus (not included in our 

study) were considered to be basal monodontomerines by Grissell (1993, 1995). Our results 

place Zdenekius as sister to all other Monodontomerini. 

 Beyond Zdenekius, the Monodontomerini group into two geographically defined 

subclades. The first subclade (8a) includes only the New World genera Chileana, 

Perissocentrus, Zaglyptonotus, and an undescribed genus. All of these genera are well defined 

by morphological characters. Zaglyptonotus was treated as incertae sedis by Grissell (1995) 

because it shares feaures with Torymoidini. However, Janšta et al. (2013) recently described 

Chileana, which shares some characters (long hind tibial spurs, incision of hing margin of 

metasomal tergites) with Zaglyptonotus, but also characters typical of other 

Monodontomerini. The second subclade (8b) includes mostly Old World genera 

(Monodontomerus, Anneckeida and Rhynchoticida) and the Holarctic Monodontomerus. 

In our results, Monodontomerus is paraphyletic with respect to Rhynchoticida, however this 

may be artefactual as we failed to sequence most genes for Rhynchoticida (only 28S rDNA) 

(Tab 1 and Fig. 3c). Morphologically, Rhynchoticida (small bodied with an unusually short 

ovipositor) is similar to Anneckeida and few other Monodontomerini that are egg parasitoids 
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appropriately for that purpose (Figs 4a, b) as phytophagy is not a plesiomorphic state (Heraty 

et al. 2013) within Chalcidoidea.  

 Ectoparasitism is considered to be a derived strategy within Chalcidoidea with chalcid 

larvae of the basal families of Chalcidoidea endoparasitic (Gómez et al. 2008). However, our 

analyses reveal that the common ancestors of Toryminae, Chalcimerini, Boucekini, 

Torymoidini, Glyphomerini and Microdontomerini were recovered ectoparasitoids on 

gallmaker larvae (Figs 4a, b). 

 

 The ancestral biology of Torymini is ambiguous. The most basal taxa Ecdamua and 

Torymus (formerly Diomorus) are ectoparasitoids of Aculeate wasps. Most other Torymini 

are ectoparasitoids of larvae of Cynipidae or Cecidomyiidae and only a few clades returned to 

phytophagy (Graham and Gijswit 1998). However, our reconstructed topology within 

Torymini is poorly supported and may lead to artefactual conclusions. 

 

 With the exception of Mymaridae and Trichogrammatidae, oophagy (parasitism 

of eggs) is rare within Chalcidoidea , occurring only in some species of Eulophidae, 

Pteromalidae, Torymidae and Eurytomidae (Heraty et al. 2013). Grissell (1995) suggested 

that oophagy was a derived strategy that evolved several times within Toryminae. As far 

as known, oophagy occurs only within Podagrionini, Palachiini, Microdontomerini and 

Monodontomerini (Grissell 1995). The same author also suggested that presence of many 

oophagous species within Podagrionini, Palachiini and Monodontomerini may indicated close 

phylogenetic relationships. He also postulated that egg parasitism could be the reason for the 

highest percentage of zoophagous endoparasitoids in Monodontomerini (most of species 

Perissocentrus and few species of Monodontomerus are feeding within Lepidoptera pupae). 

 

 The ancestral feeding strategy for the clade Monodontomerini+Podagrioni+Palachiini 

is ambiguous (Figs 4a, b). These tribes are with no doubts closely related but more studies on 

the biology of these wasps is needed, especially for Monodontomerini and Palachiini, to better 

identify their ancestral feeding strategy. 

 There is only one biological record for Palachia and Palachiini (parasitoids of mantid 

eggs), consequently generalizing this biology to the whole tribe is inadequate. However, 

Palachia is a well supported clade within Podagrionini and almost all genera of Podagrionini 

are oophagous of mantid eggs. Consequently, oophagy of Dictyoptera (Blattodea 
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+ Mantodea) could be the ancestral biology of Podagrionini + Palachia and probably also 

Propalachia, but there is not host record for that genus (Bouček 1998). 

 

Biogeography 

The ancestral area for Megastigminae was ambiguous in our results. We included 7 of 12 

known genera of Megastigminae, of which 4 are endemic to Australia. The five genera not 

included into our analysis are distributed in Australia or in the Oriental region. Megastigmus, 

Bootanomyiia and Westralianus are the only genera with species distributed outside of the 

oriental or Australasian regions (Bouček 1988; Doğanlar 2011a, 2011b). 

 

 The Palearctic region was proposed as the ancestral area for Toryminae, and several 

tribes are only or mostly known from the Old World. Chalcimerini is only known from west 

Palaearctic (Grissell 1995). The common ancestor of tribes Glyphomerini and 

Microdontomerini are probably of Palaearctic origin. However, the position of Glyphomerini 

is unstable and not well supported. 

 

 The three clades within Torymoidini are distributed mostly in the Old World. 

Pseudotorymus is mostly European with one species reaching the Nearctic region. 

Pseudotorymus (formerly known as Senegallela) are distributed in the afrotropics but 

probably also reach North Africa and the Oriental region (few species not included to our 

dataset). Many species of Torymoides and two genera not included in our analyses (Allomba 

and Torymoidellus) reach the Australasian region (Bouček 1988; Grissell 1995). 

 

 Microdontomerini are also proposed to have originated in the Old World (Fig. 5). 

Only a few species within Cryptopristus, Ditropinotus and Eridontomerus are known from 

both the Old and New World, but they probably spread to the New World with their hosts 

(Grissell 1995; Janšta and Bouček 2006). All of them could be spread to New World with 

their hosts as they are mostly parasitoids of larvae of various gallmakers on stems of cereals 

(Poaceae). In contrast, several species of Idiomacromerus, Microdontomerus, Pseuderimerus 

and one Erimerus, have a derived position inside the generic phylogeny and could be 

considered as true New World species (Grissell 1995). 

 

200



 Podagrionini and Palachiini have a pantropical distribution but clearly orginate in the 

Old World probably in the Oriental region. They colonized recurrently and independently 

several regions of the world. 

 

 The ancestral area for Boucekini, Torymoidini and Torymini is ambiguous, but 

Boucekini is a New World clade that is sister to the others that have genera and species 

distributed all around the world. Mapping of their distribution on the clade of Torymini 

support our results from all phylogenetic analysis, i.e. paraphyly of the genus Torymus. New 

World species of Torymus probably belong to a different genus. But more comprehensive 

genetic and morphological studies are needed to confirm our hypothesis. The rest of species 

of the genus Torymus could have probably (but with any bootstrap support) Palaearctic origin 

with some exeptions of distribution into different areas. 

  

 The ancestral distribution of Monodontomerini is ambiguous. The tribe consists of two 

New World clades and one Old World clade. 
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Species name Specimen 
code

Fam./ 
subfam./

tribal 
code

18S rDNA 28S rDNA 
D2-D3

28S rDNA 
D4-D5 EF-1α COI 

barcode
COI2183-

3014 Wg Extraxtion Deposit 
condition

Voucher 
deposit

Exctract 
deposit Locality

Megastigmus  sp. 1259_03 TOM 1259_03_a 1259_03_b 1259_03_c 1259_03_d 1259_03_e - - D, QP 96 CBGP CBGP New Caledonia, Maré
Ormyrus  sp. 1868_08 OR 1868_08_a 1868_08_b 1868_08_c 1868_08_d 1868_08_e 1868_08_f - D, QP 96 CBGP CBGP Malaysia, Sarawak, Pa'Lungan
Sycophaga  sp. 1940_02 AS 1940_02_a 1940_02_b 1940_02_c 1940_02_d 1940_02_e - - D, QP 96 CBGP CBGP Cameroon, 30 km W Yaoundé
Ficomila  sp. 1987_02 EU 1987_02_a 1987_02_b 1987_02_c 1987_02_d 1987_02_e 1987_02_f - D, QP 96 CBGP CBGP Malaysia, Sarawak, Pa'Lungan
Odontofroggatia  sp. 2355_03 PTE 2355_03_a 2355_03_b 2355_03_c 2355_03_d 2355_03_e 2355_03_f - D, QP 96 CBGP CBGP Indonesia, Papua Barat, Tanahaubuh river
Odontofroggatia ishii 2355_05 PTE 2355_05_a 2355_05_b 2355_05_c 2355_05_d 2355_05_e 2355_05_f - D, QP 96 CBGP CBGP Indonesia, Papua Barat, Tanahaubuh river
Torymus  sp. laetus group 31002 TOTT 31002_a - 31002_c 31002_d - 31002_f - N, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, Pontebba
Physothorax  sp.1 121703 TOTT JN623527 JN623859 JN623859 - - - - D, QP 96 CBGP CBGP France, Guadeloupe, Vieux Fort
Ormyrulus  sp. 46O OR JN623316 JN623706 JN624064 - - - - N, CP 96 UCR CBGP Thailand, Surat Thani Province
Ecdamua cadenati D2470 TOTT JN623526 JN623857 JN623857 - - - - N, CP D USNM UCR Kenya, Eastern Prov., At Athi River
Physothorax bidentulus D2471 TOTT D2471_a JN623858 JN623858 - - - - N, CP D USNM UCR Florida, Florida City
Glyphomerus tibialis D2474 TOTI D2474_a D2474_b D2474_c D2474_d D2474_e D2474_f - N, CP 96 UCR CBGP Czech Republic, Budkovice
Bootanelleus  sp. D2482 TOM D2482_a JN623841 JN623841 - - - - N, CP D UCR UCR Australia, WA, Doubleyung
Paramegastigmus  sp. D2483 TOM JN623515 JN623844 JN623844 - - - - N, CP D PJ UCR Thailand, Trang Pr., Khao Chong
Pseudotorymus  sp.1 3001 TOTY 3001_a - 3001_c 3001_d - - - N, QP 96 PJ CBGP Cameroon, Nord Ouest, Fundong
Torymus  (Diomorus ) sp. 3002 TOTT 3002_a - 3002_c 3002_d - 3002_f 3002_g N, QP 96 PJ CBGP Cameroon, Jamga
Podagrion  sp.1 3003 TOTO 3003_a 3003_b 3003_c 3003_d - 3003_f 3003_g N, QP 96 PJ CBGP Cameroon, Nord Ouest, Babungo
Podagrion  sp.2 3005 TOTO 3005_a - 3005_c 3005_d 3005_e 3005_f - N, QP 96 PJ CBGP Cameroon, Nord Ouest, Fundong
Podagrion  sp.3 3006 TOTO 3006_a - 3006_c 3006_d 3006_e 3006_f - N, QP 96 PJ CBGP Cameroon, Nord Ouest, Batibo
Podagrion sp.4 3007 TOTO 3007_a - 3007_c 3007_d 3007_e 3007_f - N, QP 96 PJ CBGP Cameroon, Adamaoua, Wak
Podagrion sp.5 3008 TOTO 3008_a - 3008_c 3008_d 3008_e 3008_f - N, QP 96 PJ CBGP Cameroon, Nord Ouest, Njinikom
Podagrionella  (Iridophagoides ) tatianae 3010 TOTO 3010_a 3010_b 3010_c 3010_d 3010_e 3010_f - D, QP 96 PJ CBGP Spain, Cádiz, Grazalema
Podagrion splendens 3011 TOTO 3011_a - 3011_c 3011_d 3011_e 3011_f - N, QP 96 PJ CBGP France, Hérault, Saint-Félix-de-lHéras
Podagrion bouceki 3012 TOTO 3012_a - 3012_c 3012_d 3012_e 3012_f - D, QP 96 PJ CBGP Morocco, Mrirt
Palmon  sp.1 3014 TOTO 3014_b 3014_c 3014_d - 3014_f - N, QP 96 PJ CBGP French Guayna, Kourou
Podagrion  sp.6 3015 TOTO 3015_a - 3015_c 3015_d 3015_e 3015_f - N, QP 96 PJ CBGP French Guayna, Kourou
Podagrion pachymerum 3017 TOTO 3017_a 3017_b 3017_c 3017_d 3017_e 3017_f - D, QP 96 PJ CBGP Italy, Lombardia, Vobarno
Podagrion minus 3018 TOTO 3018_a - 3018_c 3018_d 3018_e 3018_f - N, QP 96 PJ CBGP Spain, Cádiz, Grazalema
Podagrionella  (Iridophaga ) korsakowi 3019 TOTO 3019_a 3019_b 3019_c 3019_d 3019_e 3019_f - D, QP 96 PJ CBGP Mauritania, 15 km N Nouakchott
Podagrionella  (Iridophaga ) lichtensteini 3020 TOTO 3020_a - 3020_c 3020_d 3020_e 3020_f - D, QP 96 PJ CBGP France, Hérault, Cournonterral
Mantiphaga bekiliensis 3021 TOTO 3021_a 3021_b 3021_c 3021_d 3021_e 3021_f - D, QP 96 PJ CBGP Madagascar, Andrika
Podagrion  sp.7 3022 TOTO 3022_a - 3022_c 3022_d 3022_e 3022_f 3022_g N, QP 96 PJ CBGP Vanuatu, Santo
Exopristus trigonomerus 3023 TOTI 3023_a 3023_b 3023_c 3023_d 3023_e 3023_f - D, QP 96 PJ CBGP France, Hérault, Saint-Pierre-de-Lafage
Idarnotorymus pulcher 3024 TOTM 3024_a - 3024_c 3024_d 3024_e 3024_f - D, QP 96 PJ CBGP France, Gard, Beauvoisin
Podagrion bouceki 3025 TOTO 3025_a - 3025_c 3025_d 3025_e 3025_f - D, QP 96 PJ CBGP France, Gard, Beauvoisin
Pseuderimerus  sp.1 3026 TOTM 3026_a - 3026_c 3026_d 3026_e - - N, QP 96 PJ CBGP France, Ardèche, Les Vans
Pseudotorymus napi 3027 TOTY 3027_a - 3027_c 3027_d 3027_e 3027_f 3027_g D, QP 96 PJ CBGP France, Hérault, Mauguio
Pseudotorymus napi 3028 TOTY 3028_a - 3028_c 3028_d 3028_e 3028_f 3028_g D, QP 96 PJ CBGP France, Lozère, Saint-Maurice-du-Ventalou
Torymus  sp. laetus group 3029 TOTT 3029_a 3029_b 3029_c 3029_d 3029_e 3029_f 3029_g N, QP 96 PJ CBGP France, Aveyron, Viala-du-Pas-de-Jaux
Megastigmus  sp. 3030 TOM 3030_b 3030_c 3030_d - - 3030_g N, QP 96 PJ CBGP France, Alpes-Maritimes, La Bollène-Vésubie
Torymus  sp.1 3033 TOTT 3033_a - 3033_c 3033_d 3033_e 3033_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Saint-Martin-Vésubie
Torymus  sp.2 3035 TOTT 3035_a - 3035_c 3035_d 3035_e 3035_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Saint-Martin-Vésubie
Torymus  sp.3 3036 TOTT 3036_a - 3036_c 3036_d 3036_e 3036_f 3036_g N, QP 96 PJ CBGP France, Alpes-Maritimes, Saint-Martin-Vésubie
Torymus  sp.4 3037 TOTT 3037_a - 3037_c 3037_d 3037_e 3037_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Belvédère
Torymus  sp.5 3038 TOTT 3038_a - 3038_c 3038_d 3038_e 3038_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Belvédère
Torymus  sp.6 3040 TOTT - 3040_c 3040_d 3040_e 3040_f 3040_g N, QP 96 PJ CBGP France, Alpes-Maritimes, Belvédère
Torymus  sp.7 3042 TOTT 3042_a 3042_b 3042_c 3042_d 3042_e 3042_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Belvédère
Torymus  sp.8 3043 TOTT 3043_a - 3043_c 3043_d 3043_e 3043_f - D, QP 96 PJ CBGP France, Alpes-Maritimes, Valdeblore
Microdontomerus  sp.1 3044 TOTM 3044_a 3044_b 3044_c 3044_d 3044_e 3044_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Valdeblore
Idiomacromerus  sp.1 3045 TOTM 3045_a - 3045_c 3045_d 3045_e 3045_f 3045_g N, QP 96 PJ CBGP France, Alpes-Maritimes, Valdeblore
Torymus  sp.9 3047 TOTT 3047_a - 3047_c 3047_d 3047_e 3047_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Valdeblore
Bootanomyia  (M. ) dorsalis 3050 TOM 3050_a 3050_b 3050_c 3050_d - - - D, QP 96 PJ CBGP France, Alpes-Maritimes, Sauze
Torymus  sp.10 3051 TOTT 3051_a 3051_b 3051_c 3051_d 3051_e 3051_f - N, QP 96 PJ CBGP France, Alpes-Maritimes, Valdeblore
Monodontomerus  sp.1 3052 TOTN 3052_a 3052_b 3052_c 3052_d - 3052_f 3052_g N, QP 96 PJ CBGP France, Alpes-Maritimes, Valdeblore
Megastigmus  sp.2 3053 TOM 3053_a - 3053_c 3053_d 3053_e - 3053_g N, QP 96 PJ CBGP France, Alpes-Maritimes, Valdeblore
Megastigmus bipunctatus 3056 TOM 3056_b 3056_c 3056_d 3056_e - 3056_g N, QP 96 PJ CBGP France, Alpes-Maritimes, Belvédère
Bootanomyia  (M. )stigmatizans 3057 TOM 3057_a - 3057_c - 3057_e - 3057_g N, QP 96 PJ CBGP France, Corse, Olmi-Cappela
Bootanomyia  (M. ) cf. dorsalis 3058 TOM 3058_a - 3058_c 3058_d 3058_e - 3058_g N, QP 96 PJ CBGP France, Corse, Olmi-Cappela
Megastigmus pistaciae 3059 TOM 3059_b 3059_c 3059_d 3059_e - - D, QP 96 PJ CBGP France, Corse, Ghisonacchia
Megastigmus bipunctatus 3060 TOM 3060_a - 3060_c - 3060_e - - N, QP 96 PJ CBGP Italy, Veneto, Ferrara di Monte Baldo
Microdontomerus annulatus 3064 TOTM 3064_a 3064_b 3064_c 3064_d - 3064_f - D, QP 96 PJ CBGP France, Hérault, Saint-Privat
Torymus fagineus 3066 TOTT 3066_a - 3066_c 3066_d 3066_e 3066_f - N, QP 96 PJ CBGP France, Gard, Arphy
Torymus  sp.11 3068 TOTT 3068_a - 3068_c 3068_d 3068_e 3068_f - N, QP 96 PJ CBGP France, Hérault, Saint-Pierre-de-Lafage
Torymus  (Syntomaspis ) sp. 3069 TOTT 3069_a - 3069_c 3069_d - 3069_f - D, QP 96 PJ CBGP France, Vaucluse, Rustrel
Torymus bedeguaris 3070 TOTT 3070_a 3070_b 3070_c 3070_d - 3070_f - D, QP 96 PJ CBGP France, Gard, Saint-Martial
Pseudotorymus  sp.2 3073 TOTY 3073_a - 3073_c 3073_d 3073_e 3073_f 3073_g N, QP 96 PJ CBGP France, Hérault, Cournonterral
Glyphomerus tibialis 3074 TOTI 3074_a 3074_b 3074_c 3074_d 3074_e - - N, QP 96 PJ CBGP France, Hérault, Saint-Félix-de-lHéras
Eridontomerus arrabonicus 3076 TOTM 3076_a 3076_b 3076_c 3076_d - 3076_f - D, QP 96 PJ CBGP France, Aveyron, Lapanouse-de-Cernon
Idiomacromerus  sp.2 3077 TOTM 3077_a 3077_b 3077_c 3077_d 3077_e - - N, QP 96 PJ CBGP France, Pyrénées-Orientales, Banyuls-sur-Mer
Torymoides kisenwetteri 3078 TOTY 3078_a 3078_b 3078_c 3078_d - 3078_f 3078_g D, QP 96 PJ CBGP France, Pyrénées-Orientales, Banyuls-sur-Mer
Torymus  sp.12 3082 TOTT 3082_a - 3082_c 3082_d 3082_e 3082_f - D, QP 96 PJ CBGP France, Gard, Valleraugue
Torymus  sp.13 3085 TOTT 3085_a - 3085_c 3085_d 3085_e 3085_f - N, QP 96 PJ CBGP France, Hérault, Rosis
Torymus flavipes 3086 TOTT 3086_a - 3086_c 3086_d - 3086_f - D, QP 96 PJ CBGP France, Hérault, Cambon-et-Salbergues
Glyphomerus stigma 3088 TOTI JN623518 JN623847 JN623847 3088_d 3088_e 3088_f - N, QP 96 PJ CBGP France, Gard, Saint-Martial
Torymus rubi 3089 TOTT 3089_a - 3089_c 3089_d 3089_e - - N, QP 96 PJ CBGP Österreich, Kärnten, Stinzesteig
Torymus stenus 3090 TOTT 3090_a 3090_b 3090_c 3090_d 3090_e - - N, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, along GR 608
Torymus  sp.14 3093 TOTT 3093_a - 3093_c 3093_d - 3093_f - D, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, Altiplano del Montasio
Torymus  sp.15 3094 TOTT - 3094_c 3094_d - - - N, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, Altiplano del Montasio
Torymus  sp.16 3095 TOTT 3095_a - 3095_c 3095_d - 3095_f - D, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, forest NW Sella nevea
Torymus ventralis 3097 TOTT 3097_a - 3097_c 3097_d - - - N, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, NE Monte Privat
Torymus laetus 3098 TOTT 3098_a - 3098_c 3098_d 3098_e 3098_f - N, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, NE Monte Privat
Torymus  sp.17 3099 TOTT 3099_a - 3099_c 3099_d 3099_e - - N, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, NE Monte Privat
Torymus hylesini 3103 TOTT 3103_a - 3103_c 3103_d - 3103_f 3103_g D, QP 96 PJ CBGP Italia, Friuli Venezia Giuli, Gamiscen
Torymus  sp.18 3106 TOTT - 3106_c 3106_d 3106_e 3106_f - N, QP 96 PJ CBGP Slovenia, Goriška, Krnsko jezero
Torymus  sp.19 3110 TOTT 3110_a - 3110_c 3110_d 3110_e 3110_f - D, QP 96 PJ CBGP Slovenia, Goriška, Soča River trail
Torymus  sp.20 3111 TOTT 3111_a - 3111_c 3111_d 3111_e 3111_f - N, QP 96 PJ CBGP Slovenia, Goriška, Zadnjica
Torymus  sp.21 3112 TOTT 3112_a - 3112_c 3112_d 3112_e - - N, QP 96 PJ CBGP Slovenia, Goriška, Zadnjica
Torymus  sp.22 3113 TOTT - 3113_c 3113_d 3113_e 3113_f - N, QP 96 PJ CBGP Österreich, Kärnten, Krishnig
Torymus flavipes 3114 TOTT 3114_a - 3114_c 3114_d - 3114_f - D, QP 96 PJ CBGP France, Valgorge
Glyphomerus stigma 3115 TOTI 3115_a - 3115_c 3115_d - 3115_f 3115_g D, QP 96 PJ CBGP France, Gard, Saint-Martial
Ormyrus  sp.1 3116 OR 3116_b 3116_c 3116_d - 3116_f - D, QP 96 PJ CBGP Österreich, Kärnten, Krishnig
Anneckeida maai JN623854 TOTN JN623854 JN623854 - - - - N, CP D PJ PJ Thailand, Chrang Mai Prov., Pa Hua Kho
Propalachia borneana JN623856 TOTP JN623856 JN623856 - - - - N, CP D PJ PJ Taiwan, Nantou, Tungpu
Boucekinus tatianae JN623860 TOTY 1131_a JN623860 JN623860 1131_d 1131_e - - N, CP D PJ PJ Costa Rica, La Selva
Platykula albihirta JN624252 TOTY 1130_a JN624252 JN624252 1130_d 1130_e - - N, CP D PJ PJ USA, Cuckoo
Zaglyptonotus  sp. JN624263 TOTI JN624263 JN624263 JN624263 1129_d - - - N, CP D USNM PJ USA, Fairfax
Eridontomerus biroi JN624264 TOTM JN624264 JN624264 JN624264 1132_d - - - N, CP D UCR PJ Argentina, Mendoza
Anneckeida  sp.1 JN624267 TOTN JN624267 JN624267 - - - - N, CP D PJ PJ Kenya, Gembe Hills
Perissocentrus sp.1 JN624270 TOTN JN624270 JN624270 JN624270 1134_d 1134_e - - N, CP D PJ PJ Argentina, Neuquén
Rhynchoticida maai JN624271 TOTN JN624271 JN624271 - - - - N, CP D PJ PJ Thailand, Khao Chong
Zdenekius smithi JN624272 TOTN JN624272 JN624272 - - - - N, CP D PJ PJ USA, Mathias
Propachytomoides  sp.1 JN624275 TOTO JN624275 JN624275 - - - - N, CP 70 PJ PJ Australia, Karijini NP
Ormyrus  sp.2 J1001 OR J1001_b J1001_c J1001_d - J1001_f - D, QP 96 PJ CBGP Taiwan, Taipei
Ormyrus  sp.3 J1002 OR J1002_a - J1002_c J1002_d - J1002_f - D, QP 96 PJ CBGP Taiwan, Taipei
Physothorax sp.2 J1004 TOTT J1004_a - J1004_c J1004_d - - - N, QP 96 PJ CBGP Brazil?
Plesiostigmodes  sp. J1007 TOTT - J1007_c - - - - N, QP 96 PJ CBGP Brazil?
Physothorax  sp.3 J1008 TOTT J1008_b J1008_c J1008_d - J1008_f - D, QP 96 PJ CBGP Brazil?
Torymus  (Nannocerus ) sp. J1009 TOTT J1009_a - J1009_c J1009_d - - - D, QP 96 PJ CBGP Brazil?
Ormyrus  sp.1 47O OR JN623317 JN623707 JN624065 - - - - N, CP 96 UCR UCR Kyrgyzstan, Ozhalal-Abad
Eridontomerus isosomatis 1228 TOTM - - - 1228_e - - N, QP 96 PJ PJ France, Hérault, Pass de L'Escalette
Adontomerus  sp.1 1231 TOTM - - - 1231_e - - N, QP 96 PJ PJ Turkey, Adana, Hamidiye
Eridontomerus biroi 1234 TOTM - - 1234_d 1234_e - - N, QP 96 PJ PJ Turkey, Adana, Hamidiye
Eridontomerus laticornis 1237 TOTM - - 1237_d 1237_e - - N, QP 96 PJ PJ Turkey, Adana, Buyuk Sofulu
Adontomerus  sp.2 1243 TOTM 1243_a 1243_b 1243_c 1243_d 1243_e - - N, QP 96 PJ PJ Iran, Lorestan, Khorrambad
Eridontomerus isosomatis 1247 TOTM - - - 1247_e - - N, QP 96 PJ PJ Turkey, Adana, Hamidiye
Eridontomerus biroi 1249 TOTM - - - 1249_e - - N, QP 96 PJ PJ Italy, Toscana env.

Table 1. Species used in this study, their specimen, family/subfamily/tribal code, gene fragments sequenced, type of extraction, deposit condition prior to DNA extraction, voucher and extract deposit and locality (TOM - Torymidae: 
Megastigminae, OR - Ormyridae, AS - Agaonidae: Sycophaginae, PTE - Epichrysomallinae, TOTT - Torymidae: Toryminae: Torymini, TOTY - Torymidae: Toryminae: Torymoidini, TOTN - Torymidae: Toryminae: Monodontomerini, TOTO - 
Torymidae: Toryminae: Podagrionini, TOTP - Torymidae: Toryminae: Palachiini, TOTM - Torymidae: Toryminae: Microdontomerini, TOTC - Torymidae: Toryminae: Chalcimerini, TOTI - Torymidae: Toryminae: incertae sedis; D - 
destructive, N - non-destructive, QP - Quaigen protocol, CP - Chelex protocol; CBGP - Center for Biology and Management of Populations, INRA, Montferrier-sur-Lez, France, PJ - Charles University in Prague, Faculty of Science, 
Department of Zoology, Prague, Czech Republic, UCR - Department of Entomology, University of California, Riverside, USNM -  National Museum of Natural History, Smithsonian Institution, Washington). Outroups species names are 
bolded.
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Eridontomerus fulviventris 1250 TOTM 1250_a 1250_b 1250_c 1250_d 1250_e - - N, QP 96 PJ PJ Italy, Toscana env.
Idiomacromerus  sp.3 1253 TOTM 1253_a 1253_b 1253_c 1253_d 1253_e - - N, QP 96 PJ PJ UAE, Wadi Shawkah
Microdontomerus  sp.2 1255 TOTM 1255_a 1255_b 1255_c 1255_d 1255_e - - N, QP 96 PJ PJ UAE, Wadi Bih dam
Idiomacromerus  sp.4 1257 TOTM 1257_a 1257_b 1257_c 1257_d - - - N, QP 96 PJ PJ UAE, Bithnah
Eridontomerus biroi 1267 TOTM 1267_a 1267_b 1267_c 1267_d 1267_e - - N, QP 96 PJ PJ Canada, Ontario
Glyphomerus aylax 1272 TOTI 1272_a 1272_b 1272_c 1272_d 1272_e - - N, QP 96 PJ PJ Bulgaria, Dzhendemtepe, Plovdiv
Exopristoides hypecoi 1273 TOTM 1273_a 1273_b 1273_c 1273_d 1273_e - - N, QP 96 PJ PJ Bulgaria, Dzhendemtepe, Plovdiv
Thaumatorymus notanisoides 1274 TOTI 1274_a 1274_b 1274_c 1274_d 1274_e - - N, QP 96 PJ PJ Turkey, Adana, Buyuk Sofulu
Adontomerus impolitus 1277 TOTM 1277_a 1277_b 1277_c 1277_d 1277_e - - N, QP 96 PJ PJ Spain, Arino
Echthrodape  sp.2 12801 TOTI 12801_b 12801_c - 12801_e - - N, QP D PJ PJ Madagascar, Fianarantdsoa prov., Vohiparara
Microdontomerus  sp.3 1285 TOTM 1285_a 1285_b 1285_c 1285_d 1285_e - - N, QP 96 PJ PJ USA, Arizona, Barry Goldwater
Idiomacromerus  sp.5 1286 TOTM 1286_a 1286_b 1286_c 1286_d 1286_e - - N, QP 96 PJ PJ USA, Arizona, Barry Goldwater
Monodontomerus  sp.2 PJ0010 TOTN PJ0010_b PJ0010_c - - - - N, CP 96 PJ PJ USA, Arizona, Sonoita
Eridontomerus biroi PJ00271 TOTM PJ00271_a PJ00271_b PJ00271_c 1240_d 1240_e - - N, CP 96 PJ PJ Argentina, Mendoza, La Consulta
Torymus  sp.23 PJ0028 TOTT PJ0028_a PJ0028_b PJ0028_c 1133_d 1133_e - - N, CP 70 PJ PJ Australia, Hollern
Podagrionella  (Iridophaga ) sp.1 1001 TOTO 1001_a 1001_b 1001_c 1001_d 1001_e - - D, QP 70 PJ CBGP UAE, Fujairah
Mantiphaga  sp.1 1003 TOTO 1003_a - 1003_c - 1003_e - - D, QP 70 PJ CBGP UAE, Fujairah
Ecdamua indica 1004 TOTT 1004_a - 1004_c - - - - D, QP 70 PJ CBGP UAE, Fujairah
Microdontomerus  sp.4 1005 TOTM 1005_a 1005_b 1005_c 1005_d 1005_e - - D, QP 70 PJ CBGP UAE,Wadi Maidaq
Podagrion  sp.8 1006 TOTO 1006_a - 1006_c 1006_d 1006_e 1006_f - D, QP 70 PJ CBGP UAE,Wadi Maidaq
Idiomacromerus  sp.2 1007 TOTM 1007_a - 1007_c 1007_d - - - D, QP 70 PJ CBGP UAE, S of Ras al-Khaimah
Torymus  (Diomorus ) cf. armatus 1008 TOTT 1008_a 1008_b 1008_c - - - 1008_g D, QP 70 PJ CBGP UAE, Sharjah x Khor Kalba
Mantiphaga sp.2 1013 TOTO 1013_a - - 1013_d - - - N, QP 96 PJ CBGP Madagascar
Palmon sp.2 1014 TOTO 1014_a - 1014_c 1014_d - - - N, QP 96 PJ CBGP Madagascar
Megastigmus sp.3 1015 TOM 1015_a 1015_b 1015_c 1015_d 1015_e - 1015_g D, QP 70 PJ CBGP Australia
Torymus fulvum 1016 TOTT 1016_a - 1016_c 1016_d 1016_e - 1016_g D, QP 70 PJ CBGP Canada
Pseudotorymus  sp.3 1017 TOTY 1017_a - 1017_c 1017_d - 1017_f - D, QP 96 PJ CBGP RSA
Podagrion  sp.9 1018 TOTO 1018_a 1018_b 1018_c 1018_d 1018_e 1018_f - D, QP 96 PJ CBGP RSA
Torymus subnudus 1019 TOTT 1019_a 1019_b 1019_c 1019_d 1019_e 1019_f - D, QP 96 PJ CBGP RSA
Podagrionella  (Iridophaga ) sp.2 1020 TOTO - - 1020_d 1020_e - - N, QP 96 PJ CBGP RSA
Palachia  sp. 1021 TOTP 1021_a 1021_b 1021_c - - - 1021_g D, QP 96 PJ CBGP India
Torymus  (Diomorus ) orientalis 1022 TOTT 1022_a - 1022_c 1022_d 1022_e 1022_f 1022_g D, QP 96 PJ CBGP India
Torymoides  sp.1 1023 TOTY 1023_a 1023_b 1023_c 1023_d - 1023_f 1023_g D, QP 96 PJ CBGP RSA
Chileana cyanea 1024 TOTN 1024_a 1024_b 1024_c 1024_d 1024_e 1024_f 1024_g D, QP 96 PJ CBGP Chile
Pseudotorymus  sp.4 1027 TOTY 1027_a - 1027_c 1027_d - 1027_f - N, QP 96 PJ CBGP RSA
Podagrion sp.10 1028 TOTO 1028_a 1028_b 1028_c 1028_d 1028_e 1028_f - D, QP 96 PJ CBGP India
Perissocentrus sp.1 1029 TOTN 1029_a 1029_b 1029_c 1029_d 1029_e 1029_f 1029_g N, QP 96 PJ CBGP Chile
Torymus  sp.24 1030 TOTT 1030_a 1030_b 1030_c 1030_d 1030_e 1030_f - D, QP 96 PJ CBGP RSA
New genus Torymoidini sp. 1032 TOTY 1032_a - - 1032_d - 1032_f 1032_g N, QP 96 PJ CBGP Chile
Idiomacromerus papaveris 1033 TOTM 1033_b 1033_c 1033_d 1033_e 1033_f 1033_g N, QP 96 PJ CBGP Portugal, Junquieira
Exopristus trigonomerus 1034 TOTI 1034_a 1034_b 1034_c 1034_d 1034_e 1034_f - D, QP 96 PJ CBGP Portugal, Junquieira
Torymoides kiessenwetteri 1035 TOTY 1035_a - 1035_c 1035_d - 1035_f 1035_g D, QP 96 PJ CBGP Portugal, Junquieira
Eridontomerus arrabonicus 1036 TOTM 1036_a 1036_b 1036_c 1036_d 1036_e 1036_f - D, QP 96 PJ CBGP Czech Republic, Raná
Pseuderimerus luteus 10372 TOTM 10372_a - 10372_c 10372_d 10372_e - - D, QP 96 PJ CBGP Croatia, Srebreno
Pseudotorymus sapphyrinus 1038 TOTY 1038_a 1038_b 1038_c 1038_d 1038_e 1038_f 1038_g D, QP 96 PJ CBGP Hungary, Kunbaracs
Idarnotorymus pulcher 1039 TOTM 1039_a - 1039_c 1039_d 1039_e 1039_f - D, QP 96 PJ CBGP Croatia, Srebreno
Cryptopristus caliginosus 1040 TOTI 1040_a 1040_b 1040_c 1040_d 1040_e - - D, QP 96 PJ PJ Czech Republic, Klentnice
Podagrionella  (Podagrionella ) sp.1 1041 TOTO 1041_a - 1041_c 1041_d 1041_e 1041_f - N, QP 96 PJ CBGP Kenya
Anneckeida  sp.2 1042 TOTN 1042_a 1042_b 1042_c 1042_d 1042_e 1042_f - D, QP 96 PJ CBGP Kenya
Torymus  sp.25 1043 TOTT 1043_a - 1043_c 1043_d 1043_e 1043_f 1043_g N, QP 96 PJ CBGP Costa Rica
Podagrion  sp.11 1044 TOTO 1044_a - 1044_c - - 1044_f - N, QP 96 PJ CBGP Bolivia
Torymus  sp.26 1045 TOTT 1045_a - 1045_c 1045_d 1045_e 1045_f 1045_g N, QP 96 PJ CBGP Costa Rica
Torymus  sp.27 1046 TOTT 1046_a - 1046_c 1046_d 1046_e 1046_f 1046_g N, QP 96 PJ CBGP Costa Rica
Propalachia  sp.1 1047 TOTP 1047_a 1047_b 1047_c - 1047_e 1047_f - D, QP 96 PJ CBGP Kenya
Podagrion  sp.12 1048 TOTO 1048_a - 1048_c 1048_d 1048_e 1048_f - D, QP 70 PJ CBGP USA, California, 6km W Perris
Ditropinotus aureoviridis 1049 TOTM 1049_a 1049_b 1049_c 1049_d 1049_e 1049_f - D, QP 70 PJ CBGP USA, California, 9mi WSW Blakwell´s Corner
New genus Monodontomerini sp. 1052 TOTN 1052_a 1052_b 1052_c 1052_d 1052_e 1052_f 1052_g N, QP 70 PJ CBGP Argentina, Rio Negro, El Bolson
Palmon  sp.3 1054 TOTO 1054_a 1054_b 1054_c 1054_d - 1054_f - D, QP 70 PJ CBGP Ecuador, Sucumbios, Sacha Lodge
Podagrion  sp.13 1055 TOTO 1055_a - - 1055_d 1055_e - - N, QP 70 PJ CBGP Ecuador, Napo, Yasuni Nat. Park
Podagrion  sp.14 1057 TOTO 1057_a - 1057_c - 1057_e 1057_f - D, QP 70 PJ CBGP French Guiana, PK35
Torymus  sp.28 1058 TOTT 1058_a - 1058_c 1058_d 1058_e 1058_f 1058_g N, QP 70 PJ CBGP French Guiana, Patawa Kaw Mountains
Megastigmus  sp.4 1059 TOM 1059_a 1059_b 1059_c 1059_d - - 1059_g D, QP 70 PJ CBGP Costa Rica, Heredia, Zarquí de Moravia
Torymoides  sp.2 1061 TOTY 1061_a - 1061_c 1061_d - 1061_f 1061_g D, QP 70 PJ CBGP Australia, QLD, Wooroonoonan NP
Megastigminae gen. sp. 1062 TOM 1062_a 1062_b 1062_c 1062_d 1062_e - 1062_g D, QP 70 PJ CBGP Australia, QLD, Wooroonoonan NP
Podagrion  sp.15 1065 TOTO 1065_a - 1065_c 1065_d 1065_e 1065_f - D, QP 70 PJ CBGP USA, Arizona, Huachucha Mts.
Platykula sp.1 1068 TOTY - 1068_c - - - - D, QP 70 PJ CBGP USA, Illinois, Dixon Springs
Podagrion  sp.16 1069 TOTO 1069_a 1069_b 1069_c 1069_d - 1069_f - D, QP 70 PJ CBGP Argentina, Corrientes, Rt.12&Rio Sta. Lucia
Platykula  sp.2 1072 TOTY 1072_a - 1072_c 1072_d - 1072_f 1072_g D, QP 70 PJ CBGP Chile, Maipo, El Yeso
Pseudotorymus  sp.5 1073 TOTY 1073_a 1073_b 1073_c 1073_d 1073_e 1073_f 1073_g D, QP 70 PJ CBGP Canada, Ontario, vic. of Emo Hwy 11
Torymus  (Diomorus ) armatus 1074 TOTT 1074_a 1074_b 1074_c 1074_d - 1074_f 1074_g D, QP 70 PJ CBGP Canada, British Columbia, Vancouver Pacific Spirit Pr. Pk.
Glyphomerus  cf. stigma 1076 TOTI 1076_a - 1076_c 1076_d 1076_e 1076_f 1076_g D, QP 70 PJ CBGP Canada, Ontario, 5km NE Almonte
Allotorymus splendens 1077 TOTT 1077_a - 1077_c 1077_d 1077_e 1077_f 1077_g D, QP 70 PJ CBGP Canada, Manitoba, Tallgrass Prairie Preserve
Podagrion  sp.17 1078 TOTO 1078_a - 1078_c 1078_d - - - D, QP 70 PJ CBGP Australia, WA, Pebble Mouse Creek
Podagrion  sp.18 1079 TOTO 1079_a 1079_b 1079_c 1079_d 1079_e 1079_f - D, QP 70 PJ CBGP Australia, WA, 158km S Newman
Malostigmus  sp.1 1080 TOM 1080_a 1080_b 1080_c 1080_d 1080_e 1080_f - D, QP 70 PJ CBGP Australia, WA, Pebble Mouse Creek
Propachytomoides  sp.2 1081 TOTO 1081_b 1081_c 1081_d - - - D, QP 70 PJ CBGP Australia, WA, Mt. Robinson
Podagrion  sp.3 1082 TOTO 1082_a 1082_b 1082_c 1082_d - 1082_f 1082_g D, QP 70 PJ CBGP Australia, WA, 45km S Newman
Torymoides  sp.3 1083 TOTY 1083_a - 1083_c 1083_d 1083_e 1083_f 1083_g D, QP 70 PJ CBGP Australia, WA,  82km E jct Karijini Dr.
Malostigmus sp.2 1084 TOM 1084_a 1084_b 1084_c 1084_d 1084_e - - D, QP 70 PJ CBGP Australia, WA, Mt. Augustus Nat. Park
Propalachia sp.2 1085 TOTP - 1085_c - 1085_e 1085_f - N, QP 70 PJ CBGP Laos, Houa Phan prov., Phou Pane Mt.
Physothorax  sp.4 1086 TOTT 1086_a - 1086_c 1086_d 1086_e - - N, QP 70 PJ CBGP Venezuela, Aragua, Henri Pittier Nat. Park
Monodontomerus  sp.3 1087 TOTN 1087_a 1087_b 1087_c 1087_d 1087_e 1087_f - D, QP 70 PJ CBGP South Korea, Jirisan Hamyang-gun
Podagrion  sp.19 1089 TOTO 1089_a - 1089_c 1089_d 1089_e 1089_f - D, QP 70 PJ CBGP Malaysia
Palmon sp.4 1090 TOTO 1090_a 1090_b 1090_c 1090_d 1090_e 1090_f - D, QP 70 PJ CBGP Taiwan, Pintung Kenting Nat. Park
Neomegastigmus  sp. 1092 TOM 1092_a 1092_b 1092_c 1092_d 1092_e - 1092_g D, QP 70 PJ CBGP Australia, NT, 53km SSW Darwin
Podagrion  sp.20 1095 TOTO - 1095_c 1095_d 1095_e 1095_f - N, QP 70 PJ CBGP Papua New Guinea, East New Britain, Bainings Mts.
Cryptopristus caliginosus 1096 TOTI 1096_a 1096_b 1096_c 1096_d 1096_e 1096_f - D, QP 70 PJ CBGP Canada, QC, Belle-Anse
Podagrionella  (Podagrionella ) sp.2 1097 TOTO 1097_a - 1097_c 1097_d 1097_e - - D, QP 70 PJ CBGP Mozambique, Niassa Cuamba, Mituque
Propalachia  sp.3 1098 TOTP 1098_b - - 1098_e 1098_f - D, QP 70 PJ CBGP Mozambique, Niassa Cuamba, Mituque
Pogadrionella  (Iridophagoides ) sp. 1099 TOTO 1099_a 1099_b 1099_c - 1099_e 1099_f 1099_g D, QP 70 PJ CBGP Papua New Guinea, Morobe Prov., Wau
Podagrionella  (Podagrionella ) sp.3 1101 TOTO 1101_a 1101_b 1101_c 1101_d 1101_e 1101_f - D, QP 70 PJ CBGP Papua New Guinea, East New Britain, Bainings Mts.
Palmon  sp.5 1102 TOTO 1102_a - 1102_c 1102_d 1102_e 1102_f - D, QP 70 PJ CBGP South Africa, Northwest, Sun City
Bootanomyia  sp. 1103 TOM 1103_a 1103_b 1103_c 1103_d 1103_e 1103_f 1103_g D, QP 70 PJ CBGP Australia, ACT Canberra, Black Mts.
Eridontomerus biroi 1108 TOTM - 1108_c 1108_d 1108_e - - N, QP 70 PJ CBGP Canada, Alberta, Magreth Melyture Ranch
Bortesia  sp. 1109 TOM 1109_a 1109_b 1109_c 1109_d 1109_e - - D, QP 70 PJ CBGP Australia, QLD, Brisbane Forest Park
Torymoides  sp.4 1110 TOTY 1110_a - 1110_c 1110_d - - - D, QP 70 PJ CBGP Australia, QLD, Mount Glorious
Podagrionella  (Iridophaga ) sp.3 1112 TOTO - 1112_c 1112_d 1112_e 1112_f - N, QP 70 PJ CBGP Australia, QLD, Mareeba
Physothorax  sp.5 1114 TOTT 1114_a 1114_b 1114_c 1114_d 1114_e - 1114_g N, QP 70 PJ CBGP Venezuela, Aragua, Henri Pittier Nat. Park
Monodontomerus obscurus 1136 TOTN 1136_a 1136_b 1136_c 1136_d - 1136_f - D, QP 96 PJ CBGP Czech Republic, Brno, Hády
Idiomacromerus  sp.8 1137 TOTM - 1137_c 1137_d - 1137_f 1137_g N, QP 96 PJ CBGP USA, Arizona
Torymus  sp.29 1138 TOTT 1138_a 1138_b 1138_c 1138_d 1138_e 1138_f - D, QP 96 PJ CBGP USA, Kansas
Torymus  sp.30 1139 TOTT - 1139_c 1139_d 1139_e 1139_f - N, QP 96 PJ CBGP USA, Arizona
Torymus  sp.31 1140 TOTT - 1140_c 1140_d 1140_e 1140_f - N, QP 96 PJ CBGP USA, Arizona
Torymus sp.32 1142 TOTT - 1142_c 1142_d 1142_e 1142_f - N, QP 96 PJ CBGP USA, Arizona
Megastigmus  sp.6 1144 TOM 1144_a 1144_b 1144_c 1144_d 1144_e - 1144_g D, QP 96 PJ CBGP RSA
Bootanomyia  (Megastigmus ) dorsalis 1145 TOM 1145_a 1145_b 1145_c - 1145_e - - D, QP 96 PJ CBGP Jordan
Pseudotorymus  sp.6 1147 TOTY 1147_a - 1147_c 1147_d - 1147_f - N, QP 96 PJ CBGP RSA
Idiomacromerus  sp.9 1150 TOTM 1150_a 1150_b 1150_c 1150_d 1150_e 1150_f 1150_g D, QP 96 PJ CBGP Portugal
Torymus  sp.33 1151 TOTT 1151_a - 1151_c 1151_d - 1151_f - N, QP 70 PJ CBGP South Korea
Torymus  sp.34 1152 TOTT 1152_a 1152_b 1152_c 1152_d - 1152_f - N, QP 70 PJ CBGP South Korea
Physothorax  sp.6 1153 TOTT 1153_a 1153_b 1153_c 1153_d 1153_e - 1153_g N, QP 70 PJ CBGP Venezuela
Pseudotorymus  sp.7 1154 TOTY 1154_a - 1154_c 1154_d 1154_e 1154_f 1154_g N, QP 96 PJ CBGP Portugal
Perissocentrus  sp.3 1156 TOTN 1156_a 1156_b 1156_c 1156_d 1156_e 1156_f 1156_g D, QP 70 PJ CBGP Chile
Monodontomerus  sp.4 1157 TOTN 1157_a - 1157_c 1157_d 1157_e 1157_f - N, QP 96 PJ CBGP Tunisia
Torymus sp.35 1158 TOTT 1158_a - 1158_c 1158_d 1158_e 1158_f - N, QP 96 PJ CBGP Tunisia
Chalcimerus borceai 1159 TOTC 1159_a 1159_b 1159_c 1159_d 1159_e - - N, QP 96 PJ PJ Turkey, Adana, Kamisli
Pseuderimerus burgeri UCRC299 TOTM JN623521 JN623852 JN623852 - - - - N, CP 96 UCR UCR USA, California, Riverside Co.
Echthrodape  sp.1 UCRC475 TOTI JN623516 JN623845 JN623845 - - - - N, CP D UCR UCR Australia: QLD
Erimerus wickhami UCRC629 TOTM D2481_a JN623850 JN623850 1278_d - - - N, CP D UCR UCR USA, California, Wileys Well Road
Palachia hayati UCRC749 TOTP JN623525 JN624276 JN624276 - - - - N, CP D PJ UCR India, Uttar Pradesh, New Delhi
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Fig. 1. Phylogeny of Toryminae based on morphological characters (modified from Grissell 
1995). 
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Fig. 2. Saturation plots for transitions (s) and transversions (v) of third codon positions for 
COI (a) and Wg (b). Uncorrected p-distances on y-axis versus F84 distances on x-axis. 
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Fig. 3a. Phylogram of Torymidae relationships (outgroups, Ormyridae, Megastigminae and 

Toryminae: Chalcimerini) based on RAxML with 1000 bootstrap (BP) replications. Support 

values above branches indicate in order: BP maximum likelihood ≥ 50, posterior probablities 

(PP) ≥0.90, BP maximum parsimony ≥ 50; stars indicate different topologies for the given 

analysis. Letters behind name of each taxa specify gene regions sequenced (i.e. 18S, 28SD2, 

28SD3-5, EF1a, COI barcode, COI 2183-3014, Wg, respectively). 

 

Fig. 3b. Phylogram of Torymidae relationships (Toryminae: Boucekini, Torymoidini and 

Torymini) based on RAxML with 1000 boostrap (BP) replications. Support values above 

branches indicate in order: BP maximum likelihood ≥ 50, posterior probablities (PP) ≥0.90, 

BP maximum parsimony ≥ 50; stars indicate different topologies for the given analysis. 

Letters behind name of each taxa specify gene regions sequenced (i.e. 18S, 28SD2, 28SD3-5, 

EF1a, COI barcode, COI 2183-3014, Wg, respectively). 

 

Fig. 3c. Phylogram of Torymidae relationships (Toryminae: Glyphomerini, 

Microdontomerini, Monodontomerini and Palachiini + Podagrionini) based on RAxML with 

1000 bootstrap (BP) replications. Support values above branches indicate in order: BP 

maximum likelihood ≥ 50, posterior probablities (PP) ≥0.90, BP maximum parsimony ≥ 50; 

stars indicate different topologies for the given analysis. Letters behind name of each taxa 

specify gene regions sequenced (i.e. 18S, 28SD2, 28SD3-5, EF1a, COI barcode, COI 2183-

3014, Wg, respectively). 
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Fig. 4. Mapping of life-history strategies and hosts of larvae. The branch color reflects the 

most parsimonous ancestral state for that branch mapped onto ML tree topology, color 

of background indicates the tribal/subfamiliar or familiar affiliation. a - life-strategy of larvae, 

b - information about hosts records of larvae. 
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1940_02 PTS Sycophaga  sp CAMEROUN abcde
1987_02 EU Ficomila  sp MALAYSIA abcdef
2355_03 PTE Odontofroggatia  sp INDONESIA abcdef
2355_05 PTE Odontofroggatia  ishii INDONESIA abcdef
47O OR Ormyrus  sp1 KYRGYZSTAN abc
3116 OR Ormyrus  sp1 AUSTRIA bcdf
1868_08 OR Ormyrus  sp MALAYSIA abcdef
J1002 OR Ormyrus  sp3 TAIWAN acdf
46O OR Ormyrulus  sp THAILAND abc
J1001 OR Ormyrus  sp2 TAIWAN bcdf
D2482 TOM Bootanelleus  sp AUSTRALIA abc
1109 TOM Bortesia  sp AUSTRALIA abcde
1080 TOM Malostigmus  sp1 AUSTRALIA abcdef
1084 TOM Malostigmus  sp2 AUSTRALIA abcde
1103 TOM Bootanomyia  sp AUSTRALIA abcdefg
3050 TOM Bootanomyia (Megastigmus) dorsalis FRANCE abcd
1145 TOM Bootanomyia (Megastigmus) dorsalis JORDAN abce
3057 TOM Bootanomyia (Megastigmus) stigmatizans FRANCE aceg
3058 TOM Bootanomyia (Megastigmus) cf dorsalis FRANCE acdeg
1062 TOM Megastigminae  sp5 AUSTRALIA abcdeg
1092 TOM Neomegastigmus  sp AUSTRALIA abcdeg
D2483 TOM Paramegastigmus  sp THAILAND abc
1259_03 TOM Megastigmus  sp NEW CALEDONIA abcde
3030 TOM Megastigmus  sp FRANCE bcdg
3053 TOM Megastigmus  sp2 FRANCE acdeg
3056 TOM Megastigmus  bipunctatus FRANCE bcdeg
3060 TOM Megastigmus  bipunctatus ITALY ace
1059 TOM Megastigmus  sp4 COSTA RICA abcdg
3059 TOM Megastigmus  pistaciae FRANCE bcde
1015 TOM Megastigmus  sp3 AUSTRALIA abcdeg
1144 TOM Megastigmus  sp6 RSA abcdeg
1274 TOTI Thaumatorymus  notanisoides TURKEY abcde
1273 TOTM Exopristoides  hypecoi BULGARIA abcde
1159 TOTC Chalcimerus  borceai TURKEY abcde
JN623860 TOTY Boucekinus  tatianae COSTA RICA abcde
1032 TOTY New genus Torymoidini sp CHILE adfg
1072 TOTY Platykula  sp2 CHILE acdfg
JN624252 TOTY Platykula  albihirta USA abcde
1068 TOTY Platykula  sp1 USA c
1038 TOTY Pseudotorymus  sapphyrinus HUNGARY abcdefg
1073 TOTY Pseudotorymus  sp5 CANADA abcdefg
3027 TOTY Pseudotorymus  napi FRANCE acdefg
3028 TOTY Pseudotorymus  napi FRANCE acdefg
3073 TOTY Pseudotorymus  sp2 FRANCE acdefg
1154 TOTY Pseudotorymus  sp7 PORTUGAL acdefg
3001 TOTY Pseudotorymus  sp1 CAMEROUN acd
1017 TOTY Pseudotorymus  sp3 RSA acdf
1027 TOTY Pseudotorymus  sp4 RSA acdf
1147 TOTY Pseudotorymus  sp6 RSA acdf
1061 TOTY Torymoides  sp2 AUSTRALIA acdfg
1110 TOTY Torymoides  sp4 AUSTRALIA acd
1083 TOTY Torymoides  sp3 AUSTRALIA acdefg
3078 TOTY Torymoides  kisenwetteri FRANCE abcdfg
1023 TOTY Torymoides  sp1 RSA abcdfg
1035 TOTY Torymoides  kiessenwetteri PORTUGAL acdfg
D2470 TOTT Ecdamua  cadenati KENYA abc
1004 TOTT Ecdamua  indica UAE ac
1074 TOTT Torymus (Diomorus) armatus CANADA abcdfg
3002 TOTT Torymus (Diomorus) sp CAMEROUN acdfg
1008 TOTT Torymus (Diomorus) cf armatus UAE abcg
1022 TOTT Torymus (Diomorus) orientalis INDIA acdefg
1046 TOTT Torymus  sp27 COSTA RICA acdefg
1043 TOTT Torymus  sp25 COSTA RICA acdefg
1045 TOTT Torymus  sp26 COSTA RICA acdefg
1140 TOTT Torymus  sp31 USA cdef
1139 TOTT Torymus  sp30 USA cdef
1142 TOTT Torymus  sp32 USA cdef
1058 TOTT Torymus  sp28 FRENCH GUIANA acdefg
121703 TOTT Physothorax  sp1 GUADELOUPE abc
J1008 TOTT Physothorax  sp3 BRAZIL bcdf
J1007 TOTT Plesiostigmodes  sp BRAZIL c
1086 TOTT Physothorax  sp4 VENEZUELA acde
J1009 TOTT Torymus (Nannocerus) sp BRAZIL acd
1114 TOTT Physothorax  sp5 VENEZUELA abcdeg
1153 TOTT Physothorax  sp6 VENEZUELA abcdeg
D2471 TOTT Physothorax  bidentulus USA abc
J1004 TOTT Physothorax  sp2 BRAZIL acd
3029 TOTT Torymus  sp laetus group FRANCE abcdefg
3090 TOTT Torymus  stenus ITALY abcde
3103 TOTT Torymus  hylesini ITALY acdfg
3042 TOTT Torymus  sp7 FRANCE abcdef
1016 TOTT Torymus  fulvum CANADA acdeg
1152 TOTT Torymus  sp34 SOUTH KOREA abcdf
3066 TOTT Torymus  fagineus FRANCE acdef
3098 TOTT Torymus  laetus ITALY acdef
1077 TOTT Allotorymus  splendens CANADA acdefg
31002 TOTT Torymus  sp laetus group ITALY acdf
3094 TOTT Torymus  sp15 ITALY cd
3097 TOTT Torymus  ventralis ITALY acd
3110 TOTT Torymus  sp19 SLOVENIA acdef
3069 TOTT Torymus (Syntomaspis) sp FRANCE acdf
3070 TOTT Torymus  bedeguaris CZECH REP abcdf
3114 TOTT Torymus  flavipes FRANCE acdf
3085 TOTT Torymus  sp13 FRANCE acdef
3086 TOTT Torymus  flavipes FRANCE acdf
1158 TOTT Torymus  sp35 TUNISIA acdef
3037 TOTT Torymus  sp4 FRANCE acdef
3089 TOTT Torymus  rubi AUSTRIA acde
1019 TOTT Torymus  subnudus RSA abcdef
1030 TOTT Torymus  sp24 RSA abcdef
1138 TOTT Torymus  sp29 USA abcdef
3093 TOTT Torymus  sp14 ITALY acdf
3099 TOTT Torymus  sp17 ITALY acde
3051 TOTT Torymus  sp10 FRANCE abcdef
3112 TOTT Torymus  sp21 SLOVENIA acde
3043 TOTT Torymus  sp8 FRANCE acdef
3036 TOTT Torymus  sp3 FRANCE acdefg
3033 TOTT Torymus  sp1 FRANCE acdef
3047 TOTT Torymus  sp9 FRANCE acdef
3068 TOTT Torymus  sp11 FRANCE acdef
3082 TOTT Torymus  sp12 FRANCE acdef
3035 TOTT Torymus  sp2 FRANCE acdef
PJ0028 TOTT Torymus  sp23 AUSTRALIA abcde
3095 TOTT Torymus  sp16 ITALY acdf
3111 TOTT Torymus  sp20 SLOVENIA acdef
3113 TOTT Torymus  sp22 AUSTRIA cdef
3040 TOTT Torymus  sp6 FRANCE cdefg
3038 TOTT Torymus  sp5 FRANCE acdef
3106 TOTT Torymus  sp18 SLOVENIA cdef
1151 TOTT Torymus  sp33 SOUTH KOREA acdf
1076 TOTI Glyphomerus  cf stigma CANADA acdefg
3088 TOTI Glyphomerus  stigma FRANCE abcdef
3115 TOTI Glyphomerus  stigma FRANCE acdfg
12801 TOTI Echthrodape  sp MADAGASCAR bce
UCRC475 TOTI Echthrodape  sp1 AUSTRALIA abc
3023 TOTI Exopristus  trigonomerus FRANCE abcdef
1034 TOTI Exopristus  trigonomerus PORTUGAL abcdef
1272 TOTI Glyphomerus  aylax BULGARIA abcde
D2474 TOTI Glyphomerus  tibialis CZECH REP abcdef
3074 TOTI Glyphomerus  tibialis FRANCE abcde
3044 TOTM Microdontomerus  sp1 FRANCE abcdef
3064 TOTM Microdontomerus  annulatus FRANCE abcdf
1255 TOTM Microdontomerus  sp2 UAE abcde
1285 TOTM Microdontomerus  sp3 USA abcde
1005 TOTM Microdontomerus  sp4 UAE abcde
3024 TOTM Idarnotorymus  pulcher FRANCE acdef
1039 TOTM Idarnotorymus  pulcher CROATIA acdef
1040 TOTI Cryptopristus  caliginosus CZECH REP abcde
1096 TOTI Cryptopristus  caliginosus CANADA abcdef
1007 TOTM Idiomacromerus  sp2 UAE acd
3045 TOTM Idiomacromerus  sp1 FRANCE acdefg
1150 TOTM Idiomacromerus  sp9 PORTUGAL abcdefg
1253 TOTM Idiomacromerus  sp3 UAE abcde
1033 TOTM Idiomacromerus  papaveris PORTUGAL bcdefg
3077 TOTM Idiomacromerus  sp2 FRANCE abcde
1137 TOTM Idiomacromerus  sp8 USA cdfg
1257 TOTM Idiomacromerus  sp4 UAE abcd
1286 TOTM Idiomacromerus  sp5 USA abcde
1243 TOTM Adontomerus  sp2 IRAN abcde
1231 TOTM Adontomerus  sp1 TURKEY e
1277 TOTM Adontomerus  impolitus SPAIN abcde
3026 TOTM Pseuderimerus  sp1 FRANCE acde
10372 TOTM Pseuderimerus  luteus CROATIA acde
UCRC299 TOTM Pseuderimerus  burgeri USA abc
UCRC629 TOTM Erimerus  wickhami USA abcd
3076 TOTM Eridontomerus  arrabonicus FRANCE abcdf
1036 TOTM Eridontomerus  arrabonicus CZECH REP abcdef
1228 TOTM Eridontomerus  isosomatis FRANCE e
1247 TOTM Eridontomerus  isosomatis TURKEY e
1237 TOTM Eridontomerus  laticornis TURKEY de
1250 TOTM Eridontomerus  fulviventris ITALY abcde
1049 TOTM Ditropinotus  aureoviridis USA abcdef
1267 TOTM Eridontomerus  biroi CANADA abcde
1108 TOTM Eridontomerus  biroi CANADA cde
1234 TOTM Eridontomerus  biroi TURKEY de
JN624264 TOTM Eridontomerus  biroi ARGENTINA abcd
1249 TOTM Eridontomerus  biroi ITALY e
PJ00271 TOTM Eridontomerus  biroi ARGENTINA abcde
JN624272 TOTN Zdenekius  smithi USA bc
1052 TOTN New genus Monodontomerini sp ARGENTINA abcdefg
JN624263 TOTI Zaglyptonotus  sp USA abcd
1024 TOTN Chileana  cyanea CHILE abcdefg
1156 TOTN Perissocentrus  sp3 CHILE abcdefg
JN624270 TOTN Perissocentrus  sp1 ARGENTINA abcde
1029 TOTN Perissocentrus  sp1 CHILE abcdefg
JN623854 TOTN Anneckeida  maai THAILAND bc
JN624267 TOTN Anneckeida  sp1 KENYA bc
1042 TOTN Anneckeida  sp2 KENYA abcdef
JN624271 TOTN Rhynchoticida  maai THAILAND bc
1157 TOTN Monodontomerus  sp4 TUNISIA acdef
3052 TOTN Monodontomerus  sp1 FRANCE abcdfg
1087 TOTN Monodontomerus  sp3 SOUTH KOREA abcdef
PJ0010 TOTN Monodontomerus  sp2 USA bc
1136 TOTN Monodontomerus  obscurus CZECH REP abcdf
JN623856 TOTP Propalachia  borneana TAIWAN bc
1085 TOTP Propalachia  sp2 LAOS cef
1047 TOTP Propalachia  sp1 KENYA abcef
1098 TOTP Propalachia  sp3 MOZAMBIQUE bef
1101 TOTO Podagrionella (Podagrionella) sp3 PNG abcdef
1112 TOTO Podagrionella (Iridophaga) sp3 AUSTRALIA cdef
1021 TOTP Palachia  sp INDIA abcg
UCRC749 TOTP Palachia hayati  hayati INDIA abc
3019 TOTO Podagrionella (Iridophaga) korsakowi MAURITabcdef
3020 TOTO Podagrionella (Iridophaga) lichtensteini FRANCE acdef
1001 TOTO Podagrionella (Iridophaga) sp1 UAE abcde
1020 TOTO Podagrionella (Iridophaga) sp2 RSA de
JN624275 TOTO Propachytomoides  sp1 AUSTRALIA bc
1081 TOTO Propachytomoides  sp2 AUSTRALIA bcd
3014 TOTO Palmon  sp1 FRENCH GUAYANA bcdf
1054 TOTO Palmon  sp3 ECUADOR abcdf
1014 TOTO Palmon  sp2 MADAGASCAR acd
1090 TOTO Palmon  sp4 TAIWAN abcdef
1102 TOTO Palmon  sp5 SOUTH AFRICA acdef
3021 TOTO Mantiphaga  bekiliensis MADAGASCAR abcdef
1013 TOTO Mantiphaga  sp2 MADAGASCAR ad
3010 TOTO Podagrionella (Iridophagoides) tatianae SPAIN abcdef
1099 TOTO Pogadrionella (Iridophagoides) sp PNG abcefg
1041 TOTO Podagrionella (Podagrionella) sp1 KENYA acdef
1097 TOTO Podagrionella (Podagrionella) sp2 MOZAMBIQUE acde
1079 TOTO Podagrion  sp18 AUSTRALIA abcdef
3003 TOTO Podagrion  sp1 CAMEROUN abcdfg
1082 TOTO Podagrion  sp3 AUSTRALIA abcdfg
3022 TOTO Podagrion  sp7 VANUATU acdefg
1078 TOTO Podagrion  sp17 AUSTRALIA acd
1048 TOTO Podagrion  sp12 CALIFORNIA acdef
1065 TOTO Podagrion  sp15 USA acdef
3008 TOTO Podagrion  sp5 CAMEROUN acdef
1006 TOTO Podagrion  sp8 UAE acdef
1095 TOTO Podagrion  sp20 PAPUA NEW GUINEA cdef
3006 TOTO Podagrion  sp3 CAMEROUN acdef
3017 TOTO Podagrion  pachymerum ITALY abcdef
3011 TOTO Podagrion  splendens FRANCE acdef
3018 TOTO Podagrion  minus SPAIN acdef
1018 TOTO Podagrion  sp9 RSA abcdef
3012 TOTO Podagrion  bouceki MOROCCO acdef
3025 TOTO Podagrion  bouceki FRANCE acdef
1028 TOTO Podagrion  sp10 INDIA abcdef
1003 TOTO Mantiphaga  sp1 UAE ace
1089 TOTO Podagrion  sp19 MALAYSIA acdef
3005 TOTO Podagrion  sp2 CAMEROUN acdef
3007 TOTO Podagrion  sp4 CAMEROUN acdef
1044 TOTO Podagrion  sp11 BOLIVIA acf
1069 TOTO Podagrion  sp16 ARGENTINA abcdf
3015 TOTO Podagrion  sp6 FRENCH GUAYANA acdef
1055 TOTO Podagrion  sp13 ECUADOR ade
1057 TOTO Podagrion  sp14 FRENCH GUIANA acef

- phytophagous species

- zoophagous exoparasitoids on larvae 
  of gall-forming Cecidomyiidae and Cynipidae
- zoophagous exoparasitoids 

- zoophagous endoparasitoids

- ambiguous

- egg endoparasitoids

- Eurytomidae

- Lepidoptera

- Heteroptera 

- Mantodea

- ambiguous

- Coleoptera

- Cecidomyiidae

- Cynipidae

- phytophagous species

- other Diptera

- Aculeata
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Fig. 5. Mapping of distribution by geographical region for specimens included in analysis. 

Branch color reflects the most parsimonous ancestral state for that branch mapped onto 

the RAxML tree topology; color of background indicates the tribal/subfamiliar or familiar 

affiliation. 
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Ormyridae

Megastigminae

Chalcimerini

Boucekini

Torymoidini

Torymini

Glyphomerini

Microdontomerini

Monodontomerini

Palachiini

Podagrionini

1940_02 PTS Sycophaga  sp CAMEROUN abcde
1987_02 EU Ficomila  sp MALAYSIA abcdef
2355_03 PTE Odontofroggatia  sp INDONESIA abcdef
2355_05 PTE Odontofroggatia  ishii INDONESIA abcdef
47O OR Ormyrus  sp1 KYRGYZSTAN abc
3116 OR Ormyrus  sp1 AUSTRIA bcdf
1868_08 OR Ormyrus  sp MALAYSIA abcdef
J1002 OR Ormyrus  sp3 TAIWAN acdf
46O OR Ormyrulus  sp THAILAND abc
J1001 OR Ormyrus  sp2 TAIWAN bcdf
D2482 TOM Bootanelleus  sp AUSTRALIA abc
1109 TOM Bortesia  sp AUSTRALIA abcde
1080 TOM Malostigmus  sp1 AUSTRALIA abcdef
1084 TOM Malostigmus  sp2 AUSTRALIA abcde
1103 TOM Bootanomyia  sp AUSTRALIA abcdefg
3050 TOM Bootanomyia (Megastigmus) dorsalis FRANCE abcd
1145 TOM Bootanomyia (Megastigmus) dorsalis JORDAN abce
3057 TOM Bootanomyia (Megastigmus) stigmatizans FRANCE aceg
3058 TOM Bootanomyia (Megastigmus) cf dorsalis FRANCE acdeg
1062 TOM Megastigminae  sp5 AUSTRALIA abcdeg
1092 TOM Neomegastigmus  sp AUSTRALIA abcdeg
D2483 TOM Paramegastigmus  sp THAILAND abc
1259_03 TOM Megastigmus  sp NEW CALEDONIA abcde
3030 TOM Megastigmus  sp FRANCE bcdg
3053 TOM Megastigmus  sp2 FRANCE acdeg
3056 TOM Megastigmus  bipunctatus FRANCE bcdeg
3060 TOM Megastigmus  bipunctatus ITALY ace
1059 TOM Megastigmus  sp4 COSTA RICA abcdg
3059 TOM Megastigmus  pistaciae FRANCE bcde
1015 TOM Megastigmus  sp3 AUSTRALIA abcdeg
1144 TOM Megastigmus  sp6 RSA abcdeg
1274 TOTI Thaumatorymus  notanisoides TURKEY abcde
1273 TOTM Exopristoides  hypecoi BULGARIA abcde
1159 TOTC Chalcimerus  borceai TURKEY abcde
JN623860 TOTY Boucekinus  tatianae COSTA RICA abcde
1032 TOTY New genus Torymoidini sp CHILE adfg
1072 TOTY Platykula  sp2 CHILE acdfg
JN624252 TOTY Platykula  albihirta USA abcde
1068 TOTY Platykula  sp1 USA c
1038 TOTY Pseudotorymus  sapphyrinus HUNGARY abcdefg
1073 TOTY Pseudotorymus  sp5 CANADA abcdefg
3027 TOTY Pseudotorymus  napi FRANCE acdefg
3028 TOTY Pseudotorymus  napi FRANCE acdefg
3073 TOTY Pseudotorymus  sp2 FRANCE acdefg
1154 TOTY Pseudotorymus  sp7 PORTUGAL acdefg
3001 TOTY Pseudotorymus  sp1 CAMEROUN acd
1017 TOTY Pseudotorymus  sp3 RSA acdf
1027 TOTY Pseudotorymus  sp4 RSA acdf
1147 TOTY Pseudotorymus  sp6 RSA acdf
1061 TOTY Torymoides  sp2 AUSTRALIA acdfg
1110 TOTY Torymoides  sp4 AUSTRALIA acd
1083 TOTY Torymoides  sp3 AUSTRALIA acdefg
3078 TOTY Torymoides  kisenwetteri FRANCE abcdfg
1023 TOTY Torymoides  sp1 RSA abcdfg
1035 TOTY Torymoides  kiessenwetteri PORTUGAL acdfg
D2470 TOTT Ecdamua  cadenati KENYA abc
1004 TOTT Ecdamua  indica UAE ac
1074 TOTT Torymus (Diomorus) armatus CANADA abcdfg
3002 TOTT Torymus (Diomorus) sp CAMEROUN acdfg
1008 TOTT Torymus (Diomorus) cf armatus UAE abcg
1022 TOTT Torymus (Diomorus) orientalis INDIA acdefg
1046 TOTT Torymus  sp27 COSTA RICA acdefg
1043 TOTT Torymus  sp25 COSTA RICA acdefg
1045 TOTT Torymus  sp26 COSTA RICA acdefg
1140 TOTT Torymus  sp31 USA cdef
1139 TOTT Torymus  sp30 USA cdef
1142 TOTT Torymus  sp32 USA cdef
1058 TOTT Torymus  sp28 FRENCH GUIANA acdefg
121703 TOTT Physothorax  sp1 GUADELOUPE abc
J1008 TOTT Physothorax  sp3 BRAZIL bcdf
J1007 TOTT Plesiostigmodes  sp BRAZIL c
1086 TOTT Physothorax  sp4 VENEZUELA acde
J1009 TOTT Torymus (Nannocerus) sp BRAZIL acd
1114 TOTT Physothorax  sp5 VENEZUELA abcdeg
1153 TOTT Physothorax  sp6 VENEZUELA abcdeg
D2471 TOTT Physothorax  bidentulus USA abc
J1004 TOTT Physothorax  sp2 BRAZIL acd
3029 TOTT Torymus  sp laetus group FRANCE abcdefg
3090 TOTT Torymus  stenus ITALY abcde
3103 TOTT Torymus  hylesini ITALY acdfg
3042 TOTT Torymus  sp7 FRANCE abcdef
1016 TOTT Torymus  fulvum CANADA acdeg
1152 TOTT Torymus  sp34 SOUTH KOREA abcdf
3066 TOTT Torymus  fagineus FRANCE acdef
3098 TOTT Torymus  laetus ITALY acdef
1077 TOTT Allotorymus  splendens CANADA acdefg
31002 TOTT Torymus  sp laetus group ITALY acdf
3094 TOTT Torymus  sp15 ITALY cd
3097 TOTT Torymus  ventralis ITALY acd
3110 TOTT Torymus  sp19 SLOVENIA acdef
3069 TOTT Torymus (Syntomaspis) sp FRANCE acdf
3070 TOTT Torymus  bedeguaris CZECH REP abcdf
3114 TOTT Torymus  flavipes FRANCE acdf
3085 TOTT Torymus  sp13 FRANCE acdef
3086 TOTT Torymus  flavipes FRANCE acdf
1158 TOTT Torymus  sp35 TUNISIA acdef
3037 TOTT Torymus  sp4 FRANCE acdef
3089 TOTT Torymus  rubi AUSTRIA acde
1019 TOTT Torymus  subnudus RSA abcdef
1030 TOTT Torymus  sp24 RSA abcdef
1138 TOTT Torymus  sp29 USA abcdef
3093 TOTT Torymus  sp14 ITALY acdf
3099 TOTT Torymus  sp17 ITALY acde
3051 TOTT Torymus  sp10 FRANCE abcdef
3112 TOTT Torymus  sp21 SLOVENIA acde
3043 TOTT Torymus  sp8 FRANCE acdef
3036 TOTT Torymus  sp3 FRANCE acdefg
3033 TOTT Torymus  sp1 FRANCE acdef
3047 TOTT Torymus  sp9 FRANCE acdef
3068 TOTT Torymus  sp11 FRANCE acdef
3082 TOTT Torymus  sp12 FRANCE acdef
3035 TOTT Torymus  sp2 FRANCE acdef
PJ0028 TOTT Torymus  sp23 AUSTRALIA abcde
3095 TOTT Torymus  sp16 ITALY acdf
3111 TOTT Torymus  sp20 SLOVENIA acdef
3113 TOTT Torymus  sp22 AUSTRIA cdef
3040 TOTT Torymus  sp6 FRANCE cdefg
3038 TOTT Torymus  sp5 FRANCE acdef
3106 TOTT Torymus  sp18 SLOVENIA cdef
1151 TOTT Torymus  sp33 SOUTH KOREA acdf
1076 TOTI Glyphomerus  cf stigma CANADA acdefg
3088 TOTI Glyphomerus  stigma FRANCE abcdef
3115 TOTI Glyphomerus  stigma FRANCE acdfg
12801 TOTI Echthrodape  sp MADAGASCAR bce
UCRC475 TOTI Echthrodape  sp1 AUSTRALIA abc
3023 TOTI Exopristus  trigonomerus FRANCE abcdef
1034 TOTI Exopristus  trigonomerus PORTUGAL abcdef
1272 TOTI Glyphomerus  aylax BULGARIA abcde
D2474 TOTI Glyphomerus  tibialis CZECH REP abcdef
3074 TOTI Glyphomerus  tibialis FRANCE abcde
3044 TOTM Microdontomerus  sp1 FRANCE abcdef
3064 TOTM Microdontomerus  annulatus FRANCE abcdf
1255 TOTM Microdontomerus  sp2 UAE abcde
1285 TOTM Microdontomerus  sp3 USA abcde
1005 TOTM Microdontomerus  sp4 UAE abcde
3024 TOTM Idarnotorymus  pulcher FRANCE acdef
1039 TOTM Idarnotorymus  pulcher CROATIA acdef
1040 TOTI Cryptopristus  caliginosus CZECH REP abcde
1096 TOTI Cryptopristus  caliginosus CANADA abcdef
1007 TOTM Idiomacromerus  sp2 UAE acd
3045 TOTM Idiomacromerus  sp1 FRANCE acdefg
1150 TOTM Idiomacromerus  sp9 PORTUGAL abcdefg
1253 TOTM Idiomacromerus  sp3 UAE abcde
1033 TOTM Idiomacromerus  papaveris PORTUGAL bcdefg
3077 TOTM Idiomacromerus  sp2 FRANCE abcde
1137 TOTM Idiomacromerus  sp8 USA cdfg
1257 TOTM Idiomacromerus  sp4 UAE abcd
1286 TOTM Idiomacromerus  sp5 USA abcde
1243 TOTM Adontomerus  sp2 IRAN abcde
1231 TOTM Adontomerus  sp1 TURKEY e
1277 TOTM Adontomerus  impolitus SPAIN abcde
3026 TOTM Pseuderimerus  sp1 FRANCE acde
10372 TOTM Pseuderimerus  luteus CROATIA acde
UCRC299 TOTM Pseuderimerus  burgeri USA abc
UCRC629 TOTM Erimerus  wickhami USA abcd
3076 TOTM Eridontomerus  arrabonicus FRANCE abcdf
1036 TOTM Eridontomerus  arrabonicus CZECH REP abcdef
1228 TOTM Eridontomerus  isosomatis FRANCE e
1247 TOTM Eridontomerus  isosomatis TURKEY e
1237 TOTM Eridontomerus  laticornis TURKEY de
1250 TOTM Eridontomerus  fulviventris ITALY abcde
1049 TOTM Ditropinotus  aureoviridis USA abcdef
1267 TOTM Eridontomerus  biroi CANADA abcde
1108 TOTM Eridontomerus  biroi CANADA cde
1234 TOTM Eridontomerus  biroi TURKEY de
JN624264 TOTM Eridontomerus  biroi ARGENTINA abcd
1249 TOTM Eridontomerus  biroi ITALY e
PJ00271 TOTM Eridontomerus  biroi ARGENTINA abcde
JN624272 TOTN Zdenekius  smithi USA bc
1052 TOTN New genus Monodontomerini sp ARGENTINA abcdefg
JN624263 TOTI Zaglyptonotus  sp USA abcd
1024 TOTN Chileana  cyanea CHILE abcdefg
1156 TOTN Perissocentrus  sp3 CHILE abcdefg
JN624270 TOTN Perissocentrus  sp1 ARGENTINA abcde
1029 TOTN Perissocentrus  sp1 CHILE abcdefg
JN623854 TOTN Anneckeida  maai THAILAND bc
JN624267 TOTN Anneckeida  sp1 KENYA bc
1042 TOTN Anneckeida  sp2 KENYA abcdef
JN624271 TOTN Rhynchoticida  maai THAILAND bc
1157 TOTN Monodontomerus  sp4 TUNISIA acdef
3052 TOTN Monodontomerus  sp1 FRANCE abcdfg
1087 TOTN Monodontomerus  sp3 SOUTH KOREA abcdef
PJ0010 TOTN Monodontomerus  sp2 USA bc
1136 TOTN Monodontomerus  obscurus CZECH REP abcdf
JN623856 TOTP Propalachia  borneana TAIWAN bc
1085 TOTP Propalachia  sp2 LAOS cef
1047 TOTP Propalachia  sp1 KENYA abcef
1098 TOTP Propalachia  sp3 MOZAMBIQUE bef
1101 TOTO Podagrionella (Podagrionella) sp3 PNG abcdef
1112 TOTO Podagrionella (Iridophaga) sp3 AUSTRALIA cdef
1021 TOTP Palachia  sp INDIA abcg
UCRC749 TOTP Palachia hayati  hayati INDIA abc
3019 TOTO Podagrionella (Iridophaga) korsakowi MAURITabcdef
3020 TOTO Podagrionella (Iridophaga) lichtensteini FRANCE acdef
1001 TOTO Podagrionella (Iridophaga) sp1 UAE abcde
1020 TOTO Podagrionella (Iridophaga) sp2 RSA de
JN624275 TOTO Propachytomoides  sp1 AUSTRALIA bc
1081 TOTO Propachytomoides  sp2 AUSTRALIA bcd
3014 TOTO Palmon  sp1 FRENCH GUAYANA bcdf
1054 TOTO Palmon  sp3 ECUADOR abcdf
1014 TOTO Palmon  sp2 MADAGASCAR acd
1090 TOTO Palmon  sp4 TAIWAN abcdef
1102 TOTO Palmon  sp5 SOUTH AFRICA acdef
3021 TOTO Mantiphaga  bekiliensis MADAGASCAR abcdef
1013 TOTO Mantiphaga  sp2 MADAGASCAR ad
3010 TOTO Podagrionella (Iridophagoides) tatianae SPAIN abcdef
1099 TOTO Pogadrionella (Iridophagoides) sp PNG abcefg
1041 TOTO Podagrionella (Podagrionella) sp1 KENYA acdef
1097 TOTO Podagrionella (Podagrionella) sp2 MOZAMBIQUE acde
1079 TOTO Podagrion  sp18 AUSTRALIA abcdef
3003 TOTO Podagrion  sp1 CAMEROUN abcdfg
1082 TOTO Podagrion  sp3 AUSTRALIA abcdfg
3022 TOTO Podagrion  sp7 VANUATU acdefg
1078 TOTO Podagrion  sp17 AUSTRALIA acd
1048 TOTO Podagrion  sp12 CALIFORNIA acdef
1065 TOTO Podagrion  sp15 USA acdef
3008 TOTO Podagrion  sp5 CAMEROUN acdef
1006 TOTO Podagrion  sp8 UAE acdef
1095 TOTO Podagrion  sp20 PAPUA NEW GUINEA cdef
3006 TOTO Podagrion  sp3 CAMEROUN acdef
3017 TOTO Podagrion  pachymerum ITALY abcdef
3011 TOTO Podagrion  splendens FRANCE acdef
3018 TOTO Podagrion  minus SPAIN acdef
1018 TOTO Podagrion  sp9 RSA abcdef
3012 TOTO Podagrion  bouceki MOROCCO acdef
3025 TOTO Podagrion  bouceki FRANCE acdef
1028 TOTO Podagrion  sp10 INDIA abcdef
1003 TOTO Mantiphaga  sp1 UAE ace
1089 TOTO Podagrion  sp19 MALAYSIA acdef
3005 TOTO Podagrion  sp2 CAMEROUN acdef
3007 TOTO Podagrion  sp4 CAMEROUN acdef
1044 TOTO Podagrion  sp11 BOLIVIA acf
1069 TOTO Podagrion  sp16 ARGENTINA abcdf
3015 TOTO Podagrion  sp6 FRENCH GUAYANA acdef
1055 TOTO Podagrion  sp13 ECUADOR ade
1057 TOTO Podagrion  sp14 FRENCH GUIANA acef

- Afrotropical region

- Palearctic region

- Oriental region 

- Australian region

- ambiguous

- Netropical region

- Nearctic
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4. Conclusions and future prospects 
 

 The thesis had three aims – (1) to figure out the phylogenetic position of Torymidae 

as well as the position of the other chalcidoid families inside superfamily Chalcidoidea based 

on molecular and morphological characters, (2) to provide the first molecular study 

of the family Torymidae, to compare the results with known morphological concept 

of the family and to figure out possible evolution of life strategies inside family and (3) to 

contribute to the taxonomy of the family which is still very poorly known. 

 To accomplish the first aim we developed and analysed supermatrix of sequencies 

of two ribosomal genes (18S rDNA and 28S rDNA) for 649 species of chalcidoid taxa. 

However, family Torymidae was considered as polyphyletic group with the subfamily 

Megastigminae unrelated to the subfamily Toryminae and without any logical sister group 

inside entire superfamily. Therefore we tried to corroborate monophyly of Torymidae 

in subsequent study focused on molecular and morphological characters of selected taxa. 

Altogether 233 characters of 300 members of all chalcidoid families were scored. Contrary 

to our previous DNA only based study, we both confirmed the monophyly of family 

and revealed also potential sister relationships of Torymidae with Ormyridae+Colotrechninae 

or Cerocephalinae+Diparinae, respectively. However, we are planning to make much more 

detailed study of the superfamily phylogeny using preliminary results of transcriptomic 

studies to obtain more genes and more reliable support of backbone nodes. It will be good 

starting base for testing various evolutionary hypotheses inside so diverse superfamily 

as Chalcidoidea is. 

 Second aim of the study was fullfiled by reconstruction of Torymidae phylogeny 

based on 5 gene fragments using 226 ingroup taxa representing 45 of the 67 recognized 

genera from two accepted subfamilies and all known tribes. Based on these data 

the monophyly of Torymidae was not confirmed. However, we recovered all known tribes 

and established two new tribes of the subfamily Toryminae. Larvae of the most common 

ancestor of Toryminae were postulated as exoparasitoids of gall-forming insects in Palaearctic 

region with several derived traits throughout the Toryminae phylogeny. The life strategy, 

hosts and distribution of the common ancestor of Megastigminae is still uncertain. 

In the future, we would like to add some more closer relative outgroups (i.e. Colotrechninae 

and Diparinae, both Pteromalidae) to reveal monophyly of Toryminae and find out 

the possible closer sister group of Megastigminae. The detailed study of relevant 

morphological characters to define morphologicaly the entire family, respectively subfamily, 
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tribes and genera is also needed. We will concentrate also on the critical survey of all known 

and particularly on undescribed fossil records as well as on verifying published host records 

and finding new ones for members of the family, respectively two subfamilies. We have 

to concentrate equally to study of larval characters of more representatives 

of the Megastigminae and Toryminae as well as of the other chalcidoid taxa. These data are 

necessary for reconstruction of more robust evolutionary hypothesis of the Torymidae, 

respectively Megastigminae and Toryminae history. 

 Contribution to the taxonomy of the family, the third aim, is a by-product of above 

mentioned studies.We have found and described some new unknown genera (Boucekinus 

Janšta & Hanson, 2011 with two species and Chileana Janšta & Křížková, 2013 with four 

new species) from South America. We included also keys to the species, diagnosis 

of the genera and discussion of their potential phylogenetic placement within the family. 

Many new species and still some genera remained undescribed. We will focus on their 

description in the future. We hope that our consequent studies will contribute 

to the knowledge of the world biodiversity of this small parasitic wasps as well 

as to knowledge of their biology. 
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