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Preface

This thesis presents several contributions of the author to the branch of mathe-
matics called stochastic programming or stochastic optimization. Many real life
problems lead to optimization problems where some parts need not to be known
precisely, thus they are uncertain. Stochastic programming provides methods for
dealing with uncertainty when it is represented by random variables with a known
or estimated probability distribution.

In chance (probabilistic) constrained problems, the constraints dependent on
a random vector with known distribution must be fulfilled with a high prescribed
probability and can be violated with the small complementary probability. Such
trade-off is useful in many real life applications, e.g., in finance and engineering,
but at the same time it leads to problems which are difficult to solve. In Section
1.1, we introduce two solution approaches to the chance constrained problems.
The first approach is based on modern tools of variational analysis developed
for nonlinear nonconvex problems. It employs the optimality conditions and
regularization to construct a strong numerical method, cf. Section 1.1.1. The
second approach is based on penalty functions, see Section 1.1.3. We review a
recent result on an asymptotic equivalence of the chance constrained problems
and the problems with penalty objective with the exact penalty property. The
optimality conditions were derived and the regularization was used for similar
problems with cardinality constraints where the number of nonzero elements of
the decision vector is bounded, see Section 1.1.2. The probabilistic criteria can
appear also in scheduling problems. In Section 1.1.4, we deal with the fixed
interval scheduling problems with stochastic delays in processing times where the
probability that the schedule remains feasible is maximized.

Dealing with the random parts of the stochastic programming problems is
highly demanding task. In Section 1.2, we discuss the sample approximation
techniques where the original distribution is replaced by a random sample. In
particular, we focus on the problems with mixed-integer set of feasible solutions.
Section 1.2.1 deals with the chance constrained problems, whereas section 1.2.2 is
focused on the problems with several expected value constraints. We will discuss
convergence of the sample approximated sets to the original ones under increasing
sample size and provide rates of convergence.

Section 1.3 is devoted to a new approach to efficiency analysis of investment
opportunities available on financial markets. Data envelopment analysis (DEA)
models were generalized to take into account diversification among the considered
assets leading to diversification-consistent (DC) DEA. This generalization is done
in compliance with the basic principles of financial mathematics, stochastic and
multiobjective optimization. Section 1.3.2 is focused on the formulations and
basic properties of the DC DEA models. In Section 1.3.3, relations of the DC

3



DEA models to the stochastic dominance efficiency are investigated.
This thesis gives only a review of the main results and basic literature, thus

many explanations, references and all proofs are skipped. We refer the readers
to the original papers which are in most cases attached to this thesis and contain
all necessary details.

The thesis is primarily based on the papers listed below:

1. Adam, L., Branda, M. (2016). Nonlinear chance constrained prob-
lems: optimality conditions, regularization and solvers. Journal of
Optimization Theory and Applications 170 (2): 419–436.
The paper derives new optimality conditions for the nonlinear chance con-
strained problems and their relaxations. The relaxed problems can be ob-
tained by relaxing the binary variables which appear in a mixed-integer
reformulation of the chance constraints. Relations between the stationary
points, local and global minima of the problems are discussed. New numer-
ical methods based on relaxation and regularization are introduced, their
convergence is proven and the numerical performance is verified.

2. Branda, M., Bucher, M., Červinka, M., Schwartz, A. (2018). Conver-
gence of a Scholtes-type Regularization Method for Cardinality-
Constrained Optimization Problems with an Application in Sparse
Robust Portfolio Optimization. Computational Optimization and Ap-
plications 70 (2): 503–530.
The paper is focused on the optimization problems with cardinality con-
straints where the number of nonzero elements of the decision vector is
bounded. The authors investigate so called Scholtes regularization, for
which convergence of the obtained sequence of KKT points to a strong
stationary point is proven. In the numerical study, the performance of the
regularization and alternative solution approaches is compared on several
investment problems with robust risk measures.

3. Branda, M. (2013). On relations between chance constrained and
penalty function problems under discrete distributions. Mathe-
matical Methods of Operations Research 77 (2): 265–277.
The relations between the chance constrained problems and the problems
with penalty objective are discussed. Earlier results on asymptotic equiva-
lence of these problems are generalized in two ways. First, the equivalence
is shown under a discrete distribution of the random parts. Then, the exact
penalty property which is ensured by a modified calmness condition is em-
ployed to verify the equivalence for a finite value of the penalty parameter.

4. Branda, M., Novotný, J., Olstad, A. (2016). Fixed interval schedul-
ing under uncertainty - a tabu search algorithm for an extended
robust coloring formulation. Computers & Industrial Engineering 93:
45–54.
The paper is focused on fixed interval scheduling problems where the job
processing intervals can be delayed. The goal is to obtain a schedule with the
highest probability that it remains feasible after observing the delays. This
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leads to a difficult stochastic integer programming problem with probabilis-
tic objective. Under particular assumptions, the problem is reformulated
as a generalized robust coloring problem. Several solution approaches are
discussed.

5. Branda, M. (2012). Sample approximation technique for mixed-
integer stochastic programming problems with several chance con-
straints. Operations Research Letters 40 (3): 207–211.
The paper deals with the sample approximation technique applied to stochas-
tic programming problems with chance constraints. The results on rates of
convergence are extended for problems with mixed-integer bounded sets
of feasible solutions and several chance constraints. New estimates on the
sample size necessary to get a feasible solution of the original problem using
the sample approximation are derived. An application to a vehicle routing
problem with stochastic elements is presented.

6. Branda, M. (2014). Sample approximation technique for mixed-
integer stochastic programming problems with expected value
constraints. Optimization Letters 8 (3): 861–875.
The paper deals with the theory of sample approximation techniques ap-
plied to stochastic programming problems with expected value constraints.
The results on the rates of convergence are extended to the problems with a
mixed-integer bounded set of feasible solutions and several expected value
constraints. Moreover, non-iid sampling and Hölder-calmness of the con-
straints are enabled. The estimates on the sample size necessary to get a
feasible solution of the original problem using the sample approximation are
derived. An application to an investment problem with transaction costs is
included.

7. Branda, M. (2013). Diversification-consistent data envelopment anal-
ysis with general deviation measures. European Journal of Operational
Research 226 (3): 626–635.
The paper introduces new efficiency tests which are based on traditional
DEA models and take into account portfolio diversification. The goal is
to identify the investment opportunities that perform well without spec-
ifying our attitude to risk. General deviation measures are used as the
inputs and return measures as the outputs. The choice of the set of invest-
ment opportunities is discussed. We compare the optimal values (efficiency
scores) of all proposed models leading to the relations between the sets of
efficient opportunities. Strength of the new DEA models is then discussed
and compared in the empirical part.

8. Branda, M. (2015). Diversification-consistent data envelopment anal-
ysis based on directional-distance measures. Omega–International
Journal of Management Science 52: 65–76.
New diversification-consistent DEA models based on directional distance
measures are introduced. The models enable to use several risk measures
as the inputs and return measures as the outputs, which can take both pos-
itive and negative values. It is shown that strongly, semi-strongly or weakly
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Pareto–Koopmans efficient investment opportunities can be identified de-
pending on the selected model. Moreover, the optimal solutions correspond
to efficient investment opportunities and can be used by investors to revise
the inefficient ones. It is proven that under proper choice of the inputs and
outputs, the strongest model is able to identify efficient investment oppor-
tunities with respect to the second-order stochastic dominance. Moreover,
the model can be formulated as a linear programming problem. The pro-
posed DEA models are applied to 48 representative industry portfolios from
US stock markets.

9. Branda, M. (2016). Mean-value at risk portfolio efficiency: ap-
proaches based on data envelopment analysis models with neg-
ative data and their empirical behaviour. 4OR–A Quaterly Journal
of Operations Research 14 (1): 77–99.
The paper deals with the problem of an investor who is using a mean-risk
model for accessing efficiency of investment opportunities. The investor em-
ploys value at risk on several risk levels at the same time which corresponds
to the approach called risk shaping. It is shown that a diversification-
consistent extension of the DEA models based on a directional distance
measure can be used to identify the Pareto–Koopmans efficient investment
opportunities. Reformulations as chance constrained, nonlinear and mixed-
integer problems are derived under particular assumptions. In the numerical
study, efficiency of US industry representative portfolios is accessed.

10. Branda, M., Kopa, M. (2016). DEA models equivalent to general N-
th order stochastic dominance efficiency tests. Operations Research
Letters 44 (2): 285–289.
The paper introduces data envelopment analysis (DEA) models equiva-
lent to efficiency tests with respect to the N -th order stochastic dominance
(NSD). In particular, it is focused on strong and weak variants of convex
NSD efficiency and NSD portfolio efficiency. The proposed DEA models
are in relation with the strong and weak Pareto–Koopmans efficiencies and
employ N -th order lower and co-lower partial moments.
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Author’s contributions to
stochastic programming theory
and applications

Although the topics in the following sections may seem unrelated, there are strong
connections between the results discussed below. Sample approximation tech-
niques can be used to obtain the discrete distribution which we assume in the
parts focused on the optimality conditions and penalization for the chance con-
strained problems. Financial data envelopment analysis models lead to solving
chance constrained problem when Value at Risk measures are used as the inputs.
The other DEA models lead to expectation constrained problems for which the
sample approximation technique is also discussed.

1.1 Chance constrained programming and re-
lated problems

The chance constrained problems (CPP) were introduced by Charnes et al. (1958)
and since then many theoretical results, algorithms and applications were pro-
posed. First, we give an overview of recent results concerning CCP. A general
approach called sample (empirical) approximation is based on substituting the
underlying continuous distribution by a finite sample and on reformulation as a
(large) mixed-integer programming problem. The crucial question is the choice
of the sample size, which is usually based on the exponential rates of conver-
gence derived, e.g., by Kaňková (1990); Luedtke and Ahmed (2008). We will
focus on this topic in Section 1.2 where the estimates for mixed-integer problems
are introduced. However, these estimates can be too conservative, cf. Henrion
(2013). Recently, Barrera et al. (2016) employed the importance sample tech-
nique to solve a chance constrained telecommunications problem with Bernoulli
input distributions. Exploiting its structure, they derived conditions to ensure a
uniform variance reduction.

For linear constraints and finite discrete distribution, strong results and al-
gorithms based on cutting planes for mixed-integer reformulations are available,
cf. Beraldi and Bruni (2010); Luedtke (2014); Luedtke et al. (2010). Recently,
Zhao et al. (2017) derived new strong valid inequalities based on intersection of
multiple mixing sets for the chance constrained problems with random right-hand
side.

Nonlinear programming algorithms were suggested for CCP by Prékopa (2003)
and further developed by Dentcheva and Martinez (2012, 2013). Recently, Geletu
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et al. (2017) proposed a smooth approximation approach employing an inner and
an outer analytic approximation of chance constraints leading to two classes of
nonlinear programming problems. Xie and Ahmed (2017) introduced quantile
cuts which can be obtained as a projection of the mixing inequalities valid for
the mixed-integer nonlinear programming reformulation onto the original prob-
lem space. Ahmed et al. (2017) proposed new Lagrangian dual problems for CCP
and derived dual bounds which are superior to the bounds obtained from the con-
tinuous relaxation of a standard mixed-integer programming. They also provided
several exact and heuristic algorithms for construction of the new bounds.

A wide class of approaches is based on approximation of the indicator func-
tion by a more tractable function. Approximation based on conditional value at
risk has been deeply investigated by Rockafellar and Uryasev (2000, 2002); Sun
et al. (2014). Similar idea was used by Haneveld and van der Vlerk (2006) who
employed the so-called integrated chance constraints. Other methods were based
on penalty functions applied to the random constraints Branda (2012c,a, 2013b).
Bernstein approximation has been introduced by Nemirovski and Shapiro (2007)
for constraints affine in random coefficients and further developed by Ahmed
(2014). Recently, algorithmic approaches based on representation using differ-
ence of convex (DC) functions appeared in the literature, see Shan et al. (2014);
Sun et al. (2014); Wozabal et al. (2010). A second-order cone programming re-
formulation was obtained by Cheng and Lisser (2012) for problems with linear
constraints under normally distributed random coefficient and under indepen-
dence and copula dependence of the rows. For these linear-Gaussian problems,
Henrion and Möller (2012) provided an explicit gradient formula and derived an
efficient solution procedure. This formula was generalized for nonlinear CCP by
van Ackooij and Henrion (2014) who employed the spherical-radial decomposition
of Gaussian random vectors.

1.1.1 Optimality condition for nonlinear chance constrained
problems

Adam and Branda (2016a) contributed to deeper understanding and algorithmic
approaches for nonlinear chance constrained problems. The investigated problem
with single individual chance constraint may be formulated as follows:

min
x

f(x)

s. t. P (g(x, ξ) ≤ 0) ≥ 1 − ε,

hj(x) ≤ 0, j = 1, . . . , J.
(1.1)

Here x ∈ Rn is the decision variable, 0 ≤ ε < 1 is a prescribed probabilistic
level, f : Rn → R, g : Rn × Rd → R and hj : Rn → R are functions which are
continuously differentiable in variable x and finally ξ ∈ Rd is a random vector
with known probability distribution P .

We assume that ξ has known discrete distribution and enumerate all pos-
sible realizations by ξ1, . . . , ξS and the corresponding positive probabilities by
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p1, . . . , pS. We may then reformulate problem (1.1) into

min
x

f(x)

s. t.
S∑

i=1
piII

(
g(x, ξi) ≤ 0

)
≥ 1 − ε,

hj(x) ≤ 0, j = 1, . . . , J,

(1.2)

where II stands for the characteristic function which equals to 1 if g(x, ξi) ≤ 0
and 0 otherwise. Introducing artificial binary variable y ∈ {0, 1}S to deal with II,
we obtain the following mixed–integer nonlinear problem

min
x,y

f(x)

s. t.
S∑

i=1
piyi ≥ 1 − ε,

yi ∈ {0, 1}, i = 1, . . . , S,
g(x, ξi)yi ≤ 0, i = 1, . . . , S,
hj(x) ≤ 0, j = 1, . . . , J.

(1.3)

To avoid the problematic constraint g(x, ξi)yi ≤ 0, usually this constraint is
replaced by g(x, ξi) ≤ M(1 − yi), where M is a sufficiently large constant, cf.
Raike (1970). Since this problem is difficult to tackle by mixed-integer (nonlinear)
programming techniques in any of the previous forms, we relax binary constraint
yi ∈ {0, 1} into yi ∈ [0, 1] to obtain nonlinear programming relaxed problem

min
x,y

f(x)

s. t.
S∑

i=1
piyi ≥ 1 − ε,

0 ≤ yi ≤ 1, i = 1, . . . , S,
g(x, ξi)yi ≤ 0, i = 1, . . . , S,
hj(x) ≤ 0, j = 1, . . . , J.

(1.4)

Even though problems (1.2) and (1.4) are not equivalent, there are close similari-
ties between them. The global minima are identical, whereas the relaxed problem
can contain additional local minima and stationary points, see Adam and Branda
(2016a) for details.

To obtain a local nonlinear programming description of the feasibility set, we
define the following index sets

I00(x, y) :=
{
i : g(x, ξi) = 0, yi = 0

}
, I0(x) :=

{
i : g(x, ξi) = 0

}
,

I0+(x, y) :=
{
i : g(x, ξi) = 0, 0 < yi < 1

}
, J0(x) := {j : hj(x) = 0},

I01(x, y) :=
{
i : g(x, ξi) = 0, yi = 1

}
.

(1.5)
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Further, we define sets which will be used later to derive the optimality conditions

Î(x) :=

⎧⎨⎩Ĩ ⊂ {1, . . . , S} :
∑
i∈Ĩ

pi ≥ 1 − ε,
g(x, ξi) < 0 =⇒ i ∈ Ĩ
g(x, ξi) > 0 =⇒ i /∈ Ĩ

⎫⎬⎭,
I(x) := minimal elements of Î(x) with respect to set inclusion, (1.6)
Y (x) :=

{
y ∈ {0, 1}S : ∃I ∈ I(x) s.t. yi = 1 if i ∈ I; yi = 0 if i /∈ I

}
. (1.7)

The purpose of the definition of these sets is that the union of {x : g(x, ξi) ≤
0, i ∈ I} with respect to I ∈ Î(x̄) or with respect to I ∈ I(x̄) has the same
shape as the feasible set of problem (1.2) on the neighborhood of x̄.

To be able to derive optimality conditions for both the original chance con-
strained problem (1.2) and the nonlinear relaxed problem (1.4), we impose the
following assumption.

Assumption 1.1.1. Let x̄ be a feasible point of problem (1.2). Assume that at
least one of the following two conditions is satisfied:

• function g(·, ξi) and hj are affine linear.

• the following implication is satisfied for all I ∈ I(x̄)∑
i∈I0(x̄)

λi∇xg(x̄, ξi) +
∑

j∈J0(x̄)
µj∇hj(x̄) = 0

λi = 0, i ∈ I0(x̄) \ I
λi ≥ 0, i ∈ I0(x̄) ∩ I

µj ≥ 0, j ∈ J0(x̄)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=⇒

λi = 0, i ∈ I0(x̄),
µj = 0, j ∈ J0(x̄).

The second part of the assumption represents a modified Mangasarian-Fromowitz
constraints qualification.

For a set Z ⊂ Rn and a point x̄ ∈ Z, we can define the tangent and Fréchet
normal cones to Z at x̄ respectively as

TZ(x̄) :=
{
d ∈ Rn : ∃dk → d ∃tk ↘ 0 : x̄+ tkdk ∈ Z

}
,

N̂Z(x̄) := {x∗ ∈ Rn : ⟨x∗, d⟩ ≤ 0 for all d ∈ TZ(x̄)}.

General necessary optimality condition at x̄ ∈ Z for a problem with differentiable
objective function f

min
x∈Z

f(x)

states
−∇f(x̄) ∈ N̂Z(x̄), (1.8)

see (Rockafellar and Wets, 1998, Theorem 6.12).
Adam and Branda (2016a) derived necessary optimality condition for the

original problem (1.2) and its relaxation (1.4).

Theorem 1.1.1. (Adam and Branda (2016a))
Let Assumption 1.1.1 be satisfied. If x̄ is a local minimum of chance constrained
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problem (1.2), then for every I ∈ I(x̄) there exist multipliers λi, i ∈ I0(x̄) and
µj, j ∈ J0(x̄) such that

∇f(x̄) +
∑

i∈I0(x̄)
λi∇xg(x̄, ξi) +

∑
j∈J0(x̄)

µj∇hj(x̄) = 0,

λi = 0, i ∈ I0(x̄) \ I,
λi ≥ 0, i ∈ I0(x̄) ∩ I,

µj ≥ 0, j ∈ J0(x̄).

(1.9)

Theorem 1.1.2. (Adam and Branda (2016a))
Assume that (x̄, ȳ) is a local minimum of problem (1.4) and that Assumption 1.1.1
is satisfied at x̄. Then there exist multipliers λi, i ∈ I0(x̄) and µj, j ∈ J0(x̄) such
that

∇f(x̄) +
∑

i∈I0(x̄)
λi∇xg(x̄, ξi) +

∑
j∈J0(x̄)

µj∇hj(x̄) = 0,

λi = 0, i ∈ I00(x̄, ȳ),
λi ≥ 0, i ∈ I01(x̄, ȳ) ∪ I0+(x̄, ȳ),
µj ≥ 0, j ∈ J0(x̄).

(1.10)

The proofs employ general optimality conditions (1.8). The crucial part is
the expression of the tangent and normal cones for the set of feasible solution
with our special constraint structure. Moreover, the derivation of the optimality
conditions for the relaxed problem uses the decomposition in x and y dimensions
and the chain rule for the tangent and normal cones, cf. (Rockafellar and Wets,
1998, Chapter 6).

Since the numerical methods for the relaxed problem are still unstable, Adam
and Branda (2016a) introduced an algorithm based on the regularization. This
technique enlarges the feasible set and solves the resulting regularized problem
while driving the regularization parameter to infinity. Thus, we consider the
regularized problem

min
x,y

f(x)

s. t.
S∑

i=1
piyi ≥ 1 − ε,

0 ≤ yi ≤ 1, i = 1, . . . , S,
yi ≤ φt(g(x, ξi)), i = 1, . . . , S,
hj(x) ≤ 0, j = 1, . . . , J,

(1.11)

where φt : R → R is a continuously differentiable decreasing function which
depends on a parameter t > 0 and which satisfies the following properties:

φt(0) = 1, (1.12)
φt(z) > 0, for z ∈ R, (1.13)
φt(zt) → 0, whenever zt t→∞→ z̄ > 0, (1.14)
φ′

t(zt)
φ′

t(z̃t) → 0, whenever φt(zt) ↘ 0 and φt(z̃t) → z̄ > 0. (1.15)
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As an example of such regularizing function, we may consider φt(z) = e−tz.
Convergence of the stationary points can be obtained.
Theorem 1.1.3. (Adam and Branda (2016a))
Consider (x̄t, ȳt) to be stationary points of problem (1.11). Assume that the second
part of Assumption 1.1.1 is satisfied at x̄ and that (x̄t, ȳt) → (x̄, ȳ) as t → ∞.
Then (x̄, ȳ) is a stationary point of problem (1.4).

The above results were used by Adam and Branda (2016a) to derive several
numerical methods for difficult nonlinear chance constrained problems. Branda
(2016a) employed the algorithms to solve an investment problem with variance–
skewness objective and a chance constraint imposed on a minimal acceptable
portfolio return. Adam et al. (2018) generalized the above results to the joint
chance constrained problems and derived a new algorithm based on the Benders
decomposition to further improve the numerical performance for a high number
of scenarios. They solved a difficult gas network design problem with random
demands where the network topology was investigated by Gotzes et al. (2016).

1.1.2 Problems with cardinality constraints
Burdakov et al. (2016); Červinka et al. (2016) employed a similar approach based
on optimality condition and regularization for cardinality constrained optimiza-
tion problems, where the number of nonzero elements of the decision vector is
limited. Such limitation appears, e.g., in portfolio theory where the restricted
number of assets can stabilize out-of-sample performance of the portfolio and at
the same time reduce the transaction costs, cf. Beck and Eldar (2013); Bonami
and Lejeune (2009); Gao and Li (2013); Zheng et al. (2014). Inverse modelling
in atmosphere in another important area of applications, see Adam and Branda
(2016b). We will focus on the most recent contribution proposed by Branda et al.
(2018).

For a vector x ∈ Rn we denote the support and its cardinality by

supp(x) := {i = 1, . . . , n | xi ̸= 0} and ∥x∥0 := | supp(x)|.

Let us formulate a general cardinality constrained problem
min

x
f(x)

s. t. ∥x∥0 ≤ κ,

hj(x) ≤ 0, j = 1, . . . , J,
(1.16)

where f : Rn → R, hj : Rn → R are assumed to be continuously differentiable.
As in the chance constrained case, we can use additional binary variables yi to
identify the nonzero elements of the decision vector x. The problem (1.16) can
be reformulated using binary decision variables into

min
x,y

f(x)

s. t.
n∑

i=1
yi ≥ n− κ,

yi ∈ {0, 1}, i = 1, . . . , n,
xiyi = 0, i = 1, . . . , n,
hj(x) ≤ 0, j = 1, . . . , J,

(1.17)
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If xi is nonzero, then the corresponding yi must be equal to zero, whereas if xi

is zero, then the corresponding yi can be equal to one and by the reformulated
cardinality constraint ∑n

i=1 yi ≥ n − κ this must happen at least n − κ times.
However, as even for simple instances of cardinality constrained problems Bien-
stock (1996) showed the problem to be NP-complete, solving (1.17) even using
specialized global solution techniques can be computationally very time demand-
ing. Thus, we instead consider the continuous reformulation of (1.17) suggested
by Burdakov et al. (2016) where the binary restrictions are relaxed to continuous
ones, i.e., we impose 0 ≤ yi ≤ 1 only. Note that the relaxed problem is closely
related to a mathematical program with complementarity constraints (MPCC)
due to the “half-complementarity” constraints yi ≥ 0, xiyi = 0.

Branda et al. (2018) focused on the Scholtes regularization technique where
the constraints xiyi = 0 are replaced by −t ≤ xiyi ≤ t with a positive parameter
t. The theoretical analysis as well as the numerical method concern the case when
the parameter t decreases to zero. Branda et al. (2018) investigated convergence
of the stationary points under the modified Mangasarian-Fromowitz constraint
qualification. They showed that the stationary points of the regularized problems
converge to a strong-stationary (S-stationary) point, see Červinka et al. (2016) for
the definition of stationary points for the cardinality constrained problems. The
proposed numerical method was then applied to several robust portfolio optimiza-
tion problems showing its good performance in comparison with the commercial
mixed-integer solver Gurobi and the Kanzow-Schwartz regularization method, see
Branda et al. (2018) for details.

1.1.3 Asymptotic equivalence under exact penalization

An asymptotic equivalence of the chance constrained problems and the problems
with penalty objective was shown first by Ermoliev et al. (2000) for a particular
choice of the penalty function and one chance constraint. The approach was
extended to the whole class of penalty functions, cf. Branda and Dupačová
(2012), and to problems with several individual and joint chance constraints, see
Branda (2012a). However, the assumptions of the theorems restricted the validity
to continuous distributions only even though the equivalence was observed also for
problems with finite discrete distribution of random parts. This section is focused
on results obtained by Branda (2013b) who proposed bounds on optimal values
and convergence of optimal solutions under the discrete distribution. Moreover,
exact penalization under a modified calmness property is employed to improve the
results. In particular, they proposed a modified calmness property which ensures
the exact penalization and at the same time enables to derive the asymptotic
equivalence. In general, the performance of the penalty method is improved in
the case of exact penalization where a finite value of the penalty parameter is
sufficient to get a local optimal solution of the original nonlinear programming
problem, see, e.g., Bazaraa et al. (2006); Rockafellar and Wets (1998). The most
general results can be obtained under the calmness condition (without convexity),
see Clarke (1983); Burke (1991a,b).

Let f(x) be a real function on Rn, gi(x, ξ), i = 1, . . . , k, be real functions on
Rn × Rn′ measurable in ξ for all x ∈ X ⊆ Rn, and ξ be a random vector on
(Ω,A, P ) with values in (Ξ,F), Ξ ⊆ Rn′ . The problem with one joint chance
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constraint can be formulated as follows:

ϕCCP
ε = minx∈X f(x)

s.t.
P
(
g1(x, ξ) ≤ 0, . . . , gk(x, ξ) ≤ 0

)
≥ 1 − ε,

(1.18)

with an optimal solution xCCP
ε and a given level ε ∈ (0, 1). Let the distribution

of random vector ξ be discrete with finite number of realizations ξs, s = 1, . . . , S
with known probabilities 0 < ps ≤ 1, ∑S

s=1 ps = 1.
Below, we will consider the penalty function ϑ : Rk → R+ which is continuous

nondecreasing in its components, equal to 0 on Rk
− and positive otherwise. Two

special penalty functions are readily available: ϑ1,o(u) = ∑k
i=1([ui]+)o, o > 0,

usually o = 1 or o = 2, and ϑ2(u) = max1≤i≤k[ui]+. Both penalty functions can
preserve convexity of the random constraints in the decision vector. We denote
the penalized constraints

Φ(x, ξ) = ϑ(g1(x, ξ), . . . , gk(x, ξ)) : Rn × Rn′ → R.

Then it holds

P
(
g1(x, ξ) ≤ 0, . . . , gk(x, ξ) ≤ 0

)
≥ 1 − ε

⇐⇒
P
(
Φ(x, ξ) = 0

)
≥ 1 − ε.

The expectations of the penalized constraints can be incorporated into the ob-
jective function as a penalty term leading to the problem:

ϕN = min
x∈X

[
f(x) +N · E[Φ(x, ξ)]

]
, (1.19)

with N being a positive parameter. We denote xN an optimal solution of (1.19).
The optimal permanently feasible solution can be defined as the optimal so-

lution of the following problem

min
x∈X

f(x)

s.t. (1.20)
g1(x, ξs) ≤ 0, . . . , gk(x, ξs) ≤ 0, s = 1, . . . , S,

which is formulated as nonlinear programming problem with inequality con-
straints. The same solution can be obtained also for the choice ε < mins ps

in problem (1.18).
We will show how the exact penalization can improve the results on asymptotic

equivalence of chance constrained and penalty function problems. The result
is based on general calmness condition, see Burke (1991a,b). We consider the
following perturbed version of the problem (1.20):

min
x∈X

f(x)

s.t.
g1(x, ξs) ≤ u1s, . . . , gk(x, ξs) ≤ uks, s = 1, . . . , S.

(1.21)
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We define modified l1-norm for a vector u ∈ RkS as

∥u∥ =
S∑

s=1
ps

k∑
i=1

|uis|,

which is necessary for further steps and to show the asymptotic equivalence. We
propose the definition of calmness given by (Burke, 1991a, Definition 1).

Definition 1.1.1. Let x∗ be feasible for the unperturbed problem (1.20). Then
the problem is said to be calm at x∗ if there exist constant Ñ (modulus) and
ϵ > 0 (radius) such that for all (x, u) ∈ Rn × RkS satisfying x ∈ Bϵ(x∗) and
gi(x, ξs) ≤ uis, one has

f(x) + Ñ ∥u∥ ≥ f(x∗).

Note that then x∗ is necessarily a local solution to the unperturbed problem.

Proposition 1.1.4. (Branda (2013b))
Let x∗ be feasible for the unperturbed problem, i.e. (1.21) with uks = 0, i =
1, . . . , k, s = 1, . . . , S. Then the unperturbed problem is calm at x∗ with modulus
Ñ and radius ϵ > 0 if and only if x∗ is a local minimum of the function

f(x) +N
S∑

s=1
ps

k∑
i=1

|gi(x, ξs)|+

over Bϵ(x∗) for all N ≥ Ñ .

The proposition follows directly from the basic theorem on exact penalization
which was proposed by (Burke, 1991a, Theorem 1.1).

The following theorem focuses on the local minimizers and shows the asymp-
totic equivalence under the exact penalization. We can preserve the notion of
optimal values for local optimal values where X is replaced by X ∩ Bϵ(x∗) for
some local optimal solution x∗ of (1.20), see Branda (2013b) for details.

Theorem 1.1.5. (Branda (2013b))
We consider the two problems (1.18) and (1.19) and assume:

(i) gi(x′, ξs) ≤ 0, i = 1, . . . , k for all s = 1, . . . , S for at least one x′ ∈ X.

(ii) the corresponding unperturbed problem (1.20) is calm at its local optimal
solutions modulus Ñ and radius ϵ > 0.

For arbitrary γ ∈ (0, 1), N > 0 and ε ∈ (0, 1) put

ε(x) =
S∑

s=1
psII (Φ(x, ξs) > 0) ,

αN(x) = N
S∑

s=1
psΦ(x, ξs),

βε(x) = 1
εγ

S∑
s=1

psΦ(x, ξs).
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Then for any prescribed ε ∈ (0, 1) there always exists N ≤ Ñ large enough
so that minimization (1.19) generates optimal solutions xN which also satisfy the
probabilistic constraint with the given ε.

Moreover, bounds on the local optimal value ψε of (1.27) based on the local
optimal value ϕN of (1.19) and vice versa can be constructed:

ϕ1/εγ(xN ) − βε(xN )(xCCP
ε(xN )) ≤ ψε(N) ≤ ϕN − αN(xN),

ψε(xN ) + αN(xN) ≤ ϕN ≤ ψN−1/γ + βN−1/γ (xCCP
N−1/γ ),

(1.22)

with
lim

N→Ñ−
αN(xN) = lim

N→Ñ−
ε(xN) = lim

ε→ε̃+
λε(xCCP

ε ) = 0,

for any sequences of the optimal solutions xN and xCCP
ε , where ε̃ < mins ps.

1.1.4 Fixed interval scheduling with random delays
Probabilistic functions in optimization problems were also investigated by Branda
et al. (2016); Branda and Hájek (2017) who dealt with fixed interval scheduling
problems under uncertain processing intervals. The probabilistic functions were
employed to express the probability that the obtained schedule remains feasible
after observing the random delays. This probability is then maximized in the
operational problem or bounded by a prescribed level in the tactical problem.
The probability maximization leads to difficult problems in general, see, e.g.,
Fábián et al. (2018), however we will propose a trackable reformulation for FIS
using a generalized robust coloring problem.

Let C be the set of machines and J denotes the set of jobs. The starting
times sj are known, but the finishing times are random fj(ξ). We consider the
following random real finishing time which consists of a prescribed completion
time f 0

j and a random nonnegative delay Dj(ξ), i.e.

fj(ξ) = f 0
j +Dj(ξ).

We assume that the distribution P of the random delays is known with a support
Ξ and a probability mass in zero, i.e. Dj(ξ) = 0 has a positive probability
meaning that the job can be finished in time. We will use the argument ξ to
mark that some parameter is random, e.g. Dj(ξ), fj(ξ). Binary decision variable
xjc, j ∈ J , c ∈ C is used to assign job j to machine c, i.e. it is equal to one if the
job is assigned to the machine and it is zero otherwise. We use the convention
that at time fj(ξ), when job j finishes, a new job j′ with starting time sj′ ≥ fj(ξ)
can be assigned to the same machine. The following constraints ensure that in
each time at most one job is processed by each machine∑

j: sj≤t<fj(ξ)
xjc ≤ 1, t ∈ T , c ∈ C. (1.23)

However, the constraints need not be verified at all times, we can consider them
only at the known starting times, i.e. T can be replaced by T̂ = {s1, . . . , s|J |},
cf. Kroon et al. (1995).
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The constraints (1.23) involve random parameters and we would like to find
a job assignment with the highest probability that it remains feasible. This leads
to the following stochastic programming problem:

max
x

P

( ∑
j: sj≤t<fj(ξ)

xjc ≤ 1, t ∈ T̂ , c ∈ C
)

s.t.
∑

j: sj≤t<f0
j

xjc ≤ 1, c ∈ C, t ∈ T̂ , (1.24)

∑
c∈C

xjc = 1, j ∈ J ,

xjc ∈ {0, 1}, c ∈ C, j ∈ J .

We maximize the probability that in each time a machine processes one job
only, i.e., the probability that the job assignment is feasible with respect to the
random delays. The constraints ensure that there is at most one job assigned to
a machine at each time with respect to the prescribed job processing times and
a job is assigned to exactly one machine. The decision variables xjc are binary.

Below, we review the reformulation of (1.24) as a robust coloring problem
proposed by Branda et al. (2016). We work with an interval graph for FIS
defined as follows. Let C be the available machines (colors) and J denotes the
set of jobs which represent the vertices. The starting times sj and the prescribed
finishing times f 0

j are fixed and known. Then, the set of edges E contains all
pairs of jobs {j, j′} which processing times overlap for sure, i.e. sj ≤ sj′ < f 0

j .
If the distribution of delays has an unbounded support, then the complementary
edge set E contains in general all pairs of vertices {j, j′} such that f 0

j ≤ sj′ , i.e.
when the prescribed completion time f 0

j of job j comes earlier than starting time
sj′ of job j′. Otherwise, the set can be reduced to include only those pairs of
jobs, which processing times can overlap with a positive probability lower than
one. Obviously E ∩ E = ∅.

We will consider a joint distribution of delays which follows an Archimedean
copula. Let Fj(x) = P (Dj(ξ) ≤ x) be the univariate cumulative distribution
functions, and ψ : [0, 1] −→ [0,∞] be a generator of an Archimedean copula, i.e.
a continuous strictly decreasing function satisfying ψ(1) = 0, limx→0+ ψ(x) = ∞,
see McNeil and Nešlehová (2009), Hering and Stadtmüller (2012) for details.
We assume that the joint probability distribution of random delays follows a
n-dimensional Archimedean copula function with a generator ψ, i.e.

P (D1(ξ) ≤ x1, . . . , Dn(ξ) ≤ xn) = ψ−1

⎛⎝ n∑
j=1

ψ(Fj(xj))
⎞⎠ . (1.25)

Yanez and Ramirez (2003) investigated the robust coloring problem which
assigns penalties to the edges connecting the nodes with the same color. Branda
et al. (2016) showed that such formulation is not sufficient to solve the problem
(1.24). Thus, they proposed a generalized robust coloring reformulation.

Proposition 1.1.6. (Branda et al. (2016))
Let the multivariate distribution of delays be represented by an Archimedean cop-
ula with generator ψ. We can formulate a generalized robust coloring problem
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where we maximize the schedule reliability as follows

min
x,y,z

∑
{j,j′}∈E

qjj′zjj′

s.t.
∑
c∈C

xjc = 1, j ∈ J ,

xjc + xj′c ≤ 1, {j, j′} ∈ E, c ∈ C,
xjc + xj′c ≤ 1 + yjj′ , {j, j′} ∈ E, c ∈ C, (1.26)

yjj′ +
∑

k: {j,k}∈E & sk≥f0
j′

zjk ≤ 1, {j, j′} ∈ E,

∑
k:{j,k}∈E

yjk ≤ |J | ·
∑

k:{j,k}∈E

zjk, j ∈ J ,

xjc ∈ {0, 1}, c ∈ C, j ∈ J ,

where the costs are defined as

qjj′ = ψ(P (Dj(ξ) ≤ sj′ − f 0
j )), {j, j′} ∈ E.

The probability can be obtained by applying ψ−1 to the optimal value.

The binary variables xjc are used to assign job j to machine c, yjj′ express that
jobs j, j′ ∈ J share the same color, whereas zjj′ are used to identify the successor
j′ of job j. The objective is to minimize the penalty assigned to successors.
The first constraints forbid the same color for vertices connected by hard edges,
whereas the second constraints enable the same color for vertices connected by soft
edges, where the corresponding variables yjj′ have to be equal to one. The next
two constraints are used to identify the successor and to assign the right penalties,
see Branda et al. (2016) for details. This reformulation was used to solve smaller
simulated instances to optimality, however a tabu search algorithm was suggested
for solving larger instances. The tabu search is a strong method for combinatorial
problems, see, e.g., Michalopoulos et al. (2015) for other application. Branda et al.
(2015) proposed a two-stage stochastic programming formulation which aims at
maximizing the reward for processing the selected jobs and at the same time
minimizing the costs for outsourcing additional machines. Branda and Hájek
(2017) observed that a network-based formulation enables us to optimally solve a
larger instance by the mixed-integer programming solver IBM Cplex. Moreover,
this formulation enabled the consideration of heterogeneous machines and job
delays dependent on a selected machine.
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1.2 Sample approximation techniques for mixed-
integer stochastic problems

Branda (2012b, 2014b) contributed to the theory of sample approximation tech-
niques and elaborated two general classes of stochastic mixed-integer problems.
These problems are motivated by many real-life stochastic optimization problems
where continuous and integer variables appear together. However, earlier papers
dealt with these case separately, cf. de Mello and Bayraksan (2014); Wang and
Ahmed (2008). The main goal is to estimate the speed of convergence of the sam-
ple approximation to the true problem for the set of feasible solutions, optimal
values and optimal solutions. Based on this speed formula, an estimate for the
sample size which is necessary to reach a prescribed reliability of the estimates
can be derived. Recent research in this area focuses on more advances sampling
techniques, e.g., importance sampling, cf. Barrera et al. (2016), and quasi-Monte
Carlo, see Heitsch et al. (2016).

1.2.1 Problems with several chance constraints
The following approach was suggested by Branda (2012b). Let X ⊆ Rn, Y ⊆ Zn′

and
Z = {(x, y) ∈ X × Y : h1(x, y) ≤ 0, . . . , hk(x, y) ≤ 0}

be the deterministic mixed-integer part of the set of feasible solutions with hj(x, y) :
Rn × Rn′ → R. Let ξ be a random vector on the probability space (Ξ,A, P ),
gji(x, y, ξ), i = 0, . . . , kj, j = 1, . . . ,m, be real functions on Rn × Rn′ × Rn′′ mea-
surable in ξ for all x ∈ X and y ∈ Y . We assume that the objective func-
tion f(x, y) : Rn × Rn′ → R does not depend on the random vector. Denote
Gj(x, y, ξ) = max{gj1(x, y, ξ), . . . , gjkj

(x, y, ξ)}. We can define the probability
functions

φj(x, y) = P (Gj(x, y, ξ) ≤ 0) = P
(

{ξ : Gj(x, y, ξ) ≤ 0}
)
.

Then, the chance constrained problem with several chance constraints can be
formulated as follows:

min(x,y)∈Z f(x, y),
s.t.

φ1(x, y) ≥ 1 − ε1,
...

φm(x, y) ≥ 1 − εm,

(1.27)

where ϵ = (ε1, . . . , εm), with the levels εj ∈ (0, 1). We denote by Zε the set of
feasible solutions. The formulation covers the joint (k1 > 1 and m = 1) as well
as the separate (kj = 1 and m > 1) chance constrained problems as special cases.
We will refer to the problem (1.27) as the original problem.

Let ξ1, . . . , ξS be an independent Monte Carlo sample of the random vector
ξ. Then, the sample version of the probability function φj is defined to be

φ̂S
j (x, y) = S−1

S∑
s=1

II
(
Gj(x, y, ξs) ≤ 0

)
, (1.28)
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where II(·) denotes the indicator function which is equal to one if the condition
is fulfilled, and to zero otherwise. Finally, the sample version of the chance
constrained problem with several chance constraints (1.27) is defined as

min(x,y)∈Z f(x, y),
s.t.

φ̂S
1 (x, y) ≥ 1 − γ1,

...
φ̂S

m(x, y) ≥ 1 − γm,

(1.29)

where the levels γj ∈ (0, 1) are allowed to be different from the original levels εj.
We denote ZS

γ the set of feasible solutions of the sample approximated problem.
It is necessary to consider the constraints which are satisfied strictly, i.e. with

some deviation τ :

ZS
γj ,τ = {(x, y) ∈ Z : 1

S

S∑
s=1

II(Gj(x, y, ξs) + τ ≤ 0) ≥ 1 − γj},

ZS
γ,τ =

m⋂
j=1

XS
γj ,τ .

The following theorem by Branda (2012b) provides an exponential rate of con-
vergence for the probability that the relaxed sample-approximated set of feasible
solutions is contained in the set of feasible solutions of the original problem. It
is assumed that the integral feasibility set is finite, whereas the continuous part
is uniformly bounded. Lipschitz continuity of the random constraints is required
only with respect to the continuous variables.

Theorem 1.2.1. (Branda (2012b))
Let

1. γj < εj, i.e., that the levels of the sample approximated problem are more
restrictive,

2. Y ⊆ Rn′ be finite,

3. X(y) ⊆ Rn be uniformly bounded for all y ∈ Y ,
i.e. D = supy∈Y sup{∥x− x′∥∞ : x, x′ ∈ X(y)} be a finite diameter,

4. functions Gj(x, y, ξ) be Lipschitz continuous in the real variable x, i.e. for
arbitrary y ∈ Y and ξ ∈ Ξ

|Gj(x, y, ξ) −Gj(x′, y, ξ)| ≤ Lj ∥x− x′∥∞ , ∀x, x′ ∈ X(y),

for some Lj > 0.

Then the probability that the relaxed sample-approximated set of feasible solu-
tions is contained in the set of feasible solutions of the original problem increases
exponentially fast with increasing sample size, and it holds that

P (Zτ,S
γ ⊆ Zϵ) ≥

≥ 1 −m
⌈ 1
λmin

⌉ ⌈2LmaxD

τ

⌉n

|Y |2 exp
{

− 2Smin
j

(εj − γj − λj)2
}
,
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where Lmax = maxj Lj and λmin = minj λj. It is possible to estimate the sample
size S such that the feasible solutions of the relaxed sample-approximated problems
are feasible for the original problem with a high probability 1 − δ, i.e.

S ≥ 1
2 minj(εj − γj − λj)2

⎛⎝ ln m|Y |2

δ
+ ln

⌈ 1
λmin

⌉
+ n ln

⌈2LmaxD

τ

⌉⎞⎠. (1.30)

Branda (2012b) applied this approach to a stochastic vehicle routing problem
with random traveling times and random demand and derived the estimates of
the sample size.

1.2.2 Problems with several expected value constraints
Now, we turn our attention to the problems with several expected value con-
straints, cf. Branda (2014b). Sample approximation techniques were successfully
applied to stochastic programs with expectation type objective, see Dai et al.
(2000); Shapiro (2003); de Mello (2008); Xu (2010), and expected value con-
straints, see Branda (2012c), Wang and Ahmed (2008). However, these results
were limited to the finite and real bounded set of feasible solution. In this part,
we will extend the results for the problem with several expected value constraints
and mixed-integer set of feasible solutions. Moreover, our estimates are valid for
particular types of non-iid sampling.

The estimate is based on Cramér’s large deviation theory, see Dembo and
Zeitouni (1998). It remains valid also for non-iid sampling if the Gärtner-Ellis
theorem is used and a condition on the convergence of logarithmic moment gen-
erating functions is added, c.f. (Dembo and Zeitouni, 1998, Theorem 2.3.6). This
condition is trivially fulfilled for iid samples. Moreover, it can be verified for finite
state Markov chains. Instead of the traditional Lipschitz continuity, which was
necessary to obtain the rate of convergence for the continuous problems by Wang
and Ahmed (2008), we will employ more general calmness condition.

Let X ⊆ Rn, Y ⊆ Zn′ and

Z = {(x, y) ∈ X × Y : h1(x, y) ≤ 0, . . . , hk(x, y) ≤ 0}

be the deterministic mixed-integer part of the set of feasible solutions with hj(x, y) :
Rn × Rn′ → R. Let ξ be a random vector on the probability space (Ξ,A, P ),
gj(x, y, ξ), j = 1, . . . ,m, be real functions on Rn×Rn′ ×Rn′′ measurable in ξ for all
x ∈ X and y ∈ Y . We assume that the objective function f(x, y) : Rn ×Rn′ → R
does not depend on the random vector. We denote the set of feasible solutions
by

ZL =
{

(x, y) ∈ Z : gj(x, y) := E[gj(x, y, ξ)] ≤ Lj, j = 1, . . . ,m
}

for some prescribed upper bounds Lj ∈ R, L = (L1, . . . , Lm)′. We assume that
the levels are chosen in such a way that the set of feasible solutions is nonempty
and that the expectations are finite for all (x, y) ∈ Z. Then, the stochastic
programming problem with the expected value constraints can be formulated as

min
(x,y)∈ZL

f(x, y). (1.31)
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Let ξ1, . . . , ξS be a Monte-Carlo sample of the underlying distribution of
the random vector ξ. We denote the set of feasible solutions of the sample-
approximated problem as

ZS
L =

{
(x, y) ∈ Z : gS

j (x, y) := 1
S

S∑
s=1

gj(x, y, ξs) ≤ Lj, j = 1, . . . ,m
}
.

The sample version of the problem with several expected value constraints (1.31)
is defined as

min
(x,y)∈ZS

L

f(x, y). (1.32)

where the levels Lj ∈ R are allowed to be different from the original levels.
Let Iy denote the large deviation rate functions, i.e. the Fenchel dual to the

logarithm of the finite moment generating function of the difference gj(x, y, ξ) −
gj(x, y) which is defined as

Ijxy(τ) = sup
t∈R

{
tτ − Ψjxy(t)

}
,

where

Ψjxy(t) = lnE
[
et(gj(x,y,ξ)−gj(x,y))

]
, gj(x, y) = E[gj(x, y, ξ)].

The theorem by Branda (2014b) verifies the exponential rate of convergence
for the set of feasible solutions. Based on this rate, we can derive a sample esti-
mate to ensure that the original feasibility set is contained in the relaxed sample-
approximated feasibility set with a high probability. We will consider non-iid
sampling and employ Hölder-calmness (H-calmness) instead of traditional Lip-
schitz continuity. The assumptions impose finiteness of the integral part and
boundeness of the continuous one. H-calmness of the random constraints is re-
quired only with respect to the continuous variables. Moreover, random modulus
is enabled. The last important assumptions require the convergence of the mo-
ment generating functions.

Theorem 1.2.2. (Branda (2014b))
Let

(i) Y ⊆ Rn′ be finite, and X ⊆ Rn be bounded,
i.e. D = sup{∥x− x′∥∞ : x, x′ ∈ X} be a finite diameter,

(ii) gj(x, y, ξ) be uniformly H-calm in x ∈ X for each y ∈ Y , moduli Mj(ξ) > 0,
and order γj > 0:

|gj(x, y, ξ) − gj(x′, y, ξ)| ≤ Mj(ξ) ∥x− x′∥γj , ∀x, x′ ∈ X, ∀ξ ∈ Ξ, ∀j,

with Mj = E[Mj(ξ)] < ∞,∀j,

(iii) the logarithmic moment generating functions Ψjxy(t) of gj(x, y, ξ) − gj(x, y)
be finite around 0 and

Ψjxy(t) = lim
S→∞

ΨS
jxy(St)
S

,

for all t ∈ R and for all (x, y) ∈ Z.
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(iv) the logarithmic moment generating function ΨMj
(t) of Mj(ξ) −Mj be finite

around 0 and

ΨMj
(t) = lim

S→∞

ΨS
Mj

(St)
S

,

for all t ∈ R.

Then for τj > 0 small, τ = (τ1, . . . , τm),

(a) the probability that the set of feasible solutions is contained in the relaxed
sample-approximated set of feasible solutions increases exponentially with
increasing sample size, and it holds

P (ZL ⊆ ZS
L+τ ) ≥ 1 −m

(
1 + |Y |D

n

υn

)
exp

{
− Sd(τ)

}
,

where

σ2
jxy = V ar[gj(x, y, ξ) − gj(x, y)],
σ2

Mj
= V ar[Mj(ξ) −Mj],

υ = max
j

(
τj

4Mj + τj

)1/γj

,

d(τ) = min
{

min
j,x,y

τ 2
j

8σ2
jxy

,min
j

τ 2
j

8σ2
Mj

}
,

and the minimum is taken over (x, y) ∈ Zυ and j ∈ {1, . . . ,m}.

(b) we can get an estimate for the sample size which is necessary to ensure that
the original feasibility set is contained in the relaxed sample-approximated
feasibility set with a high probability, equal to 1 − δ, δ ∈ (0, 1):

S ≥ 1
d(τ)

⎛⎝ ln m
δ

+ ln
(

1 + |Y |D
n

υn

)⎞⎠.

Branda (2014b) applied the estimates to the investment problems with several
Conditional Value at Risk constraints and with the set of feasible portfolio weights
including transaction costs modelled using integer variables.
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1.3 Diversification-consistent data envelopment
analysis models

This section is focused on special class of Data Envelopment Analysis (DEA)
models, called diversification-consistent DEA (DC DEA), which are motivated
by efficiency analysis of investment opportunities available on financial markets,
e.g., assets, mutual funds, portfolios. Compared with the traditional DEA models
introduced by Charnes et al. (1978), the envelops of diversification-consistent
models are not linear (polyhedral) which is caused by the risk measures that are
used as the inputs of the DC DEA models, see below. These new models combine
several approaches from mathematical optimization and finance. In particular,
several risk measures can be used at the same time leading to an approach called
“risk-shaping”. It can be shown that the DC DEA models are in compliance
with the Pareto–Koopmans efficiency and multiobjective optimization principles.
Finally, under particular choice of the inputs and outputs, the DEA efficiency
corresponds to the stochastic dominance efficiency which is based on the utility
theory.

Since the seminal work of Murthi et al. (1997), DEA models found their place
in the efficiency analysis of various investment opportunities. First two moments
of the random returns were considered as the inputs and outputs by Briec et al.
(2004), and the third moment (skewness) was added by Joro and Na (2006);
Briec et al. (2007) and further elaborated by Kerstens et al. (2011). Dokov et al.
(2017) investigated mean-variance-skewness-kurtosis efficiency of portfolios. A
general class of diversification-consistent models was proposed by Lamb and Tee
(2012). However, they considered positive parts of coherent measures as the
inputs which can be quite limiting, since the risk measures can take also negative
values. Branda (2013a) suggested to use general deviation measures, which are
always nonnegative, as the inputs of the models with diversification. Branda
and Kopa (2014) provided DEA models equivalent to the second order stochastic
dominance tests. In this section, we mainly focus on the DC DEA models based
on a directional distance measure proposed by Branda (2015b) who considered
coherent risk measures as the inputs and return measures as the outputs. It
was even shown, that under particular choice of the inputs and outputs, the
proposed models are equivalent to the stochastic dominance tests. Moreover,
these models project inefficient investment opportunities to the efficient frontier,
which can be used by the investors to revise their inefficient portfolios. The
traditional DEA models were used to approximate the DC DEA efficient frontier
and to assess performance of portfolios by Liu et al. (2015). Branda (2015a,
2016b) discussed models with Value at Risk measure which does not belong to
any above mentioned classes but still is a popular risk measure. These models
lead to chance constrained problems which were discussed in Section 1.1. Branda
and Kopa (2016) proposed the DEA models which are consistent with the higher
order stochastic dominance tests. Branda (2015b), Branda (2016b) performed
large numerical experiments where empirical performance of the proposed DC
DEA models was investigated.
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1.3.1 Preliminaries

Let X be a set of available investment opportunities. We prefer higher values
to lower, i.e. we deal with profits, returns, wealth etc. We will identify each
investment opportunity by a random variable which represents its return. We
consider n assets and denote by Ri the return of i-th asset, which is a real ran-
dom variable defined on a probability space. The following choice of the set of
investment opportunities will be used:

X =
{

n∑
i=1

Rixi :
n∑

i=1
xi = 1, xi ≥ 0

}
, (1.33)

which enables full diversification of our portfolio across all assets. Other choices
of the set are also possible, e.g. with limited number of assets, allowing short
sales, borrowing or including proportional and fixed transaction costs, margin
requirements, cf. Branda and Kopa (2014); Branda (2014a).

Branda (2015b) considered the models where coherent risk measures are used
as the inputs. The coherent risk measures, cf. Artzner et al. (1999), are func-
tionals on Lp(Ω) for some p ∈ {1, . . . ,∞}, usually p = 1 or p = 2, that satisfy

(R1) translation equivariance: R(X + C) = R(X) − C for all X ∈ Lp(Ω) and
constants C,

(R2) positive homogenity: R(0) = 0, and R(λX) = λR(X) for all X ∈ Lp(Ω)
and all λ ≥ 0,

(R3) subadditivity: R(X1 +X2) ≤ R(X1) + R(X2) for all X1, X2 ∈ Lp(Ω),

(R4) monotonicity: R(X1) ≤ R(X2) when X1 ≥ X2, X1, X2 ∈ Lp(Ω).

The space Lp(Ω) of random variables with finite p-th moment is selected to ensure
finiteness of a considered measure. Note that the axioms (R2) and (R3) imply
convexity of the measures. We can employ several return measures defined as
minus coherent risk measures, i.e., E(X) = −R(X), which quantify more-likely
profitable outcomes by higher real values.

Conditional Value at Risk (CVaR) for a confidence level α ∈ (0, 1) can be de-
fined as the “Expected value of (1 −α)*100% worst losses”. However, to preserve
the above defined coherency for a general distribution of losses, Rockafellar and
Uryasev (2002) proposed a definition based on so called α−tail distribution. For
our purposes, it is more convenient to use the equivalent definition using the min-
imization formula because it can be used directly in the optimization problems,
cf. Rockafellar and Uryasev (2002):

CV aRα(X) = min
y∈R

y + 1
1 − α

E[max{(−X − y), 0}].

The above minimum is attained at any (1−α)-th quantile of the random variable
−X.
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1.3.2 Model definition and properties
We employ the traditional definition of DEA efficiency based on the optimal
values. It can be shown that the optimal values of the studied models (DEA
scores) belong to the interval (0, 1]. We can sort the investigated investment
opportunities according to these scores, which correspond to relative distances to
a set of efficient opportunities. The opportunities with optimal values equal to
one are classified as efficient, the other as inefficient.

Branda (2015b) proposed models where several coherent risk measures Rk are
used as the inputs and several return measures Ej serve as the outputs. Since both
return and risk measures can take arbitrary real values, Branda (2015b) general-
ized the directional distance measures for the DEA models with diversification.
First, we discuss the choice of the directions. Let X0 ∈ X be the investigated
opportunity. If all input and output data are positive, the directions can be set
to

ej(X0) = Ej(X0), dk(X0) = Rk(X0),
which corresponds to input-output oriented radial model, see Branda (2013a,c).
However, if both the inputs and outputs can take negative and positive values,
then the following choices of the directions are reasonable:

ej(X0) = max
X∈X

Ej(X) − Ej(X0), dk(X0) = Rk(X0) − min
X∈X

Rk(X), (1.34)

see Portela et al. (2004) for an analogy in the traditional DEA models. These
directions are always nonnegative and will be used in our models, although the
formulations enable us to employ also other directions. Note that the choice of
the directions was investigated by Kerstens et al. (2012) for the mean–variance
efficiency models.

We will use K ≥ 1 risk measures as the inputs and J ≥ 1 return measures as
the outputs. We will focus on the strongest model provided by Branda (2015b)
(referred as model 3) which enables us to measure necessary relative improvements
to reach the efficient frontier with respect to each input and output separately:

θ3(X0) = min
θk,ϕj ,xi

1 − 1
K

∑K
k=1 θk

1 + 1
J

∑J
j=1 ϕj

s.t. (1.35)

Ej

(
n∑

i=1
Rixi

)
≥ Ej(X0) + ϕj · ej(X0), j = 1, . . . , J,

Rk

(
n∑

i=1
Rixi

)
≤ Rk(X0) − θk · dk(X0), k = 1, . . . , K,

n∑
i=1

xi = 1, xi ≥ 0, ϕj ≥ 0, θk ≥ 0.

For directions (1.34), if ej(X0) = 0 for some j, it means that the output reaches
its maximal value. This necessarily means that no improvement in this output is
possible and thus we set ϕ∗

j = 0. Similarly, if dk(X0) = 0 for some k, then θ∗
k = 0.

Definition 1.3.1. We say that X0 ∈ X is DEA efficient with respect to the set
X if the optimal value of the DEA model (DEA score) is equal to 1. Otherwise,
X0 is inefficient and the optimal value measures the inefficiency.
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We will denote by θ3(X0) the optimal value (DEA score) for a benchmark X0
and by Ψ3 the sets of efficient investment opportunities with respect to the set
X , i.e.:

Ψ3 = {X ∈ X : θ3(X) = 1}.
As it was shown by Branda (2015b), the proposed DEA models identify various

efficient points in the production possibility set which can be defined as follows:
PPS = {(−R1(X), . . . ,−RK(X), E1(X), . . . , EJ(X)) : X ∈ X }.

Risk measures are multiplied by −1 to ensure consistency with ordering defined
below. This set is not based on any axioms as is often stated for traditional DEA
and it contains only those inputs and outputs, which can be obtained using the
set of available investment opportunities. Partial ordering known from multiob-
jective optimization will be closely related to our models through the production
possibility set as will be shown later.
Definition 1.3.2. Let v, z ∈ Rn. We say that z partially weakly dominates v
with respect to an index set S ⊆ {1, . . . , n}, denoted by v ≺pw(S) z, if vi ≤ zi for
all i ∈ {1, . . . , n} and there exists at least one ĩ ∈ S for which vĩ < zĩ.
Definition 1.3.3. An investment opportunity X0 ∈ X is strongly Pareto–Koopmans
efficient if there is no X̃ ∈ X and corresponding vector v from the production pos-
sibility set for which

(−R1(X0), . . . ,−RK(X0), E1(X0), . . . , EJ(X0)) ≺pw({1,...,K+J}) v

We can formulate conditions to fully characterize the set of efficient investment
opportunities with respect to the model (1.35).
Proposition 1.3.1. (Branda (2015b))
X0 ∈ Ψ3:

• if and only if X0 is strongly Pareto–Koopmans efficient, or equivalently

• if and only if there is no X ∈ X for which Ej(X) ≥ Ej(X0) for all j and
Rk(X) ≤ Rk(X0) for all k with at least one inequality is strict.

The original formulation (1.35) is a nonconvex optimization problem. How-
ever, using the following substitution, we can arrive at a convex problem. If we
set 1/t = 1 + 1

J

∑J
j=1 ϕj, x̃i = txi, θ̃k = tθk, and ϕ̃j = tϕj, we can reformulate

(1.35) as

θ3(X0) = min
θ̃k,ϕ̃j ,t,x̃i

t− 1
K

K∑
k=1

θ̃k

s.t. (1.36)

t+ 1
J

J∑
j=1

ϕ̃j = 1,

Ej

(
n∑

i=1
Rix̃i

)
≥ t · Ej(X0) + ϕ̃j · ej(X0), j = 1, . . . , J,

Rk

(
n∑

i=1
Rix̃i

)
≤ t · Rk(X0) − θ̃k · dk(X0), k = 1, . . . , K,

n∑
i=1

x̃i = t, x̃i ≥ 0, ϕ̃j ≥ 0, θ̃k ≥ 0, t ≥ 0.
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Similar arguments as for the previous model can be used to show that θ3(X0) ∈
[0, 1] and t = 0 is never optimal, thus the inverse transformation can be used to
obtain the optimal solution of (1.35).

1.3.3 Efficiency with respect to the second-order stochas-
tic dominance

In this section, we will compare the diversification-consistent DEA efficiency with
the stochastic dominance efficiency. We show that by proper choice of the inputs
and outputs we can obtain a DEA model that is able to identify efficient in-
vestment opportunities with respect to the second-order stochastic dominance
(SSD). Several researchers were trying to obtain such relation, but usually their
DEA models provided a necessary condition only, see, e.g., Lozano and Gutiérrez
(2008).

Let FX(η) denote the cumulative probability distribution function of an in-
vestment opportunity X ∈ X , i.e.

FX(t) = P (X ≤ t).

The twice cumulative probability distribution function is defined as:

F
(2)
X (t) =

∫ t

−∞
FX(η) dη,

which is well defined for X ∈ L1(Ω). Then the investment opportunity X domi-
nates X̃ with respect to the second-order stochastic dominance (SSD) if and only
if

F
(2)
X (t) ≤ F

(2)
X̃

(t), ∀t ∈ R, (1.37)

which we will denote X̃ ≼SSD X. The relation is strict, denoted by X̃ ≺SSD X,
if the inequality in (1.37) is strict for at least one t ∈ R. An alternative definition
is based on concave utility functions, see, e.g., Levy (2006). We say that an
investment opportunity X ∈ X is SSD efficient if there is no other X̃ ∈ X for
which X ≺SSD X̃. For our choice of X , it corresponds to SSD portfolio efficiency.

We will consider discretely distributed rates of return with realizations ris,
i = 1, . . . , n, s = 1, . . . , S and equal probabilities ps = 1/S. Sample approxima-
tion technique can be employed to deal with continuous distributions of random
returns and to get such discrete distributions, see Section 1.2 or Branda (2014c).
For discretely distributed returns with equal probabilities, CVaR of a portfolio
can be computed as

CVaRS
α

(
n∑

i=1
Rixi

)
= min

y∈R

[
y + 1

S(1 − α)

S∑
s=1

max
{

−
n∑

i=1
xiris − y, 0

}]
, (1.38)

see Rockafellar and Uryasev (2002).
The DEA model (1.35) with K = S − 1 CVaRs on levels αk ∈ {1/S, . . . , (S −

1)/S} used as the inputs and the expected return as the only output, i.e. J = 1,
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can be formulated as

θSSD
3 (X0) = min

θk,ϕ,xi

1 − 1
S−1

∑S−1
k=1 θk

1 + ϕ

s.t. (1.39)

E
(

n∑
i=1

Rixi

)
≥ E(X0) + ϕ · e(X0),

CVaRk/S

(
n∑

i=1
Rixi

)
≤ CVaRk/S(X0) − θk · dk(X0), k = 1, . . . , S − 1,

n∑
i=1

xi = 1, xi ≥ 0, ϕ ≥ 0, θk ≥ 0.

with the directions

e(X0) = max
X∈X

E[X] − E[X0], dk(X0) = CVaRk/S(X0) − min
X∈X

CVaRk/S(X).

The DEA model (1.39) can be used by investors as SSD efficiency test, because
it allows us to identify SSD efficient investment opportunities, in other words, to
test SSD efficiency.
Proposition 1.3.2. (Branda (2015b))
Let the distribution of random returns be discrete. An investment opportunity
X0 ∈ X is SSD efficient if and only if it is DEA efficient according to model
(1.39), i.e. θSSD

3 (X0) = 1.
Similar relation to the SSD efficiency was observed by Branda and Kopa (2014)
for a radial input-output oriented DEA model. However, their DEA model has
no fixed structure for all considered benchmark investment opportunities. Neg-
ative risk measures for the benchmark had to be transformed into expectation
measures and considered as the outputs. Then, the whole relative improvement
in inputs and outputs was not taken into account, hence the scores of inefficient
opportunities cannot be compared. This is not a problem for our DEA model
(1.39).

As an immediate consequence of previous proposition, we obtain the follow-
ing important property of our model. As Branda (2015b) demonstrated in the
empirical part, the optimal solutions representing efficient portfolios can be used
by investors who rebalance their inefficient portfolios to get SSD efficient ones.
Proposition 1.3.3. (Branda (2015b))
Let the distribution of random returns be discrete. Denote by x∗

i the optimal
portfolio weights in (1.39). If the benchmark X0 is inefficient, then the model
finds an investment opportunity X∗ = ∑n

i=1 Rix
∗
i which strictly dominates the

benchmark, i.e. X∗ ≻SSD X0, and at the same time is SSD efficient.
This is not a usual property and is not ensured, e.g., for the SSD efficiency tests
proposed by Grechuk (2014), Kuosmanen (2007) and Post (2008). Note that
Kuosmanen (2007) considered the basic directional-distance DEA models which
are related to the weak Pareto–Koopmans efficiency, whereas we have shown that
the strong efficiency is necessary to get a DC DEA model equivalent to SSD
efficiency tests.

An investor obtains always a higher score for the SSD dominating investment
opportunity compared with the dominated one.
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Proposition 1.3.4. (Branda (2015b))
Let the distribution of random returns be discrete. Consider X1, X2 ∈ X . The
following implications hold:

• if X1 ≼SSD X2, then θSSD
3 (X1) ≤ θSSD

3 (X2),

• if X1 ≺SSD X2, then θSSD
3 (X1) < θSSD

3 (X2).

Branda (2015b) showed that the DC DEA models can be reformulated as
convex programming problems. Under our choice of inputs and outputs, the
model investigated in this section can be even reformulated as a large linear
programming problem, which is very helpful for its solving.

Proposition 1.3.5. (Branda (2015b))
Under the discrete distribution of returns, the model (1.39) can be formulated as
a linear programming problem

θSSD
3 (X0) = min

θ̃k,ϕ̃,t,x̃i,yk,usk

t− 1
S − 1

S−1∑
k=1

θ̃k

s.t. (1.40)
t+ ϕ̃ = 1,

1
S

S∑
s=1

n∑
i=1

x̃iris ≥ t · E[X0] + ϕ̃ · e(X0),

yk + 1
S − k

S∑
s=1

usk ≤ t · CVaRk/S(X0) − θ̃k · dk(X0), k = 1, . . . , K,

usk ≥ −
n∑

i=1
x̃iris − yk, s = 1, . . . , S, k = 1, . . . , K,

n∑
i=1

x̃i = t, x̃i ≥ 0, ϕ̃ ≥ 0, θ̃k ≥ 0, t ≥ 0, usk ≥ 0.

Branda and Kopa (2016) extended the above results and obtained DEA mod-
els equivalent to general N -th order stochastic dominance efficiency tests. These
models use the lower partial moments and co-lower partial moments as the inputs
and outputs and can be also reformulated as linear programming problems.
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Branda, M. and Hájek, Š. (2017). Flow-based formulations for operational fixed
interval scheduling problems with random delays. Computational Management
Science, 14(1, SI):161–177.

Branda, M. and Kopa, M. (2014). On relations between DEA-risk models and
stochastic dominance efficiency tests. Central European Journal of Operations
Research, 22(1):13–35.

Branda, M. and Kopa, M. (2016). DEA models equivalent to general Nth order
stochastic dominance efficiency tests. Operations Research Letters, 44(2):285–
289.
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Červinka, M., Kanzow, C., and Schwartz, A. (2016). Constraint qualifications and
optimality conditions for optimization problems with cardinality constraints.
Mathematical Programming, 160(1):353–377.

33



Charnes, A., Cooper, W., and Rhodes, E. (1978). Measuring the efficiency of
decision making units. European Journal of Operational Research, 2(6):429 –
444.

Charnes, A., Cooper, W. W., and Symonds, G. H. (1958). Cost horizons and
certainty equivalents: An approach to stochastic programming of heating oil.
Management Science, 4(3):235–263.

Cheng, J. and Lisser, A. (2012). A second-order cone programming approach
for linear programs with joint probabilistic constraints. Operations Research
Letters, 40(5):325–328.

Clarke, F. H. (1983). Optimization and Nonsmooth Analysis. SIAM Publications
Classics in Applied Mathematics.

Dai, L., Chen, C. H., and Birge, J. R. (2000). Convergence properties of two-stage
stochastic programming. Journal of Optimization Theory and Applications,
106(3):489–509.

de Mello, T. H. (2008). On rates of convergence for stochastic optimization
problems under non-independent and identically distributed sampling. SIAM
Journal on Optimization, 19(2):524–551.

de Mello, T. H. and Bayraksan, G. (2014). Monte carlo sampling-based methods
for stochastic optimization. Surveys in Operations Research and Management
Science, 19(1):56–85.

Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applica-
tions. Applications of mathematics. Springer.

Dentcheva, D. and Martinez, G. (2012). Augmented Lagrangian method for
probabilistic optimization. Annals of Operations Research, 200(1):109–130.

Dentcheva, D. and Martinez, G. (2013). Regularization methods for optimization
problems with probabilistic constraints. Mathematical Programming, 138(1-
2):223–251.

Dokov, S., Morton, D. P., and Popova, I. (2017). Mean-variance-skewness-kurtosis
efficiency of portfolios computed via moment-based bounds. In 2017 Interna-
tional Conference on Information Science and Communications Technologies
(ICISCT), pages 1–5.

Ermoliev, Y., Ermolieva, T., MacDonald, G., and Norkin, V. (2000). Stochas-
tic optimization of insurance portfolios for managing exposure to catastrophic
risks. Annals of Operations Research, 99(1):207–225.
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