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Abstract  

The remediation of persistent chlorinated aromatic compounds has become a priority of great 

relevance due to the teratogenic, carcinogenic and endocrine-disrupting properties of these 

xenobiotics. The use of biological methodologies for the clean-up of contaminated sites, 

collectively referred to as “bioremediation”, has been gaining an increasing interest in recent 

years because it represents an effective, cost-competitive and environmentally friendly 

alternative to the physico-chemical and thermal treatments. In this respect, “white rot” fungi, 

an ecological subgroup of filamentous fungi, display features that make them excellent 

candidates to design an effective remediation technology (“mycoremediation”). In spite of 

this, fungi have not been widely exploited for their metabolic capabilities and the mechanism 

by which they are able to degrade the aforementioned pollutants has not been fully elucidated 

yet. 

Within this frame, the present Ph.D thesis was aimed at:  

i) assessing the efficiency of different mycoremediation strategies for the clean-up of a 

polychlorinated biphenyl (PCBs)-contaminated soil; 

ii) understanding the fungal degradation pathways of polychlorinated biphenyls and their 

major metabolites, namely chlorobenzoic acids (CBAs) and hydroxylated  polychlorinated 

biphenyls (OH-PCBs). 

i) The combination of chemical, toxicological and molecular biology techniques provided a 

comprehensive evaluatation of the technical feasibility of selected remedial strategies. 

Physico-chemical properties (pH, soil texture, soil organic matter content, ect.) as well as the 

pollutant bioavailability of three different PCB-contaminated soil samples from a dumpsite 

(bulk soil, topsoil and rhizosphere soil) were assessed before undergoing both 

bioaugmentation (either with the white rot fungus Pleurotus ostreatus or Irpex lacteus) and 

biostimulation (addition of a lignocellulosic substrate) treatment. The inoculation of P. 

ostreatus in the rhizosphere soil was the most effective treatment in terms of PCB degradation 

and detoxification. The involvement of both intracellular and extracellular fungal enzymes in 

the biotransformation of PCBs was demonstrated by the identification of several PCB 

degradation intermediates (i.e. chlorobenzoates, chlorobenzaldehydes, chlorocresols, 

hydroxylated and methoxylated PCBs). Furthermore, new insights into the microbial 

community structure, diversity and dynamics throughout the bioremediation processes were 

gained with the combination of two culture-indipendent techniques: phospholipid fatty acids 



! vi!

(PLFA) and 454-pyrosequencing analyses. PLFA analysis showed that either the introduction 

of allochthonous fungi or the addition of non-inoculated lignocellulosic substrate stimulated 

the growth of the resident bacterial populations, while the highest fungal concentration was 

achieved in P. ostreatus-topsoil microcosms in the incubation middle phase. Metagenomic 

analysis of bacterial community revealed that Firmicutes relative abundance increased in 

Pleurotus ostreatus-bulk and -rhizosphere soil microcosms; on the other hand, in I.lacteus-

augmented microcosms, an initial increase of Proteobacteria was observed whereas 

Bacteroidetes became dominant at the end of incubation. Analysing the fungal community 

structure in bioaugmented soils, P.ostreatus showed a higher ability than I. lacteus to compete 

with the autochthonous soil mycobiota. Indeed, P.ostreatus sequences accounted to more than 

90% of the total fungal amplicons along the whole incubation period, thus proving the 

outstanding capability of this fungus to efficiently grow in PCB-contaminated soils under 

non-sterile conditions. By contrast, the large majority of fungal sequences in biostimulated 

microcosms belonged to the phyla Ascomycota and Zygomycota, with the exception of the 

topsoil where members of the phylum Basidiomycota became predominant in the later phase 

of the incubation 

ii) Microsomal fractions rich in cytochrome P450 monooxygenase (CYP450) activities were 

isolated from the white rot fungi Lentinus tigrinus and Pleurotus ostreatus to evaluate their 

involvement in the biotransformation of CBAs and PCBs, respectively. In both cases, 

CYP450 was firstly detected by carbon monoxide-binding spectrum, and then used to perform 

in vitro degradation tests with selected compounds. Such intracellular enzymatic system was 

able to degrade either a mixture of CBAs (L. tigrinus) or PCBs (P. ostreatus). Specifically, 

the identification of a hydroxylated CBA confirmed the pivotal role of CYP450 in the initial 

transformation of CBAs. Moreover, a semi-purified laccase obtained from P. ostreatus was 

capable of degrading mono- and dichlorinated hydroxylated biphenyls, at different extent, 

either under mediated or non-mediated conditions. The chemical structure of chlorinated 

organic pollutants, namely the number and position of substituents, was the main factor 

affecting the extent of degradation by both fungal intracellular and extracellular enzymes. 

Keywords: “white rot” fungi, mycoremediation, polychlorinated biphenyls, ligninolytic 

enzymes, cytochrome P450 monooxygenases system, 454-pyrosequencing. 
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Riassunto 
 
Il risanamento di matrici ambientali contaminate da composti organoclorurati recalcitranti è 

divenuto una questione di fondamentale importanza a causa delle proprietà teratogeniche e 

cancerogene di tali composti, nonchè per le loro caratteristiche di interferenti endocrini. A tal 

proposito, le tecniche di risanamento biologico (biorisanamento) stanno riscuotendo un 

crescente interesse negli ultimi anni rispetto ai più convenzionali metodi chimico-fisici in 

virtù della loro comprovata sostenibilità ambientale ed economica. In particolare, i “funghi 

del marciume bianco”, un sottogruppo ecologico dei funghi filamentosi specializzato nella 

degradazione della lignina, presentano delle caratteristiche interessanti, tali da renderli degli 

ottimi candidati per la messa a punto di tecniche di biorisanamento (micorisanamento). 

Tuttavia, le straordinarie capacità metaboliche di questi funghi non sono ancora state sfruttate 

appieno per fini di recupero ambientale ed i meccanismi attraverso i quali essi degradano i 

suddetti contaminanti clorurati non sono stati chiariti in dettaglio. 

Detto questo, la presente tesi di dottorato ha avuto come scopo: 

 i) la valutazione dell’efficacia di diverse tecniche di micorisanamento nel trattamento di suoli 

contaminati da policlorobifenili (PCB); 

 ii) l’analisi dei meccanismi attraverso i quali i funghi del marciume bianco degradano (PCB) 

ed i loro principali metaboliti, acidi clorobenzoici (CBA) e policlorobifenili idrossilati (OH-

PCB). 

i) La fattibilità tecnica delle strategie di risanamento oggetto di studio è stata valutata 

mediante una combinazione di analisi chimiche, tossicologiche e biomolecolari. In una fase 

preliminare alle prove di risanamento sono state esaminate le proprietà chimico-fisiche (pH, 

tessitura, sostanza organica ecc.) di tre diversi campioni di suolo (suolo non di rizosfera, suolo 

superficiale e suolo di rizosfera) provenienti da un sito di stoccaggio ed inoltre, è stata 

determinata la biodisponibilità dei contaminanti in essi contenuti. Successivamente, tali 

matrici sono state sottoposte sia a trattamenti di bioaumento fungino (con Pleurotus ostreatus 

o Irpex lacteus, due noti agenti della carie bianca del legno) che di biostimolazione (attraverso 

l’aggiunta di ammendanti lignocellulosici). L’apporto di P. ostreatus nel suolo di rizosfera è 

risultato il trattamento più efficace in termini di rimozione dei PCB e detossificazione. In 

generale, l’identificazione di diversi prodotti di degradazione dei PCB (acidi clorobenzoici, 

clorobenzaldeidi, cresoli clorurati, idrossi- e metossi-PCB) ha dimostrato il coinvolgimento di 

diversi sistemi enzimatici fungini, intracellulari ed extracellulari, nella biotrasformazione dei 

suddetti composti. Inoltre, l’utilizzo di due approcci coltura-indipendenti, ovvero l’analisi 
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degli acidi grassi di membrana (PLFA) ed il pirosequenziamento (sequenziamento 454), ha 

permesso di ottenere informazioni circa la struttura e l’evoluzione delle comunità microbiche 

durante le prove di risanamento. L’analisi PLFA ha mostrato che l’aggiunta di inoculi fungini 

o di semplice substrato lignocellulosico ha avuto un effetto stimolante sulla crescita della 

popolazione batterica del suolo e che la più alta densità fungina è stata riscontrata nel suolo 

superficiale bioaumentato con P. ostreatus a metà del periodo di incubazione stabilito.  

L’analisi della comunità batterica effettuata tramite metagenomica ha rivelato che il 

bioaumento di P. ostreatus sia nel suolo non di rizosfera che di rizosfera ha indotto un 

aumento dell’abbondanza relativa del phylum Firmicutes, mentre nei microcosmi inoculati 

con I. lacteus, i phyla dominanti erano Proteobacteria e Bacteroidetes, rispettivamente nelle 

fasi iniziali e finali del trattamento. Dall’analisi della comunità fungina, P. ostreatus è 

risultato migliore di I. lacteus nel competere con la microflora autoctona dei suoli. In 

particolare, P. ostreatus ha rappresentato, per l’intero periodo d’incubazione, oltre il 90% 

delle sequenze fungine nei tre i suoli in cui è stato introdotto, dimostrando di saper crescere in 

suoli contaminati da PCB in condizioni di non sterilità. Di contro, nei suoli biostimolati 

l’aggiunta di ammendante in forma sterile ha favorito la crescita di funghi appartenenti ai 

phyla Ascomycota e Zygomycota, con la sola eccezione del suolo superficiale in cui il phylum 

Basidiomycota è diventato predominante nella seconda metà del trattamento. 

ii) Al fine di valutare il coinvolgimento del sistema enzimatico citocromo P450 

monossigenasi (CYP450) nella degradazione di CBA e PCB, frazioni microsomali ricche di 

attività CYP450 sono state isolate dai funghi Lentinus tigrinus e Pleurotus ostreatus. 

L’attività del CYP450 è stata quantificata spettrofotometricamente al fine di effettuare 

successivamente delle prove di degradazione in vitro con i composti selezionati. Tale sistema 

enzimatico intracellulare è stato capace di degradare sia una miscela di CBA (L. tigrinus) che 

di PCB (P. ostreatus). In particolare, l’identificazione di una forma idrossilata di un acido 

clorobenzoico ha confermato il diretto coinvolgimento del CYP450 nelle fasi iniziali di 

trasformazione dei CBA. Inoltre, la degradazione di forme idrossilate di bifenili mono- e di-

clorurati da parte di una laccasi semipurificata, estratta da P. ostreatus, è stata dimostrata sia 

in presenza che in assenza di uno specifico mediatore. La struttura chimica dei suddetti 

contaminanti ha rappresentato il principale fattore determinante le capacità degradative degli 

enzimi fungini sia intracellulari che extracellulari. 

Parole chiave: funghi del marciume bianco, micorisanamento, bifenili policlorurati, enzimi 

ligninolitici, citocromo P450 monossigenasi, 454-pirosequenziamento. 
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Abstrakt 

Remediace persistentních chlorovaných aromatických sloučenin se stala prioritou vzhledem k 

teratogenním, karcinogenním a endokrinním účinkům těchto xenobiotik. V současné době si 

získává při sanacích znečištěných lokalit stále větší pozornost použití biologických 

remediačních technologií, souhrnně označovaných jako bioremediace. Představují efektivní, 

cenově konkurenceschopnou alternativu šetrnou k životnímu prostředí ve srovnání s 

fyzikálně-chemickými dekontaminačními postupy. Jako vhodný kandidát pro vytvoření 

remediační technologie se jeví skupina ligninolytických basidiomycetních hub tzv. houby bílé 

hniloby (mykoremediace). Doposud však nebyly pro své metabolické schopnosti široce 

využívány a mechanismus, jakým jsou schopny degradovat výše zmíněné polutanty, není 

rovněž plně prozkoumán. 

Tato disertační práce byla zaměřena na: 

i) zhodnocení účinnosti různých mykoremediačních strategií při odstraňování 

polychlorovaných bifenylů (PCB) z kontaminované půdy, 

ii) porozumění mechanismu specifických houbových degradačních drah PCB a jejich 

hlavních metabolitů (CBA, chlorbenzoové kyseliny a OH-PCB, hydroxylované 

polychlorované bifenyly). 

 

i) K vyhodnocení technické proveditelnosti vybraných remediačních strategií byla použita 

kombinace chemických, toxikologických a molekulárně-biologických technologií. Před 

uskutečněním samotné bioaugmentace (založenou na aplikaci ligninolytických hub Pleurotus 

ostreatus nebo Irpex lacteus) a biostimulace (přídavek lignocelulosového substrátu) byly u tří 

různých vzorků půdních horizontů (A – humusový horizont, B – půdní horizont, C – matečná 

hornina) ze skládky zeminy kontaminované PCB sloučeninami stanoveny fyzikálně-chemické 

vlastnosti (pH, struktura půdy, obsah organických látek atd.) a rovněž biodostupnost 

kontaminantu. Z hlediska schopnosti degradace a detoxifikace PCB byla nejúspěšnější 

strategie aplikující druh P. ostreatus do druhého typu půdního horizontu. Identifikace 

několika meziproduktů při odbourávání PCB (jako například chlorbenzoáty, 

chlorbenzaldehydy, chlorokresoly, hydroxylované a methoxylované PCB) demonstrovala 

zapojení jak intracelulárních, tak extracelulárních houbových enzymů při biotransformaci 

PCB. Kromě toho, za použití kombinace kultivačně nezávislých metod analýzy 

fosfolipidových mastných kyselin (PLFA) a 454-pyrosekvenace byl získán nový pohled na 

strukturu mikrobiální komunity, její divergenci a dynamiku v průběhu celého 
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bioremediačního procesu. Pomocí PLFA metody se ukázalo, že buď zavedení alochtonních 

hub nebo přidání lignocelulosového substrátu podporovalo růst bakteriálních populací, 

zatímco největší houbové koncentrace bylo dosaženo u druhu P. ostreatus a prvního typu 

půdního horizontu, ve střední fázi inkubace. Metagenomická analýza bakteriálního 

společenstva odhalila, že relativní výskyt kmene Firmicutes vzrostl při aplikaci druhu P. 

ostreatus v prostředí druhého a třetího půdního horizontu. Naproti tomu při aplikaci druhu I. 

lacteus byl pozorován zvýšený výskyt kmene Proteobacteria v počáteční fázi inkubace a 

dominantní nástup kmene Bacteroidetes na konci inkubace. Co se týče analýzy houbového 

společenství, P. ostreatus vykazoval vyšší schopnost konkurovat původnímu houbovému 

osazení než I. lacteus. Ve skutečnosti více než 90 % analyzovaných sekvencí bylo 

identifikováno jako P. ostreatus po celou dobu inkubace, což dokazuje vynikající schopnost 

tohoto druhu účinně růst v půdách kontaminovaných PCB za nesterilních podmínek. Naproti 

tomu velká většina analyzovaných sekvencí v případě biostimulace patřila ke kmenům 

Ascomycota a Zygomycota, s výjimkou pozdní inkubační fáze u prvního typu půdního 

horizontu, kde dominoval kmen Basidiomycota. 

 

ii) Mikrosomální frakce bohaté na cytochrom P450 monooxygenasu (CYP450) byly 

izolovány u hub bílé hniloby Lentinus tigrinus a Pleurotus ostreatus za účelem posouzení 

jejich zapojení do biotransformace CBA a PCB. V obou případech, byla nejdříve CYP450 

detekována pomocí spektra v komplexu s oxidem uhelnatým, a poté byla použita na in vitro 

degradační testy s vybranými sloučeninami. Takovýto intracelulární enzymatický systém byl 

schopný degradovat buď CBA (L. tigrinus), nebo PCB (P. ostreatus). Konkrétně, klíčová 

úloha CYP450 v počáteční fázi transformace CBA byla potvrzena identifikováním 

hydroxylovaných CBA. Kromě toho nedokonale přečištěná lakasa získaná z druhu P. 

ostreatus byla schopna degradovat mono- a dichlorované  hydroxylované bifenyly, v různé 

míře, buď za optimalizovaných, nebo neoptimalizovaných podmínek. Hlavním faktorem, 

který ovlivňoval rozsah degradace jak intracelulárních, tak extracelulárních houbových 

enzymů, byla chemická struktura chlorovaných organických kontaminant, jako je počet a 

poloha substituentů. 

 

Klíčová slova: houby bílé hniloby, mykoremediace, polychlorované bifenyly, ligninolytické 

enzymy, cytochrom P450 monoxygenasový system, 454-pyrosekvenace. 
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1.0 Preface 

The intensive industrial processes and agricultural practices have been leading to the 

deliberate or accidental release of potentially toxic chemicals into the environment during the 

last decades. Nowadays, millions of molecular species of either natural or anthropogenic 

origin are estimated to be present in the biosphere (Hou et al., 2003). These pollutants have 

become a serious problem worldwide due to their adverse effects on natural ecosystems and 

human health. They can affect any environmental compartment (air, water and soil): they 

could be tightly bound into or onto the soil organic matter (SOM) and clay particles, released 

into the atmosphere by volatilization or leaked into the water. Moreover, living organisms 

face great complicacies in attempting to degrade most of these compounds. Consequently, 

they can be accumulated in the food chains and in the environment having a significant 

impact also on nutrients cycling. They include various organic and inorganic pollutants 

(Walker et al., 2006): petroleum hydrocarbons, halogenated solvents, chlorinated aromatic 

hydrocarbons, explosives, dioxins, endocrine disrupting compounds, herbicides, pesticide, 

heavy metals and radionuclides. Organics mostly occur in petrochemical plants, petroleum 

refineries, gas stations and wood preservative industries, whereas halogenated pollutants are 

usually found in chemical manufacturing plants, pesticides/herbicides treated fields, marine 

sediments and landfills. Explosives, such as trinitrotoluene (TNT), contributed to the 

contamination of military areas and marine sediment, while heavy metals (i.e. cadmium, 

arsenic, chromium and lead) are mainly present in mining sites, marine/river sediments and 

chemical disposal areas. However, pollutants are commonly present in the environment as 

complex mixture making the remediation of these co-contaminated sites a challenge to be 

faced. 
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1.1 Polychlorinated biphenyls 

Polychlorinated biphenyls (PCBs), C12H10-nCln, are synthetic compounds the structure of 

which consists of a biphenyl structure (two aromatic rings linked by a C–C bond) that carry 

from one to ten chlorine atoms. Theoretically, 209 congeners are possible comprising the 

entire set of PCB homologs and isomers. Based on IUPAC convention, one benzene ring is 

labelled clockwise and the other counter-clockwise with ordinal numbers assigned to chlorine 

substituents as shown in Figure 1.1. Additionally, a numbering system was developed to 

assign a sequential number to each of the 209 PCB congeners (Ballschimiter and Zell, 1980).  

 

 
 

Fig. 1.1.  Structure of Polychlorinated Biphenyls molecule. 

 

PCBs were synthesized for the first time in 1881, even though their use at industrial scale was 

started in 1929 by the Monsanto Company in the United States. Hence, during the mid-

twentieth century, polychlorinated biphenyls were produced worldwide as mixtures and sold 

under different trade names: Aroclor (USA and United Kingdom), Clophen (Germany), 

Phenoclor (France), Kanechlor (Japan), Fenclor (Italy), Sovol (former URSS), Delor (former 

Czechoslovakia). These mixtures were manufactured at temperature above 150 °C by direct 

chlorination of biphenyl with anhydrous chlorine and using iron filings or ferric chloride as 

catalysts. Due to mechanistic and statistical constraints, about 20 congeners are completely 

absent in the commercial mixtures: approximately 189 of the 209 possible PCB molecules 

have been identified in Aroclor and other PCB mixtures (Hutzinger et al., 1974).  

Most PCBs mixtures are oily, almost transparent liquids, the colour and viscosity of which 

increase with rising chlorine content. Due to their thermal and chemical stability, flame 

resistance features and dielectric properties, PCBs were widely used as dielectric liquids in 

electrical transformers and capacitors, as well as heat-exchange fluids, hydraulic liquids, 

plasticizers, dust-control agents, adhesive substances and dye carriers in carbonless copy-
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paper. The production of PCBs, which was approximately 1000 tons/year in the early 30s, 

increased up to 200,000 tons/year in 1975 (Abraham et al., 2002).  

The widespread use of PCBs led to an extensive environmental contamination through 

accidental releases and/or inappropriate disposal techniques. Even PCBs used in closed 

systems, such as in electrical equipment, entered the ecosystems due to accidents or leakage. 

Early reports from Swedish researchers revealed the presence of PCBs in soil and water 

samples that were being screened for DDT (Jensen, 1966). Later, other studies demonstrated 

that the biodegradation rate of these synthetic compounds was extremely slow, especially for 

highly chlorinated biphenyls (Jensen, 1972). Afterwards, two significant events involving 

direct overexposure of humans to PCBs from contaminated foods firmly endorsed the public 

perception of PCBs as environmental health risk: clinical manifestations, such as somatic 

dysfunctions, chloracne and hyperpigmentation, were associated with the ingestion of 

polychlorinated biphenyls- and dibenzofurans-contaminated rice oil (Rogan et al., 1988; Yu 

et al., 2000). Consequently, the Monsanto Company restricted the production of Aroclor PCB 

mixtures to those ones containing less than 60% of chlorine. Thereafter, the US 

Environmental Protection Agency (EPA) banned the production and application of PCBs 

(1979). Consecutively, all the other countries drastically ruled out their manufacture.  

Notwithstanding, owing to their aforementioned inertness, PCBs are still present in a number 

of areas where their production has been carried out for decades. About 1.5 million tons of 

PCB are still used today (mainly in closed systems) and about 0.5 million tons still reside in 

the biosphere, mainly in soil and water sediments nearby their former production plants 

(Vasylieva et al., 2010). The range of PCB concentrations in the above-mentioned sites could 

fluctuate between 10 and 104 mg Kg-1 of soil (Vasilyeva & Strijakova, 2007). Such values are 

several orders of magnitude higher than the limits which range between 0.01 and 50 mg Kg-1 

depending on the country and the land use.  

1.2 Environmental fate of PCBs 

Once released into the environment, the fate of PCBs is mostly determined by their physical 

and chemical properties which depend mostly on their degree of chlorination and on the 

isomeric chlorine substitution pattern (Reid et al., 2000; Delle Site, 2001). Octanol-water 

partition coefficient (Kow), water solubility (WS), vapour pressure (Vap P) and soil/sediment 

organic carbon-water partition coefficients (Koc) can significantly affect the transport and the 

transformation of these chemicals (EPA, 1983; Hawker et al., 1988; van Noort, 2009; Cicilio, 

2013). Several phenomena, such as partitioning, bioaccumulation processes and chemical 
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and/or biological transformations can occur over time and, therefore, the composition of PCB 

mixtures in the environment differs substantially from that of the original commercial 

mixtures (Cogliano et al., 1998; Robertson & Hanse, 2001).  

Generally, PCBs tend to be strongly adsorbed to organic materials, sediments and soils, 

especially the high-chlorinated congeners that become more resistant to degradation processes 

(Cortes et al., 1991; CCME, 1999). As a matter of fact, PCBs are mainly transformed through 

microbial degradation in the soil system. Mono-, di- and tri-chlorinated biphenyls are 

susceptible to a relatively rapid biodegradation under aerobic conditions (Pieper, 2005; Field 

& Sierra-Alvarez, 2008), whereas higher-chlorinated biphenyls are slowly transformed 

(mainly via reductive dehalogenation) under anaerobic conditions (Abramowicz, 1990; 

Wiegel & Wu, 2000). As a consequence of this congener-specific susceptibility to 

degradation, higher chlorinated biphenyls tend to be accumulated in the soil compartment 

with the formation of altered persistent PCB mixtures.  

However, transport of PCBs to nearby surface water bodies can occur as a result of surface 

water runoff process. In the aquatic environment, as in the soil system, higher chlorinated and 

coplanar congeners (mono- and non-ortho substituted PCBs) display a strong tendency to be 

adsorbed to sediments or suspended matter. Thus, the PCB composition in the water will be 

enriched in the lower chlorinated PCBs due to their greater water solubility and lower Kow, 

while the least water soluble PCBs will remain immobilized on sediments for relatively long 

periods of time. PCBs are hydrolytically so stable that, even under severe acidic and basic 

conditions, hydrolysis reactions cannot occur as well as oxidation processes (EPA, 1983). The 

more highly chlorinated PCBs may undergo photolysis, but this process does not significantly 

affect their fate (EPA, 1983).  

On the other side, due to their high lipophilicity, higher-chlorinated biphenyls tend to partition 

into the fatty tissues of aquatic organisms (Webster et al., 2013). Since the metabolism of 

these compounds is relatively slow, they may be accumulated over time and concentrated 

through the food chain, producing residues that are considerably different from the original 

PCB mixtures (Cogliano et al., 1998; Robertson & Hanse, 2001). Thus, the biomagnification 

of PCBs leads to greater PCB concentrations along the trophic transfer: PCB amounts will be 

higher in shellfish than in the plankton on which they feed, and even greater in animals at the 

top of the food chain such as large predatory fishes or mammals (seals, dolphins, and whales) 

(Zaranko et al., 1997; Berglund et al., 2005; Webster et al., 2013). The observation of this 

process in all contaminated aquatic systems (i.e. the Baltic Sea and the North American Great 

Lakes) confirms that biomagnification process represents one of the most important aspects of 
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PCB environmental fate in the aquatic system (Borga et al., 2005; Burreau et al., 2006). 

On the other hand, the non-adsorbed PCBs (mostly low chlorinated compounds) can be 

transported into the atmosphere via volatilization from aqueous phase (EPA, 2001; 

Chiarenzelli et al., 2001; Totten et al., 2003). Although the rate of this process can be low, the 

total loss by volatilization gradually may be significant because of the stability of PCBs in the 

air. PCBs primarily exist in the vapour phase and rarely in association with the particulate 

phase (Hillery et al., 1997). In particular, PCBs in the vapour phase are enriched in di- and tri-

ortho congeners due to their higher vapour pressures, while coplanar and higher chlorinated 

PCBs tend to bind to aerosols particulate. From a chemical point of view, the only significant 

atmospheric transformation process could be attributed to the oxidation mediated by hydroxyl 

radicals or to a lesser extent by ozone (Anderson & Hites, 1996; Totten et al., 2002).  

PCBs can be also physically removed from the atmosphere by wet deposition (i.e. rain and 

snow scavenging of vapours), by dry deposition of aerosols or by vapour adsorption at the 

water-air or air-soil interfaces (Gioia et al., 2013).  

All these processes contribute to the global dispersion of PCBs: small concentrations of these 

chemicals were detected even in the more remote areas of our planet, such as the Norwegian 

Sea and the Eastern Arctic (Beyer et al., 2009; Ubl et al., 2011).  

 

 
 

 

Fig.1.2. Environmental recycling of polychlorinated biphenyls. 
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1.3 PCBs in the soil environment 

The amount of PCBs released into the soil has decreased over the years due to the prohibition 

on their production and the restrictions on processing and reuse of existing PCB-containing 

materials. However, due to their stability to weathering forces, PCBs are still located in soils 

and water sediments close to their former production plants (Vasilyeva & Strijakova, 2007).  

Moreover, accidental leaks or spills from old capacitors, electrical transformers and other 

equipment as well as releases from containers in landfills and hazardous waste sites still 

represent a notable source of PCBs, likewise the environmental cycling process involving 

deposition of atmospheric PCBs to soil surfaces. 

Soil acts as a sink as well as a source of PCBs for natural ecosystems: PCBs may enter the 

aquatic environment, river and lakes and subsequently to the oceans, as already explained 

above, or the atmosphere through volatilization of lower chlorinated congeners. However, in 

the soil environment, PCBs fate and behaviour are governed by various factors, such as the 

chemical properties of contaminants, the soil characteristics and several environmental factors 

(Reid et al., 2000; Semple et al., 2003). In particular, physico-chemical properties of soil such 

as organic carbon content (OC), clay content, texture, pH, water holding capacity (WHC), 

cation exchange capacity (CEC) significantly affect soil sorption/desorption processes and, 

therefore, the fate of PCBs (NEPI, 2000).  

Organic matter content is thought to be the most significant factor dominating organic 

compound interactions within soil, but also their structure and degree of chlorination can 

affect the behaviour in soils (Pu et al., 2006). In this respect, PCB binding tendency onto the 

soil particles increases with raising amounts of organic matter and the higher the 

hydrophobicity of these chemicals, the greater their sorption potential (Schwarzenbach et al., 

2003). Generally, higher chlorinated compounds are more easily adsorbed as demonstrated by 

Jonker and Smedes (2000): the OC-partition coefficients (Koc) determined from 

contaminated sediments were lower for highly chlorinated non-planar, ortho-substituted PCBs 

compared to those for planar compounds with low chlorine content.  

Furthermore, clays, which are characterized by high surface areas, may enhance sorption 

through weak physical or electrostatic interactions and also limit the chemical mass transfer 

due to the formation of clay aggregation and interlayers (Mader et al., 1997; Ake et al., 2001).  

As a result, with the raising of organic carbon and clay content, chemical retention increases 

and rates of chemical release to the aqueous phase decrease.  
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Upon entering a soil system, generally, pollutants fill up macropores and the surface particles 

which contain a relatively low number of bacteria (Figure 1.3). Afterwards, PCBs can diffuse 

into smaller pores where the microbial activity is fostered by the specific environmental 

conditions of these compartments, and thus biotransformation may take place. Thereafter, 

PCBs tend to slowly diffuse within extremely small pores of the solid organic matter fraction, 

possibly the lipid fraction (Alexander, 2000) or within the micro- and nano-pores of the 

mineral fraction (Hatzinger and Alexander, 1995). The slow entrapment of chemicals into 

these sites of soil matrix, which are not accessible to microorganisms, is called “ageing”. This 

process enables high amounts of pollutants to tightly bind to soil particles and thereby, to 

form a fraction of contaminants which results to be extremely recalcitrant to any type of 

process, especially biological transformation processes (Alexander, 2000). Indeed, the 

sequestration of pollutants, due to ageing, negatively affects their bioavailability, term which 

refers to that fraction of a chemical in a soil that can be taken up or transformed by living 

organisms. 

 

 

 
 

 

Fig. 1.3. Physical behaviour of a contaminant within the soil (from Semple et al., 2003). 
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The influence of ageing on the extractability and bioavailability of organic compounds in soil 

is shown in Figure 1.4. Over time, the readily available fraction (easily extractable or 

bioavailable fraction) diminishes in a biphasic manner: a portion is biologically degraded or 

physically/chemically removed, whereas the other one is gradually transformed into the 

recalcitrant fraction. Thereafter, the latter component may be accessible only by specific 

aggressive extraction methods or even non-extractable after a considerable time period 

(Macleod & Semple, 2000). 

 
Fig.1.4. The influence of contact time on the extractability and bioavailability of a 

contaminant (from Semple et al., 2003). 

1.4 PCB toxicity 

The toxicity of PCBs has been a subject of debate and research for a long time. At present, 

PCB exposure still raises public health concerns due to the consumption of contaminated food 

by those populations living close to polluted seas, rivers and lakes, such as the Great Lakes 

(Turik et al., 2006) and the Baltic Sea (Kiviranta et al., 2000) or in areas where PCB 

producing factories were located, such as Anniston, USA (Silverstone et al., 2012), 

Michalovce, Slovakia (Pavuk et al., 2004) and Brescia, Italy (Donato et al., 2006).  

The intake of contaminated foods, particularly meat, fish and poultry represents the primary 

route of exposure to PCBs (ATSDR, 2000). In aquatic environments, the high lipophilicity of 

PCBs causes these compounds to partition out of the water and to preferentially adsorb onto 

sediments. Although this phenomenon could prevent the contamination of drinking water 

supplies, the partitioning of PCBs to sediments contributes to their concentration in the 

aquatic organisms, especially in bottom-feeding fishes. Moreover, the resistance of PCBs to 
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biodegradation favours their bioaccumulation moving upward through the food chain 

(ATSDR 2000).  

In addition to dietary exposure, humans are still exposed to some consumer products 

containing PCBs, including old fluorescent lighting fixtures, electrical devices or appliances. 

In this case, PCBs can enter the human body through the respiratory tract or dermal route: 

overheated equipment that contains PCBs can vaporize significant amounts of these 

compounds, creating an inhalation hazard or PCBs can also be absorbed through the skin 

following contact with contaminated equipment (ATSDR, 2000). Afterwards, PCBs can be 

transported by the blood stream to the organs (mainly liver and kidneys), to the muscles and, 

finally, to adipose tissues or other fat-containing compartments where they are accumulated. 

Fetuses and neonates are potentially more sensitive to PCBs than adults because the hepatic 

microsomal enzyme systems that facilitate the metabolism of PCBs are not fully functional 

(Nieuwenhuijsen et al., 2013). Furthermore, considering that PCBs are metabolized mainly in 

the liver, the health risk related to PCBs increases for those people with impaired hepatic 

function because of their diminished ability to detoxify and excrete these compounds 

(ATSDR, 2000).  

Nowadays, PCBs, classified as “Persistent Organic Pollutants-POPs” by the Stockholm 

Convention (2001), are considered among the most hazardous contaminants in the world 

placing them at the forefront of public health concern (Ross, 2004). The most toxic congeners 

have a coplanar conformation with chlorine substituents in both para positions and at least 

two meta positions, making them stereochemically similar to 2,3,7,8-tetrachlorodibenzo-p-

dioxin (EPA, 2000; Van den Berg et al., 2006). Therefore, these congeners exhibit “dioxin-

like” toxicity features.  

PCB exposure causes overt effects such as acute chloracne, rashes, skin irritation as well as 

cardiovascular, musculoskeletal and gastrointestinal discomforts (Zani et al., 2013). For a 

long time, sensory (skin and eye) irritations remained the only consistent health effects that 

could be definitely attributed to PCBs (Ross, 2004).   

However, recent studies indicated that PCBs can affect also the immune, neurological and 

endocrine systems (Crinnion et al., 2011; Kramer et al., 2012; El Majidi et al., 2013). They 

are potent inducers of monocytes and thymocytes apoptosis resulting in a reduced number of 

white blood cells able to initiate an immunological defence (Crinnion et al., 2011).  

Moreover, alterations in functions of the immune system, such as anomalous antibody 

production and hypersensitivity, were shown in rodents and primates exposed to higher 

chlorinated Aroclor mixtures (Carey et al., 1998). PCBs can also interact with several 
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functions of the endocrine system causing reproductive, neurobehavioral and 

neurodevelopmental disorders (Crinnion et al., 2011; Kramer et al., 2012). These chemicals, 

in fact, can mimic the action of naturally occurring hormones (e.g. thyroid hormones and 

estrogens) that are essential for normal intellectual and neurologic development: deficits in 

learning, memory and attentional processes were observed in PCB-exposed women due to the 

alteration in hormonal binding to the thyroid hormone receptor suggesting a possible 

mechanism of thyroidotoxicity (EPA, 1998). Thus, PCBs have been classified as “endocrine 

disruptors”.  

Furthermore, because of their estrogenic properties, PCBs have been also proposed as 

possible inducers of breast cancer in PCB-exposed women (Muscat et al., 2003; Helmfrid et 

al., 2012). An increased incidence of liver, gall bladder, biliary tract and brain in 

occupationally exposed workers or generally of non-Hodgkin lymphoma has been also 

reported (WHO-IARC, 1987; ATSDR, 2000; Kramer et al., 2012). However, the results of 

these epidemiologic studies resulted to be inconsistent to ascertain whether the observed 

effects were directly related to PCB exposure (ATSDR, 2000; Brody et al., 2007). On the 

contrary, data from animal studies have clearly shown that PCBs cause hepatocarcinomas, 

pituitary tumors, leukemia, lymphomas, and gastrointestinal tract tumors (Norback et al., 

1985; Beebe et al., 1993; EPA, 1996; Mayes et al., 1998; Knerr et al., 2006; NTP, 2011). 

Accordingly with these results, the US Environmental Protection Agency and the 

International Agency for Research on Cancer classified PCBs as probable human carcinogen 

(EPA, 1996; WHO-IARC, 1998). 

1.5 Remediation technologies 

Generally, environmental remediation deals with interventions aimed at removing the 

pollutants from a given environmental matrix or, at least, at reducing their concentration. The 

conventional remedial strategies consisted in the excavation of the polluted materials with 

subsequent burial in dumpsites, or in coating the polluted area with insulating barriers. The 

former resulted risky, especially during excavation procedures and movement to the 

dumpsite, whereas the latter represents just a temporary solution, causing expensive 

monitoring and maintenance. 

Latest remedial approaches, which aim at either the complete removal of the contaminants 

present in the soil or at their transformation into lesser harmful substances, can be divided in: 
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•  ex situ treatments: the contaminated material is dug out and transported to the treatment 

plant, which can be in loco (on site) or settled elsewhere (off site). Afterwards, the treated 

matrix could be placed back. 

•  in situ treatments: the contaminated material is treated directly in its natural location, with a 

variety of advantages with respect to ex situ treatments. Wider range of technologies available 

and more homogeneous removal of the pollutants make in situ treatment preferable in many 

cases. 

In addition to the former classification, mainly based on the site where the remedial actions 

take place, the currently available technologies can be grouped into different kind of 

treatment: thermal, physicochemical and biological treatments. 

Information concerning the site history and topography as well as the physicochemical 

characteristics of the contaminated soil, sediment or groundwater provides a comprehensive 

assessment to select the most suitable and site-specific reclamation technology. Moreover, the 

presence of other contaminants should be assessed due to its impact on the effectiveness of a 

remediation process.  

1.5.1 Remediation of PCBs 

Polychlorinated biphenyls represent a serious problem worldwide due to their adverse effects 

on both natural ecosystems and human health. Nowadays, PCBs are still considered among 

the most hazardous contaminants in the world and the remediation of PCB-polluted sites has 

become a major issue of concern. 

Several technologies that have been used to treat PCBs are well established (i.e. incineration) 

and thus already employed at full-scale level at multiple sites, whereas other remedial 

approaches (i.e. thermal desorption or solvent extraction) have been conducted at pilot- or 

full-scale in a limited number of sites. Currently, these methods (thermal and chemical 

treatments) are the most applied ones for the disposal of hazardous chlorinated wastes. In 

particular, incineration plays the absolute dominant role in the PCB-contaminated matrices 

remediation management. On the other hand, since these techniques are expensive, not always 

effective and even dangerous entailing additional risks, the scientific research has been 

focusing on biological treatments as an environment “friendly” and cost-effective alternative 

for the clean-up the PCB-contaminated matrices. These emerging technologies have not been 

shown to consistently recover PCB-polluted soils or sediments at pilot-scale level yet, but the 

number of bench-scale studies is increasing over time in view of their potential applications.  
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1.5.1.1 Thermal and physico-chemical treatments of PCBs 

Thermal treatments are applied to destroy (i.e. incineration) or separate (i.e. thermal 

desorption) contaminants reducing the volume and the mass of the contaminated material and 

making the hazardous components inert. Physicochemical soil treatment processes are mainly 

extraction processes aimed at the concentration of contaminants rather than at their removal 

(i.e. solvent extraction). Moreover, some physical procedures are used to stabilize the polluted 

material (i.e. solidification/stabilization) by the conversion of hazardous elements into less 

soluble, mobile or toxic forms. 

1.5.1.1.1 Incineration 

The contaminated soil or sediment is excavated and moved to the incinerator (it is usually 

constructed on site for those scenarios where the clean-up process is expected to require 

several years). After the removal of oversized particles from the matrix to be treated, the 

hazardous organic contaminants are burnt at high temperatures (greater than 800 °C) in the 

presence of oxygen which causes volatilization, combustion and destruction of these 

compounds. The applicability of this process may be limited by the presence of metals which 

can react to form other metal species that can persist in the treated soil. Moreover, this 

procedure releases off-gases that need to be treated by the use of cyclones, baghouses, wet 

and packed scrubbers prior to their release into the atmosphere due to the formation of toxic 

by-products such as polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs).  

1.5.1.1.2 Thermal desorption 

Thermal desorption is an ex situ technique to physically separate organic contaminants from 

soil, sediment or sludge by heating at temperatures high enough to make them volatile (90-

650°C). The temperature achieved and the residence time used by the thermal desorption 

system will volatilize selected PCB congeners and drive off water (no oxidation or complete 

breakdown of organic chemicals as by incineration). Off-gases, enriched in volatile organics, 

are formed and collected on active carbon filter units or in condensation equipment. Once 

recovered, they can be treated in a catalytic oxidation unit which is integrated into the thermal 

desorption system, while the treated matrix can be placed back to the original site. 
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1.5.1.1.3 Solvent extraction 

Solvent extraction, as thermal desorption treatment, does not destroy organic contaminants 

but separate them from soils or sediments, thereby reducing the volume of hazardous waste to 

be treated. An organic solvent is applied to extract, collect and concentrate PCBs: the polluted 

solid matrix and solvent are mixed in the extractor and, thus organic contaminants partition 

into the solvent. Thereafter, the extracted organics are moved in a separator where, changing 

pressure or temperature, contaminants are separated from the solvent. The solvent can be 

recycled, whereas the concentrated PCBs require further treatment, such as incineration or 

dehalogenation. 

1.5.1.1.4 Chemical dehalogenation 

Dehalogenation is a chemical process to remove halogen atoms (chlorine atoms for PCBs) 

from organic molecules. This process includes technologies such as base-catalysed 

decomposition (BCD), alkaline metal hydroxide/polyethylene glycol (APEG) and potassium 

metal hydroxide/ polyethylene glycol (KPEGTM). The BCD process is deemed to be highly 

efficient and relatively inexpensive for PCB treatment: the contaminated matrix is mixed with 

sodium bicarbonate (NaHCO3) and heated at 330 °C in the presence of a hydrogen donor such 

as sodium hydroxide, sodium bicarbonate or aliphatic hydrocarbons. PCBs are completely 

dechlorinated, partially volatilized and, thus, condensed to be treated. At the end of the 

process, the water phase is separated from the soil and treated appropriately and the 

remediated soil is brought back to its original location.  

1.5.1.1.5 Solidification/Stabilization 

Solidification/Stabilization (S/S) technology involves the addition of Portland cement as a 

binder, often augmented with other materials, such as fly ash, cement kiln dust and lime, to 

convert contaminants into a less soluble, mobile or toxic form. The binding reagent can both 

solidify (change the physical properties) and stabilize (change the chemical properties) PCBs. 

Solidification increases the compressive strength, decreases the permeability and encapsulates 

toxic elements while stabilization converts hazardous elements into less soluble and mobile 

forms. This process can be applied either ex situ or in situ: both approaches require the mixing 

of soil with the binding agent and water in a batch or continuous system and the treatment of 

off-gases, when needed. 
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1.6 Bioremediation  

Bioremediation is a grouping of technologies that use biological systems to degrade or 

transform hazardous contaminants to carbon dioxide, water, inorganic salts, microbial 

biomass and other by-products that may be less hazardous than the parent materials (EPA, 

2006). In general, bioremediation relies on either microorganisms (bacteria and archea) or 

their enzymes as contaminant degraders; the specific terms mycoremediation and 

phytoremediation indicate the main use of fungi and plants, respectively, for the clean-up 

purposes (Singh & Ward, 2004; Singh, 2006). 

Bioremediation technologies may be classified into two categories: in situ and ex situ. In situ 

processes treat soils, sediments or ground waters in place to regain their original condition, 

whereas ex situ techniques involve the excavation of contaminated samples to be transported 

to specific facilities for the treatment process. The former approach may be advantageous 

since the costs of materials handling/transportation are avoid and some inherent 

environmental impacts may be reduced. In the case of soils, for example, the polluted matrix 

does not need to be excavated and moved elsewhere and thus, soil properties and functions 

are better preserved (Mirsal, 2008). However, in situ processes may be limited by the ability 

to control or manipulate the physical and chemical reactions which can occur during the 

recovery process (EPA, 2006). Ex situ technologies represent a suitable alternative to the in 

situ ones especially when dealing with contaminated soils characterized by low permeability 

and high organic matter content. In this case, ex situ processes allow to operate in a manner 

that facilitates degradation of the contaminant of concern even if its concentration and 

recalcitrance is high. Moreover, these techniques are preferred when climate conditions can 

hinder in situ treatment processes or when authorities require the remediation to be achieved 

rapidly (Cookson, 1995; Eweis et al., 1998; Robles-Gonzales et al., 2008). 

In situ and ex situ treatments may be applied either by supplying chemical amendments such 

as air (oxygen), organic substrates, nutrients (mainly nitrogen and phosphorous), reducing 

agents and/or electron donors to stimulate contaminant biodegradation by autochthonous 

microbial populations (biostimulation or enhanced bioremediation) or by introducing native 

or non-native microbes to enhance the degradation process which can not be accomplished by 

indigenous microbial communities (bioaugmentation) (EPA, 2010; Megharaj et al, 2011). 

Recently, several attempts have been done to promote monitored natural attenuation (MNA 

or intrinsic bioremediation) as a clean-up tool for organic and inorganic contaminants: 

biological, chemical and physical naturally occurring processes can degrade or immobilize 
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harmful contaminants (EPA, 2008; EPA, 2009). Natural attenuation, which includes a 

combination of effective sorption, volatilization, dilution and dispersion processes coupled 

with biodegradation, provides significant benefits in terms of cost and efforts (Sanchez et al., 

2000). In fact, this approach requires just careful site assessment, ongoing processes 

monitoring and adjustment of temperature, pH or other factors to enhance the intrinsic 

remediation process. However, natural bioattenuation is accepted as a suitable method only 

for treating few classes of contaminants (e.g. BTEX) (Atteia & Guillot, 2007). In many cases, 

this approach turns out to be inadequate and protracted, especially with oligotrophic soils with 

low microbial density (Megharaj et al., 2011). 

The success of any bioremediation technique depends on several factors which characterized 

the polluted site, such as temperature, pH, oxygen, nutrient concentration and water content 

(Scullion, 2006) as well as on type, concentration and bioavailability of contaminants of 

concern, presence of co-contaminants, accumulationof dead-end degradation intermediates 

and contaminant residues and, thus, possible routes of exposure (Scullion, 2006; EPA, 2006). 

Thereupon, evaluation of all these factors is needed when bioremediation technologies are 

preferred to thermal or physico-chemical treatments. 

The ideal biological decontamination “machinery” should be able to cope with scarce 

availability of pollutants, highly toxic environments, lack of nutrients, water or electron 

acceptors/donors. Despite the ubiquity and the wide catabolic diversity of bacteria, these 

microorganisms cannot underpin all these conditions. However, the majority of 

bioremediation strategies developed to date are reliant on bacteria. On the other hand, fungi 

display many biochemical, metabolic and ecological features that make them excellent 

candidates to design an effective remediation technology. Nevertheless, the broad metabolic 

versatility of fungi has not been widely exploited for its potential in bioremediation of 

hazardous chemicals (Harms et al., 2011). Another alternative to be taken into account is 

phytoremediation: the use of plants in cleaning up contaminated sites is growing over time, 

even if some limitations (not applicable to deep and heavily contaminated site) have already 

been demonstrated. In view of all these consideration, the combination of different 

approaches may overcome the limitations of each single bioremediation technology enabling 

the complete site restoration. 
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1.6.1 Bioremediation of PCBs 

Microorganisms play a key role in PCB biodegradation processes in both liquid and solid 

natural environments. Because of their ubiquitous nature, wide diversity and capabilities in 

catalytic mechanisms and ability to withstand extreme conditions (i.e. highly toxic 

environments, absence of oxygen, etc.), the search for pollutant-degrading microorganisms, 

the understanding of their genetics and biochemistry and the development of methods for 

their applications at larger scale have become an important endeavour for scientific research. 

However, despite the abundance of PCB-degrading microorganisms in the environment, 

PCBs are extremely recalcitrant to any degradation process (Vasilyeva & Strijakova, 2007). 

The persistency of PCBs is mostly due to the behaviour of these chlorinated compounds. As 

explained above, when PCBs enter the natural matrices, because of their low water solubility 

and high hydrophobicity, they can be quickly and tightly adsorbed by solid phase, primarily 

by organic matter, becoming poorly accessible to bacteria. The use of fungi, in particular 

filamentous fungi, and/or plants could overcome these limitations in the bacterial removal of 

PCBs from contaminated materials. 

1.6.1.1 Anaerobic bacterial degradation of PCBs 

The role of anaerobes in the degradation of PCBs was firstly shown by Brown and co-workers 

(1987). Analysis of congener patterns in anaerobic sediments of Hudson River revealed that 

the congener distribution of a known PCB mixture was radically altered over a long period of 

time resulting in the accumulation of lower chlorinated compounds. Highly chlorinated 

compounds were extensively removed by reductive dehalogenation reactions giving rise to a 

higher proportion of lower chlorinated congeners. Afterwards, these findings were confirmed 

by incubating these sediments with Aroclor PCB mixtures 1242, 1248, 1254 and 1260 in 

laboratory microcosms (Quensen et al., 1990). In particular, this study demonstrated that the 

transformations specifically involved the removal of meta- and para-chlorines resulting in the 

increase of lower ortho-chloro substituted congeners. From a toxicology standpoint, the loss 

of para- and meta-chlorines results to be advantageous due to the recalled higher toxicity of 

these co-planar congeners which are structurally similar to 2,3,7,8- tetrachloro-p-dioxin.  

In river and marine sediments, reductive dehalogenation is accomplished by anaerobic 

bacteria, mostly belonging to Chloroflexi phylum and the Dehalococcoides genus, capable of 

anaerobic respiration with sulfates, carbonates, nitrates and other oxidized compounds as 

electron acceptors (Field & Sierra-Alvarez, 2008). In the presence of chlorinated pollutants as 

PCBs, these anaerobes may switch to the dehalorespiration process where highly oxidized 
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compounds, particularly higher-chlorinated biphenyls, are used as electron acceptors for 

energy storage.  As a consequence, the dechlorination rate generally decreases with 

decreasing of chlorine substitution number: as mono- and dichlorinated biphenyls are formed 

and accumulated in the anaerobic environment, the activity of anaerobes is drastically reduced 

(Vasilyeva & Strijakova, 2007).  

Eight distinct microbial dechlorination routes were observed either in natural environments or 

laboratory microcosms comparing the patterns of lost and formed congeners (Wiegel & Wu, 

2000). Environmental factors (temperature, pH, available carbon source, electron donors as 

H2 and the presence or absence of different electron acceptors than PCBs) significantly affect 

the microbial communities determining which kind of dehalogenase activity can be expressed 

and, thus, which selective route can be undertaken (Wiegel & Wu, 2000). However, as a 

general rule, dechlorinating enzymes use chlorine as the final electron acceptor, adding one 

electron to the aryl carbon-chlorine bond (water and hydrogen H2 are used as electron donors) 

and subsequently, removing chlorine atoms one by one (Vasilyeva & Strijakova, 2007). 

Moreover, the relatively low abundance of PCB dechlorinators in natural environments results 

in low dechlorination rates. In view of this evidence, even if natural attenuation process can 

occur, biostimulation of anaerobic PCB-degrading populations by modification of 

temperature, pH value or H2 supplementation, or bioaugmentation with enriched PCB-

dechlorinating cultures are strongly required to efficiently remediate anaerobic PCB-

contaminated sediments (Wiegel & Wu, 2000). 
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Fig. 1.5. Examples of anaerobic pathways of reductive dechlorination observed in sediment 
microcosms and anaerobic enrichment cultures. Dotted arrows indicate slow reactions (Field 
& Sierra-Alvarez, 2008). 

 

1.6.1.2 Aerobic bacterial degradation of PCBs 

Aerobic PCB degradation was extensively investigated in the last two decades and a large 

number of PCB-degrading bacteria were found among both Gram negative genera 

(Pseudomonas, Alcaligens, Achromobacter, Burkholderia, Sphingomonas, Comamonas and 

Acinetobacter) and Gram positive genera (Rhodococcus, Corynebacterium and Bacillus) 

(Pieper, 2005; Furukawa, 2000; Borja et al., 2005).  

All these bacteria are capable to co-metabolize lower chlorinated biphenyls PCB using 

biphenyl as the primary substrate, whereas a more restricted number of strains can grow 

utilizing mono- or dichlorinated biphenyls as the sole carbon and energy source. The majority 

of studies report on the co-metabolism of PCBs via the biphenyl pathway, a process mediated 

by four enzymes encoded by biphenyl genes cluster (Bhp A, B, C and D) that convert 

stepwise PCBs to chlorobenzoic acids (CBAs) and to the aliphatic 2-hydroxy-penta-2,4-

dienoic acid (Furukawa, 2000; Ohtsubo et al., 2004; Pieper, 2005).  
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Fig. 1.6. Pathway of aerobic PCB degradation by biphenyl-oxidizing bacteria (Field & Sierra-
Alvarez, 2008)  
 

PCBs are oxidized by biphenyl-2,3-dioxigenase (Bph A) leading to the formation of their 

corresponding cis-dihydrodiols which are subsequently transformed to dihydroxy-PCBs by a 

dehydrogenase (Bph B). These intermediates are further converted by an oxygenase (Bph C) 

to a meta cleavage product 2-hydroxy-6-oxo-6-(chloro) phenylhexa-2,4-dienoic acid 

(HOPDA). The aliphatic portion of HOPDA is cleaved by a hydrolase (Bph D) from the 

remaining aromatic ring to yield the aliphatic 2-hydroxy-penta-2,4-dienoic acid and CBAs. 

The former can be metabolized ultimately to CO2 through the tricarboxylic acid cycle, while 

the latter are generally accumulated as final dead-end products. Consequently, the complete 

mineralization of PCBs can be merely achieved in consortia composed of PCB-degraders and 

bacterial strains specialized in chlorobenzoic acid metabolism, as described by Nielsen and 

co-workers (2000) that demonstrated the efficiency of Burkholderia sp. LB400 (capable of 

metabolizing 3-chlorobiphenyl) and Pseudomonas sp. B13(FR1) (capable of mineralizing the 

chlorobenzoate produced by LB400) co-coltures to completely mineralize PCBs  under 

aerobic conditions.  

The rate of microbial PCB degradation depends on the number and position of chlorine atoms 

on biphenyl rings and principally correlates negatively with the number of chlorine 

substituents: all the isolated PCB-degrading strains are able to oxidize mono- and di-chloro 

biphenyls, but as the number of chlorine substituents increases, progressively less and less 

strains are capable to metabolize PCBs (Vasilyeva & Strijakova, 2007). Moreover, the 

intracellular localization of PCB-degrading enzymes implies the solubilisation of PCBs in the 

plasma membrane to enter the cytoplasm. This constitutes a rate-limiting step because PCBs, 
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due to their high hydrophobicity, are easily entrapped in the hydrophobic components of 

biological membranes and, thus become less susceptible to enzymatic degradation.  

Optimization of PCB-degrading bacteria performances under environmental conditions is 

strongly demanded for the effective clean-up of contaminated substrates. The required 

conditions for the active functioning of indigenous microorganisms include maximal 

oxygenation of polluted matrix, optimal of temperature and supplementation with specific 

inducers (biphenyl, terpenoids or, preferably cheaper alternative as plant residues which 

contain large amounts of terpenes) (Abraham et al., 2002; Fava et al., 2003; Luo & Hu, 

2013). Moreover, to succeed in dealing with PCB-bioavailability constraint, a number of 

studies was performed to evaluate the effect of the application of chemically synthesized 

surfactants (Twin, Tritox X-100, Brij 35, sodium dodecyl sulphate, ect.), enzymatically 

produced cyclodextrins, humic substances or biosurfactants of plant origin (lipopeptides, 

rhamnolipids, saponins, maltothriose esters, ect.) on PCB accessibility (Fava & Di Gioia, 

1998; Billingsley et al., 1999; Mulligan et al., 2001; Fava & Piccolo, 2002; Viisimaa et al., 

2013.). Most of them have shown that the addition of surfactants enhanced the solubility of 

PCBs and, thus their removal from the contaminated materials. However, in some cases, 

chemical surfactants provoked changes in the microbial community resulting in a decrease of 

PCB degrader population and therefore, in the reduction of PCB degradation rates (Colores et 

al., 2000; Singh et al., 2007). 

The scientific research has been focusing also on bioaugmentation approach based on the 

inoculation of native PCB-degrader enriched cultures (Petric et al., 2007), in the introduction 

of microbial consortia specialized in both PCBs and CBAs degradation (Ohtsubo et al., 2004) 

or native consortium of nonspecific microorganisms (Di Toro et al., 2006).  

Furthermore, attempts to construct genetically modified PCB degrading strains that exhibit 

enhanced degradation capabilities have been carried out (Ang et al., 2005; Furukawa & 

Fujihara, 2008; Wasilkowski et al., 2012). Genetic engineering methods allowed the design of 

either microorganisms with broader substrate specificity by the combination of Bph genes 

from different bacterial strains or microorganisms with multiple sets of genes encoding the 

enzymes responsible for the degradation of both PCBs and CBAs (Wittich & Wolff, 2007; 

Rein et al., 2007).  

At present, despite several positive outcomes at the laboratory scale, a limited number of both 

biostimulation and bioaugmentation treatments of PCB contaminated matrices have been 

carried out under field conditions (Pieper, 2005). 
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1.6.1.3 Sequential anaerobic-aerobic bioremediation of PCBs 

Due to various abovementioned limitations, neither the single anaerobic nor aerobic treatment 

is adequate for the bioremediation of PCBs, especially of highly chlorinated biphenyls. The 

sequential application of anaerobic and aerobic treatment offers the prospect of achieving the 

complete mineralization of PCBs. The two-phase PCB remediation scheme consists in the 

dehalogenation of higher chlorinated congeners (tetra-, penta- and hexa-BPs) by anaerobes to 

form less chlorinated compounds (mono-, di- and tri-BPs) which are subsequently oxidized 

under aerobic conditions.  

In laboratory experiments, soil slurry microcosms inoculated with microorganisms extracted 

from PCB-contaminated Hudson River sediments were used for the anaerobic dechlorination 

of an aged Aroclor 1248-contaminated soil, followed by exposure to air, addition of biphenyl 

and inoculation with Pseudomonas sp. LB400, an aerobic PCB degrader (Evans et al., 1996). 

This experiment proved for the first time the feasibility and efficiency of this combined 

treatment and, thereupon, further laboratory scale studies confirmed this observation. Soil 

contaminated with either Aroclor 1260 or 1242 were also bioremediated by sequential 

anaerobic and aerobic laboratory-scale treatment (Master et al., 2002; Rodrigues et al., 2006). 

In the former study, anaerobic treatment (4 months) with an enriched microbial culture 

completely or partially transformed all of the major components present in Aroclor 1260 to 

less chlorinated PCB congeners. Then, the dechlorinated products were degraded during the 

subsequent aerobic treatment using Burkholderia sp. strain LB400 (28 days) (Master et al., 

2002). In the other study, river sediments were incubated with the aged-contaminated soil for 

1 year under anaerobic conditions to generate lower chlorinated congeners. Subsequently, the 

soil was treated aerobically by the inoculation with two genetically engineered aerobic 

bacteria, Burkholderia xenovorans LB400 and RHA1, capable of growing on 2-

chlorobiphenyl and 4-chlorobenzoate, respectively (Rodrigues et al., 2006). 

However, this strategy appears unfeasible to be used at a large scale due to the inherent high 

costs: it requires the excavation of soil, the mixing of slurries, the long time requirements 

(ranging from several months to years), maintenance and production of inocula with both 

anaerobic and aerobic microorganisms. 
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1.6.2 Phytoremediation 

Phytoremediation is an emerging technology based on the use of plants and/or associated 

bacteria for the treatment of contaminated soils and groundwater. This technology 

encompasses different remediation processes based on the immobilization, removal or 

degradation of organic compounds: pollutants can be taken up from the soil, transported 

across plant membranes and released through leaves via evapotranspiration 

(phytovolatilization) or accumulated in plant tissues (phytoextraction) or degraded by plant 

enzymes (phytodegradation or phytotransformation). Moreover, some contaminants can be 

incorporated and immobilized into soil particles (phytostabilization), adsorbed to the plant 

roots (rhizofiltration) or degraded by microbes colonizing the root zone (rhizoremediation).  

 

 
Fig.1.7. Phytoremediation processes (Van Aken & Geiger, 2010). 

 

In general, phytoremediation technologies have shown several advantages over other 

remediation strategies: i) absence of energy-consuming equipment, ii) low negative impact on 

the environment and high potential in improving the soil quality and texture of the remediated 

sites, iii) minimal maintenance costs, iv) beneficial side-effects such as erosion control and 

carbon sequestration, v) large acceptance as an attractive green technology (Gerhardt et al., 

2009). However, phytoremediation application at the field level can encounter several 

disadvantages: this biological approach, which is generally more time consuming than other 

techniques, is restricted to shallow contamination of moderately hydrophobic compounds 

(Van Aken et al., 2010a, 2010b). Moreover, the remediation mediated by plants can be 

incomplete because of the lack of biochemical pathways necessary for the complete 

mineralization of recalcitrant compounds. Thus, toxic intermediates may be formed and 
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released into the soil, enter the food chain or volatilize into the atmosphere (Pilon-Smits, 

2005; Yoon et al., 2006; Mackova et al., 2006). The feasibility of plant-based technologies at 

large scale faced also several environmental and climatic factors which are negligible in the 

laboratory or greenhouse applications such as changes in temperature and pH, precipitation, 

availability of water and nutrients, presence of herbivores and plant pathogens, plant 

competition in the adaptation to the contaminated site (Chaudhry et al., 2002; Gerhardt et al., 

2009). 

1.6.2.1 Phytoremediation of PCBs 

Rhizoremediation plays the main role in the biodegradation of polychlorinated biphenyls 

because their hydrophobic features limit plant uptake and transformation processes. The 

rhizoremediation process is based on the mutual cooperation between microorganisms and 

plant roots: in the rhizosphere, the growth and the activity of pollutant-degrading bacteria can 

be promoted by the release of diverse secondary plant metabolites such as 

phytohormones/phytoalexins, phytosiderophores, phenols, amino acids or compounds derived 

from isoprenoid, phenylpropanoid, alkaloid or fatty acids pathways and, concurrently the 

microbes can provide additional carbon and/or energy sources to plants.  

In particular, vegetation can stimulate microbial activity in the soil and differently act to 

enhance the biodegradation of PCBs: 

a) plants secrete extracellular enzymes (i.e. peroxidases and dehydrogenases) which can 

initiate the transformation of PCBs and, thus, facilitate further microbial metabolism 

(Chu et al., 2006; Schröder & Collins, 2010); 

b) plant roots release organic compounds (i.e. sugar, organic acids, ect.) which can act as 

electron donors to support either the co-metabolism or the anaerobic dehalogenation 

of PCBs, or as surfactants increasing PCB solubility, mobility and, thus,, their 

susceptibility to degradation (Chaudhry et al., 2005; Campanella et al., 2002); 

c) plants produce and release also diverse microbial growth factors and inducers (i.e. 

phenolic exudates) that can enhance microbial degradation capabilities (Toussaint et 

al., 2012; Meggo, 2013); 

d) plant roots improve soil permeability and oxygen diffusion in the rhizosphere which 

potentially stimulate the microbial oxidative transformation pathway (Singh et al., 

2003; Chaudhry et al., 2005). 
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A large number of rhizoremediation studies in micro- and mesocosms were performed to 

evaluate the efficiency of several plants species in PCB degradation process. Identifying plant 

species that accelerate microbial PCB degradation is the first step towards the development of  

a successful rhizoremediation strategy. Several studies have suggested willow as a potentially 

useful plant for PCB rhizoremediation (de Cárcer et al., 2007a, 2007b; Rein et al., 2007; 

Ionescu et al., 2009). The root zones of willow species have been found to harbour increased 

numbers of PCB-degrading bacteria relative to other species of bacteria (Leigh et al., 2006). 

Additionally, a diversity of biphenyl dioxygenase genes have been detected in the root zones 

of certain willows (de Cárcer et al., 2007). Willows also are known to produce salicylate, 

which may induce the expression of the upper biphenyl degradation pathway (Master & 

Mohn, 2001). Slater and co-workers assessed the potential of two common Alaskan tree 

species, Salix alaxensis (feltleaf willow) and Picea glauca (white spruce) to promote PCB 

degradation in contaminated soil microcosms (2011). The authors observed a significantly 

higher PCB degradation rate in crushed fine willow roots treated soil than in spruce root chips 

treated soil. The stimulation of indigenous PCB-degrading bacterial consortia in the 

rhizosphere of specific plants as well as the degradative ability of the plants themselves was 

evaluated in both field and pot experiments by Mackova et al. (2009). Nicotiana tabacum 

(tobacco), Solanum nigrum (black nightshade), Salix sp. (willow), Medicago sativa (alfalfa) 

and Silybum marianum (thistle) were tested for their capability to support bacterial growth, 

particularly Pseudomonas species which are considered the main candidates for PCB 

removal. Thistle was the most effective in the stimulation of microbial growth at the field 

scale. However, tobacco and nightshade treatments decreased the PCB concentration in either 

field or pot experiments more than other plants.  

Poplar is another model plant for phytoremediation of PCBs and several hydroponics studies 

involving this plant and PCBs were undertaken during the last years (Liu & Schnoor, 2008; 

Liu et al., 2009). Moreover, the efficiency of poplar in field-scale remediation of soils lightly 

contaminated by PCBs was recently demonstrated (Meggo, 2013).  

Recent investigations have focused also on the application of transgenic plants to optimize 

plant-microbe bioremediation processes: genetically engineered plants, obtained mainly by 

the introduction of bacterial biphenyl dioxygenase genes, can initiate the transformation of 

PCBs and release metabolites for further microbial degradation (Mohammadi et al., 2007; 

Macek et al., 2008; Sylvestre et al., 2009). Nevertheless, challenging issues remain to be 

faced for understanding the expression of heterologous genes and, thus the impact on the 

rhizobacteria catabolic pathways. 
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1.6.3 Mycoremediation and “white rot” fungi 

A specific branch of bioremediation, called “mycoremediation”, has been gaining increasing 

interest in recent years: its name is due to the use of fungi for the remediation of polluted soils 

or other solid-liquid matrices. Fungi with contaminant-degrading capabilities are mostly 

wood-degrading basidiomycetes belonging primarily to Agaricales (i.e. Stropharia 

rugosoannulata, Agrocybe praecox and Pleurotus ostreatus) and Polyporales orders (i.e. 

Phanerochaete chysosporium, Trametes versicolor, Bjerkandera adusta, Irpex lacteus, ect.) 

(Gadd, 2001; Singh, 2006). In addition, several fungi belonging to the phyla Ascomycota (i.e. 

Trichoderma spp.), Zygomycota (i.e. Mucor spp.) and anamorphic ascomycetes (i.e. 

Aspergillus spp., Penicillium spp., Paecilomyces spp.) have also demonstrated the ability to 

degrade contaminants (Tortella et al., 2005; Tigini et al., 2009; Carvalho et al., 2009). 

However, particularly promising appears the use of “white rot” fungi, an ecologically distinct 

group specialised in lignin breakdown. Indeed, their name derives from the appearance of 

wood attacked by these organisms, in which lignin removal results in a bleached form. In 

addition to their natural substrate, these fungi have been shown to degrade and, to some extent 

mineralize, a wide range of organic and xenobiotic pollutants structurally similar to lignin 

such as petroleum hydrocarbons, chlorophenols, polycyclic aromatic hydrocarbons, 

polychlorinated biphenyls, dioxins and furans, pesticides, herbicides and nitroaromatic 

explosives (Pointing, 2001; Rabinovich et al., 2004).  

Two important features distinguish these fungi from bacteria and make them excellent 

candidates for soil bioremediation strategies: the penetration of the fungal hyphae into the 

polluted matrix and the excretion of oxidative enzymes, mainly laccase, lignin peroxidase and 

manganese peroxidase. These oxidases exhibit very low substrate specificity and, being active 

in the extracellular environment, are able to reach and attack scarcely bioavailable 

contaminants by nonspecific radical-based reactions. In addition to the extracellular 

enzymatic system, white rot fungi possess also an intracellular one involving cytochrome 

P450 monooxygenase enzymes- CYP450 (Črešnar & Petrič, 2011). This intracellular 

pathway, occurring in all eukaryotic organisms, mainly regulates the bioconversion of 

hormones and the detoxification of drugs and xenobiotics (Bernhardt, 2006). In wood rotting 

fungi, cytochrome P450 is supposed to cooperate with the ligninolytic system in the general 

mechanism of xenobiotic degradation (van den Brink et al., 1998). Moreover, as already 

mentioned, “white rot” fungi evolve a spatially extensive hyphal growth enabling them to 

penetrate across air-filled soil pores, air-water interfaces and even rock matrices (Bornyasz et 
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al., 2005) and to act as dispersion vectors of bacteria (Kohlmeier et al., 2005; Bonfante & 

Anca, 2009). Fungi can also tolerate high concentrations of organic contaminants and heavy 

metals without deleterious effects on their enzyme activities (Baldrian et al., 2000; Baldrian, 

2003; Tuomela et al., 2005). 

Unlike bacteria, in spite of their extraordinary degrading capabilities, fungi cannot assimilate 

contaminants as a source of carbon and energy; for this reason, lignocellulosic residues are 

used as amendants to support the fungal growth and, thus to improve the mycoremediation 

performances (Singh, 2006).  

Furthermore, it is well known that fungi are involved in soil humification process: in this 

respect, the use of these organisms in soil remediation could lead, not only to the 

decontamination, but also to the re-use of the soil for agricultural purposes (Bollag, 1992; 

Michels, 1998). 

1.6.3.1. “White rot” fungi ligninolytic enzymes  

White rot fungi variously secrete one or more of three main extracellular lignin degrading 

enzymes, lignin peroxidase (LiP, E.C. 1.11.1.14), Mn-dependent peroxidase (MnP, E.C. 

1.11.1.13), and laccase (Lac, E.C. 1.10.3.2) (Tuor et al., 1995). Some authors also reported 

the expression of a novel Mn-independent peroxidase activity and other versatile peroxidase 

activities by some white rot fungi genera (Heinfling et al., 1998; Camarero et al., 1999; Ruiz-

Duenas et al., 2001). 

In addition, other enzymes are indirectly involved in lignin modification and, thus associated 

with lignin degrading enzymes:  glyoxal oxidase (E.C. 1.2.3.5), superoxide dismutase (E.C. 

1.15.1.1), glucose oxidase (E.C. 1.1.3.4), aryl alcohol oxidase (E.C. 1.1.3.7) and cellobiose 

dehydrogenase (E.C. 1.1.99.18). They produce H2O2 which is essential for the catalytic cycle 

of peroxidases (LiP and MnP) or degrade the non-phenolic substructures of lignin by the 

formation of reactive hydroxyl radicals •OH (Hatakka, 2001; Leonowicz et al., 2001; Lundell 

et al., 2010). All three major ligninolytic enzymes are encoded by gene families that lead to 

the production of multiple enzyme isoforms (Thurston, 1994; Tuor et al., 1995; Martinez, 

2002). 

Ligninolytic enzyme production by white rot fungi occurs during the secondary metabolism: 

in Phanerochaete chrysosporium cultures, the ligninolytic activities are strongly induced by 

nitrogen, carbohydrate and sulphur starvation conditions and by the presence of trace metals, 

Mg2+ and Ca2+ (Jeffries et al., 1981). In contrast, in Bjerkandera sp. strain BOS55 the 

production of lignin degrading peroxidases was significantly improved in N sufficient 
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conditions (Mester et al., 1996). Also growth conditions, such as temperature and agitation, 

significantly affect the appearance and levels of activity of ligninolytic enzymes in white rot 

fungi (Podgornik et al., 2001; Bermek et al., 2004;). Additionally, recent research has shown 

that ligninolytic enzyme production by white rot fungi is also affected by the 

presence/absence of mediators or various chemicals and by specific concentrations of metals 

Mn2+ and/or Cu2+ (Scheel et al., 2000; Galhaup et al., 2002). 

1.6.3.1.1 Laccase 

Fungal laccases (Lac, E.C. 1.10.3.2; benzendiol:oxygen oxidoreductases) are copper-

containing phenoloxidases (Baldrian, 2006). They belong to the group of blue copper 

oxidases which catalyse the oxidation of different compounds reducing oxygen to water (a 

four electron reduction reaction). Fungal laccases contain four copper atoms distributed 

among three different binding sites which play an important role in the catalytic mechanism 

of the enzyme (Figure 1.8).  

Laccases are remarkably non-specific: they oxidize different compounds, e.g. phenols, 

polyphenols and aromatic amines as well as non-phenolic organic substrates, by one electron 

abstractions resulting in the formation of reactive radicals undergoing further non-enzymatic 

reactions (e.g., depolymerization, repolymerization, demethylation or quinone formation) 

(Hatakka, 2001; Baldrian, 2006). Other non-phenolic compounds with high redox potential, 

including PAHs or other recalcitrant compounds, may also be oxidized by laccase in the 

presence of either natural mediators derived from oxidized lignin (i.e. p-coumaric acid or 

syringaldehyde; Camarero et al., 2008) or synthetic ones (i.e. ABTS (2,2´-azinobis(3-

ethylthiazoline-6-sulfonate) or 1-hydroxybenzotriazole (HBT); Baldrian, 2006). Laccases are 

known to be produced by many fungi in multiple isoforms with typical molecular masses and 

and isoelectric points ranging from 60 to 80 kDa and from 3.0 to 7.0, respectively (Baldrian, 

2006). Laccases from white rot fungi can be intracellular or extracellular and are secreted 

mostly into the culture media. The research of laccases in other fungi suggested also the 

presence of laccases associated with fungal cell wall (Zhu et al., 2001). The production of 

laccase activity by white rot fungi can be improved by the addition of Cu2+ which regulates 

laccase production at the gene transcription level (Palmieri et al., 2000; Galhaup & Haltrich, 

2001; Soden & Dobson, 2001; Saparrat et al., 2002). Several other chemicals such as 2,5-

xylidine, veratryl alcohol and guaiacol have also an inducing effect on laccase production 

(Quaratino et al., 2007). 
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Fig. 1.8. The catalytic cycle of fungal laccase (Wesemberg et al., 2003). 

 

1.6.3.1.2 Manganese peroxidase 

Mn-dependent peroxidase (MnP, E.C. 1.11.1.13) is an extracellular heme-containing 

peroxidase that catalyses the H2O2-dependent oxidation of Mn2+ to highly reactive Mn3+, 

which is stabilized by fungal chelators such as oxalic and malic acid (Hofrichter, 2002). 

Thereafter, Mn3+ can oxidize phenolic and aromatic amines to phenoxyl and amino radicals, 

respectively (Wariishi et al., 1992; Kuan & Tien, 1993).  

The catalytic cycle of MnP involves two oxidative states of the enzyme (Figure 1.9): 

compound I (MnPoxid I) and compound II (MnPoxid II). The cycle is initiated by the binding 

of H2O2 to the native ferric enzyme and the formation of an ironperoxide complex 

(Hofrichter, 2002). The subsequent cleavage of the peroxide oxygen-oxygen bond, which 

requires a two-electron transfer from the heme, results in the formation of MnP compound I. 

Afterwards, a water molecule is expelled. A subsequent reduction proceeds through MnP 

compound II. A monochelated Mn2+ ion acts as the one-electron donor for this enzyme 

intermediate and is oxidized to Mn3+. The reduction of MnP compound II proceeds in a 

similar way and another Mn3+ is formed from Mn2+ leading to generation of the native 

enzyme and release of the second molecule of water. Whereas MnP compound I resembles 

that of LiP and can, besides Mn2+, be reduced by other electron donors (ferrocyanide, 

phenolics), MnP compound II is reduced by other substrates only very slowly and requires 

Mn2+ to complete the catalytic cycle. The Mn3+ formed during the cycle is stabilized by 

carboxylic acids (oxalate, malonate, malate, tartrate or lactate). The chelates of Mn3+ cause 

one-electron oxidations of various substrates. MnP is, similarly to LiP, sensitive to high 
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concentrations of hydrogen peroxide which cause reversible inactivation of the enzyme by 

forming MnP compound III. 

MnP is often produced in multiple isoforms exhibiting a molecular mass of 45-55 kDa and 

redox potential higher than 1.0 V (Martinez, 2002). These isoforms differ mostly in their 

isoelectric points, which are usually rather acidic (pH 3-4), even though near-neutral MnPs 

have been described in litter-decomposing fungi (Steffen et al., 2002).  

The expression of MnP in fungal cultures is regulated at the level of gene transcription by 

hydrogen peroxide and various chemicals including ethanol and 2,4-dichlorphenol as well as 

by the specific Mn2+ concentration (Li et al., 1995; Scheel et al., 2000). 

 

 

 
Fig.1.9. The catalytic cycle of fungal MnP (Hofrichter, 2002). 

 

1.6.3.1.3 Lignin peroxidase 

Lignin peroxidase (LiP, E.C. 1.11.1.14) is a glycosylated heme-containing peroxidase with a 

molecular mass of 40-45 kDa. In the presence of endogenously generated hydrogen peroxide, 

LiP catalyzes the oxidation of phenolic and nonphenolic aromatic structures generating aryl 

cation radicals (Hatakka, 2001; Hammel & Cullen, 2008). In detail, during its catalytic cycle 

(Figure 1.10), LiP is oxidized by H2O2 to form a two-electron intermediate (compound I) 

which oxidizes substrates by removing one electron and produces a more reduced enzyme 

intermediate (compound II). This intermediate can then oxidize substrates by one electron, 

returning the enzyme to its initial state. However, compound II has a very high reactivity with 
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H2O2, therefore in the presence of a poor substrate and excess H2O2, it can be converted to an 

inactive form of the enzyme (compound III) (Wariishi & Gold, 1989). Compounds such as 

veratryl alcohol and tryptophan have been shown to have a protective effect against the 

enzyme inactivation due to the excess of H2O2 (Collins et al., 1997). When present, these 

molecules are preferred as substrates for compound II and convert it into the resting enzyme, 

completing the catalytic cycle. An additional role for veratryl alcohol and tryptophane as 

diffusible mediators in the LiP-catalyzed oxidation of environmental contaminants has also 

been proposed (Goodwin et al., 1995; Collins et al., 1997). 

 
Fig. 1.10. The catalytic cycle of LiP (Wariishi & Gold, 1989).   

 

1.6.3.1.4 Versatile peroxidase 

Versatile peroxidase (VP) has been discovered in Bjerkandera and Pleurotus species (Mester 

& Field 1998; Ruiz-Dueñas et al., 2001). VP is able to oxidize both LiP and MnP substrates 

and, therefore can be considered a hybrid between the two enzymes. VP oxidizes both low 

and high redox potential compounds, with or without Mn3+ mediation (Ruíz-Dueñas et al., 

2007): it has high affinity for Mn+2, hydroquinone and dyes, and also veratryl alcohol, 

dimethoxybenzene and lignin dimers. However, its catalytic efficiency is much higher in 

presence of Mn+2 than in presence of other aromatic substrates (Heinfling et al., 1998). Its 

optimal pH for oxidation of Mn+2 (pH 5) and aromatic compounds or dyes (pH 3) differ, 

being similar to those of optimal MnP and LiP activity (Ruíz-Dueñas et al., 2001). A non-

competitive inhibition was proposed for both substrates, which means that VP has, at least, 

two binding sites (Heinfling et al., 1998; Martinez, 2002). The versatility to degrade directly a 
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wide variety of substrates makes VP an enzyme with a large potential for industrial 

applications including in the field of contaminant degradation (Pozdnyakova et al., 2010) 

1.6.3.2 Production patterns and cooperation of ligninolytic enzymes 

White rot fungi produce extracellular lignin degrading enzymes, the best characterized of 

which are LiP, MnP and Lac. According to the production patterns of the above three 

enzymes, white rot fungi could be divided into three main groups, although overlaps and 

exceptions occur (Hatakka, 1994).  

The first group, LiP-MnP group, is represented by the fungi producing mainly LiP and MnP 

such as P. chrysosporium. The two other groups are: white rot fungi producing MnP and 

laccase (i.e. Dichomitus squalens, Ceriporiopsis subvermispora, Pleurotus ostreatus, Lentinus 

edodes and Panus tigrinus) and white rot fungi producing LiP and laccase (i.e., Phlebia 

ochraceofulva). LiP, MnP, and laccase are highly non-specific with regard to their substrate 

range. Indeed, in lignin degradation they act synergistically: LiP catalyzes oxidations in the 

alkyl side chains of lignin subunits to give benzaldehydes; lignin degraded by LiP thus 

provides substrates for laccases (Leonowicz et al., 2001). MnP cooperation with laccase has 

been shown to be important for the primary attack on lignin by the fungus Rigidoporus 

lignosus (Galliano et al., 1991). Generally, fungi which do not express LiP produce MnP with 

features similar to LiP, the so called “hybrid MnP” (Mester & Field, 1998). Recently, laccase 

from Stropharia rugosoannulata (litter decomposing fungus) has been shown to oxidize Mn2+ 

to Mn3+ in the presence of Mn chelators leading to the production of hydrogen peroxide. The 

results demonstrated a role of laccase in providing H2O2 for MnP reactions (Schlosser & 

Höfer, 2002). 

1.6.3.3 Mycoremediation of PCBs 

Due to their wide metabolic capabilities and, thus to their remarkable potential in 

organopollutants biodegradation, a large number of white-rot species (Phanerochaete 

chrysosporium, Trametes versicolor, Lentinus edodes, Pleurotus ostreatus, Grifola frondosa, 

Coriolopsis polyzona, Irpex lacteus, Bjerkandera adusta) were tested in laboratory-scale 

model liquid systems for their ability to degrade chlorinated biphenyls (Vyas et al., 1994; 

Yadav et al., 1995; Dietrich et al., 1995; Novotny et al., 1997; Beaudette et al., 1998; Koller 

et al., 2000; Ruiz-Aguilar et al., 2002; Kamei et al., 2006a; Kamei et al., 2006b; Cvancarova 

et al., 2012). Generally, all these studies confirmed that the extent of degradation significantly 

decreases with rising chlorine content. Moreover, some fungal strains (i.e. Pleurotus 
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ostreatus) have shown to selectively removed PCB congeners with preference for those 

compounds with chlorine atom in ortho > meta > para position, while others (i.e. 

Phanerochaete chrysosporium) have not exhibited noticeable specificity for the position of 

chlorine substitutions (Yadav et al., 1995; Kubatova et al., 2001). PCB transformation 

products (methoxylated- and hydroxylated-PCBs, chlorobenzoic acids, chlorobenzaldehydes 

and chlorobenzylalcohols) were identified in liquid fungal cultures and the involvement of 

both extracellular ligninolytic system and intracellular cytochrome P450 monooxygenases 

system in the PCB degradation process was hypothesized (Kamei et al., 2006a; Cvancarova et 

al., 2012). Although fungal extracellular phenoloxidases, such as laccase and Mn-dependent 

peroxidase, have been found to be unable to oxidize PCB congeners (Baudette et al., 1998), 

they are able to perform the breakdown of some degradation intermediates such as their 

hydroxylated derivatives which can be produced by CYP450 system (Keum et al., 2004; 

Takagi et al., 2007). However, any mechanistic interpretation on the effect of the chlorination 

pattern is prevented by the lack of information concerning the enzymatic basis of the fungal 

breakdown of these contaminants. Despite the promising outcomes achieved in liquid 

cultures, few studies investigated the ability of white rot fungi to attack chlorinated biphenyls 

in artificially contaminated soils (Zeddel et al., 1993; Kubatova et al., 2001) or in real PCB-

contaminated soil (Borazjani, 2005; Federici et al., 2012). Therefore, the fungal application 

for the treatment of PCB polluted solid matrices requires further investigation to gain insights 

into the capacity of fungi to grow on contaminated soils where both physico-chemical factors 

(i.e. interaction of PCBs with the soil organic matter) and biological factors (i.e. competition 

with native microorganisms) can affect the efficiency of the treatment. 
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MYCOREMEDIATION OF A LONG TERM PCB-
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2.1 Introduction 

Polychlorinated biphenyls (PCBs) are xenobiotic compounds produced as mixtures and used 

in the past for several industrial applications because of their thermal and chemical stability, 

flame resistance and dielectric properties. Due to their inertness, PCBs are still widely 

distributed in all ecosystems, affecting both natural environments and wildlife. Thus, the 

clean-up of PCB-contaminated sites has become a priority of great relevance due to the 

teratogenic, carcinogenic and endocrine-disrupting features of these xenobiotics. Up to now, 

the removal of PCBs from contaminated environmental matrices has been mainly performed 

by incineration at high temperature. Since this procedure may entail additional risks, scientific 

researchers have been focusing also on biological treatments of PCBs. These technologies 

represent an effective, cost-competitive and environmentally friendly alternative for the 

removal of PCBs (Šašek et al., 2003; Hamman, 2004). 

In this respect, filamentous fungi display features that make them excellent candidates to 

design an effective remediation technology. The hyphal structures, defined as the “fungal 

highways”, allow them to easily penetrate across environmental matrices and to translocate 

pollutant-degrading bacteria acting as dispersion vectors (Kohlmeier et al., 2005; Bonfante & 

Anca, 2009). Another important peculiarity of a subgroup of filamentous fungi, namely 

“white rot” is the secretion of oxidative enzymes characterized by a low substrate specificity 

that can degrade a wide range of aromatic organopollutants (Pointing, 2001; Rabinovich et 

al., 2004). This nonspecific radical-based system is active in the extracellular environment 

and thus, fungi can easily explore the contaminated matrix reaching even scarcely 

bioavailable pollutants. 

Nevertheless, fungi have not been widely exploited yet for their metabolic capabilities (Harms 

et al., 2011). As a matter of fact, a relatively small number of white-rot species have been 

tested on real PCB-contaminated soil (Borazjani, 2005; Federici et al., 2012).  

Thus, this study was aimed at assessing the technical feasibility of different mycoremediation 

treatments of a PCB historically contaminated soil. Prior to the application of the selected 

remedial techniques, physico-chemical properties of soil as well as PCB bioavailability were 

assessed. Thereafter, degradation capabilities of the white rot fungi Irpex lacteus and 

Pleurotus ostreatus and the role of autochthonous microbial communities in the PCB 

biotransformation process were investigated.  Specific attention was paid on the identification 

of PCB degradation products, and on residual toxicity at the end of each treatment. 

Furthermore, to gain new insights into the biota composition throughout the remediation 
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processes, microbial biomass was quantified by phospholipid fatty acids analysis and the 

diversity and dynamics of both bacterial and fungal communities were estimated via high-

throughput 454-pyrosequencing method as summarized in Figure 2.1.  

 

 

 

 
 

Fig. 2.1. Workflow of Chapter 2. 
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2.2 Materials and methods 

2.2.1 Soil samples collection  

Long-term PCB-contaminated soil was collected from Lhenice dumpsite (South Bohemia, 

Czech Republic). The soil, originated from a tarmacadam-producing plant (Milevsko, South 

Bohemia), was moved and stockpiled in this concrete basin more than 20 years ago. The 

contamination was due to the leakage of the heat-transfer medium Delotherm, a commercial 

product containing mainly Delor 103 PCB mixture (analogous to Aroclor 1242) that was 

produced by Chemko Strážske (Slovakia) until 1984. The PCB content is extremely variable 

and therefore three different soil samples were collected: the bulk soil (referred to as SOIL 

A), the top soil (referred to as SOIL B) and the rhizosphere soil (referred to as SOIL C). Then 

the soil samples were sieved (< 2 mm) and homogenized by repeated mixing, air dried for 

chemical analysis, lyophilized for phospholipid fatty acids (PLFA) analysis and stored at -80 

°C for pyrosequencing. 

2.2.2 Physico-chemical analyses of soil samples 

Physico-chemical properties of the three soil samples were evaluated at the Research Institute 

of Soil and Water Conservation (Prague, Czech Republic). Cation exchange capacity (CEC), 

water holding capacity (WHC), bulk density, pH and soil texture were assessed as well as the 

content of organic C, humic and fulvic acids, sulfur, nitrogen and heavy metals (As, Be, Cd, 

Co, Cr, Cu, Mo, Ni, Pb, V, Zn, Hg). 

2.2.3 Chemical analysis of contaminants 

Polychlorinated biphenyls (PCBs) were extracted by Dionex 200 Accelerated Solvent 

Extraction (ASE) system (Palaiseau, France). The extractions were performed at 100 °C and 

13.8 MPa using a solvent mixture of n-hexane:acetone (1:1, v/v). The collected organic 

extracts were evaporated until dryness, then suspended in n-hexane and treated with a mixture 

of silica gel/sulphuric acid to eliminate interfering compounds, and then applied directly to 

the chromatography column.  

Quantitative analyses of PCBs were performed by gas chromatography-mass spectrometry 

(GC-MS; 450-GC, 240-MS ion trap detector, Varian, Walnut Creek, CA) using 

hexachlorobenzene as the internal standard. The GC instrument was equipped with a 

split/splitless injector maintained at 240 °C. DB-5MS column (Agilent, Prague, Czech 

Republic) was used for the separations (30 m, 0.25 mm I.D., 0.25 mm film thickness). The 
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temperature program started at 60 °C and was held for 1 min in the splitless mode. Then the 

splitter was opened with ratio 1:50. The oven was heated to 120 °C at a rate of 25 °C min-1 

with a subsequent temperature ramp up to 240 °C at a rate of 2.5 °C min-1, where this 

temperature was maintained for 28 min. The solvent delay time was set at 5 min and the 

transfer line temperature was set at 240 °C. The mass spectra were recorded at 3 scans s-1 

under electron impact at 70 eV and mass range 140-410 amu. 

PCB metabolites were extracted by ASE system at 150 °C and 11.0 MPa using 1% acetic acid 

in n-hexane:acetone (1:1, V/V). 100 µl of dimethylformamide (DMF) were added to the 

organic extracts to avoid volatilization of PCB intermediates during the following evaporation 

step. Once concentrated up to 100 µl, the samples were dissolved in 1 mL of dichloromethane 

and applied to a gel permeation chromatography (GPC) column (Omnifit ® glass column, 

10×500 mm) packed with Bio-beads S-X12 (Bio-Rad, Germany). Metabolites were eluted 

using dichloromethane as the mobile phase at 0.8 ml min-1, collected and then analysed by gas 

chromatography-mass spectrometry either directly without derivatization or after methylation 

with diazomethane. PCB products were separated and identified using two different methods: 

(i) the temperature program started at 60 °C and was held for 1 min in the splitless mode. 

Then the splitter was opened with ratio 1:50. The oven was heated to 100°C at a rate of 25 °C 

min-1 with a subsequent temperature ramp up to 280 °C at a rate of 7.5 °C min-1, where this 

temperature was maintained for 24 min, (ii) the oven was heated to 120°C at a rate of 25 °C 

min-1 with a subsequent temperature ramp up to 280 °C at a rate of 2.5 °C min-1, where this 

temperature was maintained for 10 min. The mass spectra were recorded at 3 scans s-1 under 

electron impact at 70 eV and mass range 50-450 amu.  

2.2.4 Bioavailability of PCBs 

Supercritical Fluid Extraction (SFE) was applied to estimate the bioavailability of PCBs in 

soil A, B and C. SFE was performed with a Labio a.s. extractor (Czech Republic) equipped 

with a manual restrictor operating at 40 °C and with a downward stream of carbon dioxide. 

The samples (1.0 g) were placed on the bottom of a 1 mL extraction vessel and the dead 

volume was filled with sodium sulfate. The PCB analytes were collected on octadecylsilica at 

-20 °C and eluted within 10 mL of hexane at 25 °C. SFE was performed at 50 °C and 200 bar. 

Three  parallel replicate extractions were carried out and contaminants collected after 5, 10, 

20, 40, 60, 80, 120, 160, and 200 min.  Individual points of the desorption curves represent 

means of the three extractions. Data analysis was performed as described by Cajthaml & 
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Šašek (2005): the chemical release modeled by an empirical two-site model, consisting of the 

two first-order equations (1): 

 

St = F•Soe−k1t + (1 − F) • So•e−k2t       (1) 

 

where St is the residual pollutant concentration in the soil after time t; F is the fraction of 

chemical rapidly released; So is the original concentration of the pollutant in soil; k1 and k2 are 

the first-order rate constants. The so-called ‘‘F fraction’’ is usually assumed to be 

representative of equilibrium release conditions, and the remaining, slowly released portion is 

considered to be kinetically rate limited. Therefore, the F fraction represents the portion of the 

target chemical that is bioavailable in soil (Hawthorne et al., 2002; Cajthaml and Šašek, 

2005). The fractions were analyzed separately to complete desorption- kinetic profiles. Prism 

version 4.0 (GraphPad, La Jolla, CA) was used for calculating F values. 

2.2.5 Microorganisms and inoculum preparation 

Pleurotus ostreatus 3004 CCBAS 278 and Irpex lacteus 617/93 were obtained from the 

Culture Collection of Basidiomycetes of the Academy of Science of Czech Republic (Prague, 

CZ). The fungal strains were maintained at 4 °C on Malt Extract Agar plates (MEA) and sub-

cultured every month. Five mycelial plugs (0.7 mm Ø) from 7-d-old MEA cultures were used 

to inoculate 500 mL Erlenmeyer flasks containing 8 g of wheat straw-based pellets previously 

autoclaved. The moisture of the lignocellulosic substrate (LS) was adjusted to 75% [w/w] 

with sterile deionized water. Inoculated and non-inoculated LS, used for bioaugmentation and 

biostimulation treatments respectively, were incubated at 25 °C for 10 days. 

2.2.6 Microcosms preparation 

The three soil samples (A, B and C), the moisture content of which was previously adjusted to 

60 % of their respective water holding capacity [w/w], were mixed with either Pleurotus 

ostreatus or Irpex lacteus colonized substrate for bioaugmentation treatments to obtain a final 

soil:ligninolytic substrate mass ratio of 5:1. Soil samples mixed up with the non-inoculated 

LS were prepared for biostimulation treatments in the same ratios described above. Non-

amended and non-inoculated soil samples were prepared and referred to as incubation 

controls. All experiments were carried out in triplicate under non-sterile conditions. All 

microcosms were incubated in a ventilated room at approx. 25 °C for 12 weeks and their 
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moisture content was kept constant by periodical addition of sterile deionized water. Four 

harvests were set up after 0, 2, 6 and 12 weeks of incubation. Based on the scheduled 

harvests, the three replicates for each treatment were wholly sacrificed for analyses. The soil 

samples were air dried for chemical analysis, lyophilized for PLFA analysis and stored at -80 

°C for high-throughput sequencing studies. 

2.2.7 Ecotoxicology test with Vibrio fischeri (luminescent bacteria test) 

The inhibitory effect of soil extracts on the light emission of V. fischeri was measured at the 

end of each treatments using the Lumino-M90a (ZD Dolni Ujezd, Czech Republic) 

luminometer according to the normalized ISO 11348-3 protocol 2007 (ISO 11348-3: 2007). 

Aliquots of the ethyl acetate extracts (0.5 mL) were evaporated to dryness and dissolved in 

6% DMSO. The emitted bioluminescence was recorded after 30 min of exposure and 

percentages of luminescence inhibition (I) were determined as described by Lappalainen et al. 

(1999). 

2.2.8 Extraction and analysis of phospholipid fatty acids 

Extraction and analysis of phospholipid fatty acids (PLFA) were performed as described by 

Snajdr et al. (2008). Phospholipids were extracted from 1 g of sample using a mixture of 

chloroform:methanol:phosphate buffer (1:2:0.8, v/v/v) and then separated by solid-phase 

extraction cartridges (LiChrolut Si 60, Merck). Samples then underwent mild alkaline 

methanolysis and the free methyl esters of phospholipid fatty acids were analysed by gas 

chromatography-mass spectrometry (GC-MS; 450-GC, 240-MS ion trap detector, Varian, 

Walnut Creek, CA). Fungal biomass was quantified based on 18:2ω6,9 content; bacterial 

biomass was quantified as a sum of i14:0, i15:0, a15:0, 16:1ω5, 16:1ω7, 16:1ω9, 10Me-16:0, 

i16:0, i17:0, a17:0, cy17:0, 17:0, 10Me-17:0, 18:1ω7, 18:1ω9, 10Me-18:0, cy19:0 

(actinobacteria 10Me-16:0, 10Me-17:0, 10Me-18:0, Gram+ i14:0, i15:0, a15:0, i16:0, i17:0, 

a17:0 and Gram- 16:1ω7, 16:1ω9, 18:1ω7, cy17:0, cy19:0).  

2.2.9 DNA extraction, amplification and pyrosequencing analysis  

Genomic DNA was extracted from soil samples as described by Sagova-Mareckova et al. 

(2008). The first amplification step was performed using the eubacterial primers eub530F and 

eub1100aR to amplify the V4–V6 hypervariable regions of the bacterial 16S rDNA gene and 

the fungi-specific primers ITS1 and ITS4 to amplify the internal transcribed spacer (ITS) 

region of fungal rDNA. The three replicates of each soil sample were pooled and purified 
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using the Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA). Purified 

DNA concentration was quantified using ND1000 (Nano-Drop, Wilmington, DE, USA).  

In the second amplification step, fusion primers were tailored for tag-encoded 454-Titanium 

pyrosequencing: different barcode sequences were added at the 5’ end of forward primer 

separated by a trinucleotide spacer. Titanium A adaptor was also used (Roche, Basel, 

Switzerland). Purification of PCR products was performed using MinElute PCR Purification 

Kit (Qiagen, Hilden, Germany) and concentration was quantified by ND1000 (Nano-Drop, 

Wilmington, DE, USA) and Quant-iT Picogreen dsDNA Assay Kit (Invitrogen, Carlsbad, 

CA, USA). Purified amplicons were used for the subsequent emulsion PCR (emPCR Kit Lib-

L, Roche), the products of which were sequenced on the 454 GS Junior platform (Roche) in 

accordance with manufacturer’s instructions (Roche, Basel, Switzerland).  

2.2.10 Pyrosequencing data analysis 

Bacterial and fungal sequences were processed with QIIME 1.6.0 software package. Quality 

filtering steps were performed to trim off barcodes and primers from the raw sequences and to 

remove sequences (i) < 200 nt in length, (ii) with homopolymers longer than 6 nt, (iii) with 

quality score < 25 and < 20 for bacteria and fungi, respectively. Denoising was performed as 

described by Reeder and Knight (2010). QIIME’s implementation of OTUPipe script was 

applied for chimera checking and OTU picking (Edgar, 2010; Edgar et al., 2011). 16S 

Microbial blast database and UNITE database were used as reference databases for bacterial 

and fungal chimeric sequences detection, respectively. Resulting chimera-free reads were 

clustered into OTUs based on their sequence similarity at 97 %. Representative sequences of 

each OTU were aligned using MUSCLE (Edgar, 2004) and used for taxonomy assignment. 

Ribosomal Database Project classifier and UNITE database were used in order to 

taxonomically classify the bacterial and fungal sequences, respectively. Alpha-rarefaction and 

Alpha-diversity analyses were performed using QIIME 1.6.0 and Beta-diversity was assessed 

by Principal Component Analysis (PCA). 

2.2.11 Statistical analysis 

Multiple pair-wise comparisons of PCB degradation data were performed by the Tukey test 

(P≤0.05) using SigmaStat software version 3.5. Pyrosequencing results were evaluated by 

Principal Component Analysis (PCA) using Minitab 16 version 2.2.0 (Minitab, Inc., PA, 

U.S.A.). 
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2.3 Results and Dicussion 

2.3.1 Physico-chemical characterization of soil samples 

Physico-chemical properties of the pristine soils are reported in Table 2.1. The granulometric 

analysis revealed that the contaminated matrices A, B and C are sandy loamy soils 

characterized by a content of 59.6, 60.2 and 53.4 % of sand, 31.2, 30.0 and 35.5 % of silt and 

9.2, 9.8 and 11.1 % of clay, respectively.  

As expected, the amount of organic carbon was higher in the topsoil (soil B) and in the 

rhizosphere soil (soil C) than in the bulk soil (soil A) (3.46 and 2.4 vs 0.98 %). This parameter 

must to be taken into account considering the biological approaches to remediate 

contaminated soils: the content of soil organic matter (i.e. humic and fulvic acids), as already 

mentioned, significantly affect the soil sorption/desorption processes and, therefore the fate 

and the bioavailability of hydrophobic contaminants such as PCBs. Likewise, the cation 

exchange capacity (CEC) of soil B and C (20.12 and 18.13 mmol (+) 100g-1) was greater 

compared to that of soil A (12.67 mmol (+) 100 g-1): CEC is closely linked and positively 

correlated to the organic matter content of the soil as reported in a number of studies 

(Crovetto, 1997; FAO, 2005). The presence of metals was also assessed in all soil samples 

resulting in high concentration of chromium (160.1, 123.0 and 174.0 mg kg-1 in soil A, B and 

C, respectively).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 43!

Tab. 2.1. Physico-chemical properties of the pristine soil A, B and C. 

 

  Units Soil A Soil B Soil C 
pH H2O --- 6.60 6.07 6.16 

pH CaCl2 --- 6.37 5.81 5.74 
Exchangeable H+ mmol+/100g 0.50 2.60 2.80 
Exchangeable Ca mmol+/100g 9.24 16.40 12.89 
Exchangeable Mg mmol+/100g 2.73 5.56 2.21 
Exchangeable K mmol+/100g 0.26 1.25 0.70 
Exchangeable Na mmol+/100g 0.05 0.05 0.05 

CEC mmol+/100g 12.67 20.12 18.13 
Sulphur content mmol+/100g 12.67 17.51 15.33 

Degree of saturation % 100.00 87.00 85.00 
ECEC mmol+/100g 12.21 17.81 13.88 

Accessible Ca mg/kg 1650.00 2649.00 2355.00 
Accessible Mg mg/kg 325.00 311.00 266.00 
Accessible K mg/kg 102.00 412.00 247.00 
Accessible P mg/kg 45.40 111.40 79.10 

N total % 0.07 0.23 0.17 
C (Organic) % 0.73 2.52 1.76 
Fulvic acids % 0.08 0.57 0.40 
Humic acids % 0.17 0.37 0.24 

Hg AMA mg/kg 0.04 0.05 0.05 
As (Aqua regia) mg/kg 43.91 35.86 43.93 
Be (Aqua regia) mg/kg 1.62 1.56 1.65 
Cd (Aqua regia) mg/kg 0.22 0.34 0.25 
Co (Aqua regia) mg/kg 15.67 13.38 17.66 
Cr (Aqua regia) mg/kg 160.10 123.00 174.00 
Cu (Aqua regia) mg/kg 31.30 20.60 29.00 
Mo (Aqua regia) mg/kg 0.05 0.05 0.05 
Ni (Aqua regia) mg/kg 54.10 43.70 52.60 
Pb (Aqua regia) mg/kg 24.60 22.80 22.80 
V (Aqua regia) mg/kg 40.30 41.60 44.40 
Zn (Aqua regia) mg/kg 97.00 100.80 100.20 

Particles <0.001 mm % 7.30 7.40 8.80 
Particles <0.002 mm % 9.20 9.80 11.10 
Particles < 0.01 mm  % 18.30 19.80 22.80 
Particles < 0.05 mm % 40.40 39.80 46.60 

Particles 0.01-0.05 mm % 22.10 20.00 23.80 
Particles 0.05-0.25 mm % 24.80 26.60 22.20 
Particles 0.25-2.0 mm % 34.80 33.60 31.20 

Bulk density g/cm3 1.33 1.21 1.17 
Water holding capacity (WHC) % Vol. 31.80 42.40 39.90 

S/SO4 - CaCl2 leachate mg/kg 5.20 9.40 7.30 
Combustion loss % 3.81 6.15 6.46 
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2.3.2 Contaminant characterization of soil samples 

The three polluted matrices of concern were mostly contaminated with the PCB mixture 

Delor 103, the composition of which was defined by Taniyasu et al. (2003). Therefore, the 

chemical characterization of the soil samples was mainly aimed at the quantification of those 

congeners which are known to be present in the aforementioned mixture. The concentration of 

PCBs was evaluated in all soil samples and the results are reported in Table 2.2. Among the 

three soil samples, the bulk soil (soil A) was the most heavily contaminated with an overall 

PCB concentration of 705.95 mg Kg-1, while the least contaminated one (169.36 mg Kg-1) 

was the rhizosphere soil (soil C). In all cases, the contamination mainly consisted of 

tetrachloro-biphenyls (70, 72 and 74 % in soil A, B and C, respectively) and the congener n. 

56 (2,3,3',4'-tetrachlorobiphenyl) was the most abundant one in all samples (17, 21 and 22 % 

in soil A, B and C, respectively). Interestingly, the congener n. 118 (2,3',4,4',5-

pentachlorobiphenyl) was the most abundant among the pentachloro-biphenyls in soil A and 

B. This congener displays "dioxin-like" properties, referring both to its toxicity and structural 

features which make it similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (EPA).  

Moreover, due to the aging of the three contaminated matrices and therefore the possible 

occurrence of degradation processes along the time, an extensive chemical analysis of PCB 

degradation intermediates was performed. Among them, only chlorobenzoic acids (CBAs) 

were detected (Table 2.3). These chlorinated compounds are known either to be produced by 

fungi as intermediates of PCB mineralization process or to be accumulated as dead-end 

products during the aerobic upper PCB degradation pathway mediated by bacteria 

(Cvancarova et al., 2012; Adebusoye et al., 2008). Specifically, the highest concentration of 

CBAs was observed in soil A (743.6 µg Kg-1), while 250.3 and 185.8 µg Kg-1 were found in 

soil B and C, respectively. The presence of CBAs in all soil samples was mainly due to the 

formation of mono- and di-chlorinated benzoates. Among trichlorinated clorobenzoates, small 

amount of 2,3,5-CBA and 2,4,6-CBA were detected, while 2,3,6-CBA, tetra- and penta-CBAs 

were not found. 
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Tab. 2.2. PC
B

 concentration (m
g K

g
-1) in the pristine soil A

, B
 and C

. D
ata are the m

ean ± standard deviation of five replicates. 

                    

PC
B

 congeners 
C

oncentration (m
g K

g
-1) 

IU
PAC

 nom
enclature 

Ballschm
iter &

 Zell 
nom

enclature  
Soil A

 
Soil B

 
Soil C

 
 2,2’,3 + 2,4’,6-C

B
  

16+32 
11.20 ± 0.15 

1.97 ± 0.67 
3.10 ± 1.49 

2,2’,4 -C
B

 
17 

2.66 ± 2.10 
0.28 ± 0.17 

1.15 ± 0.65 
2,2’,5 -C

B
 

18 
1.49 ± 0.78 

0.19 ± 0.04 
0.40 ± 0.01 

2,2’,6 -C
B

  
19 

0.08 ± 0.05 
0.00 ± 0.00 

0.00 ± 0.00 
2,3,4’-C

B
 

22 
62.98 ± 0.81 

13.58 ± 0.87 
8.92 ± 0.49 

2,3,6 + 2,3’,6-C
B

 
24+27 

0.17 ± 0.08 
0.00 ± 0.00 

0.01 ± 0.01 
2,3’,4-C

B
 

25 
0.18 ± 0.07 

0.00 ± 0.00 
0.00 ± 0.00 

2,3’,5-C
B

 
26 

0.12 ± 0.06 
0.00 ± 0.00 

0.02 ± 0.02 
2,4,4’ + 2,4’,5-C

B
 

28+31 
13.52 ± 0.40 

4.93 ± 0.21 
2.24 ± 0.23 

2,2’,3,3’-C
B

 
40 

0.24 ± 0.05 
0.09 ± 0.02 

0.06 ± 0.02 
2,2’,3,4 + 2,3,4’,6 + 2,3’,4’,6 + 2,3’,5,5’-C

B
 

41+64+71+72 
42.10 ± 2.18 

26.06 ± 1.38 
12.05 ± 1.42 

2,2’,3,4’-C
B

 
42 

8.45 ± 0.50 
6.18 ± 0.50 

2.54 ± 0.08 
2,2’,3,5’-C

B
 

44 
67.56 ± 0.98 

24.64 ± 1.29 
14.01 ± 0.12 

2,2’,3,6-C
B

 
45 

21.86 ± 1.02 
8.37 ± 0.08 

4.65 ± 0.79 
2,2’,3,6’-C

B
 

46 
0.15 ± 0.03 

0.06 ± 0.01 
0.07 ± 0.04 

2,2’,4,4’ + 2,2’,4,5-C
B

 
47+48 

39.62 ± 1.32 
14.80 ± 0.61 

6.94 ± 0.08 
2,2’,4,5’-C

B
 

49 
56.08 ± 0.80 

23.91 ± 2.69 
13.25 ± 1.01 

2,2’,4,6’-C
B

 
51 

0.13 ± 0.02 
0.06 ± 0.02 

0.07 ± 0.04 
2,2’,5,5’-C

B
 

52 
69.45 ± 0.86 

33.36 ± 1.40 
17.43 ± 0.67 

2,2’,5,6’-C
B

 
53 

0.31 ± 0.07 
0.10 ± 0.03 

0.07 ± 0.03 
2,3,3’,4’-C

B
 

56 
117.01 ± 0.16 

78.61 ± 2.88 
36.38 ± 1.77 

2,3,4’,5-C
B

 
63 

0.13 ± 0.02 
0.07 ± 0.02 

0.08 ± 0.05 
2,3’,4,4’-C

B
 

66 
21.53 ± 0.13 

15.81 ± 0.26 
6.16 ± 0.80 

2,3’,4,5-C
B

 
67 

0.11 ± 0.27 
0.05 ± 0.00 

0.05 ± 0.02 
2,3’,4’,5 + 2,3’,4’,5’-C

B
 

70+76 
44.21 ± 0.01 

38.22 ± 0.72 
11.34 ± 0.36 

2,4,4’,5-C
B

 
74 

1.39 ± 0.31 
0.87 ± 0.04 

0.84 ± 0.04 
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Tab. 2.2 PC
B

 concentration (m
g K

g
-1) in the pristine soil A

, B
 and C

. D
ata are the m

ean ± standard deviation of five replicates. 

               (C
ontinued) 

PC
B

 congeners 
C

oncentration (m
g K

g
-1) 

IU
PAC

 nom
enclature 

Ballschm
iter &

 Zell 
nom

enclature 
Soil A

 
Soil B

 
Soil C

 
2,2’,3,4,5’-C

B
 

87 
0.25 ± 0.01 

0.14 ± 0.03 
0.09 ± 0.00 

2,2’,3,4,6 + 2,2’,3,5,5’ + 2,2’,3,5,6’-C
B

 
89+92+94 

0.16 ± 0.02 
0.05 ± 0.01 

0.03 ± 0.00 
2,2’,3,4’,6-C

B
 

91 
0.11 ± 0.02 

0.05 ± 0.01 
0.09 ± 0.01 

2,2’,3,5,’6-C
B

 
95 

16.40 ± 2.74 
7.38 ± 0.94 

5.37 ± 0.30 
2,2’,3,4’,5’-C

B
 

97 
0.14 ± 0.03 

0.07 ± 0.00 
0.14 ± 0.00 

2,2’,4,4’,5 + 2,3,3’,5’,6-C
B

 
99+113 

20.01 ± 0.43 
10.84 ± 0.48 

3.98 ± 0.17 
2,2’,4,5,5’-C

B
 

101 
12.72 ± 2.31 

11.82 ± 0.53 
3.80 ± 0.32 

2,3,3’,4,4’-C
B

 
105 

18.78 ± 1.38 
12.82 ± 0.76 

0.00 ± 0.00 
2,3,3’,5,5’-C

B
 

110 
17.10 ± 0.04 

15.14 ± 0.77 
6.66 ± 0.25 

2,3,3’,5,5’-C
B

 
111 

0.14 ± 0.37 
0.10 ± 0.03 

0.12 ± 0.00 
2,3’,4,4’,5-C

B
 

118 
23.16 ± 0.01 

18.21 ± 0.66 
5.46 ± 0.58 

2,2’,3,4,4’,5’-C
B

 
138 

6.76 ± 0.56 
0.68 ± 0.96 

0.00 ± 0.00 
2,2’,3,4’,5’,6-C

B
 

149 
4.46 ± 0.87 

1.42 ± 0.15 
1.40 ± 0.65 

2,2’,4,4’,5,5’-C
B

 
153 

1.39 ± 0.41 
4.68 ± 0.19 

0.36 ± 0.10 
2,2’,3,4,4’,5,5’-C

B
 

180 
1.65 ± 0.43 

0.20 ± 0.29 
0.00 ± 0.00 

overall PC
B

s 
705.95 ± 22.85 

375.81 ± 19.45 
169.36 ± 12.63 
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Tab. 2.3 C
B

A
 concentration (µg K

g
-1) in the pristine soil A

, B
 and C

. D
ata are the m

ean ± standard deviation of five replicates. 

  

C
B

A
 isom

ers 
C

oncentration (µg K
g

-1) 

Soil A
 

Soil B
 

Soil C
 

2-C
B

A
 

9.2 ± 1.5 
6.5 ± 0.5 

4.6 ± 1.7 
3-C

B
A

 
378.4 ± 21.3 

95.4 ± 9.8 
85.6 ± 4.2 

4-C
B

A
 

19.0 ± 2.3 
10.1 ± 1.9 

0.0 ± 0.0 
2,3-C

B
A

 
24.0 ± 2.6 

21.6 ± 2.4 
16.5 ± 1.1 

2,4-C
B

A
 

189.2 ± 15.5 
62.3 ± 4.3 

35.0 ± 2.7 
2,5-C

B
A

 
28.3 ± 2.3 

22.9 ± 2.4 
16.4 ± 2.8 

2,6-C
B

A
 

6.9  ± 0.8 
0.0 ± 0.0 

 0.1 ± 0.2 
3,4-C

B
A

 
66.5 ± 6.9 

22.8 ± 3.1 
16.1 ± 2.6 

3,5-C
B

A
 

5.1 ± 1.2 
1.1 ± 1.9 

0.0 ± 0.0 
2,3,5-C

B
A

 
8.2 ± 1.2 

3.3 ± 0.7 
1.1 ± 0.3 

2,3,6-C
B

A
 

0.0 ± 0.0  
0.0 ± 0.0  

0.0 ± 0.0  
2,4,6-C

B
A

 
8.9 ± 1.9 

4.4 ± 0.6 
10.4 ± 1.6 

2,3,5,6-C
B

A
 

0.0 ± 0.0  
0.0 ± 0.0  

0.0 ± 0.0  
2,3,4,5-C

B
A

 
0.0 ± 0.0  

0.0 ± 0.0  
0.0 ± 0.0  

2,3,4,5,6-C
B

A
 

0.0 ± 0.0  
0.0 ± 0.0  

0.0 ± 0.0  
O

verall C
B

A
s  

743.6 ± 57.2 
250.3 ± 27.5 

185.8 ± 17.2 
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2.3.3 Bioavailability of PCBs 

The bioavailability of pollutants, defined as the amount of compound that could be taken up 

and transformed by living organisms, is one of the most important factor affecting the success 

of bioremediation strategies. The fate and the behaviour of organic pollutants in soils and 

therefore, their bioavailability is influenced by several factors including the physico-chemical 

characteristics of the soil (i.e. soil organic matter and clay content), the concentration and 

properties of pollutants and their residence time in soil (Reid et al., 2000; Bielska et al., 

2013). This last factor leading to a phenomenon, referred to as contaminant “ageing”, which 

contributes to the sequestration of pollutants in the soil structure decreasing their accessibility 

and biodegradability (Alexander, 2000). Hence, due to the prolonged pollutants-soil contact 

time of our samples, Supercritical Fluid Extraction (SFE) was applied to quantify the 

bioavailable fraction (F) of PCBs in pristine soil A, B and C and, thus to predict the efficiency 

of selected remediation approaches towards these contaminated matrices.  

Analysis of data indicates that the estimated F fraction of all Delor 103 representative PCBs 

(where F=1 corresponds to 100 % of biovailability) was higher in the bulk soil A (F=0.94, 

r2=0.993) than in top soil B (F=0.62, r2=0.997) and rhizosphere soil C (F=0.64, r2=0.977) 

(Figure 2.2). The lower bioavailability of PCBs in soil B and C than in soil A (62 and 64 vs 

94 %) could be explained by their different soil organic matter content, as above reported. 

Indeed, the presence of SOM significantly decreases the bioavailability of organic pollutants 

because of their adsorption onto organic matter and the consequent entrapment within its 

nanoporous structures (Hatzinger and Alexander, 1995; Kan et al., 1998).  

 

 
Fig. 2.2. Bioavailability of PCBs in the pristine soil A, B and C. The values, espressed as 

percentage of bioavailable fraction, are means of three replicates. 
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Furthermore, the persistence of certain chemicals in soils seems to be related to compound 

hydrophobicity. In the case of PCBs, hydrophobicity increases with rising chlorine content 

and thus, the bioavailability of these chemicals was evaluated as a function of their 

chlorination degree. Results referred to PCB homologs (namely to PCBs bearing the same 

mumber of chlorine substituents) showed that the lowest bioavailable fraction was associated 

with higher chlorinated congeners: the F values of hepta-CBs were 0.79, 0.51 and 0.43 in soil 

A, B and C, respectively (Figure 2.3, Table 2.4). These outcomes confirmed the initial 

hypothesis that the greater is the hydrophobicity of a chemical, the greater is its sorption 

potential and, therefore the lower is its availability. 

 

 
Tab 2.4. F values and R2 of tri-, tetra-, penta-, hexa- and hepta-chlorinated biphenyls (tri-CBs, 
tetra-CBs, penta-CBs, hexa-CBs and hepta-CBs) in the pristine soil A, B and C. Data are the 
mean ± standard deviation of three replicates. 
 
 
 tri-CBs tetra-CBs penta-CBs hexa-CBs hepta-CBs 

Soil A      

F value 0.84±0.01 0.93±0.01 0.80±0.01 0.98±0.02 0.79±0.01 

R2† 0.995 0.994 0.999 0.999 0.995 

Soil B      

F value 0.65±0.01 0.62±0.01 0.62±0.02 0.62±0.01 0.51±0.01 

R2† 0.997 0.987 0.972 0.998 0.982 

Soil C      

F value 0.66±0.01 0.66±0.02 0.64±0.03 0.61±0.01 0.43±0.01 

R2† 0.996 0.968 0.956 0.993 0.995 

† R2 indicates the coefficient of determination for each fitting equation. 
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Fig. 2.3. Bioavailability of tri-, tetra-, penta-, hexa- and hepta-chlorinated biphenyls (tri-CBs, 
tetra-CBs, penta-CBs, hexa-CBs and hepta-CBs) in the pristine soil A, B and C. The values of 
bioavailable fraction of each homolog group are expressed as percentage of their respective 
overall contents. Data are means ± standard deviation of three replicates. 
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2.3.4 Degradation of PCBs 

With regard to remediation experiment, the time courses of PCB degradation in both myco-

augmented and biostimulated microcosms are shown in Figure 2.4.  

As for the most contaminated soil (soil A), no significant decrease in PCB concentration was 

observed within the first 6 weeks of incubation, regardless of the treatment applied. A modest 

removal was obtained only in P. ostreatus and I. lacteus-augmented microcosms after 12 

weeks (18.5 and 19.3 %, respectively).  

Concerning soil B, the PCB removal was 41.3 and 39.4 % in the presence of P. ostreatus and 

I. lacteus, respectively, at the same time interval (12 weeks). Despite the similar degradation 

performances of the two bioaugmented fungi, the removal of PCBs in soil B was faster with I. 

lacteus than with P. ostreatus within the first 2 weeks (16.9 vs 9.3%). On the contrary, P. 

ostreatus was more efficient than I. lacteus during the further 4 weeks of incubation (30.4 vs 

24.3 %). 

In the rhizosphere soil (soil C), the highest depletion of PCB (50.5 %) with respect to the 

original contamination was achieved in P. ostreatus-augmented soil, while I. lacteus 

promoted a degradation of 30.3 %. Comparing the amounts of removed PCBs, P. ostreatus 

was more effective in soil B than in soil C (155.2 vs 85.5 mg Kg1).  

The greater degradation capability of P. ostreatus than to those of other fungal strains was 

also previously observed in both liquid and solid systems (Cvancarova et al., 2012; Kubatova 

et al., 2001). By using the former system, the degrading efficiency of eight ligninolytic fungi 

towards the PCB mixture Delor 103 was comparatively evaluated: 98.4 and 99.6 % of PCBs 

(initial concentration of 10 mg Kg-1) were removed by P. ostreatus in complex and mineral 

media, respectively, after 6 weeks of treatment (Cvancarova et al., 2012). P. ostreatus was 

also able to degrade about 40% of PCBs in a soil system artificially contaminated with 10 mg 

Kg-1 of Delor 103 after 60 days of incubation (Kubatova et al., 2001).   

Regardless of the soil typology, the extent of PCB removal by the biostimulation treatments 

was invariably lower than that achieved in bioaugmented microcosms after 12 weeks of 

incubation. Generally, even though a modest removal of PCBs was observed in soil B (22.9 

%), the stimulation of resident microorganisms via the addition of a lignocellulosic substrate 

was not as successful as the bioaugmentation strategy. This outcome was obtained also in a 

previous work where the PCB degradation capability of the white rot fungus Lentinus tigrinus 

was compared with the efficiency of a biostimulation treatment in the clean-up of a 

historically contaminated soil by Aroclor 1260 (Federici et al., 2012). In the same study, the 
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percent depletion of PCBs in L. tigrinus-augmented microcosms was higher than that 

observed in microcosms where maize stalks were added as a lignocellulosic amendant (33.8 

vs 28.0 %, respectively).   

 
 

Fig. 2.4. Time course of PCBs degradation in mycoaugmented (P. 
ostreatus and I. lacteus) and biostimulated (Biostimulation) microcosms 
with soil A, B and C. Data are the mean ± standard deviation of three 
replicates. Multiple pair-wise comparisons were performed by the 
Tukey test (P<0.05). Same uppercase letters above bars indicate that 
differences among the harvests (time) within the same treatment were not significant. Same 
lowercase letters indicate lack of statistically significant differences among coeval treatments.  
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Tab. 2.5. Degradation of PCBs expressed as percentage and mg Kg-1 of removed PCBs in 
mycoaugmented (P. ostreatus and I. lacteus) and biostimulated  (Biostimulation) microcosms 
with soil A, B and C after 12 weeks of incubation.  
 

Treatment 

Soil A Soil B Soil C 

PCB 
degradation 

(%) 

Absolute 
PCB 

amount 
(mg Kg-1) 

PCB 
degradation 

(%) 

Absolute 
PCB 

amount 
(mg Kg-1) 

PCB 
degradation 

(%) 

Absolute 
PCB 

amount 
(mg Kg-1) 

P. ostreatus 18.5 130.5 41.3 155.2 50.5 85.5 

I. lacteus 19.3 136.2 39.4 148.0 30.3 51.3 

Biostimulation 11.5 81.0 22.9 85.9 18.6 31.5 

 

2.3.5 Vibrio fischerii toxicity assay 

The validity of selected bioremediation methods must be corroborated by the efficiency in the 

degradation of target pollutants as well as in the toxicity reduction of contaminated matrices. 

Therefore, toxicological assay, employing the luminescent bacterium V. fischerii, were 

performed to assess the toxicity of soil extracts on this microorganism, before and after the 

treatments. Data are summarized in Figure 2.5. 

 
Fig. 2.5. Percentage of luminescence inhibition in mycoaugmented (P. ost. and I. lac.) and 
biostimulated (Bio) microcosms with soil A, B and C at the beginning (t0) and at the end 
(t12w) of each treatment. 
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At the beginning of bioaugmentation or biostimulation treatments, luminescence inhibition 

was higher in soil A (69.9 %) than in soil B (54.1 %) and C (44.9 %). This result suggested 

that the higher content of PCBs exerted a greater toxicity towards V. fischerii.  

Concerning the treatment of soil A, the slight PCB removal in both myco-augmented and 

biostimulated microcosms did not lead to significant changes in toxicity along the incubation, 

while an increase in luminescence inhibition was even observed after the treatment of soil B 

in all cases. Specifically, higher toxicity values were obtained in P.ostreatus and I. lacteus 

treated soil (37.0 and 30.4 %, respectively, with respect to the initial percentage of inhibition) 

than in biostimulated microcosms despite of the capability of these two fungal strains to 

perform a PCB removal of 41.3 and 39.4 % from soil B. These outcomes suggested that the 

fungal transformation of PCBs in soil led to the formation of more polar metabolites, which 

were more toxic than the parent compounds. Conversely, P. ostreatus and I. lacteus 

substantially reduced the toxicity (63.9 and 55.3 %. respectively) in soil C after 12 weeks of 

treatment.  

In view of the initial consideration concerning the efficiency of a bioremediation treatment, 

the objectives in terms of concomitant high PCB degradation and detoxification were 

achieved with the bioaugmentation strategies, with the best results being obtained with of P. 

ostreatus in the clean-up of the rhizosphere soil (soil C).  

2.3.6 Detection and identification of PCB degradation intermediates 

An extensive set of qualitative GC-MS analysis was undertaken to identify PCB metabolites 

and to gain insights into the fungal PCB degradation pathways in soil systems. Several 

intermediates were detected throughout the mycoremediation treatments and their structures 

were suggested by comparing the data in the NIST 08 library and independently by 

interpreting the fragmentation patterns (Table 2.6). Product ion scan (MS-MS) was used when 

necessary to clarify the fragmentation sequence, and all the molecular weights were estimated 

according to chemical ionization. Derivatization with diazomethane enabled the detection of 3 

and 5 isomers of hydroxylated tri- and tetra-chloroBP, respectively, in both bioaugmented and 

biostimulated microcosms, either in the early phases or at the end of the treatments. 

Dihydroxylated tri- and tetrachloroBP were also found in soil A and C after the treatment 

with I. lacteus. The formation of the latter compounds can be attributed either to the 

intracellular CYP450 enzymatic system of Irpex lacteus or to the dioxygenases activity of 

autochthonous bacteria. 
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Moreover, methoxy-substituted-derivatives of tetrachlorobiphenyls were detected without 

derivatization in P. ostreatus microcosms at the end of incubation. The fungal transformation 

of PCBs to their corresponding hydroxylated and methoxylated forms was already proved in 

model liquid systems (Kamei et al., 2006a; Cvancarova et al., 2012). In particular, both 

studies proposed a pathway for the biotransformation of PCBs where methoxylated PCBs are 

formed via initial hydroxylation reaction mediated by the cytochrome P450 monooxygenases 

system (CYP450). Moreover, the formation of hydroxylated compounds when biostimulation 

treatment was applied suggested that autochthonous fungi took part in the biotransformation 

of PCBs. In this regard, an early study on PCB microbial degradation reported the capability 

of the soil fungus Rhizopus japonicus to convert 4-chloroBP and 4,4´-dichloroBP to their 

corresponding hydroxylated forms (Wallnofer et al., 1973). 

Additionally, trichlorobenzoic acids, dichloro benzylalcohols and trichlorocresol were 

identified in P. ostreatus microcosms with soil A and B after 12 weeks of incubation. The 

formation of chlorobenzoates (CBAs) from hydroxylated PCBs and their further 

transformation via a reductive pathway was already proposed (Kamei et al., 2006a; 

Cvancarova et al., 2012). In particular, the concomitant presence of reduced forms of 

chlorobenzoic acids (dichloro benzylalcohols and trichlorocresol) confirmed the hypothesis 

that a reductive mechanism operates on the carboxyl group of CBAs in agreement with other 

studies (Muzikar et al., 2011; Cvancarova et al., 2012). Once CYP450 oxidized the aromatic 

structure of PCBs, ring fission reaction can be mediated by another enzymatic system (i.e. 

ligninolytic system) as suggested by Cajthaml et al. (2006). Thereafter, side-chain reductive 

reactions of CBAs might proceed via a two-step process catalysed by NADPH-dependent 

aryl-aldehyde dehydrogenase and aryl-alcohol dehydrogenase (Covino, 2010).  

All of the detected metabolites were found at trace levels with the exception of 2,3,6- 

trichlorobenzoic acid. The accumulation of this intermediate is probably due to its 

recalcitrance as already demonstrated (Covino, 2010; Muzikar et al., 2011). The double 

ortho-chlorine substitution and the electron-withdrawing effect of these chlorine atoms 

adjacent to the carboxyl group can prevent the enzymatic attack towards CBAs. 
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2.3.7 Phospholipid fatty acids analysis 

Phospholipid fatty acids are widely used as taxonomic and phylogenetic biomarkers to 

describe the structure and the size of the microbial community. Thus, PLFA analysis was 

performed to evaluate changes occurring in both bacterial and fungal communities during the 

mycoremediation treatments (Figure 2.6). The highest fungal concentrations were observed in 

myco-augmented microcosms, in particular after 6 weeks of incubation of P. ostreatus with 

soil A (4.02 mg Kg-1), B (14.36 mg Kg-1) and C (11.38 mg Kg-1). The addition of this 

allochthonous organism seemed to stimulate also the growth of bacteria, the highest 

concentration of which was reached in soil B (4.20 mg Kg-1) and C (1.66 mg Kg-1) at the 

same time. Concerning I. lacteus augmentation treatment, the maximum amount of fungal 

biomass was measured in soil B after 6 weeks of incubation. However, this value was much 

lower than that found in coeval P. ostreatus microcosms (1.34 vs 14.35 mg Kg-1). The use of 

I. lacteus also stimulated the bacterial growth: an evident increase in the bacterial community 

size was observed in soil B and C at the end of treatment (1.54 and 2.00 mg Kg-1, 

respectively). Lastly, the addition of the non-inoculated lignocellulosic substrate 

(biostimulation treatments) affected positively the autochthonous microorganisms: the highest 

bacterial concentration was reached in soil A, B and C (1.34. 1.86 and 1.48 mg Kg-1. 

respectively) after 6 weeks of incubation. Even though PLFA analysis is one of the most 

suitable methods for the culture-independent characterization of microbial communities in 

soil, certain limitations (i.e. several fatty acids are common to different microbes) require 

attention when interpreting the results (Frostegard et al., 2010). Thus, the combination of 

PLFA with molecular techniques (i.e. pyrosequencing) describes the changes in microbial 

community structure more accurately. 
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Figure 2.6. Phospholipid fatty acids concentration (mg Kg-1) in myco-augmented (P. ost. and 
I. lac.) and biostimulated (Bio) microcosms with soil A, B and C at the beginning (t0), and 
after 6 and 12 weeks (t6w and t12w, respectively).  
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2.3.8 Pyrosequencing 

Molecular biology techniques have revolutionized the study of microbial ecology providing a 

tool for the development of a rapid, culture-independent assessment of microbial communities 

present in complex ecosystems. Undoubtedly, high-throughput next-generation sequencing 

methods represent a powerful alternative to traditional approaches (mostly based on cloning 

and Sanger sequencing) enabling detailed identification and relative quantification of 

microbial populations from environmental samples. The process involves a long series of 

steps, from sampling to bioinformatics analysis via laboratory handling. Therefore, awareness 

of methodological biases, potential pitfalls which can yield artificial results and misleading 

conclusions is required when these innovative techniques are used. In this study, 454 tag-

encoded pyrosequencing was selected to gain insights into the dynamic shifts in both bacterial 

and fungal diversity throughout the mycoremediation treatments.  

The pyrosequencing procedure yielded ≈ 186.000 and 163.000 bacterial and fungal 

sequences, respectively. Upon data processing with the QIIME software, 24 and 47 % of the 

obtained sequences were omitted since they did not meet stringent quality control criteria. The 

remaining sequences were aligned and subjected to cluster analysis to ascertain their 

phylogenetic affiliations. Sequences that could not be assigned to any phylum were assigned 

as ND (not determined). 

Concerning the bacterial population, a considerable decline of Actinobacteria and Chloroflexi 

occurred in all cases, while a distinct increase was observed in Firmicutes relative abundance 

when soil A and C were treated with P. ostreatus (Figure 2.7). This phylum accounted for 

94.0 and 64.4 % of the total reads in soil A and C, respectively, after 6 weeks of incubation. 

Similar raise was found also for Proteobacteria phylum in all soil samples augmented with I. 

lacteus. After 6 week of I.lacteus treatment, Proteobacteria were the most abundant in soil A, 

B and C making up 90.1, 82.3 and 92.3 %, respectively, of the whole bacterial population. At 

the end of incubation, this phylum was still the predominant one in soil A, whereas an 

increase of Bacteroidetes was evident in soil B (37.5 %) and C (48.2%).  

In biostimulated microcosms, the addition of the lignocellulosic substrate promoted primarily 

the growth of Proteobacteria, the relative abundance of which amounting to 71.1, 64.6 and 

60.8 % of total reads in soil A, B and C, respectively. 

The other phyla (Acidobacteria, Gemmatimonadetes and Verrucomicrobia) represented a 

significantly smaller fraction of bacterial consortia in all microcosms under study. 
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The presence of sequences belonging to Chloroflexi phylum at the beginning of 

mycoremediation treatments suggested that a certain microflora specialized in PCB 

degradation has been adapted over time. As mentioned in section 1.6.1.1, anaerobic bacteria 

belonging to Chloroflexi phylum are the main players in the reductive dehalogenation of 

higher chlorinated biphenyls. These microorganisms can use the chlorine atoms of PCBs as 

final electron acceptor during the dehalorespiration process leading to the formation of lower 

chlorinated compounds. Moreover, the hypothesis of the occurrence of adaptation processes 

was also supported by the initial presence of microorganisms belonging to Actinobacteria, 

Proteobacteria and Firmicutes phyla. As a matter of fact, these phyla encompass well-known 

genera with reported PCB-degrading ability, such as Rhodococcus, Bacillus, Pseudomonas, 

Achromobacter, Burkholderia, etc.  

Besides the remarkable shift in bacterial population, augmentation with P.ostreatus and I. 

lacteus determined a decrease in both Chao1 and Shannon diversity indices, with the 

exception of Shannon index when the soil B was treated with P. ostreatus (Table 2.7). 

Conversely, no appreciable changes in bacterial diversity were observed in biostimulated 

microcosms.  

 

Tab. 2.7. Estimated Chao1 and Shannon indeces for bacterial taxa in myco-augmented (P. ost. 
and I. lac.) and biostimulated (Bio) microcosms with soil A, B and C at the beginning (t0), 
and after 6 and 12 weeks (t6w and t12w, respectively). 
 

 Soil A Soil B Soil C 
 Chao1 Shannon Chao1 Shannon Chao1 Shannon 
P.ost. t0 233.3 5.75 269.2 5.97 254.6 6.65 
P.ost. t6w 97.2 3.68 276.8 6.23 143.5 4.69 
P.ost. t12w 87.0 3.47 221.8 6.13 151.9 4.25 
       
I. lac. t0 277.8 6.22 275.4 6.80 256.4 6.79 
I. lac. t6w 41.9 2.17 113.4 4.17 82.8 3.92 
I. lac. t12w 56.0 2.91 140.3 5.40 137.8 4.53 
       
Bio t0 273.2 5.63 310.1 6.85 352.4 6.85 
Bio t6w 151.2 5.49 255.7 6.33 263.1 6.08 
Bio t12w 170.7 5.63 218.0 6.45 327.0 5.94 
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Fig. 2.7. Taxonomic profiles of bacterial community at the phylum level in myco-augmented 
(P. ost. and I. lac) and biostimulated (Bio) microcosms with soil A, B and C. The segments 
composing each bar represent the relative abundance of each phylum, determined by 
pyrosequencing of 16S rDNA after 0, 6 and 12 weeks (t0, t6w and t12w) of treatment. 
Sequences that could not be assigned to any phylum were referred to as ND (not determined). 
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Concerning fungal diversity, the majority of detected fungal sequences belonged to the phyla 

Basidiomycota, Ascomycota and Zygomicota (Figure 2.8). Basidiomycota phylum was 

predominant in all P. ostreatus-augmented microcosms along the whole treatment period, 

while a general decline was observed in I. lacteus-augmented soil samples A, B and C 

reaching 69, 21 and 1 %, respectively, of the total fungi at the end of incubation. Furthermore, 

genus level analysis established that Basidiomycota sequences detected were represented by 

P.ostretatus an I. lacteus in their respective microcosms. These results confirmed the ability 

of the two selected white rot fungi to compete with the autochthonous mycobiota: the use of 

wheat straw-based pellets as lignocellulosic substrate supported the growth of both fungi, and 

the preparation of fully colonized LS as the inoculum formulation, prior to soil mixing, 

increased their antagonistic potential as reported in a previous study (Covino et al., 2010). 

Nonetheless, I. lacteus sequences abundance drastically decreased during the last 6 weeks of 

incubation in soil B and C with a concomitant increase of unidentified fungal sequences. 

Interestingly, sequences representative of the phylum Basidiomycota were also found in 

biostimulated samples of soil B and C after 12 weeks: the genus-level taxonomy assignment 

displayed that the Agrocybe and Sphaerobolus genera were the most abundant 

Basidiomycetes in soil B (45.5 and 49.7 %, respectively), whereas Pluteus and Cryptococcus 

predominated in soil C (27.5 and 7.3 %, respectively). 

Concerning the phylum Ascomycota, the analysis of fungal sequences in biostimulated 

microcosms have shown the highest abundance in the soil C (54.4 %), while lower amount of 

pertinent sequences were found in soil A and B (19.3 and 17.4 % of total fungal sequences) at 

the beginning of treatments. An increase from 19.3 to 36 % was observed in soil A during the 

incubation, mainly due to Penicillium and Stachybotrys growth. Contrary, a descending 

profile in Ascomycota sequences relative abundance was observed in soil B (from 17.4 to 0.1 

%) and C (from 54.4 to 31.4 %) throughout the whole incubation. The capacity of Penicillium 

species in the removal of chlorinated biphenyls is well known. Indeed, several species 

belonging to this genus (P. chrysogenum, P. purpurescens, P. digitatum, P. aurantiogriseum) 

were isolated from PCB-contaminated soils and tested for their ability to degrade PCBs in 

liquid systems (Tigini et al., 2009; Yin et al., 2011; Mouhamadou et al., 2013): the studies 

confirmed that these fungi can co-metabolized PCBs when a readily available carbon source 

was provided.  

Regardless of the soil samples, the phylum Zigomycota was dominated by members of Mucor 

genus in all biostimulation treatments; the highest relative abundance of Zygomycetes was 

reached after 6 weeks of incubation in soil A and C (12.4 and 19.6 %, respectively).  
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Based on the abundance of various taxa within each community, Alpha diversity was also 

assessed for fungi showing a high variability in Chao1 index in all treatments.  On the other 

hand, Shannon index indicated that biodiversity tend to decrease in P. ostreatus microcosms 

in all cases, with a temporary being observed only in soil A. Moreover, a similar rising was 

observed also when the same polluted matrix underwent I. lacteus and biostimulation 

treatment. 

 
 
 
Tab. 2.8. Estimated Chao1 and Shannon indeces for fungal taxa in myco-augmented (P. ost. 
and I. lac.) and biostimulated (Bio) microcosms with soil A, B and C at the beginning (t0), 
and after 6 and 12 weeks (t6w and t12w, respectively). 
 
 
 
 Soil A Soil B Soil C 
 Chao1 Shannon Chao1 Shannon Chao1 Shannon 
P.ost. t0 6.5 0.66 20.3 0.90 32.3 2.45 
P.ost. t6w 48.0 3.94 6.7 0.65 45.4 0.56 
P.ost. t12w 7.9 0.54 5.2 0.51 6.5 0.54 
       
I. lac. t0 5.6 0.96 45.5 2.81 30.9 1.47 
I. lac. t6w 7.7 1.08 5.8 0.47 4.3 1.37 
I. lac. t12w 10.3 1.24 23.3 2.17 19.3 1.33 
       
Bio t0 36.7 2.23 47.1 4.24 4.2 0.52 
Bio t6w 42.4 3.15 43.9 2.56 60.8 3.93 
Bio t12w 49.7 3.16 5.7 0.65 59.3 3.72 
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Fig. 2.8. Taxonomic profiles of fungal community at phylum level in myco-augmented (P. 
ost. and I. lac) and biostimulated (Bio) microcosms with soil A, B and C. The segments 
composing each bar represent the relative abundance of each phylum, determined by 
pyrosequencing of the internal transcribed spacer (ITS) after 0, 6 and 12 weeks (t0, t6w and 
t12w) of treatment. Sequences that could not be classified into any phylum were assigned as 
ND (not determined). 
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Lastly, principal component analysis (PCA) was performed in order to provide an overview of 

similarities in microbial communities among treatments, soil matrix and time of incubation 

(Figure 2.9 A, B and C). When the abundances of both fungal and bacterial phyla were 

analysed, the percentage variance explained by the first and second component amounted to 

31.1 and 17.2 %, respectively. Great similarities were observed in augmented-microcosms at 

the beginning (P0A, P0B, P0C, I0A, I0B and I0C) grouping together in the lower right-hand 

quadrant (Fig. 2.9 B). Analogies among P. ostreatus treatments in the later phase of 

incubation with soil A and C (P6A, P12A, P6C and P12C) appeared to be positively 

correlated with Basidiomycota and Firmicutes phyla as indicated by the common position of 

their scores of these treatments with loadings of the aforementioned two variables in the lower 

left-hand quadrant of the biplot (Fig. 2.9 A). On the contrary, I. lacteus treatments in the 

middle phase of incubation (I6A, I6B and I6C) segregated along the second component from 

their respective microcosms at the end of incubation with the exception of soil A (I12A). 

Indeed, as illustrated above, Proteobacteria phylum was the dominant phylum in Irpex- 

augmented microcosms after 6 weeks of incubation and remained the most abundant one at 

the end of incubation only in soil A, whereas an increase of Bacteroidetes appeared in soil B 

and C. Morever, PCA analysis revealed that the last 2 microcosms (I12B and I12C) grouped 

with the 6-week-old biostimulated-treatments of soil A, B and C (B6A, B6B and B6C). 
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Fig. 2.9. Principal Component Analysis (PCA) biplot (A), scores plot (B) and loadings plot 
(C) of microbial communities and mycoremediation treatments. In biplot A and scores plot B, 
red circles, green squares and purple rhombus refer to Pleurotus ostreatus augmentation, 
Irpex lacteus augmentation and biostimulation treatments, respectively. In scores plot (B), the 
first capital letter of the alphanumeric code indicates the treatment type (P= Pleurotus, I= 
Irpex and B=bistimulation), the Arabic number the weeks of incubation (0, 6 and 12 weeks) 
and the last capital letter the polluted matrix (A=soil A, B=soil B and C=soil C). The percent 
variance explained by each component is shown in X and Y axis captions. 
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2.4 Conclusions 

The mycoremediation of polychlorinated biphenyls polluted soils represents an effective and 

environmentally friendly alternative to chemical and thermal procedures. However, the 

application of this technology requires an accurate evaluation of all the factors which may 

affect the technical feasibility as well as the efficiency of the selected processes.  

In this study, the determination of the physico-chemical properties of the contaminated solid 

matrices, prior to remediation, revealed that the content of organic matter mainly influenced 

the bioavailability of PCBs, and thus their accessibility to fungi.  

Moreover, the chemical characterization of contaminants showed the concomitant presence of 

PCBs and CBAs. The latter, well-known intermediates of fungal PCB mineralization process 

or dead-end products of bacterial aerobic PCB degradation, could have been formed along the 

time, due to prolonged residence time of the contaminated soil in Lhenice dumpsite.  

With regard to the tested remediation approaches, bioaugmentation was more efficient than 

biostimulation in the removal of PCBs from both topsoil (soil B) and rhizosphere soil (soil C). 

Particularly promising were Pleurotus ostreatus or I. lacteus the use of which led to PCB 

removals of 41.3 and 39.4 % from soil B, respectively, and 50.5 and 30.3 % from soil C after 

12 weeks of incubation. Moreover, an evident reduction in toxicity was observed in P. 

ostreatus- and I. lacteus- soil C microcosms (63.9 and 55.3 %, respectively) at the end of the 

treatments.  

The identification of hydroxylated and methoxylated PCB derivatives, and the presence of 

degradation intermediates, such as chlorobenzoates, chlorobenzaldehydes, chlorobenzyl 

alcohols and chlorocresols confirmed that the degradation process of PCBs involved both 

fungal intracellular and extracellular enzymes. The detection of mono-hydroxylated-PCB 

derivatives in biostimulated microcosms suggested that also the resident microbiota can take 

part in the biotransformation of PCBs.   

Furthermore, insights into the microbial community composition, diversity and dynamics 

throughout the remediation processes were gained with the combination of two different 

culture-independent techniques: phospholipid fatty acids analysis and 454-pyrosequencing. 

The use of the former method showed that the fungal biomass of P. ostrateus was much 

higher than that of I. lacteus for the whole incubation time. The introduction of these 

allochthonous fungi stimulated also the bacterial growth, the biomass of which achieved the 

maxima values after 6 and 12 weeks in P. ostreatus-soil B and I. lacteus-soil C microcosms, 

respectively. Moreover, the addition of non-inoculated lignocellulosic substrate 
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(biostimulation treatments) evidently promoted the growth of both bacterial and fungal 

populations, the highest concentrations of which were reached after 6 weeks of incubation in 

all the soil samples.  

On the other hand, the 454-pyrosequencing technique provided a deeper assessment of the 

microbial changes occurring during the treatments. 

P. ostreatus augmentation clearly increased the relative abundance of Firmicutes phylum in 

the bulk soil and rhizosphere soil, while a similar raise was observed for Proteobacteria 

phylum in all soil samples treated with I. lacteus. However, at the end of incubation, an 

increase of Bacteroidetes sequences was found in I. lacteus-soil B and –soil C microcosms. 

Additionally, fungal community analysis showed that the phylum Basidiomycota was the 

dominant one in bioaugmentation treatments, the sequences of which belonged to P. ostreatus 

and I. lacteus genera in their respective microcosms. As for I lacteus, a decrease in its 

sequences relative abundance was observed during the last 6 weeks of incubation in soil B 

and C, while P. ostreatus was the most abundant one for the whole incubation period. This 

latter finding proved the outstanding capability of this fungus to compete with the 

autochthonous mycobiota, and thus to efficiently grow in PCB-contaminated soils under non-

sterile conditions. 

By contrast, the large majority of fungal sequences in biostimulated microcosms belonged to 

the phyla Ascomycota and Zygomycota, with the exception of the topsoil (soil B) where 

members of the phylum Basidiomycota became predominant in the later phase of the 

incubation. In this case, the presence of Basidiommycota sequences, mostly belonging to 

Agrocybe and Sphaerobolus genera, prompted us also to hypothesize their potential 

involvement in PCB transformation process in view also of the best degradation result 

achieved in soil B among all biostimulated microcosms.  
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3.1 Introduction 

The ability of fungi, in particular “white rot” fungi, to degrade several organopollutants 

including chlorinated phenols, PCBs, DDT, dioxins, CBAs, PAHs, etc., is widely 

documented.  The degrading capability was attributed to their ligninolytic system (Lac, LiP 

and MnP): as a matter of fact, many of the abovementioned pollutants were transformed by 

isolated enzymes (Baborová et al., 2006; Zhao & Yi, 2010; Covino et al., 2010; Fan et al., 

2013). In the specific case of PCBs, white rot fungi were efficient in the removal of technical 

PCB mixtures or single PCB congeners, a process that can be undertaken under ligninolytic 

conditions (i.e., nutrient-limited conditions); however, a direct correlation between 

degradation extent and ligninolytic activities was not proven. Afterwards, a few works 

indicated that isolated fungal extracellular phenoloxidases and peroxidases were unable to 

oxidize PCB congeners (Baudette et al., 1998; Krcmar et al., 1999; Takagi et al., 2007). 

However, they were shown to be able to perform the breakdown of some PCB degradation 

intermediates, such as hydroxylated derivatives (Keum et al., 2004; Kordon et al., 2010).  

Kamei and co-workers (2006a) investigated the transformation products of 4,4′-

dichlorobiphenyl in Phanerochaete chrysosporium in the attempt of determining the 

degradation pathway. Methoxylated- and hydroxylated-PCB derivatives were detected in P. 

chrysosporium liquid cultures and, thus the involvement of cytochrome P450 

monooxygenases (CYP450) in the degradation process was hypothesized. Moreover, the 

addition of a well-known CYP450 inhibitor, namely piperonyl butoxide, to fungal cultures 

prevented the formation of hydroxylated metabolites supporting the initial hypothesis. 

Chlorobenzoic acids, chlorobenzaldehydes and chlorobenzylalcohols were also identified as 

PCB degradation products. In particular, the formation of chlorobenzoates from hydroxylated 

PCBs and their further transformation via a reductive pathway was suggested also by 

Cvancarova et al. (2012). Once CYP450 oxidised the aromatic structure of PCBs, ring fission 

reaction can be mediated by other enzymatic systems (i.e. ligninolytic system) (Cajthaml et 

al., 2006; Cvancarova et al., 2012); thereafter, a reductive mechanism can operate on the 

carboxyl group of CBAs leading to the formation of chlorinated aldehydes and alcohols 

(Covino, 2010; Muzikar et al., 2011).  

Concerning CBAs, the degradation capability of laccase and manganese-peroxidase isolated 

from the white rot fungus Lentinus tigrinus (L. tigrinus) towards a mixture of chlorobenzoic 

acids was assessed (Covino, 2010). As for PCBs, these purified enzymes were unable to 
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oxidize CBAs even under mediated conditions, confirming that other enzymatic systems are 

involved in the initial attack of chlorobenzoic acids.  

However, any mechanistic interpretation on the PCB and CBA degradation processes, 

especially for the first transformation steps has not been fully elucidated yet. Generally, 

indications for the pivotal role of fungal CYP450 in the elimination of many xenobiotics (i.e., 

PCBs, pentachlorophenols, nitroaromatic compounds) were desumed from inhibitory effects 

exerted by piperonyl butoxide (Teratomo et al., 2004; Kamei et al., 2006a; Ning & Wang, 

2012) on the enzyme-mediated conversion of pollutants. Because of the high instability and 

the low expression of CYP450 monooxygenase activities, the proof of the direct involvement 

of CYP450 enzymes in the transformation of organopollutants under in vitro condition has 

not been provided yet.  

In view of these considerations, the aim of this work was the development of a reliable 

method to extract microsomes rich in CYP450 activities from P. ostreatus and L. tigrinus 

cultures, and evaluate their role in the biotransformation process of PCBs and CBAs, 

respectively.  

Moreover, a semi-purified laccase activity was obtained from P. ostreatus and used to 

perform in vitro tests with hydroxylated PCBs (OH-PCBs), toxic intermediates that can be 

accumulated during the degradation process of PCBs. 

 

 
 

Fig. 3.1. Workflow of Chapter 3. 
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3.2 Materials and methods 

3.2.1 Extraction of fungal microsomal fraction  

Microsomal fractions were extracted from 5-day-old static cultures of P. ostreatus 3004 

CCBAS 278 and L. tigrinus CBS 577.79 in malt extract-glucose (MEG) medium. The 

mycelial pellets were filtered on nylon cloth and washed with cold potassium phosphate 

buffer (100 mM, pH 7.2), disrupted in liquid nitrogen, and then in a Virtis 45 blender at 375 

Hz using the same buffer supplemented with glycerol (200 g l-1), bovine serum albumin 

(BSA, 1.5 g l-1), phenylmethylsulfonyl fluoride (PMSF, 0.25 mM), dithiotreitol (DTT, 5 mM) 

and ethylenediaminetetraacetic acid (EDTA, 1mM) to be subsequently centrifuged (5000 x g, 

20 min). The recovered supernatant underwent to two ultracentrifuge steps (100000 x g, 75 

min) to separate the cytosolic fraction from the pellets containing microsomes. Pellets were 

then resuspended and stored in phosphate buffer (50 mM, pH 7.2) containing glycerol (300 g 

l-1) and EDTA (0.1 mM) and, referred to as the microsomal fraction. The total protein 

concentration was determined by the dye binding method using BSA as the standard 

(Bradford, 1976). 

3.2.2 Detection and quantification of cytochrome P450 in the microsomal fraction 

The cytochrome P450 monooxygenase activities were measured in microsomal fractions by 

carbon monoxide (CO)-binding spectrum (Omura and Sato, 1964). Firstly, the sample was 

diluted to 1 mg mL-1 of protein with phosphate buffer, and then dispensed equally into two 

cuvettes to record spectrophotometrically a baseline spectrum in the range of 400-500 nm. 

Sodium dithionite (400 µg mL-1) was added to each cuvette, and then one was gently gassed 

with CO for 60 s, while the other one with N2 to the same extent. Thereafter, difference 

spectra were recorded. The concentration of CYP450 and its respective inactivate form 

CYP420 were calculated using the extinction coefficients ε450-490 =91 mM-1 cm-1 and ε420-490 = 

110 mM-1 cm-1, respectively.  

3.2.3 In vitro PCB and CBA degradation test with cytochrome P450  

L. tigrinus CYP450 in vitro degradation test was performed using a mixture of CBAs 

composed of 2-chlorobenzoic acid (2-CBA), 3-chlorobenzoic acid (3-CBA), 4-chlorobenzoic 

acid (4-CBA), 2,3-dichlorobenzoic acid (2,3-diCBA), 2,4-dichlorobenzoic acid (2,4-diCBA), 

2,5-dichlorobenzoic acid (2,5-diCBA), 2,6-dichlorobenzoic acid (2,6-diCBA), 3,4-

dichlorobenzoic acid (3,4-diCBA), 3,5-dichlorobenzoic acid (3,5-diCBA), 2,3,5-
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trichlorobenzoic acid (2,3,5-triCBA), 2,3,6-trichlorobenzoic acid (2,3,6-triCBA), 2,4,6-

trichlorobenzoic acid (2,4,6-triCBA) purchased from Sigma–Aldrich (Germany).  

P. ostreatus CYP450 in vitro degradation test was performed using 2,2´-dichlorobiphenyl 

(PCB n.4), 2,4´-dichlorobiphenyl (PCB n.8), 2,2´,5-trichlorobiphenyl (PCB n.18). 2,2´,3,6-

trichlorobiphenyl (PCB n.45), 2,3,3´,4,4´-tetrachlorobiphenyl (PCB n.105) obtained from Dr. 

Ehrenstorfer GmbH (Augsburg, Germany). 

The experiments were carried out in 1 mL reaction mixture containing CBAs (3 mg l−1 of 

each CBA) or PCBs (2 mg l−1 of each PCB), 1 mM DTT and 1 mM PMSF in 2% (v/v) 

dimethyl sulfoxide (DMSO), 0.2 mM reduced nicotinamide adenine dinucleotide phosphate 

(NADPH) and 1 mM EDTA in Na-phosphate buffer (0.1 M pH 7.2). The reactions, in 

triplicate, were initiated by the addition of 1 mg of microsomal proteins. Thereafter, all the 

samples were incubated at 28 °C for 1 h on a rotary shaker (100 rpm).  

Five different controls were set up: piperonyl butoxide (PB, 2 mM) and carbon monoxide 

(CO bubbled for 1 min after sodium dithionite reduction), two well-known CYP450 

inhibitors, were selected to carry out CYP450 inhibition controls (PB- and CO-inhibition 

control, respectively). NADPH dependency of the reaction was verified performing tests in 

the absence of this co-factor (no-NADPH controls). Moreover, reaction mixtures with 

inactivated microsomes were set up heating the protein for 1 h at 100 °C (heat-inactivated 

control) and blank controls were prepared with Na-phosphate buffer. The reactions were 

stopped by adding 20 mg of NaCl and 1 mM sulphuric acid (H2SO4) to the mixtures. 

3.2.4 Semipurification of Pleurotus ostreatus laccase 

A semi-purified laccase was obtained from 20-day-old P. ostreatus solid-state cultures carried 

out in 3 L Erlenmeyer flasks containing 100 g of wheat straw pellets previously sterilized in 

autoclave (45 min at 121 °C). The moisture of the lignocellulosic substrate was adjusted to 

75% [w/w] with sterile deionized water prior to the inoculation with 10 agar plugs (1.0 cm 

diameter each) from 7-day-old P. ostreatus mycelium. 

The fungus-colonized matrix was mechanically homogenized, added with 1 L of 20 mM pH 

6.0 Na-phosphate buffer (buffer A), and the extraction was carried out by stirring for 2 h at 4 

°C prior to separation of the buffered extract by means of a hydraulic press. The crude extract 

was then filtered through filter paper and centrifuged at 5000 x g for 15 minutes. Fractional 

ammonium sulphate precipitation, from 0 to 25% and then from 25 to 80% (w/v) saturation, 

was carried out to remove colloids and to obtain protein-rich pellets, respectively. The 

precipitate was resuspended in buffer A and dialyzed at 4 °C against 10 volumes of buffer A 
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using an Amicon stirred cell (Millipore, Germany) equipped with a 10 kDa cut-off flat 

membrane. The concentrated extract was then applied to a desalting Hi-Prep column (26/10; 

GE Healthcare, USA) equilibrated with buffer A at a flow rate of 3 mL min−1.  The pooled 

active fractions were separated using a Mono Q 5/50 GL (Amersham Pharmacia, USA) anion 

exchange column in an AKTA Purifier FPLC device (Amersham Pharmacia, USA). Laccase 

was eluted by a linear NaCl gradient (from 0 to 0.5 M) in buffer A. Laccase-rich fractions 

were pooled, desalted (Hi-Prep mini-column), filter-sterilized (0.22 µm) and stored at –20 °C 

until used. 

3.2.5 Enzymatic assays 

Laccase activity was spectrophotometrically determined by oxidation of 2,2'-azino-bis (3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS) as the substrate. The reaction was followed by 

the absorbance increase at 420 nm and the enzyme activity was expressed in Units defined as 

the amount of enzyme oxidizing 1 µmol of ABTS per minute (ε 420 = 36,000 M-1cm-1, 

Matsumura et al., 1986).  

3.2.6 In vitro hydroxy-PCB degradation test with Lac and MnP 

P. ostreatus laccase in vitro degradation tests were performed in triplicate using 4-hydroxy-

4´-chlorobiphenyl (4OH-4´CB), 4-hydroxy-2-chlorobiphenyl (4OH-2´CB), 2-hydroxy-3,5-

dichlorobiphenyl (2OH-3,5diCB), 3-hydroxy-2´,5´-dichlorobiphenyl (3OH-2´,5´diCB). 4-

hydroxy-2´,5´-dichlorobiphenyl (4OH-2´,5´diCB) obtained from doc. Ing. Ondřej Uhlík, 

Czech Republic. 

The degradation test was conducted in 1 mL reaction mixture containing acetate buffer (100 

mM, pH 4.5), single hydroxy-PCB (5 mg l−1) and laccase (2 U). In mediated reactions, 

hydroxybenzotriazole (HBT) was added at final concentration of 1 mM. Relative controls 

were performed by adding heat-denatured laccase to reaction mixtures (HKC). Incubations 

were performed at 28 °C for 24 h on a rotary shaker (100 rpm).  The reactions were stopped 

by adding 20 mg NaCl and 1 mM H2SO4 to the mixtures after 1, 3, 6 and 24 h of incubation. 
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3.2.7 Samples preparation and analytical methods  

All the in vitro samples from CYP450 and laccase degradation tests were extracted five times 

with 1.5 mL ethyl acetate aliquots and dried with anhydrous sodium sulphate columns (2 g).  

Quantitative analyses of the CBAs were performed by reversed-phase high performance 

liquid chromatography (RP-HPLC) using a HPLC system consisting of a 2695 Separations 

Module (Waters) equipped with an X-Bridge C-18 column (4.6 mm × 250 mm, particle Ø 3.5 

µm, Waters, MA) according to Muzikář et al. (2011).  

Detection of CBA degradation products was determined by gas chromatography–mass 

spectrometry (GC-MS) equipped with a split/splitless injection system (450- GC, 240-MS ion 

trap detector, Varian. Walnut Creek, CA) without derivatization and after methylation with 

diazomethane as described by Muzikář et al. (2011). 

The degradation extent of the PCB mixture and hydroxylated PCBs was evaluated by gas 

chromatography-mass spectrometry as described in the section 2.2.3.  

3.3 Results and Discussion 

3.3.1 Detection of cytochrome P450 

Cytochrome P450 monooxygenases are a superfamily of heme-thiolate proteins that catalyse 

a broad range of reactions such as carbon hydroxylation, heteroatom oxygenation, 

dealkylation, epoxidation, reduction and dehalogenation (Cabana et al., 2007). CYP450, 

which is present in all eukaryotic organisms, is involved in the biosynthesis of various 

endogenous compounds (Omura, 1999; Nebert & Russell, 2002; Kelly et al., 2005) and in the 

oxidative detoxification of many xenobiotics including pollutants, drugs and pesticides 

(Omura, 1999; Stirobova et a.l, 2003; Cajthaml et al., 2008; Kasai et al., 2010; Syed et al., 

2010, 2011). Several studies demonstrated the involvement of CYP450 oxygenation reactions 

in fungal metabolism of recalcitrant xenobiotic compounds. To date, Phanerochaete 

chrysosporium has been the most extensively studied model white rot fungus for the 

understanding of degradation mechanisms (Ning et al., 2010; Kasai et al., 2010; Syed et al., 

2010, 2011). More than 150 genes coding for different CYP450 enzymes, the amino acid 

sequences of which are extremely variable, have been identified from this organism. 

However, the heme binding region at C-terminus of the protein as well as the putative 

substrate binding region is well conserved in all CYP450 families (van den Brink, 1998; Ning 

et al., 2010).  
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In this study, microsomal fractions were extracted from two white rot fungi, namely P. 

ostreatus and L. tigrinus, wherein CYP450 was detected and quantified (Figure 3.2 A and B). 

Spectral scans showed the presence of a major peak at 450 nm: about 2.09 and 2.41 µM of 

CYP450 were found in P. ostreatus and L. tigrinus microsomes after 5 days of growth on 

MEG medium, respectively. Moreover, the detection of a second peak at 420 nm suggested 

also the presence of the inactive cytochrome form CYP420 amounting to 0.81 and 0.18 µM in 

P. ostreatus and I. lacteus microsomes, respectively.  

 

 

 
 
Fig. 3.2. CO-binding spectra of P. ostreatus (A) and L. tigrinus (B) microsomal fractions 
from 5-day-old cultures. 
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3.3.2 In vitro degradation of CBAs by Lentinus tigrinus microsomal fraction 

Chlorobenzoic acids (CBAs) are a class of relevant environmental pollutants consisting of a 

benzoic acid with different degree of chlorination on the aromatic ring. CBAs mainly derive 

from bacterial biodegradation of polychlorinated biphenyls (PCBs): under aerobic conditions, 

several bacterial species transform PCBs to chlorobenzoates which tend to be accumulated as 

dead-end metabolites (Field & Sierra-Alvarez, 2008). Additionally, CBAs can exert an 

inhibitory effect on the upper biphenyl degradation pathway restricting further PCB 

transformation (Adebusoye et al., 2008). Due to their high solubility in water, these 

compounds exhibit a mobility that is several orders of magnitude higher than that of PCBs. 

Moreover, several CBA isomers are highly toxic toward aquatic organisms (Muccini, 1999; 

Lee & Chen, 2009), exhibit genotoxicity toward higher plants (Gichner et al., 2008) and 

possess endocrine disrupting activity (Svobodová et al., 2009). 

The biotechnological potentiality of the white rot fungus Lentinus tigrinus has been clear for 

many years: this organism was successfully used in the decolourization of textile dyes 

(Nazareth & Sampy, 2003), ín the biopulping process (Goncalves et al., 2002), in the 

degradation of chlorophenols (Rabinovich et al., 2004), and in the dephenolization and 

decolorization of olive mill wastewaters (D´Annibale et al., 2004). In particular, L. tigrinus 

strain CBS 577.79 was reported to be effective in the degradation of PCBs, PAHs, CBAs and 

other endocrine disrupting compounds such as 17α-ethynylestradiol, bisphenol A and 

triclosan (Federici et al., 2012; Covino et al., 2010; Covino, 2010). Moreover, purified 

laccase and MnP isoenzymes from the same strain were tested for their ability to degrade 

CBAs: both enzymes were unable to oxidize CBA even under mediated conditions. 

For this reason, CYP450 enzymes were extracted from L. tigrinus cultures, and their role in 

the biotransformation process of CBAs was evaluated. The Figure 3.3 reports the residual 

concentrations of all CBAs after 1 h incubation with the purified L. tigrinus microsomal 

fraction. HPLC analysis revealed that the recovery of each CBA was higher than 90% in all 

control samples and that all the tested chlorobenzoate isomers were oxidized at different 

extent after 1 h of incubation in reaction mixtures with active microsome. In particular, 2,3-

diCBA, 2-CBA and 3,5-diCBA were the most degraded ones, the residual concentrations of 

which were 26.2, 35.5 and 38.8 %, respectively (Tab. 3.1). On the other hand, and in 

agreement with in vivo degradation study (Covino, 2010), the most recalcitrant compounds 

were 2,6-diCBA and 2,3,6-triCBA, with a residual content of 84.7 and 73.2 %, respectively. 

Their higher recalcitrance might presumably be due to their inherent properties, namely the 
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concomitant steric hindrance of the chlorine substituents adjacent to the carboxyl moiety and 

their electron-withdrawing effect, which may negatively interfere with the reactivity of these 

compounds.  

The NADPH-dependency of CBAs biotransformation was demonstrated by the lack of 

significant differences between incubations in the absence of this co-factor and those 

performed with heat-killed microsomal fraction. Likewise, the addition of either piperonyl 

butoxide or carbon monoxide to the microsomal fraction invariably suppressed CBAs 

degradation.  

 

 

CBA isomers Residual concentration (%) 

2-CBA 35.5 

3-CBA 71.4 

4-CBA 48.3 

2,3-diCBA 26.2 

2,4-diCBA 55.5 

2,5-diCBA 59.8 

2,6-diCBA 84.7 

3,4-diCBA 68.4 

3,5-diCBA 38.8 

2,3,5-triCBA 48.8 

2,3,6-triCBA 73.2 

2,4,6-triCBA 63.0 

 

Tab. 3.1. Residual concentration (%) of chlorobenzoic acid isomers after 1 h of incubation 
with L. tigrinus microsomal fraction. 
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Fig. 3.3. Residual concentration expressed as percentage with respect to the initial amount 
(Stock Solution) of mono-CBAs (A), di-CBAs (B) and tri-CBAs (C) after 1 h of incubation 
with L. tigrinus microsomal fraction (Active microsomes). Buffer control= reaction mixture 
without microsomes, no-NADPH= NADPH dependency control, PB= piperonyl butoxide 
inhibition control, CO= carbon monoxide inhibition control, HKC= heat-killed (-inactivated) 
control. Data are the mean ± standard deviation of three replicates. 
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(continued)  
Multiple pair-wise comparisons were performed by the Tukey test (P ≤ 0.05). The different 
lowercase letters above the bars indicate statistically significant differences (P ≤ 0.05) for the 
same CBA isomer among different reaction mixtures. The different uppercase letters indicate 
statistically significant differences (P ≤ 0.05) among different CBA isomers within the same 
reaction mixture. 
 

 

Moreover, cytochrome P450-CBA metabolites were analysed by gas chromatography-mass 

spectrometry either without derivatization or after methylation with diazomethane. A 

hydroxylated monochlorobenzoic acid with a GC-tR of 44.475 min and a molecular mass of 

169 was identified after conversion into its respective methyl derivative (Figure 3.4). 

 

 
 
 
Fig. 3.4. Mass spectrum of a hydroxylated monochlorobenzoic acid detected in Lentinus 
tigrinus CYP450-CBAs reaction mixture after 1 h of incubation. This product was identified 
after conversion into its respective methyl derivative (m/z 169). 
 

 



! 82!

To conclude, this experiment gave a relevant contribution to a more comprehensive 

understanding of the overall CBA degradation process in L. tigrinus. If the involvement of 

laccase and MnP in the initial transformation steps of CBAs was ruled out due to their 

inability to bring about oxidation of these compounds, even in the presence of effective 

mediators, this study provided evidence for the involvement of the L. tigrinus cytochrome 

P450 enzymes in the early phases of CBA degradation process. This could be inferred from 

the dependency of the reaction on the presence of NADPH as a cofactor, and by its 

susceptibility to inhibition by piperonyl butoxide and carbon monoxide, two well-known 

cytochrome P450 inhibitors. 

Furthermore, the detection of a hydroxylated intermediate further supported and clearly 

proved the pivotal role of cytochrome P450 monooxygenase system in the initial CBA 

bioconversion steps. 

3.3.3 In vitro degradation of PCBs by Pleurotus ostreatus microsomal fraction 

White rot fungi can degrade both technical PCB mixtures and single congeners, either in 

liquid or solid systems; however, purified fungal extracellular phenoloxidases have been 

found to be unable to oxidize PCB congeners (Baudette et al., 1998; Krcmar et al., 1999; 

Takagi et al., 2007) suggesting the involvement of other enzymatic systems. Nevertheless, to 

date, the fungal biodegradation mechanism of PCBs has not been fully understood yet. 

On the basis of L. tigrinus CYP450 degradation experiment with chlorobenzoic acids, this 

study was also extended to the same enzymatic system isolated from P. ostreatus and aimed 

at assessing its degradation ability towards PCBs.  

Five PCB congeners, characterized by different number and position of chlorine substituents, 

were selected to perform the in vitro experiment, the results of which are reported in Figure 

3.5.  

Similarly to CBA- L. tigrinus CYP450 degradation test, the recovery of PCBs was higher than 

85 % in all controls, the NADPH-dependency of PCB transformation reaction was proved as 

well as the inhibitory effect exerted by piperonyl butoxide and carbon monoxide. 

GC-MS analysis confirmed that PCBs were quantitatively oxidized by active microsomes 

within 1 h of incubation. In this regard, di-, tri- and tetra-chlorinated biphenyls (congener n. 4, 

8, 18 and 45) were degraded at a statistically similar extent with residual contents of 53.9, 

48.9, 51.6 and 54.2 %, respectively (Tab. 3.2). On the contrary, the degradation of the 

congener n. 105 was noticeably lower, the residual concentration of which was 74.9 % at the 

end of the incubation. The lesser degradation extent of this compound could be explained by 
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the higher number of chlorine atoms on the aromatic rings with respect to the other congeners 

under study, and also by the presence of chloro-substituents in both para positions.  

 

 
PCB congeners Residual concentration (%) 

n.4 (2,2´-diBP) 53.9 

n.8 (2,4´-diBP) 48.9 

n.18 (2,2´,5-triCB) 51.6 

n. 45 (2,2´,3,6-tetraBP) 54.2 

n. 105 (2,3,3´,4,4´-pentaBP) 74.9 

 
Tab. 3.2. Residual concentration (%) of PCB congener n. 4, 8, 18, 45 and 105 after 1 h of 
incubation with P. ostreatus microsomal fraction. 
 
 

These outcomes agree with previous considerations given by Kubatova et al., (2001) 

regarding the selective PCB degradation mechanism of Pleurotus ostreatus. This study, 

performed on an artificially contaminated soil with Delor 103 PCB mixture, demonstrated 

that the biodegradation efficiency of Pleurotus ostreatus decreased remarkably with the 

increase of number of chlorine atoms. Moreover, the biotransformation of ortho substituted 

PCBs (halogen atoms in 2, 2´, 6 or 6´ position on biphenyl rings) was preferred to para 

substituted congeners (chlorine atoms in 4 or 4´ positions). The drastically decrease of 

degradation efficiency of this fungus towards double para- substituted congeners was already 

shown by Zeddel et al. (1993) in a solid state system composed of wood chips (Picea abies) 

and millet seeds.  In this case, it was assumed that the selective removal of PCBs could be 

related to the preferential sorption of some PCB congeners to soil and fungal biomass; 

however, this assumption should be valid for all fungal systems while other fungi, i.e. 

Trametes versicolor and Phanerochaete chrysosporium, have shown different behaviour in 

straw compartment (Zeddel et al., 1993; Baudette et al., 1998). Therefore, Kubatova and co-

workers believed that the degradation performances mostly depended on the specific 

capability of the fungus to attack these pollutants rather than on behaviour of PCBs in the soil 

system.     
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In addition to quantitative analysis, both gas chromatography and liquid chromatography- 

mass spectrometry analysis were performed to detect PCB metabolites. Unexpectedly, no 

PCB degradation intermediates, such as hydroxylated derivatives, were identified.  

 

 
 
 
 
 
Fig. 3.5. Residual concentration expressed as percentage of the original amount (Stock 
Solution) of PCB congeners n. 4, 8, 18, 45 and 105 after 1 h of incubation with P. ostreatus 
microsomal fraction (Active microsomes). Buffer control= reaction mixture without 
microsomes, No-NADPH= NADPH dependency control, PB= piperonyl butoxide inhibition 
control, CO= carbon monoxide inhibition control, HKC= heat-killed (-inactivated) control. 
Data are the mean ± standard deviation of three replicates. Multiple pair-wise comparisons 
were performed by the Tukey test (P ≤ 0.05). The different lowercase letters above the bars 
indicate that differences among the reaction mixtures considering the same PCB congener 
were not significant. Same uppercase letters indicate lack of statistically significant 
differences (P ≤ 0.05) among congeners in the same reaction mixture.  
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3.3.4 In vitro degradation of hydroxy-PCBs by Pleurotus ostreatus semi-purified    

laccase 

Hydroxy-PCBs (OH-PCBs), as already mentioned, are toxic metabolites of PCBs which can 

exert various endocrine disrupting activities: they can influence oestrogen balance by 

inhibition of sulfotransferase and by binding to oestrogen receptors (Wang et al., 2006; Wang 

& James, 2007). Moreover, immunosuppression, endometriosis and increased cancer 

mortality seemed to be related not only to PCB exposure, but also to their derivatives 

including hydroxylated metabolites (Masuda, 2003). Nevertheless, limited research has been 

done on biodegradation of these compounds: a few studies dealt with the transformation of 

hydroxy-PCBs by ligninolytic enzymes of white rot fungi, mainly by phenoloxidases. Besides 

the oxidation of these toxic molecules, laccases isolated from fungal systems, namely 

Pycnoporus cinnabarinus and Trametes versicolor, could transform hydroxy-PCBs producing 

either chlorinated or dechlorinated dimers (Fujihiro et al., 2009; Kordon et al., 2010).  

In this study, a semi-purified laccase from P. ostreatus solid-state cultures (specific activity of 

84 U mg-1) was used to perform in vitro degradation of 2 mono- and 3 di-chlorinated hydroxy 

biphenyls, either under mediated or non mediated conditions.  

Differently from CYP450 experiments, the five selected OH-PCBs were tested separately. 

Compounds, such as HBT, ABTS, violuric acid, TEMPO (2,2,6,6-tetramethylpiperidin-1-

yl)oxy, can significantly enhance the reaction rates or extend the range of laccase substrates 

through a redox mediation. Particularly, some synthetic mediators (i.e. HBT) characterized by 

high redox potential enabled the enzyme to oxidize even molecules with high ionization 

potential such as PAHs (Pozdnyakova et al., 2006; Covino et al., 2010). 

Consequently, the ability of these laccase mediator systems (LMS), as they are commonly 

termed to, and non mediated systems to degrade OH-PCBs was evaluated.  

The presence of HBT markedly accelerated the degradation of all tested compounds which 

were completely removed within the first 6 h of incubation (Figure 3.6, 3.7).  

The performances of laccase in terms of OH-PCB removal under mediated and non mediated 

conditions were similar in reaction mixtures containing 4OH-2´CB if compared at the end of 

incubation (Fig. 3.6 A). However, in the first hour, the addition of HBT led to an increase in 

the reaction rate enabling a 96 % removal of this compound with respect to its relative 

control.  

By contrast, laccase degradation efficiency towards 4OH-4´CB was noticeably lower than that 

of mediated reactions (Figure 3.6 B). At the end of incubation, 50.1 % of this compound was 
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still found in the reaction. As for the intracellular cytochrome P450 system of P. ostreatus, the 

double para-substitutions on the biphenyl skeleton (one chlorine at position 4´ and one 

hydroxy at position 4) seemed to reduce the capability of laccase to oxidize this 

monochlorinated hydroxy PCB.  

 

 

 

 
 
Fig. 3.6. Residual concentration (%) of 4-hydroxy-2-chlorobiphenyl (4OH-2´CB (A)) and 4-
hydroxy-4´-chlorobiphenyl (4OH-4´CB (B)), under mediated (Lac + HBT) or non-mediated 
(Lac – HBT) conditions.  
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Among dichlorinated hydroxy-biphenyls, the compound 2OH-3,5diCB was the most 

extensively degraded under non mediated conditions (Figure 3.7 A). The higher degradation 

susceptibility of this compound could be attributed to its chemical structure: the hydroxyl 

group, which is present on the same ring to which chlorine atoms are bound, polarizes the ring 

and reduces the electron density facilitating the formation of radicals (Shultz et al., 2001). As 

a consequence, the presence of one chlorine atom (position n. 3)  at the ortho-position with 

respect to the hydroxyl substituent (position n. 2) makes this compound even more susceptible 

to radical attack than others with chlorines in para- or meta- position (Shultz et al., 2001; 

Keum et al., 2004).    

Conversely, in the absence of the mediator, the degradation extent of 3OH-2´5´diCB and 

4OH-2´5´diCB was lower than that of 2OH-3,5diCB, the residual concentrations of which 

were 47.9 and 39.6 %, respectively, after 24 h of incubation (Figure 3.7 B, C). As already 

mentioned, the reactivity of substrates to laccase is related to their electrostatic properties: 

3OH-2´5´diCB and 4OH-2´5´diCB are characterized by high ionization potential (8.9023 and 

8.8720 eV, respectively) and thus, hardly oxidized under non mediated conditions. With this 

regards, Keum and co-workers proved a statistically significant negative correlation between 

the ionization potential of OH-PCBs and their removal rates.  

In this study, the addition of a mediator to the reaction mixture was necessary; the 

aforementioned compounds, namely 3OH-2´5´diCB and 4OH-2´5´diCB, were completely 

degraded in the presence of HBT within the first 6 h of incubation (Figure 3.7 B, C). 
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Fig. 3.7. Residual concentration (%) of 2-hydroxy-3,5-dichlorobiphenyl (2OH-3,5diCB (A)), 
3-hydroxy-2´,5´-dichlorobiphenyl (3OH-2´,5´diCB (B)) and 4-hydroxy-2´,5´-
dichlorobiphenyl (4OH-2´,5´diCB (C)), under  mediated (Lac + HBT) or non-mediated (Lac – 
HBT) conditions. 
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3.4 Conclusions  

 
The ability of “white rot” fungi to degrade PCBs and their degradation products, including 

CBAs and hydroxylated PCBs, is widely proved.  However, the degradation mechanisms of 

these chlorinated pollutants have not been fully elucidated yet.   

This study provided more insights into the role of both fungal intracellular cytochrome P450 

monooxygenase systems and extracellular ligninolytic enzymes in the degradation process of 

PCBS, CBAs and OH-PCBs. 

L. tigrinus microsomal fraction rich in CYP450 were able to degrade, albeit at different 

extent, all the chlorobenzoic acids (mono-, di- and tri-CBAs) within 1 h of incubation. 

However, the presence of chlorines in both ortho-positions with respect to the carboxyl group 

negatively affected the depletion levels of 2,6-diCBA and 2,3,6-triCBA.   

The involvement of CYP450 system in the CBA biotransformation process was confirmed by 

the dependency of the reaction on NADPH as well as by its susceptibility to either carbon 

monoxide or piperonyl butoxide inhibition. Furthermore, the chemical nature of the detected 

metabolite, namely hydroxylated mono-CBA, clearly proved the pivoltal role of CYP450 in 

the first steps of CBA degradation. 

On the basis of these results with P. tigrinus CYP450, this study was also extended to the 

same enzymatic system isolated from P. ostreatus and aimed at assessing its degradation 

ability towards PCBs.  

The in vitro degradation study revealed that the concentration of di-, tri- and tetrachlorinated 

biphenyls (congeners n. 4, 8, 18 and 45) was halved after 1 h of incubation, while the higher 

number of chlorines and the double chloro-substitution in para positions noticeably impaired 

the degradation of the pentachlorinated biphenyl (congener n. 105). As for L. tigrinus 

CYP450-CBAs in vitro degradation test, the involvement of CYP450 in the PCB removal 

process was proved by either the NADP-dependency, or the PB and CO inhibition of the 

reaction. However, no PCB degradation intermediates were identified.   

Moreover, the experiment conducted with a semi-purified laccase obtained from P. ostreatus 

demonstrated the ability of this fungal phenoloxidase rich extract to degrade mono- and di-

chlorinated hydroxyl PCB, either under mediated and non mediated conditions. The presence 

of HBT as the mediator as well as the chemical structure of OH-PCBs represented the main 

factors affecting the degradation processes.   
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The remediation of persistent chlorinated aromatic pollutants has become a priority 

worldwide due to their adverse effects on natural ecosystems and human health.  Particularly, 

polychlorinated biphenyls (PCBs) represent a serious problem to be faced due to their 

teratogenic, carcinogenic and endocrine-disrupting properties.  

The use of biological systems, referred to as bioremediation, is an eco-friendly and cost-

effective alternative to the traditional chemical or thermal treatments for the clean-up of PCB-

contaminated matrices. With this regard, filamentous fungi, and particularly the “white rot” 

fungi display many biochemical, metabolic and ecological features that make them excellent 

candidates to design an effective PCB remediation technology. Nevertheless, the broad 

catabolic versatility of these organisms has not been widely exploited yet for its potential in 

the bioremediation of hazardous chemicals.  

Therefore, the main aim of the present Ph.D project was to i) assess the efficiency of different 

mycoremediation strategies for the clean-up of an aged-PCB contaminated soil, and ii) clarify 

the fungal degradation pathways of PCBs and their major metabolites chlorobenzoic acids 

(CBAs) and hydroxylated polychlorinated biphenyls (OH-PCBs). 

 

The results achieved within the frame of this work are summarized below: 

 

! Bioavailability of PCBs in soils is negatively correlated with the content of organic 

matter and the number of chlorine substituents on the biphenyl moiety; 

! Bioaugmentation treatments were more effective than biostimulation ones in the 

removal of PCBs from soils. Particularly promising seems the use of the white rot 

fungus Pleurotus ostreatus which was able to degrade more than 50 % of PCBs in the 

rhizosphere soil and to remarkably detoxify the matrix; 

! The chemical structure of PCB metabolites detected throughout the mycoremediation 

treatments (i.e., hydroxylated and methoxylated PCBs, chlorobenzoates, 

chlorobenzaldehydes and chlorocresols) suggested the involvement of both 

intracellular and extracellular fungal enzymes, and also of autochthonous 

microorganisms in the PCB degradation process; 

! The introduction of allochthonous fungi or the addition of non-inoculated 

lignocellulosic substrate stimulated the growth of the resident bacterial community; 
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! P. ostreatus augmentation clearly increased the relative abundance of Firmicutes 

phylum in the bulk soil and rhizosphere soil; a similar raise was observed for the phyla 

Proteobacteria and Bacteroidetes in all soil samples treated with I. lacteus; 

! The phylum Basidiomycota was the dominant one in bioaugmentation treatments, the 

sequences of which belonged to P. ostreatus and I. lacteus genera in their respective 

microcosms. P. ostreatus sequences accounted to more than 90 % of the total fungal 

amplicons along the whole incubation period, proving the outstanding capability of 

this fungus to compete with the autochthonous microbiota, and thus to efficiently 

grow in PCB-contaminated soils under non-sterile conditions. By contrast, the 

majority of fungal sequences in biostimulated microcosms belonged to the phyla 

Ascomycota and Zygomycota; 

! Microsomal fractions rich in cytochrome P450 monooxygenase (CYP450) activities 

isolated from the white rot fungi Lentinus tigrinus and Pleurotus ostreatus were able 

to degrade a mixture of CBAs and PCBs, respectively. Specifically, the identification 

of a hydroxylated CBA confirmed the pivotal role of CYP450 in the initial 

transformation of CBAs; 

! The semi-purified laccase obtained from Pleurotus ostreatus was capable of degrading 

mono- and dichlorinated hydroxylated biphenyls (OH-PCBs), either under mediated or 

non mediated conditions; 

! The number and position of substituents were the main factors affecting the extent of 

degradation by both fungal intracellular cytochrome P450 monooxygenases and 

extracellular enzymatic systems. 

In conclusion, the integration of chemical, toxicological and molecular biology techniques 

provided a comprehensive evaluation of key parameters affecting the technical feasibility and 

the efficiency of the mycoremediation process. 

The extensive removal of target pollutants in a relatively short time period, the high 

detoxification of the polluted matrix, the great competition with resident microorganisms, and 

the remarkable degradation not only of PCBs, but also of their major metabolites (OH-PCBs) 

clearly proved the outstanding efficiency of the white rot fungus Pleurotus ostreatus in the 

remediation of   PCB contaminated soil making its application potentially transferable to a 

larger scale.  
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Microbiology, Academy of Sciences of Czech Republic (Prague). September 2013. 
 
Courses 

 

! “Contaminated site remediation: application of advanced tools to control 
biological processes” organized by the Water Research Institute (IRSA-CNR) in 
collaboration with EU funded project MINOTAURUS and Setac Italian Branch. 
Rome, 27-29 May 2013. 

 
! “Bioremediation of contaminated areas: methodologies, microbial role and 

investigation techniques” organized by the Water Research Institute (IRSA-CNR) in 
collaboration with Setac Italian Branch and Society of Environmental Toxicology and 
Chemistry. Rome, 30 March -1 April 2011. 

 


