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Abstract  

 Direct C-H borylations of 7-deazapurines (7H-pyrrolo[2,3-d]pyrimidine) were 

developed at position 8 using B2pin2 and Ir catalysis. The obtained boronates were 

efficiently applied in the Suzuki cross-couplings with aryl halides and other functional 

group transformations to give diverse 6-substituted 8-aryl-7-deazapurine derivatives.  

Furthermore, I was also interested in the synthesis of biologically relevant 8-aryl-7-

deazaadenines and -7-deazahypoxanthines. As the direct C-H borylation of 7-

deazaadenines was unsuccessful and the borylation/Suzuki reaction of 6-chloro-7-

deazapurine gave only low yield (20%) of the desired 8-aryl derivative, I focused on the 

one-pot borylation/arylation of SEM-protected 6-methylsulfanyl- or 6-methoxy-7-

deazapurines. The one-pot borylation/Suzuki coupling reactions were followed either by 

demethylation and deprotection to yield deazahypoxanthine base, or by oxidation of 

sulfide to sulfone, amination and deprotection to give deazaadenines. In addition, the 

boronate intermediates were successfully converted to 8-halo- or 8-trifluoromethyl-7-

deazapurine derivatives. While the 7-deazahypoxantine analogues were almost entirely 

inactive, most of the 8-subtituted 6-methoxy-7-deazapurine and 7-deazaadenines bases 

showed significant cytostatic activities.  

Also a general method for Cu-catalysed C–H sulfenylation of purines, 7-deaza- and 9-

deazapurines (5H-pyrrolo[3,2-d]pyrimidine) with aryl or alkyldisulfides was developed. In 

purines, the reaction occurs at position 8, in 7-deazapurines at position 7 and in 9-deazapurines 

at position 9, leading to new interesting arylsulfanyl derivatives of purine or deazapurine 

bases. The resulting 8-arylsulfanylpurines undergo the Liebesking–Srogl coupling with 

arylstannanes or boronic acids, whereas the (arylsulfanyl)deazapurines are not reactive under 

these conditions.  

Later on, a series of 7-phenylsulfanyl- or 7-(2-thienyl)sulfanyl-7-deazapurine bases 

bearing diverse substituents at the position 6 was prepared through C-H sulfenylation of 6-

chloro-7-deazapurine followed by cross-couplings or nucleophilic substitutions. The 

corresponding ribonucleosides (as thia-analogues of known nucleoside cytostatics) were 

prepared by glycosylation of 6-chloro-7-arylsulfanyl-7-deazapurines followed by the same 

transformations at position 6. The 7-thienylsulfanyl-7-deazapurine bases exerted micromolar 

cytostatic activities, whereas the nucleosides showed no significant biological effects. 
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Abstrakt 

Nejprve byla vyvinuta přímá C-H borylace 7-deazapurinů (7H-pyrrolo[2,3-

d]pyrimidin) v poloze 8 za použití B2pin2 a Ir katalýzy. Takto získané boronáty byly efektivně 

využity v Suzukiho cross-coupling reakci s arylhalogenidy a jiné další transformace vedly ke 

vzniku různě 6-substituovaným 8-aryl-7-deazapurinům. Následným cílem práce byla syntéza 

potencionálně biologicky aktivních 8-aryl-7-deazaadeninů a -7-deazahypoxantinů. Vzhledem 

k tomu, že přímá C-H borylace 7-deazaadeninů nebyla úspěšná a “one-pot” borylace/Suzukiho 

reakce 6-chlor-7-deazapurinu poskytovala pouze nízký výtěžek (20%) tíženého 8-arylovaného 

derivátu, zaměřil jsem se na borylaci/arylaci SEM-chráněného 6-methylsulfanyl nebo 6-

methoxy-7-deazapurinu. Borylace/Suzukiho reakce byla následována buď demethylací a 

deprotekcí za vzniku deazahypoxantinové báze, nebo oxidací sulfidu na sulfon, aminací a 

odstranění chránící skupiny za vzniku deazaadeninů. Kromě toho byly boronáty úspěšně 

převedeny na 8-halogen- nebo 8-trifluormethyl-7-deazapurinové deriváty. Zatímco 7-

deazahypoxantinové analogy byly téměř úplně neaktivní, většina z 8-subtituovaných 6-

methoxy-7-deazapurinů a 7- deazaadeninů měla cytostatický účinek v mikromolární 

koncentraci. 

Dále byla vyvinuta mědí katalyzovaná C-H sulfenylace purinů, 7-deaza- a 9-

deazapurinů (5H-pyrrolo[3,2-d]pyrimidin) s aryl nebo alkyldisulfidy. U purinů reakce probíhá 

v poloze 8, u 7-deazapurinů v poloze 7 a u 9-deazapurinů v poloze 9, což vede k novým 

zajímavým arylsulfanyl derivátům purinových nebo deazapurinových bází. Výsledné 8-

arylsulfanylpuriny reagují v Liebesking-Šrogl coupligu s arylstanany nebo boronovými 

kyselinami, zatímco arylsulfanyldeazapuriny za těchto podmínek nereagují.  

Později byla pomocí C-H sulfenylace 6-chlor-7-deazapurinu připravena série 7-

phenylsulfanyl- nebo 7-(2-thienyl)sulfanyl-7-deazapurinových bází nesoucích různé 

substituenty v poloze 6, které byly zavedeny pomocí cross-couplingů nebo nukleofilní 

substitucí. Odpovídající ribonukleosidy (jako sirné-analogy známých nukleosidových 

cytostatik) byly připraveny nejprve glykosylací 6-chlor-7-arylsulfanyl-7-deazapurinů, po které 

následovaly stejné transformace v poloze 6. 7-Thienylsulfanyl-7-deazapurinové báze mají 

cytostatický účinek v mikromolární koncentraci, zatímco nukleosidy neprokázaly žádnou 

významnou biologickou aktivitu. 
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List of abbreviations 

 

Ac    acetyl  

acac    acetylacetone 

Ar   aryl 

Bn    benzyl 

B2pin2    bis(pinacolato)diboron 

bpy    2,2'-Bipyridine 

BSA    N,O-bis(trimethylsilyl)acetamide  

Bu    butyl  

Bz    benzoyl  

COE    cyclooctene 

COD    1,5-cyclooctadiene 

Cp    cyclopentadienyl 
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DCM    dichloromethane  
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dppp    1,3-bis(diphenylphosphino)propane 

dtbpy    4,4′-di-tert-butyl-2,2′bipyridyl 

EtOAc   ethyl-acetate  

EtOH    ethanol  

equiv.    equivalent  

Et    ethyl  

EtOH    ethanol  

HPFC    high performance flash chromatography 

iPr    isopropyl  
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LDA    lithium diisopropylamide 

M   metal 

m.p.   melting point  

mCPBA   meta-Chloroperoxybenzoic acid 

Me    methyl  

MeCN    acetonitrile  

MeOH   methanol  

MW   microwave reactor 

Ph   phenyl  

r.t.    room temperature  

Sal   salicylate 

SEM    2-(Trimethylsilyl)ethoxymethyl 

tBu    tert-butyl 

TFA    trifluoroacetic acid  

Togni reagent  3,3-Dimethyl-1-(trifluoromethyl)-1,2-benziodoxole 

THF    tetrahydrofuran  

TM   transition metal 

TMSCl   trimethylsilyl chloride 

TMSOTf   trimethylsilyl trifluoromethanesulfonate  
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1 Introduction 

Purine is the most widely distributed N heterocycle in nature. The name “purine” 

(purum uricum) was given by Emil Fischer, who synthesized this colorless crystalline weak 

base for the first time from uric acid. Although the unsubstituted purine base does not exist in 

nature, its derivatives are found in various organisms and plants, one of the simplest form is 

the ribonucleoside nebularine (Figure 1), a nucleoside antibiotic isolated from the mushroom 

Agaricus nebularis. Of course, two others derivatives are probably the most famous, adenine 

and guanine, which form bases found in nucleic acids (DNA, RNA). In addition, many purine 

derivatives, especially adenine derivatives, are involved in numerous metabolic processes as 

co-factors or co-substrates associated with a great number of enzymes and receptors, notably 

ATP, GTP, GDP, cAMP, cGMP, Acetyl-CoA, NAD, NADP, FAD (Figure 1). Adenosine 5’-

triphosphate (ATP) is used for the storage of energy in all living cells and has a crucial role in 

energetic metabolism. Adenosine 3’,5’-cyclophosphate (cyclic-AMP; cAMP) acts as a so-

called second messenger controlling the activation of protein kinases and the K
+
 levels in the 

cell, as well as in transcription and other metabolic processes. Nicotinamide adenine 

dinucleotide (NAD) and flavin adenine dinucleotide (FAD) are coenzymes involved in cellular 

reduction/oxidation processes. Another purine-containing molecule of particular biological 

relevance is acetyl-coenzyme A, which possesses high C2-group-transfer potential. It should 

be noted that all of these associated proteins contain a purine recognition site and, therefore, 

purine derivatives have been long in development to act as selective inhibitors of these 

enzymes and agonists/antagonists of these receptors. In addition to that, it is a co-substrate for 

kinases, enzymes that regulate cellular metabolism, gene expression, cell proliferation and 

signaling pathways.  
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    Figure 1 Purine and his derivatives 
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1.1 Biologically active purine bases and their analogues 

Purine (bases, nucleosides and nucleotides) derivatives and analogues possess a high 

variety of biological activities.
1
 Apart from direct inhibition of diverse enzymes of nucleic 

acids metabolism resulting in antineoplastic or antiviral effects, many purines and analogues 

interact with kinases and other ATP or GTP dependent enzymes and proteins (i.e., tubuline). 

Large libraries of diverse 2,6,8,9-tetrasubstituted purines were prepared
2
 and tested in a 

variety of biological (enzyme, cell-based, phenotype, etc.) assays. Several derivatives were 

selected to display novel modes of biological effects (Figure 2). One of the oldest known and 

simplest biologically active derivatives is 6-methyl-9H-purine that shows a wide range of 

antineoplastic activity,
3
 but unfortunately it is also heavily systematically toxic. Roscovitine

4
 

is a potent inhibitor of cyclin-dependent kinases. Myoseverine
5 

induces a reversible fission of 

myotubes and inhibits microtubule assembly. Purmorphamine
6
 induces osteogenesis in 

pluripotent mesenchymal progenitor cells. Stemregenin1 (SR1)
7
 promotes the expansion of 

human hematopoietic stem cells. Reversine
8 

causes de-differentiation of myoblasts into 

multipotent progenitor cells and specifically inhibits Aurora kinases. Stem-cell targeting of 

small molecules (in particular purine derivatives) is considered
9
 to be one of the emerging 

future approaches to personalized medicinal chemistry and regeneration medicine. 
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      Figure 2 Examples of purines with diverse modes of biological activity 
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1.2 Deazapurine bases and nucleosides  
 

One of the possible strategies for modification of the natural purine motive is 

replacement of nitrogen atoms of the purine base by carbon atoms to get deazapurine 

analogues. The deazapurine provides extra valence that allow the introduction of diverse 

functional groups and substituents. All deazapurines have not been studied as much as purines 

due to the more difficult syntheses of the libraries.  

According to the IUPAC nomenclature recommendation, for example, 7-deazapurine 

should be called 7H-pyrrolo[2,3-d]pyrimidine, but the semi trivial name for the 7-deazapurine 

and also purine ring numbering I will use in my thesis (except for experimental part where 

both – IUPAC and semitrivial – are used) as I  have found the semi trivial name to be more 

illustrative (Figure 3).  

 

                        

 

Figure 3 Deazapurines 

 

Wide and versatile spectrum of biological activities has been identified by synthesis of 

diverse biologically active deazapurine derivatives and some examples are listed below. 
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In 1-deazapurine series, the well-known Sulmazole (Figure 4) has shown 

phosphodiesterase (PDE) inhibitory activity
10

 and later on has also been identified as 

antiarrhythmic agent.
11

 Besides, compounds contain the 3H-imidazo-[4,5-b]pyridin-2-one 

class (Figure 4) has been shown by Merck to be nonsteroidal anti-inflammatory and analgesic 

agents.
12

 On the other hand, the 1,6,8-trisubstituted derivative CCT137690 and its analogues 

has been shown as an inhibition of Aurora kinases enzymes.
13

 Also, another 2,6,8-

trisubstituted derivative LUF5981 and its analogues has been identified by IJzerman and 

coworkers  as the antagonists of the human adenosine A1 receptor.
14

 

 

 

Figure 4 Examples of biologically active 1-deazapurines  

 

In 3-deazapurine series, Montgomery and coworkers showed that 3-deazaadenosine 

(c3A, 4-amino-1H-imidazo[4,5-c]pyridine, Figure 5) and its analogues are substrates and 

potent inhibitors of S-adenosyl-L-homocysteine hydrolase and possesses antiviral activity 

against HSV-1, Vaccinia Virus, and HL-23 C-type virus.
15

 An anticancer natural product 

Ageladine A was recently isolated from the marine sponge Agelas nakamurai by Fusetani and 

co-workers
16

 as the first example of an imidazolopyridine natural product. Ageladine A has 
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shown inhibition against various matrix metalloproteinases (MMPs) and strong antiangiogenic 

activity that is believed to be associated with its MMP inhibition.
17 

 

 

Figure 5 Examples of biologically active 3-deazapurines 

 

In 7-deazapurine series, the derivative TWS119
18

 (Figure 6) was identified to direct the 

differentiation of neuronal cells in mice by GSK-3b inhibition. The compounds PKI-166
19

 

(Figure 6) was found to be EGFR-tyrosine kinases inhibitors. Another example is molecule 

LX7101 as the drug candidate in clinical trials for the treatment of glaucoma.
20

   

 

 

Figure 6 Examples of biologically active 7-deazapurines 
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In 9-deazapurine series, the derivative 2-methyl-6-phenyl-4-piperidyl-5H-pyrrolo[3,2-

d]pyrimidine was identified by Amgen company as neuropeptide Y5 receptor antagonists. 

Neuropeptide Y has been shown to play an important role in the regulation of food intake and 

energy balance and therefore it might be a useful therapeutic agent for the treatment of 

obesity.
21

 Finally, Forodesine (also known as Immucillin H, Figure 7) has been found as a 

transition-state analogue inhibitor of purine nucleoside phosphorylase and the clinical trials 

are under development for the treatment of relapsed B-cell chronic lymphocytic leukemia.
22 

 

 

Figure 7 Examples of biologically active 9-deazapurines 

 

Since a high specificity in inhibition of kinases is required for medicinal applications, 

the development of synthetic methodologies for the preparation of a large series and libraries 

of deazapurines is a very important and attractive goal. However, there is limited knowledge 

on the bioactivity of structurally related deazapurines and it could modify the toxicity profile 

by a structural alteration. As a first step, the new active compounds must be identified. In this 

thesis I will focus primarily on 7-deazapurines as the most explored area in our group. 

 

 

 

https://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
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1.2.1 Natural 7-deazapurine nucleosides  

 

There are several 7-deazapurine nucleosides among natural products. Three 

structurally related 7-deazapurine ribonucleosides, tubercidin, toyocamycin and sangivamycin, 

have shown interesting antitumor activity (Figure 8). All three compounds were found and 

isolated from bacteria Streptomyces.  

Specifically, Tubercidin (7-deazaadenosine) is a natural antibiotic found in culture 

filtrates of Streptomyces tubercidicus. Tubercidin has shown significant activity against 

Mycobacterium tuberculosis, vaccinia virus, mengovirus and reovirus, including cytostatic 

activity in various cancer cell lines.
23, 24 

Several cellular processes are damaged by tubercidin, 

for example mitochondrial respiration, purine synthesis, rRNA processing, methylation of 

tRNA.
25

 Tubercidin play a role as a potent inhibitor of the S-adenosylhomocysteine 

hydrolase.
26

 The main cytostatic effect of tubercidin is caused by its incorporation into both 

RNA and DNA which damage the nucleic acid functions.
23 

 

                         

 

Figure 8 Natural 7-deazapurine nucleosides 

 

Toyocamycin (7-cyano-7-deazaadenosine) is also a product of Streptomyces 

metabolism that has shown tough cytostatic effect in several cancer cell lines.
27

 Tubercidin, 

toyocamycin is incorporated in the same way into RNA and DNA.
28

 In addition to that, 

toyocamycin inhibits rRNA synthesis and maturation.
29,30

 Toyocamycin has been studied as a 

device for exogenous gene regulation technology as it inhibits RNA self-cleavage in 

mammalian cells.
31 

 



21 
 

Sangivamycin (7-carbamoyl-7-deazaadenosine) is a natural antibiotic also isolated 

from Streptomyces cultures. Despite its structure, sangivamycin is very similar to the structure 

of toyocamycin and the antitumor effect of sangivamycin is caused by potent and selective 

inhibition of protein kinase C.
32 

Also incorporation of sangivamycin into RNA and DNA in 

vivo has been studied and described.
33

 Unfortunately, none of previously described natural 7-

deazapurine nucleoside analogues are clinically used in case of their toxicity. 

 

1.2.2 Hetaryl purine and deazapurine nucleosides from our group  

 
 

Our research group has studied the biological activity of 6-aryl- and 6-hetarylpurine 

ribonucleosides for a long time. It has been found that 6-(het)arylpurine ribonucleosides 

possess a strong cytostatic effect against cancer cell lines in (sub)micromolar concentrations.
34

 

Replacing purine-ring N-atoms by carbon to form deazapurine analogues has also been 

explored. While some 6-(het)aryl-1-deazapurine nucleosides possessed moderate cytostatic 

activities,
35

 the corresponding 6-(het)aryl-3-deazapurine nucleosides were devoid of cytostatic 

and antiviral activities.
36

 This shows that the N-3 nitrogen is crucial for the interaction of these 

compounds with the target biological system (probably a kinase or RNA polymerase), while 

the N-1 nitrogen is not (Figure 9).   

  
 

                  
 

Figure 9 6-Hetarylpurine and deazapurine ribonucleosides 
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Therefore, the next logical step was to assess the role of N-7 nitrogen, which is engaged 

neither in H-bonds with the complementary pyrimidine nucleobase during the biosynthesis of 

RNA nor in minor groove interactions in the active site of the RNA polymerase. It was studied 

whether the replacement of the N-7 nitrogen by C-H, C-F, or C-Cl would result in improved 

selectivity toward viral RNA polymerase or enhanced cytostatic effect. It was discovered a 

potent cytostatic activity of 6-hetaryl- 7-deazapurine ribonucleosides I against several 

leukemic and tumor cell lines.
37

 The most active were derivatives bearing furyl or thienyl 

groups at the position 6 and either hydrogen I or fluorine II at position 7 of the 7-deazapurine., 

whereas 7-chloro-substituted analogues III displayed lower activity.
37 

 

                        
 

Figure 10 Our recently reported biologically active 7-deazapurine nucleosides  

 

 As 6-hetaryl-7-deazapurine ribonucleosides show a strong cytostatic effect, the hetaryl 

group was also introduced into the natural antibiotic tubercidin to the position 7.  7-hetaryl-7-

deazaadenosines (7-hetaryltubercidins) IV were prepared by our group and tested for the 

cytostatic activity against cancer cell lines.
24

 Again the most active compounds were thienyl 

and furyl derivatives exhibited a cytostatic effect in nanomolar concentrations. The 
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mechanism of action has not yet been fully explored. These nucleosides interfere with RNA 

synthesis, although their triphosphates are only weak inhibitors of RNA polymerases.
24 

 Later on, some others derivatives of 7-deaza-7-hetaryl nucleosides V were prepared. 

Several nucleosides, in particular 6-methoxy-, 6-methylsulfanyl-, 6-methylamino-, and 6-

methyl-7-(2-furyl)-deazapurine nucleosides have been found to possess cytostatic effects at 

low nanomolar concentrations. On the other hand, all 7-deazahypoxanthine derivatives were 

completely inactive. The 6-methoxy-7-deaza(2-thienyl)purine nucleoside and 6-methyl-7-

deaza(2-thienyl)purine nucleoside displayed significant activity and no toxicity to fibroblast, 

which indicates a promising therapeutic index. This study showed that H-bond donating NH2 

group at position 6 can be replaced by an isosteric nonpolar methyl group or H-bond acceptor 

group retaining cytotoxic activity.
38

 

Generally, 6-hetaryl-7-deazapurine,
37

 7-hetaryl-7-deazaadenine
24

 and 6-substituted 7-

hetaryl-7-deazapurine ribonucleosides
38 

(Figure 10) showed cytostatic effects at nanomolar 

concentrations, however, their mechanism of action is not yet fully understood. They are 

inhibitors of adenosine kinases,
39, 40

 but they are substrates at the same time and are 

phosphorylated to nucleoside triphosphates which then interfere with the RNA synthesis or are 

incorporated to DNA and RNA. In all three series, the most active were derivatives bearing 

thiophene or furan. 

 

1.2.3 Methods of preparation of 7-deazapurine bases 

 

Compounds possessing a functionalized 7-deazapurines (7H-pyrrolo[2,3-d]pyrimidine) 

scaffold can be prepared in principle by: 

o heterocyclization 

o cross-coupling reactions  

o nucleophilic aromatic substitution  

1.2.3.1 Heterocyclization  

  
The heterocyclization reaction starts either from the appropriately substituted pyrrole

41
 

or pyrimidine
42, 43 

derivatives as common intermediates. However, these strategies often 
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require multistep syntheses, and thus the synthesis of polysubstituted pyrrolopyrimidines using 

such methods tends to be lengthy. 

 

1.2.3.1.1 Heterocyclization from pyrrole precursors 

 
In 2011 Sundby and co-coworkers

41
 published a synthesis of 8-arylated 7-deazapurines 

based on the heterocyclization of pyrimidine ring as a key step. Ethyl cyanoacetate VI was 

reacted with HCl saturated ethanol to yield compound VII which was subsequently 

transformed to ethyl 3-amino-3-iminopropanoate hydrochloride VIII. Then the five-member 

pyrrole ring was formed to obtain 2-amino-3-ethoxycarbonylpyrroles IX. Conversion of IX to 

X was performed by a condensation where formamide reacts with the 1,3-aminoester function 

in a formic acid/DMF mixture. Finally, the chlorination of X to XI was performed at 90°C 

using neat POCl3 (Scheme 1). 

 

 

 

Scheme 1 Heterocyclization of 8-aryl-7-deazapurine from pyrrole precursors
41 
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1.2.3.1.2 Heterocyclization from pyrimidine precursors 

 
A complementary work was performed by Fujii and co-coworkers

42
 who published 

synthesis of 8-arylated 7-deazapurines based on heterocyclyzation of pyrrole ring as a key 

step. Later on the same synthetic strategy was used for the synthesis of series N- protected 

polysubstituted 7-deazapurines.
43

  

The synthesis starts from 4,6-dichloropyrimidine XII by nucleophilic substitution with 

appropriate amine to form XIII that was subsequently transformed by iodination under 

classical conditions to get XIV. The next step is the conventional Sonogashira coupling under 

microwave assistance of 6-amino-4-chloro-5-iodopyrimidine XIV affording alkyne XV. The 

reaction was chemoselective to the 5-iodo and no bisalkynylated products were formed. In the 

presence of base (Cs2CO3) and a catalytic amount of CuI (1 mol-%) under microwave 

irradiation, the intramolecular cyclization finally afforded 8-aryl-7-deazapurine XVI in an 

excellent yield with a good tolerance of different substituent groups (Scheme 2). 

 

 
 

 

 

Scheme 2 Heterocyclization of 8-aryl-7-deazapurine from pyrimidine precursors
42, 43 
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1.2.3.2 Cross-coupling reaction of 6-chloro-7-deazapurines 

 
As the most powerful and straightforward methodology for the introduction of C-

substituents to the 7-deazapurine base were found cross-coupling reactions catalyzed by 

transition-metals. The reaction conditions of 7-deazapurine for cross-coupling reactions were 

derived from previously reported procedures for the modification of purine derivatives that 

have been studied intensively.
34,44 

Palladium-catalyzed cross-couplings of 6-chloro-7-

deazapurine derivatives with Me3Al are used for the methylation of position 6.
37,45 

Organozinc 

reagents are used to introduce either functionalized alkyl substituents or benzyl- and hetaryl 

groups by Negishi cross-coupling.
37,46

 However the most widely used methods for synthesis of 

6-(het)aryl-7-deazapurine derivatives are the Stille cross-coupling reaction with tributylstannes 

and Suzuki cross-coupling reaction with boronic acids, trifluoroborates or boronic esters. Stille 

cross-couplings of 6-chloro-7-deazapurine derivatives with organotin reagents are usually 

made under catalysis with Pd(PPh3)2Cl2 in DMF at 100 °C.
37

 Suzuki cross-coupling is a 

palladium-catalyzed reaction between chloro- or iodo-7-deazapurine derivatives with boronic 

acids, trifluoroborates or boronic esters. The main advantage of the Suzuki cross-coupling 

reaction is non-toxicity and majority stability of boronic acids. In addition, there is a great 

structural variety of commercially available boronic acids which can lead to great diversity of 

(het)aryl-7-deazapurine products. Suzuki cross-coupling with protected 6-chloro-7-

deazapurine derivatives can be performed under anhydrous conditions, usually are made in 

toluene in the presence of Pd(PPh3)4 as a catalyst and potassium carbonate as a base.
34,37

 

However, reactions with some labile boronic acids, such as 2-thienyl- and 2-furyl boronic 

acid, proceed with very low conversions and therefore Stille coupling is more favorable in 

some cases. 

 

1.2.3.3 Cross-coupling reaction of 6-phenylsulfanyl-7-deazapurines 

Although a plethora of highly selective and reliable methods for the construction of 

carbon-carbon bonds are known to organic chemists, there is growing interest in the 

development of new protocols that offer different or orthogonal reactivity to that of existing 

methods. In 2000, Liebeskind and Srogl described
47

 a mechanistically unprecedented 

transition-metal-catalyzed cross-coupling of thioesters with boronic acids. This desulfitative 
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cross-coupling process is catalytic in palladium(0), stoichiometric in copper(I), and applicable 

to a range of organosulfur derivatives and nucleophilic organometallic reagents. Since 2000, 

the scope of this intriguing carbon-carbon bond-forming process has been extended 

considerably to enable successful cross-coupling reactions between a variety of organosulfur 

and organometallic reagents.
48 

 

 

Scheme 3 Cross-coupling reaction of 6-phenylsulfanyl-7-deazapurines
49 

 

A new chemoselective synthesis of 7-deazapurines bearing two different aryl groups at 

positions 6 and 7 was developed based on two orthogonal cross-couplings. Starting from 9-

benzyl-6-(phenylsulfanyl)-7-iodo-7-deazapurine (XVII), the palladium-catalyzed Suzuki 

coupling with arylboronic acids proceeded selectively at position 7 (XVIII), followed by the 

palladium-catalyzed copper-mediated Liebeskind–Srogl coupling at position 6 (XIX). These 

two orthogonal cross-couplings are a fully chemoselective and a small library of 6,7-diaryl 

derivatives was prepared.
49

 

 

1.2.3.4 Nucleophilic aromatic substitution 

 
6,8-Disubstituted deazapurines bearing a heteroatom (nitrogen, or oxygen) substituent 

at positions 6 are potent inhibitors of GSK-3b  (e.g., TWS119, Figure 6) or EGFR-tyrosine 

kinases inhibitors (e.g., PKI 166, Figure 6). These compounds are accessible via nucleophilic 

aromatic substitution of various 6-halo-7-deazapurines (the most common is chlorine). In the 

reaction with amines the reagent is basic itself, otherwise it must be the base added to the 

reaction (Figure 11). 
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The substrates bearing 6-sulfanyl group are potentially interesting either themselves or 

can be after oxidation to an appropriate 6-sulfon used for other nucleophilic aromatic 

substitutions with different amines
50

 (Figure 11).   

 

  

 

 
 

Figure 11 SNAr of 6-chloro-7-deazapurines    

 

1.2.4 Glycosylation of 7-deazapurine bases 

The Vorbrüggen reaction is the most widely used method for the synthesis of 

ribonucleosides.
51

 In this reaction a silylated heterocyclic base to react with 1-O-acetyl-2,3,5-

tri-O-benzoyl-D-ribofuranose in the presence of Lewis acid and trimethylsilyl 

trifluoromethanesulfonate (TMSOTf). Only β-nucleoside is selectively formed as the result of 

neighboring group participation. Oxonium ion formed during the reaction effectively directs 

an attack of the silylated base only to the β-face of the ribose moiety. 

So, for the stereoselectivity of the reaction the acyl protecting group in position 2 of 

the ribose is crucial. The one-pot Vorbrüggen reaction was successfully performed in the 

synthesis of 7-substituted 7-deazapurine ribonucleosides (XX).
52

 With the one-pot protocol, 
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firstly 7-deazapurine base was silylated by N,O-bis(trimethylsilyl)acetamide (BSA) in 

acetonitrile (CH3CN) at room temperature and then secondly ribose reagent and TMSOTf are 

added and the reaction mixture heated to 80 °C (Scheme 4).  

 

 

Scheme 4 Synthesis of 7-deazapurine ribonucleosides by Vobrüggen reaction 
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1.3 C-H activation 
 

Organic synthesis relies on transformations of functional groups or structural features 

exhibiting relatively high chemical reactivity. C–H bonds are not generally viewed as 

functional groups in this context. Direct and selective replacement of carbon-hydrogen bonds 

with new bonds is an important and long-standing goal in chemistry. These transformations 

have broad potential in synthesis because C–H bonds are ubiquitous in organic substances. At 

the same time, achieving selectivity among many different C–H bonds remains a challenge. 

Therefore, development of transition metal catalyzed C-H bonds activation is one of the major 

challenges of modern chemistry.
53

 Direct C-H activation reactions catalysed by transition 

metals (TM) (Rh, Ru, Co, Ir etc.) have received prominent attention
54

 during the last two 

decades as an attractive alternative to classical cross-couplings.  

 

1.3.1 C-H activation of arenes and heteroarenes 
 

One of the biggest disadvantages of C-H bond activations of arenes is that C–H bond 

proceed under rather harsh reaction conditions (high temperature, strongly acidic or basic 

conditions, strong oxidant, etc.) that significantly limits their utility. However, mild methods 

have been developed that significantly expand the scope of these transformations.
54  

1.3.1.1 Direct C-H arylation  

 

The traditional coupling reactions (Kumada, Stille, Negishi, Suzuki-Miyaura, Hiyama) 

catalysed by TM require two activated substrates, one is the organometallic (Sn, B, Zn, Mg, 

and Si) component and the second one contain a halide or pseudohalide. (Figure 12, Pathway 

A). Owing to the high impact of these reactions in organic synthesis, natural product synthesis 

and pharmaceutical applications, the 2010 Nobel Prize in Chemistry was awarded jointly to 

Richard F. Heck, Ei-ichi Negishi and Akira Suzuki. Cross-coupling reactions are generally 

carried out under mild conditions and can be performed in the presence of most functional 

groups. The main disadvantage is necessity to pre-activate starting compounds that involves 

the installation and subsequent disposal of stoichiometric activating agents. 
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As an alternative to this approach is to consider the aryl C-H bond as a functional 

group, analogous to a carbon-halogen or carbon-metal bond. The simplest approach involves 

cross-couplings between two inactivated substrates [cross-dehydrogenative coupling (CDC), 

(Figure 12, Pathway B), but this process is unfavourable from a thermodynamic perspective 

due to the high bond strength of aryl C-H bond. The solution can be use of C-H activated bond 

as one coupling partner and halides as a pre-activated substrate which, in turn, require 

selective C-H activation (Figure 12, Pathway C). 

 

Figure 12 Possible pathways in new carbon-carbon bond formation 

 

Direct C-H arylations
55

 currently attracts much attention and are being developed into 

complementary techniques for efficient and straightforward functionalization of arenes and 

heterocycles for medicinal chemistry applications.
56  
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1.3.1.2 Direct C-H Borylation 

 

In the past decade, iridium-catalyzed C−H borylation of arenes has become a widely 

used method for the functionalization of arenes because of its ability to produce highly 

versatile aryl organoboronate ester intermediates from arenes without the need for reactive 

groups, such as halides or sulfonates.
57 

Traditionally there are two commonly used methods for the synthesis of arylboronic 

acids (Figure 15). One involves the conversion of an aryl halide to a Grignard or lithium 

reagent, followed by the reaction of the main group organometallic reagent with a 

trialkylborate. The addition of either a diol or an acid converts the initial organoboron product 

to the final ester or the acid, respectively. Alternatively, a widely employed route to boronate 

esters is the palladium-catalyzed Miyaura borylation of an aryl halide with a mono- or diboron 

reagent.
58

 In addition, analogous copper catalyzed borylation of aryl halides with diboron 

reagents has recently been reported.
59

 

 

Figure 15 Common Syntheses of Arylboronate Esters and Acids 

 

In contrast, the direct borylation of arenes and alkanes provides access to synthetically 

useful compounds without relying on the accessibility of aryl or alkyl halides. This direct 

borylation, therefore, reduces synthetic steps. 
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1.3.1.2.1 Reactivity of arenes  

 

Although Cp*Ir complexes were the first catalysts reported for the direct borylation of 

arenes,
60

 other combinations of iridium precursors and ligands generate more active catalysts 

for this process. In 2002, Ishiyama, Miyaura, Hartwig, and their co-workers reported the 

borylation of arenes catalyzed by iridium complexes of bipyridine and di-tert-

butylbipyridine.
61

 The initial paper on this system was published concurrently with that of 

Smith, Maleczka, and co-workers on the borylation of arenes catalyzed by iridium complexes 

of phosphines.
62

 The catalysts containing bipyridine derivatives were found more reactive for 

most borylation of arenes and heteroarenes than those containing phosphine ligands. The 

reactions catalyzed by the iridium catalyst containing the bipyridine derivative occur at room 

temperature to 80 °C in many cases with turnover numbers between 500 and 1,000, and with 

turnover numbers exceeding 24,000 in favorable cases.
63

 In contrast, the reactions catalyzed 

by the phosphine-ligated iridium complexes occur at 100-150 °C.
62

  

A variety of arylboronate esters
62

 was synthesized in moderate to excellent yields from 

the reaction of arenes with B2pin2 catalyzed by 1.5 mol % [Ir(COD)Cl]2 and 3 mol % bpy 

(Scheme 5). For example, PhBpin was produced in 95% yield from benzene.  The reaction of 

monosubstituted arenes, such as anisole, toluene, and trifluoromethylbenzene, yielded an 

approximately statistical mixture of products arising from meta- and paraborylation, with the 

product from ortho-borylation being observed (1%) only from the reaction of anisole. 

However, the borylation of 1,2- disubstituted arenes formed 3,4- disubstituted arylboronate 

esters exclusively. Similarly, 1,3-disubstituted arenes formed 3,5- disubstituted arylboronate 

esters exclusively, and the reaction of the symmetric 1,4-disubstituted arene, p-xylene, with 

B2pin2 catalyzed by 1.5 mol % [Ir(COD)Cl]2 and 3 mol % bpy yielded the 2,5-

dimethylphenylboronic ester, but in a somewhat lower yield. From this observation it can be 

concluded that the regioselectivity of the C-H borylation of substituted arenes is controlled by 

steric effects. 
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Scheme 5 Borylation of Arenes
61 

 

1.3.1.2.2 Mechanistic Studies of (bpy)Ir-Catalysed Arene Borylation 

 

Ishiyama, Miyaura, Hartwig and co-workers reported extensive studies that provided 

insight into the mechanism of arene borylation catalyzed by the combination of iridium 

precursors and dtbpy.
61

 Later on Hartwig, Ishiyama, and Miyaura reported an improved 

synthesis of [Ir(dtbpy)(η
2
-COE)(Bpin)3] (Figure 16) that was isolated after many experiments  

in 80-95% yield.
63

  

Hartwig and co-workers then conducted studies on the reactivity of [(dtbpy)(η
2
-

COE)Ir(Bpin)3]. The reaction of [Ir(dtbpy)(η
2
-COE)(Bpin)3] with arenes yielded 3 equivalent 

of ArBpin. The yields and regioselectivities of the borylated products observed from the 

reaction of [Ir(dtbpy)(η
2
-COE)-(Bpin)3] and arenes were similar to those of the borylated 
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products observed from the reaction of arenes and B2pin2 catalyzed by the combination of 

[Ir(COD)(OMe)]2 and dtbpy. Two different types of iridium complexes were considered to be 

possible intermediates that cleave the C-H bond of the arene.
63

 

 

 

Figure 16 Active catalyst generated from [Ir(COD)(OMe)]2, dtbpy, and B2pin2 
 

 

On the basis of these data obtained from NMR spectroscopy of catalytic systems, the isolation 

of kinetically competent intermediates, and kinetic data, Hartwig and co-workers proposed the 

mechanism shown in Figure 17 for the borylation of arenes catalyzed by dtbpy-ligated 

complexes of iridium.
63

 First, COE dissociates reversibly from the stable iridium trisboryl 

complex. The resulting 16-electron complex then reacts with the arene in a turnover-limiting 

step to form the arylboronate ester. This latter process likely occurs by coordination of arene 

and subsequent oxidative addition of the aryl C-H bond to form an iridium(V) intermediate. 

Reductive elimination of Ph-Bpin from the iridium(V) intermediate then forms the free 

functionalized product and an iridium(III) species. A combination of oxidative addition of 

B2pin2 and reductive elimination of HBpin would then regenerate the active iridium trisboryl 

complex.  
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Figure 17 Proposed Mechanisms for the Iridium-Catalyzed Borylation of Arenes
63 

 

Alternatively, σ-bond metathesis between [Ir(dtbpy)(Bpin)3] and Ph-H could produce an 

intermediate phenyliridium complex containing a coordinated borane 

[Ir(dtbpy)(Bpin)2(HBpin)-(Ph)]. This phenyliridium complex would eliminate PhBpin to 

generate the same bisboryliridium hydride complex as would be formed by the sequence of C-

H oxidative addition and B-C reductive elimination.  
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1.3.1.2.3 Subsequent functionalization of aryl boronate esters 

The synthetic importance of aromatic C–H borylation is shown in Figure 18, where a 

1,2,3-trisubstited aromatic compound can be directly converted to a 1,2,3,5-organoborane 

compound and subsequently functionalized.
 
Clearly, the products from the borylation of 

aromatic C-H bonds can be used as reagents for the Suzuki-Miyaura cross coupling
64

 or by the 

oxidation has been shown to generate phenols from arenes.
65

  

In one case, it was shown that iridium-catalyzed arene borylations, followed by 

halogenation of the initial organoboronate product with cupric bromide formed aryl 

bromides.
66

 This sequence constitutes a sterically controlled halogenation of an arene that 

complements the electronically controlled halogenation of arenes by electrophilic aromatic 

substitution. Related chlorinations were achieved with cupric chloride.
66 

Most recently, Hartwig and co-workers developed a protocol to convert 

pinacolboronate esters to aromatic nitriles.
67

 Again, the regioselectivity of the overall process 

is controlled by steric effects that dictate the regioselectivity of the C-H borylation step.  

Hartwig and co-workers extended the Lam-Chan functionalization
68

 of arylboronate esters to 

the functionalization of the pinacol boronate esters resulting from C-H borylation. This 

sequence constitutes a sterically controlled amination of an aromatic C-H bond.
69

 Related 

sequences to form aryl ethers via the C-H borylation were also developed, but required the 

generation of the boronic acids as an intermediate.
69

  

Although the pinacolboronate esters are convenient to use because they are stabile 

toward air and chromatography, a similar process that generates more reactive boronic acids or 

trifluoroborates would be desirable. A one-pot protocol for the generation of a boronic acid via 

the C-H bond functionalization chemistry was achieved
70

 by iridium catalyzed borylation, 

followed by an oxidative hydrolysis of the pinacol boronate ester with added periodate. A 

simple process for generating the trifluoroborates was achieved by the sequence of C-H 

borylation, followed by the addition of excess KHF2 to the pinacolboronate ester.
70

  

Finally, Ritter and Furuya reported the formation of aryl fluorides by converting the 

aryl pinacolboronate to the arylboronic acid by the method described above, and then 

converting the arylboronic acid to the aryl fluoride by a silver-mediated process.
71 
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Figure 18 Subsequent functionalization of aryl boronate esters 

 

1.3.1.2.4 Reactivity of heteroarenes 

 

Several research groups have investigated the scope of iridium-catalyzed borylation of 

heteroarenes.
72

 Early studies of the borylation of heteroarenes were focused on the selectivity 

of borylation of 5-membered heteroarenes. In 2002, Hartwig, Ishiyama, Miyaura, and co-

workers reported the borylation of thiophene, pyrrole, and furan with B2pin2 catalyzed by the 

combination [Ir(COD)Cl]2 and dtbpy in octane at 80 or 100 °C (Scheme 6).
73

 Several 

heteroarenes were shown to react with B2pin2 in the presence of the iridium-dtbpy catalyst to 

provide heteroarylboronate esters. The C-H borylation of thiophene, furan, or pyrrole yielded 

to heteroarylboronate esters in high yields, and the borylation occurred selectively at the 2-

position of these heteroarenes. Related reactions of thiophene, furan or pyrrole with an excess 

of the diboron reagent produced 2,5-diborylated products. Thiophene, pyrrole and furan 2,5-

bisboronate esters were obtained in 80%, 80%, and 71% yields, respectively, when the Ir-

catalyzed borylation of these heteroarenes was performed in the presence of 1.1 equivalent of 
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B2pin2. Indole and benzofuran also underwent selective borylation at the 2-position in the 

presence of an iridium catalyst to form 2-boryl indole and 2-boryl benzofuran in excellent 

yields. The reaction of pyridine was conducted at a higher reaction temperature (100 °C), and 

a mixture of 3- and 4-borylated pyridine products was observed. Quinoline, however, 

underwent borylation exclusively at the 3-position in a high yield. The origin of the 

regioselectivity of pyridine has not been established. 

 

 

 

Scheme 6 Iridium-catalyzed borylation of heteroaromatic substrates
73 

 

In contrast to the site-selectivity for the borylation of arenes, the site-selectivity for the 

borylation of heteroarenes is largely controlled by electronic effects.
72a,73

 Furans, pyrroles, and 

thiophenes undergo reaction at the C-H bond alpha to the heteroatom. Reactions of benzo-

fused heterocycles occur at the C-H bond alpha to the heteroatoms, without competing 
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reaction at the aromatic ring. Later on it was found that the most active catalytic system for C-

H borylation of arenes and heteroarenes was generated from [Ir(COD)(OMe)]2 a dtbpy in ratio 

(1:2).
63 

1.3.1.3 Direct C-H sulfenylation 

Aryl sulfides are a common functionality found in numerous pharmaceutically active 

compounds and also some examples of biologically active hetarylthioethers were previously 

described.
74 

The traditional transition metal-catalyzed cross coupling of ArX (X=Cl, Br, I, 

OTf, and B(OH)2) and ArSH is a powerful method for the construction of a C-S bond (Figure 

19, eq 1).
75

 However, thiols are prone to undergo oxidative S-S coupling reactions, resulting in 

the undesired formation of disulfides. Moreover, organic sulfur compounds may bind to metal, 

causing the deactivation of metal catalyst.
76 

Employing disulfides may solve these drawbacks 

(Figure 19, eq 2).
77

 Nevertheless, in general, 1 equiv. of reductant such as Zn or Mg was added 

in the reaction of ArX and RSSR, and prefunctionalization is still required for such 

transformation, which significantly restricts potential applications of these methods.
 

 

 

 

Figure 19 Formation of a C-S Bond Catalyzed by Transition Metal 
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The direct functionalization of a C-H bond is a straightforward transformation
78

 and few 

examples of the formation of a C-S bond through C-H bond cleavage have been reported. 

In 2006, Yu and co-workers reported a Cu(OAc)2-catalyzed thiolation of the 2-phenylpyridine 

with PhSH and MeSSMe under oxygen atmosphere (Figure 19, eq 3).
79

 Subsequently, Dong 

and co-workers described the Pd-catalyzed direct sulfonylation of a 2-phenylpyridine C-H 

bond with ArSO2Cl.
80

 Recently, a nonchelation-assisted Cu-catalyzed thiolation of the di- or 

trimethoxybenzene arene C-H bond with ArSSAr was reported. (Figure 19, eq 4).
81

 

 

 

1.3.1.3.1 Reactivity of heteroarenes 

 

Since the discovery of the potential utility of 3-sulfenylindoles as pharmaceuticals
82 

significant efforts have devoted to the development of new sulfenyl-substituted indoles. 

Several efficient strategies for synthesis of 3-sulfenylindoles have been developed, including 

electrophilic substitution of indoles with sulfur-containing electrophiles, such as sulfenyl 

chloride,
83

 N-thiophthalimides,
84

 and quinone mono-O,S-acetals,
85

 sulfoamination of 2-

alkynylanilines with disulfides
86

 or arylsulfenyl chlorides,
87

 sulfanyl radical addition to 

alkynyl azides,
88

 nucleophilic substitution of indole halides with metal mercaptides,
89

 coupling 

reactions of indoles with disulfides and thiols in the presence of stoichiometric strong base.
90

 

Despite the synthetic utility of these transformations, most of these processes require the use 

of the strong bases, unavailable thiolating reagents or per-activated promoters, which are 

limited by undesired byproducts and are not suitable for sensitive substrates.  

On the other hand, several examples of direct C-H sulfenylation were also reported. In 

1989 an example of alkylsulfenylation of indole with dimethyl disulfide using copper (I) 

iodine catalyst at 132-160°C was described.
91 

Subsequently, Uemura and co-workers have 

developed an efficient protocol for the sulfenylation of indoles with thiols in the presence of 

VO(acac)3, 2,6-di-tert-butyl-p-cresol, potassium iodone and oxygen, but an excess amount of 

the thiol is required and undesired disulfide byproducts are formed.
92

 Afterwards, Yadav and 

co-workers reported an iron (III) chloride catalyzed sulfenylation reaction using indoles and 

thiols as the reaction partners.
93

 However, the reaction is limited to aryl thiols and benzyl 

thiols, which have a foul smell and a pungent flavor. Later on, Li and co-workers disclosed 
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iron-catalyzed sulfenylation of an indole C-H bond with diaryl disulfides, whereas a catalytic 

amount of iodine was supplied to promote the reaction (Figure 20, eq 1).
94 

Recently, Li and 

co-coworkers published very useful example of sulfenylation of indole with various disulfide 

using catalyst copper (I) iodine under air atmosphere utilizes O2 as a clean and cheap oxidant 

(Figure 20, eq 2).
95

 Finally, Bolm and co-workers published convenient transition metal-free 

procedure for the direct sulfenylation of indole C–H bonds using diaryl disulfides and cesium 

carbonate (Figure 20, eq 3).
96a

 

 

 

 

Figure 20 Formation of 3-sulfenylindoles by different C-H sulfenylation  

 

 

1.3.2 C-H activation of purines and deazapurines 
 

Traditional cross-coupling of the nucleobases as well as DNA or RNA fragments have 

been well-established in nucleic acid chemistry. For the direct C-H activation of heteroarenes 

applies generally the same patterns as in activation of arenes. However, the higher control of 

regioselectivity can be observed due to the different nature of each C-H bond in heteroarenes. 

Purines are generally functionalized via direct activation of the C8-H bond and the most 

widely TM catalysts used for activation are palladium and copper.
97

 On the other hand, other 

transition metals used in catalysis of C-H activations (Rh, Ru, Co etc.) could strongly 
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coordinate purine at N7. Therefore, there is certainly a great potential of the development of 

C-H activations in 7- or 9-deazapurines that are supposed not to coordinate the metals as 

strongly as purines. 

 

1.3.2.1 Direct C-H arylation 
 

Previously our group developed Pd-catalyzed C-H arylations of purines
98

 at position 8 

by diverse aryl iodides in the presence of CuI and Cs2CO3 (Figure 13). The methodology is 

general and efficient and was applied in the consecutive regioselective synthesis of 2,6,8-

trisubstituted purines bearing three different C-substituents in combination with two cross-

coupling reactions. The C-H arylation was subsequently applied for the synthesis of diverse 

trisubstituted and tetrasubstituted purines
99

 and also fused purine heterocycles.
100 

 

                

Figure 13 Synthesis of diverse trisubstituted and tetrasubstituted purines 

 

Our former colleague, Igor Cerna,
101

 and others
102

 successfully performed C-H 

arylations of unprotected purine nucleosides with aryl iodides at position 8 to allow a 

straightforward single-step introduction of diverse aryl groups (Figure 14). 
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Figure 14 Direct C–H arylation of unprotected purine nucleosides  

To the best of my knowledge, there was no reported example of a direct C-H arylation of 

deazapurine moiety prior to starting of my project. 

 

1.3.2.2 Others C-H activation 

 

To the best of my knowledge, there were no reported examples of a direct C-H borylation or 

C-H sulfenylation of purines and deazapurine moiety prior to starting of my project. 
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2 Specific aims of the thesis 
 

1. Development of the direct C-H borylation of deazapurines 

2. Development of the direct C-H sulfenylation of deazapurines 

3. Combinations of C-H activations with cross-coupling reactions, nucleophilic substitutions 

and construction of libraries di- and trisubstituted deazapurines 

 

Rationale of the Specific Aims  

In recent years, direct C-H borylation and C-H sulfenylation of arenes has become a 

widely used method for the functionalization of arenes because of its ability to produce aryl 

organoboronate ester or arylsulfanyl derivatives without needing reactive groups (such as 

halides) or strong bases (like LDA). Since no literature exists for evidence of this type of 

borylation or sulfenylation on deazapurines, my major goal in this PhD thesis is the 

development of these direct C-H activations. 

The newly developed methods can then be combined with the previously known 

methodologies of cross-couplings and nucleophilic substitutions of these heterocycles in order 

to attach two, three, four or even five different substituents onto the heterocyclic moiety. One-

pot tandem reactions will be used for straight-forward substitutions of single derivatives.  

All the newly synthesized functionalized and substituted heterocycles were intended to be 

tested for cytostatic activity in a panel of cancer and leukaemia cell lines (in collaboration with 

Dr. H. Mertlíková-Kaiserová at IOCB ASCR and Prof. M. Hajdúch at Palacky University, 

Olomouc). Selected derivatives were intended to be also submitted for antiviral screening in 

Gilead Sciences, Inc.  
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3 Results and discussion  

3.1 C-H Borylation of purines and deazapurines 

 

Ir-catalyzed C–H borylation of aromatic compounds is a one step method to generate aryl 

boronates and the reactions should lead to hetarylboronates suitable for further functional 

group transformations by the Suzuki cross-coupling or by other substitutions (Chapter 

1.3.1.2.3, Figure 18). The most active catalyst for this transformation is generated from dtbpy 

and [Ir(COD)(OMe)]2 in ratio (1:2).
63

 So far, not only have such reactions not been reported 

on these two heterocyclic systems, but also the corresponding hetarylboronates or -boronic 

acids are unknown. The direct C-H borylation presents an important task as it will remarkably 

simplify the synthesis of hetarylboronates suitable for further functional group transformations.  

 

3.1.1 Direct C-H borylation of purines 

 

 9-Benzyl-6-phenylpurine (1) was chosen as the first model substrate for studying the 

C–H borylation. It was employed the above mentioned catalytic system for C-H borylation 

of purine (Chart 1) under diverse conditions (from r.t. to 80 °C and MW irradiation). 

Unfortunately, no formation of 8-borylated purine was observed (mostly just the starting 

compound was recovered accompanied by minor byproducts). The most plausible 

explanation of this lack of reactivity is the formation of stable complex of purine with Ir 

catalyst at N7. Another problem might be the limited stability of the purine-8-boronate that 

may undergo protodeborylation back to the starting compound.  

 

 

Chart 1. Direct C–H borylation of purines 
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3.1.2 Direct C-H borylation of 7-deazapurines  

 

Therefore, my further effort was focused on 7-deazapurines (lacking the N7 coordination 

site). The next model starting compound was 9-benzyl-6-phenyl-7-deazapurine (2, 7-benzyl-4-

phenyl-7H-pyrrolo[2,3-d]pyrimidine). THF was solvent of choice due to solubility of starting 

compounds. The reaction of 2 with bispinacolatodiboron in presence of dtbpy and 

[Ir(COD)(OMe)]2 proceeded well to give selectively 8-borylated product 13 in in high yield 

(85%, Table 1, entry 1). The regioselectivity was in accord with the literature examples of 

borylation of indoles
72a,73

 to position 2 and was unequivocally proved by X-ray diffraction 

analysis of 13 (Figure 1). 

 

 

 

Scheme 1. Reagents and conditions: i) B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy 

(10%), THF, 80°C, 20 h 

 

Figure 1. ORTEP drawings of crystal structures of compounds 13 (CCDC 703631)  
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Table 1. Scope and limitations of direct C-H borylation of 7-deazapurines 2-12 

Entry 
Starting 

compound 
X R Yield (%) 

1 2 Ph- Bn 13 (85%)
 

2 3 Ph- H no reaction 

3 4 Me- 
2,3,5-tri-O-acetyl-β-D-

ribofuranosyl 
no reaction 

4 5 NH2 Bn no reaction
 

5 6 (CH3)2NCH=N- Bn no reaction 

6 7 Cl Bn 14 (53%)
 

7 8 Cl H no reaction 

8 9 Cl SEM 15 (78%) 

9 10 OMe SEM 16 (81%) 

10 11 SMe SEM 17 (83%) 

11 12 SO2Me SEM no reaction 

 

Later on, I found that neither 9-unsubstituted 6-phenyl-7-deazapurine 3 nor nucleoside 

4 formed the desired boronates. 6-Amino-9-benzyl-7-deazapurine (deazaadenine) 5 as well 

as its N-(dimethylamino)methylidene-protected derivative 6 also did not give any C-H 

borylation products. 9-Benzyl-6-chloro-7-deazapurine 7 gave the desired 8-borylated 

product 14 in moderate 53% yield, whereas the 9-unprotected 6-chloro-7-deazapurine 8 

did not undergo the borylation. Apparently, the Ir-catalyzed C-H borylation only works on 

9-substituted 7-deazapurines bearing functional groups lacking any acidic protons and/or 

coordinating nitrogens. On the other hand, I have no plausible explanation for the lack of 

reactivity of nucleoside 4.  

In order to access the biologically relevant substituted deazaadenine or deazahypoxanthine 

bases, I need to introduce a protecting group at position 9 and a suitable functional group at 

position 6. The protecting group need to be sufficiently stable and non-interfering with the 

borylation but easily removable at the end. Based on my previous experience with difficult 

removal of N-benzyl group from 7-deazapurines, I choose (trimethylsilyl)ethoxymethyl (SEM) 

group which is easily removable by TFA followed by ammonia. As possible transformable or 

leaving groups at position 6, it was considered Cl, OCH3, SCH3 and SO2CH3 which should be 

prone to either nucleophilic substitutions or demethylations. The SEM-protected 6-chloro-7-

deazapurine 9 was prepared according to literature
103

 and was converted to 6-methoxy- and    
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6-methylsulfanyl derivatives 10 and 11 by nucleophilic substitution with MeONa or MeSNa, 

respectively (Scheme 2). The sulphide 11 was oxidized to sulfone 12 by mCPBA. The 

corresponding 9-SEM-6-substituted deazapurines 9-12 were then tested in the Ir-catalyzed    

C-H borylation under the same conditions as above (Table 1, entries 8-11). The 6-chloro-,      

6-methoxy- and 6-methylsulfanyl- SEM-protected 7-deazapurines reacted well to give the 

corresponding boronates 15-17 in good yields (78-83%), whereas the sulfone 12 did not give 

any reaction under these conditions. 

 

 

Scheme 2. Reagents and conditions: i) 2M MeONa/MeOH, acetone, rt, overnight or MeSNa 

(1.5 equiv.), MeOH, rt, 1h;  ii) mCPBA (2 equiv.), DCM, rt, overnight. 

 

I also explored the possible conversions of the boronate 13 to either free boronic acids or 

trifluoroborates
104

 (Scheme 3). The reaction of 13 with KHF2 under standard conditions
70 

gave 

the desired trifluoroborate 18 in acceptable 68% yield. However, the oxidation followed by 

hydrolysis under literature conditions,
70

 which should give the boronic acid, gave only           

8-unsubstituted deazapurine 2 as a product of protodeborylation. This is an indicator, that the 

corresponding deazapurine-8-boronic acid is too unstable to be isolated under these reaction 

conditions. 
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Scheme 3. Reagents and conditions: i) KHF2 (6 equiv.), THF/H2O (5:3), rt, 5 h; ii) NaIO4 (4 

equiv.), THF/H2O (4:1), 1M HCl, rt, 1 h. 

 
 

3.1.3 Direct C-H borylation of 9-deazapurines 

 

 Later on, my effort was also focused on C-H borylation of 9-deazapurines and I applied 

the same conditions used for C-H borylation of 7-deazapurine on model compound          

6-methoxy-7-SEM-9-deazapurine (19, 4-methoxy-5-SEM-5H-pyrrolo[3,2-d]pyrimidine). 

The C-H borylation of 9-deazapurine 19 did not proceed regioselectively and two 

borylated (according LC-MS) unseparable products were formed. Therefore the mixture 

was then used in Suzuki coupling under conditions previously optimized
105

 with              

4-iodoanisole and the formation of two regioisomers were confirmed. The two                 

9-deazapurines 20a (7-arylated) and 20b (8-arylated) were isolated in 20%, respectively 40 

% (Scheme 4). 
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Scheme 4. Reagents and conditions: i) B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy 

(10%), THF, 80°C, 20 h; ii) Ar-I (1.1 equiv.), Pd(dppf)Cl2 (5%), K2CO3 (4 equiv.), DMF, 

90°C, 1 h. 

3.1.4 Application of C-H borylation in synthesis of 6,8-disubstituted 7-

deazapurines 

 

Having a regioselective access to the 8-subtituted 7-deazapurines, I have further explored 

synthetic applications of boronates. The most obvious use is in the Suzuki cross-coupling 

reaction or in transformation to other functional groups (halogen, cyano, hydroxyl, CF3) 

generally by the copper catalysed substitution (Chapter 1.3.1.2.3). 

 

3.1.4.1 Synthesis of 8-aryl-7-deazapurines 

 

The Suzuki cross-coupling reactions were performed on model benzylated boronate 13 with 

diverse aryl halides under conditions previously optimized
105

 for other hetarylboronates 

(Pd(dppf)Cl2 and K2CO3 in DMF). Generally, all the aryl halides (diverse aryl iodides and     

2-bromopyrene) reacted well to give the desired 8-aryl products 21a-21g in very high yields 

(Scheme 5, Table 2). One example (21b) was also characterized by X-ray diffraction (Figure 

2).  
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Scheme 5. Reagents and conditions: B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy (10%), 

THF, 80°C, 20 h; ii) Ar-I (1.1 equiv.), Pd(dppf)Cl2 (5%), K2CO3 (4 equiv.), DMF, 90°C, 1 h.; 

iii) Ar-X (2 equiv.), Pd(OAc)2 (5%), Cs2CO3 (2.5 equiv.), CuI (3 equiv.), DMF, 160 °C, 60 h. 

 

Figure 2. ORTEP drawings of crystal structures of compounds 21b (CCDC 703632) 

  

Interesting products 21e and 21g arrised from the coupling with methylated 5- or             

6-iodouracils (entries 5 and 7) as novel types of Janus-nucleobases
106

 or fleximers.
107

 In 

the case of compound 21g, the acid hydrolysis gave the free 9-benzyl-6-phenyl-8-(uracil-

6-yl)-7-deazapurine 21h. The overall yields of the 6,8-diaryl-7-deazapurines over the two 

steps (C-H borylation and cross-coupling, Table 2 - Route I) were very good (67-81%). 
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Table 2. Synthesis of 8-arylated deazapurines by C-H activation 

Entry Ar-X Product 

Route I 

- coupling
a 

(overall yield)
b 

Route II 

(yield) 

1 
 

21a 87%
a 
(74%)

b
 39% 

2 
 

21b 90%
a 
(76%)

 b
 41% 

3 

 

21c 79%
a
 (67%)

 b
 35% 

4 
 

21d 95%
a
 (81%)

 b
 traces 

5 

 

21e 92%
a
 (78 %)

 b 
0% 

6 
 

21f 91%
a
 (77%)

 b
 0% 

7 

 

21g 92%
a,c

 (78%)
 b,c 

0% 

a 
cross coupling; 

b 
overall yield after two steps (C-H borylation and cross coupling); 

c 
overall yield after acidic 

deprotection to free uracil 21h
109 

 

3.1.4.1.1 Synthesis of 8-aryl-7-deazapurines by direct C-H arylation 

 

As a complementary alternative method, I have also tried direct C-H arylation
 
of 2 with the 

same aryl halides under the conditions optimized
98

 for arylation of purines (Table 2, Route II). 

However, these reactions did not proceed well giving very low yields (entries 1-3) or no 

reaction what so ever (entries 4-7). Comparison of the two routes to diaryl-7-deazapurines 21 

revealed that the two step sequence (Route I) is much more efficient (Table 2). The 

coordination of Cu(I) to N7 of purine ring is probably essential and proposed to assist the 

deprotonation at C-8 of purines. 
102b
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3.1.4.2 Two-step synthesis of 6,8-disubstituted 7-deazapurines – scope and limitations 

 

I was also interested in synthesis of 8-aryl-7-deazaadenines. As the direct C-H activations of 

7-deazaadenine 5 were unsuccessful, I have envisaged the use of 6-chloro derivative that can 

be readily transformed to 6-amino compounds (Table 3). The two-step arylation (C-H 

borylation followed by the Suzuki coupling) of 9-benzyl-6-chloro-7-deazapurine 7 with three 

different aryl iodides proceeded with acceptable 31-42% overall yields (the yield of the first 

step was the moderate 54% as mentioned above). The follow-up aminations of the 6-chloro-7-

deazapurines 22a-22c with methanolic ammonia gave the 8-aryl-7-deazaadenines 23aa, 23b 

and 23c in very good yields (Table 3). Other nucleophilic substitutions were also pursued with 

6-chloro-7-deazapurine 22a. Its reactions with aniline, benzylamine, as well as with sodium 

phenolate gave the corresponding 6-N- or 6-O-substituted products 23ab, 23ac and 23ad, 

respectively (Scheme 6). 

 

 

Scheme 6. Reagents and conditions: B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy (10%), 

THF, 80°C, 20 h; ii) Ar-I (1.1 equiv.), Pd(dppf)Cl2 (5%), K2CO3 (4 equiv.), DMF, 90°C, 1 h.;  

(iii) a) NH3/MeOH, 120 °C, overnight b,c) R-NH2 (3 equiv.), butanol, reflux, overnight d) 

phenol (1.2 equiv.), KOt-Bu (1.2 equiv.), K2CO3 (0.75 equiv.), DMF, 110 °C, 16 h. 
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Table 3. Two-step synthesis of 6,8-disubstituted 7-deazapurines 

Entry Ar Product (yield) X Product (yield) 

1 

 
22a (42%)

 

NH2 23aa (83%) 

2 NH-Ph 23ab (65%) 

3 NH-Bn 23ac (77%) 

4 O-Ph 23ad (93%) 

5 
 

22b (31%) NH2 23b (85%) 

6 

 

22c (36%) NH2 23c (79%) 

 

Having confirmed the reactivity of the SEM-protected deazapurines 9-11 in C-H 

borylations (Table 1, entries 8-10), I have further explored synthetic applicability of one-pot 

reaction sequence: C-H borylation/Suzuki cross-coupling with 4-iodoanisole. Whereas the  

borylation/Suzuki reaction of 9-benzyl-6-chloro-7-deazapurine 7 procedeed in moderate (but 

still acceptable) 42 % yield, the borylation/Suzuki reaction of 6-chlorodeazapurine 9 gave only 

low yield (20%) of the desired 8-aryl derivative 24a because the Suzuki cross-coupling step 

was accompanied by competitive deborylation back to starting compound 9. Therefore, I 

focused on the one-pot borylation/arylation of 6-methoxy and 6-MeS derivatives 10 and 11. 

These reactions proceeded smoothly and efficiently to give the desired SEM-protected           

8-arylated 7-deazapurines 25a (70%) and 26a (79%, Scheme 7).  

 

 

 

Scheme 7. Reagents and conditions: i) B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy 

(10%), THF, 80°C, 20 h; ii) Ar-I (1.1 equiv.), Pd(dppf)Cl2 (5%; 10% in case of 26a), K2CO3 (4 

equiv.), DMF, 90°C, 1 h. 
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3.1.4.3 Synthesis of 8-aryl 7-deazahypoxantines 

 

Encouraged by these successful reactions, I envisaged the use of the one-pot 

borylation/arylation of 6-methoxy-7-deazapurine 10 in combination with O-demethylation and 

SEM-deprotection for the synthesis of 8-aryl-7-deazahypoxanthine bases. It was performed a 

series of one-pot borylation/Suzuki coupling of methoxydeazapurine 10 with several aryl 

iodides (Scheme 8, Table 4). Generally, the reactions proceeded very well to give the desired 

SEM-protected 8-(het)aryl-6-methoxy-7-deazapurines 25a–h in high yields (Scheme 8, Table 

4). In case of several couplings of hetaryl halides, the reaction time for the Suzuki reaction 

was increased to 18 h to reach complete conversion. Deprotection
108

 of the SEM group using 

trifluoroacetic acid (TFA) followed by aqueous ammonia furnished free 8-aryl-6-methoxy-7-

deazapurine bases 27a-f in good yields of 65–90 % (Scheme 8, Table 4). In deprotection of 

aminophenyl-derivative 25h, the isolated yield of deazapurine base 27h was low (22%) due to 

difficult separation of the highly polar derivative on column chromatography. In the case of 

compound 25g, the deprotection of SEM group was directly followed by the acid hydrolysis
109

 

to the free 8-(uracil-5-yl)-7-deazahypoxantine 28i. The final cleavage of methyl ethers 27a-h 

was performed with in situ generated iodotrimethylsilane
 
(from TMSCl and NaI)

110
 in 

acetonitrile to give 8-(het)aryl-7-deazahypoxantine 28a-h in high yields. 

 

 

 

Scheme 8. Reagents and conditions: i) B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy 

(10%), THF, 80°C, 20 h; ii) Ar-X (1.1 equiv.), Pd(dppf)Cl2 (5%), K2CO3 (4 equiv.), DMF, 

90°C, 1 h (or 18 h); iii) TFA (2 mL), rt, 1 h, followed by  aq. ammonia (25% [w/w], rt, 18 h; 

iv) TMSCl (5 equiv.), NaI (5 equiv.), MeCN, 80°C, 18 h. 
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Table 4. Synthesis of 8-aryl-7-deazahypoxantines  

Entry Ar-X Product 25 (yield) Product 27 (yield) Product 28 (yield) 

1 
 

25a (70%) 27a (90%) 28a (85%) 

2 

 

25b (50%)
b 

27b (85%) 28b (71%) 

3 
 

25c (65%) 27c (90%) 28c (90%) 

4 
 

25d (45%)
b
 27d (80%) 28d (92%) 

5 

 

25e (77%) 27e (90%) 28e (70%) 

6 

 

25f (58%) 27f (65%) 28f (80%) 

7 

 

25g (66%)
b
 ------ 28i (97%)

a 

8 

 

25h (74%) 27h (22%) 28h (75%) 

a
 Overall yield after acidic deprotection to 28i; 

b
 reaction time 18 hours 

 

3.1.4.4 Synthesis of 8-aryl-7-deazaadenines 

 

In order to synthesize the corresponding 8-aryl-7-deazaadenine bases, I started by an 

analogous one-pot two-step borylation/arylation of SEM-protected 6-MeS-7-deazapurine 11. 

Due to the presence of sulphur,  10 mol% of Pd catalyst was needed for the Suzuki coupling, 

but otherwise the reaction with B2pin2 followed by cross-coupling with a series of aryl halides 

proceeded similarly well as to give the desired 8-(het)aryl products 26a-h in high yields 

(Scheme 9, Table 5). Also here, for several hetaryl halides, the reaction time for the Suzuki 

reaction was increased to 18 h to reach complete conversion. The second step was the 

oxidation
111

 of methylsulfanyl derivatives 26a-h methylsulfones 29a-g (which are more 

reactive electrophiles for nucleophilic substitution). The reactions proceeded well with 

exception of derivative 26h (entry 8) which gave inseparable complex mixture only. The 



58 
 

original procedure (NH3/MeOH) for amination of sulfones
111

 was modified to NH3/dioxane (to 

avoid formation of methyl ethers observed in methanol) which gave the desired SEM-

protected 8-aryl-7-deazaadenines 30a-f in good yields. Deprotection of SEM group using 

trifluoroacetic acid (TFA) followed by aqueous ammonia furnished free 8-substituted            

7-deazaadenines 31a-f in 65–80 % yields. In the case of compound 30g, the deprotection of 

SEM group was directly followed by the acid hydrolysis to the free 8-(uracil-5-yl)-7-

deazaaadenine 31i (Figure 3).  

 

 

 

Scheme 9. Reagents and conditions: i) B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy 

(10%), THF, 80°C, 20 h; ii) Ar-X (1.1 equiv.), Pd(dppf)Cl2 (10%), K2CO3 (4 equiv.), DMF, 

90°C, 1 h (or 18 h); iii) mCPBA (2 equiv.), CH2Cl2, r.t., 1 h; iv) aq. ammonia (25% [w/w]), 

dioxane, 50 °C, 18 h; v) TFA (2 mL), rt, 1 h, followed by aq. ammonia (25% [w/w], rt, 18 h. 

 

 

 

 

Figure 3. Structure of compound 31i 
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Table 5. Synthesis of 8-aryl-7-deazaadenines  

Entry Ar-X Product 26 (yield) Product 29 (yield) Product 30 (yield) Product 31 (yield) 

1 
 

26a (79%) 29a (77%) 30a (83%) 31a (80%) 

2 

 

26b (64%)
b 

29b (65%) 30b (94%) 31b (74%) 

3 

 

26c (69%) 29c (89%) 30c (91%) 31c (74%) 

4 

 

26d (62%) 29d (76%) 30d (85%) 31d (79%) 

5 

 

26e (70%)
b
 29e (62%) 30e (84%) 31e (72%) 

6 

 

26f (50%)
b
 29f (62%) 30f (71%) 31f (65%) 

7 

 

26g (39%)
b
 29g (86%) 30g (93%)

 
31i (77%)

a
 

8 

 

26h (78%) complex mixture ------- -------- 

a
 Overall yield after acidic deprotection to 31i (for structure see Figure 3.); 

b
 18 hours 

 

As the above reaction sequence did not work for preparation the 8-(3-aminophenyl)-7-

deazaadenine 31h,  I used an alternative synthetic protocol. The corresponding                       

7-deazahypoxantine derivative 28h was first chlorinated with POCl3 followed by amination 

(NH3 in dioxane) to give the desired deazaadenine 31h in 40% overal yield (Scheme 10). 

 

 

 

Scheme 10. Reagents and conditions: i) POCl3 (5 equiv.), BnEt3N
+
Cl (2 equiv.), PhNMe2 (1.1 

equiv.), MeCN,  reflux, 4 h; ii) aq. ammonia (25% [w/w]), dioxane, 120 °C, 18 h. 
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3.1.4.5 One-pot C–H borylation/Cu-catalyzed substitution 

 

Having an easy access to 8-borylated 7-deazapurines, I also explored the possibility of their 

conversion to other functional groups. I tested the reactions of model 8-borylated 9-benzyl-

deazapurine 13 generated in situ from 2 and directly functionalized by copper catalyzed 

substitutions (Scheme 11). Halogenation
66

 of the boronate 13 with cupric chloride formed    8-

chlorodeazapurine 32j (46%), whereas analogous bromination with cupric bromide gave      8-

bromo-derivative 32k (63%). This two-step halogenation at position 8 is complementary to 

electrophilic halogenation which proceeds at position 7.
112

  The boronate 13 was also  

converted to 8-trifluoromethyl derivative 32l by treatment with the Togni reagent, CuTC and 

phenanthroline
113

 but the yield was only 34% due to competitive protodeborylation. Treatment 

of 13 with Zn(CN)2 in presence of Cu(NO3)2 and CsF
67

 gave the 8-cyano-derivative 32m in 

58%.  

 

 

Scheme 11. Reagents and conditions: A: CuCl2 (3 equiv.), acetone/H2O (1:1), 80°C, 3h; B: 

CuBr2 (3 equiv.), acetone/H2O (1:1), 80°C, 3h; C: Togni reagent (1.1 equiv.), CuTc (10%), 

1,10-phenantroline (20%), LiOH.H2O (2 equiv.), CH2Cl2, 45°C, 18 h; D: Cu(NO3)2 (2 equiv.), 

Zn(CN)2 (3 equiv.), CsF (1 equiv.), acetone/H2O (2,5:1), 100°C, 2 h. 
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This one-pot two-step reaction sequence C-H borylation/Cu-catalyzed substitution was then 

applied on SEM-protected 6-chloro- and 6-methoxy-7-deazapurines 9 and 10. The 

halogenations and trifluoromethylations proceeded, though with moderate conversions 

(probably due to partial protodeborylation), to give the desired 8-substituted products 25j-l 

and 33j-l in modest yields 32-56% (Scheme 12, Table 6). On the other hand, the cyanation did 

not proceed at all and only the recovery of strating materials was observed.  Cleavage of SEM 

groups using trifluoroacetic acid (TFA) followed by aqueous ammonia furnished the 

corresponding free 8-substituted 7-deazapurine bases 27j-l and 34j-l (Scheme 12, Table 6). 

 

 

Scheme 12. Reagents and conditions: i) B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy 

(10%), THF, 80°C, 20 h; ii) A: CuCl2 (3 equiv.), acetone/H2O (1:1), 80°C, 3h; B: CuBr2 (3 

equiv.), acetone/H2O (1:1), 80°C, 3h; C: Togni reagent (1.1 equiv.), CuTc (10%), 1,10-

phenantroline (20%), LiOH.H2O (2 equiv.), CH2Cl2, 45°C, 18 h; D: Cu(NO3)2 (2 equiv.), 

Zn(CN)2 (3 equiv.), CsF (1 equiv.), acetone/H2O (2,5:1), 100°C, 2 h; iii) TFA (2 mL), rt, 1 h, 

followed by aq. ammonia (25% [w/w], rt, 18 h; iv) TMSCl (5 equiv.), NaI (5 equiv.), MeCN, 

80°C, 18 h. 

 

Table 6. One-pot C–H borylation/Cu-catalyzed substitution of SEM-protected deazapurines 

followed by deprotection 

Entry 
Starting 

compound 
Procedure X Y Product 33 or 25 (yield) Product 34 or 27 (yield) 

1 9 A Cl -Cl 33j (55%) 34j (66%) 

2 9 B Cl -Br 33k (56%) 34k (75%) 

3 9 C Cl -CF3 33l (38%) 34l (73%) 

4 9 D Cl -CN no reaction ------------ 

5 10 A OMe -Cl 25j (47%) 27j (55%) 

6 10 B OMe -Br 25k (34%) 27k (50%) 

7 10 C OMe -CF3 25l (32%) 27l (75%) 

8 10 D OMe -CN no reaction ------------ 
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The last goal was the preparation of 8-trifluoromethyl-7-deazahypoxanthine 28l and               

8-trifluoromethyl-7-deazaadenine 31l. The former was easily prepared by cleavage of methyl 

ether 27l with in situ generated iodotrimethylsilane
 
(from TMSCl and NaI) in acetonitrile. The 

desired 8-trifluoromethyl-7-deazahypoxantine 28l was isolated in low 30% yield (Scheme 13). 

 

 

Scheme 13. Reagents and conditions: i) TMSCl (5 equiv.), NaI (5 equiv.), MeCN, 80°C, 18 h. 

 

More difficult was the preparation of the corresponding 8-trifluoromethyl-7-deazaadenine 31l 

(Scheme 14). An obvious way was an amination of 6-chloro derivative 34l. However, under 

mild conditions, the reaction did not proceed, whereas at 120°C, the formation of unexpected 

amide 31m was observed due to hydrolysis/ammonolysis of CF3 group. Therefore, I used a 

longer sequence starting by borylation/trifluoromethylation of 11, followed by oxidation and 

amination of sulfone 29l under mild conditions to give SEM-protected deazaadenine 30l in 

good yield. The final deprotection gave 8-trifluoromethyl-7-deazaadenine 31l in 90% yield. 

 

 

Scheme 14. Reagents and conditions: i) aq. ammonia (25% [w/w]), dioxane, 120 °C, 18 h; ii) 

B2pin2 (1.2 equiv.), [Ir(COD)OMe]2 (5%), dtbpy (10%), THF, 80°C, 20 h; iii) Togni reagent 

(1.1 equiv.), CuTc (10%), 1,10-phenantroline (20%), LiOH.H2O (2 equiv.), CH2Cl2, 45°C, 18 

h; iv) mCPBA (2 equiv.), CH2Cl2, r.t., 1h; v) aq. ammonia (25% [w/w]), dioxane, 50 °C, 18 h; 

vi) TFA (2 mL), r.t., 1 h, followed by aq. ammonia (25% [w/w], r.t., 18 h. 
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3.1.5 Biological activity screening 6,8-disubstituted 7-deazapurines 

In vitro cytotoxic/cytostatic activity all final nucleobases 27a-27l, 28a-28l, 31a-31h, 34j-

34l was initially evaluated against seven cell lines derived from human solid tumors 

including lung (A549 cells) and colon (HCT116 and HCT116p53-/-) carcinomas, as well 

as leukemia cell lines (CCRF-CEM, CEM-DNR, K562 and K562-TAX) and, for 

comparison, non-malignant BJ and MRC-5 fibroblasts. Concentrations inhibiting the cell 

growth by 50% (IC50) were determined using a quantitative metabolic staining with 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) following a 3-day 

treatment. All cytostatic/cytotoxic activity screening were performed by our collaborators 

from the group of Dr. Hana Mertlikova-Kaiserova and from the group of prof. Hajdúch.  

 

Table 7. Cytostatic activities of selected compounds 

  
IC50 (μM) 

  
                    

 
A549 

CCRF-

CEM 

CEM-

DNR 

HCT11

6 

HCT11

6p53-- 
K562 

K562-

TAX 
HepG2 HL60 

HeLa 

S3 
BJ MRC-5 

27c 44.62 >50 45.73 25.2 37.38 9.1 27.56 >10 >10 >10 >50 46.07 

27d 42.13 >50 49.28 32.66 48.5 8.07 37 >10 >10 >10 >50 45.02 

27e 11.97 24.62 19.68 13.29 12.73 6.33 11.33 >10 >10 >10 46.55 20.97 

27f 36.84 44.1 29.71 18.66 35.53 25.48 19.39 >10 >10 >10 >50 36.05 

27h 33.12 30 9.05 21.61 22.26 7.15 18.56 >10 >10 >10 >50 >50 

28e >50 >50 >50 >50 >50 21.64 >50 >10 >10 >10 >50 >50 

31a >50 >50 17.47 >50 >50 12.6 13.5 >10 >10 >10 >50 27.8 

31b >50 >50 32.93 >50 >50 25.47 8.86 >10 >10 >10 >50 >50 

31c >50 18.91 10.9 25.28 32.83 0.26 7.36 >10 >10 >10 >50 29.87 

31d >50 >50 25.16 >50 >50 28.92 17.11 >10 >10 >10 >50 >50 

31e >50 44.02 9.29 >50 >50 8.74 5.56 >10 >10 >10 >50 >50 

31f >50 27.04 >50 >50 >50 36.97 17.92 >10 >10 >10 >50 >50 

31h >50 >50 31.11 >50 >50 39.28 15.25 >10 >10 >10 >50 >50 

34l >50 18.81 >50 >50 >50 >50 >50 >10 >10 >10 >50 >50 

 

Selected results are summarized in Table 7. Surprisingly, most of the 8-substituted-7-

deazahypoxantines 28a-28l were entirely inactive in these assays with the exception of 8-

(3-thienyl)-7-deazahypoxantine 28e showing moderate cytotoxic activities at > 20 μM 

concentrations. On the other hand, the 6-methoxy-7-deazapurine and 7-deazaadenine bases 

bearing diverse het(aryl) substituents at the position 8 showed significant cytostatic effects 
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at micromolar concentrations. The most active were 2-furyl-, 3-thienyl-, 3-aminophenyl-6-

methoxy-7-deazapurines (27d,e,h) and 2-pyridyl-, 2-thienyl-,  3-thienyl-7-deazaadenine 

(31b,c,e) derivatives having IC50 values in low micromolar range. In addition to that these 

compounds (27h, 31b, 31e) were non-toxic to BJ and MRC-5 fibroblasts showing 

promising therapeutic index.  
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3.2 C-H sulfenylation of purines and deazapurines  

 

To the best of my knowledge, there was no reported example of a direct C-H sulfenylation of 

purines and deazapurine moiety. I have found only one reported example of 7-sulfanyl-7-

deazapurine that was published by Ugarkar and co-workers.
74b 

Lithium halogen exchange of 7-

bromo-6-chloro-7-deazapurine (I) was performed under previously reported protocol. 
114

   

Freshly formed lithium intermediate was added to dimethyl disulfide to give 7-methylsulfanyl-

7-deazapurine base (II) in 52% yield. Also a preparation of 8-sulfanylated purine (IV) is based 

on preparation of lithium intermediate by LDA followed by addition of appropriate disulfide 

(Scheme 15). 
115

  

 

 

Scheme 15. Preparation of sulfanyl purine and deazapurine derivatives 
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3.2.1 Direct C-H sulfenylation of 7-deazapurines  

 

The project started with the study of C–H sulfenylations of 7-deazapurines which are 

closely related to indoles. The model starting compound of choice was 6-phenyl-7-

deazapurine (3). I have started by testing several literature catalytic systems and conditions 

for direct C–H sulfenylation.
92-96

 The most efficient was the reaction of 3 with disulphides 

in the presence of copper(I) catalyst (by analogy to the literature
95

 but replacing DMSO 

with DMF) giving the desired 7-substituted product 36a in excellent yield (96%, Table 8, 

entry 1). On a larger scale, a 7,8-bis(phenylsulfanyl) derivative 37a was also isolated as a 

minor by-product (3%, entry 1). The reaction work-up by EDTA was very important to 

break up stable complexes of the product with copper (without such a work-up, the 

isolated yield of 36a was only moderate, ∼50%). These optimised conditions were then 

used for the synthesis of three other examples, 7-alkyl- or -arylsulfanyl derivatives 36b-d. 

While the reactions with methyl and methoxyphenyl disulfide gave products 36b, c in 

good yields (entries 2, 3), the yield of nitrophenylsulfanyl derivative 36d was moderate. 

Also the reaction of 7-deazaadenine (35) proceeded under the same conditions to give 7-

(phenylsulfanyl)-7-deazaadenine (36e) in good yield (entry 5). Another interesting 

substrate was 6-chloro-7-deazapurine 8 that is suitable for further functional group 

transformations at position 6. In this case, the C–H sulfenylation proceeded well to give 

the desired product 44a in high (90%) yield (entry 6) without any trace of nucleophilic 

substitution at position 6. The reaction with 9-benzylated 6-phenyl-7-deazapurine 2 gives 

the 7-substituted product 53a in poor yield (20%, entry 7) due to low conversion. The 

structure of 53a was confirmed by X-ray (Fig. 4). Apparently, the free NH at position 7 is 

crucial for the efficiency of this reaction. (Scheme 16). 

 

Scheme 16. Reagents and conditions: i) R
2
S-SR

2
 (0.75 equiv.), CuI (10%), air, DMF, 110 

°C, 18-60 h. 
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Table 8. Direct C-H Sulfenylation of 7-Deazapurines 

Entry 
starting 

compound 
R

1
 X R

2
 Product (yield) 

1 3 H Ph- Ph- 36a (96%) + 37a (3%)
 

2
a
 3 H Ph- Me- 36b (71%) + 37b (15%) 

3 3 H Ph- 4-MeO-Ph- 36c (91%) 

4 3 H Ph- 4-NO2-Ph- 36d (47%) 

5
 

35 H NH2- Ph- 36e (79%) 

6
 a
 8 H Cl- Ph- 44a (90%) 

7
b
 2 Bn Ph- Ph- 53a (20%)

b 

a
5 equiv of R

2
S-SR

2
; 

 b
2.5 equiv of R

2
S-SR

2
 and

 
recovery of starting compound (71%). 

 

 

 
Figure 4. ORTEP drawings of crystal structure of compound 53a (CCDC 926544)  
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3.2.2 Direct C-H sulfenylation of 9-deazapurines 

 

 

 

Scheme 17. Reagents and conditions: i) R
2
S-SR

2
 (1.5 equiv.), CuI (10%), air, bpy or dtbpy 

(0.2 equiv.), DMF, 110 °C, 48-90 h; ii) CuI or CuBr2 (1.1 equiv.), air, DMF, 110 °C, 18 h. 

 

The same C–H sulfenylation protocol was then tested on 9-deazapurines (5H-pyrrolo[3,2 

d]pyrimidines, Scheme 17). However, in this case a competitive iodination of the 

heterocycle by CuI occurred (Table 9, entry 1). The halogenation was suppressed by 

complexation of the copper catalyst by a 2,2′-dipyridine (bpy) ligand. The reaction of 6-

phenyl-9-deazapurine (38) with diphenyl disulfide in the presence of CuI + bpy (entry 2) 

gave quantitatively the desired 9-phenylsulfanyl derivative 41a (for confirmation of its 

structure by X-ray, see Fig. 5). The reaction with other disulfides allowed me to synthesize 

the target 9-alkyl- or -arylsulfanyl derivatives in moderate (41b and 41d, 30% and 50%, 

respectively, entries 3, 5) or high yields (41c, 85%, entry 4). The reaction with 9-benzyl-6-

phenyl-9-deazapurine (39) did not proceed at all (entry 6). The C–H sulfenylation of 6-

chloro-9-deazapurine (40) under standard conditions gave a complex mixture of products 

(TLC, entry 7). Therefore, I tried the reaction in the presence of a more bulky and 

electron-rich ligand dtbpy to give the desired product 41e in good 90% yield (entry 8). The 

dtbpy ligand was then also tested in the reactions of 38 with diverse disulfides. The 

phenylsulfenylation proceeded with quantitative conversion (as with bpy) but in the case 

of other disulfides, the yields of products were lower than with bpy (entries 10–12). 

Therefore, the dtbpy ligand was only practical for the reaction of 6-chloro derivative 40. 

On the other hand, using a stoichiometric amount of CuI or CuBr2 in the absence of bpy 

led to the formation of 9-halogenated products 42a-c in high yields (entries 13-15). The 

same reaction with CuCl or CuCl2 proceeded as well but only in poor yield.  
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Table 9. Direct C-H Sulfenylation of 9-Deazapurines 

Entry 
Starting 

compound 
Ligand R

1
 X 

R
2 

(or Y) 
Product (yield) 

1
 

38 - H Ph Ph 41a (14%) + 42a (9%)
 

2 38 Bpy H Ph Ph 41a (98%)
 

3 38 Bpy H Ph Me 41b (30%)
a 

4 38 Bpy H Ph 4-MeO-Ph 41c (85%) 

5 38 Bpy H Ph 4-NO2-Ph 41d (50%) 

6 39 Bpy Bn Ph Ph No reaction 

7 40 Bpy H Cl Ph Complex mixture 

8
b 

40 dtbpy H Cl Ph 41e (90%) 

9 38 dtbpy H Ph Ph 41a (98%) 

10 38 dtbpy H Ph Me 41b (25%) 

11 38 dtbpy H Ph 4-MeO-Ph 41c (41%) 

12 38 dtbpy H Ph 4-NO2-Ph No reaction 

13
c 

38 - H Ph Y = I 42a (81%) 

14
c 

38 - H Ph Y = Br 42b (75%) 

15
c 

40 - H Cl Y = I 42c (65%) 
a
 Recovery of starting compound (40%). 

b
 7 equiv. of R

2
S-SR

2
. 

c
 Conditions ii) applied. 

 

 

 
Figure 5. ORTEP drawings of crystal structure of compound 41a (CCDC 926543) 
 
 
 
 

 



70 
 

3.2.3 Direct C-H sulfenylation of purines 

 

Later on, my further efforts focused on the direct C–H sulfenylation of purines. 

Unfortunately, employing the same catalytic systems as above, no sulfenylation was 

observed. Using an alternative protocol based on a Lewis acid activation,
96b

 the reaction 

proceeded to give 8-(phenylsulfanyl)purine 43a in moderate ∼40% yield. Finally, the 

sulfenylation in the presence of tBuOLi
96a

 in dioxane at 130 °C for 120 h gave the desired 

product 43a in acceptable 60% yield (Scheme 18, Table 10, entry 1). An analogous 

reaction with electron-rich bis-(methoxyphenyl)disulphide proceeded well to give 43b in 

56% (entry 2), whereas the reaction with electron-poor bis(nitrophenyl)disulfide did not 

work. 

 

Scheme 18. Reagents and conditions: RS-SR (2.5 equiv), tBuOLi (3 equiv), 1,4-dioxane, 

130 °C, 120 h. 

 

Table 10. Direct C-H Sulfenylation of Purine 1 

Entry X R Product (yield) 

1 Ph- Ph- 43a (60 %)
 

2 Ph- 4-MeO-Ph- 43b (56 %) 

3 Ph- 4-NO2-Ph- no reaction 
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3.2.4 Application of C-H sulfenylation in synthesis of substituted 7-

deazapurine bases and ribonucleosides 

 

Recently, in our group has been discovered new types nucleoside cytostatics: 6-hetaryl-7-

deazapurine,
37

 7-hetaryl-7-deazaadenine
24

 and 6-substituted 7-hetaryl-7-deazapurine
38

 

ribonucleosides and they all showed cytostatic effect at nanomolar concentrations (Chapter 

1.2.2). In all three series, the most active were derivatives bearing thiophene or furan 

(Chart 2). Recentely reported C-H sulfenylation of 7-deazapurines gave me access to 7-

arylsulfanyl-7-deazapurine bases,
116

 which can be considered extended thia-analogues of 

7-aryl-7-deazapurines that are components of the above mentioned nucleoside 

cytostatics.
24,38

 Therefore, I decided to prepare a series of 7-phenylsulfanyl- and 7-(2-

thienyl)sulfanyl-7-deazapurine 7-deazapurine bases and ribonucleosides for screening of 

their anticancer activity. 

 

 

Chart 2. Previously reported nucleoside cytostatics and the design of their thia-analogues  
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3.2.4.1 Synthesis of 7-arylsulfanyl-7-deazapurine bases  

 

The synthetic approach to target 7-arylsulfanyl-7-deazapurines was based on recently 

developed direct C-H sulfenylation
116

 of 6-chloro-7-deazapurine (8) catalysed by CuI and 

dtbpy under oxygen atmosphere. This modified procedure (oxygen atmosphere and dtbpy) 

gave better results than previously published methods developed for related 

heterocycles.
116

 By the reaction with diphenyldisulfide and bis(2-thienyl)disulfide, two 

modified 7-(het)arylsulfanyl-7-deazapurines 44a and 45a were synthesized in excellent 

yield 90 % or 95% (Scheme 19). After one-pot silylation by N,O-

bis(trimethylsilyl)acetamide (BSA) of 44a followed by glycosylation using commercially 

available 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose, in analogy to the modified 

Vorbrüggen procedure,
117

 the desired protected 7-phenylsulfanyl-7-deazapurine 

ribonucleoside intermediate 46a was obtained in good yield of 49% (Scheme 19). In case 

of 7-thienylsulfanyl-7-deazapurine 45a, the silylation was not completed under standard 

conditions and therefore 2 equiv. of BSA were used to fully dissolve the starting material, 

even though the yield of the following glycosylation to 47a was only 30%, which was still 

sufficient to make multigram amounts of this key intermediate. 

 

 
 
 

Scheme 19. Reagents and conditions: i) RS-SR (1 equiv.), CuI (10%), dtbpy (20%), O2, DMF, 

110°C, 18h. ii) 1. BSA (1 or 2 equiv.), MeCN, 15 min, rt,  2. TMSOTf (2 equiv.), sugar (1 

equiv.), 80 °C, 6 h. 
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In order to synthesize a series of target 6-substituted 7-deazapurine nucleobase analogues, 

6-chlorodeazapurine intermediates 44a and 45a  were modified at the position 6. The first 

goal was to introduce thiophene and furan substituents (previously reported
37

 in cytostatic 

nucleosides). Since attempted Suzuki-Miyaura cross-coupling reactions with the 

corresponding thienyl- or furylboronic acids gave very low conversions (<10%), I further 

focused on the Stille coupling. Thus the Stille reactions of 44a or 45a with thienyl- or 

furyl(tributyl)stannanes under standard conditions in presence of PdCl2(PPh3)2 in DMF 

proceeded smoothly to give desired 6-hetaryl derivatives 44b-44c and 45b-45c in good 

yields (57–87%) (Scheme 20, Table 11, entries 1,2,7,8). Methyl group was introduced 

through Pd-catalysed cross-coupling of 44a or 45a with Me3Al to give 44d, 45d in good 

yields (entries 3,9). Finally, dimetylamino, methylamino and amino groups were 

introduced through aromatic nucleophilic substitution of 6-chloro-derivatives 44a or 45a 

with amines or ammonia to give 36e, 44e-44f and 45e-45g in good yields (58-85%, entries 

4-6,10-12). 

 

 

 

Scheme 20. Reagents and conditions, A: 2-thienylSnBu3 (1.2 equiv.), PdCl2(PPh3)2 (5%), 

DMF, 100°C, 18 h; B: 2-furylSnBu3 (1.2 equiv.), PdCl2(PPh3)2 (5%), DMF, 100°C, 18 h; C: 

Me3Al (3 equiv.), Pd(PPh3)4 (5%), THF, 70°C, 12 h; D: Me2NH in THF (3 equiv.), propan-2-

ol, 70°C, 24 h; E: aq. methylamine (40% [w/w]), dioxane, 120 °C, 18 h; F: aq. ammonia (25% 

[w/w]), dioxane, 120 °C, 18 h. 
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Table 11. Yields of the transformations of 7-deazapurine bases 

Entry Proced. Reagent X- R- Product (yield %) 

1
 

A 2-thienylSnBu3 2-thienyl- Ph- 44b (80%) 

2
 

B 2-furylSnBu3 2-furyl- Ph- 44c (87%) 

3
 

C Me3Al Me- Ph- 44d (73%) 

4
 

D Me2NH Me2N- Ph- 44e (84%) 

5
 

E MeNH2 MeNH- Ph- 44f (83%) 

6
 

F NH3 NH2- Ph- 36e (85%) 

7
 

A 2-thienylSnBu3 2-thienyl- 2-thienyl- 45b (57%) 

8
 

B 2-furylSnBu3 2-furyl- 2-thienyl- 45c (72%) 

9
 

C Me3Al Me- 2-thienyl- 45d (66%) 

10
 

D Me2NH Me2N- 2-thienyl- 45e (63%) 

11
 

E MeNH2 MeNH- 2-thienyl- 45f (58%) 

12
 

F NH3 NH2- 2-thienyl- 45g (85%) 

 

 

On the other hand, direct methoxylation of 44a-45a by reaction with NaOMe in MeOH 

was not successful. Therefore, I firstly protected the NH at position 9 by SEM group and 

then the methoxylation of 48a or 49a by MeONa proceeded quantitatively to give 

intermediates 48h and 49h. Final cleavage of the SEM groups by TFA afforded the desired 

6-methoxy-7-deazapurines 44h and 45h in high yields (Scheme 21). 

 

 

Scheme 21. Reagents and conditions: i) NaH (60 wt%, 1.1 equiv.), SEM-Cl (1.1 equiv.), 

DMF, 0°C to rt, 30 min.; ii) 1 M MeONa in MeOH (2 equiv.), acetone, rt., 18 h; iii) 

1.CF3COOH, rt, 18h, 2. aq. ammonia (25% [w/w]), rt, 18 h. 
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3.2.4.2 Synthesis of 7-arylsulfanyl-7-deazapurine ribonucleosides  

 

The target nucleoside analogues were prepared by analogous modifications of 6-chloro-7-

(het)aryl-7-deazapurine nucleoside intermediates 46a and 47a (Scheme 22, Table 12). The 

Stille coupling reactions with thienyl- or furylstannanes gave the corresponding 

benzoylated 6-hetaryl-7-deazapurine nucleosides 46b,c and 47b,c, whereas the couplings 

with trimethylaluminum afforded 6-methyl derivatives 46d and 47d. The reactions with 

trimethylamine furnished 6-(dimethylamino)-7-deazapurine nucleosides 46e and 47e. Final 

Zemplén deprotection using sodium methoxide in methanol furnished free 6,7-

disubstituted nucleosides 50b-50e and 51b-51e in 59–87 % yields (Scheme 22, Table 12). 

Nucleophilic substitutions of protected nucleoside intermediates 46a or 47a with 

methylamine, ammonia or NaOMe proceeded with concomitant de-benzoylation to give 

directly unprotected 6-methylamino-, 6-amino or 6-methoxy-7-(het)arylsulfanyl-7-

deazapurine ribonucleosides 50f-50h and 51f-51h in good yields. 

 

 

Scheme 22. Reagents and conditions, A: 2-thienylSnBu3 (1.2 equiv.), PdCl2(PPh3)2 (5%), 

DMF, 100°C, 18 h; B: 2-furylSnBu3 (1.2 equiv.), PdCl2(PPh3)2 (5%), DMF, 100°C, 18 h; C: 

Me3Al (3 equiv.), Pd(PPh3)4 (5%), THF, 70°C, 12h; D: Me2NH in THF (3 equiv.), propan-2-

ol, 70°C, 24 h; E: aq. methylamine (40% [w/w]), dioxane, 120 °C, 18 h; F: aq. ammonia (25% 

[w/w]), dioxane, 120 °C, 18 h; G: 1 M MeONa in MeOH (1.5 equiv.), MeOH, rt., 18 h. 
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Table 12. Yields of the transformations of 7-deazapurine nucleosides 
 

Proced Reagent X- R- 
Product (yield 

%) 

Deprotect product 

(yield %)
 

A
 

thienylSnBu3 2-thienyl- Ph- 46b (72%) 50b (75%) 

B
 

furylSnBu3 2-furyl- Ph- 46c (92%) 50c (78%) 

C
 

Me3Al Me- Ph- 46d (55%) 50d (87%) 

D
 

Me2NH Me2N- Ph- 46e (88%) 50e (87%) 

E MeNH2 MeNH- Ph- - 50f (90%) 

F NH3 NH2- Ph- - 50g (86%) 

G NaOMe MeO- Ph- - 50h (75%) 

A
 

thienylSnBu3 2-thienyl- 2-thienyl- 47b (78%) 51b (59%) 

B
 

furylSnBu3 2-furyl- 2-thienyl- 47c (41%) 51c (57%) 

C
 

Me3Al Me- 2-thienyl- 47d (67%) 51d (64%) 

D
 

Me2NH Me2N- 2-thienyl- 47e (88%) 51e (65%) 

E MeNH2 MeNH- 2-thienyl- - 51f (75%) 

F NH3 NH2- 2-thienyl- - 51g (70%) 

G NaOMe MeO- 2-thienyl- - 51h (77%) 
 

 

3.2.5 Reactivity of sulfanyl deazapurine and purine bases 

Having access to the arylsulfanyl derivatives of purines and deazapurines, I further explored 

their synthetic applications. 

3.2.5.1 Liebeskind–Srogl cross-coupling of sulfanyl deazapurine and purine bases 

The most obvious option was the Liebeskind–Srogl cross-coupling reaction.
47

 The 

reactions of the 8-(phenylsulfanyl)purine 43a with p-tolylboronic acid and diverse 

stannanes were performed under standard conditions proceeded generally well to give the 

desired 8-aryl products 52a-52c in high yields (57-83%, Scheme 23, Table 13). 

 

Scheme 23. Reagents and conditions: i) ArSnBu3(1.2 equiv), Pd(PPh3)4 (5 mol %), CuMeSal 

(2.2 equiv), 50 °C, THF, 17 h; ii) ArB(OH)2, Pd2(dba)3 (4 mol %), (2-furyl)3P (16 mol %), 

CuTc (1.3 equiv), 50 °C, THF, 18 h. 
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Table 13. The Liebeskind-Srogl reactions of 8-(phenylsulfanyl)purine 43a 

entry Ar-M Product (yield) 

1 
 

52a (70%) 

2 
 

52b (83%) 

3 
 

 52c (54%)
a 

a
recovery of starting compound (15%) 

 
 

Surprisingly, analogous Liebeskind–Srogl reactions of 7-phenylsulfanyl-7-deazapurines 

36a, 53a or 9-phenylsulfanyl-9-deazapurine 41a did not proceed at all. Neither stannanes 

nor boronic acids gave any reaction under a number of different catalytic systems (Cu, Pd, 

In) and conditions tried (including MW irradiation). This lack of reactivity of arylsulfanyl-

deazapurines is probably due to the electron-rich nature of the deazapurine moiety which 

prevents efficient oxidative addition (Chart 3). 

 

Chart 3. Unsuccessful Liebeskind–Srogl coupling of sulfanyldeazapurines 

Using electron withdrawing protecting group (tosyl) gave also no reaction. Since no 

literature example of the Liebeskind–Srogl reaction of the related 3-(arylsulfanyl)indole 

was reported, I have tried this reaction under the standard conditions and have confirmed 

that it does not proceed either. Apparently, this reaction is not applicable for electron-rich 

indole-type heterocycles. 

3.2.5.2 Kumada cross-coupling of 7- sulfanyl deazapurine bases 

As the Liebeskind–Srogl reactions of 7-phenylsulfanyl-7-deazapurines did not proceed at all 

the other possibility was Kumada cross coupling of sulfanyl deazapurines with Grignard 
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reagents, but not used often.
118

 I performed the reaction under previously optimized conditions 

for Kumada coupling of 6-(methylthio)purine with PhMgCl.
 119

  With unprotected deazapurine 

36b, the reaction proceed non-selectively to various mixtures of products, therefore I decided 

to protect acidic NH group with the benzyl group (Scheme 24, Table 14). 

 

Scheme 24. Reagents and conditions: i) K2CO3 (1.05 equiv.), Bn-Cl (1.1 equiv.), DMF, rt.,18h 

Table 14. Benzylation of 7-sulfenyl-7-deazapurines 

Entry Starting compound Y R Product (yield) 

1 36a Ph Ph 53a (90%) 

2 36b Ph Me 53b (85%) 

3 36c Ph 4-MeO-Ph 53c (90%) 

4 36d Ph 4-NO2-Ph 53d (80%) 

5 44a Cl Ph 54a (90%) 

 

With the benzyl protecting group the model starting compound of choice was 6-phenyl-7-

phenylsulfanyl-7-deazapurine (53a). The product of Kumada coupling 6,7-diphenyl-7-

deazapurine 55 was isolated just in 40% due to the formation by-products of competitive 

desulfenylation 2 (32%) and dimerization 56 (5%) (Scheme 25, Table 15, entry 1). All 

compounds were fully characterized and the structure of compound 56 was unequivocally 

proved by X-ray diffraction analysis (Fig. 6).   

 

Scheme 25. Reagents and conditions: i) PhM (2.5 equiv.), catalyst (5 mol%), 70°C, THF, 15 

min. 
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Figure 6. ORTEP drawings of crystal structures of compounds 56  
 

The most obvious option to form byproducts 2 and 56 was the formation of new Grignard 

reagent in suitu by transmetalation of 7-sulfanyl-7-deazapurine with phenyl magnesium 

chloride catalyzed by NiCl2(dppp). This idea was confirmed in an experiment where D2O was 

used during the workup of a reaction mixture and an appropriate 9-benzyl-7-deutherium-6-

phenyl-7-deazapurine 57 (Scheme 26) was formed in a similar yield as was compound 2 

(Table 15, entry 1, where H2O was used).  

 

Scheme 26. Proposed formation of 56 and 57. Reagents and conditions: i) PhMgCl (2.5 

equiv.), NiCl2(dppp) (5 mol%), 70°C, THF, 15 min; D2O was used during work-up. 
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Table 15. Optimization of coupling sulfanyldeazapurines with phenyl Grignard reagents
i)
 

 

Entry 
starting 

compound 
M cat. 

Unreacted 

starting 

compound 
55 2 56 

1 53a MgCl NiCl2(dppp) 6 48 [40] 38 [32] 8 [5] 

2
a 

53a MgCl NiCl2(dppp) 67 3 26 4 

3
b
 53a MgCl NiCl2(dppp) 0 46 [41] 38 [30] 8 [4] 

4
c 

53a MgCl NiCl2(dppp) 0 45 [39] 35 [29] 7 [4] 

5 53ab MgCl NiCl2(dppp) 0 48 40 12 

6 53b MgCl NiCl2(dppp) 28 19 25 18 

7 53c MgCl NiCl2(dppp) 9 29 [18] 55 [37] 7 

8
d
 53a MgCl NiCl2(dppp) 7 46 36 11 

9
e
 53a MgCl NiCl2(dppp) 0 63 [47] 17 [11] 20 [15] 

10 53a MgCl.LiCl NiCl2(dppp) 100 No reaction 

11 53a ZnCl NiCl2(dppp) 100 No reaction 

12 53a MgCl Pd(dppf)Cl2 100 No reaction 

13 53a MgCl Nickelocene 0 63 [50] 19 [11] 18 [13] 

14 53a MgCl CoCl2 53 7 34 6 

15 53a MgCl Fe(acac)3 100 No reaction 

16 53a MgCl MgCl2 100 No reaction 

17 53a MgCl none 100 No reaction 

18 53a MgCl NiCl2(dppe) 23 33 24 20 

19
 

53a MgCl Ni(COD)2 6 30 51
 

13 
i)
NMR conversion (%) [Isolated yields (%)]  

a
room temperature, 15min; 

b
room temperature, 19 h; 

c
 slow addition of PhMgCl (1drop/30 s) 

d
MW, 5 min, 100°C; 

e
NiCl2(dppp) (10mol%) + LiCl (3equiv.) 

The reaction was performed later at room temperature and after 15 minutes was found mainly 

the product of desulfenylation 2 (26%, Entry 2) and product of coupling 53 just in 4% (Entry 

2). After 18 hours at room temperature the reaction produced similar results as that at 70°C 

during 15 min (compare Entry 1 and Entry 3). Transmetallation is probably a much faster 

process than coupling, so I tried several ways to suppress the formation of a new Grignard 

reagent in this competitive pathway. Unfortunately, no significant improvement was found in 

such conditions using: slow addition of Grignard reagent (Entry 4), modification of sulfanyl 

group (Entry 5-7), MW heating (Entry 7), additive (Entry 8), Turbo Grignard or zinc reagent 

(Entry 10-11) or different catalytic systems (Entry 12-19). The best result was just a moderate 

50% yield of 6,7-diphenyl-7-deazapurine 55 with nickelocene (Entry 13, Table 15). The 

reactivity of other aryl Grignard reagents procced in a similar way and the reaction isn’t too 

synthetically useful. 
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3.2.5.3 Oxidation of sulfanyl deazapurine bases 

 

 
Scheme 27. Reagents and conditions: i) mCPBA (10 equiv.), NaOH (10 equiv.), 1,4-

dioxane/H2O (9:1), 0°C up to rt, 18 h. 

 

As the reactivity sulfanyl derivatives were not sufficient, the next step was the oxidation to 

achieve more reactive sulfoxides or sulfones to study their reactivity (Kumada coupling etc.). 

The oxidation of sulfanyl derivatives was performed with meta-Chloroperoxybenzoic acid. 

Under these conditions the oxidation of N-benzylated 7-sulfanyl-7-deazapurines proceeded 

mostly to sulfones 53ab and 53db (Entries 2 and 3) whereas NH unprotected 7-sulfanyl-7-

deazapurine produces dominantly sulfoxide 36aa (Scheme 27, Table 16, Entry 1). 

 

Table 16. Oxidation of 7-sulfenyl-7-deazapurines 

 

entry 
starting 

compound 
X

 
Y R 

Yield (%) 

sulfoxide 

Yield (%) 

sulfone 

1 36a Ph Ph H 36aa (78%) 36ab (15%) 

2 53a Ph Ph Bn 53aa (13%) 53ab (73%) 

3 53d Ph 4-NO2Ph Bn 53da (20%) 53db (68%) 

 

3.2.5.4 Nucleophilic addition to sulfonyl deazapurine base 

 

In 1982 Ueda and co-workers
120

 presented the reaction of 7-methylsulfonyl-7-deazaadenine 

ribonucleoside (V) with sodium cyanide in dimethylformamide to give a product in high yield 

containing a cyano group. The physical properties, however, were different from those of 

toyocamycin (7-cyano-7-deazaadenine ribonucleoside, see Chapter 1.2.1, Figure 8). They 

proposed the mechanism as the substitution that go through the addition of a cyanide ion to the 

position 8 and subsequent elimination of methylsulfonyl group to furnish 8-cyano-7-

deazaadenine ribonucleoside (VI) (Chart 4).  
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Chart 4. Formation of 8-cyano-7-deazaadenine 

 

Firstly, I performed a confirmative experiment of above described reaction. Without doubt, 7-

methylsulfonyl-7-deazapurine (53ab) with NaCN in DMF gave the product 32m in high yield 

(Scheme 28) and the cyano group at position 8 was unequivocally proved by X-ray diffraction 

analysis (Fig. 7).   

 

Scheme 28. Reagents and conditions:  i) NaCN (3 equiv.), DMF, 130°C, 3 hours 

 

              

Figure 7. ORTEP drawings of crystal structures of compounds 53ab and 32m 
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Later on, I have tried different types of nucleophiles, but unfortunately in no case the above 

described reaction proceeded. Only a recovery of starting material or mixture of numerous 

products was found (Entries 2-10). Surprisingly, this was also the case with the recovery of 

starting material of other nucleophiles contains cyano group - Zn(CN)2 and CuCN (Entry 11-

12, Table 17). 

Table 17. Reactivity of 53ab with other nucleophiles 

entry Nucleophile Product (Yield) 

1 NaCN 32m (90%) 

2 CH3ONa mixture of compounds 

3 PhONa No reaction 

4 PhSNa No reaction 

5
 

Me2NH No reaction 

6 NaN3 No reaction 

7 Lithium hexamethyldisilazide mixture of compounds 

8 NaOCN No reaction 

9 NaOH No reaction
 

10 CF3SO2Na No reaction 

11 Zn(CN)2 No reaction 

12 CuCN No reaction 

 

Aryl(alkyl)sulfanyl deazapurine derivatives were prepared by direct C-H sulfenylation in high 

yield, nevertheless their synthetic usability is very limited. 
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3.2.6 Biological activity screening 

 

In vitro cytotoxic/cytostatic activity all final nucleobases 44b-44h and 45b-45h, as well as 

nucleosides 50b-50h and 51b-51h, was initially evaluated against seven cell lines derived 

from human solid tumors including lung (A549 cells) and colon (HCT116 and 

HCT116p53-/-) carcinomas, as well as leukemia cell lines (CCRF-CEM, CEM-DNR, 

K562 and K562-TAX) and, for comparison, non-malignant BJ and MRC-5 fibroblasts. 

Concentrations inhibiting the cell growth by 50% (IC50) were determined using a 

quantitative metabolic staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) following a 3-day treatment. In addition, the anti-proliferative effect was 

tested against a human hepatocarcinoma Hep G2, human T-lymphoblastic promyelocytic 

leukemia HL-60 and cervical carcinoma HeLa S3 growing in liquid suspension. Cell 

viability was determined following a 3-day incubation using 2,3-bis-(2-methoxy-4-nitro-5-

sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay.  

 All cytostatic/cytotoxic activity screening and antiviral screening were performed by our 

collaborators from Gilead Sciences, from the group of Dr. Hana Mertlikova-Kaiserova and 

from the group of prof. Hajdúch.  

Table 18. Cytostatic activities of selected compounds 

 IC50 (μM) 

 A549 
CCRF-
CEM 

CEM

-

DNR 

HCT11
6 

HCT11
6p53-- 

K562 
K562-
TAX 

HepG2 HL60 
HeLa 

S3 
BJ MRC-5 

45b 16.19 10.55 17.67 13.03 5.06 5.14 21.664 >25 21.1 >25 23.38 54.48 

45c 11.43 7.73 20.83 6.75 19.53 4.26 18.90 >25 7.63 8.49 22.06 32.87 

45d > 50 > 50 > 50 38.12 29.10 13.99 > 50 >25 >25 >25 > 150 135.50 

45e 19.80 14.63 35.25 11.01 27.54 3.83 22.14 >25 >25 >25 144.56 > 150 

45f 28.58 14.72 26.15 18.98 45.30 4.95 21.00 >25 13.5 17.6 132.24 148.21 

45g 22.82 16.68 20.34 22.79 > 50 17.88 17.92 >25 13.9 17.9 > 150 135.71 

45h 21.47 18.23 > 50 17.15 > 50 > 50 43.95 >25 >25 23.9 122.60 148.13 

50g 22.91 33.96 > 50 20.80 22.41 23.09 29.62 >25 >25 >25 67.88 67.70 

51g 43.76 64.66 > 100 36.72 23.18 23.43 55.77 >25 >25 >25 93.59 138.24 

 

Selected results are summarized in Table 18. Surprisingly, most of the nucleosides 50 and 

51 were entirely inactive in these assays with the exception of 6-amino-7-deazapurine 

nucleosides 50g and 51g showing moderate cytotoxic activities at > 20 μM concentrations. 
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Also none of the 7-(phenylsulfanyl)-7-deazapurine bases 44b-44h exerted any significant 

cytostatic activity. On the other hand, all the 7-(2-thienylsulfanyl)-7-deazapurine bases 

bearing diverse substituents at the position 6 showed significant cytostatic effects at 

micromolar concentrations. The most active were 6-hetaryl- (45b,c) and 6-methylamino 

and –dimethylamino (45e,f) derivatives having IC50 values in low micromolar range. 

Compounds 45e,f were non-toxic to BJ and MRC-5 fibroblasts showing promising 

therapeutic index.  

 Since the nucleosides 50 and 51 were inactive with the exception of moderately active 

adenosine analogues 50g and 51g (thia-analogues of cytostatic 7-aryl-7-

deazaadenosines
24

), it can be concluded that replacement of the (het)aryl group at position 

7 by extended (het)arylsulfanyl group is not tolerated by the biological target(s) of the 

previously developed nucleoside cytostatics.
24,37,38

 Further studies will be necessary to 

explain the  significant cytostatic effect of the 7-(thienylsulfanyl)-7-deazapurine bases 

which is apparently caused by a different mechanism (presumably by kinase inhibition).  

 In addition, all compounds were also tested on antiviral activity (HCV 1B and 2A 

replicon and RSV) by  and antimicrobial activity (panel of gram-positive and gram-

negative bacteria) and antifungal activity (several strains of Candida species) but did not 

show any significant activity in these assays. 
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4 Conclusion 

 
The Ir-catalyzed C-H borylation of 7-deazapurines proceeded selectively in position 8. The 

follow-up Suzuki cross-coupling reactions can be efficiently used for introduction of aryl 

groups to position 8. This is the first efficent methodology for 8-arylation of important 7-

deazapurines (so far the 8-substituted 7-deazapurines were prepared only by multistep 

heterocyclizations).
41-43

 In contrast, the borylation of 9-deazapurines did not proceed 

regioselectively and two borylated products were formed. The C-H borylation of purines 

failed completely (probably due to the formation of a stable complex of purine with Ir 

catalyst at N7 or limited stability of the purine-8-boronate).  

I used a general approach for the synthesis of biologically relevant 6,8-disubstituted 7-

deazapurines (4,6-disubstituted 7H-pyrrolo[2,3-d]pyrimidines) based on a one-pot, two-

step Ir-catalyzed C-H borylation of 9-substituted or SEM-protected followed by Pd-

catalyzed Suzuki coupling with aryl halides. Manipulation of substituents at position 6, 

gave the desired 8-aryl-7-deazahypoxanthines, or -7-deazaadenines, respectively, after 

cleavage of the SEM protection group. The 8-pinacolboronate intermediates were also 

converted to 8-chloro-, 8-bromo and 8-trifluoromethyl-7-deazapurines by the Cu-catalyzed 

displacements. The approach gives easy access to an underexplored group of biologically 

relevant modified deazapurine bases which could be further N-alkylated or glycosylated to 

a variety of nucleoside and nucleotide analogues. While the 7-deazahypoxantine analogues 

were almost entirely inactive, most of the 8-subtituted 6-methoxy-7-deazapurine and 7-

deazaadenines bases showed significant cytostatic activities. 

The Cu-catalyzed C–H sulfenylation of 7- and 9-deazapurines proceeded very well and 

selectively at position 7 or 9, respectively, to give novel and interesting (arylsulfanyl)-

deazapurine derivatives. On the other hand, the C–H sulfenylation of purines was less 

efficient, and the conditions had to be changed. All these C–H sulfenylations can be performed 

with 6-chloro(deaza)purines, so I used this potential in combination with classical cross-

couplings in the synthesis of libraries of new di- and trisubstituted 7-deazapurine derivatives 

combining aryl(alkyl)sulfanyl and aryl or amino substituents for biological activity screening. 

While the ribonucleoside analogues were almost entirely inactive, most of the 7-

(thienylsulfanyl)-7-deazapurine bases showed significant cytostatic activities.  
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However, the 8-(arylsulfanyl)purines smoothly undergo the Liebeskind–Srogl cross-coupling 

reactions leading to 8-arylpurines, whereas the 7- and 9-arylsulfanyldeazapurines were 

unreactive in these reactions. Also the Kumada cross-coupling of 7-phenylsulfanyl-7-

deazapurine with PhMgCl gave only a moderate yield (50%) of desired 7-phenyl-7-

deazapurine due to competitive transmetalation to 7-deazapurine-7-yl magnesium chloride. 

The synthetic usability of prepared aryl(alkyl)sulfanyl deazapurine derivatives is very limited. 
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5 Experimental section  
 

5.1 General remarks 
 

All reactions with organometalic reagents as well as all iridium, palladium and nickel 

catalyzed reactions were done in flame-dried glassware under argon atmosphere. 6-Chloro-7-

deazapurine (8), 6-chloro-9-deazapurine (40), disulfides, boronic acid and stannanes were 

purchased from commercial supplier and used without any further purification. 9-Benzyl-6-

phenylpurine (1)
121

 and 6-methyl-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-7-deazapurine (4)
45

 

were prepared according to literature. Dry DMF and THF were used as received from supplier. 

All compounds were fully characterized by NMR and spectra were recorded on a 600 MHz 

(
1
H at 600.1 MHz, 

13
C at 150.9 MHz), a 500 MHz (499.8 or 500.0 MHz for 

1
H and 125.7 

MHz for 
13

C) or a 400 MHz (
1
H at 400 MHz, 

13
C at 100.6 MHz) spectrometers. 

1
H and 

13
C 

resonances were assigned using H,C-HSQC and H,C-HMBC spectra. The samples were 

measured in CDCl3 or DMSO and chemical shifts (in ppm, δ-scale) were referenced to solvent 

signal ((
1
H) = 7.26 ppm, (

1
H) = 77.0 ppm) or in or DMSO ((

1
H) = 2.50 ppm, (

1
H) = 39.43 

ppm)  Coupling constants (J) are given in Hz. High performance flash chromatography 

(HPFC) were performed with Biotage SP1 apparatus on KP-Sil columns. Reverse phase - high 

performance flash chromatography (RP-HPFC) purifications were performed with Biotage 

SP1 apparatus on KP-C18-HS columns. Optical rotations were measured at 25 °C, [α]D values 

are given in 10
-1

degcm
2
g

-1
. IR spectra (wavenumbers in cm

-1
) were recorded on Bruker Alpha 

FT-IR spectrometer using ATR technique. High resolution mass spectra were measured on a 

LTQ Orbitrap XL (Thermo Fisher Scientific) spectrometer using EI ionization technique. 

Melting points were determined on a Buchi Melting Point B-545 and are uncorrected. 

Elemental analyses were measured on PE 2400 Series II CHNS/O (Perkin Elmer, USA, 1999). 

X-ray diffraction experiment of single crystals was carried out on an X-ray diffractometer 

using CuKα radiation (λ=1.54180 Å). 
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5.2 Preparation of starting compounds 

7-Benzyl-4-chloro-7H-pyrrolo[2,3-d]pyrimidine  

(9-Benzyl-6-chloro-7-deazapurine) (7) 

Dry DMF (300 mL) was added to a stirred solution of potassium carbonate 

(22.8 g, 165 mmol) and 6-choro-7-deazapurine 8 (23 g, 150 mmol) under Ar. 

After 20 min, benzyl chloride (18.4 mL, 157.5 mmol) was added and the 

resulting mixture was stirred overnight at rt. After that brine was added and 

mixture were extracted with EtOAc 3x 250 mL and dried over Na2SO4. The crude mixture was 

separated by flash chromatography (gradient elution hexanes → hexanes/ethyl acetate 8:2) to 

give product 7 (32.9 g, 90 %) as yellowish crystals. 
1
H NMR was checked by published 

data.
122

 

7-Benzyl-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine  

(9-Benzyl-6-phenyl-7-deazapurine) (2) 

Dry toluene (250 ml) was added to a stirred solution of potassium carbonate 

(27.64 g, 200 mmol), 9-benzyl-6-chloro-7-deazapurine 7 (23.4 g, 100 mmol), 

phenylboronic acid (18.29 g, 150 mmol) and Pd(PPh3)4 (4.62 g, 4 mmol) under 

Ar. The mixture was stirred for 18 h at temperature 100°C. After cooling to rt 

brine was added and mixture were extracted with EtOAc 3x 250 mL and dried over Na2SO4. 

The crude mixture was separated by flash chromatography (gradient elution hexanes → 

hexanes/ethyl acetate 8:2) to give product 2 (25.9 g, 91 %) as white crystals. M.p. 75-78 °C. 

1
H NMR (500 MHz, CDCl3): 5.51 (s, 2H, CH2); 6.83 (d, 1H, J5,6 = 3.7, H-5); 7.23 (d, 1H, J6,5 

= 3.7, H-6); 7.25 (m, 2H, H-o-Bn); 7.29 (m, 1H, H-p-Bn); 7.33 (m, 2H, H-m-Bn); 7.51 (m, 

1H, H-p-Ph); 7.55 (m, 2H, H-m-Ph); 8.13 (m, 2H, H-o-Ph); 9.01 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): 47.98 (CH2Ph); 100.83 (CH-5); 115.64 (C-4a); 127.60 (CH-o-Bn); 

127.96 (CH-p-Bn); 128.72 and 128.74 (CH-6 and CH-m-Ph); 128.84 and 128.85 (CH-m-Bn 

and CH-o-Ph); 129.96 (CH-p-Ph); 136.81 (C-i-Bn); 138.23 (C-i-Ph); 151.72 (CH-2); 151.83 

(C-7a); 157.57 (C-4). IR (CHCl3): 3067, 2983, 1585, 1564, 1515, 1497, 1466, 1455, 1442, 

1423, 1390, 1345, 1302, 1250, 1157. HRMS (ESI) calculated for C19H15N3: 286.1339; found: 

286.1339.  
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4-Phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(6-Phenyl-7-deazapurine) (3) 

Dry toluene (250 ml) was added to a stirred solution of potassium carbonate 

(27.64 g, 200 mmol), 6-chloro-7-deazapurine 8 (15.36 g, 100 mmol), 

phenylboronic acid (18.29 g, 150 mmol) and Pd(PPh3)4 (4.62 g, 4 mmol) under 

Ar. The mixture was stirred for 18 h at temperature 100°C. After cooling to rt brine was added 

and mixture were extracted with EtOAc 5x 250 mL and dried over Na2SO4. The crude mixture 

was separated by flash chromatography (gradient elution hexanes → hexanes/ethyl acetate 

6:4) to give product 3 (17.57 g, 90 %) as white crystals. M.p. 220-221 °C.
 1

H NMR (500.0 

MHz, CDCl3): 6.89 (d, 1H, J5,6 = 3.6, H-5); 7.55 (m, 1H, H-p-Ph); 7.59 (m, 2H, H-m-Ph); 7.66 

(d, 1H, J6,5 = 3.5, H-6); 8.18 (m, 2H, H-o-Ph); 8.84 (s, 1H, H-2); 12.27 (bs, 1H, NH). 
13

C 

NMR (125.7 MHz, CDCl3): 100.17 (CH-5); 114.71 (C-4a); 127.93 (CH-6); 128.76 (CH-o-Ph); 

129.05 (CH-m-Ph); 130.23 (CH-p-Ph); 138.14 (C-i-Ph); 151.14 (CH-2); 152.80 (C-7a); 155.73 

(C-4). IR (KBr): 3205, 3133, 3006, 2865, 1598, 1581, 1563, 1503, 1412, 1349. HRMS (ESI) 

calculated for C12H10N3: 196.0869; found: 196.0869. Anal. calculated for C12H9N3 (195.08): C 

73.83%, H 4.65%, N 21.52%; found: C 73.59%, H 4.63%, N 21.19%. 

4-Amino-7H-pyrrolo[2,3-d]pyrimidine 

(7-Deazaadenine) (35)  

6-chloro-7-deazapurine 8 (5 g; 31.73 mmol) was dissolved in 70 mL of 

mixture 1,4-dioxane/ aqueous ammonia (1:1) in a steel bomb and was heated at 

130 °C for 19 h. After cooling, the mixture was evaporated. The crude mixture 

was separated by flash chromatography (gradient elution chloroform → chloroform/methanol 

95:5) to give product 35 (4.25 g, 91 %) as white crystals. 
1
H NMR was checked by published 

data.
123

 

7-Benzyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine  

(9-Benzyl-7-deazaadenine) (5) 
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Dry DMF (6 ml) was added to a stirred solution of potassium carbonate (0.974 

g. 7.05 mmol) and 6-amino-7-deazapurine 35 (0.315 g, 2.35 mmol) under Ar. 

After 20 min, benzyl chloride (0.41 ml, 3.53 mmol) was added and the 

resulting mixture was stirred for 2 h at temperature 110°C, filtered and 

evaporated. The crude mixture was separated by flash chromatography on silica gel using 

CHCl3/CH3OH 10:1 for elution to give product 5 (275 mg, 53%) as brown solid. 

Crystallization in hexan/EtOAc gave brownish crystals. M.p. 174-178 °C. 
1
H NMR (600 

MHz, CDCl3): 5.39 (s, 2H, CH2); 5.41 (bs, 2H, NH2); 6.38 (d, 1H, J5,6 = 3.6, H-5); 6.93 (d, 

1H, J6,5 = 3.6, H-6); 7.19 (m, 2H, H-o-Bn); 7.28 (m, 1H, H-p-Bn); 7.31 (m, 2H, H-m-Bn); 8.36 

(s, 1H, H-2). 
13

C NMR (151 MHz, CDCl3): 47.92 (CH2Ph); 97.98 (CH-5); 102.97 (C-4a); 

124.67 (CH-6); 127.40 (CH-o-Bn); 127.73 (CH-p-Bn); 128.72 (CH-m-Bn); 137.15 (C-i-Bn); 

150.49 (C-7a); 151.92 (CH-2); 156.75 (C-4). IR(CHCl3): 3416, 2977, 1619, 1588, 1564, 1511, 

1471, 1455, 1398, 1356, 1337, 1265, 991, 897, 705, 665. HRMS (ESI) calculated for 

C13H12N4: 225.1135; found: 225.1135 

7-Benzyl-4-[(N,N-dimethylaminomethylidene)amino]-7H-pyrrolo[2,3-d]pyrimidine 

9-Benzyl-6-[(N,N-dimethylaminomethylidene)amino]-7-deazapurine) (6) 

 1,1-dimethoxy-N,N-dimethylmethanamine (1.7 ml, 12.7 mmol) was added to a 

flask containing 6-amino-9-benzyl-7-deazapurine 5 (275 mg, 1.27 mmol). The 

reaction mixture was stirred for 2 h (complete consumption of starting material 

according to TLC), evaporated and purified by silica gel flash chromatography 

(CHCl3/CH3OH 10:1) to give 6 (315 mg, 89%) as white solid. Crystallization 

in hexan/EtOAc gave white crystals. M.p. 184-187 °C. 
1
H NMR (600 MHz, CDCl3): 3.17 (s, 

3H, CH3N); 3.21 (d, 3H, 
4
J = 0.7, CH3N); 5.43 (s, 2H, CH2); 6.67 (d, 1H, J5,6 = 3.5, H-5); 6.99 

(d, 1H, J6,5 = 3.5, H-6); 7.17 (m, 2H, H-o-Bn); 7.26 (m, 1H, H-p-Bn); 7.30 (m, 2H, H-m-Bn); 

8.53 (s, 1H, H-2); 8.79 (bs, 1H, HC=N). 
13

C NMR (151 MHz, CDCl3): 34.82, 41.00 (CH3N); 

47.82 (CH2Ph); 100.07 (CH-5); 111.43 (C-4a); 125.57 (CH-6); 127.29 (CH-o-Bn); 127.61 

(CH-p-Bn); 128.68 (CH-m-Bn); 137.40 (C-i-Bn); 151.58 (CH-2); 151.88 (C-7a); 156.55 

(HC=N); 160.72 (C-4). IR(CHCl3): 2971, 1672, 1629, 1576, 1447, 1425, 1382, 1344, 1254, 

1112. HRMS (ESI) calculated for C16H17N5: 280.1557; found: 280.1558 

4-Chloro-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 
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(6-Chloro-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (10) 

To a flask equipped with an addition funnel was added 6-choro-7-

deazapurine 8 (15.35 g, 100 mmol) and DMF (250 mL). The mixture 

was cooled to – 5 °C in an ice/brine bath. Sodium hydride (NaH, 60 

wt%, 4.45 g, 110 mmol, 1.1 equiv.) was added in portions as a solid. 

The solution darkened over 15 minutes. 2-

(Trimethylsilyl)ethoxymethyl chloride (SEM-Cl, 19.5 mL, 110 

mmol, 1.1 equiv.) was added slowly via an addition funnel at a rate such that the temperature 

did not exceed 5 °C. The reaction was stirred for 30 minutes, determined to be complete by 

TLC. Water (250 mL) was slowly added to quench the reaction. The mixture was then diluted 

with EtOAc (250 mL). The layers were separated and the aqueous layer was extracted with 

EtOAc (250 mL). The combined organic layers and dried over Na2SO4. The crude mixture 

was separated by flash chromatography (gradient elution hexanes → hexanes/ethyl acetate 

8:2) to give 6-chloro-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (26.8 g, 94 %) as a 

pale yellow oil which solidified upon standing at room temperature. 
1
H NMR was checked by 

published data.
 104

 

4-Methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methoxy-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (10) 

Protected deazapurine 9 (25.54 g, 90 mmol, 1 equiv.) was dissolved 

in acetone (50 mL) and 1 M solution of MeONa in MeOH (180 mL, 

180 mmol, 2 equiv.) was added and the reaction mixture was stirred 

at r.t. overnight. Solvents were evaporated under reduced pressure 

and the mixture was then diluted with water (150 mL) and EtOAc 

(150 mL). The layers were separated and the aqueous layer was 

extracted two times with EtOAc (150 mL). The combined organic layers were dried over 

sodium sulphate (Na2SO4), filtrate and concentrated under the reduced pressure to give 

product 10 (24.94 g, 99%) as a yellow oil. 
1
H NMR (499.8 MHz, DMSO-d6): -0.11 (s, 9H, 

CH3Si); 0.79-0.83 (m, 2H, SiCH2CH2O); 3.48-3.51 (m, 2H, OCH2CH2Si); 4.05 (s, 3H, 

CH3O); 5.58 (s, 2H, NCH2O); 6.57 (d, 1H, J5,6 = 3.6 Hz, H-5); 7.54 (dd, 1H, J6,5 = 3.6 Hz, J6,2 

= 0.2 Hz, H-6); 8.45 (d, 1H, J2,6 = 0.2 Hz, H-2). 
13

C NMR (125.7 MHz, DMSO-d6): -1.2 
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(CH3Si); 17.3 (SiCH2CH2O); 53.7 (CH3O);  65.7 (OCH2CH2Si); 72.8 (NCH2O); 98.6 (CH-5); 

104.8 (C-4a); 127.7 (CH-6); 151.0 (CH-2); 152.2 (C-7a); 162.5 (C-4). IR (KBr): 2950, 2923, 

2896, 1592, 1559, 1512, 1476, 1416, 1314, 1236, 1096, 1078, 1060, 863, 842, 764, 731, 647.  

HRMS (ESI) calculated for C13H21O2N3NaSi: 302.1295; found: 302.1295.  

4-(Methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 

(6-(Methylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (11) 

Protected deazapurine 9 (27 g, 95 mmol, 1 equiv.) was dissolved in 

methanol (150 mL) and MeSNa (10 g, 142.5 mmol, 1.5 equiv.) was 

added. Reaction mixture was stirred at r.t. for 1 h. Solvents were 

evaporated under reduced pressure and the mixture was then diluted 

with water (150 mL) and EtOAc (150 mL). The layers were separated 

and the aqueous layer was extracted two times with EtOAc (150 mL). 

The combined organic layers were dried over sodium sulphate (Na2SO4), solvents were 

evaporated and the residue was purified by flash chromatography in DCM/EtOAc (20:1) to 

give product 11 (25 g, 89%) as yellowish solid. M.p. 55°C. 
1
H NMR (500 MHz, CDCl3): -0.07 

(s, 9H, CH3Si); 0.88-0.91 (m, 2H, OCH2CH2Si); 2.71 (s, 3H, CH3S); 3.49-3.52 (m, 2H, 

OCH2CH2Si); 5.61 (s, 2H, NCH2O); 6.56 (d, 1H, J5,6 = 3.7 Hz, H-5); 7.23 (d, 1H, J6,5 = 3.7 

Hz, H-6); 8.69 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 11.8 (CH3S); 17.7 

(OCH2CH2Si); 66.4 (OCH2CH2Si); 72.8 (NCH2O); 100.0 (CH-5); 116.1 (C-4a); 129.7 (CH-

6); 148.8 (C-7a); 151.2 (CH-2); 161.7 (C-4). IR (KBr): 3105, 3087, 3052, 2956, 2935, 2899, 

2875, 1550, 1506, 1464, 1446, 1413, 1344, 1251, 1213, 1162, 1096, 1084, 394, 922, 860, 842, 

758, 743. HRMS (ESI) calculated for C13H22ON3SSi: 296.1247; found: 296.1248.  

4-(Methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine  

(6-(Methylsulfonyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (12) 

6-Methylsulfanyl-7-deazapurine 11 (1.48 g, 5 mmol, 1 equiv.) was 

dissolved in DCM (20 mL) and m-CPBA (1.72 g, 10 mmol, 2 equiv.) 

was slowly added (cooling by water/ice during addition) and the 

reaction mixture was stirred at r.t. overnight. Then, 1M NaOH (10 

mL) was added to the mixture to remove residual m-CPBA. The 

layers were separated and the aqueous layer was extracted two times 
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with DCM (15 mL). The combined organic layers were dried over sodium sulphate, solvents 

were evaporated and the residue was purified by flash chromatography (HPFC) in 

CHCl3/MeOH (20:1) to give product 12 (1.28 g, 78%) as white solid. M.p. 91°C. 
1
H NMR 

(500 MHz, CDCl3): -0.05 (s, 9H, CH3Si); 0.90-0.93 (m, 2H, OCH2CH2Si); 3.36 (s, 3H, 

CH3SO2); 3.51-3.54 (m, 2H, OCH2CH2Si); 5.71 (s, 2H, NCH2O); 7.16 (d, 1H, J5,6 = 3.7 Hz, 

H-5); 7.59 (d, 1H, J6,5 = 3.7 Hz, H-6); 8.98 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 

(CH3Si); 17.7 (OCH2CH2Si); 39.9 (CH3SO2); 67.0 (OCH2CH2Si); 73.2 (NCH2O); 101.3 (CH-

5); 114.2 (C-4a); 132.1 (CH-6); 150.6 (CH-2); 154.0 (C-7a); 155.7 (C-4). IR (KBr): 3111, 

3078, 3010, 2953, 2917, 1577, 1550, 1518, 1455, 1443, 1425, 1341, 1323, 1308, 1266, 1248, 

1236, 1213, 1123, 1096, 1081, 976, 970, 911, 863, 851, 842, 755, 656, 525. HRMS (ESI) 

calculated for C13H22O3N3SSi: 328.1146; found: 328.1147.  

5-Benzyl-4-chloro-5H-pyrrolo[3,2-d]pyrimidine 

(7-Benzyl-6-chloro-9-deazapurine) 

Dry DMF (150 ml) was added to a stirred solution of potassium 

carbonate (11.4 g, 82.5 mmol) and 6-choro-9-deazapurine 40 (11.5 g, 75 

mmol) under Ar. After 20 min, benzyl chloride (9.2 ml, 78.75 mmol) 

was added and the resulting mixture was stirred overnight at rt. After 

that brine was added and mixture were extracted with EtOAc 3x 250 mL and dried over 

Na2SO4. The crude mixture was separated by flash chromatography (gradient elution hexanes 

→ hexanes/ethyl acetate 8:2) to give product 7-benzyl-6-chloro-9-deazapurine (16.63 g, 91 %) 

as yellowish crystals. M.p. 122-126 °C.
 1

H NMR (600.1 MHz, DMSO-d6): 5.51 (s, 2H, 

CH2Ph); 6.69 (d, 1H, J7,6 = 3.6, H-7); 7.27 (m, 3H, H-o,p-Ph); 7.32 (m, 2H, H-m-Ph); 7.85 (d, 

1H, J6,7 = 3.6, H-6); 8.66 (s, 1H, H-2).
 13

C NMR (150.9 MHz, DMSO-d6): 47.99 (CH2Ph); 

99.01 (CH-7); 116.91 (C-4a); 127.54 (CH-o-Ph); 127.87 (CH-p-Ph); 128.84 (CH-m-Ph); 

131.66 (CH-6); 137.33 (C-i-Ph); 150.65 (CH-2); 150.72, 150.90 (C-4,7a). IR(KBr): 3113, 

3070, 3032, 1593, 1522, 1496, 1460, 1452, 1444, 1409, 1399, 1350. HRMS (ESI) calculated 

for C18H14N3S: 243.0563; found: 243.0569. 

5-Benzyl-4-phenyl-5H-pyrrolo[3,2-d]pyrimidine 

(7-Benzyl-6-phenyl-9-deazapurine) (39) 
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Dry toluene (100 ml) was added to a stirred solution of potassium 

carbonate (11.06 g, 80 mmol), 7-benzyl-6-chloro-9-deazapurine (9.72 g, 

40 mmol), phenylboronic acid (7.32 g, 60 mmol) and Pd(PPh3)4 (1.85 g, 

1.6 mmol) under Ar. The mixture was stirred for 18 h at temperature 

110°C. After cooling to rt brine was added and mixture were extracted 

with EtOAc 5x 250 mL and dried over Na2SO4. The crude mixture was separated by flash 

chromatography (gradient elution hexanes → hexanes/ethyl acetate 7:3) to give product 39 

(11.07 g, 97 %) as white crystals. M.p. 110-111 °C.
 1

H NMR (499.8 MHz, DMSO-d6): 5.21 (s, 

2H, CH2Ph); 6.37 (m, 2H, H-o-Bn); 6.81 (d, 1H, J7,6 = 3.2, H-7); 7.07 (m, 2H, H-m-Bn); 7.10 

(m, 1H, H-p-Bn); 7.41 (m, 2H, H-o-Ph); 7.45 (m, 2H, H-m-Ph); 7.53 (m, 1H, H-p-Ph); 8.10 (d, 

1H, J6,7 = 3.2, H-6); 8.85 (s, 1H, H-2). 
13

C NMR (125.7 MHz, DMSO-d6): 51.85 (CH2Ph); 

101.83 (CH-7); 124.45 (C-4a); 125.97 (CH-o-Bn); 127.45 (CH-p-Bn); 128.21 (CH-m-Ph); 

128.47 (CH-m-Bn); 129.32 (CH-o-Ph); 129.38 (CH-p-Ph); 137.35 (C-i-Ph); 137.44 (C-i-Bn); 

138.99 (CH-6); 150.02 (CH-2); 150.37 (C-4); 152.14 (C-7a). IR(KBr): 3436, 3062, 3030, 

1583, 1575, 1537, 1510, 1490, 1454, 1443, 1394, 1360. HRMS (ESI) calculated for C19H16N3: 

286.1339; found: 286.1339. 

4-Phenyl-5H-pyrrolo[3,2-d]pyrimidine 

(6-Phenyl-9-deazapurine) (38) 

Dry toluene (250 ml) was added to a stirred solution of potassium carbonate 

(27.64 g, 200 mmol), 6-chloro-9-deazapurine 40 (15.36 g, 100 mmol), 

phenylboronic acid (18.29 g, 150 mmol) and Pd(PPh3)4 (4.62 g, 4 mmol) under 

Ar. The mixture was stirred for 18 h at temperature 100°C. After cooling to rt brine was added 

and mixture were extracted with EtOAc 5x 250 mL and dried over Na2SO4. The crude mixture 

was separated by flash chromatography (gradient elution hexanes → 

hexanes/ethyl acetate 6:4) to give product 38 (16.59 g, 85 %) as yellowish crystals. M.p. 136-

142 °C.
 1

H NMR (499.8 MHz, DMSO-d6): 6.71 (dd, 1H, J7,6 = 3.1, J7,NH = 1.5, H-7); 7.58 (m, 

1H, H-p-Ph); 7.62 (m, 2H, H-m-Ph); 7.91 (dd, 1H, J6,7 = J6,NH = 3.1, H-6); 8.09 (m, 2H, H-o-

Ph); 8.90 (s, 1H, H-2); 11.99 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 101.82 (CH-

7); 123.70 (C-4a); 128.79 (CH-o-Ph); 129.11 (CH-m-Ph); 130.32 (CH-p-Ph); 134.20 (CH-6); 

136.34 (C-i-Ph); 147.64 (C-4); 150.38 (CH-2); 151.45 (C-7a).  IR (KBr): 3205, 3135, 3081, 



96 
 

3007, 2867, 1599, 1582, 1563,1503, 1438, 1412, 1350. HRMS (ESI) calculated for C12 H11 

N3: 196.0796; found: 196.0869. Anal. calculated for C12H9N3 (195.08): C 73.83%, H 4.65%, 

N 21.52%; found: C 73.68%, H 4.54%, N 21.12%. 

4-Chloro-5-((2-(trimethylsilyl)ethoxy)methyl)-5H-pyrrolo[3,2-d]pyrimidine  

(6-Chloro-7-((2-(trimethylsilyl)ethoxy)methyl)-9-deazapurine)  

To a flask equipped with an addition funnel was added 6-chloro-9-

deazapurine 40 (3.84 g, 25 mmol) and DMF (60 mL). The mixture 

was cooled to – 5 °C in an ice/brine bath. Sodium hydride (NaH, 60 

wt%, 1.11 g, 27.5 mmol, 1.1 equiv.) was added in portions as a solid. 

The solution darkened over 15 minutes. 2-

(Trimethylsilyl)ethoxymethyl chloride (SEM-Cl, 5 mL, 27.5 mmol, 1.1 equiv.) was added 

slowly via an addition funnel at a rate such that the temperature did not exceed 5 °C. The 

reaction was stirred for 30 minutes, determined to be complete by TLC. Water (60 mL) was 

slowly added to quench the reaction. The mixture was then diluted with EtOAc (50 mL). The 

layers were separated and the aqueous layer was extracted with EtOAc (50 mL). The 

combined organic layers and dried over Na2SO4. The crude mixture was separated by flash 

chromatography (gradient elution hexanes → hexanes/ethyl acetate 6:4) to give 6-chloro-7-

((2-(trimethylsilyl)ethoxy)methyl)-9-deazapurine (5.9 g, 84 %) as a pale yellow oil. 
1
H NMR 

(499.8 MHz, DMSO-d6): -0.12 (s, 9H, CH3Si); 0.80 (m, 2H, SiCH2CH2O); 3.49 (m, 2H, 

OCH2CH2Si); 5.79 (s, 2H, NCH2O); 6.79 (d, 1H, J7,6 = 3.2, H-7); 8.20 (d, 1H, J6,7 = 3.2, H-6); 

8.68 (s, 1H, H-2).
13

C NMR (125.7 MHz, DMSO-d6): -1.28 (CH3Si); 17.23 (SiCH2CH2O); 

65.34 (OCH2CH2Si); 76.85 (NCH2O); 102.36 (CH-7); 123.15 (C-4a); 139.57 (CH-6); 141.97 

(C-4); 150.06 (CH-2); 151.13 (C-7a). HRMS (ESI) calculated for C12H19ON3ClSi: 284.0980; 

found: 284.0980. 

4-Methoxy-5-((2-(trimethylsilyl)ethoxy)methyl)-5H-pyrrolo[3,2-d]pyrimidine  

(6-Methoxy-7-((2-(trimethylsilyl)ethoxy)methyl)-9-deazapurine) (19) 
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6-Chloro-7-((2-(trimethylsilyl)ethoxy)methyl)-9-deazapurine (5.68 g, 

20 mmol, 1 equiv.) was dissolved in acetone (50 mL) and 1 M solution 

of MeONa in MeOH (40 mL, 40 mmol, 2 equiv.) was added and the 

reaction mixture was stirred at r.t. overnight. Solvents were evaporated 

under reduced pressure and the mixture was then diluted with water 

(100 mL) and EtOAc (100 mL). The layers were separated and the aqueous layer was 

extracted two times with EtOAc (100 mL). The combined organic layers were dried over 

sodium sulphate (Na2SO4), filtrate and concentrated under the reduced pressure to give 

product 19 (5.4 g, 97%) as a yellow oil. 
1
H NMR (499.8 MHz, CDCl3): -0.07 (s, 9H, CH3Si); 

0.87 (m, 2H, SiCH2CH2O); 3.50 (m, 2H, OCH2CH2Si); 4.17 (s, 3H, CH3O); 5.67 (s, 2H, 

NCH2O); 6.70 (d, 1H, J7,6 = 3.2, H-7); 7.42 (d, 1H, J6,7 = 3.2, H-6); 8.56 (s, 1H, H-2). 
13

C 

NMR (125.7 MHz, CDCl3): -1.52 (CH3Si); 17.68 (SiCH2CH2O); 53.67 (CH3O); 65.97 

(OCH2CH2Si); 77.55 (NCH2O); 103.46 (CH-7); 115.50 (C-4a); 133.02 (CH-6); 149.91 (CH-

2); 150.73 (C-7a); 156.43 (C-4). HRMS (ESI) calculated for C13H22O2N3Si: 280.1476; found: 

280.1476.
 

5.3 C-H Borylation of purines and deazapurines 

Borylation of deazapurines. General Procedure: 

7-Deazapurines 2-12 (2 mmol, 1 equiv.), bispinacolatodiboron (0.609 g, 2.4 mmol, 1.2 equiv.), 

[Ir(COD)OMe]2 (66 mg, 0.1 mmol, 5 mol %) and 4,4’-di-tert-butyl-2,2’-bipyridine (54 mg, 

0.2 mmol, 10 mol %) were dissolved in dry THF (15  ml) under Ar. The solution was heated at 

80 °C in a septum-sealed flask for 20 hours. The solvent was evaporated and the residue was 

purified by silica gel flash chromatography. 

7-Benzyl-4-phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7H-pyrrolo[2,3-

d]pyrimidine 

(9-Benzyl-6-phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-deazapurine) (13) 

9-Benzyl-6-phenyl-7-deazapurine 2 (570 mg, 2 mmol) was used as 

starting compound to give product 13 (698 mg, 85%) as white foam 

after chromatography hexane/EtOAc 5:1. Crystallization in 

hexan/EtOAc gave white crystals. M.p. 128-134 °C.
 1

H NMR (600 
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MHz, CDCl3): 1.28 (s, 12H, CH3); 5.81(s, 2H, CH2); 7.17-7.26 (m, 5H, H-o,m,p-Bn); 7.46 (s, 

1H, H-5); 7.50 (m, 1H, H-p-Ph); 7.54 (m, 2H, H-m-Ph); 8.16 (m, 2H, H-o-Ph); 9.02 (s, 1H, H-

2). 
13

C NMR (151 MHz, CDCl3): 24.65 ((CH3)2C); 47.17 (CH2Ph); 84.39 (C(CH3)2); 113.54 

(CH-5); 115.44 (C-4a); 127.14 (CH-p-Bn); 127.28 (CH-o-Bn); 128.25 (CH-m-Bn); 128.71 

(CH-m-Ph); 129.06 (CH-o-Ph); 130.10 (CH-p-Ph); 132.15 (C-6); 138.16 (C-i-Ph); 138.79 (C-

i-Bn); 152.94 (CH-2); 154.25 (C-7a); 158.73 (C-4). IR(CHCl3):2983, 1562, 1525, 1468, 1449, 

1428, 1382, 1374, 1335, 1139. HRMS (ESI) calculated for C25H26BN3O2: 412.2191; found: 

412.2192. 

7-Benzyl-4-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7H-pyrrolo[2,3-

d]pyrimidine  

(9-Benzyl-6-chloro-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-deazapurine) (14) 

9-Benzyl-6-chloro-7-deazapurine 7 (486 mg, 2 mmol)  and  

bispinacolatodiboron (0.762 g, 3.0 mmol, 1.5 equiv.), 

[Ir(COD)OMe]2 (106 mg, 0.1 mmol, 8 mol %) and 4,4’-di-tert-butyl-

2,2’-bipyridine (86 mg, 0.2 mmol, 16 mol %) were used. The residue 

after C-H activation was purified by silica gel flash chromatography (hexane/EtOAc 5:1→ 

ethyl acetate/hexanes 1:1) to give product 14 (390 mg, 53%) as white solid. Crystallization in 

hexan/EtOAc gave white crystals. M.p. 172-175 °C.
 1

H NMR (500 MHz, CDCl3): 1.28 (s, 

12H, CH3); 5.75 (s, 2H, CH2); 7.16-7.25 (m, 6H, H-5 and H-o,m,p-Bn); 8.68 (s, 1H, H-2). 
13

C 

NMR (125.7 MHz, CDCl3): 24.62 ((CH3)2C); 47.60 (CH2Ph); 84.56 (C(CH3)2); 112.23 (CH-

5); 117.21 (C-4a); 127.22 (CH-o-Bn); 127.34 (CH-p-Bn); 128.30 (CH-m-Bn); 132.79 (C-6); 

138.12 (C-i-Bn); 151.91 (CH-2); 153.28 and 153.42 (C-4 and C-7a). IR(CHCl3): 2984, 1579, 

1541, 1525, 1469, 1430, 1374, 1355, 1330, 1259, 1177, 1137. HRMS (ESI) calculated for 

C19H21BClN3O2: 370.1499; found: 370.1488. 

4-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-((2-

(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidine  

 (6-chloro-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-((2-

(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (15) 
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Starting from 9 (284 mg, 1 mmol), the product 15 (322 mg, 78%) was 

obtained as brownish solid after chromatography performed in pure 

dichloromethane. Finally, the crude product was rinsed with hexanes 

and heated at 60 °C under vacuum (6 mtorr) to remove residual 

pinacol. M.p. 99°C. 
1
H NMR (500 MHz, CDCl3): -0.08 (s, 9H, 

CH3Si); 0.85-0.89 (m, 2H, OCH2CH2Si); 1.38 (s, 12H, (CH3)2C); 

3.50-3.53 (m, 2H, OCH2CH2Si); 5.89 (s, 2H, NCH2O); 7.23 (s, 1H, H-5); 8.68 (s, 1H, H-2). 

13
C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 17.8 (OCH2CH2Si); 24.8 ((CH3)2C); 66.3 

(OCH2CH2Si); 72.6 (NCH2O); 84.7 ((CH3)2C); 112.6 (CH-5); 117.5 (C-4a), 133.0 (C-6); 

152.2 (CH-2); 153.3 (C-4); 154.0 (C-7a). IR (KBr): 2989, 2956, 2914, 2893, 1580, 1538, 

1428, 1365, 1326, 1254, 1180, 1141, 1087, 866, 827, 746. HRMS (ESI) calculated for 

C18H30O3N3BClSi: 410.1833; found: 410.1831.  

4-Methoxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-[2-

(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methoxy-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-((2-

(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (16) 

Starting from 10 (279 mg, 1 mmol) the product 16 (328 mg, 81%) 

was obtained as brownish oil after chromatography performed in pure 

dichloromethane. Finally, the crude product was rinsed with hexanes 

and heated at 60 °C under vacuum (6 mtorr) to remove residual 

pinacol. 
1
H NMR (500 MHz, CDCl3): -0.09 (s, 9H, CH3Si); 0.85-0.88 

(m, 2H, OCH2CH2Si); 1.36 (s, 12H, (CH3)2C); 3.50-3.54 (m, 2H, 

OCH2CH2Si); 4.11 (CH3O); 5.86 (s, 2H, NCH2O); 7.17 (s, 1H, H-5); 8.52 (s, 1H, H-2). 
13

C 

NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 17.8 (OCH2CH2Si); 24.8 ((CH3)2C); 53.7 (CH3O); 

65.9 (OCH2CH2Si); 72.4 (NCH2O); 84.1 ((CH3)2C); 105.7 (C-4a); 112.3 (CH-5); 129.3 (C-6); 

152.6 (CH-2); 155.1 (C-7a); 163.7 (C-7a). IR (KBr): 2977, 2950, 2893, 1682, 1595, 1553, 

1524, 1479, 1425, 1374, 1331, 1320, 1260, 1222, 1147, 1090, 970, 860, 836, 797, 761. HRMS 

(ESI) calculated for C19H33O4N3BSi: 406.2328; found: 406.2331.  

4-(Methylthio)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-[2-

(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 
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(6-(Methylthio)-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-((2-

(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (17) 

Starting from 11 (295 mg, 1 mmol), the product 17 (350 mg, 83%) 

was obtained as brownish oil after chromatography performed in pure 

dichloromethane. Finally, the crude product was rinsed with hexanes 

and heated at 60 °C under vacuum (6 mtorr) to remove residual 

pinacol. 
1
H NMR (500 MHz, CDCl3): -0.08 (s, 9H, CH3Si); 0.85-0.88 

(m, 2H, OCH2CH2Si); 1.37 (s, 12H, (CH3)2C); 2.69 (CH3S); 3.50-

3.53 (m, 2H, OCH2CH2Si); 5.86 (s, 2H, NCH2O); 7.17 (s, 1H, H-5); 8.70 (s, 1H, H-2). 
13

C 

NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 11.8 (CH3S); 17.8 (OCH2CH2Si); 24.8 ((CH3)2C); 

66.0 (OCH2CH2Si); 72.3 (NCH2O); 84.3 ((CH3)2C); 112.4 (CH-5); 116.0 (C-4a); 130.1 (C-6); 

151.4 (C-7a); 152.2 (CH-2); 163.2 (C-4). IR (KBr): 2974, 2950, 2929, 2893, 1553, 1527, 

1458, 1425, 1371, 1314, 1263, 1222, 1180, 1141, 1084, 857, 839. HRMS (ESI) calculated for 

C19H33O3N3BSSi: 422.2099; found: 422.2099.  

(7-Benzyl-4-phenyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)trifluoroborate (potassium salt)  

((9-benzyl-6-phenyl-7-deazapurine-8-yl)trifluoroborate (potassium salt)) (18) 

To a flask containing 13 (412 mg, 1 mmol, 1 equiv.) and KHF2 (469 mg, 6 

mmol), THF (5 mL) and H2O (3 mL) were added. The reaction mixture 

was stirred for 5 h at room temperature. The solvents were evaporated and 

the residue was purified by flash chromatography (HPFC) in 

EtOAc/MeOH (9:1) to give product 18 (266 mg, 68%) as white solid. 

M.p. > 300°C. 
1
H NMR (500 MHz, CD3OD): 5.67 (s, 2H, CH2); 6.86 (H-

5); 7.14-7.15 (m, 1H, H-p-Bn); 7.18-7.25 (m, 4H, H-o,m-Bn); 7.52-7.53 (m, 1H, H-p-Ph); 

7.56-7.58 (m, 2H, H-m-Ph); 8.06-8.07 (m, 2H, H-o-Ph); 8.63 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CD3OD): 48.7 (CH2Ph); 104.2 (CH-5); 118.1 (C-4a); 127.7 (CH-p-Bn); 128.2 (CH-o-

Bn); 129.0 (CH-m-Bn); 129.8 (CH-m-Ph); 130.0 (CH-o-Ph); 131.0 (CH-p-Ph); 138.9 (C-i-Ph); 

140.3 (C-i-Bn); 149.5 (CH-2); 154.3 (C-7a); 155.8 (C-4); C-6 not detected. 
19

F NMR (470.3 

MHz, CD3OD): -137.91. 
11

B NMR (160.4 MHz, CD3OD): 1.96. IR (KBr): 3428, 3254, 3062, 

3031, 2949, 1617, 1584, 1562, 1550, 1497, 1474, 1455, 1432, 1148, 1028, 1007, 937, 761, 

697. HRMS (ESI) calculated for C19H15N3BF3Na: 376.1203; found: 376.1205.  
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C-H borylation of 9-deazapurine: 

A 9-deazapurine 19 (558 mg, 2 mmol, 1 equiv.), bispinacolatodiboron (610 mg, 2.4 mmol, 1.2 

equiv.), [Ir(COD)OMe]2 (66 mg, 0.1 mmol, 5 mol %) and 4,4’-di-tert-butyl-2,2’-bipyridine 

(54 mg, 0.2 mmol, 10 mol %) was dissolved in dry THF (15 ml) under Ar. The solution was 

heated at 80 °C in a septum sealed vial and stirred under argon for 20 h. According TLC, LC-

MS, NMR (reaction mixture) inseparable mixture of two borylated was obtained. The solvent 

was removed under reduced pressure. The residue was then combined with 4-iodoanisole (515 

mg, 2.2 mmol, 1.1 equiv.), Pd(dppf)Cl2 (73 mg, 0.1 mmol, 5 mol %) and K2CO3 (1.1 g, 8 

mmol, 4 equiv.) in DMF (15 mL) and stirred under Ar at 90 °C for 1 h. The solution was then 

cooled to room temperature, diluted with EtOAc (50 mL) and water (50 mL). Aqueous 

solution was then extracted three times with EtOAc and combined organic layers were dried 

over Na2SO4, filtered, and evaporated under vacuum. Purification was performed by HPFC 

(hexane/EtOAc, 0–60% EtOAc) to give products 20a (154 mg, 20%) and 20 b (308 mg, 40%) 

as yellowish oils. 

 

4-Methoxy-7-(4-methoxyphenyl)-5-((2-(trimethylsilyl)ethoxy)methyl)-5H-pyrrolo[3,2-

d]pyrimidine  

(6-Methoxy-9-(4-methoxyphenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-9-deazapurine) 

(20a) 

1
H NMR (499.8 MHz, CDCl3): -0.06 (s, 9H, CH3Si); 0.90 (m, 2H, 

SiCH2CH2O); 3.54 (m, 2H, OCH2CH2Si); 3.84 (s, 3H, CH3O-p); 4.17 

(s, 3H, CH3O-4); 5.69 (s, 2H, NCH2O); 7.00 (m, 2H, H-m-C6H4OMe); 

7.58 (s, 1H, H-6); 7.95 (m, 2H, H-o-C6H4OMe); 8.64 (s, 1H, H-2). 
13

C 

NMR (125.7 MHz, CDCl3): -1.52 (CH3Si); 17.70 (SiCH2CH2O); 

53.51 (CH3O-4); 55.31 (CH3O-p); 65.98 (OCH2CH2Si); 77.49 

(NCH2O); 114.19 (CH-m-C6H4OMe); 116.22 (C-4a); 117.51 (C-7); 

125.44 (C-i-C6H4OMe); 128.03 (CH-o-C6H4OMe); 128.76 (CH-6); 

148.57 (C-7a); 150.11 (CH-2); 156.36 (C-4); 158.40 (C-p-C6H4OMe). HRMS (ESI) calculated 

for C20H28O3N3Si: 386.1894; found: 386.1894. 

4-Methoxy-6-(4-methoxyphenyl)-5-((2-(trimethylsilyl)ethoxy)methyl)-5H-pyrrolo[3,2-

d]pyrimidine  
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(6-Methoxy-8-(4-methoxyphenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-9-deazapurine) 

(20b) 

1
H NMR (499.8 MHz, CDCl3): -0.07 (s, 9H, CH3Si); 0.84 (m, 

2H, SiCH2CH2O); 3.50 (m, 2H, OCH2CH2Si); 3.87 (s, 3H, 

CH3O-p); 4.18 (s, 3H, CH3O-4); 5.62 (s, 2H, NCH2O); 6.69 (s, 

1H, H-7); 7.02 (m, 2H, H-m-C6H4OMe); 7.59 (m, 2H, H-o-

C6H4OMe); 8.56 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 

-1.52 (CH3Si); 17.93 (SiCH2CH2O); 53.66 (CH3O-4); 55.38 

(CH3O-p); 65.66 (OCH2CH2Si); 74.33 (NCH2O); 103.30 (CH-7); 114.18 (CH-m-C6H4OMe); 

116.64 (C-4a); 123.22 (C-i-C6H4OMe); 131.16 (CH-o-C6H4OMe); 147.31 (C-6); 149.99 (CH-

2, C-7a); 156.04 (C-4); 160.41 (C-p-C6H4OMe). HRMS (ESI) calculated for C20H28O3N3Si: 

386.1894; found: 386.1894. 

5.4 Application of C-H borylation in synthesis of 6,8-disubstituted 

7-deazapurines 

5.4.1 Synthesis of 8-aryl-7-deazapurines 

 

Suzuki coupling arylboronic ester with aryl halogens. General procedure: 

Aryl halide (0.269 mmol, 1.1 equiv.), 13 (100 mg, 0.244 mmol, 1 equiv.), Pd(dppf)Cl2 (9 mg, 

0.0112 mmol, 5 mol %), K2CO3 (135 mg, 0.976 mmol, 4 equiv.) were combined in DMF (4 

mL) and stirred under argon at 90 °C for 1 h. The solvent was removed under reduced 

pressure, the residue was purified by silica gel flash chromatography (hexane/EtOAc 5/1) to 

give products 21a-21g. 

7-Benzyl-6-(4-methoxyphenyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine   

(9-Benzyl-6-phenyl-8-(4-methoxyphenyl)-7-deazapurine) (21a) 

Product 21a (83 mg, 87%) was obtained as yellow solid. 

Crystallization in hexan/EtOAc gave yellowish crystals. M.p. 

116-121 °C.
 1

H NMR (500 MHz, CDCl3): 3.85 (s, 3H, CH3O); 

5.56 (s, 2H, CH2); 6.85 (s, 1H, H-5); 6.93 (m, 2H, H-m-

C6H4OMe); 7.00 (m, 2H, H-o-Bn); 7.19-7.26 (m, 3H, H-m,p-Bn); 7.32 (m, 2H, H-o-
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C6H4OMe); 7.51 (m, 1H, H-p-Ph); 7.55 (m, 2H, H-m-Ph); 8.17 (m, 2H, H-o-Ph); 8.98 (s, 1H, 

H-2). 
13

C NMR (125.7 MHz, CDCl3): 46.10 (CH2Ph); 55.35 (CH3O); 99.96 (CH-5); 114.12 

(CH-m-C6H4OMe); 115.90 (C-4a); 123.65 (C-i-C6H4OMe); 126.58 (CH-o-Bn); 127.35 (CH-p-

Bn); 128.61 (CH-m-Bn); 128.74 (CH-m-Ph); 128.80 (CH-o-Ph); 129.89 (CH-p-Ph); 130.63 

(CH-o-C6H4OMe); 137.60 (C-i-Bn); 138.30 (C-i-Ph); 142.92 (C-6); 151.49 (CH-2); 153.38 

(C-7a); 156.51 (C-4); 160.18 (C-p-C6H4OMe). IR(CHCl3): 3010, 1612, 1567, 1498, 1464, 

1455, 1441, 1419, 1344, 1293, 1251, 1177, 1032, 838. HRMS (ESI) calculated for C26H21N3O: 

392.1757; found: 392.1764. 

7-Benzyl-4-phenyl-6-p-tolyl-7H-pyrrolo[2,3-d]pyrimidine  

(9-Benzyl-6-phenyl-8-p-tolyl-7-deazapurine) (21b) 

Product 21b (83 mg, 90%) was obtained as yellow solid. 

Crystallization in hexan/EtOAc gave yellowish crystals. M.p. 

125-130 °C. 
1
H NMR (500 MHz, CDCl3): 2.40 (s, 3H, CH3); 

5.56 (s, 2H, CH2); 6.87 (s, 1H, H-5); 7.00 (m, 2H, H-o-Bn); 7.19-

7.26 (m, 5H, H-m,p-Bn and H-m-C6H4Me); 7.30 (m, 2H, H-o-C6H4Me); 7.50 (m, 1H, H-p-

Ph); 7.55 (m, 2H, H-m-Ph); 8.17 (m, 2H, H-o-Ph); 8.99 (s, 1H, H-2). 
13

C NMR (125.7 MHz, 

CDCl3): 21.29 (CH3); 46.13 (CH2Ph); 100.21 (CH-5); 115.87 (C-4a); 126.60 (CH-o-Bn); 

127.32 (CH-p-Bn); 128.43 (C-i-C6H4Me); 128.57 (CH-m-Bn); 128.73 (CH-m-Ph); 128.80 

(CH-o-Ph); 129.18 (CH-o-C6H4Me); 129.37 (CH-m-C6H4Me); 129.89 (CH-p-Ph); 137.59 (C-

i-Bn); 138.32 (C-i-Ph); 139.02 (C-p-C6H4Me); 143.11 (C-6); 151.58 (CH-2); 153.45 (C-7a); 

156.65 (C-4). IR(CHCl3): 3066, 2983, 1567, 1497, 1463, 1454, 1441, 1420, 1344, 1267, 699. 

HRMS (ESI) calculated for C26H21N3: 376.1819; found: 376.1808. 

7-Benzyl-4-phenyl-6-(pyren-1-yl)-7H-pyrrolo[2,3-d]pyrimidine   

(9-Benzyl-6-phenyl-8-(pyren-1-yl)-7-deazapurine) (21c) 

Product 21c (93 mg, 79%) was obtained as yellow oil which 

solidified on standing. M.p. 57-76 °C.
 1

H NMR (500 MHz, 

CDCl3): 5.13 and 5.67 (2 × bd, 2H, Jgem = 15.6, CH2); 6.65 (m, 

2H, H-o-Bn); 6.95 (m, 2H, H-m-Bn); 7.01 (m, 1H, H-p-Bn); 7.08 

(s, 1H, H-5); 7.48 (m, 1H, H-p-Ph); 7.53 (m, 2H, H-m-Ph); 7.81 
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(d, 1H, J2,3 = 7.8, H-2-pyr); 7.84 (d, 1H, J10,9 = 9.2, H-10-pyr); 7.98 (d, 1H, J9,10 = 9.2, H-9-

pyr); 8.03 (t, 1H, J7,6 = J7,8 = 7.6, H-7-pyr); 8.09 (d, 1H, J4,5 = 9.0, H-4-pyr); 8.12 (d, 1H, J3,2 = 

7.8, H-3-pyr); 8.14 (d, 1H, J5,4 = 9.0, H-5-pyr); 8.18 (dd, 1H, J6,7 = 7.6, J6,8 = 1.1, H-6-pyr); 

8.18 (m, 3H, H-8-pyr and H-o-Ph); 9.12 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 46.31 

(CH2Ph); 102.70 (CH-5); 115.93 (C-4a); 124.23 (CH-3-pyr); 124.35 (CH-10-pyr); 124.39 (C-

10c-pyr); 124.52 (C-10b-pyr); 125.61 (CH-6-pyr); 125.76 (C-1-pyr); 125.80 (CH-8-pyr); 

126.34 (CH-7-pyr); 127.19 (CH-o-Bn); 127.22, 127.23 (CH-p-Bn and CH-4-pyr); 128.17 

(CH-m-Bn); 128.43 (CH-5-pyr); 128.57 (CH-2,9-pyr);  128.77 (CH-m-Ph); 128.88 (CH-o-Ph); 

129.97 (CH-p-Ph); 130.31 (C-10a-pyr); 130.71 (C-8a-pyr); 131.20 (C-5a-pyr); 131.93 (C-3a-

pyr); 137.06 (C-i-Bn); 138.28 (C-i-Ph); 141.02 (C-6); 151.80 (CH-2); 153.07 (C-7a); 156.94 

(C-4). IR(CHCl3): 3407, 3047, 3000, 1604, 1585, 1559, 1497, 1463, 1455, 1435, 1421, 1342, 

1263, 1244, 1054, 851. HRMS (ESI) calculated for C35H23N3: 486.1965; found: 486.1958. 

7-Benzyl-4-phenyl-6-(pyridin-2-yl)-7H-pyrrolo[2,3-d]pyrimidine  

(9-Benzyl-6-phenyl-8-(pyridin-2-yl)-7-deazapurine) (21d) 

Product 21d (84 mg, 95%) was obtained as yellowish solid.  

Crystallization in hexan/EtOAc gave white crystals. M.p. 105-110 °C.
 

1
H NMR (500 MHz, CDCl3): 6.17 (s, 2H, CH2); 7.02 (m, 2H, H-o-Bn); 

7.10-7.16 (m, 3H, H-m,p-Bn); 7.17 (s, 1H, H-5); 7.25 (ddd, 1H, J5,4 = 

7.5, J5,6 = 4.8, J5,3 = 1.3, H-5-py); 7.52 (m, 1H, H-p-Ph); 7.56 (m, 2H, H-m-Ph); 7.63 (ddd, 1H, 

J3,4 = 7.9, J3,5 = 1.3, J3,6 = 1.0, H-3-py); 7.70 (ddd, 1H, J4,3 = 7.9, J4,5 = 7.5, J4,6 = 1.9, H-4-py); 

8.16 (m, 2H, H-o-Ph); 8.70 (ddd, 1H, J6,5 = 4.8, J6,4 = 1.9, J6,3 = 1.0, H-6-py); 9.03 (s, 1H, H-

2). 
13

C NMR (125.7 MHz, CDCl3): 46.28 (CH2Ph); 102.08 (CH-5); 115.50 (C-4a); 122.86 

(CH-5-py); 123.39 (CH-3-py); 127.04 (CH-p-Bn); 127.07 (CH-o-Bn); 128.26 (CH-m-Bn); 

128.79 (CH-m-Ph); 128.83 (CH-o-Ph); 130.05 (CH-p-Ph); 136.76 (CH-4-py); 138.14 (C-i-Ph); 

138.17 (C-i-Bn); 139.79 (C-6); 149.22 (CH-6-py); 151.12 (C-2-py); 152.31 (CH-2); 153.89 

(C-7a); 157.68 (C-4). IR(CHCl3): 3066, 2985, 1587, 1566, 1497, 1462, 1442, 1348, 1323, 

1272, 1248. HRMS (ESI) calculated for C24H18N4: 363.1604; found: 363.1603. Anal. 

calculated for C24H18N4 (362.43): C 79.54%, H 5.01%, N 15.46%, found: C 79.02%, H 4.92%, 

N 15.05%. 
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5-(7-Benzyl-4-phenyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)-1,3-dimethylpyrimidine 

2,4(1H,3H)-dione   

(9-Benzyl-6-phenyl-8-(1,3-dimethyluracil-5-yl)-7-deazapurine) (21e) 

Product 21e (95 mg, 92%) was obtained as white solid. 

Crystallization in hexan/EtOAc gave white crystals. M.p. 169-176 

°C.
 1

H NMR (600 MHz, CDCl3): 3.24 (s, 3H, CH3-1´); 3.44 (s, 3H, 

CH3-3´); 5.60 (s, 2H, CH2); 6.83 (s, 1H, H-5); 6.92 (s, 1H, H-6´); 

6.96 (m, 2H, H-o-Bn); 7.19-7.25 (m, 3H, H-m,p-Bn); 7.51 (m, 1H, H-p-Ph); 7.54 (m, 2H, H-

m-Ph); 8.13 (m, 2H, H-o-Ph); 9.02 (s, 1H, H-2). 
13

C NMR (151 MHz, CDCl3): 28.36 (CH3-

3´); 37.10 (CH3-1´); 46.42 (CH2Ph); 102.69 (CH-5); 105.86 (C-5´); 115.22 (C-4a); 126.92 

(CH-o-Bn); 127.44 (CH-p-Bn); 128.59 (CH-m-Bn); 128.76 and 128.80 (CH-o,m-Ph); 130.04 

(CH-p-Ph); 134.11 (C-6); 137.91 (C-i-Bn); 138.06 (C-i-Ph); 143.58 (CH-6´); 151.09 (C-2´); 

152.10 (CH-2); 153.22 (C-7a); 157.31 (C-4); 161.71 (C-4´). IR(CHCl3): 3029, 3013, 1710, 

1661, 1585, 1565, 1497, 1464, 1456, 1442, 1433, 1342, 1249, 1232. HRMS (ESI) calculated 

for C25H21N5O2: 424.1768; found: 424.1764. Anal. calculated for C25H21N5O2 (423.47): C 

70.91%, H 5.00%, N 16.54%, found: C 70.51%, H 4.87%, N 16.31%. 

7-Benzyl-6-(4-nitrophenyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine   

(9-Benzyl-6-phenyl-8-(4-nitrophenyl)-7-deazapurine) (21f) 

Product 21f (90 mg, 91%) was obtained as yellow solid.  

Crystallization in hexan/EtOAc gave yellow crystals. M.p. 212-

219 °C
 1

H NMR (500 MHz, CDCl3): 5.62 (s, 2H, CH2); 6.96 (m, 

2H, H-o-Bn); 7.03 (s, 1H, H-5); 7.22-7.26 (m, 3H, H-m,p-Bn); 

7.53-7.60 (m, 5H, H-m,p-Ph, H-o-C6H4NO2); 8.17 (m, 2H, H-o-Ph); 8.26 (m, 2H, H-m-

C6H4NO2); 9.06 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 46.45 (CH2Ph); 102.67 (CH-5); 

115.56 (C-4a); 123.93 (CH-m-C6H4NO2); 126.43 (CH-o-Bn); 127.79 (CH-p-Bn); 128.86, 

128.88 and 128.92 (CH-m-Bn and CH-o,m-Ph); 129.88 (CH-o-C6H4NO2); 130.35 (CH-p-Ph); 

136.93 (C-i-Bn); 137.87 (C-i-Ph and C-i-C6H4NO2); 140.11 (C-6); 147.82 (C-p-C6H4NO2); 

152.58 (CH-2); 154.00 (C-7a); 158.01 (C-4). IR(CHCl3): 3032, 2987, 1602, 1585, 1566, 1522, 

1497, 1485, 1463, 1454, 1442, 1421, 1348. HRMS (ESI) calculated for C25H18N4O2: 

407.1503; found: 407.1499. 
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6-(7-Benzyl-4-phenyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)pyrimidine-2,4(1H,3H)-dione  

(9-Benzyl-6-phenyl-8-(uracil-6-yl)-7-deazapurine) (21g) 

The crude product after cross-coupling was directly deprotected by 

refluxing in 2 ml solution of THF: dioxane: HCl (1:1:1) for 2 hours. 

The reaction mixture was evaporated and ethanol (2 ml) was added. 

The mixture was then kept in a fridge overnight to furnish 21g (79 

mg, 83 %) as white crystals. M.p. >300 °C.
 1

H NMR (500 MHz, DMSO-d6): 5.69 (t, 1H, 4J =  

1.7, H-5´); 5.71 (s, 2H, CH2); 6.99 (m, 2H, H-o-Bn); 7.24 (m, 1H, H-p-Bn); 7.29 (m, 2H, H-m-

Bn); 7.54 (s, 1H, H-5); 7.59-7.65 (m, 3H, H-m,p-Ph); 8.26 (m, 2H, H-o-Ph); 9.01 (s, 1H, H-2); 

11.25 (bs, 1H, NH-3´); 11.31 (bs, 1H, NH-1´). 
13

C NMR (125.7 MHz, DMSO-d6): 46.29 

(CH2Ph); 101.35 (CH-5´); 105.01 (CH-5); 114.02 (C-4a); 126.63 (CH-o-Bn); 127.81 (CH-p-

Bn); 128.98 (CH-m-Bn); 129.07 (CH-o-Ph); 129.25 129.07 (CH-m-Ph); 131.04 (CH-p-Ph); 

133.00 (C-6); 137.19 (C-i-Bn and C-i-Ph); 143.59 (C-6´); 151.53 (C-2´); 153.08 (CH-2); 

153.57 (C-7a); 157.76 (C-4); 163.71 (C-4´). IR(CHCl3): 3417, 3146, 3031, 2805, 1711, 1687, 

1637, 1585, 1496, 1457, 1415, 1347, 1262, 1221. HRMS (ESI) calculated for C23H17N5O2: 

396.1455; found: 396.1451. 

General procedure for direct C-H arylation 

DMF (3 mL) was added through a septum to an argon purged vial containing a 9-benzyl-6-

phenyl-7-deazapurine 2 (143 mg, 0.5 mmol, 1 equiv.), Pd(OAc)2
 
(5.6 mg, 0.025mmol, 5 mol 

%), CuI (286 mg, 1.5 mmol, 3 equiv.), Aryl halide (2 equiv.) and Cs2CO3 (408 mg, 1.25 

mmol, 2.5 equiv.). Reaction mixture was heated to 160 °C for 60 h. The solvent was 

evaporated under reduced pressure. Products were isolated by flash column chromatography 

(gradient elution hexanes → ethyl acetate/hexanes 1:6).  

7-Benzyl-6-(4-methoxyphenyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine   

(9-Benzyl-6-phenyl-8-(4-methoxyphenyl)-7-deazapurine) (21a) 

Product 21a (76 mg, 39%) was obtained as yellow solid. Crystallization in hexan/EtOAc gave 

yellowish crystals. 

 

7-Benzyl-4-phenyl-6-p-tolyl-7H-pyrrolo[2,3-d]pyrimidine  



107 
 

(7-Benzyl-6-phenyl-8-p-tolyl-7-deazapurine) (21b) 

Product 21b (77 mg, 41%) was obtained as yellow solid. Crystallization in hexan/EtOAc gave 

yellowish crystals. 

 

7-Benzyl-4-phenyl-6-(pyren-1-yl)-7H-pyrrolo[2,3-d]pyrimidine   

(9-Benzyl-6-phenyl-8-(pyren-1-yl)-7-deazapurine) (21c) 

Product 21c (85 mg, 35%) was obtained as yellow oil. 

5.4.2 Two-step synthesis of 6,8-disubstituted 7-deazapurines – scope and 

limitations 

One pot C-H borylation - Suzuki coupling sequence. General procedure: 

9-Benzyl-6-chloro-7-deazapurine 7 (972 mg, 4 mmol, 1 equiv.), bispinacolatodiboron (1.524 

g, 6.0 mmol, 1.5 equiv.), [Ir(COD)OMe]2 (218 mg, 0.32 mmol, 8 mol %) and 4,4’-di-tert-

butyl-2,2’-bipyridine (172 mg, 0.64 mmol, 16 mol %) were dissolved in dry THF (30  ml). 

The solution was heated at 80 °C in a septum-sealed vial and stirred under argon for 20 h. The 

solvent was removed under reduced pressure and the crude boronic ester was heated at 50 °C 

on vacuum line for 2 h to remove organic impurities. The crude boronic ester 14 was then 

combined with aryl halide (4.4 mmol, 1.1 equiv.), Pd(dppf)Cl2 (146 mg, 0.2 mmol, 5 mol %) 

and K2CO3 (2211 mg, 16 mmol, 4 equiv.) in DMF (30 mL) and stirred under argon at 90 °C 

for 1 h. The solvent was evaporated and the residue was purified by silica gel flash 

chromatography to give products  22a-22c. 

7-Benzyl-4-chloro-6-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine  

(9-Benzyl-6-chloro-8-(4-methoxyphenyl)-7-deazapurine) (22a) 

Chromatography (hexane/EtOAc 7:1) was used to give product 

22a (586 mg, 42%) as white solid. Crystallization in 

hexan/EtOAc gave white crystals. M.p. 98-104 °C.
 1

H NMR 

(600 MHz, CDCl3): 3.85 (s, 3H, CH3O); 5.50 (s, 2H, CH2); 

6.61 (s, 1H, H-5); 6.938 (m, 2H, H-m-C6H4OMe); 6.942 (m, 2H, H-o-Bn); 7.20-7.25 (m, 3H, 

H-m,p-Bn); 7.30 (m, 2H, H-o-C6H4OMe); 8.65 (s, 1H, H-2). 
13

C NMR (151 MHz, CDCl3): 
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46.48 (CH2Ph); 55.36 (CH3O); 98.79 (CH-5); 114.19 (CH-m-C6H4OMe); 117.68 (C-4a); 

122.98 (C-i-C6H4OMe); 126.54 (CH-o-Bn); 127.54 (CH-p-Bn); 128.67 (CH-m-Bn); 130.68 

(CH-o-C6H4OMe); 137.04 (C-i-Bn); 143.25 (C-6); 150.56 (CH-2); 151.13 (C-4); 152.58 (C-

7a); 160.38 (C-p-C6H4OMe). IR(CHCl3):3005, 2944, 1615, 1587, 1574, 1542, 1497, 1463, 

1442, 1351, 1252, 1176, 1031, 935, 838. HRMS (ESI) calculated for C20H16ClN3O: 350.1066; 

found: 350.1055. Anal. calculated for C25H20N4 (349.81): C 68.67%, H 4.61%, N 12.01%, Cl 

10.13%; found: C 68.57%, H 4.63%, N 11.85%, Cl 10.40 %. 

7-Benzyl-4-chloro-6-(pyridin-2-yl)-7H-pyrrolo[2,3-d]pyrimidine  

(9-Benzyl-4-chloro-8-(pyridin-2-yl)-7-deazapurine) (22b) 

Chromatography (hexane/EtOAc 7:1) was used to give product 22b 

(396 mg, 31%) as white solid. Crystallization in hexan/EtOAc gave 

white crystals. M.p. 153-154 °C.
 1

H NMR (600 MHz, CDCl3): 3.85 (s, 

3H, CH3O); 5.50 (s, 2H, CH2); 6.61 (s, 1H, H-5); 6.938 (m, 2H, H-m-

C6H4OMe); 6.942 (m, 2H, H-o-Bn); 7.20-7.25 (m, 3H, H-m,p-Bn); 7.30 (m, 2H, H-o-

C6H4OMe); 8.65 (s, 1H, H-2). 
13

C NMR (151 MHz, CDCl3): 46.48 (CH2Ph); 55.36 (CH3O); 

98.79 (CH-5); 114.19 (CH-m-C6H4OMe); 117.68 (C-4a); 122.98 (C-i-C6H4OMe); 126.54 

(CH-o-Bn); 127.54 (CH-p-Bn); 128.67 (CH-m-Bn); 130.68 (CH-o-C6H4OMe); 137.04 (C-i-

Bn); 143.25 (C-6); 150.56 (CH-2); 151.13 (C-4); 152.58 (C-7a); 160.38 (C-p-C6H4OMe). 

IR(CHCl3): 3089, 3035, 3019, 3000, 1588, 1567, 1546, 1497, 1435, 1422, 1354, 1272, 1249, 

1172, 937, 865. HRMS (ESI) calculated for C18H13ClN4: 321.0902; found: 321.0903. 

5-(7-Benzyl-4-chloro-7H-pyrrolo[2,3-d]pyrimidin-6-yl)-1,3-dimethylpyrimidine-

2,4(1H,3H)-dione  

(9-Benzyl-6-chloro-8-(1,3-dimethyluracil-5-yl)-7-deazapurine) (22c) 

The residue was dissolved in 5 ml CHCl3 and colorless crystals 

were formed and filtered off [excess of 5-iodo-1,3-

dimethylpyrimidine-2,4(1H,3H)-dione]. The residual solution was 

purified by chromatography (hexane/EtOAc 7:1 to 1:1) to give 

product 22c (548 mg, 36%) as white solid. M.p. 189-192 °C.
 1

H NMR (600 MHz, CDCl3): 

3.25 (s, 3H, CH3-1´); 3.41 (s, 3H, CH3-3´); 5.53 (s, 2H, CH2); 6.57 (s, 1H, H-5); 6.89 (m, 2H, 
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H-o-Bn); 6.95 (s, 1H, H-6´); 7.17-7.21 (m, 3H, H-m,p-Bn); 8.66 (s, 1H, H-2). 
13

C NMR (151 

MHz, CDCl3): 28.29 (CH3-3´); 37.10 (CH3-1´); 46.85 (CH2Ph); 101.39 (CH-5); 105.25 (C-5´); 

116.88 (C-4a); 126.86 (CH-o-Bn); 127.55 (CH-p-Bn); 128.56 (CH-m-Bn); 134.61 (C-6); 

137.23 (C-i-Bn); 143.89 (CH-6´); 150.94 (C-2´); 151.10 (CH-2); 151.70 (C-4); 152.41 (C-7a); 

161.46 (C-4´). IR(CDCl3): 3029, 3010, 2960, 2928, 1711, 1661, 1585, 1542, 1466, 1455, 

1433, 1350, 1253, 1170, 909. HRMS (ESI) calculated for C19H16ClN5O2: 382.1065; found: 

382.1064. 

Procedure for amination of 8-aryl-6-chloro-7-deazapurines 

8-Aryl-9-benzyl-6-chloro-7-deazapurines 22a-22c (0.5 mmol) were dissolved in 10-15 ml 

methanolic ammonia (saturated with NH3 at 0 °C) and placed in an autoclave. The reaction 

mixture was heated at 120–130 °C overnight. The mixture was then cooled and the solvent 

was evaporated to provide the crude deaza adenines 23a-23c. The residue was purified by 

silica gel flash chromatography (EtOAc/MeOH 20:1). 

4-Amino-7-benzyl-6-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

(6-Amino-9-benzyl-8-(4-methoxyphenyl)-7-deazapurine) (23aa) 

Product 23aa (143 mg, 83%) was obtained as yellow foam.
 

M.p. 158-162 °C.
 1

H NMR (500 MHz, CDCl3): 3.83 (s, 3H, 

CH3O); 5.44 (s, 2H, CH2); 5.47 (bs, 2H, NH2); 6.37 (s, 1H, H-

5); 6.90 (m, 2H, H-m-C6H4OMe); 7.95 (m, 2H, H-o-Bn); 7.18-

7.24 (m, 3H, H-m,p-Bn); 7.25 (m, 2H, H-o-C6H4OMe); 8.34 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CDCl3): 46.05 (CH2Ph); 55.31 (CH3O); 97.20 (CH-5); 103.20 (C-4a); 113.97 (CH-m-

C6H4OMe); 123.99 (C-i-C6H4OMe); 126.44 (CH-o-Bn); 127.19 (CH-p-Bn); 128.53 (CH-m-

Bn); 130.54 (CH-o-C6H4OMe); 137.84 (C-i-Bn); 138.85 (C-6); 151.25 (CH-2); 151.67 (C-7a); 

156.02 (C-4); 159.78 (C-p-C6H4OMe). IR(CHCl3): 3523, 3414, 3009, 2967, 2840, 1619, 1589, 

1562, 1550, 1497, 1467, 1455, 1350, 1302, 1291, 1252, 1177, 1031, 838. HRMS (ESI) 

calculated for C20H18N4O: 331.1553; found: 331.1553. 

7-benzyl-6-(pyridin-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine  

(6-amino-9-benzyl-8-(pyridin-2-yl)-7-deazapurine) (23b) 
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Product 23b (128 mg, 85%) was obtained as yellowish foam. M.p. 

195-199 °C.
 1

H NMR (500 MHz, CDCl3): 5.65 (bs, 2H, NH2); 6.05 (s, 

2H, CH2); 6.74 (s, 1H, H-5); 7.02 (m, 2H, H-o-Bn); 7.03-7.15 (m, 3H, 

H-m,p-Bn); 7.18 (ddd, 1H, J5,4 = 7.6, J5,6 = 4.9, J5,3 = 1.2, H-5-py); 

7.50 (ddd, 1H, J3,4 = 7.9, J3,5 = 1.2, J3,6 = 1.0, H-3-py); 7.64 (ddd, 1H, J4,3 = 7.9, J4,5 = 7.6, J4,6 

= 1.8, H-4-py); 8.38 (s, 1H, H-2); 8.63 (ddd, 1H, J6,5 = 4.9, J6,4 = 1.8, J6,3 = 1.0, H-6-py). 
13

C 

NMR (125.7 MHz, CDCl3): 46.34 (CH2Ph); 99.70 (CH-5); 103.09 (C-4a); 122.22 (CH-5-py); 

122.71 (CH-3-py); 126.87 (CH-p-Bn); 126.92 (CH-o-Bn); 128.18 (CH-m-Bn); 136.01 (C-6); 

136.58 (CH-4-py); 138.48 (C-i-Bn); 149.05 (CH-6-py); 151.41 (C-2-py); 152.39 (CH-2); 

152.62 (C-7a); 156.78 (C-4). IR(CHCl3): 3523, 3415, 3010, 2975, 2930, 2856, 1620, 1588, 

1566, 1497, 1471, 1455, 1432, 1354, 1285, 1237. HRMS (ESI) calculated for C18H15N5: 

302.1400; found: 302.1401. 

5-(4-amino-7-benzyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)-1,3-dimethylpyrimidine-

2,4(1H,3H)-dione  

(6-amino-9-benzyl-8-(1,3-dimethyluracil-5-yl)-7-deazapurine) (23c) 

Product 23c (143 mg, 79%) was obtained as brown foam. 

Crystallization in CHCl3/hexane gave brownish crystals. M.p. 222-

226 °C.
 1

H NMR (600 MHz, CDCl3): 3.21 (s, 3H, CH3-1´); 3.42 (s, 

3H, CH3-3´); 5.31 (bs, 2H, NH2); 5.45 (s, 2H, CH2); 6.38 (s, 1H, H-

5); 6.82 (s, 1H, H-6´); 6.93 (m, 2H, H-o-Bn); 7.17-7.24 (m, 3H, H-m,p-Bn); 8.37 (s, 1H, H-2). 

13
C NMR (151 MHz, CDCl3): 28.35 (CH3-3´); 37.04 (CH3-1´); 46.38 (CH2Ph); 100.15 (CH-

5); 102.71 (C-4a); 105.94 (C-5´); 126.79 (CH-o-Bn); 127.31 (CH-p-Bn); 128.55 (CH-m-Bn); 

129.53 (C-6); 138.23 (C-i-Bn); 143.36 (CH-6´); 151.16 (C-2´); 151.92 (C-7a); 152.36 (CH-2); 

156.40 (C-4); 162.01 (C-4´). IR(CDCl3): 3527, 3416, 3020, 2983, 1708, 1661, 1620, 1588, 

1563, 1545, 1470, 1454, 1370, 1349, 1340. HRMS (ESI) calculated for C19H18N6O2: 

363.1564; found: 363.1563. 

Procedure for introduction of aryl/alkylamino group to 8-aryl-6-chloro-7-deazapurines 

9-Benzyl-6-chloro-7-deazapurine 22a (0.5 mmol) was refluxed with an amine (1.5 mmol) in 

1-butanol (6 mL) overnight. The volatiles were evaporated in vacuum. The residue was 

purified by silica gel flash chromatography (hexane/EtOAc 3:1). 
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7-benzyl-6-(4-methoxyphenyl)-N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine  

(6-amino-9-benzyl-8-(4-methoxyphenyl)- N-phenyl-7-deazapurine) (23ab) 

Product 23ab (132 mg, 65%) was obtained as white foam.
 

Crystallization in hexane/EtOAc gave white crystals.
 
M.p. 

145-146 °C.
 1

H NMR (600 MHz, CDCl3): 3.83 (s, 3H, 

CH3O); 5.45 (s, 2H, CH2N); 6.10 (s, 1H, H-5); 6.89 (m, 2H, 

H-m-C6H4OMe); 6.96 (m, 2H, H-o-Bn); 7.18 (m, 1H, H-p-Ph); 7.19-7.25 (m, 5H, H-m,p-Bn 

and H-o-C6H4OMe); 7.40 (m, 2H, H-m-Ph); 7.61 (m, 2H, H-o-Ph); 8.48 (s, 1H, H-2). 
13

C 

NMR (151 MHz, CDCl3): 46.08 (CH2N); 55.33 (CH3O); 98.07 (CH-5); 103.65 (C-4a); 114.00 

(CH-m-C6H4OMe); 122.55 (CH-o-Ph); 123.88 (C-i-C6H4OMe); 124.59 (CH-p-Ph); 126.51 

(CH-o-Bn); 127.25 (CH-p-Bn); 128.57 (CH-m-Bn); 129.13 (CH-m-Ph); 130.56 (CH-o-

C6H4OMe); 137.78 (C-i-Bn); 138.63 (C-i-Ph); 138.89 (C-6); 150.73 (CH-2); 152.04 (C-7a); 

153.39 (C-4); 159.85 (C-p-C6H4OMe). IR(CHCl3):3034, 2966, 2929, 1650, 1608, 1584, 1564, 

1497, 1468, 1455, 1292, 1252, 1177, 839. HRMS (ESI) calculated for C26H22N4O: 407.1866; 

found: 407.1864. Anal. calculated for C26H22N4O (406.48): C 76.83%, H 5.46%, N 13.78%; 

found: C 79.50%, H 5.51%, N 13.56%. 

7-benzyl-4-(benzylamino)-6-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine  

(6-(benzylamino)-9-benzyl-8-(4-methoxyphenyl)-7-deazapurine) (23ac) 

Product 23ac (162 mg, 77%) was obtained as white foam. 

Crystallization in hexane/EtOAc gave white crystals.
 
M.p. 145-

149 °C.
 1

H NMR (500 MHz, CDCl3): 3.82 (s, 3H, CH3O); 4.88 

(d, 2H, Jvic = 5.6, CH2NH); 5.31 (bs, 1H, NH); 5.44 (s, 2H, 

CH2N); 6.33 (s, 1H, H-5); 6.88 (m, 2H, H-m-C6H4OMe); 6.95 (m, 2H, H-o-BnN); 7.16-7.22 

(m, 3H, H-m,p-BnN); 7.22 (m, 2H, H-o-C6H4OMe); 7.30 (m, 1H, H-p-BnNH); 7.37 (m, 2H, 

H-m-BnNH); 7.42 (m, 2H, H-o-BnNH); 8.43 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 

45.35 (CH2NH); 46.02 (CH2N); 55.31 (CH3O); 97.09 (CH-5); 103.09 (C-4a); 113.98 (CH-m-

C6H4OMe); 124.26 (C-i-C6H4OMe); 126.53 (CH-o-BnN); 127.14 (CH-p-BnN); 127.53 (CH-

p-BnNH); 127.79 (CH-o-BnNH); 128.52 (CH-m-BnN); 128.76 (CH-m-BnNH); 130.53 (CH-o-

C6H4OMe); 138.06 (C-i-BnN); 138.20 (C-6); 138.85 (C-i-BnNH); 151.42 (C-7a); 151.84 (CH-

2); 155.77 (C-4); 159.73 (C-p-C6H4OMe). IR(CHCl3): 3010, 2966, 1654, 1601, 1564, 1497, 
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1467, 1454, 1343, 1291, 1251, 1177, 1030, 838. HRMS (ESI) calculated for C27H24N4O: 

421.2023; found: 421.2021. Anal. calculated for C27H24N4O (420.51): C 77.12%, H 5.75%, N 

13.32%; found: C 76.92%, H 5.75%, N 13.23%. 

Procedure for introduction phenoxy group to 8-aryl-6-chloro-7-deazapurines 

A solution of phenol (57 mg, 0.6 mmol, 1.2 equiv.) in DMF (4 ml) was treated with KOt-Bu 

(67 mg, 0.6 mmol, 1.2 equiv.) and the mixture was stirred at rt for 2 h. The mixture was then 

treated with deazapurine 22a (175 mg, 0.5 mmol, 1.0 equiv.) and K2CO3 (52 mg, 0.375 mmol, 

0.75 equiv.) and heated at 110 °C for 16 h. The mixture was then cooled and the solvent was 

evaporated. Crude product was purified by silica gel flash chromatography (hexane/EtOAc 

6:1→ 3:1) to give product 23ad (162 mg, 77%) as white solid. 

7-Benzyl-6-(4-methoxyphenyl)-4-phenoxy-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-8-(4-methoxyphenyl)-6-phenoxy-7-deazapurine) (23ad) 

M.p. 162-165 °C.
 1

H NMR (500 MHz, CDCl3): 3.84 (s, 3H, 

CH3O); 5.52 (s, 2H, CH2); 6.50 (s, 1H, H-5); 6.93 (m, 2H, H-

m-C6H4OMe); 6.99 (m, 2H, H-o-Bn); 7.20-7.32 (m, 8H, H-o,p-

PhO, H-m,p-Bn and H-o-C6H4OMe); 7.47 (m, 2H, H-m-PhO); 

8.50 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 46.30 (CH2); 55.25 (CH3O); 97.99 (CH-5); 

105.84 (C-4a); 114.04 (CH-m-C6H4OMe); 121.75 (CH-o-PhO); 123.70 (C-i-C6H4OMe); 

125.40 (CH-p-PhO); 126.52 (CH-o-Bn); 127.28 (CH-p-Bn); 128.53 (CH-m-Bn); 129.58 (CH-

m-PhO); 130.60 (CH-o-C6H4OMe); 137.59 (C-i-Bn); 140.61 (C-6); 150.78 (CH-2); 153.00 (C-

i-PhO); 154.28 (C-7a); 159.99 (C-p-C6H4OMe); 161.87 (C-4). IR(CHCl3): 3067, 3011, 2929, 

2840, 1613, 1591, 1558, 1497, 1491, 1467, 1454, 1446, 1317, 1252, 1200, 1177, 1035, 838. 

HRMS (ESI) calculated for C26H21N3O: 408.1718; found: 408.1706. 

5.4.3 Synthesis of 8-aryl 7-deazahypoxantines and 8-aryl-7-deazaadenines 

One pot C-H borylation - Suzuki coupling sequence. General procedure: 

A 7-deazapurines 9-11 (4 mmol, 1 equiv.), bispinacolatodiboron (1.22 g, 4.8 mmol, 1.2 

equiv.), [Ir(COD)OMe]2 (132 mg, 0.2 mmol, 5 mol %) and 4,4’-di-tert-butyl-2,2’-bipyridine 

(108 mg, 0.4 mmol, 10 mol %) were dissolved in dry THF (30 ml) under Ar. The solution was 

heated at 80 °C in a septum sealed vial and stirred under argon for 20 h. The solvent was 
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removed under reduced pressure. The residue was then combined with aryl halide (4.4 mmol, 

1.1 equiv.), Pd(dppf)Cl2 (146 mg, 0.2 mmol, 5 mol %) and K2CO3 (2.2 g, 16 mmol, 4 equiv.) 

in DMF (30 mL) and stirred under Ar at 90 °C complete consumption of staring material (1-18 

hours) as monitored by NMR. The solution was then cooled to room temperature, diluted with 

EtOAc (50 mL) and water (50 mL). Aqueous solution was then extracted three times with 

EtOAc and combined organic layers were dried over Na2SO4, filtered, and evaporated under 

vacuum. The crude product was purified by flash chromatography in hexane/EtOAc. 

4-Chloro-6-(4-methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-Chloro-8-(4-methoxyphenyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (24a) 

Starting from 9 (1.14 g, 4 mmol) and 4-iodoanisole (1.03 g, 4.4 

mmol), the reaction was performed according to the General 

procedure for 1 hour. Purification was performed by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give product 24a as 

yellowish oil (312 mg, 20%). 
1
H NMR (500 MHz, CDCl3): -

0.03 (s, 9H, CH3Si); 0.96-0.99 (m, 2H, OCH2CH2Si); 3.72-3.76 

(m, 2H, OCH2CH2Si); 3.88 (s, 3H, CH3O); 5.61 (s, 2H, NCH2O); 6.63 (s, 1H, H-5); 7.02-7.04 

(m, 2H, H-m-Ph); 7.71-7.73 (m, 2H, H-o-Ph); 8.65 (s, 1H, H-2). 
13

C NMR (125.7 MHz, 

CDCl3): -1.4 (CH3Si); 18.0 (OCH2CH2Si); 55.4 (CH3O); 67.0 (OCH2CH2Si); 71.0 (NCH2O); 

98.6 (CH-5); 114.3 (CH-m-Ph); 117.7 (C-4a); 122.8 (C-i-Ph); 130.9 (CH-o-Ph); 143.7 (C-6); 

150.5 (CH-2); 151.0 (C-4); 153.4 (C-7a); 160.5 (C-p-Ph). IR (KBr): 2956, 2899, 2833, 1607, 

1538, 1500, 1347, 1248, 1180, 1165, 1084, 857, 842. HRMS (ESI) calculated for 

C19H25O2N3ClSi: 390.1399; found: 390.1404.  

4-Methoxy-6-(4-methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

6-Methoxy-8-(4-methoxyphenyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(25a) 
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Starting from 10 (1.12 g, 4 mmol) and 4-iodoanisole (1.03 g, 4.4 

mmol), the reaction was performed according to the General 

procedure for 1 hour. Purification was performed by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give product 25a as 

yellowish oil (1.08 g, 70%). 
1
H NMR (500 MHz, CDCl3): -0.03 

(s, 9H, CH3Si); 0.94-0.98 (m, 2H, OCH2CH2Si); 3.70-3.74 (m, 

2H, OCH2CH2Si); 3.87 (s, 3H, CH3O-p); 4.14 (s, 3H, CH3O-4); 5.58 (s, 2H, NCH2O);  6.56 (s, 

1H, H-5); 6.99-7.01 (m, 2H, H-m-C6H4OMe); 7.67-7.68 (m, 2H, H-o-C6H4OMe); 8.49 (s, 1H, 

H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 18.0 (OCH2CH2Si); 53.7 (CH3O-4); 55.3 

(CH3O-p); 66.6 (OCH2CH2Si); 70.8 (NCH2O); 97.8 (CH-5); 105.5 (C-4a); 114.2 (CH-m-

C6H4OMe); 123.9 (C-i-C6H4OMe); 130.7 (CH-o-C6H4OMe); 140.2 (C-6); 150.7 (CH-2); 

153.95 (C-7a); 160.0 (C-p-C6H4OMe); 162.5 (C-4). IR (KBr): 2995, 2950, 2893, 2833, 1613, 

1595, 1565, 1500, 1476, 1419, 1353, 1320, 1284, 1251, 1213, 1183, 1072, 857, 839, 785, 764.  

HRMS (ESI) calculated for C20H27O3N3NaSi: 408.1714; found: 408.1714.  

4-Methoxy-6-(pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-Methoxy-8-(pyridin-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25b) 

Starting from 10 (1.12 g, 4 mmol) and 2-iodopyridine (0.47 mL, 4.4 

mmol), the reaction was performed according to the General 

procedure for 18 hours. Purification was performed by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give product 25b as yellowish oil 

(713 g, 50%). 
1
H NMR (600.1 MHz, CDCl3): -0.17 (s, 9H, CH3Si); 

0.79-0.82 (m, 2H, SiCH2CH2O); 3.47-3.50 (m, 2H, OCH2CH2Si); 

4.15 (s, 3H, CH3O); 6.20 (s, 2H, NCH2O); 6.95 (s, 1H, H-5); 7.27 (ddd, 1H, J5,4 = 7.2, J5,6 = 

4.8, J5,3 = 1.4, H-5-py); 7.77 (ddd, 1H, J4,3 = 8.0, J4,5 = 7.2, J4,6 = 1.8, H-4-py); 7.80 (ddd, 1H, 

J3,4 = 8.0, J3,5 = 1.4, J3,6 = 1.0, H-3-py); 8.45 (d, 1H, J2,6 = 0.2, H-2); 8.69 (ddd, 1H, J6,5 = 4.8, 

J6,4 = 1.8, J6,3 = 1.0, H-6-py). 
13

C NMR (150.9 MHz, CDCl3): -1.6 (CH3Si); 17.7 

(SiCH2CH2O); 53.8 (CH3O);  66.1 (OCH2CH2Si); 71.4 (NCH2O); 101.1 (CH-5); 105.4 (C-

4a); 122.5 (CH-5-py); 123.0 (CH-3-py); 136.8 (CH-4-py); 147.8 (C-6); 149.4 (CH-6-py); 

151.3 (C-2-py); 151.8 (CH-2); 154.7 (C-7a); 163.2 (C-4). HRMS (ESI) calculated for 

C18H24O2N4NaSi: 379.1560; found: 379.1561.  
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4-Methoxy-6-(thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

6-Methoxy-8-(thiophen-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25c) 

Starting from 10 (1.12 g, 4 mmol) and 2-iodothiophene (0.49 mL, 4.4 

mmol), the reaction was performed according to the General 

procedure for 1 hour. Purification was performed by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give product 25c as yellowish oil 

(939 mg, 65%). 
1
H NMR (500 MHz, CDCl3): -0.05 (s, 9H, CH3Si); 

0.95-0.98 (m, 2H, OCH2CH2Si); 3.67-3.70 (m, 2H, OCH2CH2Si); 

4.14 (s, 3H, CH3O); 5.71 (s, 2H, NCH2O);  6.72 (s, 1H, H-5); 7.13 (dd, 1H, J4,5 = 5.1 Hz, J4,3 = 

3.6 Hz, H-4-thienyl); 7.39 (dd, 1H, J5,4 = 5.1 Hz, J5,3 = 1.2 Hz, H-5-thienyl); 7.59 (dd, 1H, J3,4 

= 3.6 Hz, J3,5 = 1.2 Hz, H-3-thienyl); 8.49 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 

(CH3Si); 17.9 (OCH2CH2Si); 53.7 (CH3O); 66.4 (OCH2CH2Si); 70.7 (NCH2O); 99.1 (CH-5); 

105.4 (C-4a); 126.6 (CH-5-thienyl); 127.6 (CH-3-thienyl); 128.1 (CH-4-thienyl); 132.8 and 

132.9 (C-6,C-2-thienyl); 151.2 (CH-2); 154.0 (C-7a); 162.7 (C-4). IR (KBr): 2956, 2896, 

2866, 1595, 1553, 1473, 1458, 1413, 1356, 1344, 1320, 1248, 1207, 1081, 857, 833, 782, 764, 

698. HRMS (ESI) calculated for C17H24N3O2SiS: 362.1359; found: 362.1370.  

6-(Furan-2-yl)-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

8-(Furan-2-yl)-6-methoxy-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25d) 

Starting from 10 (1.12 g, 4 mmol) and 2-bromofuran (0.39 mL, 4.4 

mmol), the reaction was performed according to the General 

procedure for 18 hours. Purification was performed by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give product 25d as brown oil (621 

mg, 45%). 
1
H NMR (500 MHz, CDCl3): -0.08 (s, 9H, CH3Si); 0.89-

0.94 (m, 2H, OCH2CH2Si); 3.60-3.64 (m, 2H, OCH2CH2Si); 4.14 (s, 

3H, CH3O); 5.79 (s, 2H, NCH2O); 6.53 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 1.8 Hz, H-4-furyl); 6.84 

(s, 1H, H-5); 6.93 (dd, 1H, J3,4 = 3.5 Hz, J3,5 = 0.8 Hz, H-3-furyl); 7.54 (dd, 1H, J5,4 = 1.8 Hz, 

J5,3 = 0.8 Hz, H-5-furyl); 8.48 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 18.0 

(OCH2CH2Si); 53.7 (CH3O); 66.4 (OCH2CH2Si); 70.7 (NCH2O); 99.1 (CH-5); 105.4 (C-4a); 

126.6 (CH-5-thienyl); 127.6 (CH-3-thienyl); 128.1 (CH-4-thienyl); 132.8 and 132.9 (C-6,C-2-
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thienyl); 151.2 (CH-2); 154.0 (C-7a); 162.7 (C-4). IR (KBr): 2956, 2929, 2866, 2848, 1595, 

1589, 1565, 1476, 1461, 1419, 1353, 1329, 1248, 1216, 1090, 866, 839, 776. HRMS (ESI) 

calculated for C17H23O3N3NaSi: 368.1401; found: 368.1401.  

4-Methoxy-6-(thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-Methoxy-8-(thiophen-3-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25e) 

Starting from 10 (1.12 g, 4 mmol) and 3-iodothiophene (0.45 mL, 4.4 

mmol), the reaction was performed according to the General 

procedure for 1 hour. Purification was performed by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give product 25e as yellowish solid 

(1.11 g, 77%). M. p. 55°C. 
1
H NMR (500 MHz, CDCl3): -0.04 (s, 9H, 

CH3Si); 0.96-0.99 (m, 2H, OCH2CH2Si); 3.72-3.76 (m, 2H, 

OCH2CH2Si); 4.18 (s, 3H, CH3O); 5.70 (s, 2H, NCH2O);  6.69 (s, 1H, H-5); 7.43 (dd, 1H, J5,4 

= 5.0 Hz, J5,2 = 2.9 Hz, H-5-thienyl); 7.46 (dd, 1H, J4,5 = 5.0 Hz, J4,2 = 1.3 Hz, H-4-thienyl); 

7.88 (dd, 1H, J2,5 = 2.9 Hz, J2,4 = 1.3 Hz, H-2-thienyl); 8.51 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CDCl3): -1.4 (CH3Si); 18.0 (OCH2CH2Si); 54.3 (CH3O); 66.5 (OCH2CH2Si); 70.9 

(NCH2O); 98.1 (CH-5); 105.3 (C-4a); 124.4 (CH-2-thienyl); 126.3 (CH-5-thienyl); 128.2 

(CH-4-thienyl); 131.6 (C-3-thienyl); 135.6 (C-6); 150.2 (CH-2); 153.4 (C-7a); 162.4 (C-4). IR 

(KBr): 3102, 2953, 2902, 2857, 1601, 1571, 1562, 1470, 1413, 1392, 1347, 1317, 1299, 1257, 

1230, 1204, 1078, 1054, 946, 925, 863, 836, 812, 779, 764.  HRMS (ESI) calculated for 

C17H24N3O2SiS: 362.1359; found: 362.1346.  

6-(Furan-3-yl)-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

8-(Furan-3-yl)-6-methoxy-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25f) 

Starting from 10 (1.12 g, 4 mmol) and 3-bromofuran (0.4 mL, 4.4 

mmol), the reaction was performed according to the General 

procedure for 1 hour. Purification was performed by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give product 25f as brown oil (802 

mg, 58%). 
1
H NMR (500 MHz, CDCl3): -0.05 (s, 9H, CH3Si); 0.93-

0.96 (m, 2H, OCH2CH2Si); 3.65-3.68 (m, 2H, OCH2CH2Si); 4.13 (s, 
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3H, CH3O); 5.67 (s, 2H, NCH2O);  6.62 (s, 1H, H-5); 6.77 (dd, 1H, J4,5 = 1.9 Hz, J4,2 = 0.9 Hz, 

H-4-furyl); 7.51 (t, 1H, J5,4 = J5,2 = 1.7 Hz, H-5-furyl); 7.99 (dd, 1H, J2,5 = 1.5 Hz, J2,4 = 0.9 

Hz, H-2-furyl); 8.47 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 18.0 

(OCH2CH2Si); 53.7 (CH3O); 66.3 (OCH2CH2Si); 70.6 (NCH2O); 97.5 (CH-5); 105.4 (C-4a); 

110.5 (CH-4-furyl); 116.8 (C-3-furyl); 131.7 (C-6); 141.0 (CH-2-furyl); 143.5 (CH-5-furyl); 

150.8 (CH-2); 153.9 (C-7a); 162.5 (C-4). IR (KBr): 2947, 2893, 1769, 1598, 1559, 1476, 

1419, 1329, 1251, 1213, 1081, 875, 857, 836, 779, 761. HRMS (ESI) calculated for 

C17H24N3O3Si: 346.1587; found: 346.1589.  

4-Methoxy-6-(2,4-dimethoxypyrimidin-5-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-

pyrrolo[2,3-d]pyrimidine 

6-Methoxy-8-(2,4-dimethoxypyrimidin-5-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (25g) 

Starting from 10 (1.12 g, 4 mmol) and 5-iodo-2,4-

dimethoxypyrimidine (1.17 g, 4.4 mmol), the reaction was 

performed according to the General procedure for 18 hours. 

Purification was performed by HPFC (hexane/EtOAc, 0–20% 

EtOAc) to give product 25g as yellowish solid (1.1 g, 66%). 

M.p. 79°C. 
1
H NMR (500 MHz, CDCl3): -0.11 (s, 9H, CH3Si); 

0.79-0.83 (m, 2H, OCH2CH2Si); 3.45-3.48 (m, 2H, OCH2CH2Si); 4.00 (s, 3H, CH3O-4´); 4.06 

(s, 3H, CH3O-2´); 4.13 (s, 3H, CH3O-4); 5.53 (s, 2H, NCH2O);  6.61 (s, 1H, H-5); 8.44 (s, 1H, 

H-6´); 8.50 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.6 (CH3Si); 17.8 (OCH2CH2Si); 

53.7 (CH3O-4); 54.3 (CH3O-2´); 55.1 (CH3O-4´); 66.3 (OCH2CH2Si); 71.2 (NCH2O); 101.4 

(CH-5); 105.4 (C-4a); 107.1 (C-5´); 130.8 (C-6); 151.4 (CH-2); 153.8 (C-7a); 159.8 (CH-6´); 

162.8 (C-4); 165.5 (C-2´); 168.8 (C-4´). IR (KBr): 2986, 2956, 2896, 2866, 1610, 1598, 1473, 

1380, 1356, 1320, 1290, 1251, 1213, 1078, 1018, 866, 833. HRMS (ESI) calculated for 

C19H28N5O4Si: 418.1911; found: 418.1898.  

6-(3-Aminophenyl)-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

8-(3-Aminophenyl)-6-methoxy-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25h) 
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Starting from 10 (1.12 g, 4 mmol) and 3-iodoaniline (0.53 mL, 4.4 mmol), the reaction was 

performed according to the General procedure for 1 hour. 

Purification was performed by HPFC (hexane/EtOAc, 0–20% 

EtOAc) to give product 25h as yellowish solid (1.1 g, 74%). M.p. 

113°C. 
1
H NMR (500 MHz, CDCl3): -0.04 (s, 9H, CH3Si); 0.93-

0.96 (m, 2H, OCH2CH2Si); 3.69-3.73 (m, 2H, OCH2CH2Si); 4.14 

(s, 3H, CH3O); 5.61 (s, 2H, NCH2O); 6.61 (s, 1H, H-5); 6.83 (ddd, 

1H, J6´,5´ = 8.0 Hz, J6´,2´ = 2.4 Hz, J6´,4´ = 1.0 Hz, H-6´); 7.14 (m, 1H, H-2´); 7.19 (ddd, 1H, 

J4´,5´ = 7.6 Hz, J4´,2´ = 1.6 Hz, J4´,6´ = 1.0 Hz, H-4´); 7.27 (t, 1H, J5´,4´ = J5´,6´ = 7.8 Hz, H-5´); 

8.50 (s, 1H, H-2).  
13

C NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 18.0 (OCH2CH2Si); 53.8 

(CH3O); 66.6 (OCH2CH2Si); 70.9 (NCH2O); 98.5 (CH-5); 105.5 (C-4a); 116.0 (CH-6´); 116.4 

(CH-2´); 120.6 (CH-4´); 129.7 (CH-5´); 132.5 (C-3´); 140.3 (C-6); 145.2 (C-1´); 150.9 (CH-

2); 154.0 (C-7a); 162.7 (C-4). IR (KBr): 3434, 3318, 3207, 2956, 1592, 1556, 1476, 1329, 

1207, 1072, 1057, 866, 842, 797. HRMS (ESI) calculated for C19H27O2N4Si: 371.1899; found: 

371.1898.  

4-(Methylsulfanyl)-6-(4-methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-

pyrrolo[2,3-d]pyrimidine 

6-(Methylsulfanyl)-8-(4-methoxyphenyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (26a) 

Starting from 11 (1.18 g, 4 mmol), 4-iodoanisole (1.03 g, 4.4 

mmol) and Pd(dppf)Cl2 (292 mg, 0.4 mmol, 10 mol %), the 

reaction was performed according to the General procedure for 1 

hour. Purification was performed by HPFC (hexane/EtOAc, 0–

20% EtOAc) to give product 26a as yellowish solid (1.27 g, 

79%). M.p. 144°C. 
1
H NMR (500 MHz, CDCl3): -0.03 (s, 9H, 

CH3Si); 0.95-0.98 (m, 2H, OCH2CH2Si); 2.72 (s, 3H, CH3S); 3.71-3.74 (m, 2H, OCH2CH2Si); 

3.87 (s, 3H, CH3O); 5.58 (s, 2H, NCH2O); 6.54 (s, 1H, H-5); 7.00-7.01 (m, 2H, H-m-Ph); 

7.69-7.71 (m, 2H, H-o-Ph); 8.69 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 

11.9 (CH3S); 18.0 (OCH2CH2Si); 55.4 (CH3O); 66.7 (OCH2CH2Si); 70.6 (NCH2O); 98.3 

(CH-5); 114.2 (CH-m-Ph); 116.1 (C-4a); 123.5 (C-i-Ph); 130.7 (CH-o-Ph); 141.3 (C-6); 150.4 

(C-7a); 150.8 (CH-2); 160.1 (C-p-Ph); 160.4 (C-4). IR (KBr): 3066, 2953, 2902, 2842, 1616, 
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1503, 1422, 1344, 1317, 1263, 1248, 1192, 1141, 1126, 1078, 1057, 863, 851, 836, 755, 534. 

HRMS (ESI) calculated for C20H27O2N3NaSSi: 424.1486; found: 424.1486.  

4-(Methylsulfanyl)-6-(pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

6-(Methylsulfanyl)-8-(pyridin-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(26b) 

Starting from 11 (1.18 g, 4 mmol), 2-iodopyridine (0.47 mL, 4.4 

mmol) and Pd(dppf)Cl2 (292 mg, 0.4 mmol, 10 mol %), the reaction 

was performed according to the General procedure for 18 hours. 

Purification was performed by HPFC (hexane/EtOAc, 0–20% EtOAc) 

to give product 26b as yellowish oil (954 mg, 64%). 
1
H NMR (500 

MHz, CDCl3): -0.16 (s, 9H, CH3Si); 0.80-0.83 (m, 2H, OCH2CH2Si); 

2.73 (s, 3H, CH3S); 3.48-3.51 (m, 2H, OCH2CH2Si); 6.17 (s, 2H, NCH2O); 6.94 (s, 1H, H-5); 

7.28 (ddd, 1H, J5,4 = 7.5 Hz, J5,6 = 4.8 Hz, J5,3 = 1.2 Hz, H-5-py); 7.79 (btd, 1H, J4,5 = J4,3 = 

7.7 Hz, J4,6 = 1.8 Hz, H-4-py); 7.85 (dt, 1H, J3,4 = 8.0 Hz, J3,5 = J3,6 = 1.1 Hz, H-3-py); 8.70 

(ddd, 1H, J6,5 = 4.8 Hz, J6,4 = 1.8 Hz, J6,3 = 1.0 Hz, H-6-py); 8.72 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): -1.6 (CH3Si); 11.9 (CH3S); 17.7 (OCH2CH2Si); 66.3 (OCH2CH2Si); 

71.2 (NCH2O); 101.4 (CH-5); 115.8 (C-4a); 122.8 (CH-5-py); 123.3 (CH-3-py); 136.8 (CH-4-

py); 138.2 (C-6); 149.5 (CH-6-py); 150.9 and 151.1 (C-7a, C-2-py); 151.7 (CH-2); 161.9 (C-

4). IR (KBr): 3052, 2953, 2932, 2893, 1589, 1556, 1455, 1443, 1416, 1350, 1269, 1251, 1177, 

1075, 937, 917, 860, 836, 770. HRMS (ESI) calculated for C18H24N4OSSi: 372.1440; found: 

372.1442.  

4-(Methylsulfanyl)-6-(thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-(Methylsulfanyl)-8-(thiophen-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(26c) 
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Starting from 11 (1.18 g, 4 mmol), 2-iodothiophene (0.49 mL, 4.4 

mmol) and Pd(dppf)Cl2 (292 mg, 0.4 mmol, 10 mol %), the reaction 

was performed according to the General procedure for 1 hour. 

Purification was performed by HPFC (hexane/EtOAc, 0–20% EtOAc) 

to give product 26c as yellowish solid (1.05 g, 69%). M.p. 92°C. 
1
H 

NMR (500 MHz, CDCl3): -0.04 (s, 9H, CH3Si); 0.95-0.98 (m, 2H, 

OCH2CH2Si); 2.72 (s, 3H, CH3S); 3.67-3.71 (m, 2H, OCH2CH2Si); 5.72 (s, 2H, NCH2O); 

6.69 (s, 1H, H-5); 7.15 (dd, 1H, J4,5 = 5.1 Hz, J4,3 = 3.7 Hz, H-4-thienyl); 7.42 (dd, 1H, J5,4 = 

5.1 Hz, J5,3 = 1.2 Hz, H-5-thienyl); 7.63 (dd, 1H, J3,4 = 3.7 Hz, J3,5 = 1.2 Hz, H-3-thienyl); 

8.68 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 11.9 (CH3S); 17.9 

(OCH2CH2Si); 66.5 (OCH2CH2Si); 70.5 (NCH2O); 99.4 (CH-5); 115.9 (C-4a); 127.1 (CH-5-

thienyl); 128.0 (CH-3-thienyl); 128.2 (CH-4-thienyl); 132.5 (C-2-thienyl); 134.0 (C-6); 150.5 

(C-7a); 151.2 (CH-2); 160.9 (C-4). IR (KBr): 3081, 3066, 2953, 2926, 2893, 1559, 1485, 

1458, 1440, 1407, 1356, 1260, 1248, 1174, 1057, 928, 854, 839, 785, 755, 728. HRMS (ESI) 

calculated for C17H24ON3S2Si: 378.1125; found: 378.1126.  

6-(Furan-2-yl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

8-(Furan-2-yl)-6-(methylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(26d) 

Starting from 11 (1.18 g, 4 mmol), 2-bromofuran (0.39 mL, 4.4 mmol) 

and Pd(dppf)Cl2 (292 mg, 0.4 mmol, 10 mol %), the reaction was 

performed according to the General procedure for 1 hour. Purification 

was performed by HPFC (hexane/EtOAc, 0–20% EtOAc) to give 

product 26d as yellowish solid (897 mg, 62%). M.p. 100°C. 
1
H NMR 

(500 MHz, CDCl3): -0.07 (s, 9H, CH3Si); 0.91-0.94 (m, 2H, 

OCH2CH2Si); 2.73 (s, 3H, CH3S); 3.60-3.64 (m, 2H, OCH2CH2Si); 5.80 (s, 2H, NCH2O); 

6.55 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 1.8 Hz, H-4-furyl); 6.83 (s, 1H, H-5); 6.98 (dd, 1H, J3,4 = 3.5 

Hz, J3,5 = 0.8 Hz, H-3-furyl); 7.56 (dd, 1H, J5,4 = 1.8 Hz, J5,3 = 0.8 Hz, H-5-furyl); 8.67 (s, 1H, 

H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 11.9 (CH3S); 17.8 (OCH2CH2Si); 66.3 

(OCH2CH2Si); 70.9 (NCH2O); 97.7 (CH-5); 110.1 (CH-3-furyl); 111.9 (CH-4-furyl); 115.9 

(C-4a); 130.8 (C-6); 143.3 (CH-5-furyl); 145.6 (C-2-furyl); 150.4 (C-7a); 151.1 (CH-2); 161.2 



121 
 

(C-4). IR (KBr): 2944, 2923, 2893, 2872, 1562, 1524, 1464, 1443, 1425, 1407, 1344, 1269, 

1248, 1213, 1186, 1162, 1075, 1015, 946, 928, 866, 833, 770, 761, 734. HRMS (ESI) 

calculated for C17H24O2N3SSi: 362.1353; found: 362.1354.  

4-(Methylsulfanyl)-6-(thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

6-(Methylsulfanyl)-8-(thiophen-3-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(26e) 

Starting from 11 (1.18 g, 4 mmol), 3-iodothiophene (0.45 mL, 4.4 

mmol) and Pd(dppf)Cl2 (292 mg, 0.4 mmol, 10 mol %), the reaction 

was performed according to the General procedure for 18 hours. 

Purification was performed by HPFC (hexane/EtOAc, 0–20% EtOAc) 

to give product 26e as yellowish solid (1.06 g, 70%). M.p. 99°C. 
1
H 

NMR (500 MHz, CDCl3): -0.03 (s, 9H, CH3Si); 0.96-1.00 (m, 2H, 

OCH2CH2Si); 2.73 (s, 3H, CH3S); 3.72-3.75 (m, 2H, OCH2CH2Si); 5.68 (s, 2H, NCH2O); 

6.64 (s, 1H, H-5); 7.44 (dd, 1H, J5,4 = 5.0 Hz, J5,2 = 2.9 Hz, H-5-thienyl); 7.49 (dd, 1H, J4,5 = 

5.0 Hz, J4,2 = 1.3 Hz, H-4-thienyl); 7.91 (dd, 1H, J2,5 = 2.9 Hz, J2,4 = 1.3 Hz, H-2-thienyl); 

8.68 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 11.9 (CH3S); 18.0 

(OCH2CH2Si); 66.6 (OCH2CH2Si); 70.5 (NCH2O); 98.4 (CH-5); 115.9 (C-4a); 124.7 (CH-2-

thienyl); 126.3 (CH-5-thienyl); 128.2 (CH-4-thienyl); 131.5 (C-3-thienyl); 136.2 (C-6); 150.3 

(C-7a); 150.9 (CH-2); 160.7 (C-4). IR (KBr): 3102, 3043, 2953, 2920, 2896, 2863, 1550, 

1461, 1347, 1269, 1242, 1177, 1081, 917, 860, 836, 776. HRMS (ESI) calculated for 

C17H23N3OSiS2: 377.1052; found: 377.1053.  

6-(Furan-3-yl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

8-(Furan-3-yl)-6-(methylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(26f) 
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Starting from 11 (1.18 g, 4 mmol), 3-bromofuran (0.4 mL, 4.4 mmol) 

and Pd(dppf)Cl2 (292 mg, 0.4 mmol, 10 mol %), the reaction was 

performed according to the General procedure for 18 hours. 

Purification was performed by HPFC (hexane/EtOAc, 0–20% EtOAc) 

to give product 26f as yellowish solid (721 mg, 50%). 
1
H NMR (500 

MHz, CDCl3): -0.05 (s, 9H, CH3Si); 0.94-0.97 (m, 2H, OCH2CH2Si); 

2.73 (s, 3H, CH3S); 3.65-3.68 (m, 2H, OCH2CH2Si); 5.67 (s, 2H, NCH2O); 6.60 (s, 1H, H-5); 

6.80 (dd, 1H, J4,5 = 1.9 Hz, J4,2 = 0.9 Hz, H-4-furyl); 7.53 (bt, 1H, J5,2 = J5,4 = 1.7 Hz, H-5-

furyl); 8.02 (dd, 1H, J2,5 = 1.6 Hz, J2,4 = 0.9 Hz, H-2-thienyl); 8.67 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): -1.5 (CH3Si); 12.0 (CH3S); 17.9 (OCH2CH2Si); 66.4 (OCH2CH2Si); 

70.4 (NCH2O); 97.9 (CH-5); 110.5 (CH-4-furyl); 116.0 (C-4a); 116.6 (C-3-furyl); 132.9 (C-

6); 141.4 (CH-2-furyl); 143.6 (CH-5-furyl); 150.4 (C-7a); 150.9 (CH-2); 160.5 (C-4). HRMS 

(ESI) calculated for C17H23N3O2SSi: 361.1280; found: 361.1278.  

4-(Methylsulfanyl)-6-(2,4-dimethoxypyrimidin-5-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-

7H-pyrrolo[2,3-d]pyrimidine 

6-(Methylsulfanyl)-8-(2,4-dimethoxypyrimidin-5-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-

7-deazapurine (26g) 

Starting from 11 (1.18 g, 4 mmol), 5-iodo-2,4-

dimethoxypyrimidine (1.17 g, 4.4 mmol) and Pd(dppf)Cl2 (292 

mg, 0.4 mmol, 10 mol %), the reaction was performed 

according to the General procedure for 18 hours. Purification 

was performed by HPFC (hexane/EtOAc, 0–20% EtOAc) to 

give product 26g as white solid (676 mg, 39%). M.p. 134°C. 
1
H 

NMR (500 MHz, CDCl3): -0.10 (s, 9H, CH3Si); 0.80-0.83 (m, 2H, OCH2CH2Si); 2.72 (s, 3H, 

CH3S); 3.45-3.48 (m, 2H, OCH2CH2Si); 4.01 (s, 3H, CH3O-4´); 4.07 (s, 3H, CH3O-2´); 5.53 

(s, 2H, NCH2O); 6.59 (s, 1H, H-5); 8.45 (s, 1H, H-6´); 8.70 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CDCl3): -1.5 (CH3Si); 11.9 (CH3S); 17.7 (OCH2CH2Si); 54.4 (CH3O-4´); 55.2 (CH3O-

2´); 66.4 (OCH2CH2Si); 71.0 (NCH2O); 101.8 (CH-5); 106.8 (C-5´); 115.9 (C-4a); 132.0 (C-

6); 150.1 (C-7a); 151.3 (CH-2); 159.8 (CH-6´); 161.3 (C-4); 165.6 (C-2´); 168.7 (C-4´). IR 

(KBr): 2953, 2932, 1613, 1568, 1553, 1476, 1407, 1377, 1302, 1248, 1189, 1078, 1066, 863, 

842. HRMS (ESI) calculated for C19H27N5O3SSi: 433.1604; found: 433.1602.  
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6-(3-Aminophenyl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-

pyrrolo[2,3-d]pyrimidine 

8-(3-Aminophenyl)-6-(methylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (26h) 

Starting from 11 (1.18 g, 4 mmol), 3-iodoaniline (0.53 mL, 4.4 

mmol) and Pd(dppf)Cl2 (292 mg, 0.4 mmol, 10 mol %), the reaction 

was performed according to the General procedure for 1 hour. 

Purification was performed by HPFC (hexane/EtOAc, 0–20% 

EtOAc) to give product 26h as yellowish solid (1.21 g, 78%). M.p. 

109°C. 
1
H NMR (500 MHz, CDCl3): -0.03 (s, 9H, CH3Si); 0.93-

0.97 (m, 2H, OCH2CH2Si); 2.73 (s, 3H, CH3S); 3.70-3.73 (m, 2H, OCH2CH2Si); 5.61 (s, 2H, 

NCH2O); 6.58 (s, 1H, H-5); 6.75 (ddd, 1H, J6´,5´ = 8.0 Hz, J6´,2´ = 2.4 Hz, J6´,4´ = 1.0 Hz, H-6´); 

7.07-7.08 (m, 1H, H-2´); 7.13 (ddd, 1H, J4´,5´ = 7.6 Hz, J4´,2´ = 1.7 Hz, J4´,6´ = 0.9 Hz, H-4´); 

7.25 (t, 1H, J5´,4´ = J5´,6´ = 7.8 Hz, H-5´); 8.70 (s, 1H, H-2).  
13

C NMR (125.7 MHz, CDCl3): -

1.4 (CH3Si); 11.9 (CH3S); 18.0 (OCH2CH2Si); 66.7 (OCH2CH2Si); 70.7 (NCH2O); 98.9 (CH-

5); 115.6 and 115.7 (CH-2´,6´); 116.0 (C-4a); 119.7 (CH-4´); 129.7 (CH-5´); 132.1 (C-3); 

141.6 (C-6); 146.6 (C-1´); 150.4 (C-7a); 150.8 (CH-2); 160.7 (C-4). IR (KBr): 3324, 2950, 

1610, 1553, 1538, 1479, 1464, 1437, 1353, 1251, 1171, 1060, 851, 833, 785. HRMS (ESI) 

calculated for C19H27ON4SSi: 387.1669; found: 387.1670.  

Oxidation to sulfones. General procedure: 

A 6-MeS-7-deazapurine 26a-h, 26l (2 mmol, 1 equiv.) was dissolved in DCM (10 mL) and m-

CPBA (900 mg, 4 mmol, 2 equiv.) was slowly added (water/ice bath during addition) and the 

reaction mixture was stirred at r.t. overnight. Then 1M NaOH (10 mL) was added to the 

mixture to remove residual m-CPBA. The layers were separated and the aqueous layer was 

extracted two times with DCM (25 mL). The combined organic layers were dried over sodium 

sulphate, solvents were evaporated and the residue was purified by flash chromatography 

(HPFC) in CHCl3/MeOH (20:1). 

4-(Methylsulfonyl)-6-(4-methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-

pyrrolo[2,3-d]pyrimidine  
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6-(Methylsulfonyl)-8-(4-methoxyphenyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (29a) 

Starting from deazapurine 26a (803 mg, 2 mmol) and m-CPBA 

(900 mg, 4 mmol), the reaction was performed according to the 

General procedure to give product 29a (668 mg, 77%) as white 

solid. M.p. 147°C. 
1
H NMR (500 MHz, CDCl3): -0.01 (s, 9H, 

CH3Si); 0.98-1.01 (m, 2H, OCH2CH2Si); 3.36 (s, 3H, CH3SO2); 

3.74-3.78 (m, 2H, OCH2CH2Si); 3.89 (s, 3H, CH3O); 5.67 (s, 

2H, NCH2O); 7.03-7.05 (m, 2H, H-m-Ph); 7.14 (s, 1H, H-5); 7.77-7.78 (m, 2H, H-o-Ph); 8.95 

(s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 18.0 (OCH2CH2Si); 40.1 

(CH3SO2); 55.4 CH3O); 67.2 (OCH2CH2Si); 70.9 (NCH2O); 99.0 (CH-5); 114.4 (CH-m-Ph); 

114.5 (C-4a); 122.3 (C-i-Ph); 131.0 (CH-o-Ph); 147.1 (C-6); 149.9 (CH-2); 153.8 (C-4); 156.0 

(C-7a); 160.9 (C-p-Ph). IR (KBr): 3132, 3010, 2953, 2929, 2899, 1473, 1413, 1344, 1302, 

1245, 1174, 1138, 1123, 1066, 1015, 869, 845, 782, 755, 761, 537. HRMS (ESI) calculated for 

C20H27O4N3NaSSi: 456.1384; found: 456.1384.  

4-(Methylsulfonyl)-6-(pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-(Methylsulfonyl)-8-(pyridin-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(29b) 

Starting from deazapurine 26b (745 mg, 2 mmol) and m-CPBA (900 

mg, 4 mmol), the reaction was performed according to the General 

procedure to give product 29b (528 mg, 65%) as white solid. M.p. 

109°C. 
1
H NMR (500 MHz, CDCl3): -0.17 (s, 9H, CH3Si); 0.78-0.80 

(m, 2H, OCH2CH2Si); 3.37 (s, 3H, CH3SO2); 3.44-3.47 (m, 2H, 

OCH2CH2Si); 6.34 (s, 2H, NCH2O); 7.37 (ddd, 1H, J5,4 = 7.5 Hz, J5,6 

= 4.8 Hz, J5,3 = 1.2 Hz, H-5-py); 7.48 (s, 1H, H-5); 7.85 (btd, 1H, J4,5 = J4,3 = 7.7 Hz, J4,6 = 1.8 

Hz, H-4-py); 7.91 (dt, 1H, J3,4 = 7.9 Hz, J3,5 = J3,6 = 1.1 Hz, H-3-py); 8.75 (ddd, 1H, J6,5 = 4.8 

Hz, J6,4 = 1.8 Hz, J6,3 = 0.9 Hz, H-6-py); 9.01 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -

1.6 (CH3Si); 17.7 (OCH2CH2Si); 40.0 (CH3SO2); 66.7 (OCH2CH2Si); 71.7 (NCH2O); 101.9 

(CH-5); 113.8 (C-4a); 123.8 (CH-5-py); 124.0 (CH-3-py); 137.1 (CH-4-py); 143.2 (C-6); 
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149.6 (CH-6-py); 150.1 (C-2-py); 151.0 (CH-2); 155.5 (C-4); 156.2 (C-7a). IR (KBr): 2950, 

2899, 1476, 1347, 1323, 1302, 1248, 1135, 1063, 1051, 863, 791, 767, 528.  HRMS (ESI) 

calculated for C18H24N4O3SiS: 404.1338; found: 404.1335.  

4-(Methylsulfonyl)-6-(thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-(Methylsulfonyl)-8-(thiophen-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(29c) 

Starting from deazapurine 26c (755 mg, 2 mmol) and m-CPBA (900 

mg, 4 mmol), the reaction was performed according to the General 

procedure to give product 29c (717 mg, 89%) as yellow solid. M.p. 

107°C. 
1
H NMR (500 MHz, CDCl3): -0.03 (s, 9H, CH3Si); 0.98-1.01 

(m, 2H, OCH2CH2Si); 3.37 (s, 3H, CH3SO2); 3.70-3.73 (m, 2H, 

OCH2CH2Si); 5.82 (s, 2H, NCH2O); 7.20 (dd, 1H, J4,5 = 5.1 Hz, J4,3 = 

3.7 Hz, H-4-thienyl); 7.27 (s, 1H, H-5); 7.53 (dd, 1H, J5,4 = 5.1 Hz, J5,3 = 1.2 Hz, H-5-thienyl); 

7.77 (dd, 1H, J3,4 = 3.7 Hz, J3,5 = 1.2 Hz, H-3-thienyl); 8.95 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CDCl3): -1.4 (CH3Si); 17.9 (OCH2CH2Si); 40.1 (CH3SO2); 67.0 (OCH2CH2Si); 70.8 

(NCH2O); 99.8 (CH-5); 114.3 (C-4a); 128.5 (CH-4-thienyl); 128.9 (CH-5-thienyl); 129.5 

(CH-3-thienyl); 131.2 (C-2-thienyl); 139.9 (C-6); 150.3 (CH-2); 154.3 (C-4); 155.9 (C-7a). IR 

(KBr): 3004, 2959, 2929, 2893, 1544, 1485, 1413, 1353, 1302, 1248, 1138, 1123, 1069, 863, 

839, 779, 764, 534. HRMS (ESI) calculated for C17H24O3N3
32

S2
28

Si: 410.1023; found: 

410.1022.  

6-(Furan-2-yl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

8-(Furan-2-yl)-6-(methylsulfonyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(29d) 
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Starting from deazapurine 26d (723 mg, 2 mmol) and m-CPBA (900 

mg, 4 mmol), the reaction was performed according to the General 

procedure to give product 29d (600 mg, 76%) as yellow solid.  M.p. 

146°C. 
1
H NMR (500 MHz, CDCl3): -0.06 (s, 9H, CH3Si); 0.93-0.96 

(m, 2H, OCH2CH2Si); 3.36 (s, 3H, CH3SO2); 3.62-3.65 (m, 2H, 

OCH2CH2Si); 5.91 (s, 2H, NCH2O); 6.60 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 

1.8 Hz, H-4-furyl); 7.16 (dd, 1H, J3,4 = 3.5 Hz, J3,5 = 0.7 Hz, H-3-furyl); 7.39 (s, 1H, H-5); 

7.64 (dd, 1H, J5,4 = 1.8 Hz, J5,3 = 0.7 Hz, H-5-furyl); 8.93 (s, 1H, H-2). 
13

C NMR (125.7 MHz, 

CDCl3): -1.5 (CH3Si); 17.7 (OCH2CH2Si); 40.1 (CH3SO2); 66.8 (OCH2CH2Si); 71.3 

(NCH2O); 98.1 (CH-5); 112.3 (CH-4-furyl); 112.6 (CH-3-furyl); 114.3 (C-4a); 136.0 (C-6); 

144.6 (C-2-furyl); 144.7 (CH-5-furyl); 150.2 (CH-2); 154.4 (C-4); 155.8 (C-7a). HRMS (ESI) 

calculated for C17H23O4N3NaSSi: 416.1071; found: 416.1070.  

4-(Methylsulfonyl)-6-(thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

6-(Methylsulfonyl)-8-(thiophen-3-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(29e) 

Starting from deazapurine 26e (755 mg, 2 mmol) and m-CPBA (900 

mg, 4 mmol), the reaction was performed according to the General 

procedure to give product 29e (507 mg, 62%) as yellow solid. M.p. 

178°C. 
1
H NMR (500 MHz, CDCl3): -0.02 (s, 9H, CH3Si); 0.99-1.03 

(m, 2H, OCH2CH2Si); 3.37 (s, 3H, CH3SO2); 3.74-3.77 (m, 2H, 

OCH2CH2Si); 5.78 (s, 2H, NCH2O); 7.24 (s, 1H, H-5); 7.49 (dd, 1H, 

J5,4 = 5.0 Hz, J5,2 = 2.9 Hz, H-5-thienyl); 7.57 (dd, 1H, J4,5 = 5.0 Hz, J4,2 = 1.3 Hz, H-4-

thienyl); 8.07 (dd, 1H, J2,5 = 2.9 Hz, J2,4 = 1.3 Hz, H-2-thienyl); 8.95 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): -1.4 (CH3Si); 18.0 (OCH2CH2Si); 40.1 (CH3SO2); 67.1 (OCH2CH2Si); 

70.8 (NCH2O); 99.1 (CH-5); 114.3 (C-4a); 126.6 (CH-2-thienyl); 126.9 (CH-5-thienyl); 128.2 

(CH-4-thienyl); 130.5 (C-3-thienyl); 141.8 (C-6); 150.1 (CH-2); 154.3 (C-4); 155.8 (C-7a). IR 

(KBr): 3102, 3007, 2953, 2929, 2896, 1583, 1550, 1467, 1350, 1311, 1251, 1135, 1126, 1072, 

863, 833, 776, 534. HRMS (ESI) calculated for C17H23N3O3SiS2: 409.0950; found: 409.0948.  
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6-(Furan-3-yl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine  

8-(Furan-3-yl)-6-(methylsulfonyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine 

(29f) 

Starting from deazapurine 26f (633 mg, 1.75 mmol) and m-CPBA 

(784 mg, 3.5 mmol), the reaction was performed according to the 

General procedure to give product 29f (430 mg, 62%) as white solid. 

1
H NMR (500 MHz, CDCl3): -0.03 (s, 9H, CH3Si); 0.96-0.99 (m, 2H, 

OCH2CH2Si); 3.36 (s, 3H, CH3SO2); 3.67-3.70 (m, 2H, OCH2CH2Si); 

5.78 (s, 2H, NCH2O); 6.88 (dd, 1H, J4,5 = 1.9 Hz, J4,2 = 0.9 Hz, H-4-

furyl); 7.19 (s, 1H, H-5); 7.57 (bt, 1H, J5,2 = J5,4 = 1.7 Hz, H-5-furyl); 8.15 (dd, 1H, J2,5 = 1.5 

Hz, J2,4 = 0.9 Hz, H-2-thienyl); 8.93 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.4 

(CH3Si); 17.9 (OCH2CH2Si); 40.0 (CH3SO2); 66.9 (OCH2CH2Si); 70.7 (NCH2O); 98.6 (CH-

5); 110.4 (CH-4-furyl); 114.3 (C-4a); 116.0 (C-3-furyl); 138.8 (C-6); 142.6 (CH-2-furyl); 

144.1 (CH-5-furyl); 150.0 (CH-2); 154.1 (C-4); 155.8 (C-7a). HRMS (ESI) calculated for 

C17H23N3O4SiS: 393.1179; found: 393.1177.  

4-(Methylsulfonyl)-6-(2,4-dimethoxypyrimidin-5-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-

7H-pyrrolo[2,3-d]pyrimidine 

6-(Methylsulfonyl)-8-(2,4-dimethoxypyrimidin-5-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-

7-deazapurine (29g) 

Starting from deazapurine 26g (650 mg, 1.5 mmol) and m-

CPBA (672 mg, 3 mmol), the reaction was performed 

according to the General procedure to give product 29g (598 

mg, 86%) as white solid. M.p. 122°C. 
1
H NMR (500 MHz, 

CDCl3): -0.08 (s, 9H, CH3Si); 0.82-0.85 (m, 2H, OCH2CH2Si); 

3.37 (s, 3H, CH3SO2); 3.48-3.51 (m, 2H, OCH2CH2Si); 4.03 (s, 

3H, CH3O-4´); 4.09 (s, 3H, CH3O-2´); 5.63 (s, 2H, NCH2O); 7.19 (s, 1H, H-5); 8.50 (s, 1H, H-

6´); 8.98 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 17.8 (OCH2CH2Si); 40.0 

(CH3SO2); 54.5 (CH3O-4´); 55.3 (CH3O-2´); 67.0 (OCH2CH2Si); 71.4 (NCH2O); 102.7 (CH-

5); 105.9 (C-4a); 114.0 (C-5´); 138.1 (C-6); 150.6 (CH-2); 155.0 (C-4); 155.3 (C-7a); 160.1 

(CH-6´); 166.0 (C-2´); 168.6 (C-4´). IR (KBr): 3031, 3007, 2953, 2923, 2890, 1601, 1550, 
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1470, 1401, 1380, 1344, 1320, 1248, 1081, 866, 839, 776, 761, 531. HRMS (ESI) calculated 

for C19H27N5O5SSi: 465.1502; found: 465.1505.  

6-(Trifluoromethyl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-

pyrrolo[2,3-d]pyrimidine 

8-(Trifluoromethyl)-6-(methylsulfonyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (29l) 

Starting from deazapurine 26l (218 mg, 0.6 mmol) and m-CPBA (207 

mg, 1.2 mmol), the reaction was performed according to the General 

procedure to give product 29l (168 mg, 71%) as white solid. M.p. 

145°C. 
1
H NMR (500 MHz, CDCl3): -0.04 (s, 9H, CH3Si); 0.92-0.95 

(m, 2H, OCH2CH2Si); 3.38 (s, 3H, CH3SO2); 3.58-3.62 (m, 2H, 

OCH2CH2Si); 5.86 (s, 2H, NCH2O); 7.61 (q, 1H, J5,F = 1.1 Hz, CH-5); 

9.11 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 17.7 (OCH2CH2Si); 39.8 

(CH3SO2); 67.4 (OCH2CH2Si); 72.0 (NCH2O); 104.1 (q, JC,F = 4.3 Hz, CH-5); 111.7 (C-4a); 

120.0 (q, JC,F = 270.2 Hz, CF3); 131.8 (q, JC,F = 39.5 Hz, C-6); 152.9 (CH-2); 155.1 (C-7a); 

158.4 (C-4). 
19

F NMR (470.3 MHz, CDCl3): -56.86 (s, 1F, F-2). IR (KBr): 2956, 2926, 2893, 

1547, 1431, 1371, 1344, 1320, 1233, 1180, 1159, 1138, 1093, 863, 836, 528. HRMS (ESI) 

calculated for C14H20O3N3F3NaSSi: 418.0839; found: 418.0838.  

Amination of sulfones to 7-deazaadenines. General procedure: 

 A 6-methylsulfonyl-7-deazapurine 29a-g, 29l (1 mmol) was dissolved in 1,4-dioxane (5 mL) 

and aq. ammonia (25% [w/w], 5 mL) was added and the reaction mixture was stirred at 50°C 

overnight. Then the solvents were evaporated and the residue was purified by flash 

chromatography (HPFC) in EtOAc/MeOH (20:1). 

6-(4-Methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine-4-

amine 

8-(4-Methoxyphenyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine (30a) 
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Starting from deazapurine 29a (434 mg, 1 mmol), the reaction 

was performed according to the General procedure to give 

product 30a (308 mg, 83%) as white solid. M.p. 142°C. 
1
H 

NMR (500 MHz, CDCl3): -0.03 (s, 9H, CH3Si); 0.94-0.98 (m, 

2H, OCH2CH2Si); 3.70-3.74 (m, 2H, OCH2CH2Si); 3.87 (s, 3H, 

CH3O); 5.19 (bs, 2H, NH2); 5.54 (s, 2H, NCH2O); 6.38 (s, 1H, 

H-5); 6.99-7.01 (m, 2H, H-m-Ph); 7.65-7.67 (m, 2H, H-o-Ph); 8.35 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): -1.4 (CH3Si); 18.0 (OCH2CH2Si); 55.3 (CH3O); 66.5 (OCH2CH2Si); 

70.6 (NCH2O); 97.1 (CH-5); 103.1 (C-4a); 114.1 (CH-m-Ph); 124.0 (C-i-Ph); 130.6 (CH-o-

Ph); 139.2 (C-6); 151.8 (CH-2); 152.6 (C-7a); 156.0 (C-4); 159.9 (C-p-Ph). IR (KBr): 3324, 

3138, 2950, 2917, 2899, 1664, 1592, 1553, 1455, 1440, 1314, 1248, 1222, 1084, 860, 833, 

749, 737. HRMS (ESI) calculated for C19H27O2N4Si: 371.1898; found: 371.1898.  

6-(Pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine-4-amine  

8-(Pyridin-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine (30b) 

Starting from deazapurine 29b (404 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 30b 

(320 mg, 94%) as yellowish solid.  M.p. 137°C. 
1
H NMR (500 MHz, 

CDCl3): -0.15 (s, 9H, CH3Si); 0.82-0.85 (m, 2H, OCH2CH2Si); 3.52-

3.55 (m, 2H, OCH2CH2Si); 5.51 (bs, 2H, NH2); 6.09 (s, 2H, NCH2O); 

6.85 (s, 1H, H-5); 7.26 (ddd, 1H, J5,4 = 7.4 Hz, J5,6 = 4.8 Hz, J5,3 = 1.2 

Hz, H-5-py); 7.76 (btd, 1H, J4,5 = J4,3 = 7.7 Hz, J4,6 = 1.8 Hz, H-4-py); 7.82 (dt, 1H, J3,4 = 8.0 

Hz, J3,5 = J3,6 = 1.1 Hz, H-3-py); 8.37 (s, 1H, H-2); 8.68 (ddd, 1H, J6,5 = 4.8 Hz, J6,4 = 1.8 Hz, 

J6,3 = 1.0 Hz, H-6-py). 
13

C NMR (125.7 MHz, CDCl3): -1.6 (CH3Si); 17.7 (OCH2CH2Si); 66.2 

(OCH2CH2Si); 71.2 (NCH2O); 100.6 (CH-5); 102.9 (C-4a); 122.5 (CH-5-py); 122.8 (CH-3-

py); 136.7 (C-6); 136.8 (CH-4-py); 149.5 (CH-6-py); 150.9 (C-2-py); 152.0 (CH-2); 153.2 (C-

7a); 156.4 (C-4). IR (KBr): 3309, 3114, 3043, 2950, 1673, 1595, 1589, 1562, 1556, 1455, 

1323, 1248, 1096, 1069, 863, 839, 761. HRMS (ESI) calculated for C17H23N5OSi: 341.1672; 

found: 341.1671.  

6-(Thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine-4-

amine  
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8-(Thiophen-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine (30c) 

Starting from deazapurine 29c (410 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 30c 

(316 mg, 91%) as yellowish solid. M.p. 151°C. 
1
H NMR (500 MHz, 

CDCl3): -0.04 (s, 9H, CH3Si); 0.94-0.98 (m, 2H, OCH2CH2Si); 3.67-

3.70 (m, 2H, OCH2CH2Si); 5.58 (bs, 2H, NH2); 5.68 (s, 2H, NCH2O); 

6.59 (s, 1H, H-5); 7.14 (dd, 1H, J4,5 = 5.1 Hz, J4,3 = 3.6 Hz, H-4-

thienyl); 7.38 (dd, 1H, J5,4 = 5.1 Hz, J5,3 = 1.2 Hz, H-5-thienyl); 7.58 (dd, 1H, J3,4 = 3.6 Hz, 

J3,5 = 1.2 Hz, H-3-thienyl); 8.33 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 

17.9 (OCH2CH2Si); 66.4 (OCH2CH2Si); 70.6 (NCH2O); 98.7 (CH-5); 102.9 (C-4a); 126.6 

(CH-5-thienyl); 127.6 (CH-3-thienyl); 128.2 (CH-4-thienyl); 132.4 (C-6); 132.6 (C-2-thienyl); 

150.9 (CH-2); 152.3 (C-7a); 155.6 (C-4). IR (KBr): 3455, 3291, 3159, 3090, 2950, 2914, 

1643, 1592, 1547, 1476, 1311, 1248, 1081, 863, 854, 833, 707. HRMS (ESI) calculated for 

C16H22N4OSiS: 346.1284; found: 346.1286.  

6-(Furan-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine-4-amine  

8-(Furan-2-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine (30d) 

Starting from deazapurine 29d (393 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 30d 

(280 mg, 85%) as yellowish solid. M.p. 153°C. 
1
H NMR (500 MHz, 

CDCl3): -0.07 (s, 9H, CH3Si); 0.91-0.94 (m, 2H, OCH2CH2Si); 3.61-

3.64 (m, 2H, OCH2CH2Si); 5.64 (bs, 2H, NH2); 5.75 (s, 2H, NCH2O); 

6.53 (dd, 1H, J4,3 = 3.4 Hz, J4,5 = 1.8 Hz, H-4-furyl); 6.72 (s, 1H, H-5); 

6.92 (dd, 1H, J3,4 = 3.4 Hz, J3,5 = 0.8 Hz, H-3-furyl); 7.53 (dd, 1H, J5,4 = 1.8 Hz, J5,3 = 0.8 Hz, 

H-5-furyl); 8.31 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 17.8 

(OCH2CH2Si); 66.2 (OCH2CH2Si); 71.0 (NCH2O); 96.9 (CH-5); 102.9 (C-4a); 109.2 (CH-3-

furyl); 111.8 (CH-4-furyl); 129.3 (C-6); 142.9 (CH-5-furyl); 145.7 (C-2-furyl); 151.0 (CH-2); 

152.2 (C-7a); 155.9 (C-4). HRMS (ESI) calculated for C16H23O2N4Si: 331.1585; found: 

331.1585.  

6-(Thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine-4-

amine  
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8-(Thiophen-3-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine (30e) 

Starting from deazapurine 29e (410 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 30e 

(292 mg, 84%) as white solid. M.p. 159°C. 
1
H NMR (500 MHz, 

CDCl3): -0.04 (s, 9H, CH3Si); 0.96-0.99 (m, 2H, OCH2CH2Si); 3.72-

3.75 (m, 2H, OCH2CH2Si); 5.42 (bs, 2H, NH2); 5.64 (s, 2H, NCH2O); 

6.53 (s, 1H, H-5); 7.42 (dd, 1H, J5,4 = 5.0 Hz, J5,2 = 2.9 Hz, H-5-

thienyl); 7.44 (dd, 1H, J4,5 = 5.0 Hz, J4,2 = 1.4 Hz, H-4-thienyl); 7.84 (dd, 1H, J2,5 = 2.9 Hz, 

J2,4 = 1.3 Hz, H-2-thienyl); 8.34 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 

18.0 (OCH2CH2Si); 66.5 (OCH2CH2Si); 70.6 (NCH2O); 97.4 (CH-5); 102.9 (C-4a); 124.0 

(CH-2-thienyl); 126.2 (CH-5-thienyl); 128.1 (CH-4-thienyl); 131.8 (C-3-thienyl); 134.5 (C-6); 

151.2 (CH-2); 152.4 (C-7a); 155.8 (C-4). IR (KBr): 3446, 3288, 3135, 3102, 2950, 2917, 

2890, 1634, 1595, 1556, 1470, 1302, 1293, 1251, 1081, 860, 836. HRMS (ESI) calculated for 

C16H22N4OSiS: 346.1284; found: 346.1283.  

 

6-(Furan-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine-4-amine  

8-(Furan-3-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine (30f) 

Starting from deazapurine 29f (394 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 30f 

(248 mg, 71%) as white solid. 
1
H NMR (500 MHz, CDCl3): -0.05 (s, 

9H, CH3Si); 0.93-0.97 (m, 2H, OCH2CH2Si); 3.65-3.69 (m, 2H, 

OCH2CH2Si); 5.57 (bs, 2H, NH2); 5.63 (s, 2H, NCH2O); 6.51 (s, 1H, 

H-5); 6.76 (dd, 1H, J4,5 = 1.9 Hz, J4,2 = 0.9 Hz, H-4-furyl); 7.51 (t, 1H, 

J5,2 = J5,4 = 1.7 Hz, H-5-furyl); 7.97 (dd, 1H, J2,5 = 1.5 Hz, J2,4 = 0.9 Hz, H-2-thienyl); 8.31 (s, 

1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.4 (CH3Si); 17.9 (OCH2CH2Si); 66.3 

(OCH2CH2Si); 70.5 (NCH2O); 97.1 (CH-5); 102.9 (C-4a); 110.4 (CH-4-furyl); 116.7 (C-3-

furyl); 131.1 (C-6); 141.0 (CH-2-furyl); 143.5 (CH-5-furyl); 150.6 (CH-2); 152.2 (C-7a); 

155.5 (C-4). HRMS (ESI) calculated for C16H23O2N4Si: 331.1585; found: 331.1585.  

6-(2,4-Dimethoxypyrimidin-5-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine-4-amine 
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8-(2,4-Dimethoxypyrimidin-5-yl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine 

(30g) 

Starting from deazapurine 29g (465 mg, 1 mmol), the reaction 

was performed according to the General procedure to give 

product 30g (374 mg, 93%) as white solid. M.p. 104°C. 
1
H 

NMR (500 MHz, CDCl3): -0.10 (s, 9H, CH3Si); 0.80-0.83 (m, 

2H, OCH2CH2Si); 3.47-3.49 (m, 2H, OCH2CH2Si); 4.01 (s, 

3H, CH3O-4´); 4.07 (s, 3H, CH3O-2´); 5.50 (s, 2H, NCH2O); 

5.58 (bs, 2H, NH2); 6.51 (s, 1H, H-5); 8.35 (s, 1H, H-2); 8.43 (s, 1H, H-6´). 
13

C NMR (125.7 

MHz, CDCl3): -1.5 (CH3Si); 17.8 (OCH2CH2Si); 54.4 (CH3O-4´); 55.1 (CH3O-2´); 66.3 

(OCH2CH2Si); 71.1 (NCH2O); 101.0 (CH-5); 102.9 (C-4a); 107.0 (C-5´); 130.1 (C-6); 151.0 

(CH-2); 152.1 (C-7a); 155.7 (C-4); 159.8 (CH-6´); 165.5 (C-2´); 168.8 (C-4´). IR (KBr): 3437, 

3413, 3339, 3219, 3138, 2959, 2896, 1646, 1610, 1586, 1559, 1473, 1398, 1377, 1299, 1251, 

1087, 1015, 866, 833. HRMS (ESI) calculated for C18H26N6O3Si: 402.1836; found: 402.1835.  

6-(Trifluoromethyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine-4-

amine 

8-(Trifluoromethyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazaadenine (30l) 

Starting from deazapurine 29l (130 mg, 0.33 mmol), the reaction was 

performed according to the General procedure to give product 30l 

(100 mg, 90%) as white solid. M.p. 140°C. 
1
H NMR (500 MHz, 

CDCl3): -0.06 (s, 9H, CH3Si); 0.90-0.93 (m, 2H, OCH2CH2Si); 3.57-

3.60 (m, 2H, OCH2CH2Si); 5.71 (s, 2H, NCH2O); 5.80 (bs, 2H, NH2); 

6.96 (q, 1H, J5,F = 1.1 Hz, CH-5); 8.40 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CDCl3): -1.6 (CH3Si); 17.7 (OCH2CH2Si); 66.8 (OCH2CH2Si); 71.6 (NCH2O); 101.1 

(C-4a); 102.5 (q, JC,F = 4.4 Hz, CH-5); 120.7 (q, JC,F = 268.7 Hz, CF3); 125.1 (q, JC,F = 39.3 

Hz, C-6); 152.5 (C-7a); 153.1 (CH-2); 157.0 (C-4). 
19

F NMR (470.3 MHz, CDCl3): -56.03 (s, 

1F, F-2). IR (KBr): 3135, 2953, 2929, 1655, 1601, 1562, 1544, 1365, 1314, 1251, 1180, 1129, 

1120, 869, 836. HRMS (ESI) calculated for C13H20ON4F3Si: 333.1353; found: 333.1353.  
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Deprotection of SEM group. General procedure: 

A SEM-protected 7-deazapurine 25a-h, 25j-l, 30a-g, 30l, 33j-l was dissolved in trifluoroacetic 

acid (2 mL) and the reaction mixture was stirred at rt for 30 min. The mixture was then diluted 

with NaHCO3 (to adjust pH=7) and EtOAc (25 mL) was added. The layers were separated and 

the aqueous layer was extracted two times with EtOAc. The combined organic layers were 

dried over sodium sulphate, and concentrated under the reduced pressure to give solid. The 

solid was then diluted with aq. ammonia (25% [w/w], 15 mL) and stirred at r.t. overnight to 

form white precipitate of product which was isolated by filtration. 

4-Methoxy-6-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine  

6-Methoxy-8-(4-methoxyphenyl)-7-deazapurine (27a) 

Starting from deazapurine 25a (772 mg, 2 mmol) the reaction 

was performed according to the General procedure to give 

product 27a (458 mg, 90%) as white solid. M.p. 278°C. 
1
H 

NMR (600.1 MHz, CDCl3): 3.80 (s, 3H, CH3O-p); 4.04 (s, 3H, 

CH3O-4); 6.83 (s, 1H, H-5); 7.01-7.03 (m, 2H, H-m-C6H4OMe); 7.85-7.87 (m, 2H, H-o-

C6H4OMe); 8.36 (s, 1H, H-2); 12.41 (bs, 1H, NH). 
13

C NMR (150.9 MHz, CDCl3): 53.5 

(CH3O-4); 55.4 (CH3O-p); 93.6 (CH-5); 106.0 (C-4a); 114.6 (CH-m-C6H4OMe); 123.9 (C-i-

C6H4OMe); 126.9 (CH-o-C6H4OMe); 136.8 (C-6); 150.3 (CH-2); 153.7 (C-7a); 159.4 (C-p-

C6H4OMe); 161.8 (C-4). IR (KBr): 3150, 3013, 2995, 2941, 2842, 1622, 1598, 1544, 1503, 

1482, 1332, 1254, 1177, 1126, 1024, 976, 890, 827, 773. HRMS (ESI) calculated for 

C14H14O2N3: 256.1081; found: 256.1081.  

4-Methoxy-6-(pyridin-2-yl)-7H-pyrrolo[2,3-d]pyrimidine  

6-Methoxy-8-(pyridin-2-yl)-7-deazapurine (27b) 

Starting from deazapurine 25b (356 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 27b 

(192 mg, 85%) as white solid. M.p. >350°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 4.06 (s, 3H, CH3O); 7.20 (s, 1H, H-5); 7.34 (ddd, 1H, J5,4 

= 7.5 Hz, J5,6 = 4.8 Hz, J5,3 = 1.1 Hz, H-5-py); 7.89 (td, 1H, J4,5 = J4,3 = 7.8 Hz, J4,6 = 1.8 Hz, 

H-4-py); 8.06 (dt, 1H, J3,4 = 8.0 Hz, J3,5 = J3,6 = 1.1 Hz, H-2-furyl); 8.41 (s, 1H, H-2); 8.64 

(ddd, 1H, J6,5 = 4.8 Hz, J6,4 = 1.8 Hz, J6,3 = 1.0 Hz, H-6-py); 12.64 (vbs, 1H, NH). 
13

C NMR 
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(125.7 MHz, DMSO-d6): 53.6 (CH3O); 97.4 (CH-5); 105.8 (C-4a); 120.2 (CH-3-py); 123.0 

(CH-5-py); 136.5 (C-6); 137.4 (CH-4-py); 149.7 (CH-6-py); 149.9 (C-2-py); 151.6 (CH-2); 

153.6 (C-7a); 162.7 (C-4). IR (KBr): 3066, 3007, 2983, 2935, 2857, 2797, 1601, 1589, 1580, 

1479, 1458, 1443, 1410, 1329, 1278, 1242, 1180, 1126, 979, 887, 842, 752. HRMS (ESI) 

calculated for C12H10ON4Na: 249.0747; found: 249.0746.  

4-Methoxy-6-(thiophen-2-yl)-7H-pyrrolo[2,3-d]pyrimidine 

6-Methoxy-8-(thiophen-2-yl)-7-deazapurine (27c) 

Starting from deazapurine 25c (724 mg, 2 mmol), the reaction was 

performed according to the General procedure to give product 27c (416 

mg, 90%) as yellowish solid. M.p. 227°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 4.04 (s, 3H, CH3O); 6.68 (s, 1H, H-5); 7.15 (dd, 1H, J4,5 = 

5.1 Hz, J4,3 = 3.6 Hz, H-4-thienyl); 7.58 (bd, 1H, J5,4 = 5.1 Hz, H-5-thienyl); 7.62 (bd, 1H, J3,4 

= 3.6 Hz, H-3-thienyl); 8.38 (s, 1H, H-2); 12.60 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-

d6): 53.8 (CH3O); 95.0 (CH-5); 106.0 (C-4a); 125.3 (CH-3-thienyl); 126.6 (CH-5-thienyl); 

128.6 (CH-4-thienyl); 131.8 (C-6); 134.6 (C-2-thienyl); 151.2 (CH-2); 153.8 (C-7a); 162.3 (C-

4). IR (KBr): 3210, 3123, 3069, 2988, 2947, 2875, 2842, 1610, 1592, 1562, 1485, 1407, 1344, 

1329, 1299, 1216, 1183, 1123, 973, 890, 773, 695. HRMS (ESI) calculated for C11H10ON3S: 

232.0539; found: 232.0539.  

6-(Furan-2-yl)-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine 

8-(Furan-2-yl)-6-methoxy-7-deazapurine (27d) 

Starting from deazapurine 25d (345 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 27d (172 

mg, 80%) as white solid. M.p. 243°C. 
1
H NMR (500.0 MHz, DMSO-

d6): 4.04 (s, 3H, CH3O); 6.64 (dd, 1H, J4,3 = 3.4 Hz, J4,5 = 1.8 Hz, H-4-

furyl); 6.67 (s, 1H, H-5); 6.99 (dd, 1H, J3,4 = 3.4 Hz, J3,5 = 0.8 Hz, H-3-furyl); 7.79 (dd, 1H, 

J5,4 = 1.8 Hz, J5,3 = 0.8 Hz, H-5-furyl); 8.38 (s, 1H, H-2); 12.59 (vbs, 1H, NH). 
13

C NMR 

(125.7 MHz, DMSO-d6): 53.6 (CH3O); 96.7 (CH-5); 105.5 (C-4a); 107.5 (CH-3-furyl); 112.2 

(CH-4-furyl); 128.4 (C-6); 143.6 (CH-5-furyl); 146.7 (C-2-furyl); 151.1 (CH-2); 153.5 (C-7a); 

162.2 (C-4). IR (KBr): 3117, 3075, 2989, 2941, 2893, 2818, 1598, 1586, 1524, 1482, 1458, 
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1410, 1344, 1326, 1296, 1248, 1183, 1132, 1075, 1006, 973, 884, 830, 764, 740, 656. HRMS 

(ESI) calculated for C11H10O2N3: 216.0768; found: 216.0768.  

4-Methoxy-6-(thiophen-3-yl)-7H-pyrrolo[2,3-d]pyrimidine 

6-Methoxy-8-(thiophen-3-yl)-7-deazapurine (27e) 

Starting from deazapurine 25e (723 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 27e (414 

mg, 90%) as white solid. M.p. 232°C. 
1
H NMR (500.0 MHz, DMSO-

d6): 4.04 (s, 3H, CH3O); 6.85 (s, 1H, H-5); 7.66 (dd, 1H, J5,4 = 5.1 Hz, 

J5,2 = 2.9 Hz, H-5-thienyl); 7.69 (dd, 1H, J4,5 = 5.1 Hz, J4,2 = 1.4 Hz, H-4-thienyl); 8.00 (dd, 

1H, J2,5 = 2.9 Hz, J2,4 = 1.4 Hz,  H-2-thienyl); 8.37 (s, 1H, H-2); 12.47 (bs, 1H, NH). 
13

C NMR 

(125.7 MHz, DMSO-d6): 53.4 (CH3O); 94.8 (CH-5); 105.6 (C-4a); 121.1 (CH-2-thienyl); 

126.1 (CH-4-thienyl); 127.5 (CH-5-thienyl); 133.0 and 133.2 (C-6,C-3-thienyl); 150.6 (CH-2); 

153.4 (C-7a); 162.1 (C-4). IR (KBr): 3216, 3126, 3081, 3066, 3016, 2983, 2944, 2863, 1610, 

1592, 1562, 1479, 1341, 1323, 1180, 1126, 973, 899, 878, 770, 653. HRMS (ESI) calculated 

for C11H10ON3S: 232.0539; found: 232.0539.  

6-(Furan-3-yl)-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine 

8-(Furan-3-yl)-6-methoxy-7-deazapurine (27f) 

Starting from deazapurine 25f (691 mg, 2 mmol), the reaction was 

performed according to the General procedure to give product 27f (281 

mg, 65%) as white solid. M.p. 218°C. 
1
H NMR (500.0 MHz, DMSO-

d6): 4.04 (s, 3H, CH3O); 6.79 (d, 1H, J5,NH = 2.1 Hz, H-5); 7.05 (dd, 1H, 

J4,5 = 1.9 Hz, J4,2 = 0.8 Hz, H-4-furyl); 7.77 (t, 1H, J5,2 = J5,4 = 1.7 Hz, H-5-furyl); 8.21 (bdd, 

1H, J2,5 = 1.5 Hz, J2,4 = 0.8 Hz,  H-2-furyl); 8.36 (s, 1H, H-2); 12.37 (bs, 1H, NH). 
13

C NMR 

(125.7 MHz, DMSO-d6): 53.4 (CH3O); 94.8 (CH-5); 105.5 (C-4a); 108.4 (CH-4-furyl); 118.4 

(C-3-furyl); 129.7 (C-6); 139.8 (CH-2-furyl); 144.5 (CH-5-furyl); 150.5 (CH-2); 153.4 (C-7a); 

161.8 (C-4). IR (KBr): 3216, 3174, 3141, 3129, 3001, 2944, 2899, 2860, 1604, 1586, 1491, 

1338, 1332, 1159, 1129, 1072, 973, 872, 767, 650, 588. HRMS (ESI) calculated for 

C11H10O2N3: 216.0768; found: 216.0768.  

6-(3-Aminophenyl)-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine  

8-(3-Aminophenyl)-6-methoxy-7-deazapurine (27h) 
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Deazapurine 25h (1.02 g, 2.75 mmol) was used according to the 

General procedure. Crude product was chromatographed on silica 

gel CHCl3/MeOH (10:1) to give product 27h (147 mg, 22%) as 

yellowish solid. M.p. 296°C. 
1
H NMR (500.0 MHz, DMSO-d6): 

4.04 (s, 3H, CH3O); 5.15 (bs, 2H, NH2); 6.57 (ddd, 1H, J6´,5´ = 7.8 Hz, J6´,2´ = 2.2 Hz, J6´,4´ = 

1.2 Hz, H-6´); 6.71 (s, 1H, H-5); 7.02 – 7.06 (m, 2H, H-2´,4´); 7.09 (t, 1H, J5´,4´ = J5´,6´ = 7.9 

Hz, H-5´); 8.36 (s, 1H, H-2); 12.38 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 53.5 

(CH3O); 94.1 (CH-5); 105.8 (C-4a); 110.9 (CH-2´); 113.5 (CH-4´); 114.3 (CH-6´); 129.6 (CH-

5´); 131.8 (C-3´); 137.8 (C-6); 149.2 (C-1´); 150.5 (CH-2); 153.6 (C-7a); 162.0 (C-4). IR 

(KBr): 3330, 3225, 3126, 1983, 2947, 1598, 1586, 1479, 1355, 1126, 776. HRMS (ESI) 

calculated for C13H13ON4: 241.1084; found: 241.1084.  

5-(4-Oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)pyrimidine-2,4(1H,3H)-dione  

(8-(uracil-5-yl)-7-deazahypoxantine) (28i) 

Deazapurine 25g (731 mg, 1.75 mmol) was deprotected according 

to the General procedure directly followed by refluxing in 9 mL 

solution of THF: dioxane: HCl (1:1:1) for 2 hours. The reaction 

mixture was evaporated and ethanol (5 mL) was added. The 

mixture was then kept in a fridge overnight to furnish 28i (416 mg, 97 %) as yellowish 

crystals. M.p. > 350°C. 
1
H NMR (500.0 MHz, DMSO-d6): 7.00 (d, 1H, J5,NH = 2.3 Hz, H-5); 

7.38 (s, 1H, H-2); 7.97 (d, 1H, J6´,NH = 6.1 Hz, H-6´); 11.31 (dd, 1H, JNH,6´ = 6.1 Hz, JNH,NH = 

1.8 Hz, NH-1´); 11.39 (d, 1H, JNH,NH = 1.8 Hz, NH-3´); 11.85 (vbs, 1H, NH-3); 11.90 (d, 1H, 

JNH,5 = 2.3 Hz, NH-7). 
13

C NMR (125.7 MHz, DMSO-d6): 101.4 (CH-5); 104.9 (C-5´); 108.6 

(C-4a); 126.8 (C-6); 137.7 (CH-6´); 143.9 (CH-2); 148.7 (C-7a); 150.7 (C-2´); 158.5 (C-4); 

162.6 (C-4´). IR (KBr): 3261, 3219, 3183, 3156, 3114, 3063, 2908, 1706, 1682, 1583, 1565, 

1524, 1416, 1257, 1227, 1192, 914, 824, 782, 555.  HRMS (ESI) calculated for 

C10H7O3N5
23

Na: 268.0441; found: 268.0442.  

6-(4-Methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine 

8-(4-Methoxyphenyl)-7-deazaadenine (31a) 
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Starting from deazapurine 30a (148 mg, 0.4 mmol), the reaction 

was performed according to the General procedure to give 

product 31a (77 mg, 80%) as white solid. M.p. 324°C. 
1
H NMR 

(500.0 MHz, DMSO-d6): 3.79 (s, 3H, CH3O); 6.76 (d, 1H, J5,NH 

= 2.2 Hz, H-5); 6.88 (bs, 2H, NH2); 7.00-7.02 (m, 2H, H-m-Ph); 7.69-7.71 (m, 2H, H-o-Ph); 

8.01 (s, 1H, H-2); 11.87 (bd, 1H, JNH,5 = 2.0 Hz, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 55.4 

(CH3O); 94.8 (CH-5); 103.8 (C-4a); 114.6 (CH-m-Ph); 124.7 (C-i-Ph); 126.2 (CH-o-Ph); 

133.8 (C-6); 151.8 (CH-2); 152.0 (C-7a); 157.1 (C-4); 158.9 (C-p-Ph). HRMS (ESI) 

calculated for C13H13ON4: 241.1084; found: 241.1084.  

6-(Pyridin-2-yl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine 

8-(Pyridin-2-yl)-7-deazaadenine (31b) 

Starting from deazapurine 30b (256 mg, 0.75 mmol), the reaction was 

performed according to the General procedure to give product 31b 

(117 mg, 74%) as white solid. M.p. 326°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 7.08 (bs, 2H, NH2); 7.23 (bs, 1H, H-5); 7.25-7.28 (m, 1H, 

H-5-py); 7.82 – 7.88 (m, 2H, H-3,4-py); 8.07 (s, 1H, H-2); 8.59 (dt, 1H, J6,5 = 4.7 Hz, J6,4 = 

J6,3 = 1.4 Hz,  H-6-py); 12.08 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 99.2 (CH-5); 

103.8 (C-4a); 119.1 (CH-3-py); 122.2 (CH-5-py); 133.5 (C-6); 137.3 (CH-4-py); 149.7 (CH-6-

py); 150.2 (C-2-py); 152.1 (C-7a); 153.0 (CH-2); 157.9 (C-4). IR (KBr): 3398, 3078, 2971, 

2923, 2845, 2809, 1637, 1622, 1595, 1580, 1464, 1443, 1359, 1284, 758. HRMS (ESI) 

calculated for C11H10N5: 212.0931; found: 212.0931.  

6-(Thiophen-2-yl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine 

8-(Thiophen-2-yl)-7-deazaadenine (31c) 

Starting from deazapurine 30c (347 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 31c (160 

mg, 74%) as greyish solid. M.p. 345°C. 
1
H NMR (500.0 MHz, DMSO-

d6): 6.73 (s, 1H, H-5); 6.96 (bs, 2H, NH2); 7.11 (dd, 1H, J4,5 = 5.1 Hz, 

J4,3 = 3.6 Hz, H-4-thienyl); 7.46 -7.50 (m, 2H, H-3,5-thienyl); 8.03 (s, 1H, H-2); 12.06 (bs, 

1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 96.4 (CH-5); 103.5 (C-4a); 123.5 (CH-3-

thienyl); 125.0 (CH-5-thienyl); 128.3 (CH-4-thienyl); 128.5 (C-6); 135.4 (C-2-thienyl); 151.9 
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(C-7a); 152.4 (CH-2); 157.2 (C-4). IR (KBr): 3464, 3300, 3117, 3108, 3096, 2988, 1637, 

1586, 1556, 1485, 1314, 764, 698. HRMS (ESI) calculated for C10H9N4S: 217.0542; found: 

217.0543.  

6-(Furan-2-yl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine 

8-(Furan-2-yl)-7-deazaadenine (31d) 

Deazapurine 30d (248 mg, 0.75 mmol) was deprotected according to the 

General procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 31d (119 mg, 79%) as white solid. 

M.p. 300°C. 
1
H NMR (500.0 MHz, DMSO-d6): 6.59 (dd, 1H, J4,3 = 3.4 

Hz, J4,5 = 1.8 Hz, H-4-furyl); 6.76  (d, 1H, J5,NH = 1.9 Hz, H-5); 6.83 (dd, 1H, J3,4 = 3.4 Hz, 

J3,5 = 0.9 Hz, H-3-furyl); 7.00 (bs, 2H, NH2);  7.72 (dd, 1H, J5,4 = 1.8 Hz, J5,3 = 0.9 Hz, H-5-

furyl); 8.03 (s, 1H, H-2); 11.99 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 95.4 (CH-5); 

103.3 (C-4a); 105.8 (CH-3-furyl); 112.0 (CH-4-furyl); 125.5 (C-6); 142.8 (CH-5-furyl); 147.5 

(C-2-furyl); 151.7 (C-7a); 152.4 (CH-2); 157.4 (C-4). IR (KBr): 3461, 3309, 3150, 3117, 

3102, 2980, 2839, 1640, 1592, 1574, 1476, 1302, 1015, 767. HRMS (ESI) calculated for 

C10H9ON4: 201.0771; found: 201.0771.  

 

6-(Thiophen-3-yl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine 

8-(Thiophen-3-yl)-7-deazaadenine (31e) 

Deazapurine 30e (260 mg, 0.75 mmol) was deprotected according to 

the General procedure. Crude product was chromatographed on silica 

gel CHCl3/MeOH (10:1) to give product 31e (117 mg, 72%) as white 

solid. M.p. > 350°C. 
1
H NMR (500.0 MHz, DMSO-d6): 6.74 (d, 1H, 

J5,NH = 2.2 Hz, H-5); 6.91 (bs, 2H, NH2); 7.48 (dd, 1H, J4,5 = 5.0 Hz, J4,2 = 1.3 Hz, H-4-

thienyl); 7.64 (dd, 1H, J5,4 = 5.0 Hz, J5,2 = 2.9 Hz, H-5-thienyl); 7.82 (dd, 1H, J2,5 = 2.9 Hz, 

J2,4 = 1.3 Hz,  H-2-thienyl); 8.02 (s, 1H, H-2); 11.92 (bs, 1H, NH). 
13

C NMR (125.7 MHz, 

DMSO-d6): 96.0 (CH-5); 103.4 (C-4a); 119.6 (CH-2-thienyl); 125.5 (CH-4-thienyl); 127.5 

(CH-5-thienyl); 130.1 (C-6); 133.8 (C-3-thienyl); 151.7 (C-7a); 152.1 (CH-2); 157.3 (C-4). IR 

(KBr): 3467, 3297, 3111, 3087, 3025, 2905, 1646, 1595, 1562, 1485, 1320, 791, 761. HRMS 

(ESI) calculated for C10H9N4S: 217.0542; found: 217.0543.  
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6-(Furan-3-yl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine 

8-(Furan-3-yl)-7-deazaadenine (31f) 

Deazapurine 30f (247 mg, 0.75 mmol) was deprotected according to the 

General procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 31f (98 mg, 65%) as white solid. 

M.p. > 350°C. 
1
H NMR (500.0 MHz, DMSO-d6): 6.63 (d, 1H, J5,NH = 

2.1 Hz, H-5); 6.84 (dd, 1H, J4,5 = 1.9 Hz, J4,2 = 0.9 Hz, H-4-furyl); 6.88 (bs, 2H, NH2); 7.75 (t, 

1H, J5,4 = J5,2 = 1.7 Hz, H-5-furyl); 8.01 (s, 1H, H-2); 8.10 (dd, 1H, J2,5 = 1.6 Hz, J2,4 = 0.9 Hz,  

H-2-furyl); 11.81 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 95.9 (CH-5); 103.3 (C-

4a); 108.6 (CH-4-furyl); 118.9 (C-3-furyl); 126.5 (C-6); 138.9 (CH-2-furyl); 144.5 (CH-5-

furyl); 151.7 (C-7a); 152.0 (CH-2); 157.0 (C-4). IR (KBr): 3458, 3297, 3168, 3117, 2893, 

2929, 2860, 1643, 1592, 1577, 1482, 1335, 1320, 779, 770. HRMS (ESI) calculated for 

C10H9ON4: 201.0771; found: 201.0771.  

5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-6-yl)pyrimidine-2,4(1H,3H)-dione 

(8-(Uracil-5-yl)-7-deazaadenine) (31i) 

Deazapurine 30g (302 mg, 0.75 mmol) was deprotected according 

to the General procedure directly followed by refluxing in 9 mL 

solution of THF: dioxane: HCl (1:1:1) for 24 hours. The reaction 

mixture was evaporated and ethanol (5 mL) was added. The 

mixture was then kept in a fridge overnight to furnish 31i (141 mg, 77 %) as yellowish 

crystals. M.p. >350°C . 
1
H NMR (500.0 MHz, DMSO-d6): 7.52 (d, 1H, J5,NH = 2.2 Hz, H-5); 

8.15 (d, 1H, J6´,NH = 6.1 Hz, H-6´); 8.32 (s, 1H, H-2); 11.48 (d, 1H, JNH,NH = 1.8 Hz, NH-3´); 

11.51 (dd, 1H, JNH,6´ = 6.1 Hz, JNH,NH = 1.8 Hz, NH-1´); 12.81 (d, 1H, JNH,5 = 2.2 Hz, NH-7). 

13
C NMR (125.7 MHz, DMSO-d6): 100.9 (CH-5); 102.1 (C-4a); 103.8 (C-5´); 130.7 (C-6); 

139.2 (CH-6´); 142.3 (CH-2); 148.5 (C-7a); 150.4 (C-4); 150.5 (C-2´); 162.2 (C-4´). IR (KBr): 

3318, 3267, 3150, 3043, 2956, 2851, 2788, 2729, 1709, 1676, 1595, 1574, 1446, 1442, 1245, 

1224, 1216, 770. HRMS (ESI) calculated for C10H9O2N6: 245.0782; found: 245.0782.  

4,6-Dichloro-7H-pyrrolo[2,3-d]pyrimidine  

6,8-Dichloro-7-deazapurine (34j) 
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Deazapurine 33j (318 mg, 1 mmol) was deprotected according to the 

general procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 34j (124 mg, 66%) as white solid. 

M.p. 250°C. 
1
H NMR (500.0 MHz, DMSO-d6): 6.72 (s, 1H, H-5); 8.60 (s, 

1H, H-2); 12.48 (vbs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 97.3 (CH-5); 117.3 (C-

4a); 127.6 (C-6); 149.4 (C-4); 150.9 (CH-2); 151.4 (C-7a). IR (KBr): 3126, 3072,2962, 2935, 

2794, 2678, 2651, 1610, 1565, 1497, 1443, 1338, 1260, 1213, 988, 872, 815. HRMS (ESI) 

calculated for C6H3N3Cl2: 186.9704; found: 186.9705.  

6-Bromo-4-chloro-7H-pyrrolo[2,3-d]pyrimidine 

8-Bromo-6-chloro-7-deazapurine (34k) 

Deazapurine 33k (363 mg, 1 mmol) was deprotected according to the 

general procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 34k (174 mg, 75%) as white solid. 

M.p. 258°C. 
1
H NMR (500.0 MHz, DMSO-d6): 6.80 (s, 1H, H-5); 8.58 (s, 

1H, H-2); 13.43 (vbs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 101.2 (CH-5); 114.4 (C-

6); 117.6 (C-4a); 149.1 (C-4); 150.8 (CH-2); 152.5 (C-7a). IR (KBr): 3123, 3090, 3069, 3022, 

2950, 2920, 2875, 2803, 1604, 1559, 1494, 1422, 1335, 1263, 1210, 988, 866, 806. HRMS 

(ESI) calculated for C6H3N3ClBr: 230.9199; found: 230.9200.  

4-Chloro-6-(trifluoromethyl)-7H-pyrrolo[2,3-d]pyrimidine 

6-Chloro-8-(trifluoromethyl)-7-deazapurine (34l) 

Deazapurine 33l (246 mg, 0.7 mmol) was deprotected according to the 

general procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 34l (113 mg, 73%) as white solid. 

M.p. 191°C. 
1
H NMR (500.0 MHz, DMSO-d6): 7.30 (q, 1H, J5,F = 1.3 Hz, 

H-5); 8.79 (s, 1H, H-2); 13.92 (vbs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 101.4 (bq, 

JC,F = 3.7 Hz, CH-5); 115.8 (C-4a); 120.7 (bq, JC,F = 268.8 Hz, CF3); 127.4 (q, JC,F = 39.7 Hz, 

C-6); 152.4 (C-7a); 153.3 (CH-2); 153.4 (C-4). 
19

F NMR (470.3 MHz, DMSO-d6): -56.66 (s, 

1F, CF3). IR (KBr): 3093, 3081, 2992, 2863, 2809, 2758, 2696, 1598, 1577, 1547, 1416, 1314, 

1257, 1245, 1222, 1180, 1141, 979, 872. HRMS (ESI) calculated for C7H3N3ClF3: 220.9968; 

found: 220.9969.  
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6-Chloro-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine 

8-Chloro-6-methoxy-7-deazapurine (27j) 

Deazapurine 25j (471 mg, 1.5 mmol) was deprotected according to the 

general procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 27j (150 mg, 55%) as white solid. 

M.p. 235°C. 
1
H NMR (500.0 MHz, DMSO-d6): 4.01 (s, 3H, CH3O); 6.52 (s, 

1H, H-5); 8.38 (s, 1H, H-2); 12.89 (vbs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 53.9 

(CH3O); 96.6 (CH-5); 105.3 (C-4a); 122.9 (C-6); 151.3 (CH-2); 152.1 (C-7a); 161.5 (C-4). IR 

(KBr): 3174, 3129, 3084, 3055, 2962, 2938, 2893, 2869, 2821, 2744, 2711, 2678, 2660, 1601, 

1583, 1488, 1458, 1413, 1347, 1326, 1305, 114, 1096, 970, 940, 893, 815, 791, 653. HRMS 

(ESI) calculated for C7H7ON3Cl: 184.0272; found: 184.0272.  

6-Bromo-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine  

8-Bromo-6-methoxy-7-deazapurine (27k) 

Starting from deazapurine 25k (347 mg, 1.25 mmol), the reaction was 

performed according to the General procedure to give product 27k (142 mg, 

50%) as white solid. M.p. 234°C. 
1
H NMR (500.0 MHz, DMSO-d6): 4.01 

(s, 3H, CH3O); 6.60 (s, 1H, H-5); 8.36 (s, 1H, H-2); 12.84 (vbs, 1H, NH). 

13
C NMR (125.7 MHz, DMSO-d6): 53.6 (CH3O); 100.1 (CH-5); 105.9 (C-4a); 109.3 (C-6); 

150.8 (CH-2); 153.3 (C-7a); 160.0 (C-4). IR (KBr): 3697, 3129, 3087, 3049, 2988, 2959, 

2938, 2866, 2818, 1607, 1589, 1479, 1461, 1413, 1347, 1326, 1141, 979, 896. HRMS (ESI) 

calculated for C7H7ON3
79

Br: 227.9767; found: 227.9768.  

6-(Trifluoromethyl)-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine 

8-(Trifluoromethyl)-6-methoxy-7-deazapurine (27l) 

Deazapurine 25l (420 mg, 1.2 mmol) was deprotected according to the 

general procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 27l (198 mg, 75%) as white solid. 

M.p. 190°C. 
1
H NMR (500 MHz, DMSO-d6): 3.44 (s, 3H, CH3O); 7.10 (q, 

1H, J5,F = 1.3 Hz, H-5); 8.54 (s, 1H, H-2); 13.36 (bs, 1H, NH). 
13

C NMR (125.7 MHz, 

DMSO-d6): 54.1 (CH3O); 100.6 (q, JC,F = 3.7 Hz, CH-5); 104.0 (C-4a); 121.2 (q, JC,F = 267.8 

Hz, CF3); 124.0 (q, JC,F = 39.2 Hz, C-6); 153.3 (C-7a); 153.7 (CH-2); 163.9 (C-4). 
19

F NMR 
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(470.3 MHz, DMSO-d6): -56.00 (s, 1F, CF3). IR (KBr): 3111, 3081, 2998, 2956, 2854, 2827, 

2732, 2678, 2630, 1592, 1556, 1491, 1413, 1335, 1320, 1296, 1254, 1192, 1177, 1126, 1084, 

967, 893, 845, 788, 719, 659. HRMS (ESI) calculated for C8H7ON3F3: 218.0536; found: 

218.0534.  

6-(Trifluoromethyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine 

8-(Trifluoromethyl)-7-deazaadenine (31l) 

Deazapurine 30l (100 mg, 0.3 mmol) was deprotected according to the 

general procedure. Crude product was chromatographed on silica gel 

CHCl3/MeOH (10:1) to give product 31l (55 mg, 90%) as white solid. 

M.p. more than 350°C. 
1
H NMR (500.0 MHz, DMSO-d6): 7.09 (q, 1H, 

J5´,F = 1.4 Hz, H-5); 7.32 (bs, 2H, NH2); 8.14 (s, 1H, H-2); 12.68 (bs, 1H, NH). 
13

C NMR 

(125.7 MHz, DMSO-d6): 101.6 (C-4a); 101.7 (q, JC,F = 3.8 Hz, CH-5); 120.8 (q, JC,F = 38.8 

Hz, C-6); 121.5 (q, JC,F = 266.9 Hz, CF3); 151.9 (C-7a); 154.6 (CH-2); 158.7 (C-4). 
19

F NMR 

(470.3 MHz, DMSO-d6): -55.67 (s, 1F, CF3). IR (KBr): 3494, 3072, 2983, 2920, 2845, 2809, 

2735, 2669, 1661, 1586, 1380, 1329, 1204, 1177, 1120, 1081. HRMS (ESI) calculated for 

C7H6N4F3: 203.0539; found: 203.0538.  

Deprotection of OMe group to 7-deazahypoxanthines. General procedure: 

To a stirred mixture of a 6-methoxy-7-deazapurine 27a-f, 27h, 27l (0.50 mmol, 1 equiv.) and 

NaI (272 mg, 2.5 mmol, 5 equiv.) in dry MeCN (5 mL), TMSCl (438 μL, 2.5 mmol, 5 equiv.) 

was slowly added and the mixture was stirred at 80°C for 18 h. The precipitate was filtered 

off, washed carefully with MeCN, and dissolved in water, and pH of the solution was adjusted 

to 7 using solid K2CO3. The product precipitated and was filtered off. 

6-(4-Methoxyphenyl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one  

8-(4-Methoxyphenyl)-7-deazahypoxantine (28a) 

Starting from deazapurine 27a (128 mg, 0.5 mmol), the reaction 

was performed according to the General procedure to give 

product 28a (103 mg, 85%) as greyish solid. M.p. > 300°C. 
1
H 

NMR (500 MHz, CDCl3): 3.78 (s, 3H, CH3O); 6.79 (d, 1H, J5,NH 

= 2.4 Hz, H-5); 6.97-6.99 (m, 2H, H-m-C6H4OMe); 7.75-7.76 (m, 2H, H-o-C6H4OMe); 7.84 
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(bd, 1H, J2,NH = 3.2 Hz, H-2); 11.81 (bs, 1H, NH-3); 12.22 (bd, 1H, JNH,5 = 2.4 Hz, NH-7). 
13

C 

NMR (125.7 MHz, CDCl3): 55.3 (CH3O); 97.9 (CH-5); 109.2 (C-4a); 114.5 (CH-m-

C6H4OMe); 124.3 (C-i-C6H4OMe); 126.2 (CH-o-C6H4OMe); 133.4 (C-6); 143.2 (CH-2); 

149.2 (C-7a); 158.3 (C-4); 158.8 (C-p-C6H4OMe). IR (KBr): 3192, 3111, 3093, 3028, 3001, 

2962, 2899, 2863, 2836, 1664, 1610, 1527, 1497, 1380, 1299, 1281, 1263, 1242, 1183, 1024, 

914, 839, 809, 776, 620. HRMS (ESI) calculated for C13H12O2N3: 242.0924; found: 242.0925.  

6-(Pyridin-2-yl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 

8-(Pyridin-2-yl)-7-deazahypoxantine (28b) 

Starting from deazapurine 27b (113 mg, 0.5 mmol), the reaction was 

performed according to the General procedure to give product 28b (75 

mg, 71%) as greyish solid. M.p. >300°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 7.17 (s, 1H, H-5); 7.27 (ddd, 1H, J5,4 = 7.5 Hz, J5,6 = 4.8 

Hz, J5,3 = 1.1 Hz, H-5-py); 7.83 (ddd, 1H, J4,3 = 8.0 Hz, J4,5 = 7.5 Hz, J4,6 = 1.8 Hz, H-4-py); 

7.89 (s, 1H, H-2); 7.94 (dt, 1H, J3,4 = 8.0 Hz, J3,5 = J3,6 = 1.1 Hz, H-3-py); 8.58 (ddd, 1H, J6,5 = 

4.8 Hz, J6,4 = 1.8 Hz, J6,3 = 1.0 Hz, H-6-py); 11.89 (bs, 1H, NH-3); 12.48 (bs, 1H, NH-7). 
13

C 

NMR (125.7 MHz, DMSO-d6): 101.8 (CH-5); 109.4 (C-4a); 119.4 (CH-3-py); 122.3 (CH-5-

py); 133.2 (C-6); 137.2 (CH-4-py); 144.5 (CH-2); 149.5 (CH-6-py); 149.7 (C-7a); 149.9 (C-2-

py); 158.6 (C-4). IR (KBr): 3111, 3043, 2956, 2908, 2854, 2830, 1667, 1595, 1568, 1529, 

1467, 1443, 1428, 1257, 1210, 1156, 919, 878, 836, 752. HRMS (ESI) calculated for 

C11H8ON4Na: 235.0590; found: 235.0590.  

6-(Thiophen-2-yl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 

8-(Thiophen-2-yl)-7-deazahypoxantine (28c) 

Starting from deazapurine 27c (231 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 28c (195 

mg, 90%) as yellowish solid. M.p. > 350°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 6.62 (s, 1H, H-5); 7.08-7.10 (m, 1H, H-4-thienyl); 7.45 -

7.48 (m, 2H, H-3,5-thienyl); 7.86 (s, 1H, H-2). 
13

C NMR (125.7 MHz, DMSO-d6): 99.0 (CH-

5); 109.1 (C-4a); 123.4 (CH-3-thienyl); 125.0 (CH-5-thienyl); 128.2 (CH-4-thienyl); 128.6 (C-

6); 135.2 (C-2-thienyl); 144.1 (CH-2); 149.6 (C-7a); 158.4 (C-4). IR (KBr): 3198, 3138, 3105, 
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3072, 3037, 2959, 2911, 2845, 1673, 1589, 1535, 1494, 1431, 1386, 1254, 1195, 919, 856, 

770, 683. HRMS (ESI) calculated for C10H6ON3S: 216.0237; found: 216.0239.  

6-(Furan-2-yl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 

8-(Furan-2-yl)-7-deazahypoxantine (28d) 

Starting from deazapurine 27d (65 mg, 0.3 mmol), the reaction was 

performed according to the General procedure to give product 28d (55 

mg, 92%) as greyish solid. M.p. > 350°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 6.57 (dd, 1H, J4,3 = 3.4 Hz, J4,5 = 1.8 Hz, H-4-furyl); 6.61  

(s, 1H, H-5); 7.79 (dd, 1H, J3,4 = 3.4 Hz, J3,5 = 0.8 Hz, H-3-furyl); 7.69 (dd, 1H, J5,4 = 1.8 Hz, 

J5,3 = 0.8 Hz, H-5-furyl); 7.84 (s, 1H, H-2). 
13

C NMR (125.7 MHz, DMSO-d6): 97.9 (CH-5); 

105.3 (CH-3-furyl); 108.9 (C-4a); 112.0 (CH-4-furyl); 125.8 (C-6); 142.4 (CH-5-furyl); 144.4 

(CH-2); 147.8 (C-2-furyl); 149.9 (C-7a); 159.1 (C-4). IR (KBr): 3189, 3120, 3078, 3040, 

2971, 2914, 2890, 2833, 2818, 2773, 2708, 1652, 1595, 1565, 1518, 1431, 1389, 1257, 1216, 

1012, 919, 890, 839, 773, 731, 620. HRMS (ESI) calculated for C10H7O2N3Na: 224.0430; 

found: 224.0431.  

6-(Thiophen-3-yl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 

8-(Thiophen-3-yl)-7-deazahypoxantine (28e) 

Starting from deazapurine 27e (231 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 28e (152 

mg, 70%) as greyish solid. M.p. > 350°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 6.80 (s, 1H, H-5); 7.60 (dd, 1H, J4,5 = 5.0 Hz, J4,2 = 1.5 Hz, 

H-4-thienyl); 7.61 (dd, 1H, J5,4 = 5.0 Hz, J5,2 = 2.7 Hz, H-5-thienyl); 7.84 (dd, 1H, J2,5 = 2.7 

Hz, J2,4 = 1.5 Hz,  H-2-thienyl); 7.86 (s, 1H, H-2). 
13

C NMR (125.7 MHz, DMSO-d6): 99.2 

(CH-5); 109.0 (C-4a); 119.3 (CH-2-thienyl); 125.9 (CH-4-thienyl); 127.2 (CH-5-thienyl); 

129.8 (C-6); 133.6 (C-3-thienyl); 144.1 (CH-2); 149.3 (C-7a); 158.8 (C-4). IR (KBr): 3201, 

3186, 3174, 3129, 3081, 3060, 2989, 2914, 2854, 1673, 1655, 1586, 1568, 1541, 1446, 1422, 

1245, 1207, 1186, 1084, 961, 917, 857, 761, 600. HRMS (ESI) calculated for C10H6ON3S: 

216.0237; found: 216.0238.  

6-(Furan-3-yl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 
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8-(Furan-3-yl)-7-deazahypoxantine (28f) 

Starting from deazapurine 27f (215 mg, 1 mmol), the reaction was 

performed according to the General procedure to give product 28f (160 

mg, 80%) as greyish solid. M.p. > 350°C. 
1
H NMR (500.0 MHz, 

DMSO-d6): 6.69 (s, 1H, H-5); 6.97 (dd, 1H, J4,5 = 1.9 Hz, J4,2 = 0.9 Hz, 

H-4-furyl); 7.72 (t, 1H, J5,4 = J5,2 = 1.7 Hz, H-5-furyl); 7.84 (s, 1H, H-2); 8.10 (dd, 1H, J2,5 = 

1.5 Hz, J2,4 = 0.9 Hz,  H-2-furyl). 
13

C NMR (125.7 MHz, DMSO-d6): 99.1 (CH-5); 108.8 (CH-

4-furyl); 108.8 (C-4a); 118.6 (C-3-furyl); 126.4 (C-6); 138.8 (CH-2-furyl); 143.7 (CH-2); 

144.3 (CH-5-furyl); 149.0 (C-7a); 158.3 (C-4). IR (KBr): 3105, 3037, 2965, 2848, 2806, 2717, 

2663, 1679, 1562, 1601, 1559, 1425, 1389, 1242, 1213. HRMS (ESI) calculated for 

C10H7N3O2: 201.0538; found: 201.0540.  

6-(3-Aminophenyl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one  

8-(3-Aminophenyl)-7-deazahypoxantine (28h) 

Starting from deazapurine 27h (120 mg, 0.5 mmol), the reaction 

was performed according to the General procedure to give product 

28h (85 mg, 75%) as greyish solid. M.p. > 350°C. 
1
H NMR (500.0 

MHz, DMSO-d6): 5.10 (bs, 2H, NH2); 6.50 (ddd, 1H, J6´,5´ = 7.9 Hz, 

J6´,2´ = 2.2 Hz, J6´,4´ = 1.1 Hz, H-6´); 6.67 (d, 1H, J5,NH = 2.2 Hz, H-5); 6.94 – 6.97 (m, 2H, H-

2´,4´); 7.05 (t, 1H, J5´,4´ = J5´,6´ = 8.0 Hz, H-5´); 7.84 (s, 1H, H-2); 11.82 (bs, 1H, NH-3); 12.19 

(bs, 1H, NH-7).  
13

C NMR (125.7 MHz, DMSO-d6): 98.4 (CH-5); 109.1 (C-4a); 110.3 (CH-

2´); 112.8 (CH-4´); 113.6 (CH-6´); 129.5 (CH-5´); 132.1 (C-3´); 134.3 (C-6); 143.6 (CH-2); 

149.1 and 149.2 (C-1´,7a); 158.4 (C-4). IR (KBr): 3401, 3321, 3219, 3147, 3028, 2959, 2899, 

2854, 1673, 1613, 1595, 1482, 1263, 1239, 919, 773. HRMS (ESI) calculated for C12H11ON4: 

227.0927; found: 227.0930.  

6-(Trifluoromethyl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 

8-(Trifluoromethyl)-7-deazahypoxantine (28l) 

Starting from deazapurine 27l (163 mg, 0.75 mmol), the reaction was 

performed according to the General procedure to give product 28l (45 

mg, 30%) as greyish solid. M.p. >350°C. 
1
H NMR (500.0 MHz, DMSO-
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d6): 6.88 (s, 1H, H-5); 7.88 (s, 1H, H-2); 11.76 (vbs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-

d6): 103.1 (CH-5); 107.9 (C-4a); 122.2 (bq, JC,F = 266.8 Hz, CF3); 123.2 (m, C-6); 144.6 (m, 

CH-2); 151.6 (m, C-7a); 158.9 (C-4). 
19

F NMR (470.3 MHz, CDCl3): -55.36 (s, 1F, F-2). IR 

(KBr): 3075, 2995, 2920, 2830, 1691, 1592, 1532, 1389, 1219, 1207, 1177, 1123. HRMS 

(ESI) calculated for C7H4ON3F3Na: 226.0199; found: 226.0198.  

5.4.4 One-pot C–H borylation/Cu-catalyzed substitution 

One pot C-H borylation – substitution  sequence. General procedures: 

Procedure A:  A 7-deazapurines 2, 9, 10 (2 mmol, 1 equiv.), bispinacolatodiboron (0.61 g, 2.4 

mmol, 1.2 equiv.), [Ir(COD)OMe]2 (66 mg, 0.1 mmol, 5 mol %) and 4,4’-di-tert-butyl-2,2’-

bipyridine (54 mg, 0.2 mmol, 10 mol %) were dissolved in dry THF (15 ml) under Ar. The 

solution was heated at 80 °C in a septum sealed vial and stirred under argon for 20 h. The 

solvent was removed under reduced pressure.  The crude mixture was then dissolved in 

acetone (10 mL). A solution of CuCl2 (807 mg, 6.0 mmol, 3 equiv.) in water (10 mL) was then 

added to the reaction mixture, which was heated for 4 hours at 80 °C. The solution was then 

cooled to room temperature, diluted with EtOAc (25 mL) and with saturated aq. solution of 

NH4Cl (25 mL). Aqueous solution was then extracted three times with EtOAc and combined 

organic layers were dried over Na2SO4, filtered, and evaporated under vacuum. The crude 

product was purified by flash chromatography (HPFC) in hexane/EtOAc. 

Procedure B: The same as Procedure A, only using CuBr2  (1.34 g, 6.0 mmol, 3 equiv.) instead 

of CuCl2. 

Procedure C: A 7-deazapurines 2, 9, 10, 11 (2 mmol, 1 equiv.), bispinacolatodiboron (0.61 g, 

2.4 mmol, 1.2 equiv.), [Ir(COD)OMe]2 (66 mg, 0.1 mmol, 5 mol %) and 4,4’-di-tert-butyl-

2,2’-bipyridine (54 mg, 0.2 mmol, 10 mol %) were dissolved in dry THF (10 mL) under Ar. 

The solution was heated at 80 °C in a septum sealed vial and stirred under argon for 20 h. The 

solvent was removed under reduced pressure.  The crude mixture was then dissolved in DCM 

(8 mL). The solution was transferred by a syringe into an oven-dried sealed bomb that was 

placed with CuTc (38 mg, 0.2 mmol, 10 mol%), 1,10-phenanthroline (72 mg, 0.4 mmol, 20 

mol%), LiOH.H2O (168 mg, 4 mmol, 2 equiv.) and Togni’s reagent (726 mg, 2.2 mmol, 1.1 

equiv.) under Ar. The reaction system was quickly degassed through three freeze-pump-thaw 
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cycles and refilled with Ar. The reaction was stirred at 45 °C for 18 hours. The solution was 

then cooled to room temperature, diluted with DCM (25 mL) and saturated solution of NH4Cl 

(25 mL). Aqueous solution was then extracted two times with DCM and the combined organic 

layers were dried over Na2SO4, filtered, and evaporated under vacuum. The crude product was 

purified by flash chromatography (HPFC) in hexane/EtOAc. 

Procedure D: 7-Deazapurine 2 (0.5 mmol, 1 equiv.), bispinacolatodiboron (152 mg, 0.6 mmol, 

1.2 equiv.), [Ir(COD)OMe]2 (17 mg, 0.025 mmol, 5 mol %) and 4,4’-di-tert-butyl-2,2’-

bipyridine (13 mg, 0.05 mmol, 10 mol %) were dissolved in dry THF (5 mL) under Ar. The 

solution was heated at 80 °C in a septum sealed vial and stirred under argon for 20 h. The 

solvent was removed under reduced pressure. The residue was then dissolved in MeOH (10 

mL) and Cu(NO3)2•3H2O (242 mg, 1 mmol, 2 equiv.), Zn(CN)2 (176 mg, 1,5 mmol, 3 equiv.), 

and CsF (76 mg, 0.5 mmol, 1 equiv.) were added to the reaction vessel followed by H2O (4 

mL). The flask was sealed with a Teflon-lined cap, and the green suspension was stirred 

vigorously at 100 ºC for 3 h. The solution was then cooled to r.t., diluted with EtOAc (15 mL) 

and with saturated solution of NH4Cl (15 mL). Aqueous solution was then extracted three 

times with EtOAc and the combined organic layers were dried over Na2SO4, filtered, and 

evaporated under vacuum. The crude product was purified by flash chromatography (HPFC) 

in hexan/EtOAc. 

7-Benzyl-6-chloro-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-8-chloro-6-phenyl-7-deazapurine) (32j) 

Starting from 2 (285 mg, 1 mmol), the reaction was performed according to 

the General procedure A to give product 32j (146 mg, 46%) as yellowish 

solid. M.p. 118°C. 
1
H NMR (500 MHz, CDCl3): 5.58 (s, 2H, CH2-Bn); 6.82 

(s, 1H, H-5); 7.26 – 7.34 (m, 5H, H-o,m,p-Bn); 7.48 – 7.58 (m, 3H, H-m,p-

Ph); 8.06-8.08 (m, 2H, H-o-Ph); 8.98 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 45.7 (CH2-

Bn); 99.0 (CH-5); 115.2 (C-4a); 127.4 (CH-o-Bn); 127.9 (CH-p-Bn); 128.6 (C-6); 128.7 (CH-

o-Ph); 128.7 (CH-m-Bn); 128.9 (CH-m-Ph); 130.2 (CH-p-Ph); 136.3 (C-i-Bn); 137.8 (C-i-Ph); 

151.5 (C-7a); 151.8 (CH-2); 156.3 (C-4). HRMS (ESI) calculated for C19H15N3Cl: 320.0949; 

found: 320.0949.  
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7-Benzyl-6-bromo-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine (26k) 

(9-Benzyl-8-bromo-6-phenyl-7-deazapurine) (32k) 

Starting from 2 (285 mg, 1 mmol), the reaction was performed according to 

the General procedure B to give product 32k (229 mg, 63%) as yellowish 

solid. M.p. 110°C. 
1
H NMR (499.8 MHz, CDCl3): 5.60 (s, 2H, CH2Ph); 

6.98 (s, 1H, H-5); 7.26-7.33 (m, 5H, H-o,m,p-Bn); 7.51-7.58 (m, 3H, H-

m,p-Ph); 8.08-8.10 (m, 2H, H-o-Ph); 8.97 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 46.9 

(CH2Ph); 103.4 (CH-5); 116.0 (C-6); 116.9 (C-4a); 127.4 (CH-o-Bn); 127.9 (CH-p-Bn); 128.8 

(CH-m-Bn); 128.9 (CH-o-Ph); 129.0 (CH-m-Ph); 130.4 (CH-p-Ph); 136.0 (C-i-Bn); 151.2 

(CH-2); 152.1 (C-7a); (C-4 and C-i-Ph not detected). HRMS (ESI) calculated for C19H15N3Br: 

364.0444; found: 364.0444.  

7-Benzyl-4-phenyl-6-(trifluoromethyl)-7H-pyrrolo[2,3-d]pyrimidine  

(9-Benzyl-8-(trifluoromethyl)-6-phenyl-7-deazapurine) (32l) 

Starting from 2 (285 mg, 1 mmol), the reaction was performed according 

to the General procedure C to give product 32l (120 mg, 34%) as white 

solid. 
1
H NMR (499.8 MHz, CDCl3): 5.68 (s, 2H, CH2Ph); 7.18-7.19 (m, 

2H, H-o-Bn); 7.26-7.31 (m, 3H, H-m,p-Bn); 7.30 (q, 1H, JH,F = 1.1, H-5); 

7.54-7.61 (m, 3H, H-m,p-Ph); 8.10-8.12 (m, 2H, H-o-Ph); 9.10 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CDCl3): 46.8 (CH2Ph); 103.7 (q, JC,F = 4.3, CH-5); 116.9 (C-4a); 120.7 (q, JC,F = 269.2, 

CF3); 126.9 (CH-o-Bn); 127.8 (CH-p-Bn); 128.1 (q, JC,F = 38.1, C-6); 128.6 (CH-m-Bn); 

128.9 (CH-o-Ph); 129.0 (CH-m-Ph); 130.8 (CH-p-Ph); 136.3 (C-i-Bn); 137.2 (C-i-Ph); 153.2 

(C7a); 154.1 (CH-2); 160.2 (C-4). 
19

F{
1
H} NMR (470.3 MHz, CDCl3): -55.79. HRMS (ESI) 

calculated for C20H15N3F3: 354.1213; found: 354.1214.  

7-Benzyl-4-phenyl-6-cyano-7H-pyrrolo[2,3-d]pyrimidine   

(9-Benzyl-8-carbonitrile-6-phenyl-7-deazapurine) (32m) 

Starting from 2 (143 mg, 0.5 mmol), the reaction was performed according 

to the General procedure D to give product 32m (90 mg, 58%) as white 

solid. M.p. 123°C. 
1
H NMR (499.8 MHz, CDCl3): 5.65 (s, 2H, CH2Ph); 

7.31-7.33 (m, 1H, H-p-Bn); 7.35-7.36 (m, 2H, H-m-Bn); 7.42-7.44 (m, 2H, 

H-o-Bn); 7.49 (s, 1H, H-5); 7.56-7.59 (m, 3H, H-m,p-Ph); 8.06-8.08 (m, 2H, H-o-Ph); 9.14 (s, 
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1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 47.6 (CH2Ph); 111.2 (C-6); 112.4 (CH-5); 112.5 

(CN); 114.0 (C-4a); 128.2 (CH-o-Bn); 128.50 (CH-p-Bn); 128.95 (CH-m-Bn); 128.98 (CH-o-

Ph); 129.12 (CH-m-Ph); 131.1 (CH-p-Ph); 135.5 (C-i-Bn); 136.8 (C-i-Ph); 151.8 (C-7a); 154.9 

(CH-2); 160.7 (C-4). HRMS (ESI) calculated for C20H15N4: 311.1291; found: 311.1290.  

4,6-Dichloro-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 

6,8-Dichloro-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (33j) 

Starting from 9 (568 mg, 2 mmol), the reaction was performed 

according to the General procedure A to give product 33j (350 mg, 

55%) as colourless oil. 
1
H NMR (500 MHz, CDCl3): -0.06 (s, 9H, 

CH3Si); 0.90-0.94 (m, 2H, OCH2CH2Si); 3.58-3.61 (m, 2H, 

OCH2CH2Si); 5.70 (s, 2H, NCH2O); 6.62 (s, 1H, H-5); 8.65 (s, 1H, H-

2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 17.7 (OCH2CH2Si); 

67.1 (OCH2CH2Si); 70.8 (NCH2O); 99.0 (CH-5); 117.1 (C-4a), 129.2 (C-6); 150.9 (C-4); 

151.7 (CH-2); 154.5 (C-7a). IR (KBr): 3114, 2950, 2920, 2896, 2866, 1592, 1577, 1541, 1503, 

1455, 1446, 1419, 1383, 1344, 1254, 1248, 1207, 1186, 1126, 1093, 911, 860, 839, 779, 755. 

HRMS (ESI) calculated for C12H17ON3Cl2NaSi: 340.0410; found: 340.0410.  

6-Bromo-4-chloro-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 

8-Bromo-6-chloro-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (33k) 

Starting from 9 (568 mg, 2 mmol), the reaction was performed 

according to the General procedure B to give product 33k (403 mg, 

56%) as white solid. M.p. 49°C. 
1
H NMR (500 MHz, CDCl3): -0.06 

(s, 9H, CH3Si); 0.90-0.94 (m, 2H, OCH2CH2Si); 3.57-3.60 (m, 2H, 

OCH2CH2Si); 5.71 (s, 2H, NCH2O); 6.77 (s, 1H, H-5); 8.64 (s, 1H, H-

2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 17.7 (OCH2CH2Si); 

67.0 (OCH2CH2Si); 71.9 (NCH2O); 103.1 (CH-5); 116.6 (C-6), 118.0 (C-4a); 150.8 (C-4); 

151.2 (CH-2); 152.2 (C-7a). IR (KBr): 3105, 2956, 2917, 2902, 2881, 2866, 1583, 1541, 1485, 

1458, 1434, 1416, 1386, 1350, 1257, 1248, 1180, 1090, 1075, 1033, 911, 860, 839, 779, 749. 

HRMS (ESI) calculated for C12H18ON3BrClSi: 362.0086; found: 362.0086.  
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4-Chloro-6-(trifluoromethyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-Chloro-8-(trifluoromethyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (33l) 

Starting from 9 (568 mg, 2 mmol), the reaction was performed 

according to the General procedure C to give product 33l (264 mg, 38 

%) as colourless oil. 
1
H NMR (500 MHz, CDCl3): -0.06 (s, 9H, 

CH3Si); 0.91-0.94 (m, 2H, OCH2CH2Si); 3.57-3.61 (m, 2H, 

OCH2CH2Si); 5.79 (s, 2H, NCH2O); 7.12 (q, 1H, J5,F = 1.1 Hz, CH-5); 

8.79 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.6 (CH3Si); 17.7 

(OCH2CH2Si); 67.2 (OCH2CH2Si); 72.0 (NCH2O); 103.6 (q, JC,F = 4.4 Hz, CH-5); 115.6 (C-

4a); 120.2 (q, JC,F = 269.3 Hz, CF3); 129.0 (q, JC,F = 39.7 Hz, C-6); 154.0 (C-7a); 153.4 (CH-

2); 154.6 (C-4). 
19

F NMR (470.3 MHz, CDCl3): -56.61 (s, 1F, F-2). IR (KBr): 3950, 2929, 

2899, 1592, 1553, 1544, 1446, 1431, 1413, 1371, 1353, 1248, 1189, 1147, 1096, 860, 842. 

HRMS (ESI) calculated for C13H18ON3ClF3Si: 352.0854; found: 352.0855.  

6-Chloro-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 

8-Chloro-6-methoxy-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25j) 

Starting from 10 (1116 mg, 4 mmol), the reaction was performed 

according to the General procedure A to give product 25j (590 mg, 

47%) as white solid. M.p. 80°C. 
1
H NMR (500 MHz, CDCl3): -0.07 

(s, 9H, CH3Si); 0.90-0.93 (m, 2H, OCH2CH2Si); 3.57-3.60 (m, 2H, 

OCH2CH2Si); 4.10 (s, 3H, CH3O); 5.66 (s, 2H, NCH2O); 6.51 (s, 1H, 

H-5); 8.47 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 

17.7 (OCH2CH2Si); 53.8 (CH3O); 66.6 (OCH2CH2Si); 70.5 (NCH2O); 97.8 (CH-5); 105.0 (C-

4a); 124.8 (C-6); 151.3 (CH-2); 152.1 (C-7a); 161.9 (C-4). IR (KBr): 3261, 3102, 3060, 3001, 

2953, 2923, 2899, 2869, 1712, 1685, 1661, 1595, 1559, 1503, 1479, 1464, 1410, 1377, 1314, 

1245, 1230, 1099, 1060, 917, 860, 839, 794, 755.. HRMS (ESI) calculated for 

C13H20O2N3ClNaSi: 336.0906; found: 336.0906.  

6-Bromo-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine 

8-Bromo-6-methoxy-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25k) 
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Starting from 10 (1116 mg, 4 mmol), the reaction was performed 

according to the General procedure B to give product 25k (490 mg, 

34%) as white solid. M.p. 82°C. 
1
H NMR (500 MHz, CDCl3): -0.06 

(s, 9H, CH3Si); 0.90-0.93 (m, 2H, OCH2CH2Si); 3.56-3.60 (m, 2H, 

OCH2CH2Si); 4.11 (s, 3H, CH3O); 5.67 (s, 2H, NCH2O); 6.65 (s, 1H, 

H-5); 8.45 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.5 (CH3Si); 

17.7 (OCH2CH2Si); 53.8 (CH3O); 66.6 (OCH2CH2Si); 71.6 (NCH2O); 102.1 (CH-5); 106.0 

(C-4a); 111.8 (C-6); 151.3 (CH-2); 152.9 (C-7a); 161.7 (C-4). IR (KBr): 3099, 2953, 2914, 

1896, 1863, 1595, 1473, 1461, 1416, 1383, 1353, 1317, 1242, 1227, 1093, 911, 842. HRMS 

(ESI) calculated for C13H20O2N3BrNaSi: 380.0400; found: 380.0401.  

4-Methoxy-6-(trifluoromethyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-

d]pyrimidine 

6-Methoxy-8-(trifluoromethyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine (25l) 

Starting from 10 (1116 mg, 4 mmol), the reaction was performed 

according to the General procedure C to give product 25l (472 mg, 

34%) as colourless oil. 
1
H NMR (500 MHz, CDCl3): -0.07 (s, 9H, 

CH3Si); 0.90-0.93 (m, 2H, OCH2CH2Si); 3.56-3.59 (m, 2H, 

OCH2CH2Si); 4.14 (s, 3H, CH3O); 5.75 (s, 2H, NCH2O);  7.02 (q, 1H, 

J5,F = 1.2 Hz, H-5); 8.58 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 

-1.6 (CH3Si); 17.7 (OCH2CH2Si); 54.0 (CH3O); 66.7 (OCH2CH2Si); 71.6 (NCH2O); 102.9 (q, 

JC,F = 4.5 Hz, CH-5); 103.8 (C-4a); 120.7 (q, JC,F = 268.7 Hz, CF3); 125.9 (q, JC,F = 39.2 Hz, 

C-6); 153.7 (CH-2); 153.9 (C-7a); 164.2 (C-4). 
19

F NMR (470.3 MHz, CDCl3): -56.07 (s, 1F, 

F-2). HRMS (ESI) calculated for C14H21O2N3F3Si: 348.1350; found: 348.1351.  

6-(Trifluoromethyl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-

pyrrolo[2,3-d]pyrimidine 

8-(Trifluoromethyl)-6-(methylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (26l) 
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Starting from 11 (1116 mg, 4 mmol), the reaction was performed 

according to the General procedure C to give product 26l (472 mg, 

34%) as colourless oil. 
1
H NMR (500 MHz, CDCl3): -0.06 (s, 9H, 

CH3Si); 0.90-0.93 (m, 2H, OCH2CH2Si); 2.72 (s, 3H, CH3S); 3.56-

3.59 (m, 2H, OCH2CH2Si); 5.75 (s, 2H, NCH2O); 7.01 (q, 1H, J5,F = 

1.1 Hz, CH-5); 8.76 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.6 

(CH3Si); 11.9 (CH3S); 17.7 (OCH2CH2Si); 66.8 (OCH2CH2Si); 71.5 (NCH2O); 103.1 (q, JC,F 

= 4.3 Hz, CH-5); 113.8 (C-4a); 120.6 (q, JC,F = 269.1 Hz, CF3); 126.5 (q, JC,F = 39.2 Hz, C-6); 

150.4 (C-7a); 153.2 (CH-2); 164.7 (C-4). 
19

F NMR (470.3 MHz, CDCl3): -56.20 (s, 1F, F-2). 

IR (KBr): 2953, 2923, 2890, 1556, 1443, 1368, 1275, 1251, 1183, 1153, 1129, 1090, 860, 833. 

HRMS (ESI) calculated for C14H21ON3F3SSi: 364.1121; found: 364.1123.  

4-Amino-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide 

8-Carboxamide-7-deazaadenine (31m) 

A solution of 34l (111 mg, 0.5 mmol) and aq. ammonia (25% [w/w], 5 

mL) in dioxane (5 mL) was stirred in autoclave at 120 °C for 18 h. Then 

the solvents were evaporated and the residue was purified by flash 

chromatography (HPFC) in CHCl3/MeOH (5:1) to give product 31m (45 

mg, 50%) as white powder. M.p. > 350°C. 
1
H NMR (500.0 MHz, DMSO-d6): 7.08 (s, 1H, H-

5); 7.16 (bs, 2H, NH2-4); 7.35 and 7.70 (2×bs, 2×1H, CONH2); 8.07 (s, 1H, H-2); 11.82 (bs, 

1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 103.05 (C-4a and CH-5); 128.4 (C-6); 151.4 (C-

7a); 154.2 (CH-2); 158.9 (C-4); 162.5 (CO). IR (KBr): 3428, 3404, 3330, 3177, 3108, 2995, 

2908, 2782, 1694, 1655, 1628, 1598, 1538, 1437, 1386, 1335. HRMS (ESI) calculated for 

C7H8ON5: 178.0723; found: 178.0721.  

6-(3-Aminophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

8-(3-Aminophenyl)-7-deazaadenine (31h) 

A mixture of 7-deazahypoxanthine 28h (57 mg, 0.25 mmol), 

benzyltriethylammonium chloride (114 g, 0.5 mmol), N,N-

dimethylaniline (35 µL, 0.275 mmol) in dry MeCN (2.5 mL) was 

stirred at r.t. and then phosphorus oxychloride (115 µL, 1.25 mmol) 

was added. The mixture was then stirred at 100 °C for 6 hours. Solvents were evaporated 
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under reduced pressure, the residue was diluted with water and neutralized with aqueous 

ammonia to pH 7. Crude intermediate was filtered, washed with cold water, then with 

hydrochloric acid and again with cold water. After drying under reduced pressure, the 

intermediate was placed in steel bomb and aq ammonia (25% [w/w], 2 mL) in dioxane (2 mL) 

was added and stirred at 120 °C for 18 h. Then the solvents were evaporated and the residue 

was purified by flash chromatography (HPFC) in CHCl3/MeOH (5:1) to give product 31h (22 

mg, 40%) as brown solid. M.p. more than 350°C. 
1
H NMR (500.0 MHz, DMSO-d6): 6.53 

(ddd, 1H, J6´,5´ = 8.0 Hz, J6´,2´ = 2.2 Hz, J6´,4´ = 1.0 Hz, H-6´); 6.83 (d, 1H, J5,NH = 1.9 Hz, H-5); 

6.92 – 6.96 (m, 2H, H-2´,4´); 7.08 (bt, 1H, J5´,4´ = J5´,6´ = 7.9 Hz, H-5´); 7.32 (bs, 2H, NH2-4); 

8.09 (s, 1H, H-2); 12.07 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 96.1 (CH-5); 103.5 

(C-4a); 110.3 (CH-2´); 112.9 (CH-4´); 113.9 (CH-6´); 129.6 (CH-5´); 132.2 (C-3´); 135.5 (C-

6); 149.2 (C-1´); 149.8 (CH-2); 151.3 (C-7a); 155.7 (C-4). IR (KBr): 3348, 3120, 2956, 2926, 

2851, 1673, 1619, 1601, 1538, 1488, 1317, 1287, 764. HRMS (ESI) calculated for C12H12N5: 

226.1087; found: 226.1086.  

5.5 C-H sulfenylation of purines and deazapurines 

5.5.1 Sulfenytion of 7-deazapurines  

General Procedure: 

A mixture of 7-deazapurines 2, 3, 8, 35 (2 mmol), disulphides (1.5 mmol), and CuI (0.2 mmol, 

10 mol %) in DMF (20 mL) was stirred at 110°C under air atmosphere for 18 hours until 

complete consumption of staring material as monitored by TLC. The solution was then cooled 

to room temperature, diluted with EtOAc (30 mL), washed with 1M solution of sodium salt of 

EDTA (20 mL). Aqueous solution was then extracted three times with EtOAc and combined 

organic layers were dried over Na2SO4, filtered, and evaporated under vacuum. The crude 

product was purified by column chromatography on silica gel. 

4-Phenyl-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Phenyl-7-(phenylsulfanyl)-7-deazapurine) (36a) 
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6-Phenyl-7-deazapurine 3 (390 mg, 2 mmol) and diphenyldisulfide (328 

mg , 1.5 mmol) were used as starting compounds to give products 36a 

(582 mg, 96%) a 37a (25 mg, 3%) as white solids after chromatography 

eluting with hexane/EtOAc  5:1 to 1:1.  Crystallization in hexan/EtOAc 

gave white needles. M.p. 184-186 °C. 
1
H NMR (499.8 MHz, DMSO-

d6): 6.70 (m, 2H, H-o-SPh); 6.99 (m, 1H, H-p-SPh); 7.06 (m, 2H, H-m-SPh); 7.27 (m, 2H, H-

m-Ph); 7.38 (m, 1H, H-p-Ph); 7.53 (m, 2H, H-o-Ph); 8.05 (d, 1H, J6,NH = 2.5, H-6); 8.88 (s, 

1H, H-2); 12.86 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 99.90 (C-5); 115.26 (C-4a); 

125.25 (CH-p-SPh); 126.04 (CH-o-SPh); 127.29 (CH-m-Ph); 128.80 (CH-m-SPh); 129.23 

(CH-p-Ph); 129.86 (CH-o-Ph); 135.69 (CH-6); 137.04 (C-i-Ph); 138.47 (C-i-SPh); 151.53 

(CH-2); 153.55 (C-7a); 159.40 (C-4). IR(KBr): 3104, 3059, 2988, 2862, 2818, 1598, 1581, 

1551, 1478, 1435, 1322. HRMS (ESI) calculated for C18H14N3S: 304.0902; found: 304.0901. 

Anal. calculated for C18H13N3S (303.08): C 71.26%, H 4.32%, N 13.85%, S 10.57%; found: C 

71.07%, H 4.15%, N 13.57%, S 10.47%. 

4-Phenyl-5,6-bis(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Phenyl-7,8-bis(phenylsulfanyl)-7-deazapurine) (37a) 

M.p. 231-233 °C.
 1

H NMR (500.0 MHz, CDCl3): 6.68 (m, 2H, H-o-

SPh-5); 6.95 (m, 1H, H-p-SPh-5); 6.98 (m, 2H, H-m-SPh-5); 7.23 (m, 

2H, H-m-Ph); 7.28-7.365 (m, 3H, H-p-Ph, H-m,p-SPh-6); 7.45 (m, 2H, 

H-o-SPh-6); 7.49 (m, 2H, H-o-Ph); 8.62 (s, 1H, H-2); 10.33 (bs, 1H, 

NH). 
13

C NMR (125.7 MHz, CDCl3): 104.40 (C-5); 117.30 (C-4a); 

125.40 (CH-p-SPh-5); 126.82 (CH-o-SPh-5); 127.46 (CH-m-Ph); 128.61 (CH-m-SPh-5); 

129.04 (CH-p-Ph); 129.39 (CH-p-SPh-6); 129.87 (CH-o-Ph); 130.09 (CH-m-SPh-6); 131.02 

(C-i-SPh-6); 132.24 (CH-o-SPh-6); 136.50 (C-i-Ph); 137.17 (C-i-SPh-5); 140.40 (C-6); 151.31 

(CH-2); 153.27 (C-7a); 159.77 (C-4). IR(KBr): 3430, 3073, 2489, 1581, 1559, 1477, 1327. 

HRMS (ESI) calculated for C24H18N3S2: 412.0935; found: 412.0936. 

5-(Methylsulfanyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(7-(Methylsulfanyl)-6-phenyl-7-deazapurine) (36b) 
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6-Phenyl-7-deazapurine 3 (390 mg, 2 mmol) and dimethyldisulfide (0.9 mL, 

10 mmol) were used as starting compounds to give products 36b (343 mg, 

71%) a 37b (86 mg, 15%) as yellow solids after chromatography with 

hexane/EtOAc  5:1 to 1:1. M.p. 174-175 °C.
 1

H NMR (600.1 MHz, CDCl3): 

1.92 (s, 3H, CH3S); 7.37 (d, 1H, J = 2.1, H-6); 7.53 (m, 3H, H-m,p-Ph); 7.91 

(m, 2H, H-o-Ph); 9.01 (s, 1H, H-2); 11.12 (bs, 1H, NH). 
13

C NMR (150.9 MHz, CDCl3): 18.99 

(CH3S); 108.89 (C-5); 115.85 (C-4a); 126.78 (CH-6); 127.84 (CH-m-Ph); 129.76 (CH-p-Ph); 

129.93 (CH-o-Ph); 137.27 (C-i-Ph); 151.29 (CH-2); 153.17 (C-7a); 160.54 (C-4). IR(CDCl3): 

3452, 3114, 2924, 2855, 1579, 1553, 1453, 1442, 1325. HRMS (ESI) calculated for 

C13H12N3S: 242.0746; found: 242.0746. 

5,6-Bis(methylsulfanyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(7,8- Bis(methylsulfanyl)-6-phenyl-7-deazapurine) (37b) 

M.p. 139-141 °C.
 1

H NMR (499.8 MHz, DMSO-d6): 1.70 (s, 3H, CH3S-

5); 2.66 (s, 3H, CH3S-6); 7.48-7.55 (m, 3H, H-m,p-Ph); 7.80 (m, 2H, H-

o-Ph); 8.81 (s, 1H, H-2); 12.86 (bs, 1H, NH). 
13

C NMR (125.7 MHz, 

DMSO-d6): 15.74 (CH3S-6); 19.33 (CH3S-5); 103.91 (C-5); 116.72 (C-

4a); 127.51 (CH-m-Ph); 129.49 (CH-p-Ph); 129.95 (CH-m-Ph); 136.69 

(C-i-Ph); 142.14 (C-6); 149.87 (CH-2); 153.67 (C-7a); 156.20 (C-4). IR(KBr): 2920, 2857, 

1739, 1577, 1550, 1464, 1458, 1437, 1317, 1254, 770, 704. HRMS (ESI) calculated for 

C14H14N3S2: 288.0624; found: 288.0624. 

5-[(4-Methoxyphenyl)sulfanyl]-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(7-[(4-Methoxyphenyl)sulfanyl]-6-phenyl-7-deazapurine) (36c) 

6-Phenyl-7-deazapurine 3 (390 mg, 2 mmol) and bis(4-

methoxyphenyl) disulphide (418 mg, 1.5 mmol) were used as 

starting compounds to give product 36c (608 mg, 91%) as white 

solids after chromatography eluting with hexane/EtOAc  5:1 to 

1:1.  Crystallization from hexan/EtOAc gave white needles. M.p. 

192-196 °C.
 1

H NMR (499.8 MHz, CDCl3): 3.71 (s, 3H, CH3O); 6.59 (m, 2H, H-m-

SC6H4OMe); 6.74 (m, 2H, H-o-SC6H4OMe); 7.42 (m, 2H, H-m-Ph); 7.47 (m, 1H, H-p-Ph); 
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7.54(s, 1H, H-6); 7.68 (m, 2H, H-o-Ph); 9.00 (s, 1H, H-2); 11.13 (bs, 1H, NH). 
13

C NMR 

(125.7 MHz, CDCl3): 55.29 (CH3O); 106.46 (C-5); 114.30 (CH-m-SC6H4OMe); 115.56 (C-

4a); 127.29 (C-i-SC6H4OMe); 127.61 (CH-m-Ph); 129.53 (CH-p-Ph); 130.09 (CH-o-Ph); 

130.67 (CH-o-SC6H4OMe); 131.02 (CH-6); 136.82 (C-i-Ph); 151.35 (CH-2); 153.33 (C-7a); 

158.39 (C-p-SC6H4OMe); 160.94 (C-4). IR(KBr): 3099, 2982, 2959, 2835, 1595, 1552, 1493, 

1249, 1026. HRMS (ESI) calculated for C19H16ON3S: 334.1009; found: 334.1008. 

5-[(4-Nitrophenyl)sulfanyl]-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(7-[(4-Nitrophenyl)sulfanyl]-6-phenyl-7-deazapurine) (36d) 

6-Phenyl-7-deazapurine 3 (390 mg, 2 mmol) and 4-nitrophenyl 

disulphide (463 mg, 1.5 mmol) were used as starting compounds 

to give product 36d (328 mg, 47%) as green solids after 

chromatography eluting with hexane/EtOAc  5:1 to 1:1. M.p. 253-

261 °C.
 1

H NMR (499.8 MHz, DMSO-d6): 6.88 (m, 2H, H-o-

SC6H4NO2); 7.22 (m, 2H, H-m-Ph); 7.32 (m, 1H, H-p-Ph); 7.47 (m, 2H, H-o-Ph); 7.88 (m, 2H, 

H-m-SC6H4NO2); 8.16 (s, 1H, H-6); 8.92 (s, 1H, H-2); 13.03 (bs, 1H, NH). 
13

C NMR (125.7 

MHz, DMSO-d6): 97.21 (C-5); 115.06 (C-4a); 123.79 (CH-m-SC6H4NO2); 125.47 (CH-o-

SC6H4NO2); 127.29 (CH-m-Ph); 129.28 (CH-p-Ph); 129.63 (CH-o-Ph); 136.31 (CH-6); 

136.71 (C-i-Ph); 144.53 (C-p-SC6H4NO2); 149.10 (C-i-SC6H4NO2); 151.84 (CH-2); 153.69 

(C-7a); 159.56 (C-4). IR(KBr): 2986, 2862, 2821, 1600, 1580, 1553, 1502, 1342, 1320, 1085. 

HRMS (ESI) calculated for C18H13O2N4S: 349.0754; found: 349.0753. 

5-(Phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

(7-(Phenylsulfanyl)-7-deazaadenine) (36e) 

6-Amino-7-deazapurine 35 (268 mg, 2 mmol) and diphenyldisulfide 

(1.1 g, 5 mmol) were used as starting compounds to give product 36f 

(384 mg, 79%) as white solids after chromatography eluting 

DCM/MeOH 10:0 to 7:3 with 1% Et3N. M.p. 268-299 °C
 1

H NMR 

(500.0 MHz, DMSO-d6): 6.52 (bs, 2H, NH2); 7.09 (m, 2H, H-o-Ph); 7.13 (m, 1H, H-p-Ph); 

7.27 (m, 2H, H-m-Ph); 7.58 (s, 1H, H-8); 8.10 (s, 1H, H-2); 12.16 (bs, 1H, NH). 
13

C NMR 

(125.7 MHz, DMSO-d6): 98.03 (C-7); 102.87 (C-5); 125.67 (CH-p-Ph); 125.79 (CH-o-Ph); 
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129.35 (CH-m-Ph); 129.91 (CH-8); 138.94 (C-i-Ph); 151.83 (C-4); 152.79 (CH-2); 157.52 (C-

6). IR(KBr):3456, 3100, 3066, 1644,1611, 1597, 1582, 1479, 1318. HRMS (ESI) calculated 

for C12H11N4S: 243.0699; found: 243.0699 

4-Chloro-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Chloro-7-(phenylsulfanyl)-7-deazapurine) (44a) 

6-Chloro-7-deazapurine 8 (307 mg, 2 mmol) and diphenyldisulfide (2.2 

g, 10 mmol) were used as starting compounds to give product 44a (472 

mg, 90%) as white solids. Diphenyldisulfide was divided into five 

portions and each one was added every 10 hours until complete 

consumption of staring material as monitored by TLC.  Chromatography was started with pure 

hexane (to remove excess of diphenyldisulfide) and followed by  hexane/EtOAc  5:1 to 1:1. 

Crystallization in hexan/EtOAc gave white crystals. M.p. 184-186 °C
 1

H NMR (499.8 MHz, 

DMSO-d6): 7.06 (m, 2H, H-o-Ph); 7.12 (m, 1H, H-p-Ph); 7.24 (m, 2H, H-m-Ph); 8.12 (d, 1H, 

J = 2.6, H-6); 8.65 (s, 1H, H-2); 13.11 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 99.70 

(C-5); 116.29 (C-4a); 125.49 (CH-p-Ph); 125.90 (CH-o-Ph); 129.25 (CH-m-Ph); 136.32 (CH-

6); 139.13 (C-i-Ph); 150.98 (C-4); 151.44 (CH-2); 153.31 (C-7a). IR(KBr): 3072, 2963, 2813, 

1596, 1551, 1478, 1439, 1338, 1228, 975, 844, 734. HRMS (ESI) calculated for C12H9N3ClS: 

262.0200; found: 262.0200. 

7-Benzyl-4-phenyl-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-phenyl-7-(phenylsulfanyl)-7-deazapurine) (53a) 

7-Benzyl-6-phenyl-7-deazapurine 2 (570 mg, 2 mmol) and 

diphenyldisulfide (1.1 g, 5 mmol) was used as starting compound and 

after 18 h the reaction give product 53a (157 mg, 20%) as white solids 

after chromatography eluting with hexane/EtOAc  10:1 to 4:1. 

Crystallization in hexan/EtOAc gave white crystals. Recovery of 

starting compound 2 was found (405 mg, 71%). M.p. 91-94 °C
 1

H NMR 

(500.0 MHz, CDCl3): 5.55 (s, 2H, CH2Ph); 6.71 (m, 2H, H-o-SPh); 6.98 (m, 1H, H-p-SPh); 

6.99 (m, 2H, H-m-SPh); 7.29 (m, 2H, H-m-Bn); 7.33 (m, 2H, H-o-Bn); 7.35-7.40 (m, 4H, H-

m,p-Ph, H-p-Bn); 7.48 (s, 1H, H-6); 7.52 (m, 2H, H-o-Ph); 9.01 (s, 1H, H-2). 
13

C NMR (125.7 
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MHz, CDCl3): 48.23 (CH2Ph); 102.82 (C-5); 115.90 (C-4a); 125.25 (CH-p-SPh); 126.80 (CH-

o-SPh); 127.38 (CH-m-Bn); 127.85 (CH-o-Bn); 128.28 (CH-p-Bn); 128.45 (CH-m-SPh); 

129.03 (CH-m-Ph); 129.20 (CH-p-Ph); 129.80 (CH-o-Ph); 135.25 (CH-6); 136.14 (C-i-Ph); 

136.78 (C-i-Bn); 137.81 (C-i-SPh); 151.93 (CH-2); 152.66 (C-7a); 160.93 (C-4). IR(KBr): 

1552, 1451, 1414, 1330, 983. HRMS (ESI) calculated for C25H20N3S: 394.1372; found: 

394.1371. Anal. calculated for C25H19N3S (393.13): C 76.31%, H 4.87%, N 10.68%, S 8.15%; 

found: C 76.13%, H 4.69%, N 10.43%, S 8.02%. 

5.5.2 Sulfenytion of 9-deazapurines  

General Procedure: 

A mixture of CuI (0.2 mmol, 10 mol %) and 2,2’-bipyridine (0.4 mmol, 20 mol %)   in DMF 

(10 mL) was stirred at rt for 15 minutes and then was added to mixture of 9-deazapurines 38-

40 (2 mmol), disulphides (3 mmol) in DMF (20 mL) and then was stirred at 110°C under air 

atmosphere for 48 hours until complete consumption of staring material as monitored by TLC. 

The solution was then cooled to room temperature, diluted with EtOAc (30 mL), washed with 

1M solution of sodium salt of EDTA (20 mL). Aqueous solution was then extracted three 

times with EtOAc and combined organic layers were dried over Na2SO4, filtered, and 

evaporated under vacuum. The crude product was purified by column chromatography on 

silica gel. 

4-Phenyl-7-(phenylsulfanyl)-5H-pyrrolo[3,2-d]pyrimidine  

(6-Phenyl-9-(phenylsulfanyl)-9-deazapurine) (41a) 

6-Phenyl-9-deazapurine 38 (390 mg, 2 mmol) and diphenyldisulfide (656 mg, 

3 mmol) were used as starting compounds to give product 41a (596 mg, 98%) 

as white solids after chromatography eluting with hexane/EtOAc 5:1 to 1:2.  

Crystallization in hexan/EtOAc gave white needles. M.p. 210-216 °C. 
1
H NMR 

(499.8 MHz, DMSO-d6): 7.10 (m, 3H, H-o,p-SPh); 7.22 (m, 2H, H-m-SPh); 

7.61 (m, 1H, H-p-Ph); 7.63 (m, 2H, H-m-Ph); 8.11 (m, 2H, H-o-Ph); 8.29 (s, 

1H, H-6); 8.95 (s, 1H, H-2); 12.56 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 101.28 

(C-7); 124.83 (C-4a); 125.30 (CH-p-SPh); 126.02 (CH-o-SPh); 128.99 (CH-o-Ph); 129.10, 

129.15 (CH-m-Ph, CH-m-SPh); 130.61 (CH-p-Ph); 135.77 (C-i-Ph); 138.63 (C-i-SPh); 140.37 
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(CH-6); 148.88 (C-4); 151.29 (CH-2); 151.43 (C-7a). IR(KBr): 3066, 2835, 1594, 1542, 1505, 

1490, 1480, 1429. HRMS (ESI) calculated for C18H14N3S: 304.0902; found: 304.0902. 

7-(Methylsulfanyl)-4-phenyl-5H-pyrrolo[3,2-d]pyrimidine  

(9-(Methylsulfanyl)-6-phenyl-9-deazapurine) (41b) 

6-Phenyl-9-deazapurine 38 (390 mg, 2 mmol) and dimethyldisulfide (1.26 

mL, 14 mmol) was used as starting compounds to give product 41b (145 mg, 

30%) as yellow solids after chromatography with hexane/EtOAc 5:1 to 1:2. 

M.p. 196-206 °C.
 1

H NMR (499.8 MHz, DMSO-d6): 2.46 (s, 3H, CH3S); 7.59 

(m, 1H, H-p-Ph); 7.61 (m, 2H, H-m-Ph); 7.94 (s, 1H, H-6); 8.07 (m, 2H, H-o-

Ph); 8.94 (s, 1H, H-2); 12.15 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 18.12 (CH3S); 

107.46 (C-7); 124.55 (C-4a); 128.88 (CH-o-Ph); 129.17 (CH-m-Ph); 130.54 (CH-p-Ph); 

135.06 (CH-6); 135.99 (C-i-Ph); 148.42 (C-4); 150.50 (CH-2); 150.54 (C-7a). IR(KBr): 3053, 

2988, 2924, 2824, 1604, 1592, 1537, 1502, 1486, 1471, 1421, 1115, 866, 771. HRMS (ESI) 

calculated for C13H12N3S: 242.0746; found: 242.0746. 

7-((4-Methoxyphenyl)sulfanyl)-4-phenyl-5H-pyrrolo[3,2-d]pyrimidine  

(9-((4-Methoxyphenyl)sulfanyl)-6-phenyl-9-deazapurine) (41c) 

6-Phenyl-9-deazapurine 38 (390 mg, 2 mmol) and bis(4-methoxyphenyl) 

disulphide (836 mg, 3 mmol) were used as starting compounds to give product 

10c (566 mg, 85%) as yellow crystals after chromatography eluting with 

hexane/EtOAc 5:1 to 1:2. M.p. 175-177 °C.
 1

H NMR (600.1 MHz, CDCl3): 

3.63 (s, 3H, CH3O); 6.63 (m, 2H, H-m-SC6H4OMe); 7.03 (m, 2H, H-m-

SC6H4OMe); 7.20 (m, 2H, H-m-Ph); 7.26 (m, 1H, H-p-Ph); 7.72 (d, 1H, J = 

3.0, H-6); 7.86 (m, 2H, H-o-Ph); 8.66 (s, 1H, H-2); 12.59 (bs, 1H, NH). 
13

C 

NMR (150.9 MHz, CDCl3): 55.10 (CH3O); 104.13 (C-7); 114.33 (CH-m-SC6H4OMe); 125.56 

(C-4a); 128.15 (C-i-SC6H4OMe); 128.50 (CH-o-Ph); 128.60 (CH-m-Ph); 128.71 (CH-o-

SC6H4OMe); 130.16 (CH-p-Ph); 135.34 (C-i-Ph); 139.05 (CH-6); 149.91 (C-4); 150.56 (C-

7a); 150.77 (CH-2); 157.91 (C-p-SC6H4OMe). IR(CDCl3): 3453, 3066, 2838, 2231, 1671, 

1595, 1537, 1493, 1464, 1287, 1244, 1182, 1034. HRMS (ESI) calculated for C19H16ON3S: 

334.1009; found: 334.1008. 
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7-((4-Nitrophenyl)sulfanyl)-4-phenyl-5H-pyrrolo[3,2-d]pyrimidine  

(9-((4-Nitrophenyl)sulfanyl)-6-phenyl-9-deazapurine) (41d) 

6-Phenyl-9-deazapurine 38 (390 mg, 2 mmol) and 4-nitrophenyl disulphide 

(926 mg, 3 mmol) were used as starting compounds to give product 41d (348 

mg, 50%) as yellow crystals after chromatography eluting with 

hexane/EtOAc 5:1 to 1:2. M.p. 114-118 °C.
 1

H NMR (600.1 MHz, DMSO-d6): 

7.25 (m, 2H, H-o-SC6H4NO2); 7.64 (m, 1H, H-p-Ph); 7.65 (m, 2H, H-m-Ph); 

8.07 (m, 2H, H-m-SC6H4NO2); 8.13 (m, 2H, H-o-Ph); 8.41 (s, 1H, H-6); 8.96 

(s, 1H, H-2); 12.75 (bs, 1H, NH). 
13

C NMR (150.9 MHz, DMSO-d6): 98.61 

(C-7); 124.20 (CH-m-SC6H4NO2); 125.11 (C-4a); 125.56 (CH-o-SC6H4NO2); 129.01 (CH-o-

Ph); 129.18 (CH-m-Ph); 130.72 (CH-p-Ph); 135.65 (C-i-Ph); 140.90 (CH-6); 144.80 (C-p-

SC6H4NO2); 149.09 (C-i-SC6H4NO2); 149.17 (C-4); 151.18 (C-7a); 151.49 (CH-2). IR(KBr): 

3095, 3065, 1596, 1580, 1540, 1506, 1322, 1115, 1089, 854. HRMS (ESI) calculated for 

C18H13O2N4S:349.0754; found: 349.0753. 

4-Chloro-7-(phenylsulfanyl)-5H-pyrrolo[3,2-d]pyrimidine  

(6-Chloro-9-(phenylsulfanyl)-9-deazapurine) (41e) 

6-Chloro-9-deazapurine 40 (307 mg, 2 mmol) and diphenyldisulfide (3.1 g, 14 

mmol) were used as starting compounds to give product 41e (471 mg, 90%) as 

white solids. Diphenyldisulfide was divided into seven portions and each one 

was added every 10 hours until complete consumption of staring material as 

monitored by TLC. Chromatography was started with hexane (to remove 

excess of diphenyldisulfide) and followed by hexane/EtOAc  5:1 to 1:2. Crystallization in 

hexan/EtOAc gave white crystals. [Do not excess the reaction time (80 hours) to avoid 

forming mixture of products.] M.p. 224-226 °C
 1

H NMR (499.8 MHz, DMSO-d6):7.06 (m, 

2H, H-o-Ph); 7.10 (m, 1H, H-p-Ph); 7.21 (m, 2H, H-m-Ph); 8.39 (s, 1H, H-6); 8.69 (s, 1H, H-

2); 13.08 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 102.28 (C-7); 125.36 (C-4a); 

125.48 (CH-p-Ph); 126.11 (CH-o-Ph); 129.16 (CH-m-Ph); 138.12 (C-i-Ph); 140.98 (CH-6); 

142.99 (C-4); 150.43 (CH-2); 151.38 (C-7a). IR(KBr): 3072, 1796, 1612, 1584, 1524, 1494, 

1478, 1422, 1393, 1215, 868. HRMS (ESI) calculated for C12H9N3ClS: 262.0200; found: 

262.0200. 
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Optimization of bypirydine ligand 

A mixture of CuI (0.1 mmol, 10 mol %) and bypiridine ligand (10-100 mol%) in DMF (5 mL) 

was stirred at rt for 15 minutes and then was added to mixture of 9-deazapurines 7 (195 mg, 1 

mmol) and diphenyl disulphides (110 mg, 0.5 mmol) in DMF (5 mL) and then was stirred at 

110°C under air atmosphere for 18 hours. The solution was then cooled to room temperature, 

diluted with EtOAc (10 mL), washed with 1M solution of sodium salt of EDTA (5 mL). 

Aqueous solution was then extracted three times with EtOAc and combined organic layers 

were dried over Na2SO4, filtered, and evaporated under vacuum and NMR of reaction mixture 

was measured. 

 

 

NMR conversion 

additive 7 10a 11a 

bpy (10 mol%) 54% 43% 3% 

bpy (20 mol%) 55% 45% 0% 

bpy (50 mol%) 22%  78%  0% 

bpy (100 mol%) 15%  85%  0% 

dtbpy (10 mol%) 35% 63% 2% 

dtbpy (20 mol%) 29% 71% 0% 

dtbpy (50 mol%) 21% 79% 0% 

dtbpy (100 mol%) 0% 100%
 

0% 

 

As the most economical ligand was chosen bpy (20 mol%) for substrates 41a-d and the time 

was prolonged until complete conversion (generally 48 hours). To avoid mixture of products 
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for substrate 41e was used as a ligand more effective dtbpy (20 mol%) to finish reaction up to 

80 hours. 

 

Halogenation of 9-deazapurines. General Procedure: 

A mixture of 9-deazapurine 38 or 40 (0.5 mmol) and CuX, (I, Br2) (0.6 mmol) in DMF (5 mL) 

was stirred at 110°C under air atmosphere for 18 hours until complete consumption of staring 

material as monitored by TLC. The solution was then cooled to room temperature, diluted 

with EtOAc (15 mL), washed with 1M solution of sodium salt of EDTA (10 mL). Aqueous 

solution was then extracted three times with EtOAc and combined organic layers were dried 

over Na2SO4, filtered, and evaporated under vacuum. The crude product was purified by 

column chromatography on silica gel. 

7-Iodo-4-phenyl-5H-pyrrolo[3,2-d]pyrimidine 

(9-Iodo-6-phenyl-9-deazapurine) (42a) 

6-Phenyl-9-deazapurine 38 (98 mg, 0.5 mmol)  and CuI (115 mg, 0.6 mmol) 

were used as starting compound to give product 42a (130 mg, 81%) as white 

solid after chromatography eluting with hexane/EtOAc 5:1 to 1:2. 
1
H NMR 

(500.0 MHz, DMSO-d6): 7.60 (m, 3H, H-m,p-Ph); 8.09 (m, 2H, H-o-Ph); 8.11 

(s, 1H, H-6); 8.97 (s, 1H, H-2); 12.43 (bs, 1H, NH). 
13

C NMR (125.7 MHz, 

DMSO-d6): 58.43 (C-7); 124.08 (C-4a); 128.90 (CH-o-Ph); 129.07 (CH-m-Ph); 130.54 (CH-p-

Ph); 135.57 (C-i-Ph); 137.73 (CH-6); 148.48 (C-4); 150.95 (CH-2); 151.19 (C-7a). IR(KBr): 

3434, 1605, 1595, 1539, 1504, 1486.  HRMS (ESI) calculated for C12H9N3I: 321.9836; found: 

321.9835 

7-Bromo-4-phenyl-5H-pyrrolo[3,2-d]pyrimidine 

(9-Bromo-6-phenyl-9-deazapurine) (42b) 

6-Phenyl-9-deazapurine 38 (98 mg, 0.5 mmol) and CuBr2 (134 mg, 0.6 mmol) 

were used as starting compound to give product 42b (123 mg, 75%) as white 

solid after chromatography eluting with hexane/EtOAc 5:1 to 1:2. M.p. 264 - 

294 °C.
 1

H NMR (499.8 MHz, DMSO-d6): 7.59 (m, 1H, H-p-Ph); 7.62 (m, 2H, 

H-m-Ph); 8.08 (m, 2H, H-o-Ph); 8.15 (d, 1H, J = 3.1, H-6); 8.98 (s, 1H, H-2); 

12.40 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 89.68 (C-7); 123.66 (C-4a); 128.96 
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(CH-o-Ph); 129.14 (CH-m-Ph); 130.68 (CH-p-Ph); 133.44 (CH-6); 135.53 (C-i-Ph); 147.88 

(C-7a); 148.77 (C-4); 150.98 (CH-2). IR(KBr): 3438, 3054, 2929, 2788, 1607, 1597, 1545, 

1508, 1490,1432, 1184. HRMS (ESI) calculated for C12H9N3Br: 273.9974; found: 273.9974. 

4-Chloro-7-iodo-5H-pyrrolo[3,2-d]pyrimidine 

(6-Chloro-9-iodo-9-deazapurine) (42c) 

6-Chloro-9-deazapurine 40 (77 mg, 0.5 mmol)  and CuI (115 mg, 0.6 mmol) 

were used as starting compound to give product 42c (91 mg, 65%) as white 

solid after chromatography eluting with hexane/EtOAc 5:1 to 1:2. 
1
H NMR 

(499.8 MHz, DMSO-d6): 8.20 (s, 1H, H-6); 8.71 (s, 1H, H-2); 12.95 (bs, 1H, 

NH). 
13

C NMR (125.7 MHz, DMSO-d6): 58.68 (C-7); 124.59 (C-4a); 138.45 (CH-6); 142.30 

(C-4); 150.00 (CH-2); 151.13 (C-7a). IR(KBr): 3436, 3120, 3092, 2972, 1609, 1527, 1494, 

1417, 1354, 1245, 1177, 898, 860. HRMS (ESI) calculated for C6H4N3ClI: 279.9133; found: 

279.9133. 

5.5.3 Sulfenytion of 9-benzyl-6-phenyl-9H-purine 

A 20 mL sealable tube equipped with a magnetic stirring bar was charged with all solid 

reaction components, 9-benzyl-6-phenyl-9H-purine 1 (286 mg, 1 mmol), disulphide (2.5 

mmol), tBuOLi (240 mg, 3 mmol) and 1,4-dioxane (2 mL) via a syringe. The vessel was close 

by Teflon-coated screw cap under Ar and was placed in a pre-heated oil bath at 130 °C and 

stirred until complete consumption of staring material as monitored by TLC, approx. 130 

hours. It was cooled to room temperature and diluted with ethyl acetate (15 mL). The resulting 

solution was directly filtered through a filter paper and concentrated under reduced pressure.  

9-Benzyl-6-phenyl-8-(phenylsulfanyl)-9H-purine (43a) 

Diphenyldisulfide (546 mg, 2.5 mmol) was used as starting compound 

to give product 43a (237 mg, 60%) as white crystals after 

chromatography eluting with hexane/EtOAc 5:1 to 1:2. M.p. 101 - 104 

°C.
 1

H NMR (499.8 MHz, CDCl3): 5.50 (s, 2H, CH2Ph); 7.27-7.35 (m, 

5H, H-o,m,p-Bn); 7.37-7.41 (m, 5H, H-m,p-PhS); 7.45-7.50 (m, 3H, 

H-m,p-Ph); 7.59 (m, 2H, H-o-PhS); 8.74 (m, 2H, H-o-Ph); 8.96 (s, 1H, 

H-2). 
13

C NMR (125.7 MHz, CDCl3): 46.59 (CH2Ph); 127.75 (CH-o-Bn); 128.18 (CH-p-Bn); 
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128.50 (CH-m-Ph); 128.68 (C-i-PhS); 128.82 (CH-m-Bn); 129.03 (CH-p-PhS); 129.37 (CH-

m-PhS); 129.68 (CH-o-Ph); 130.78 (CH-p-Ph); 131.16 (C-5); 132.91 (CH-o-PhS); 135.24 (C-

i-Bn); 135.54 (C-i-Ph); 151.95 (CH-2); 152.37 (C-6); 152.92 (C-8); 154.46 (C-4). IR(KBr): 

2921, 2851, 1580, 1561, 1495, 1459, 1429, 1258, 764. HRMS (ESI) calculated for C24H19N4S: 

395.1325; found: 395.1323. 

9-Benzyl-8-[(4-methoxyphenyl)sulfanyl]-6-phenyl-9H-purine (43b) 

Bis(4-methoxyphenyl) disulphide (696 mg, 2.5 mmol) was used as 

starting compound to give product 43b (238 mg, 56% ) as white 

crystals after chromatography eluting with hexane/EtOAc 5:1 to 

1:2. M.p. 124-127 °C.
 1

H NMR (500.0 MHz, CDCl3): 3.85 (s, 3H, 

CH3O); 5.49 (s, 2H, CH2Ph); 6.94 (m, 2H, H-m-SC6H4OMe); 

7.28-7.36 (m, 5H, H-o,m,p-Bn); 7.45-7.50 (m, 3H, H-m,p-Ph); 

7.56 (m, 2H, H-o-SC6H4OMe); 8.73 (m, 2H, H-o-Ph); 8.95 (s, 1H, H-2). 
13

C NMR (125.7 

MHz, CDCl3): 46.47 (CH2Ph); 55.43 (CH3O); 114.96 (CH-m-SC6H4OMe); 118.00 (C-i-

SC6H4OMe); 127.73 (CH-o-Bn); 128.16 (CH-p-Bn); 128.47 (CH-m-Ph); 128.81 (CH-m-Bn); 

129.65 (CH-o-Ph); 130.73 (CH-p-Ph); 131.10 (C-5); 135.21 (C-i-Bn); 135.39 (C-i-Ph); 135.84 

(CH-o-SC6H4OMe); 151.47 (CH-2); 151.61 (C-6); 154.67 (C-4,8); 160.76 (C-p-SC6H4OMe). 

IR (KBr): 3066, 3022, 2953, 2923, 2854, 1586, 1559, 1494, 1542, 1443, 1323, 1302, 1245, 

1171, 1030, 833, 770, 725, 692. HRMS (ESI) calculated for C25H21ON4S: 425.1431; found: 

425.1429. 

5.6 C-H sulfenylation in synthesis of substituted 7-deazapurine 

bases and ribonucleosides 

The synthetic approach to target 7-arylsulfanyl-7-deazapurines was based on recently 

developed direct C-H sulfenylation
119

 of 6-chloro-7-deazapurine 8 catalysed by CuI and dtbpy 

under oxygen atmosphere. This modified procedure (oxygen atmosphere and dtbpy) gave 

better results than previously published methods developed for related heterocycles.
119

 

Sulfenytion of 7-deazapurines. General Procedure: 

A mixture of 6-chlor-7-deazapurine (15.36 g, 100 mmol), disulphides (100 mmol), CuI (1.9 g, 

10 mmol) and dtbpy (5.37 g, 20 mmol) in DMF (300 mL) was stirred at 110°C under oxygen 
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for 18 hours until complete consumption of staring material as monitored by TLC. The 

solution was then cooled to room temperature, diluted with EtOAc (200 mL), washed with 1M 

solution of sodium salt of EDTA (100 mL). Aqueous solution was then extracted three times 

with EtOAc and combined organic layers were dried over Na2SO4, filtered, and evaporated 

under vacuum. The crude product was purified by column chromatography on silica gel. 

 

4-Chloro-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Chloro-7-(phenylsulfanyl)-7-deazapurine) (44a) 

Diphenyldisulfide (21.83 g, 100 mmol) was used as starting compounds 

to give product 44a (22.25 g, 85%) as yellowish solids. 

Chromatography was started with pure hexane (to remove excess of 

disulphide) and followed by hexane/EtOAc 5:1 to 1:1. Crystallization in 

ethanol gave white crystals. 
1
H NMR was compared with published data.

119
 

4-Chloro-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Chloro-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45a) 

2-Thienyl disulphide (23.04 g, 100 mmol) was used as starting 

compounds to give product 45a (25.5 g, 95%) as white solids. 

Chromatography was started with pure hexane (to remove excess of 

disulphide) and followed by hexane/EtOAc 5:1 to 1:1. M.p. 176 °C.
 1

H 

NMR (500 MHz, DMSO-d6): 6.98 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-thienyl); 7.21 (dd, 

1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-thienyl); 7.51 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-

thienyl); 8.06 (s, 1H, H-6); 8.59 (s, 1H, H-2); 13.03 (bs, 1H, NH). 
13

C NMR (125.7 MHz, 

DMSO-d6): 104.01 (C-5); 115.45 (C-4a); 128.03 (CH-4-thienyl); 129.25 (CH-5-thienyl); 

130.61 (CH-3-thienyl); 134.76 (CH-6); 136.71 (C-2-thienyl); 150.92 (C-4); 151.40 (CH-2); 

152.76 (C-7a). IR (KBr): 3066, 2944, 2809, 2770, 1601, 1556, 1446, 1401, 1401, 1332, 1239, 

1216, 1003, 973, 848, 716, 623. HRMS (ESI) calculated for C10H7N3ClS2: 267.9767; found: 

267.9764.  
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Glycosylation of 7-sulfanyl-7-deazapurines. General Procedure: 

7-Sulfanyl-7-deazapurine 44a-45a (40 mmol) was suspended in acetonitrile (200 ml) and BSA 

(10.4 ml, 40 mmol) was added. Reaction mixture was stirred for 15 min at rt (during this time 

clear solution was formed). Then TMSOTf (14.46 ml, 80 mmol) and protected ribofuranose 

(20.2 g, 40 mmol) were added. Mixture was heated to 80 °C for 6 h. After cooling to rt, the 

mixture was extracted with EtOAc and water, organic layer was washed with NaHCO3 and 

again with water, dried over MgSO4 and evaporated under reduced pressure. Crude product 

was purified using column chromatography with chloroform. 

 

4-Chloro-5-(phenylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-d-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-Chloro-7-(phenylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-d-ribofuranosyl)-7-deazapurine) 

(46a) 

Reaction of 44a (10.4 g, 40 mmol) according to the general 

procedure afforded compound 46a (13.84 g, 49%) as 

yellowish foam. M.p. 89 °C.
 1

H NMR (600.1 MHz, CDCl3): 

4.71 (dd, 1H, Jgem = 12.3, J5'b,4' = 3.8, H-5'b); 4.82 (ddd, 1H, 

J4',3' = 4.7, J4',5' = 3.8, 3.1, H-4'); 4.89 (dd, 1H, Jgem = 12.3, 

J5'a,4' = 3.1, H-5'a); 6.14 (dd, 1H, J3',2' = 5.8, J3',4' = 4.7, H-3'); 

6.23 (dd, 1H, J2',3' = 5.8, J2',1' = 5.4, H-2'); 6.66 (d, 1H, J1',2' = 

5.4, H-1'); 7.12 (m, 2H, H-o-Ph); 7.13 (m, 1H, H-p-Ph); 7.21 

(m, 2H, H-m-Ph); 7.37, 7.41, 7.42 (3 × m, 3 × 2H, H-m-Bz); 

7.55, 7.59 (2 × m, 3H, H-p-Bz); 7.64 (s, 1H, H-6); 7.93, 8.01, 8.08 (3 × m, 3 × 2H, H-o-Bz); 

8.58 (s, 1H, H-2). 
13

C NMR (150.9 MHz, CDCl3): 63.47 (CH2-5'); 71.43 (CH-3'); 74.09 (CH-

2'); 80.64 (CH-4'); 87.17 (CH-1'); 105.38 (C-5); 117.87 (C-4a); 125.92 (CH-p-Ph); 127.26 

(CH-o-Ph); 128.38 (C-i-Bz); 128.53, 128.57 (CH-m-Bz); 128.67 (C-i-Bz); 128.68 (CH-m-Bz); 

128.99 (CH-m-Ph); 129.21 (C-i-Bz); 129.66, 129.83, 129.84 (CH-o-Bz); 132.79 (CH-6); 

133.52, 133.77, 133.81 (CH-p-Bz); 137.52 (C-i-Ph); 151.81 (CH-2); 152.48 (C-7a); 153.22 

(C-4); 165.04, 165.35, 166.12 (CO-Bz). IR (KBr): 3123, 3058, 3028, 3004, 2947, 1727, 1601, 

1574, 1541, 1452, 1263, 1123, 1090, 707. HRMS (ESI) calculated for C38H28O7N3ClNaS: 

728.1229; found: 728.1233. 



167 
 

4-Chloro-5-(2-thienylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-d-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-Chloro-7-(2-thienylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-d-ribofuranosyl)-7-deazapurine) 

(47a) 

To form clear solution double amount of BSA (20.8 ml, 80 

mmol) was added. Reaction of 45a (10.71 g, 40 mmol) 

according to the general procedure afforded compound 47a 

(8.5 g, 30%) as white foam. M.p. 72 °C.
 1

H NMR (500 MHz, 

CDCl3): 4.67 (dd, 1H, Jgem = 12.2 Hz, J5´a,4´ = 3.9 Hz, H-5´a); 

4.79 (m, 1H, H-4´); 4.86 (dd, 1H, Jgem = 12.2 Hz, J5´b,4´ = 3.1 

Hz, H-5´b); 6.12 (dd, 1H, J3´,2´ = 5.8 Hz, J3´,4´ = 4.5 Hz, H-3'); 

6.20 (t, 1H, J2´,1´ = J2´,3´ = 5.7 Hz, H-2'); 6.61 (d, 1H, J1´,2´ = 

5.6 Hz, H-1'); 6.89 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-

Sthienyl); 7.15 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.25 (dd, 1H, J5,4 = 5.3 Hz, 

J5,3 = 1.3 Hz, H-5-Sthienyl); 7.36 and 7.40 (2×m, 2×2H, CH-m-Bz); 7.44 (s, 1H, H-6); 7.48 

(m, 2H, H-m-Bz); 7.51 – 7.64 (m, 3H, H-p-Bz); 7.92, 7.99 and 8.10 (3×m, 3×2H, H-o-Bz); 

8.57 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 63.62 (CH2-5´); 71.41 (CH-3´); 74.01 (CH-

2´); 80.59 (CH-4´); 87.04 (CH-1´); 109.91 (C-5); 117.06 (C-4a); 127.56 (CH-4-Sthienyl); 

128.40 (C-i-Bz); 128.49 and 128.53 (CH-m-Bz); 128.68 (C-i-Bz); 128.70 (CH-m-Bz); 128.28 

(C-i-Bz); 129.53 (CH-5-Sthienyl); 129.73, 129.80 and 129.82 (CH-o-Bz); 130.00 (CH-6); 

132.70 (CH-3-Sthienyl); 133.52, 133.72 and 133.75 (CH-p-Bz); 133.86 (C-2-Sthienyl); 151.63 

(CH-2); 151.97 (C-7a); 152.90 (C-4); 165.02, 165.32 and 166.09 (CO-Bz). IR (KBr): 3102, 

3087, 3066, 3031, 3007, 2950, 1730, 1601, 1583, 1538, 1452, 1314, 1263, 1219, 1120, 1096, 

1069, 707. HRMS (ESI) calculated for C36H26O7N3ClNaS2: 734.0796; found: 734.0793. 

5.6.1 Modification at position 6 

General procedure for the Stille coupling 

Compound 44a-47a (1 equiv.), tributylstannane (1.2 equiv.) and PdCl2(PPh3)2 (5 mol%) under 

argon atmosphere were dissolved in anhydrous DMF and heated to 100 °C for 8h. Then, 

solvent was evaporated under reduced pressure and crude product was purified using HPFC. 
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5-(Phenylsulfanyl)-4-(thiophen-2-yl)-7H-pyrrolo[2,3-d]pyrimidine 

(7-(Phenylsulfanyl)-6-(thiophen-2-yl)-7-deazapurine) (44b) 

Deazapurine 44a (523 mg, 2 mmol), 2-(tributylstannyl)thiophene (0.762 

mL, 2.4 mmol) and 15 mL DMF were used according to the general 

procedure. Crude product was purified using HPFC (hexane/EtOAc, 0–

50% EtOAc) and product 44b was obtained as yellowish solid (496 mg, 

80%). Crystallization in ethanol/H2O gave yellowish needles. M.p. 240 °C.
 1

H NMR (600.1 

MHz, DMSO-d6): 6.92 (m, 2H, H-o-Ph); 7.03 (m, 1H, H-p-Ph); 7.07 (dd, 1H, J4,5 = 5.1, J4,3 = 

3.8, H-4-thienyl); 7.15 (m, 2H, H-m-Ph); 7.69 (dd, 1H, J5,4 = 5.1, J5,3 = 1.1, H-5-thienyl); 8.10 

(s, 1H, H-6); 8.39 (dd, 1H, J3,4 = 3.8, J3,5 = 1.1, H-3-thienyl); 8.78 (s, 1H, H-2); 12.93 (bs, 1H, 

NH). 
13

C NMR (150.9 MHz, DMSO-d6): 98.90 (C-5); 113.95 (C-4a); 128.11 (CH-p-Ph); 

125.64 (CH-o-Ph); 128.11 (CH-4-thienyl); 129.18 (CH-m-Ph); 130.66 (CH-5-thienyl); 131.87 

(CH-3-thienyl); 136.84 (CH-6); 139.19 (C-i-Ph); 141.57 (C-2-thienyl); 151.15 (CH-2); 152.10 

(C-4); 154.33 (C-7a). IR (KBr): 3105, 2986, 2869, 2827, 1595, 1541, 1479, 1431, 1308, 1260, 

806, 740, 707. HRMS (ESI) calculated for C16H12N3S2: 310.0468; found: 310.0467. Anal. 

calculated for C16H11N3S2·0.15H2O: C, 61.57; H, 3.65; N, 13.46; S, 20.54. Found: C, 61.85; 

H, 3.55; N, 13.39; S, 20.26. 

4-(Furan-2-yl)-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(Furan-2-yl)-7-(phenylsulfanyl)-7-deazapurine) (44c) 

Deazapurine 44a (523 mg, 2 mmol), 2-(tributylstannyl)furane (0.755 

mL, 2.4 mmol) and 15 mL DMF were used according to the general 

procedure. Crude product was purified using HPFC (hexane/EtOAc, 0–

50% EtOAc) and product 44c was obtained as yellowish solid (510 mg, 

87%). Crystallization in ethanol/H2O gave yellowish needles. M.p. 234 °C.
 1

H NMR (500.0 

MHz, DMSO-d6): 7.58 (dd, 1H, J4,3 = 3.4, J4,5 = 1.7, H-4-furyl); 6.99 (m, 2H, H-o-Ph); 7.03 

(m, 1H, H-p-Ph); 7.16 (m, 2H, H-m-Ph); 7.40 (dd, 1H, J3,4 = 3.4, J3,5 = 0.8, H-3-furyl); 7.70 

(dd, 1H, J5,4 = 1.7, J5,3 = 0.8, H-5-furyl); 8.05 (s, 1H, H-6); 8.81 (s, 1H, H-2); 12.87 (bs, 1H, 

NH). 
13

C NMR (150.9 MHz, DMSO-d6): 99.51 (C-5); 112.27 (CH-4-furyl); 113.48 (C-4a); 

114.77 (CH-3-furyl); 125.14 (CH-p-Ph); 125.65 (CH-o-Ph); 129.01 (CH-m-Ph); 136.57 (CH-

6); 139.69 (C-i-Ph); 145.53 (CH-5-furyl); 147.73 (C-4); 150.92 (C-2-furyl); 151.32 (CH-2); 
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154.33 (C-7a). IR (KBr): 3108, 2989, 2869, 2821, 1580, 1541, 1479, 1443, 1314, 827, 731. 

HRMS (ESI) calculated for C16H12ON3S: 294.0696; found: 294.0696. Anal. calculated for 

C16H11N3OS·0.25H2O: C, 64.52; H, 3.89; N, 14.11; S, 10.76. Found: C, 64.65; H, 3.73; N, 

13.99; S, 10.47. 

4-(Thiophen-2-yl)-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(Thiophen-2-yl)-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45b) 

Deazapurine 45a (535 mg, 2 mmol), 2-(tributylstannyl)thiophene (0.762 

mL, 2.4 mmol) and 15 mL DMF were used according to the general 

procedure.  Crude product was purified using HPFC (EtOAc/MeOH, 0–

5% MeOH) and product 45b was obtained as yellowish solid (360 mg, 

57%). M.p. 224 °C.
 1

H NMR (500 MHz, DMSO-d6): 6.78 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, 

H-3-Sthienyl); 6.84 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.29 (dd, 1H, J4,5 = 5.1 

Hz, J4,3 = 3.7 Hz, H-4-thienyl); 7.39 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.84 

(dd, 1H, J5,4 = 5.1 Hz, J5,3 = 1.1 Hz, H-5-thienyl); 8.07 (s, 1H, H-6); 8.44 (dd, 1H, J3,4 = 3.7 

Hz, J3,5 = 1.1 Hz, H-3-thienyl); 8.76 (s, 1H, H-2); 12.83 (bs, 1H, NH). 
13

C NMR (150.9 MHz, 

DMSO-d6): 103.50 (C-5); 113.19 (C-4a); 127.76 (CH-4-Sthienyl); 128.21 (CH-4-thienyl); 

129.08 (CH-5-Sthienyl); 129.85 (CH-3-Sthienyl); 160.73 (CH-5-thienyl); 132.46 (CH-3-

thienyl); 135.19 (CH-6); 137.15 (C-2-Sthienyl); 141.41 (C-2-thienyl); 151.16 (CH-2); 152.01 

(C-4); 153.80 (C-7a). IR (KBr): 2977, 2860, 2812, 1598, 1547, 1443, 1320, 809, 701. HRMS 

(ESI) calculated for C14H10N3S3: 316.0031; found: 316.0033. 

4-(Furan-2-yl)-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(Furan-2-yl)-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45c) 

Deazapurine 45a (535 mg, 2 mmol), 2-(tributylstannyl)furane (0.755 mL, 

2.4 mmol) and 15 mL DMF were used according to the general 

procedure. Crude product was purified using HPFC (EtOAc/MeOH, 0–

5% MeOH) and product 45c was obtained as yellowish solid (434 mg, 

72%). M.p. 201°C.
 1

H NMR (500 MHz, DMSO-d6): 6.76 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 1.7 Hz, 

H-4-furyl); 6.92 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 6.99 (dd, 1H, J3,4 = 3.6 

Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.45 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.48 
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(dd, 1H, J3,4 = 3.5 Hz, J3,5 = 0.8 Hz, H-3-furyl); 7.84 (s, 1H, H-6); 8.02 (dd, 1H, J5,4 = 1.7 Hz, 

J5,3 = 0.8 Hz, H-5-furyl); 8.77 (s, 1H, H-2); 12.70 (vbs, 1H, NH). 
13

C NMR (125.7 MHz, 

DMSO-d6): 104.76 (C-5); 112.39 (C-4a); 112.56 (CH-4-furyl); 114. 86 (CH-3-furyl); 127.86 

(CH-4-Sthienyl); 129.24 (CH-5-Sthienyl); 130.57 (CH-3-Sthienyl); 133.65 (CH-6); 136.87 (C-

2-Sthienyl); 145.80 (CH-5-furyl); 147.52 (C-4); 151.18 (C-2-furyl); 151.26 (CH-2); 153.75 

(C-7a). IR (KBr): 3105, 2989, 2860, 2830, 1601, 1586, 1532, 1317, 824, 749. HRMS (ESI) 

calculated for C14H10ON3S2: 300.0260; found: 300.0261. 

5-(Phenylsulfanyl)-4-(thiophen-2-yl)-7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7H-

pyrrolo[2,3-d]pyrimidine 

(7-(Phenylsulfanyl)-6-(thiophen-2-yl)-9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-

deazapurine) (46b) 

Nucleoside 46a (706 mg, 1 mmol), 2-

(tributylstannyl)thiophene (0.381 mL, 1.2 mmol) and 10 mL 

DMF were used according to the general procedure. Crude 

product was purified using HPFC (hexane/EtOAc, 0–20% 

EtOAc) and product 46b was obtained as yellowish solid 

(540 mg, 72%). M.p. 76 °C.
 1

H NMR (500.0 MHz, CDCl3): 

4.73 (dd, 1H, Jgem = 12.2, J5'b,4' = 3.7, H-5'b); 4.83 (ddd, 1H, 

J4',3' = 4.6, J4',5' = 3.7, 3.1, H-4'); 4.90 (dd, 1H, Jgem = 12.2, 

J5'a,4' = 3.1, H-5'a); 6.16 (dd, 1H, J3',2' = 5.8, J3',4' = 4.6, H-3'); 

6.26 (dd, 1H, J2',3' = 5.8, J2',1' = 5.6, H-2'); 6.80 (d, 1H, J1',2' = 

5.6, H-1'); 6.90 (m, 2H, H-o-Ph); 7.01 (dd, 1H, J4,5 = 5.1, J4,3 = 3.8, H-4-thienyl); 7.02 (m, 1H, 

H-p-Ph); 7.07 (m, 2H, H-m-Ph); 7.36, 7.39, 7.41 (3 × m, 3 × 2H, H-m-Bz); 7.42 (dd, 1H, J5,4 = 

5.1, J5,3 = 1.1, H-5-thienyl); 7.54, 7.55, 7.59 (3 × m, 3 × 1H, H-p-Bz); 7.71 (s, 1H, H-6); 7.95, 

8.02, 8.10 (3 × m, 3 × 2H, H-o-Bz); 8.20 (dd, 1H, J3,4 = 3.8, J3,5 = 1.1, H-3-thienyl); 8.84 (s, 

1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 63.63 (CH2-5'); 71.50 (CH-3'); 74.04 (CH-2'); 

80.48 (CH-4'); 86.54 (CH-1'); 104.35 (C-5); 115.63 (C-4a); 125.55 (CH-p-Ph); 126.70 (CH-o-

Ph); 127.68 (CH-4-thienyl); 128.49, 128.53, 128.65 (C-i-Bz, CH-m-Bz); 128.78 (CH-m-Ph); 

129.23 (C-i-Bz); 129.66, 129.83, 129.85 (CH-o-Bz); 129.93 (CH-5-thienyl); 132.57 (CH-3-

thienyl); 133.24 (CH-6); 133.44, 133.72 (CH-p-Bz); 137.57 (C-i-Ph); 140.15 (C-2-thienyl); 
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151.64 (CH-2); 153.48 (C-7a); 154.15 (C-4); 165.07, 165.37, 166.15 (CO-Bz). IR (KBr): 

3055, 3040, 3004, 2950, 2923, 1730, 1541, 1452, 1440, 1317, 1263, 1126, 1093, 1069, 1024, 

704. HRMS (ESI) calculated for C42H32O7N3S2: 754.1676; found: 754.1682. 

4-(Furan-2-yl)-5-(phenylsulfanyl)-7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7H-

pyrrolo[2,3-d]pyrimidine 

(6-(Furan-2-yl)-7-(phenylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-

deazapurine) (46c) 

Nucleoside 46a (706 mg, 1 mmol), 2-(tributylstannyl)furane 

(0.378 mL, 1.2 mmol) and 10 mL DMF were used according 

to the general procedure. Crude product was purified using 

HPFC (hexane/EtOAc, 0–20% EtOAc) and product 46c was 

obtained as yellowish solid (677 mg, 92%). M.p. 67 °C.
 1

H 

NMR (500.0 MHz, CDCl3): 4.72 (dd, 1H, Jgem = 12.2 Hz, 

J5´a,4´ = 3.8 Hz, H-5´a); 4.82 (bdt, 1H, J4´,3´ = 4.6 Hz, J4´,5´a = 

J4´,5´b = 3.4 Hz, H-4´); 4.88 (dd, 1H, Jgem = 12.2 Hz, J5´b,4´ = 

3.1 Hz, H-5´b); 6.15 (bdd, 1H, J3´,2´ = 5.9 Hz, J3´,4´ = 4.6 Hz, 

H-3'); 6.25 (t, 1H, J2´,1´ = J2´,3´ = 5.7 Hz, H-2'); 6.45 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 1.7 Hz, H-4-

furyl); 6.77 (d, 1H, J1´,2´ = 5.5 Hz, H-1'); 7.01 (m, 2H, H-o-SPh); 7.04 (m, 1H, H-p-SPh); 7.12 

(m, 2H, H-m-SPh); 7.34 – 7.44 (m, 6H, CH-m-Bz); 7.45  (dd, 1H, J5,4 = 1.7 Hz, J5,3 = 0.8 Hz, 

H-5-furyl); 7.57 (dd, 1H, J3,4 = 3.5 Hz, J3,5 = 0.8 Hz, H-3-furyl); 7.50 – 7.61 (m, 3H, H-p-Bz); 

7.67 (s, 1H, H-6); 7.94, 8.01 and 8.09 (3×m, 3×2H, H-o-Bz); 8.87 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): 63.62 (CH2-5´); 71.48 (CH-3´); 74.05 (CH-2´); 80.44 (CH-4´); 86.60 

(CH-1´); 104.34 (C-5); 112.04 (CH-4-furyl); 144.95 (C-4a); 116.15 (CH-3-furyl); 125.43 

(CH-p-SPh); 126.46 (CH-o-SPh); 128.48 (C-i-Bz); 128.49, 128.54 and 128.64 (CH-m-Bz); 

128.72 (C-i-Bz); 128.81 (CH-m-SPh); 129.23 (C-i-Bz); 129.66, 129.83 and 129.85 (CH-o-Bz); 

133.39 (CH-6); 133.42, 133.71 and 133.72 (CH-p-Bz); 138.27 (C-i-SPh); 145.11 (CH-5-

furyl); 149.26 (C-4); 150.26 (C-2-furyl); 151.84 (CH-2); 153.59 (C-7a); 165.06, 165.37 and 

166.16 (CO-Bz).IR (KBr): 3117, 3063, 3031, 2959, 2920, 2857, 1730, 1538, 1452, 1317, 

1263, 1120, 1093, 707. HRMS (ESI) calculated for C42H32O8N3S: 738.1905; found: 738.1908. 
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4-(Thiophen-2-yl)-5-(thiophen-2-ylsulfanyl)-7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-

7H-pyrrolo[2,3-d]pyrimidine 

(6-(Thiophen-2-yl)-7-(thiophen-2-ylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-

deazapurine) (47b) 

Nucleoside 47a (712 mg, 1 mmol), 2-

(tributylstannyl)thiophene (0.381 mL, 1.2 mmol) and 10 mL 

DMF were used according to the general procedure. Crude 

product was purified using HPFC with pure DCM and product 

47b was obtained as yellowish solid (595 mg, 78%). M.p. 77 

°C.
 1

H NMR (500 MHz, CDCl3): 4.70 (dd, 1H, Jgem = 12.2 

Hz, J5´a,4´ = 3.9 Hz, H-5´a); 4.81 (m, 1H, H-4´); 4.87 (dd, 1H, 

Jgem = 12.2 Hz, J5´b,4´ = 3.1 Hz, H-5´b); 6.12 (dd, 1H, J3´,2´ = 

5.8 Hz, J3´,4´ = 4.3 Hz, H-3'); 6.18 (t, 1H, J2´,1´ = J2´,3´ = 5.8 Hz, 

H-2'); 6.67 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 6.73 (dd, 1H, J4,5 = 5.3 Hz, J4,3 

= 3.6 Hz, H-4-Sthienyl); 6.76 (d, 1H, J1´,2´ = 5.8 Hz, H-1'); 7.13 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 

1.3 Hz, H-5-Sthienyl); 7.24 (dd, 1H, J4,5 = 5.1 Hz, J4,3 = 3.7 Hz, H-4-thienyl); 7.37, 7.41 and 

7.49 (3×m, 3×2H, H-m-Bz); 7.52 – 7.65 (m, 4H, H-p-Bz, H-5-thienyl); 7.58 (s, 1H, H-6); 

7.93, 8.00 and 8.14 (3×m, 3×2H, H-o-Bz); 8.26 (dd, 1H, J3,4 = 3.8 Hz, J3,5 = 1.2 Hz, H-3-

thienyl); 8.86 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 63.78 (CH2-5´); 71.53 (CH-3´); 

74.07 (CH-2´); 80.63 (CH-4´); 86.42 (CH-1´); 109.61 (C-5); 114.89 (C-4a); 127.33 (CH-4-

Sthienyl); 127.94 (CH-4-thienyl); 128.42 (C-i-Bz); 128.51 and 128.55 (CH-m-Bz); 128.71 (C-

i-Bz); 128.76 (CH-m-Bz); 129.32 (C-i-Bz); 129.42 (CH-5-Sthienyl); 129.77, 129.84 and 

129.87 (CH-o-Bz); 130.77 (CH-5-thienyl); 131.07 (CH-6); 132.19 (CH-3-Sthienyl); 133.45 

(CH-3-thienyl); 133.54, 133.74 and 133.76 (CH-p-Bz); 133.5 (C-2-thienyl); 134.09 (C-2-

Sthienyl); 150.91 (CH-2); 153.03 (C-4,7a); 165.08, 165.38 and 166.14 (CO-Bz). IR (KBr): 

3108, 3060, 3037, 3007, 2953, 2926, 2851, 1727, 1550, 1455, 1317, 1269, 1126, 1090, 1066, 

1030, 713. HRMS (ESI) calculated for C40H30O7N3S3: 760.1240; found: 760.1243.  
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4-(Furan-2-yl)-5-(thiophen-2-ylsulfanyl)-7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7H-

pyrrolo[2,3-d]pyrimidine 

(6-(Furan-2-yl)-7-(thiophen-2-ylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-

deazapurine) (47c) 

Nucleoside 47a (712 mg, 1 mmol), 2-(tributylstannyl)furane 

(0.378 mL mg, 1.2 mmol) and 10 mL DMF were used 

according to the general procedure Crude product was 

purified using HPFC with pure DCM and product 47c 

obtained as yellowish solid (303 mg, 41%). M.p. 64 °C.
 1

H 

NMR (500 MHz, CDCl3): 4.67 (dd, 1H, Jgem = 12.0 Hz, J5´a,4´ 

= 3.9 Hz, H-5´a); 4.78 (m, 1H, H-4´); 4.81 (dd, 1H, Jgem = 

12.0 Hz, J5´b,4´ = 3.2 Hz, H-5´b); 6.12 (dd, 1H, J3´,2´ = 5.8 Hz, 

J3´,4´ = 4.4 Hz, H-3'); 6.19 (t, 1H, J2´,1´ = J2´,3´ = 5.7 Hz, H-2'); 

6.64 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 1.8 Hz, H-4-furyl); 6.70 (d, 1H, J1´,2´ = 5.7 Hz, H-1'); 6.81 

(dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 6.93 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, 

H-3-Sthienyl); 7.18 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.34 (s, 1H, H-6); 

7.36, 7.40 and 7.48 (3×m, 3×2H, H-m-Bz); 7.51 - 7.62 (m, 3H, H-p-Bz); 7.60 (dd, 1H, J3,4 = 

3.5 Hz, J3,5 = 0.9 Hz, H-3-furyl); 7.74 (dd, 1H, J5,4 = 1.8 Hz, J5,3 = 0.9 Hz, H-5-furyl); 7.93, 

7.99 and 8.12 (3×m, 3×2H, H-o-Bz); 8.83 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 63.88 

(CH2-5´); 71.53 (CH-3´); 73.99 (CH-2´); 80.39 (CH-4´); 86.44 (CH-1´); 110.33 (C-5); 112.30 

(CH-4-furyl); 113.79 (C-4a); 115.70 (CH-3-furyl); 127.47 (CH-4-Sthienyl); 128.45 and 

128.51 (CH-m-Bz); 128.57 (C-i-Bz); 128.67 (CH-m-Bz); 128.80 (C-i-Bz); 129.16 (CH-6); 

129.40 (C-i-Bz); 129.49 (CH-5-Sthienyl); 129.79, 129.82 and 129.86 (CH-o-Bz); 131.61 (CH-

3-Sthienyl); 133.42 and 133.65 (CH-p-Bz); 134.30 (C-2-Sthienyl); 145.11 (CH-5-furyl); 

148.86 (C-4); 150.90 (C-2-furyl); 151.70 (CH-2); 153.18 (C-7a); 165.05, 165.35 and 166.13 

(CO-Bz). IR (KBr): 3102, 3055, 3034, 3004, 2956, 2926, 2866, 2851, 1733, 1562, 1535, 1452, 

1269, 1123, 1099, 713. HRMS (ESI) calculated for C40H30O8N3S2: 744.1469; found: 

744.1471. 
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General procedure for methylation 

Me3Al (3 equiv., 2 M in toluene) was added to solution of compound 44a-47a (1 equiv.), and 

Pd(PPh3)4 (5 mol%) in THF. The reaction mixture was stirred at 70 °C for 12 h. Then the 

solution was dropped in water (decomposition of Me3Al) and extracted three times with 

EtOAc and combined organic layers were dried over Na2SO4, filtered, and evaporated under 

vacuum. The crude product was purified by HPFC.  

4-Methyl-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methyl-7-(phenylsulfanyl)-7-deazapurine) (44d) 

Deazapurine 44a (523 mg, 2 mmol), Me3Al (3 mL, 6 mmol, 2 M in 

toluene) and 40 mL THF were used according to the general procedure. 

Crude product was purified using HPFC (hexane/EtOAc, 0–50% 

EtOAc) and product 44d was obtained as yellowish solid (355 mg, 

73%). Crystallization in ethanol/H2O gave yellowish needles. M.p. 230 °C. 
1
H NMR (500.0 

MHz, DMSO-d6): 2.60 (s, 3H, CH3); 7.03 (m, 2H, H-o-Ph); 7.12 (m, 1H, H-p-Ph); 7.25 (m, 

2H, H-m-Ph); 7.95 (s, 1H, H-6); 8.66 (s, 1H, H-2); 12.64 (bs, 1H, NH). 
13

C NMR (125.7 MHz, 

DMSO-d6): 20.89 (CH3); 98.18 (C-5); 117.17 (C-4a); 125.46 (CH-o-Ph); 125.49 (CH-p-Ph); 

129.44 (CH-m-Ph); 134.49 (CH-6); 139.52 (C-i-Ph); 151.82 (CH-2); 152.26 (C-7a); 159.36 

(C-4). IR (KBr): 3123, 2986, 2842, 1577, 1473, 1434, 1332, 1263, 1227, 737. HRMS (ESI) 

calculated for C13H12N3S: 242.0746; found: 242.0747. Anal. calculated for 

C13H11N3S·0.25H2O: C, 63.52; H, 4.72; N, 17.09; S, 13.04. Found: C, 63.48; H, 4.49; N, 

16.93; S, 13.28. 

4-Methyl-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methyl-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45d) 

Deazapurine 45a (535 mg, 2 mmol), Me3Al (3 mL, 6 mmol, 2 M in 

toluene) and 40 mL THF were used according to the general procedure. 

Crude product was purified using HPFC (EtOAc/MeOH, 0–5% MeOH) 

and product 45d was obtained as yellowish solid (325 mg, 66%). M.p. 

198 °C. 
1
H NMR (500 MHz, DMSO-d6): 2.81 (s, 3H, CH3-4); 6.98 (dd, 1H, J4,5 = 5.3 Hz, J4,3 

= 3.6 Hz, H-4-Sthienyl); 7.12 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.47 (dd, 
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1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.94 (s, 1H, H-6); 8.64 (s, 1H, H-2); 12.55 

(vbs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 21.54 (CH3-4); 103.13 (C-5); 116.39 (C-

4a); 128.08 (CH-4-Sthienyl); 128.37 (CH-5-Sthienyl); 128.77 (CH-3-Sthienyl); 133.34 (CH-

6); 138.22 (C-2-Sthienyl); 151.72 (C-7a); 151.74 (CH-2); 159.23 (C-4). IR (KBr): 3075, 2962, 

2803, 2773, 2753, 2702, 2576, 1598, 2574, 1434, 1410, 1338, 1132, 1006, 696, 626. HRMS 

(ESI) calculated for C11H10N3S2: 248.0311; found: 248.0311.  

4-Methyl-5-(phenylsulfanyl)-7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-Methyl-7-(phenylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-deazapurine) 

(46d) 

Nucleoside 46a (706 mg, 1 mmol), Me3Al (1.5 mL, 3 equiv., 

2 M in toluene) and 20 mL THF were used according to the 

general procedure. Crude product was purified using HPFC 

(hexane/EtOAc, 0–20% EtOAc) and product 46d was 

obtained as white foam (380 mg, 55%). M.p. 61 °C.
 1

H NMR 

(500 MHz, CDCl3): 2.69 (s, 3H, CH3); 4.71 (dd, 1H, Jgem = 

12.2 Hz, J5´a,4´ = 3.9 Hz, H-5´a); 4.81 (bdt, 1H, J4´,3´ = 4.7 

Hz, J4´,5´a = J4´,5´b = 3.6 Hz, H-4´); 4.89 (dd, 1H, Jgem = 12.2 

Hz, J5´b,4´ = 3.2 Hz, H-5´b); 6.16 (dd, 1H, J3´,2´ = 5.9 Hz, J3´,4´ 

= 4.7 Hz, H-3'); 6.24 (t, 1H, J2´,1´ = J2´,3´ = 5.7 Hz, H-2'); 6.71 (d, 1H, J1´,2´ = 5.5 Hz, H-1'); 

7.05 (m, 2H, H-o-SPh); 7.11 (m, 1H, H-p-SPh); 7.20 (m, 2H, H-m-SPh); 7.37, 7.40 and 7.41 

(3×m, 3×2H, H-m-Bz); 7.53, 7.55 and 7.58 (3×m, 3×1H, H-p-Bz); 7.61 (s, 1H, H-6); 7.94, 

8.01 and 8.07 (3×m, 3×2H, H-o-Bz); 8.73 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 21.24 

(CH3); 63.59 (CH2-5´); 71.50 (CH-3´); 74.10 (CH-2´); 80.44 (CH-4´); 86.71 (CH-1´); 104.19 

(C-5); 118.59 (C-4a); 125.56 (CH-p-SPh); 126.14 (CH-o-SPh); 128.50 (CH-m-Bz); 128.52 (C-

i-Bz); 128.54 and 128.64 (CH-m-Bz); 128.877 (C-i-Bz); 129.09 (CH-m-SPh); 129.31 (C-i-

Bz); 129.69, 129.84 and 129.86 (CH-o-Bz); 132.14 (CH-6); 133.43, 133.71 and 133.73 (CH-

p-Bz); 138.34 (C-i-SPh); 151.82 (C-7a); 152.28 (CH-2); 161.52 (C-4); 165.09, 165.38 and 

166.17 (CO-Bz). IR (KBr): 3058, 3028, 3007, 2956, 2926, 2869, 2854, 1730, 1571, 1449, 
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1263, 1120, 1096, 1069, 1027, 707. HRMS (ESI) calculated for C39H32O7N3S: 686.1956; 

found: 686.1958.  

4-Methyl-5-(thiophen-2-ylsulfanyl)-7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7H-

pyrrolo[2,3-d]pyrimidine 

(6-Methyl-7-(thiophen-2-ylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-

deazapurine) (47d) 

Nucleoside 47a (712 mg, 1 mmol), Me3Al (1.5 mL, 3 equiv., 

2 M in toluene) and 20 mL THF were used according to the 

general procedure. Crude product was purified using HPFC 

(DCM/MeOH, 0–5% MeOH) and product 47d was obtained 

as white foam (469 mg, 67%). M.p. 59 °C.
 1

H NMR (500 

MHz, CDCl3): 2.92 (s, 3H, CH3); 4.69 (dd, 1H, Jgem = 12.2 

Hz, J5´a,4´ = 3.9 Hz, H-5´a); 4.79 (m, 1H, H-4´); 4.87 (dd, 1H, 

Jgem = 12.2 Hz, J5´b,4´ = 3.2 Hz, H-5´b); 6.15 (dd, 1H, J3´,2´ = 

5.9 Hz, J3´,4´ = 4.5 Hz, H-3'); 6.21 (t, 1H, J2´,1´ = J2´,3´ = 5.7 

Hz, H-2'); 6.68 (d, 1H, J1´,2´ = 5.5 Hz, H-1'); 6.88 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-

Sthienyl); 6.99 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.20 (dd, 1H, J5,4 = 5.3 Hz, 

J5,3 = 1.3 Hz, H-5-Sthienyl); 7.36, 7.40 and 7.47 (3×m, 3×2H, H-m-Bz); 7.53 (s, 1H, H-6); 

7.51 – 7.62 (m, 3H, H-p-Bz); 7.93, 7.99 and 8.12 (3×m, 3×2H, H-o-Bz); 8.72 (s, 1H, H-2). 
13

C 

NMR (125.7 MHz, CDCl3): 21.94 (CH3); 63.71 (CH2-5´); 71.51 (CH-3´); 74.05 (CH-2´); 

80.43 (CH-4´); 86.60 (CH-1´); 108.20 (C-5); 118.00 (C-4a); 127.51 (CH-4-Sthienyl); 128.19 

(CH-5-Sthienyl); 128.46 and 128.52 (CH-m-Bz); 128.56 (C-i-Bz); 128.67 (CH-m-Bz); 128.80 

and 129.41 (C-i-Bz); 129.76, 129.83 and 129.85 (CH-o-Bz); 130.06 (CH-6); 130.34 (CH-3-

Sthienyl); 133.44 and 133.67 (CH-p-Bz); 136.26 (C-2-Sthienyl); 151.38 (C-7a); 152.18 (CH-

2); 161.21 (C-4); 165.07, 165.36 and 166.15 (CO-Bz). IR (KBr): 3111, 3066, 3028, 3007, 

2932, 2851, 1730, 1568, 1452, 1317, 1269, 1177, 1123, 1093, 1069, 1024, 713. HRMS (ESI) 

calculated for C37H30O7N3S2: 692.1520; found: 692.1521. 

 

 

 



177 
 

General procedure for dimethyl amination 

Dimethylamine (3 equiv., 2M in THF) was added to solution of compound 44a-47a (1 equiv.), 

in propan-2-ol (25 mL) and the reaction mixture was stirred at 70 °C for 24 h. Volatiles were 

removed under reduced pressure and crude product was purified by HPFC. 

4-(N,N-Dimethylamino)-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(N,N-Dimethylamino)-7-(phenylsulfanyl)-7-deazapurine) (44e) 

Deazapurine 44a (523 mg, 2 mmol) was used according to the general 

procedure. Crude product was purified using HPFC (hexane/EtOAc, 

0–50% EtOAc) and product 44e was obtained as yellowish solid (454 

mg, 84%). Crystallization in ethanol/H2O gave white needles. M.p. 

201 °C. 
1
H NMR (600.1 MHz, DMSO-d6): 3.11 (s, 6H, (CH3)2N); 7.00 (m, 2H, H-o-Ph); 7.09 

(m, 1H, H-p-Ph); 7.23 (m, 2H, H-m-Ph); 7.66 (s, 1H, H-6); 8.21 (s, 1H, H-2); 12.36 (bs, 1H, 

NH). 
13

C NMR (150.9 MHz, DMSO-d6): 41.23 ((CH3)2N); 98.32 (C-5); 104.52 (C-4a); 125.15 

(CH-o-Ph); 125.21 (CH-p-Ph); 129.22 (CH-m-Ph); 131.94 (CH-6); 140.13 (C-i-Ph); 150.85 

(CH-2); 153.58 (C-7a); 159.41 (C-4). IR (KBr): 3090, 2968, 2863, 2818, 1589, 1559, 1488, 

1416, 1398, 1063, 922, 860 743. HRMS (ESI) calculated for C14H15N4S: 271.1012; found: 

271.1012. Anal. calculated for: C14H14N4S: C, 62.20; H, 5.22; N, 20.72; S, 11.86; found: C, 

61.97; H, 5.18; N, 20.64; S, 11.73. 

4-(N,N-Dimethylamino)-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(N,N-Dimethylamino)-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45e) 

Deazapurine 45a (535 mg, 2 mmol) was used according to the general 

procedure. Crude product was purified using HPFC (EtOAc/MeOH, 0–

5% MeOH) and product 45e was obtained as brownish solid (346 mg, 

63%). M.p. 185 °C. 
1
H NMR (401 MHz, DMSO-d6): 3.22 (s, 6H, 

(CH3)2N);  6.95 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.07 (dd, 1H, J3,4 = 3.6 

Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.44 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.62 

(s, 1H, H-6); 8.19 (s, 1H, H-2); 12.23 (bs, 1H, NH). 
13

C NMR (100.8 MHz, DMSO-d6): 41.45 

((CH3)2N); 103.09 (C-5); 103.91 (C-4a); 127.95 (CH-4-Sthienyl); 128.47 (CH-5-Sthienyl); 

129.14 (CH-3-Sthienyl); 130.17 (CH-6); 138.47 (C-2-Sthienyl); 150.82 (CH-2); 153.12 (C-
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7a); 159.48 (C-4). IR (KBr): 3081, 2941, 2860, 2806, 1589, 1559, 1416, 1401, 1060, 928, 848, 

692. HRMS (ESI) calculated for C12H13N4S2: 277.0576; found: 277.0576. 

4-(N,N-Dimethylamino)-5-(phenylsulfanyl)-7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-

7H-pyrrolo[2,3-d]pyrimidine 

(6-(N,N-Dimethylamino)-7-(phenylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-

deazapurine) (46e) 

Nucleoside 46a (706 mg, 1 mmol) was used according to the 

general procedure. Crude product was purified using HPFC 

(hexane/EtOAc, 0–20% EtOAc) and product 46e was 

obtained as white foam (624 mg, 88%). M.p. 67 °C.
 1

H 

NMR (500 MHz, CDCl3): 3.17 (s, 6H, (CH3)2N); 4.70 (dd, 

1H, Jgem = 12.1 Hz, J5´a,4´ = 3.8 Hz, H-5´a); 4.78 (bdt, 1H, 

J4´,3´ = 4.6 Hz, J4´,5´a = J4´,5´b = 3.5 Hz, H-4´); 4.85 (dd, 1H, 

Jgem = 12.1 Hz, J5´b,4´ = 3.2 Hz, H-5´b); 6.11 (dd, 1H, J3´,2´ = 

5.9 Hz, J3´,4´ = 4.6 Hz, H-3'); 6.18 (t, 1H, J2´,1´ = J2´,3´ = 5.8 

Hz, H-2'); 6.75 (d, 1H, J1´,2´ = 5.6 Hz, H-1'); 7.01 (m, 2H, H-o-SPh); 7.08 (m, 1H, H-p-SPh); 

7.17 (m, 2H, H-m-SPh); 7.33 – 7.42 (m, 6H, CH-m-Bz); 7.45 (s, 1H, H-6); 7.48 – 7.60 (m, 3H, 

H-p-Bz); 7.95, 7.98 and 8.08 (3×m, 3×2H, H-o-Bz); 8.33 (s, 1H, H-2).  
13

C NMR (125.7 MHz, 

CDCl3): 41.17 ((CH3)2N); 63.54 (CH2-5´); 71.32 (CH-3´); 73.79 (CH-2´); 80.03 (CH-4´); 

85.94 (CH-1´); 102.88 (C-5); 105.52 (C-4a); 125.21 (CH-p-SPh); 125.70 (CH-o-SPh); 128.44, 

128.48 and 128.58 (CH-m-Bz); 128.64 and 128.81 (C-i-Bz); 128.88 (CH-m-SPh); 129.35 

(CH-6); 129.67, 129.83 and 129.88 (CH-o-Bz); 133.30 and 133.61 (CH-p-Bz); 138.79 (C-i-

SPh); 151.13 (CH-2); 152.95 (C-7a); 159.55 (C-4); 164.83, 165.14 and 165.94 (CO-Bz). IR 

(KBr): 3123, 3058, 3031, 3010, 2950, 2926, 2881, 2806, 1727, 1565, 1544, 1455, 1419, 1401, 

1317, 1263, 1126, 1096, 1072, 1027, 707.. HRMS (ESI) calculated for C40H35O7N4S: 

715.2221; found: 715.2223. 

4-(N,N-Dimethylamino)-5-(thiophen-2-ylsulfanyl)-7-(2,3,5-tri-O-benzoyl-β-D-

ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(N,N-Dimethylamino)-7-(thiophen-2-ylsulfanyl)-9-(2,3,5-tri-O-benzoyl-β-D-

ribofuranosyl)-7-deazapurine) (47e) 
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Nucleoside 47a (712 mg, 1 mmol was used according to the 

general procedure. Crude product was purified using HPFC 

(DCM/MeOH, 0–5% MeOH) and product 47e was obtained 

as white foam (634 mg, 88%). M.p. 81 °C.
 1

H NMR (500 

MHz, CDCl3): 3.29 (s, 6H, (CH3)2N); 4.67 (dd, 1H, Jgem = 

12.1 Hz, J5´a,4´ = 3.9 Hz, H-5´a); 4.75 (m, 1H, H-4´); 4.82 (dd, 

1H, Jgem = 12.1 Hz, J5´b,4´ = 3.2 Hz, H-5´b); 6.09 (dd, 1H, J3´,2´ 

= 5.8 Hz, J3´,4´ = 4.4 Hz, H-3'); 6.15 (t, 1H, J2´,1´ = J2´,3´ = 5.8 

Hz, H-2'); 6.70 (d, 1H, J1´,2´ = 5.7 Hz, H-1'); 6.83 (dd, 1H, J4,5 

= 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 6.93 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 

7.16 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.32 (s, 1H, H-6); 7.36, 7.38 and 7.47 

(3×m, 3×2H, H-m-Bz); 7.53, 7.56 and 7.59 (3×m, 3×1H, H-p-Bz); 7.95, 7.96 and 8.14 (3×m, 

3×2H, H-o-Bz); 8.33 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 41.64 (CH3)2N); 63.94 

(CH2-5´); 71.55 (CH-3´); 73.98 (CH-2´); 80.23 (CH-4´); 86.05 (CH-1´); 105.34 (C-5); 107.91 

(C-4a); 126.92 (CH-6); 127.38 (CH-4-Sthienyl); 128.13 (CH-5-Sthienyl); 128.42, 128.46 and 

128.65 (CH-m-Bz); 128.70, 128.84 and 129.48 (C-i-Bz); 129.79, 129.82 and 129.89 (CH-o-

Bz); 130.28 (CH-3-Sthienyl); 133.35 and 133.58 (CH-p-Bz); 136.59 (C-2-Sthienyl); 151.37 

(CH-2); 152.82 (C-7a); 160.04 (C-4); 165.07, 165.37 and 166.18 (CO-Bz). IR (KBr): 3066, 

2926, 2887, 2854, 1724, 1562, 1544, 1449, 1407, 1317, 1266, 1123, 1096, 1069, 1024, 710. 

HRMS (ESI) calculated for C38H33O7N4S2: 721.1785; found: 721.1787.  

General procedure for methylamination 

Compound 44a-47a (1 equiv.), as methylamine (40% [w/w], 5 mL) in dioxane (5 mL) was 

stirred at autoclave at 120 °C for 18h. Solvent was then evaporated under reduced pressure and 

crude products were purified using RP-HPFC (0→100% of MeOH in H2O). 

4-(N-Methylamino)-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(N-Methylamino)-7-(phenylsulfanyl)-7-deazapurine) (44f) 
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Reaction of deazapurine 44a (523 mg, 2 mmol) according to the 

general procedure afforded compound 44f as brownish solid (423 mg, 

83 %). Crystallization in ethanol/H2O gave yellowish needles. M.p. 

230 °C. 
1
H NMR (500 MHz, DMSO-d6): 2.90 (d, 3H, JCH3,NH = 4.8 Hz, 

CH3NH); 6.48 (q, 1H, JNH,CH3 = 4.8 Hz, CH3NH); 7.09 (m, 2H, H-o-Ph); 7.13 (m, 1H, H-p-

Ph); 7.26 (m, 2H, H-m-Ph); 7.55 (s, 1H, H-6); 8.19 (s, 1H, H-2); 12.19 (vbs, 1H, NH).
 13

C 

NMR (125.7 MHz, DMSO-d6): 27.62 (CH3NH); 97.87 (C-5); 103.25 (C-4a); 125.71 (CH-p-

Ph); 126.02 (CH-o-Ph); 129.33 (CH-m-Ph); 129.59 (CH-6); 139.07 (C-i-Ph); 150.99 (C-7a); 

152.67 (CH-2); 157.08 (C-4). IR (KBr): 3374, 3099, 3058, 2962, 2902, 2860, 2812, 1607, 

1586, 1491, 1485, 1383, 881, 737. HRMS (ESI) calculated for C13H13N4S: 257.0855 ; found: 

257.0855. Anal. calculated for C13H12N4S: C, 60.91; H, 4.72; N, 21.86; S, 12.51 ; found: C, 

60.66; H, 4.71; N, 21.75; S, 12.17. 

4-(N-Methylamino)-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(N-Methylamino)-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45f) 

Reaction of deazapurine 45a (535 mg, 2 mmol) according to the general 

procedure afforded compound 45f as brownish solid (303 mg, 58 %). 

M.p. 212 °C. 
1
H NMR (401 MHz, DMSO-d6): 3.01 (d, 3H, JCH3,NH = 

4.8 Hz, CH3NH);  6.71 (q, 1H, JNH,CH3 = 4.8 Hz, CH3NH); 6.97 (dd, 1H, 

J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.24 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-

Sthienyl); 7.49 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.54 (s, 1H, H-6); 8.17 (s, 

1H, H-2); 12.10 (bs, 1H, NH). 
13

C NMR (100.8 MHz, DMSO-d6): 27.74 (CH3NH); 102.26 (C-

5); 102.53 (C-4a); 127.97 (CH-4-Sthienyl); 128.50 (CH-6); 129.19 (CH-5-Sthienyl); 129.92 

(CH-3-Sthienyl); 137.86 (C-2-Sthienyl); 150.46 (C-7a); 152.43 (CH-2); 156.76 (C-4). IR 

(KBr): 3392, 3102, 3060, 2995, 2965, 2905, 2863, 2788, 1607, 1595, 1488, 1413, 1383, 1350, 

1314, 881, 626. HRMS (ESI) calculated for C11H11N4S2: 263.0420 ; found: 263.0420. 

4-(N-Methylamino)-5-(phenylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-(N-Methylamino)-7-(phenylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (50f) 
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Reaction of nucleoside 46a (706 mg, 1 mmol) according to the 

general procedure afforded compound 50f as white solid (352 mg, 90 

%). Crystallization in MeOH/H2O gave white foam. M.p. 157 °C.
 

[α]D −57.9 (0.21).
 1

H NMR (600.1 MHz, DMSO-d6): 2.91 (d, 3H, 

JCH3,NH = 4.8 Hz, CH3NH); 3.55 (ddd, 1H, Jgem = 12.0 Hz, J5´a,OH = 

6.2 Hz, J5´a,4´ = 3.7 Hz, H-5´a); 3.65 (ddd, 1H, Jgem = 12.0 Hz, J5´b,OH 

= 5.0 Hz, J5´b,4´ = 3.7 Hz, H-5´b); 3.92 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.5 Hz, H-4´); 4.10 (td, 

1H, J3´,2´ = J3´,OH = 5.0 Hz, J3´,4´ = 3.2 Hz, H-3'); 4.43 (td, 1H, J2´,1´ = J2´,OH = 6.2 Hz, J2´,3´ = 5.1 

Hz, H-2'); 5.14 (d, 1H, JOH,3´ = 4.9 Hz, OH-3´); 5.21 (dd, 1H, JOH,5´a = 6.2 Hz, JOH,5´b = 5.0 Hz, 

OH-5´); 5.37 (d, 1H, JOH,2´ = 6.3 Hz, OH-2´); 6.08 (d, 1H, J1´,2´ = 6.0 Hz, H-1'); 6.59 (q, 1H, 

JNH,CH3 = 4.8 Hz, CH3NH); 7.13 (m, 2H, H-o-SPh); 7.16 (m, 1H, H-p-SPh); 7.29 (m, 2H, H-m-

SPh); 7.87 (s, 1H, H-6); 8.23 (s, 1H, H-2). 
13

C NMR (150.9 MHz, DMSO-d6): 27.74 

(CH3NH); 61.65 (CH2-5´); 70.63 (CH-3´); 74.25 (CH-2´); 85.46 (CH-4´); 87.63 (CH-1´); 

99.16 (C-5); 103.82 (C-4a); 125.95 (CH-p-SPh); 126.24 (CH-o-SPh); 129.44 (CH-m-SPh); 

129.96 (CH-6); 138.39 (C-i-SPh); 150.33 (C-7a); 152.62 (CH-2); 157.10 (C-4). IR (KBr): 

3398, 3180, 3126, 2941, 2917, 2905, 2896, 2866, 1613, 1562, 1488, 1389, 1099, 1060, 740, 

629. HRMS (ESI) calculated for C18H21O4N4S: 389.1278; found: 389.1281. Anal. calculated 

for C18H20N4O4S·1.25H2O: C, 52.61; H, 5.52; N, 13.63; S, 7.8; found: C, 52.79; H, 5.35; N, 

13.46; S, 7.98. 

4-(N-Methylamino)-5-(thiophen-2-ylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-(N-Methylamino)-7-(thiophen-2-ylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (51f) 

Reaction of nucleoside 47a (712 mg, 1 mmol) according to the 

general procedure afforded compound 51f as white solid (297 mg, 75 

%). M.p. 187 °C.
 
[α]D −51.7 (0.23).

 1
H NMR (401.0 MHz, DMSO-d6): 

3.03 (d, 3H, JCH3,NH = 4.8 Hz, CH3NH); 3.54 (dd, 1H, Jgem = 12.0 Hz, 

J5´a,4´ = 3.7 Hz, H-5´a); 3.65 (dd, 1H, Jgem = 12.0 Hz, J5´b,4´ = 3.7 Hz, 

H-5´b); 3.91 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.6 Hz, H-4´); 4.09 (dd, 

1H, J3´,2´ = 5.1 Hz, J3´,4´ = 3.4 Hz, H-3'); 4.39 (dd, 1H, J2´,1´ = 6.0 Hz, J2´,3´ = 5.1 Hz, H-2'); 5.02 

– 5.50 (m, 3H, OH-2´,3´,5´); 6.03 (d, 1H, J1´,2´ = 6.0 Hz, H-1'); 6.80 (q, 1H, JNH,CH3 = 4.8 Hz, 
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CH3NH); 6.99 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.27 (dd, 1H, J3,4 = 3.6 Hz, 

J3,5 = 1.3 Hz, H-3-Sthienyl); 7.53 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.87 (s, 

1H, H-6); 8.20 (s, 1H, H-2). 
13

C NMR (100.8 MHz, DMSO-d6): 27.80 (CH3NH); 61.68 (CH2-

5´); 70.61 (CH-3´); 74.20 (CH-2´); 85.47 (CH-4´); 87.66 (CH-1´); 103.17 and 103.33 (C-

4a,5); 128.04 (CH-4-Sthienyl); 128.87 (CH-6); 129.62 (CH-5-Sthienyl); 130.57 (CH-3-

Sthienyl); 136.89 (C-2-Sthienyl); 149.88 (C-7a); 152.59 (CH-2); 156.95 (C-4). IR (KBr): 

3503, 3404, 3279, 3126, 3099, 2929, 2869, 1613, 1568, 1491, 1416, 1398, 1338, 1308, 1126, 

1084, 1048, 701. HRMS (ESI) calculated for C16H19O4N4S2: 395.0842; found: 395.0842.  

General procedure for amination 

Compound 44a-47a (1 equiv.), aq ammonia (25% [w/w], 5 mL) in dioxane (5 mL) was stirred 

at autoclave at 120 °C for 18h. After cooling to rt precipitate was formed and filtrated. 

4-Amino-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Amino-7-(phenylsulfanyl)-7-deazapurine) (36e) 

Reaction of deazapurine 44a (523 mg, 2 mmol) according to the general 

procedure afforded compound 36e (411 g, 85%) as white powder. 
1
H 

NMR was compared with published data.
119

 

 

4-Amino-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Amino-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45g) 

Reaction of deazapurine 45a (535 mg, 2 mmol) according to the general 

procedure afforded compound 45g (425 mg, 85%) as white powder. M.p. 

281 °C. 
1
H NMR (500 MHz, DMSO-d6): 6.70 (bs, 2H, NH2); 6.97 (dd, 

1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.20 (dd, 1H, J3,4 = 3.6 

Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.49 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.57 

(s, 1H, H-6); 8.08 (s, 1H, H-2); 12.01 (vbs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 

102.18 and 102.22 (C-5,4a); 128.00 (CH-4-Sthienyl); 128.84 (CH-6); 128.88 (CH-5-Sthienyl); 

129.35 (CH-3-Sthienyl); 137.99 (C-2-Sthienyl); 151.42 (C-7a); 152.76 (CH-2); 157.43 (C-4). 

IR (KBr): 3099, 3069, 2980, 2806, 2672, 1643, 1583, 1320, 719, 686. HRMS (ESI) calculated 

for C10H9N4S2: 249.0263; found: 249.0264. 
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4-amino-5-(phenylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-amino-7-(phenylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (50g) 

Reaction of nucleoside 46a (706 mg, 1 mmol) according to the 

general procedure afforded compound 50g (321 mg, 86%) as white 

powder. M.p. 214 °C.
 
[α]D −62.8 (0.21).

 1
H NMR (600.1 MHz, 

DMSO-d6): 3.55 (ddd, 1H, Jgem = 12.0 Hz, J5´a,OH = 6.2 Hz, J5´a,4´ = 

3.7 Hz, H-5´a); 3.65 (ddd, 1H, Jgem = 12.0 Hz, J5´b,OH = 5.0 Hz, J5´b,4´ 

= 3.7 Hz, H-5´b); 3.93 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.6 Hz, H-4´); 

4.11 (td, 1H, J3´,2´ = J3´,OH = 4.9 Hz, J3´,4´ = 3.3 Hz, H-3'); 4.34 (td, 1H, J2´,1´ = J2´,OH = 6.2 Hz, 

J2´,3´ = 5.1 Hz, H-2'); 5.15 (d, 1H, JOH,3´ = 4.8 Hz, OH-3´); 5.22 (dd, 1H, JOH,5´a = 6.3 Hz, 

JOH,5´b = 5.0 Hz, OH-5´); 5.39 (d, 1H, JOH,2´ = 6.3 Hz, OH-2´); 6.09 (d, 1H, J1´,2´ = 6.1 Hz, H-

1'); 7.12 (m, 2H, H-o-SPh); 7.16 (m, 1H, H-p-SPh); 7.29 (m, 2H, H-m-SPh); 7.90 (s, 1H, H-6); 

8.14 (s, 1H, H-2). 
13

C NMR (150.9 MHz, DMSO-d6): 61.67 (CH2-5´); 70.67 (CH-3´); 74.23 

(CH-2´); 85.49 (CH-4´); 87.58 (CH-1´); 99.34 (C-5); 103.39 (C-4a); 125.94 (CH-p-SPh); 

126.01 (CH-o-SPh); 129.50 (CH-m-SPh); 130.28 (CH-6); 138.29 (C-i-SPh); 151.21 (C-7a); 

152.77 (CH-2); 157.65 (C-4). IR (KBr): 3407, 3282, 3147, 3087, 1646, 1586, 1556, 1473, 

1440, 1329, 1317, 1144, 1015, 749. HRMS (ESI) calculated for C17H19O4N4S: 375.1122; 

found: 375.1123. Anal. calculated for: C17H18N4O4S·0.60H2O: C, 53; H, 5.02; N, 14.54; S, 

8.32; found: C, 52.77; H, 4.72; N, 14.29; S, 8.54. 

4-Amino-5-(thiophen-2-ylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Amino-7-(thiophen-2-ylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (51g) 

Reaction of nucleoside 47a (712 mg, 1 mmol) was performed 

according to the general procedure. Precipitate was not formed. 

Solvent was then evaporated under reduced pressure and crude 

products were purified using RP-HPFC (0→100% of MeOH in H2O) 

and product 51g was obtained as white powder (267 mg, 70 %). M.p. 

178 °C.
 
[α]D −49.5 (0.23).

 1
H NMR (401.0 MHz, DMSO-d6): 3.55 

(ddd, 1H, Jgem = 12.0 Hz, J5´a,OH = 6.2 Hz, J5´a,4´ = 3.7 Hz, H-5´a); 3.65 (ddd, 1H, Jgem = 12.0 

Hz, J5´b,OH = 4.9 Hz, J5´b,4´ = 3.7 Hz, H-5´b); 3.91 (bq, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.5 Hz, H-

4´); 4.09 (td, 1H, J3´,2´ = J3´,OH = 4.9 Hz, J3´,4´ = 3.3 Hz, H-3'); 4.40 (td, 1H, J2´,1´ = J2´,OH = 6.2 
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Hz, J2´,3´ = 5.1 Hz, H-2'); 5.13 (d, 1H, JOH,3´ = 4.8 Hz, OH-3´); 5.23 (dd, 1H, JOH,5´a = 6.2 Hz, 

JOH,5´b = 4.9 Hz, OH-5´); 5.35 (d, 1H, JOH,2´ = 6.4 Hz, OH-2´); 6.03 (d, 1H, J1´,2´ = 6.1 Hz, H-

1'); 6.88 (vbs, 2H, NH2); 6.99 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.24 (dd, 

1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.53 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-

Sthienyl); 7.90 (s, 1H, H-6); 8.11 (s, 1H, H-2). 
13

C NMR (100.8 MHz, DMSO-d6): 61.68 

(CH2-5´); 70.63 (CH-3´); 74.17 (CH-2´); 85.47 (CH-4´); 87.60 (CH-1´); 102.77 (C-4a); 103.45 

(C-5); 128.09 (CH-4-Sthienyl); 129.23 (CH-6); 129.37 (CH-5-Sthienyl); 130.10 (CH-3-

Sthienyl); 136.95 (C-2-Sthienyl); 150.74 (C-7a); 152.70 (CH-2); 157.58 (C-4). IR (KBr): 

3285, 3102, 1625, 1589, 1556, 1479, 1437, 1344, 1311, 1129, 1045, 701. HRMS (ESI) 

calculated for C15H17O4N4S2: 381.0686; found: 381.0687. 

5.6.2 Methylation 

4-Chloro-5-(phenylsulfanyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-Chloro-7-(phenylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (48a) 

To a flask was added 44a (1.044 g, 4 mmol) and DMF (10 mL). The 

mixture was cooled to – 5 °C in an ice/brine bath. Sodium hydride 

(NaH, 60 wt%, 178 mg, 4.4 mmol, 1.1 equiv.) was added in portions 

as a solid. The solution darkened over 15 minutes. 2- 

(Trimethylsilyl)ethoxymethyl chloride (SEM-Cl, 0.78 mL, 4.4 mmol, 

1.1 equiv.) was added slowly via syringe  at a rate such that the 

temperature did not exceed 5 °C. The reaction was stirred for 30 minutes, determined to be 

complete by TLC. Water (25 mL) was slowly added to quench the reaction. The mixture was 

then diluted with water (100 mL) and ether (200 mL). The layers were separated and the 

aqueous layer was extracted with ether (200 mL). The combined organic layers were washed 

with water (2 x 100 mL) and brine (100 mL), dried over sodium sulphate (Na2SO4), and 

concentrated under the reduced pressure. Crude product was purified using by HPFC 

(hexane/EtOAc, 0–20% EtOAc) and product 48a (1.25 g, 80%) was obtained as a pale yellow 

oil which solidified upon standing at room temperature. M.p. 107 °C. 
1
H NMR (500 MHz, 

CDCl3): -0.04 (s, 9H, CH3Si); 0.93 (m, 2H, OCH2CH2Si); 3.57 (m, 2H, OCH2CH2Si); 5.67 (s, 

2H, NCH2O); 7.13 – 7.18 (m, 3H, H-o,p-SPh); 7.23 (m, 2H, H-m-SPh); 7.60 (s, 1H, H-6); 8.68 
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(bs, 1H, H-2).  
13

C NMR (125.7 MHz, CDCl3): -1.46 (CH3Si); 17.74 (OCH2CH2Si); 67.15 

(OCH2CH2Si); 73.38 (NCH2O); 104.42 (C-5); 116.9 (C-4a); 125.95 (CH-p-SPh); 127.25 (CH-

o-SPh); 129.02 (CH-m-SPh); 134.96 (CH-6); 137.86 (C-i-SPh); 151.84 (CH-2); 152.82 (C-

7a); 153.01 (C-4). IR (KBr): 3060, 3004, 2953, 2923, 1586, 1541, 1452, 1368, 1335, 1248, 

1227, 1090, 979, 863, 830, 734, 629. HRMS (ESI) calculated for C18H23ON3ClSSi: 392.1014; 

found: 392.1015.  

4-Chloro-5-(thiophen-2-ylsulfanyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-Chloro-7-(thiophen-2-ylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine) 

(49a) 

Compound 49a was prepared as described for 48a from 6-chloro-7-

(thiophen-2-ylsulfanyl)-7-deazapurine (45a) (1.107 g, 4 mmol) to 

give protected deazapurine 49a (1.09 g, 69%) as a pale yellow oil 

which solidified upon standing at room temperature. M.p. 57°C. 
1
H 

NMR (500 MHz, CDCl3): -0.06 (s, 9H, CH3Si); 0.89 (m, 2H, 

OCH2CH2Si); 3.51 (m, 2H, OCH2CH2Si); 5.60 (s, 2H, NCH2O);  

6.97 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.26 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 

Hz, H-3-Sthienyl); 7.33 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.41 (s, 1H, H-6); 

8.65 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.48 (CH3Si); 17.68 (OCH2CH2Si); 67.03 

(OCH2CH2Si); 73.26 (NCH2O); 108.87 (C-5); 116.09 (C-4a); 127.64 (CH-4-Sthienyl); 129.44 

(CH-5-Sthienyl); 132.25 (CH-6); 132.49 (CH-3-Sthienyl); 134.53 (C-2-Sthienyl); 151.65 (CH-

2); 152.30 (C-7a); 152.66 (C-4). IR (KBr): 3090, 3060, 2950, 2896, 1571, 1538, 1452, 1440, 

1422, 1401, 1356, 1332, 1251, 1216, 1180, 1096, 979, 866, 836, 713, 689, 632. HRMS (ESI) 

calculated for C16H21ON3ClS2Si: 398.0578; found: 398.0579. 

4-Methoxy-5-(phenylsulfanyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-Methoxy-7-(phenylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-deazapurine) (48h) 
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Protected deazapurine 48a (950 mg, 2.5 mmol, 1 equiv.) was 

dissolved in acetone (10 mL) and 1 M solution of MeONa in MeOH 

(5 mL, 2 equiv.) was added. Reaction mixture was stirred at rt 

overnight. Solvents were evaporated under reduced pressure and the 

mixture was then diluted with water (25 mL) and EtOAc (25 mL). 

The layers were separated and the aqueous layer was extracted two 

times with EtOAc (25 mL). The combined organic layers were dried over sodium sulphate 

(Na2SO4), and concentrated under the reduced pressure to give product 48h (1.01 g, 99%) was 

as yellow oil which solidified upon standing at room temperature. M.p. 286 °C. 
1
H NMR (500 

MHz, CDCl3): -0.05 (s, 9H, CH3Si); 0.91 (m, 2H, OCH2CH2Si); 3.56 (m, 2H, OCH2CH2Si); 

3.97 (s, 3H, CH3O-4); 5.61 (s, 2H, NCH2O); 7.13 (m, 1H, H-p-SPh); 7.19 – 7.24 (m, 4H, H-

o,m-SPh); 7.33 (s, 1H, H-6); 8.48 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): -1.47 (CH3Si); 

17.74 (OCH2CH2Si); 53.75 (CH3O-4); 66.69 (OCH2CH2Si); 73.17 (NCH2O); 104.00 (C-5); 

106.33 (C-4a); 125.72 (CH-p-SPh); 127.74 and 128.74 (CH-m,o-SPh); 130.67 (CH-6); 138.19 

(C-i-SPh); 152.11 (CH-2); 153.28 (C-7a); 163.65 (C-4). IR (KBr): 3087, 3052, 2992, 2947, 

2935, 2896, 1589, 1562, 1476, 1407, 1338, 1323, 1248, 1222, 1093, 863, 842, 743. HRMS 

(ESI) calculated for C19H25O2N3NaSSi: 410.1329; found: 410.1331. 

4-Methoxy-5-(thiophen-2-ylsulfanyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-

pyrrolo[2,3-d]pyrimidine 

(6-Methoxy-7-(thiophen-2-ylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine) (49h) 

Compound 49h was prepared as described for 48h from 6-methoxy-

7-(thiophen-2-ylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (49a) (995 mg, 2.5 mmol) to give 6-methoxy 

deazapurine 49h (930 mg, 95%) as a pale yellow oil which solidified 

upon standing at room temperature. M.p. 101 °C. 
1
H NMR (500 

MHz, CDCl3): -0.07 (s, 9H, CH3Si); 0.88 (m, 2H, OCH2CH2Si); 3.50 

(m, 2H, OCH2CH2Si); 4.15 (s, 3H, CH3O); 5.54 (s, 2H, NCH2O);  6.96 (dd, 1H, J4,5 = 5.3 Hz, 

J4,3 = 3.6 Hz, H-4-Sthienyl); 7.16 (s, 1H, H-6); 7.24 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-

Sthienyl); 7.31 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 8.46 (s, 1H, H-2). 
13

C 
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NMR (125.7 MHz, CDCl3): -1.48 (CH3Si); 17.70 (OCH2CH2Si); 53.70 (CH3O); 66.60 

(OCH2CH2Si); 73.06 (NCH2O); 105.45 (C-4a); 108.19 (C-5); 127.39 (CH-4-Sthienyl); 128.13 

(CH-6); 129.26 (CH-5-Sthienyl); 132.73 (CH-3-Sthienyl); 135.02 (C-2-Sthienyl); 151.98 (CH-

2); 152.87 (C-7a); 163.53 (C-4). IR (KBr):3087, 3004, 2953, 2890, 1589, 1562, 1479, 1410, 

1341, 1326, 1248, 1224, 1174, 1096, 1078, 866, 833. HRMS (ESI) calculated for 

C17H24O2N3S2Si: 394.1074; found: 394.1074. 

4-Methoxy-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methoxy-7-(phenylsulfanyl)-7-deazapurine) (44h) 

Protected deazapurine 48h (774 mg, 2.0 mmol, 1 equiv.) was dissolved 

in trifluoroacetic acid (2 mL) and the reaction mixture was stirred at rt 

overnight. The mixture was then diluted with NaHCO3 (check pH=7!) 

and EtOAc (25 mL). The layers were separated and the aqueous layer 

was extracted two times with EtOAc (25 mL). The combined organic layers were dried over 

sodium sulphate (Na2SO4), and concentrated under the reduced pressure to give white solid. 

The solid was then diluted with aq ammonia (25% [w/w], 15 mL) and stirred at rt overnight to 

form white precipitate. The precipitate was filtered to give product 44h (460 mg, 90%) as a 

white powder. M.p. 200 °C. 
1
H NMR (600.1 MHz, DMSO-d6): 3.86 (s, 3H, CH3O); 7.07 (m, 

2H, H-o-SPh); 7.10 (m, 1H, H-p-SPh); 7.23 (m, 2H, H-m-SPh); 7.71 (s, 1H, H-6); 8.41 (s, 1H, 

H-2); 12.54 (bs, 1H, NH). 
13

C NMR (150.9 MHz, DMSO-d6): 53.57 (CH3O); 99.54 (C-5); 

105.71 (C-4a); 125.30 (CH-p-SPh); 126.20 (CH-o-SPh); 129.04 (CH-m-SPh); 131.31 (CH-6); 

139.40 (C-i-SPh); 151.51 (CH-2); 153.58 (C-7a); 162.90 (C-4). IR (KBr): 3096, 2974, 2941, 

2896, 2851, 2821, 1598, 1583, 1485, 1434, 1398, 1335, 1326, 1093, 878, 737. HRMS (ESI) 

calculated for C13H12ON3S: 258.0696; found: 258.0696. 

4-Methoxy-5-(thiophen-2-ylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methoxy-7-(thiophen-2-ylsulfanyl)-7-deazapurine) (45h) 

Compound 45h was prepared as described for 44h from 6-chloro-7-

(thiophen-2-ylsulfanyl)-9-((2-(trimethylsilyl)ethoxy)methyl)-7-

deazapurine (49h) (787 mg, 2.0 mmol) to give nonprotected 6-methoxy 

deazapurine 45h (462 mg, 88%) as a white powder. M.p. 167 °C. 
1
H 
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NMR (401 MHz, DMSO-d6): 4.03 (s, 3H, CH3O);  6.98 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, 

H-4-Sthienyl); 7.20 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.50 (dd, 1H, J5,4 = 5.3 

Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.60 (s, 1H, H-6); 8.39 (s, 1H, H-2); 12.41 (bs, 1H, NH). 
13

C 

NMR (100.8 MHz, DMSO-d6): 53.56 (CH3O); 104.10 (C-5); 104.91 (C-4a); 127.84 (CH-4-

Sthienyl); 129.25 (CH-6); 129.46 (CH-5-Sthienyl); 131.46 (CH-3-Sthienyl); 136.58 (C-2-

Sthienyl); 151.52 (CH-2); 153.07 (C-7a); 162.81 (C-4). IR (KBr):3096, 2992, 2947, 2899, 

2857, 2824, 1595, 1583, 1476, 1395, 1338, 1317, 1102, 713, 626. HRMS (ESI) calculated for 

C11H10ON3S2: 264.0260; found: 264.0261.  

5.6.3 Deprotection of 7-substituted nucleosides 

General procedure:  

Protected nucleoside 46b-46e or 47b-47e (1 equiv.) was dissolved in methanol and 1 M 

solution of MeONa in MeOH (1.5 equiv.) was added. Reaction mixture was stirred at rt 

overnight. Solvent was evaporated under reduced pressure and crude products were purified 

using RP-HPFC (0→100% of MeOH in H2O). 

5-(Phenylsulfanyl)-4-(thiophen-2-yl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(7-(Phenylsulfanyl)-6-(thiophen-2-yl)-9-β-D-ribofuranosyl)-7-deazapurine) (50b) 

Deprotection of 46b (376 mg, 0.5 mmol) according to the general 

procedure afforded compound 50b (164 mg, 75%) as yellow solid. 

Crystallization in MeOH/H2O gave yellow foam. M.p. 77 °C
 

[α]D −49.3 (0.19).
 1

H NMR (401.0 MHz, DMSO-d6): 3.59 (dd, 1H, 

Jgem = 12.0 Hz, J5´a,4´ = 3.7 Hz, H-5´a); 3.69 (dd, 1H, Jgem = 12.0 Hz, 

J5´b,4´ = 3.7 Hz, H-5´b); 3.97 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.7 Hz, H-

4´); 4.15 (dd, 1H, J3´,2´ = 5.0 Hz, J3´,4´ = 3.6 Hz, H-3'); 4.46 (bt, 1H, 

J2´,1´ = J2´,3´ = 5.4 Hz, H-2'); 5.06 – 5.64 (m, 3H, OH-2´,3´,5´); 6.33 (d, 1H, J1´,2´ = 5.8 Hz, H-

1'); 6.93 (m, 2H, H-o-SPh); 7.04 (m, 1H, H-p-SPh); 7.08 (dd, 1H, J4,5 = 5.1 Hz, J4,3 = 3.8 Hz, 

H-4-thienyl); 7.16 (m, 2H, H-m-SPh); 7.71 (dd, 1H, J5,4 = 5.1 Hz, J5,3 = 1.1 Hz, H-5-thienyl); 

8.35 (dd, 1H, J3,4 = 3.8 Hz, J3,5 = 1.1 Hz, H-3-thienyl); 8.41 (s, 1H, H-6); 8.84 (s, 1H, H-2). 

13
C NMR (100.8 MHz, DMSO-d6): 61.37 (CH2-5´); 70.51 (CH-3´); 74.60 (CH-2´); 85.56 

(CH-4´); 87.26 (CH-1´); 100.37 (C-5); 114.66 (C-4a); 125.67 (CH-p-SPh); 125.83 (CH-o-
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SPh); 128.20 (CH-4-thienyl); 129.27 (CH-m-SPh); 131.08 (CH-5-thienyl); 132.28 (CH-3-

thienyl); 136.12 (CH-6); 138.44 (C-i-SPh); 140.89 (C-2-thienyl); 151.22 (CH-2); 152.62 (C-

4); 153.50 (C-7a). IR (KBr): 3117, 3052, 2923, 2869, 1559, 1482, 1437, 1404, 1195, 1105, 

1081, 1048, 1021, 737.. HRMS (ESI) calculated for C21H20O4N3S2: 442.0890; found: 

442.0890. 

4-(Furan-2-yl)-5-(phenylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-(Furan-2-yl)-7-(phenylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (50c) 

Deprotection of 46c (552 mg, 0.75 mmol) according to the general 

procedure afforded compound 50c (248 mg, 78%) as yellow solid. 

Crystallization in MeOH/H2O gave yellow foam. M.p. 120 °C
 

[α]D −39.3 (0.19).
 1

H NMR (500 MHz, DMSO-d6): 3.59 (ddd, 1H, 

Jgem = 12.0 Hz, J5´a,OH = 5.5 Hz, J5´a,4´ = 3.7 Hz, H-5´a); 3.68 (ddd, 

1H, Jgem = 12.0 Hz, J5´b,OH = 5.3 Hz, J5´b,4´ = 3.9 Hz, H-5´b); 3.97 (q, 

1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.7 Hz, H-4´); 4.15 (td, 1H, J3´,2´ = J3´,OH = 

5.0 Hz, J3´,4´ = 3.6 Hz, H-3'); 4.46 (td, 1H, J2´,1´ = J2´,OH = 6.0 Hz, J2´,3´ = 5.0 Hz, H-2'); 5.13 (t, 

1H, JOH,5´a = JOH,5´b = 5.4 Hz, OH-5´); 5.22 (d, 1H, JOH,3´ = 5.0 Hz, OH-3´); 5.50 (d, 1H, JOH,2´ 

= 6.1 Hz, OH-2´); 6.32 (d, 1H, J1´,2´ = 5.8 Hz, H-1'); 6.59 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 1.7 Hz, 

H-4-furyl); 7.01 (m, 2H, H-o-SPh); 7.05 (m, 1H, H-p-SPh); 7.18 (m, 2H, H-m-SPh); 7.42 (dd, 

1H, J3,4 = 3.5 Hz, J3,5 = 0.9 Hz, H-3-furyl); 7.71 (dd, 1H, J5,4 = 1.7 Hz, J5,3 = 0.9 Hz, H-5-

furyl); 8.38 (s, 1H, H-6); 8.87 (s, 1H, H-2). 
13

C NMR (125.7 MHz, DMSO-d6): 61.39 (CH2-

5´); 70.54 (CH-3´); 74.54 (CH-2´); 85.55 (CH-4´); 87.09 (CH-1´); 100.90 (C-5); 112.43 (CH-

4-furyl); 114.11 (C-4a); 115.27 (CH-3-furyl); 125.36 (CH-p-SPh); 125.76 (CH-o-SPh); 129.11 

(CH-m-SPh); 135.98 (CH-6); 139.03 (C-i-SPh); 145.91 (CH-5-furyl); 148.09 (C-4); 150.63 

(C-2-furyl); 151.41 (CH-2); 153.57 (C-7a). IR (KBr): 3294, 3135, 3117, 2947, 2920, 2902, 

1580, 1556, 1482, 1440, 1326, 1204, 1108, 988, 734. HRMS (ESI) calculated for 

C21H20O5N3S: 426.1118; found: 426.1118. Anal. calculated for C21H19N3O5S·0.75H2O: C, 

57.46; H, 4.71; N, 9.57; S, 7.3; found: C, 57.77; H, 4.56; N, 9.21; S, 7.17. 

4-Methyl-5-(phenylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methyl-7-(phenylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (50d) 
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Deprotection of 46d (274 mg, 0.4 mmol) according to the general 

procedure afforded compound 50d (130 mg, 87%) as white solid. 

Crystallization in MeOH/H2O gave white foam. M.p. 182 °C
 

[α]D −54.5 (0.21).
 1

H NMR (600.1 MHz, DMSO-d6): 2.60 (s, 3H, 

CH3-4); 3.58 (ddd, 1H, Jgem = 11.9 Hz, J5´a,OH = 5.5 Hz, J5´a,4´ = 3.7 

Hz, H-5´a); 3.67 (ddd, 1H, Jgem = 11.9 Hz, J5´b,OH = 5.2 Hz, J5´b,4´ = 

3.9 Hz, H-5´b); 3.95 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.7 Hz, H-4´); 4.14 (td, 1H, J3´,2´ = J3´,OH = 

4.9 Hz, J3´,4´ = 3.4 Hz, H-3'); 4.45 (td, 1H, J2´,1´ = J2´,OH = 6.0 Hz, J2´,3´ = 5.0 Hz, H-2'); 5.11 (t, 

1H, JOH,5´a = JOH,5´b = 5.4 Hz, OH-5´); 5.20 (d, 1H, JOH,3´ = 4.9 Hz, OH-3´); 5.45 (d, 1H, JOH,2´ 

= 6.1 Hz, OH-2´); 6.25 (d, 1H, J1´,2´ = 5.9 Hz, H-1'); 7.07 (m, 2H, H-o-SPh); 7.15 (m, 1H, H-p-

SPh); 7.28 (m, 2H, H-m-SPh); 8.27 (s, 1H, H-6); 8.73 (s, 1H, H-2). 
13

C NMR (150.9 MHz, 

DMSO-d6): 20.81 (CH3-4); 61.46 (CH2-5´); 70.56 (CH-3´); 74.44 (CH-2´); 85.53 (CH-4´); 

87.10 (CH-1´); 100.54 (C-5); 117.80 (C-4a); 125.58 (CH-o-SPh); 125.69 (CH-p-SPh); 129.15 

(CH-m-SPh); 134.14 (CH-6); 138.79 (C-i-SPh); 151.62 (C-7a); 151.79 (CH-2); 159.62 (C-4). 

IR (KBr): 3455, 3422, 3225, 3072, 2953, 2914, 2881, 2839, 1580, 1568, 1470, 1428, 1338, 

1213, 1054, 1042, 740, 629. HRMS (ESI) calculated for C18H20O4N3S: 374.1169; found: 

374.1170. Anal. calculated for C18H19N3O4S·0.3 H2O: C, 57.07; H, 5.21; N, 11.09; S, 8.46; 

found: C, 57.12; H, 5.16; N, 10.92; S, 8.29. 

4-(N,N-Dimethylamino)-5-(phenylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-(N,N-Dimethylamino)-7-(phenylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (50e) 

Deprotection of 46e (535 mg, 0.75 mmol) according to the general 

procedure afforded compound 50e (302 mg, 87%) as white solid. 

Crystallization in MeOH/H2O gave white foam. M.p. 112 °C
 

[α]D −44.4 (0.18).
 1

H NMR (600.1 MHz, DMSO-d6): 3.12 (s, 6H, 

(CH3)2N); 3.55 (ddd, 1H, Jgem = 12.0 Hz, J5´a,OH = 5.7 Hz, J5´a,4´ = 3.7 

Hz, H-5´a); 3.65 (ddd, 1H, Jgem = 12.0 Hz, J5´b,OH = 4.9 Hz, J5´b,4´ = 

3.7 Hz, H-5´b); 3.92 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.6 Hz, H-4´); 4.10 (m, 1H, H-3'); 4.41 (m, 

1H, H-2'); 5.13 – 5.17 (m, 2H, OH-3´,5´); 5.39 (m, 1H, OH-2´); 6.18 (d, 1H, J1´,2´ = 5.9 Hz, H-

1'); 7.03 (m, 2H, H-o-SPh); 7.12 (m, 1H, H-p-SPh); 7.26 (m, 2H, H-m-SPh); 8.01 (s, 1H, H-6); 



191 
 

8.25 (s, 1H, H-2). 
13

C NMR (150.9 MHz, DMSO-d6): 41.26 ((CH3)2N); 61.51 (CH2-5´); 70.53 

(CH-3´); 74.30 (CH-2´); 85.32 (CH-4´); 87.33 (CH-1´); 99.61 (C-5); 104.95 (C-4a); 125.31 

(CH-o-SPh); 125.45 (CH-p-SPh); 129.32 (CH-m-SPh); 131.82 (CH-6); 139.39 (C-i-SPh); 

150.78 (CH-2); 152.83 (C-7a); 159.39 (C-4). IR (KBr): 3515, 3407, 3192, 3114, 3052, 2941, 

2902, 2863, 1571, 1547, 1491, 1416, 1296, 1096, 1057, 1030,740. HRMS (ESI) calculated for 

C19H23O4N4S: 403.1435; found: 403.1436. Anal. calculated for C19H22N4O4S·1.15H2O: C, 

53.93; H, 5.79; N, 13.24; S, 7.58; found: C, 54.14; H, 5.72; N, 13.03; S, 7.48. 

4-Methoxy-5-(phenylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methoxy-7-(phenylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (50h)  

Deprotection and methoxylation of 46a (706 mg, 1 mmol) according 

to the general procedure (4 equiv. of NaOMe were used) afforded 

compound 50h (290 mg, 75%) as white solid. Crystallization in 

MeOH/H2O gave white foam. M.p. 162 °C
 
[α]D −55.1 (0.18).

 1
H 

NMR (600.1 MHz, DMSO-d6): 3.56 (ddd, 1H, Jgem = 12.0 Hz, J5´a,OH 

= 5.7 Hz, J5´a,4´ = 3.8 Hz, H-5´a); 3.65 (ddd, 1H, Jgem = 12.0 Hz, 

J5´b,OH = 5.2 Hz, J5´b,4´ = 3.9 Hz, H-5´b); 3.87 (s, 3H, CH3O-4); 3.93 (q, 1H, J4´,5´a = J4´,5´b = 

J4´,3´ = 3.7 Hz, H-4´); 4.11 (td, 1H, J3´,2´ = J3´,OH = 4.9 Hz, J3´,4´ = 3.4 Hz, H-3'); 4.42 (m, 1H, 

H-2'); 5.10 (t, 1H, JOH,5´a = JOH,5´b = 5.4 Hz, OH-5´); 5.18 (d, 1H, JOH,3´ = 4.8 Hz, OH-3´); 5.42 

(d, 1H, JOH,2´ = 6.0 Hz, OH-2´); 6.18 (d, 1H, J1´,2´ = 6.0 Hz, H-1'); 7.11 (m, 2H, H-o-SPh); 7.13 

(m, 1H, H-p-SPh); 7.26 (m, 2H, H-m-SPh); 8.04 (s, 1H, H-6); 8.48 (s, 1H, H-2). 
13

C NMR 

(150.9 MHz, DMSO-d6): 53.83 (CH3O-4); 61.52 (CH2-5´); 70.59 (CH-3´); 74.44 (CH-2´); 

85.53 (CH-4´); 87.40 (CH-1´); 101.02 (C-5); 106.28 (C-4a); 125.61 (CH-p-SPh); 126.51 (CH-

o-SPh); 129.14 (CH-m-SPh); 131.09 (CH-6); 138.61 (C-i-SPh); 151.73 (CH-2); 152.96 (C-

7a); 162.97 (C-4). IR (KBr): 3225, 3150, 3058, 3016, 3001, 2941, 2908, 2869, 2848, 1589, 

1556, 1479, 1449, 1419, 1344, 1299, 1072, 1051, 737. HRMS (ESI) calculated for 

C18H20O5N3S: 390.1118; found: 390.1119.  

4-(Thiophen-2-yl)-5-(thiophen-2-ylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-(Thiophen-2-yl)-7-(thiophen-2-ylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (51b) 
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Deprotection of 47b (462 mg, 0.65 mmol) according to the general 

procedure afforded compound 51b (171 mg, 59%) as yellowish solid. 

M.p. 165 °C
 
[α]D −31.2 (0.19).

 1
H NMR (401.0 MHz, DMSO-d6): 

3.60 (dd, 1H, Jgem = 12.0 Hz, J5´a,4´ = 3.8 Hz, H-5´a); 3.70 (dd, 1H, 

Jgem = 12.0 Hz, J5´b,4´ = 3.8 Hz, H-5´b); 3.97 (q, 1H, J4´,5´a = J4´,5´b = 

J4´,3´ = 3.7 Hz, H-4´); 4.15 (dd, 1H, J3´,2´ = 5.0 Hz, J3´,4´ = 3.6 Hz, H-

3'); 4.43 (bt, 1H, J2´,1´ = J2´,3´ = 5.4 Hz, H-2'); 4.96 – 5.66 (m, 3H, OH-

2´,3´,5´); 6.28 (d, 1H, J1´,2´ = 5.7 Hz, H-1'); 6.79 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-

Sthienyl); 6.85 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.30 (dd, 1H, J4,5 = 5.1 Hz, 

J4,3 = 3.7 Hz, H-4-thienyl); 7.41 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.86 (dd, 

1H, J5,4 = 5.1 Hz, J5,3 = 1.1 Hz, H-5-thienyl); 8.38 (s, 1H, H-6); 8.40 (dd, 1H, J3,4 = 3.7 Hz, J3,5 

= 1.1 Hz, H-3-thienyl); 8.82 (s, 1H, H-2). 
13

C NMR (100.8 MHz, DMSO-d6): 61.41 (CH2-5´); 

70.51 (CH-3´); 74.56 (CH-2´); 85.57 (CH-4´); 87.29 (CH-1´); 104.92 (C-5); 113.99 (C-4a); 

127.83 (CH-4-Sthienyl); 128.31 (CH-4-thienyl); 129.54 (CH-5-Sthienyl); 130.56 (CH-3-

Sthienyl); 131.15 (CH-5-thienyl); 132.91 (CH-3-thienyl); 134.53 (CH-6); 136.03 (C-2-

Sthienyl); 140.81 (C-2-thienyl); 151.21 (CH-2); 152.52 (C-4); 152.94 (C-7a). IR (KBr): 3291, 

3111, 2932, 2869, 1556, 1443, 1401, 1192, 1099, 1075, 1045, 803, 716, 629. HRMS (ESI) 

calculated for C19H18O4N3S3: 448.0454; found: 448.0453. 

4-(Furan-2-yl)-5-(thiophen-2-ylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 

(6-(Furan-2-yl)-7-(thiophen-2-ylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (51c) 

Deprotection of 47c (260 mg, 0.35 mmol) according to the general 

procedure afforded compound 51c (85 mg, 57%) as yellow solid. M.p. 

172 °C
 
[α]D −41.7 (0.21).

 1
H NMR (401.0 MHz, DMSO-d6): 3.56 (dd, 

1H, Jgem = 11.9 Hz, J5´a,4´ = 3.8 Hz, H-5´a); 3.66 (dd, 1H, Jgem = 11.9 

Hz, J5´b,4´ = 3.8 Hz, H-5´b); 3.95 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.7 Hz, 

H-4´); 4.11 (dd, 1H, J3´,2´ = 5.0 Hz, J3´,4´ = 3.6 Hz, H-3'); 4.39 (bt, 1H, 

J2´,1´ = J2´,3´ = 5.4 Hz, H-2'); 4.96 – 5.67 (m, 3H, OH-2´,3´,5´); 6.25 (d, 

1H, J1´,2´ = 5.8 Hz, H-1'); 6.78 (dd, 1H, J4,3 = 3.5 Hz, J4,5 = 1.8 Hz, H-4-furyl); 6.93 (dd, 1H, 

J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.02 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-
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Sthienyl); 7.48 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.50 (dd, 1H, J3,4 = 3.5 Hz, 

J3,5 = 0.9 Hz, H-3-furyl); 8.05 (dd, 1H, J5,4 = 1.8 Hz, J5,3 = 0.9 Hz, H-5-furyl); 8.17 (s, 1H, H-

6); 8.83 (s, 1H, H-2). 
13

C NMR (100.8 MHz, DMSO-d6): 61.44 (CH2-5´); 70.55 (CH-3´); 

74.51 (CH-2´); 85.52 (CH-4´); 87.16 (CH-1´); 106.19 (C-5); 112.74 (CH-4-furyl); 113.10 (C-

4a); 115.42 (CH-3-furyl); 127.95 (CH-4-Sthienyl); 129.71 (CH-5-Sthienyl); 131.25 (CH-3-

Sthienyl); 133.07 (CH-6); 135.74 (C-2-Sthienyl); 146.18 (CH-5-furyl); 147.87 (C-4); 150.87 

(C-2-furyl); 151.33 (CH-2); 152.96 (C-7a). IR (KBr): 3252, 3162, 3138, 2944, 2914, 2872, 

1586, 1562, 1532, 1461, 1338, 1198, 1096, 1054, 1024, 979, 812, 752, 704. HRMS (ESI) 

calculated for C19H17O5N3NaS2: 454.0502; found: 454.0502. 

4-Methyl-5-(thiophen-2-ylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methyl-7-(thiophen-2-ylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (51d) 

Deprotection of 47d (415 mg, 0.6 mmol) according to the general 

procedure afforded compound 51d (146 mg, 64%) as white solid. 

M.p. 140 °C
 
[α]D −53.0 (0.22).

 1
H NMR (401.0 MHz, DMSO-d6): 

2.83 (s, 3H, CH3); 3.57 (dd, 1H, Jgem = 11.9 Hz, J5´a,4´ = 3.8 Hz, H-

5´a); 3.68 (dd, 1H, Jgem = 11.9 Hz, J5´b,4´ = 3.9 Hz, H-5´b); 3.94 (q, 1H, 

J4´,5´a = J4´,5´b = J4´,3´ = 3.7 Hz, H-4´); 4.12 (dd, 1H, J3´,2´ = 5.1 Hz, J3´,4´ 

= 3.5 Hz, H-3'); 4.41 (dd, 1H, J2´,1´ = 5.9 Hz, J2´,3´ = 5.1 Hz, H-2'); 5.00 – 5.55 (m, 3H, OH-

2´,3´,5´); 6.20 (d, 1H, J1´,2´ = 5.9 Hz, H-1'); 7.00 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-

Sthienyl); 7.16 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.51 (dd, 1H, J5,4 = 5.3 Hz, 

J5,3 = 1.3 Hz, H-5-Sthienyl); 8.27 (s, 1H, H-6); 8.71 (s, 1H, H-2). 
13

C NMR (100.8 MHz, 

DMSO-d6): 21.60 (CH3); 61.50 (CH2-5´); 70.55 (CH-3´); 74.45 (CH-2´); 85.54 (CH-4´); 87.18 

(CH-1´); 104.53 (C-5); 117.14 (C-4a); 128.20 (CH-4-Sthienyl); 128.85 (CH-5-Sthienyl); 

129.50 (CH-3-Sthienyl); 133.11 (CH-6); 137.12 (C-2-Sthienyl); 151.10 (C-7a); 151.76 (CH-

2); 159.90 (C-4). IR (KBr): 3425, 3282, 3108, 2950, 2932, 2881, 2842, 1583, 1562, 1416, 

1407, 1338, 1219, 1207, 1117, 1096, 1057, 1039, 976, 848, 710, 695, 626. HRMS (ESI) 

calculated for C16H17O4N3NaS2: 402.0553; found: 402.0553.  

4-(N,N-Dimethylamino)-5-(thiophen-2-ylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-

d]pyrimidine 
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(6-(N,N-Dimethylamino)-7-(thiophen-2-ylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) 

(51e) 

Deprotection of 47e (540 mg, 0.75 mmol) according to the general 

procedure afforded compound 51e (197 mg, 65%) as white solid. M.p. 

199 °C
 
[α]D −41.8 (0.19).

 1
H NMR (401.0 MHz, DMSO-d6): 3.24 (s, 

6H, (CH3)2N); 3.55 (dd, 1H, Jgem = 11.9 Hz, J5´a,4´ = 3.7 Hz, H-5´a); 

3.65 (dd, 1H, Jgem = 11.9 Hz, J5´b,4´ = 3.7 Hz, H-5´b); 3.91 (q, 1H, 

J4´,5´a = J4´,5´b = J4´,3´ = 3.7 Hz, H-4´); 4.09 (dd, 1H, J3´,2´ = 5.1 Hz, J3´,4´ 

= 3.6 Hz, H-3'); 4.36 (dd, 1H, J2´,1´ = 5.8 Hz, J2´,3´ = 5.1 Hz, H-2'); 5.00 – 5.51 (m, 3H, OH-

2´,3´,5´); 6.11 (d, 1H, J1´,2´ = 5.8 Hz, H-1'); 6.97 (dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-

Sthienyl); 7.10 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, H-3-Sthienyl); 7.48 (dd, 1H, J5,4 = 5.3 Hz, 

J5,3 = 1.3 Hz, H-5-Sthienyl); 8.23 (s, 1H, H-6); 8.30 (s, 1H, H-2). 
13

C NMR (100.8 MHz, 

DMSO-d6): 41.54 ((CH3)2N); 61.57 (CH2-5´); 70.54 (CH-3´); 74.32 (CH-2´); 85.33 (CH-4´); 

87.44 (CH-1´); 104.37 and 104.47 (C-4a,5); 128.05 (CH-4-Sthienyl); 128.93 (CH-5-Sthienyl); 

129.82 (CH-3-Sthienyl); 130.12 (CH-6); 137.39 (C-2-Sthienyl); 150.76 (CH-2); 152.35 (C-

7a); 159.53 (C-4). IR (KBr):3494, 3282, 3222, 3117, 2941, 2887, 1577, 1538, 1497, 1437, 

1419, 1404, 1299, 1219, 1135, 1030, 698. HRMS (ESI) calculated for C17H21O4N4S2: 

409.0999; found: 409.1002.  

4-Methoxy-5-(thiophen-2-ylsulfanyl)-7-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Methoxy-7-(thiophen-2-ylsulfanyl)-9-β-D-ribofuranosyl)-7-deazapurine) (51h) 

Deprotection and methoxylation of 47a (712 mg, 1 mmol) according 

to the general procedure (4 equiv. of NaOMe were used) afforded 

compound 51h (305 mg, 77%) as white solid. M.p. 194 °C
 
[α]D −51.1 

(0.17).
 1

H NMR (401.0 MHz, DMSO-d6): 3.55 (dd, 1H, Jgem = 11.9 

Hz, J5´a,4´ = 3.8 Hz, H-5´a); 3.64 (dd, 1H, Jgem = 11.9 Hz, J5´b,4´ = 3.8 

Hz, H-5´b); 3.91 (q, 1H, J4´,5´a = J4´,5´b = J4´,3´ = 3.6 Hz, H-4´); 4.06 (s, 

3H, CH3O); 4.09 (dd, 1H, J3´,2´ = 5.1 Hz, J3´,4´ = 3.4 Hz, H-3'); 4.37 (dd, 1H, J2´,1´ = 6.1 Hz, 

J2´,3´ = 5.1 Hz, H-2'); 4.98 – 5.52 (m, 3H, OH-2´,3´,5´); 6.12 (d, 1H, J1´,2´ = 6.1 Hz, H-1'); 7.00 

(dd, 1H, J4,5 = 5.3 Hz, J4,3 = 3.6 Hz, H-4-Sthienyl); 7.24 (dd, 1H, J3,4 = 3.6 Hz, J3,5 = 1.3 Hz, 

H-3-Sthienyl); 7.55 (dd, 1H, J5,4 = 5.3 Hz, J5,3 = 1.3 Hz, H-5-Sthienyl); 7.93 (s, 1H, H-6); 8.45 
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(s, 1H, H-2). 
13

C NMR (100.8 MHz, DMSO-d6): 53.83 (CH3O); 61.55 (CH2-5´); 70.60 (CH-

3´); 74.36 (CH-2´); 85.54 (CH-4´); 87.39 (CH-1´); 105.39 and 105.53 (C-4a,5); 127.93 (CH-4-

Sthienyl); 129.13 (CH-6); 129.96 (CH-5-Sthienyl); 132.18 (CH-3-Sthienyl); 135.41 (C-2-

Sthienyl); 151.73 (CH-2); 152.47 (C-7a); 162.89 (C-4). IR (KBr): 3512, 3285, 3025, 2992, 

2935, 2920, 2869, 1589, 1556, 1482, 1443, 1407, 1338, 1326, 1302, 1138, 1081, 1036, 704. 

HRMS (ESI) calculated for C16H18O5N3S2: 396.0682; found: 396.0682. 

5.7 Reactivity of sulfanyl deazapurine and purine bases 

Liebeskind-Srogl cross-coupling of 9-benzyl-6-phenyl-8-(phenylsulfanyl)-9H-purine 

a) Reaction with stannanes 

To the mixture of CuMeSal (47 mg, 0.22 mmol, 2.2 equiv.), Pd(PPh3)4 (5.8 mg, 0.005 mmol, 

0.05 equiv.) and 9-benzyl-6-phenyl-8-(phenylthio)-9H-purine 43a (39 mg, 0.1 mmol, 1.0 

equiv.) and stannane (0.12 mmol, 1.2 equiv.) in THF (2 mL). The reaction mixture was stirred 

under nitrogen at 50 °C for 18 h, and then 10% aqueous NH4OH (10 mL) was added and the 

mixture was stirred for an additional 10 min. The reaction mixture was filtered through a plug 

of Celite, and the filtrate was extracted with ethyl acetate (3 × 15 mL). The organic layer was 

washed with brine (5 mL), dried over NaSO4, and evaporated. The crude product was purified 

by column chromatography on silica gel. 

9-Benzyl-8-(furan-2-yl)-6-phenyl-9H-purine (52a) 

2-(Tri-n-butylstannyl)furan (38 µL, 0.12 mmol, 1.2 equiv.) was used as 

starting compound to give product 52a (25 mg, 70%) as white crystals 

after chromatography eluting with hexane/EtOAc 5:1 to 2:1. M.p. 135 - 

141 °C.
 1

H NMR (500.0 MHz, CDCl3): 5.86 (s, 2H, CH2Ph); 6.59 (dd, 

1H, J4,3 = 3.6, J4,5 = 1.8, H-4-furyl); 7.22 (m, 2H, H-o-Bn); 7.26 (m, 1H, 

H-p-Bn); 7.28 (m, 2H, H-m-Bn); 7.29 (dd, 1H, J3,4 = 3.6, J3,5 = 0.8, H-3-

furyl); 7.52 (m, 1H, H-p-Ph); 7.58 (m, 2H, H-m-Ph); 7.64 (dd, 1H, J5,4 = 1.8, J5,3 = 0.8, H-5-

furyl); 8.88 (m, 2H, H-o-Ph); 9.02 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 46.96 

(CH2Ph); 112.34 (CH-4-furyl); 114.88 (CH-3-furyl);126.85 (CH-o-Bn); 127.84 (CH-p-Bn); 

128.62 (CH-m-Ph); 128.76 (CH-m-Bn); 129.79 (CH-o-Ph); 130.82 (CH-p-Ph); 131.05 (C-5); 

135.75 (C-i-Ph); 136.16 (C-i-Bn); 144.70 (C-2-furyl); 144.93 (CH-5-furyl); 145.47 (C-8); 
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152.27 (CH-2); 153.64 (C-6); 154.18 (C-4). IR(KBr): 3068, 1605, 1603, 1562, 1497, 1454, 

1334, 1321, 1016. HRMS (ESI) calculated for C22H17ON4: 353.1397; found: 353.1397 

9-Benzyl-6,8-diphenyl-9H-purine (52b) 

Tributylphenylstannane (39 µL, 0.12 mmol, 1.2 equiv.) was used as 

starting compound to give product 52b (30 mg, 83%) as white crystals 

after chromatography eluting with hexane/EtOAc  5:1 to 2:1. 
1
H NMR 

was checked by published data.
99

 

 

 

b) Reaction with boronic acid 

9-Benzyl-6-phenyl-8-(phenylsulfanyl)-9H-purine 43a (39 mg, 0.1 mmol), Cu (I) thiophene-2-

carboxylate (23 mg, 0.12 mmol), p-tolylboronic acid (21 mg, 0.15 mmol), Pd2dba3 (4 mg, 

0.004 mmol) and tris-2-furylphosphine (4 mg, 0.016 mmol) were placed in reaction vessel that 

was flushed with argon. THF (1 mL) was added and the mixture was stirred for 18 h at 50 °C. 

EtOAc (5 mL) was added and the suspension was washed with 10% aq. NH4OH (10 mL). The 

aqueous layer was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was 

dried over anhydrous Na2SO4 and filtered, and all of the volatiles were removed under reduced 

pressure. The crude product was purified by column chromatography on silica gel to give 

product 52c (20 mg, 54%) as white crystals after chromatography eluting with hexane/EtOAc  

5:1 to 2:1. 

 

9-Benzyl-6-phenyl-8-(p-tolyl)-9H-purine (52c) 

 

1
H NMR was checked by published data.

99
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General procedure for benzylation: 

Dry DMF was added to a stirred solution of deazapurine 36a-36d, 44a (1 equiv.) and 

potassium carbonate (1.1 equiv.). After 20 min, benzyl chloride (1.05 equiv.) was added and 

the resulting mixture was stirred overnight at rt until complete consumption of staring material 

as monitored by TLC. The solution was then diluted with EtOAc and washed with water. 

Aqueous solution was then extracted two times with EtOAc and combined organic layers were 

dried over Na2SO4, filtered, and evaporated under vacuum. The crude product was purified by 

HPFC (hexane/EtOAc, 0–20% EtOAc). 

7-Benzyl-4-phenyl-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-phenyl-7-(phenylsulfanyl)-7-deazapurine) (53a) 

Benzylation of 6-phenyl-7-(phenylsulfanyl)-7-deazapurine 36a (606 

mg, 2 mmol) according to the general procedure afforded compound 

53a (708 mg, 90 %) as yellow solid. 
1
H NMR was compared with 

published data.
119

 

 

 

7-Benzyl-5-(methylsulfanyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-7-(methylsulfanyl)-6-phenyl-7-deazapurine) (53b) 

Benzylation of 7-(methylsulfanyl)-6-phenyl-7-deazapurine 36b (483 mg, 2 

mmol) according to the general procedure afforded compound 53b (563 mg, 

85 %) as yellow solid. M.p. 63-66 °C. 
1
H NMR (600.0 MHz, CDCl3): 1.85 

(s, 3H, CH3S); 5.47 (s, 2H, CH2Ph); 7.16 (s, 1H, H-6); 7.28 (m, 2H, H-o-

Bn); 7.30 (m, 1H, H-p-Bn); 7.34 (m, 2H, H-m-Bn); 7.51 (m, 3H, H-m,p-Ph); 

7.89 (m, 2H, H-o-Ph); 8.99 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 

18.90 (CH3S); 47.90 (CH2Ph); 108.22 (C-5); 115.72 (C-4a); 127.72 (CH-o-Bn, CH-m-Ph); 

128.05 (CH-p-Bn); 128.85 (CH-m-Bn); 129.33 (CH-6); 129.52 (CH-p-Ph); 129.85 (CH-o-Ph); 

136.32 (C-i-Bn); 137.35 (C-i-Ph); 151.63 (CH-2); 152.17 (C-7a); 160.08 (C-4). IR(KBr): 

2915, 1554, 1509, 1496, 1463, 1456, 1435, 1332, 1180, 1141, 976, 765. HRMS (ESI) 



198 
 

calculated for C20H18N3S: 332.1216; found: 332.1215. Anal. calculated for C20H17N3S 

(331.11): 72.48; H, 5.17; N, 12.68; S, 9.67; found: C, 72.24; H, 5.07; N, 12.47; S, 9.35. 

7-Benzyl-5-((4-methoxyphenyl)sulfanyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-7-((4-methoxyphenyl)sulfanyl)-6-phenyl-7-deazapurine) (53c) 

Benzylation of 7-((4-methoxyphenyl)sulfanyl)-6-phenyl-7-

deazapurine 36c (667 mg, 2 mmol) according to the general 

procedure afforded compound 53c (763 mg, 90 %) as yellowish 

solid. M.p. 113-116°C. 
1
H NMR (499.8 MHz, CDCl3): 3.70 (s, 

3H, CH3O); 5.51 (s, 2H, CH2Ph); 6.56 (m, 2H, H-m-SC6H4OMe); 

6.67 (m, 2H, H-o-SC6H4OMe); 7.29 (m, 2H, H-o-Bn); 7.34 (m, 

1H, H-p-Bn); 7.37 (m, 2H, H-m-Bn); 7.38 (s, 1H, H-6); 7.39 (m, 2H, H-m-Ph); 7.44 (m, 1H, 

H-p-Ph); 7.65 (m, 2H, H-o-Ph); 8.98 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 48.16 

(CH2Ph); 55.27 (CH3O); 105.56 (C-5); 114.25 (CH-m-SC6H4OMe); 115.57 (C-4a); 127.46 (C-

i-SC6H4OMe); 127.54 (CH-m-Ph); 127.78 (CH-o-Bn); 128.23 (CH-p-Bn); 128.99 (CH-m-Bn); 

129.40 (CH-p-Ph); 130.08 (CH-o-Ph); 130.35 (CH-o-SC6H4OMe); 133.95 (CH-6); 136.17 (C-

i-Bn); 136.76 (C-i-Ph); 151.60 (CH-2); 152.50 (C-7a); 158.27 (C-p-SC6H4OMe); 160.48 (C-

4). IR(KBr): 1595, 1580, 1556, 1493, 1454, 1327, 1290, 1246, 1185, 1176,1033. 825, 762, 

695.HRMS (ESI) calculated for C26H22ON3S: 424.1478; found: 424.1477. Anal. calculated for 

C26H21ON3S (423.14): C, 73.73; H, 5.00; N, 9.92; S, 7.57; found: C, 73.56; H, 4.96; N, 9.66; 

S, 7.61. 

7-Benzyl-5-((4-nitrophenyl)sulfanyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-7-((4-nitrophenyl)sulfanyl)-6-phenyl-7-deazapurine) (53d) 

Benzylation of 7-((4-nitrophenyl)sulfanyl)-6-phenyl-7-

deazapurine 36d (348 mg, 1 mmol) according to the general 

procedure afforded compound 53d (350 mg, 80 %) as yellowish 

solid. M.p. 169-171°C. 
1
H NMR (499.8 MHz, CDCl3): 5.58 (s, 

2H, CH2Ph); 6.71 (m, 2H, H-o-SC6H4NO2); 7.22 (m, 2H, H-m-

Ph); 7.30 (m, 1H, H-p-Ph); 7.34-7.42 (m, 5H, H-o,m,p-Bn); 7.50 

(m, 2H, H-o-Ph); 7.55 (s, 1H, H-6); 7.79 (m, 2H, H-m-SC6H4NO2); 9.06 (s, 1H, H-2). 
13

C 
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NMR (125.7 MHz, CDCl3): 48.44 (CH2Ph); 99.68 (C-5); 115.45 (C-4a); 123.43 (CH-m-

SC6H4NO2); 125.50 (CH-o-SC6H4NO2); 127.40 (CH-m-Ph); 128.00 (CH-o-Bn); 128.52 (CH-

p-Bn); 129.14 (CH-m-Bn); 129.42 (CH-p-Ph); 129.59 (CH-o-Ph); 135.77 (C-i-Bn); 135.80 

(CH-6); 136.19 (C-i-Ph); 144.93 (C-p-SC6H4NO2); 148.07 (C-i-SC6H4NO2); 152.35 (CH-2); 

152.79 (C-7a); 160.94 (C-4). IR(KBr): 3441, 2926, 1575, 1509, 1456, 1413, 1336, 1188, 1109, 

1086, 985, 853, 839, 747, 669. HRMS (ESI) calculated for C25H19O2N4S: 439.1223; found: 

439.1223. Anal. calculated for C25H18O2N4S (438.12): C, 68.48; H, 4.14; N, 12.78; S, 7.31; 

found: C, 68.36; H, 4.08; N, 12.49; S, 7.23. 

7-Benzyl-4-chloro-5-(phenylsulfanyl)-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-chloro-7-(phenylsulfanyl)-7-deazapurine) (54a) 

Benzylation of 6-chloro-7-(phenylsulfanyl)-7-deazapurine 44a (534 mg, 

2 mmol) according to the general procedure afforded compound 54a 

(633 mg, 90 %) as white solid. M.p. 122-123 °C. 
1
H NMR (500.0 MHz, 

CDCl3): 5.48 (s, 2H, CH2Ph); 7.11 (m, 2H, H-o-SPh); 7.12 (m, 1H, H-p-

SPh); 7.21 (m, 2H, H-m-SPh); 7.26 (m, 2H, H-o-Bn); 7.34 (m, 1H, H-p-

Bn); 7.35 (m, 2H, H-m-Bn); 7.45 (s, 1H, H-6); 8.70 (s, 1H, H-2). 
13

C 

NMR (125.7 MHz, CDCl3): 48.64 (CH2Ph); 102.94 (C-5); 117.04 (C-4a); 125.65 (CH-p-SPh); 

126.73 (CH-o-SPh); 127.81 (CH-o-Bn); 128.46 (CH-p-Bn); 128.91 (CH-m-SPh); 129.08 (CH-

m-Bn); 135.45 (CH-6); 135.51 (C-i-Bn); 138.34 (C-i-Ph); 151.59 (CH-2); 152.30 (C-7a); 

152.84 (C-4). IR(KBr): 1580, 1541, 1510, 1495, 1478, 1446, 1413, 1336, 1207, 990, 773. 

HRMS (ESI) calculated for C19H15N3ClS: 352.0669; found: 352.0669. Anal. calculated for 

C19H14ClN3S (351.06): C, 64.86; H, 4.01; Cl, 10.08; N, 11.94; S, 9.11; found: C, 64.98; H, 

4.09; Cl, 9.72; N, 11.64; S, 9.12. 

Kumada coupling: 

7-Benzyl-4,5-diphenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6,7-diphenyl-7-deazapurine) (55) 
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2M solution PhMgCl in THF (1.25 mL, 2.5 mmol, 2.5 equiv.) was added to 

solution of 9-benzyl-6-phenyl-7-(phenylsulfanyl)-7-deazapurine 53a (393 

mg, 1 mmol, 1 equiv.) with NiCp2 (9.5 mg, 0.05 mmol, 5% mol) in THF (5 

mL) under Ar and the solution was shaken gently at 70°C. After 15 min the 

mixture was quenched aqueous solution ammonium chloride and mixture 

were three times extracted with EtOAc and dried over Na2SO4. The crude 

product was purified by HPFC (hexane/EtOAc, 0–60% EtOAc) to give products 55 (181 mg, 

50%) as white solid, the product of desulfenylation 2 (31 mg, 11%) as white solid and the 

product of dimerization 56 (71 mg, 13 %) as yellowish solid. M.p. 71-83°C. 
1
H NMR (500.0 

MHz, CDCl3): 5.57 (s, 2H, CH2Ph); 6.94 (m, 2H, H-o-Ph-5); 7.05 (m, 2H, H-m-Ph-5); 7.10-

7.15 (m, 3H, H-p-Ph-5, H-m-Ph-4); 7.26 (s, 1H, H-6); 7.27 (m, 1H, H-p-Ph-4); 7.29-7.38 (m, 

5H, H-o,m,p-Bn); 7.41 (m, 2H, H-o-Ph-4); 9.05 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 

48.03 (CH2Ph); 113.65 (C-4a); 117.63 (C-5); 126.30 (CH-p-Ph-5); 126.97 (CH-6); 127.54 

(CH-m-Ph-4); 127.62 (CH-m-Ph-5); 127.88 (CH-o-Bn); 128.08 (CH-p-Bn); 128.91 (CH-m-

Bn); 128.98 (CH-p-Ph-4); 129.16 (CH-o-Ph-5); 129.74 (CH-o-Ph-4); 133.92 (C-i-Ph-5); 

136.61 (C-i-Bn); 137.58 (C-i-Ph-4); 151.43 (CH-2); 152.03 (C-7a); 159.73 (C-4). IR(KBr): 

3053, 3032, 2926, 2852, 1583, 1552, 1530, 1496, 1464, 1455, 1444, 1431, 1347, 1179, 759, 

704. HRMS (ESI) calculated for C25H20N3: 362.1652; found: 362.1651. 

7-Benzyl-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-phenyl-7-deazapurine) (2) 

 

1
H NMR was compared with published data.

124
 

 

 

 

 

7,7'-Dibenzyl-4,4'-diphenyl-7H,7'H-5,5'-bipyrrolo[2,3-d]pyrimidine 

(9,9'-Dibenzyl-6,6'-diphenyl-7,7'-bisdeazapurine) (56) 
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M.p.183°C.
 1

H NMR (600.1 MHz, CDCl3): 5.42 (s, 2H, CH2Ph); 6.85 

(m, 2H, H-m-Ph); 6.93 (s, 1H, H-6); 7.03 (m, 1H, H-p-Ph); 7.14 (m, 2H, 

H-o-Ph); 7.32 (m, 2H, H-o-Bn); 7.33 (m, 1H, H-p-Bn); 7.37 (m, 2H, H-

m-Bn); 8.82 (s, 1H, H-2). 
13

C NMR (150.9 MHz, CDCl3): 47.90 

(CH2Ph); 108.97 (C-5); 115.62 (C-4a); 126.76 (CH-m-Ph); 127.61 (CH-

6); 128.01 (CH-o-Bn); 128.20 (CH-p-Bn); 128.91 (CH-m-Bn); 129.04 

(CH-p-Ph); 129.78 (CH-o-Ph); 136.38 (C-i-Ph); 136.62 (C-i-Bn); 

151.07 (CH-2); 151.34 (C-7a); 159.31 (C-4). IR(KBr): 3060,3031, 

2974, 2926, 1589, 1553, 1532, 1518, 1506, 1494, 1458, 1443, 1356, 1317, 1177, 1159, 1021, 

764, 722, 701. HRMS (ESI) calculated for C38H29N6: 569.2448; found: 569.2446. 

7-Benzyl-5-deuterium-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-7-deuterium-6-phenyl-7-deazapurine) (57) 

2M solution PhMgCl in THF (0.25 mL, 0.5 mmol, 2.5 equiv.) was added to 

solution of 9-benzyl-6-phenyl-7-(phenylsulfanyl)-7-deazapurine (79 mg, 0.2 

mmol, 1 equiv.) with NiCl2(dppp) (5.5 mg, 0.01 mmol, 5% mol) in THF (1 mL) 

under Ar and the solution was shaken gently at 70°C. After 15 min the mixture 

was quenched with D2O and mixture were three times extracted with EtOAc 

and dried over Na2SO4. The crude product was purified by HPFC 

(hexane/EtOAc, 0–60% EtOAc) to give products 55 (30 mg, 41%) as white solid, 57 (20 mg, 

35%) as white solid and 56 (11 mg, 5 %) as yellowish solid. 
1
H NMR (500.0 MHz, CDCl3): 

5.52 (s, 2H, CH2); 7.26 (m, 2H, H-o-Bn); 7.28 (s, 1H, H-6); 7.32 (m, 1H, H-p-Bn); 7.35 (m, 

2H, H-m-Bn); 7.55 (m, 1H, H-p-Ph); 7.57 (m, 2H, H-m-Ph); 8.15 (m, 2H, H-o-Ph); 9.04 (s, 

1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 48.15 (CH2Ph); 101.07 (t, JC,D = 27.4, C-5); 115.43 

(C-4a); 127.66 (CH-o-Bn); 128.10 (CH-p-Bn); 128.92 (CH-m-Ph, CH-m-Bn); 129.00 (CH-o-

Ph); 129.32 (CH-6); 130.46 (CH-p-Ph); 136.50 (C-i-Bn); 136.99 (C-i-Ph); 150.86 (CH-2); 

151.72 (C-7a); 156.80 (C-4). 
2
H NMR (76.7 MHz, CDCl3): 6.97. IR(KBr): 3114, 3084, 3063, 

3049, 3043, 3028, 2926, 1559, 1550, 1506, 1461, 1437, 1413, 1335, 1207, 1192, 919, 767, 

719, 695. HRMS (ESI) calculated for C19H15
2
HN3: 287.1402; found: 287.1403. 
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Oxidation of sulfanyldeazapurines. General procedure: 

To a solution of m-CPBA (75%, 10 equiv.) in 1,4-dioxane  cooled to 0 °C was added an 

NaOH (1M, 10 equiv.) aqueous solution, followed by addition of sulfanyldeazapurine 36a, 

53a, 53d  (1 equiv.). The ratio of 1,4-dioxane/H2O was 9:1. The suspension was shaken gently 

at room temperature. After 16 h the mixture was quenched brine and mixture were extracted 

with EtOAc and dried over Na2SO4. The crude product was purified by HPFC (hexane/EtOAc, 

0–20% EtOAc). 

4-Phenyl-5-(phenylsulfinyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Phenyl-7-(phenylsulfinyl)-7-deazapurine) (36aa) 

Oxidation of 36a (304 mg, 1 mmol) according to the general procedure 

gave products 36aa (239 mg, 75%) as white solid and 36ab (50 mg, 

15%) as white solid. M.p. 213-215°C. 
1
H NMR (499.8 MHz, CDCl3): 

6.97 (m, 2H, H-o-SO2Ph); 7.17 (m, 2H, H-m-SO2Ph); 7.27 (m, 1H, H-p-

SO2Ph); 7.53 (m, 2H, H-m-Ph); 7.56 (m, 1H, H-p-Ph); 7.68 (m, 2H, H-

o-Ph); 7.99 (s, 1H, H-6); 9.03 (s, 1H, H-2); 12.20 (bs, 1H, NH). 
13

C NMR (125.7 MHz, 

CDCl3): 112.95 (C-4a); 119.20 (C-5); 125.43 (CH-o-SO2Ph); 128.39 (CH-6); 128.76 (CH-m-

Ph); 128.99 (CH-m-SO2Ph); 129.41 (CH-o-Ph); 130.36 (CH-p-Ph); 131.14 (CH-p-SO2Ph); 

138.23 (C-i-Ph); 144.06 (C-i-SPh); 151.95 (CH-2); 153.71 (C-7a); 159.78 (C-4). IR(KBr): 

3191, 3101, 3051, 2837, 1589, 1580, 1557, 1455, 1442, 1429, 1401, 1335, 1246, 1231, 1082, 

1028, 989, 753, 747, 688. HRMS (ESI) calculated for C18H14ON3S: 320.0852; found: 

320.0851. 

4-Phenyl-5-(phenylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidine 

(6-Phenyl-7-(phenylsulfonyl)-7-deazapurine) (36ab) 

1
H NMR (499.8 MHz, DMSO-d6): 7.20 (m, 2H, H-o-SO2Ph); 7.23 (m, 

2H, H-o-Ph); 7.33 (m, 2H, H-m-Ph); 7.34 (m, 2H, H-m-SO2Ph); 7.50 

(m, 1H, H-p-Ph); 7.52 (m, 1H, H-p-SO2Ph); 8.59 (s, 1H, H-6); 8.90 (s, 

1H, H-2); 13.52 (bs, 1H, NH). 
13

C NMR (125.7 MHz, DMSO-d6): 

111.44 (C-4a); 114.54 (C-5); 126.57 (CH-o-SO2Ph); 127.68 (CH-m-Ph); 

129.07 (CH-m-SO2Ph); 129.27 (CH-p-Ph); 129.39 (CH-o-Ph); 132.85 (CH-p-SO2Ph); 136.87 
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(CH-6); 138.41 (C-i-Ph); 141.72 (C-i-SPh); 152.20 (CH-2); 153.74 (C-7a); 160.01 (C-4). 

IR(KBr): 3106, 3065, 1598, 1567, 1513, 1458, 1324, 1140, 1026, 812, 769, 743, 704, 562. 

HRMS (ESI) calculated for C18H14O2N3S: 336.0801; found: 336.0800. 

7-Benzyl-4-phenyl-5-(phenylsulfinyl)-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-phenyl-7-(phenylsulfinyl)-7-deazapurine) (53aa) 

Oxidation of 53a (1.18 g, 3 mmol) according to the general procedure 

gave products 53aa (169 mg, 13%) as white solid and 53ab (932 mg, 

73%) as white solid. M.p. 130-135°C. 
1
H NMR (500.0 MHz, CDCl3): 

5.47, 5.62 (2 × d, 2 × 2H, Jgem = 14.9, CH2Ph); 6.86 (m, 2H, H-o-SPh); 

7.13 (m, 2H, H-m-SPh); 7.24 (m, 1H, H-p-SPh); 7.31 (m, 2H, H-o-Bn); 

7.35 (m, 1H, H-p-Bn); 7.37 (m, 2H, H-m-Bn); 7.53 (m, 2H, H-m-Ph); 

7.57 (m, 1H, H-p-Ph); 7.65 (m, 2H, H-o-Ph); 7.92 (s, 1H, H-6); 9.01 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): 48.81 (CH2Ph); 112.81 (C-4a); 119.12 (C-5); 125.37 (CH-o-SPh); 

128.01 (CH-o-Bn); 128.51 (CH-p-Bn); 128.77 (CH-m-Ph); 128.95 (CH-m-SPh); 129.09 (CH-

m-Bn); 129.47 (CH-o-Ph); 130.37 (CH-p-Ph); 130.51 (CH-6); 131.08 (CH-p-SPh); 135.52 (C-

i-Bn); 138.01 (C-i-Ph); 144.40 (C-i-SPh); 152.03 (CH-2); 152.89 (C-7a); 159.23 (C-4). 

IR(KBr): 3104, 3081, 3033,3002, 2945, 1583, 1539, 1506, 1475, 1453, 1444, 1437, 1416, 

1344, 1388, 1252, 1207, 1197, 1184, 1081, 1039, 979, 750, 703, 690, 625, 619, 509. HRMS 

(ESI) calculated for C25H20ON3S: 410.1322; found: 410.1322. 

7-Benzyl-4-phenyl-5-(phenylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-phenyl-7-(phenylsulfonyl)-7-deazapurine) (53ab) 

M.p. 130-132°C. 
1
H NMR (499.8 MHz, CDCl3): 5.57 (s, 2H, CH2Ph); 

7.09 (m, 2H, H-o-SPh); 7.17 (m, 2H, H-m-SPh); 7.35-7.44 (m, 10H, H-

o,m,p-Bn, H-o,m-Bn, H-p-SPh); 7.51 (m, 1H, H-p-Ph); 8.23 (s, 1H, H-

6); 9.01 (s, 1H, H-2). 
13

C NMR (125.7 MHz, CDCl3): 48.97 (CH2Ph); 

112.23 (C-4a); 116.34 (C-5); 126.93 (CH-o-SPh); 127.91 (CH-m-Bn); 

128.26 (CH-o-Bn); 128.60 (CH-m-SPh); 128.82 (CH-p-Bn); 129.27 

(CH-m-Ph); 129.59 (CH-o,p-Ph); 132.41 (CH-p-SPh); 134.86 (C-i-Bn); 136.49 (CH-6); 

137.53 (C-i-Ph); 141.03 (C-i-SPh); 152.23 (CH-2); 152.73 (C-7a); 161.15 (C-4). IR(KBr): 
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3437, 3063, 3032, 1557, 1514, 1445, 1393, 1335, 1304, 1165, 1152, 1138, 985, 750, 725, 695, 

688, 593. HRMS (ESI) calculated for C25H20O2N3S: 426.1271; found: 426.1270. Anal. 

calculated for C25H19O2N3S (425.12): C, 70.57; H, 4.50; N, 9.88; S, 7.54; found: C, 70.48; H, 

4.53; N, 9.63; S, 7.56. 

7-Benzyl-5-((4-nitrophenyl)sulfinyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-phenyl-7-((4-nitrophenyl)sulfinyl)-7-deazapurine) (53da) 

Oxidation of 53d (219 mg, 0.5 mmol) according to the general 

procedure gave products 53da (46 mg, 20%) as white solid and 

53db (159 mg, 68%) as white solid. M.p. 188-189°C. 
1
H NMR 

(499.8 MHz, CDCl3): 5.50, 5.62 (2 × d, 2 × 1H, Jgem = 14.8, 

CH2Ph); 6.97 (m, 2H, H-o-SOC6H4NO2); 7.33 (m, 2H, H-o-Bn); 

7.37 (m, 3H, H-m,p-Bn); 7.59 (m, 2H, H-m-Ph); 7.62 (m, 1H, H-

p-Ph); 7.71 (m, 2H, H-o-Ph); 7.95 (s, 1H, H-6); 7.96 (m, 2H, H-m-SOC6H4NO2); 9.05 (s, 1H, 

H-2). 
13

C NMR (125.7 MHz, CDCl3): 49.32 (CH2Ph); 112.19 (C-4a); 119.01 (C-5); 124.12 

(CH-m-SOC6H4NO2); 125.96 (CH-o-SOC6H4NO2); 128.09 (CH-o-Bn); 128.92 (CH-p-Bn); 

129.28, 129.29 (CH-m-Ph, CH-m-Bn); 129.94 (CH-o-Ph); 131.59 (CH-p-Ph); 132.41 (CH-6); 

134.73 (C-i-Bn); 135.61 (C-i-Ph); 148.99 (C-p-SOC6H4NO2); 150.87 (CH-2); 151.27 (C-i-

SOC6H4NO2); 152.95 (C-7a); 157.74 (C-4). IR(KBr): 3106, 3062, 1603, 1557, 1523, 1441, 

1344, 1076, 1047, 852, 769, 743, 704. HRMS (ESI) calculated for C25H18O3N4NaS: 477.0991; 

found: 477.0992. 

7-Benzyl-5-((4-nitrophenyl)sulfonyl)-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine 

(9-Benzyl-6-phenyl-7-((4-nitrophenyl)sulfonyl)-7-deazapurine) (53db) 

M.p. 194-195°C. 
1
H NMR (499.8 MHz, CDCl3): 5.58 (s, 2H, 

CH2Ph); 7.22 (m, 2H, H-o-SO2C6H4NO2); 7.37-7.45 (m, 9H, H-

o,m-Ph, H-o,m,p-Bn); 7.55 (m, 1H, H-p-Ph); 7.97 (m, 2H, H-m-

SC6H4NO2); 8.27 (s, 1H, H-6); 9.03 (s, 1H, H-2). 
13

C NMR 

(125.7 MHz, CDCl3): 48.90 (CH2Ph); 111.91 (C-4a); 114.46 (C-

5); 123.46 (CH-m-SO2C6H4NO2); 127.76 (CH-m-Ph); 128.10, 

128.13 (CH-o-SO2C6H4NO2, CH-o-Bn); 128.74 (CH-p-Bn); 129.11 (CH-m-Bn); 129.44 (CH-
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o-Ph); 129.60 (CH-p-Ph); 134.39 (C-i-Bn); 136.74 (CH-6); 137.43 (C-i-Ph); 146.36 (C-i-

SO2C6H4NO2); 149.32 (C-p-SO2C6H4NO2); 152.54 (CH-2); 152.59 (C-7a); 160.89 (C-4). 

IR(KBr): 3127, 3102, 3062, 3033, 1565, 1523, 1390, 1350, 1321, 1164, 1140, 992, 851, 753, 

748, 597. HRMS (ESI) calculated for C25H18O4N4NaS: 493.0941; found: 493.0942. 

C-nucleophiles 

7-Benzyl-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitrile 

(9-Benzyl-8-carbonitrile-6-phenyl-7-deazapurine) (32m) 

Solution of 9-benzyl-6-phenyl-7-(phenylsulfonyl)-7-deazapurine 53ab 

(425 mg, 1 mmol) and NaCN (147 mg, 3 mmol) in DMF (10 mL) was 

stirred overnight at 110 °C until complete consumption of staring material 

as monitored by TLC. The crude product was purified by HPFC 

(hexane/EtOAc, 0–20% EtOAc) to give 32m (280 mg, 90%) as a white 

solid. 
1
H NMR was compared with published data.
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