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Abstract: 

Most genome disorders cause severe symptoms and are usually incurable. Recent, rapid 

development of programmable nucleases (PNs) brought new possibilities for the treatment 

of many diseases, such as genetic disorders, infectious diseases or cancer. PNs are enzymes, 

which enable site specific DNA cleavage that can lead to targeted modification of desired 

genomic loci. They are composed of separable non-specific cleavage domain and DNA-

binding domain. The DNA binding domain is in the form of modular DNA-binding proteins 

or complementarity-based pairing of the oligonucleotide. The non-specific cleavage 

domain mediates DSB stimulation, which is necessary for further genome editing. 

Development of zinc finger nucleases (ZFNs) followed by transcription activator-like 

effector nucleases (TALENs) enabled the first therapeutic approaches based on targeted 

manipulation of human genome. The clustered regularly interspaced short palindromic 

repeats (CRISPR)-Cas technology brought further simplification to the method and 

broadened the availability of PN-based toolkits. This thesis will provide a summary of the 

recent developments, application of PNs in the therapy of human patients and potential 

obstacles preventing their implementation in clinics. 
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Abstrakt: 

Většina genomických mutací vede k závažným symptomům, které obvykle nejsou 

vyléčitelné. Intenzivní vývoj technik spojených s programovatelnými nukleázami (PN) v 

posledních letech otevřel nové možnosti při léčbě mnoha nemocí, jako jsou například 

geneticky podmíněné choroby, infekční nemoci, nebo rakovina. PN jsou enzymy, které 

umožňují místně specifické štěpení DNA, jež může vést k cílené modifikaci daného 

genomického lokusu. Skládají se z domény nespecificky štěpící DNA a z DNA-vazebné 

domény, která má buď formu modulárních proteinů vázajících se na DNA, nebo formu 

oligonukleotidů, které se na základě “Watson-Crickovského” párování váží na odpovídající 

sekvenci DNA. Doména nespecificky štěpící DNA zajišťuje vznik dvouvláknových zlomů, 

které jsou nezbytné pro následující úpravy genomu. Vývoj zinc finger nukleáz (ZFN) a 

poté i TALE nukleáz (transcription activator-like effector nucleases, TALEN) umožnil 

první terapeutické postupy založené na cílené úpravě lidského genomu. Technologie 

CRISPR-Cas (clustered regularly interspaced short palindromic repeats) přinesla další 

výrazné zjednodušení a rozšíření metod využívajících PN. Tato práce si klade za cíl 

poskytnout přehled o současném stavu, vývoji a překážkách v oblasti využití PN při léčbě 

lidských pacientů. 

 

Klíčová slova: 

programovatelné nukleázy, lidská terapie, genová terapie, ZFN, TALEN, CRISPR-Cas, 

geneticky podmíněné nemoci, klinické zkoušky 
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Introduction 
This thesis aims to discuss recent approaches for treating selected genetic disorders using 

programmable nucleases for gene therapy. I chose this theme because of its importance and 

perspective for the future of human therapy.  

Sequencing was one of the milestones which enabled progress in the field of 

genome engineering (Lander 2011). Since the development of sequencing techniques for 

human genome, sequencing data have fuelled the development of research, clinical 

medicine and targeted therapeutics. A single mutated gene can cause serious health 

problems, because of the broad interconnectedness of all human cell processes. Up until 

now, there have been reported mutations in more than 4,000 of the approximately 25,000 

annotated genes of human genome that are related to pathological phenotypes (‘OMIM 

Gene Map Statistics’ n.d.). Many genetic diseases, however do not yet respond to any 

recent treatments, such as dietary therapy, drug therapy or gene product replacement 

therapy. That is why many attempts for the development of new technologies to treat 

genetic diseases at the site of the primary defect, meaning the genetic level, have started to 

arise (Friedmann and Roblin 1972). 

 Gene-based therapeutics are from a broad perspective defined as an introduction of 

nucleic acids into cells, where they alter gene expression and prevent, suspend or reverse 

pathological progression. The genetic therapeutic technologies can be divided into gene 

therapy and RNA interference (RNAi). RNAi mediates targeted repression of mRNAs and 

has been used as a cure for cancer, age related macular degeneration and transthyretin 

(TTR)-amyloidosis. RNAi have poor specificity and sometimes decrease the effectiveness 

of treatment (David Benjamin Turitz Cox, Platt, and Zhang 2015). However, RNAi 

approach would not be further discussed in this thesis. Gene therapy can be realized by 

gene addition, gene correction, gene disruption or by a combination of these approaches 

(M. A. Kay 2011). The therapeutic DNA integrates into the host genome or persists as an 

episomal vector, depending on the type of delivery system. The broad range of delivery 

systems and techniques are summarized and described in comprehensive reviews (Du et 

al. 2018; Naldini 2015).  

 First gene therapy clinical trials have been published in the 1990s (Rosenberg et al. 

1990), almost 20 years after the proposal to replace defective DNA of those who suffer 

from genetic defects for wild type (wt) DNA (Friedmann and Roblin 1972). These 

therapeutic approaches were based on random DNA integration. As a consequence, the off-

target integration often occurred and led to undesired side effects. These complications 
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limited the spectrum of curable genome disorders. They were abandoned due to safety 

issues, as some of the treated patients developed leukaemia (Cavazzana-Calvo 2000). The 

main reason for frequent failures was the absence of technologies that enabled targeted 

gene manipulation.  

Homologous recombination (HR) represents a more advanced way how to reach 

strictly targeted integration of donor DNA. DNA was firstly edited via HR in the late 1970s, 

but the absolute frequency of successful HR was quite low (Hinnen, Hicks, and Fink 1978; 

Capecchi 1989). Following experiments showed that DNA double-strand break (DSB) can 

significantly increase the frequency of HR (Latt 1981).  

Some of the first attempts used meganucleases, such as the homing endonuclease 

I-SceI that is able to recognize a 18-bp long target sequence, but it was nearly impossible 

to direct them to any chosen sequence, due to its complicated structure (Choulika et al. 

1995). This fuelled research to find a more simply structured endonuclease with the 

possibility of redirection. Chimeric molecules composed of DNA binding domain and non-

specific cleavage domain represent more interesting and versatile tools. The first concepts 

were based on the zinc-finger (ZF) binding domains and type IIS restriction enzyme FokI 

nuclease activity (Y. G. Kim, Cha, and Chandrasegaran 1996). FokI is one of the restriction 

enzymes that has physically separable binding and cleavage activity. It was proved that 

substitution of the recognition domain leads to the redirection of the cleavage (Y. G. Kim 

and Chandrasegaran 1994). Zinc-finger nucleases (ZFNs) are the first approaches of 

programmable nucleases (PNs) to be introduced. Another of the PN tools, transcription 

activator-like effector nucleases (TALENs) were discovered a couple years later (Christian 

et al. 2010).  

It was the clustered regularly interspaced palindromic repeats (CRISPR) - CRISPR-

associated-9 (Cas9) system that elevated targeted genome editing to a higher level, because 

of the simplicity of the technology (Jinek et al. 2012). 

The development of PNs initiated the development of novel treatment strategies for 

gene therapy of a variety of disorders that require site-specific gene modification. In 2005, 

Urnov and his colleagues were the first to use targeted manipulation of DNA by ZFNs in 

human cells (Urnov et al. 2005). Only three years later, in 2008, groups of scientists begun 

reporting various approaches for human genome disorders treatment using ZFNs and later 

even other PN platforms (Perez et al. 2008; Ding et al. 2014; Z. Hu et al. 2015; Dever et 

al. 2016). 
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In the first chapter of this thesis, I aim to describe the principles of the three PN 

platforms and to compare their pros and cons relevant to gene therapy. In the second 

chapter, I give examples of the mainly used treatment strategies for human genome 

disorders of a variety of origins and introduce selected, ongoing clinical trials. The final, 

third chapter is about controversial, ethical issues of gene editing mediated by PNs in 

humans, especially in the human germline. 

 

1. Principle of Programmable Nucleases 

1.1 Zinc-Finger Nucleases 

Programmable nucleases described in this thesis are composed of separable DNA-binding 

domain and non-specific cleavage domain. These two domains are connected by a peptide 

linker. Zinc-finger nucleases were the first widely used type of PNs of such composition 

to be presented.  

The ZFN’s DNA binding domain is the zinc-finger (ZF) motif, that was originally 

discovered in Xenopus and it is the most common DNA binding motif in all of metazoan 

(Miller, McLachlan, and Klug 1985). The DNA binding domain of these nucleases is 

located at the N-terminal and it is composed of a set of Cys2His2 ZFs. The crystal structure 

of the ZFs bounded to DNA indicates that each finger cooperates with one atom of zinc 

and contacts three base pairs (bp) of DNA in a major groove (Pavletich and Pabo 1991). 

The DNA binding domain usually contains three or four ZFs that bind 9-bp or 12-bp DNA 

target sites. Up to six fingered ZFNs were also tested (Urnov et al. 2010). The study of Kim 

et al. in 2009 showed that four-finger ZFN binds the DNA target more stably and 

specifically than the three-finger ZFN (H. J. Kim et al. 2009).  

The nonspecific cleavage domain at the C-terminal is usually the restriction enzyme 

FokI. The FokI nuclease mediates the DSB only as a catalytic dimer, thus the two ZFNs 

must be designed. The first binds the sequence at the leading strand of the DNA and the 

second binds the opposite sequence at the lagging strand. The sequence between these two 

target half-sites is called a spacer, which is usually 5 - 7 bp long and this is where the 

cleavage by the FokI dimer takes place (J. Smith et al. 2000; Bibikova et al. 2001).(Fig. 1.)  

The key residues in the dimer interface have to be exchanged in order to prevent 

the homodimerization of FokI nucleases and thus also prevent off-target activity of the 

ZFN (Szczepek et al. 2007). The heterodimerization of FokI also brings a further increase 

in ZFN specificity and a decrease in off-target activity, because the target sequence in DNA 

is twice as long (Urnov et al. 2010).  
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Fig. 1. (A-C) Zinc-finger nuclease-

mediated DNA cleavage.  
(A) The 3-finger ZFN architecture  

(B) Constitution of a target site for 

two ZFNs.  

(C) After dimerization of the two 

FokI domains, the nuclease cuts the 

DNA within the spacer sequence, 

leaving a 5′-overhang. Adapted from 

(Rahman et al. 2011). 

 

The most common approach for ZFNs’ design is a “modular assembly” method, 

which identifies each finger for each component triplet of the target sequence and then 

links them together as a multi-finger peptide (Segal et al. 2003). The specificity of these 

ZFN is still partly unpredictable and the process of ZFN production is still quite expensive 

and laborious (Chandrasegaran and Carroll 2016), despite the effort of several academic 

laboratories that formed the Zinc Finger Consortium, which put together and provided free 

specific ZFN protocols, plasmids and software for ZFN design (available at: 

http://www.zincfingers.org/) (Sander et al. 2010). Production complications prevent their 

widespread use. 

 

1.2 Transcription Activator-like Effectors 

Transcription activator-like effectors (TALEs), another programmable DNA-binding 

system, was found in a plant pathogen genus Xanthomonas. It works as a protein tool for 

the manipulation with a gene expression of a host plant (S. Kay and Bonas 2009). The 

protein structure of TALE DNA binding domain is modular. It is usually composed of 15 

– 20 modules and each module consist of 34 amino acids. These are largely invariant except 

of the two variable residues at a position 12 and 13, called the repeat variable diresidue 

(RVD). A DNA binding specificity of TALEs is highly predictable, because there is simple 

code, where one RVD of a specific constitution binds one nucleotide in the target DNA 

(Moscou and Bogdanove 2009). This fact suggests that a simple protocol for the production 

of the versatile binding domain of TALENs could be developed. Boch et al. in 2009 

http://www.zincfingers.org/
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experimentally identified the recognition preferences of TALEs: HD = C; NG = A; NS = 

A, C, G or T; NN = A or G; and IG = T (Boch et al. 2009).  

In the case of TALENs the cleavage domain is usually the same as in ZFNs 

(Christian et al. 2010) meaning, that the restriction enzyme FokI must dimerize for DSB 

stimulation, therefore two TALENs must be designed. In this case, the spacer between two 

target half-sites is a bit longer, about 10 - 15 bp (Mussolino et al. 2011). (Fig. 2.)  

 

Fig. 2. (a) Structure of a TALE: An 

invariant repeat sequence with 

underlined RVD. The composition of 

RVDs determines the target sequence. 

The nuclear localisation signal NLS 

directs the TALE into the nucleus of the 

host cell. The transcriptional activation 

domain AD cause an activation of a host 

gene transcription. BamHI B and SphI S 

serve as target places for a restriction 

enzyme that are used for constructing 

TALENs. (b) Structure of a TALEN: 

Two TALENs are needed for a FokI 

dimerization and DNA cleavage. 

Adapted from  (Cermak et al. 2011).  

 

Cermak et al. deposited all their plasmids for expressing TALENs and TALEs in a 

free clone repository AddGene (available at: www.addgene.org) (‘Addgene: Homepage’ 

n.d.) and also created a freely accessible software for TALEN site selection and design 

(available at: https://tale-nt.cac.cornell.edu/) (Cermak et al. 2011; Doyle et al. 2012). The 

more simple design and protocols for modular assembly have enabled this PN tool to 

expand. 

 

1.3 CRISPR-Cas System 

The most recent technology, clustered regularly interspaced short palindromic repeats with 

CRISPR-associated protein, was discovered as an adaptive defence system in a bacteria 

and archaea (Mojica et al. 2000). This system is a multistep process: 1) Non-self-viral 

nucleic acids, called protospacers, are incorporated as spacers into a CRISPR array of a 

host genome.; 2) CRISPR array is transcribed as a pre-crRNA which is than cleaved into 

small CRISPR RNAs (crRNAs) (Brouns et al. 2008).; 3) An individual crRNA in 

conjunction with a Cas protein binds to a foreign nucleic acid by the recognition of a 

http://www.addgene.org/
https://tale-nt.cac.cornell.edu/
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protospacer sequence and a protospacer adjacent motif (PAM). This state initiates the 

cleavage of a viral, foreign nucleic acid (Deveau et al. 2008).  

Depending on different microorganisms, there can be many modifications to this 

defence system. Target genome engineering usually uses the type II system, in which the 

Cas9 protein plays the main role (Jinek et al. 2012). However, Cas9 requires a 3’ RNA-

RNA hybridization structure for correct binding and cleavage activity, so there is an 

additional RNA in this system, called the trans-activating crRNA (tracrRNA). This 

tracrRNA binds to the crRNA due to its complementarity and together they create a guiding 

complex, guide RNA (gRNA) (Deltcheva et al. 2011). A chimeric tracrRNA:crRNA 

molecule, the so-called single-guide RNA (sgRNA), was established for scientific purposes 

(Fig. 3.). The Cas9 protein maintains the DSB of DNA sequence 3 bp upstream of the PAM 

and creates blunt ends. The optimal PAM sequence recognized by the most commonly used 

Cas9 protein derived from a Streptococcus pyogenes is 5’-NGG-3’ (Jinek et al. 2012; 

Gasiunas et al. 2012).  

Another potential of the Cas9 protein is its ability to bring together all the major 

classes of biopolymers (RNAs, DNAs and proteins) without the cleaving activity simply 

by the utilization of a nuclease-null version of the Cas9 protein. This way we can repress 

or activate the transcription, elucidate the role of the unknown factors, engineer a chromatin 

modification or remodel the genome architecture (Mali, Esvelt, and Church 2013). In this 

thesis, I will focus on the cleaving activity of this tool in human therapy and not the 

approaches mentioned above. 

One can simplify the sgRNAs design for their project by using a broad range of 

online tools such as the one developed by Maximilian Haeussler (available at: 

http://crispor.tefor.net/) which introduces a scoring system that chooses sgRNA sequences 

with  minimum off-target sites (Haeussler et al. 2016). 

 

Fig. 3. Arrangement of a CRISPR-Cas9 components directed by a gRNA (left) / sgRNA (right). Adapted 

from (Doudna and Charpentier 2014). 

http://crispor.tefor.net/
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1.4 Comparison of PN Tools 

Up until now, I have described the three main platforms that are used in genome 

engineering. To compare these systems, I would like to focus on a few issues that are 

relevant for human therapy.  

1.4.1 Size 

The size is an important property of each PN tool, because of the limited cargo size 

of delivery systems. In general, the smaller the PN tool is, the more preferred is for therapy. 

There are two ZFNs and two TALENs required in contrast to the CRISPR-Cas 

system which is able to cleave both strands as a monomer. It is also good to keep in mind 

the mRNA length of each system. Although the mRNA for two ZFN proteins is about 2.2 

kb (for the 18-bp target), for two TALEN proteins it is more than 5.0 kb (for the 36-bp 

target). This is because the TALE motifs and ZFs are the same size, whereas one TALE 

module recognizes 1 bp and one ZF recognizes 3 - 4 bp of the target sequence (Boissel et 

al. 2014). A single commonly used Cas9 protein from the Streptococcus pyogenes is also 

quite large, it is composed of 1368 amino acids (in case of mRNA about 4.1 kb). 

Fortunately, employing smaller Cas9 orthologs, smaller than 1100 amino acids, in the case 

of the Staphylococcus aureus, also seems to be effective (Mali, Esvelt, and Church 2013; 

Ran et al. 2015). 

1.4.2 Tolerance of Epigenetic Changes of DNA 

Epigenetic modifications, such as methylation, acetylation and phosphorylation are 

naturally represent in many locuses of the genome. The tolerance rate of PNs to epigenetic 

changes is closely related to versatility of their use. 

It is not a problem for the sgRNA of the CRISPR-Cas system to bind to the DNA 

with epigenetic changes, whereas the protein-based binding domains of ZFNs and 

TALENs are not able to bind to it. Epigenetic changes of DNA occur frequently during 

carcinogenesis, thus the CRISPR-Cas is the system of choice in these cases (Khan et al. 

2016).  

1.4.3 Production and Design 

Production of ZFNs is very complicated, due to the complicated process of 

designing ZF sets for new target sequences. Many ZF sets have to be prepared and tested 

before utilization and usually only a few of all attempts work well. Theoretically, sixty four 

different modules are requisite to bind all possible triplets. Though, the sequence of 

TALENs is clearly given and only four different subunits, one for each nucleotide, are 
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required, the process is still a bit laborious and time consuming. On the contrary, the 

CRISPR-Cas system is composed of a single, constant Cas9 protein that is present in many 

bacteria and archaea. In this case, only the sequence of the sgRNA needs to be changed to 

redirect the cleavage, thus the CRISPR-Cas system is the most economical. Another 

advantage of a single, constant protein requirement is that in the case that several targets 

need to be addressed there is the possibility of simultaneous delivery of multiple sgRNAs 

(Cradick et al. 2013; Chandrasegaran and Carroll 2016; Deng et al. 2012). 

1.4.4 Resulting Products  

HDR vs NHEJ balance in the process of DSB reparation may be influenced by the 

shape of resulting DNA ends (Zetsche et al. 2015). There are differences in the form of the 

DNA ends after a DSB. ZFNs and TALENs generate overhanging ends, which are prone 

to modifications and occurring of indels. Quite the reverse, the CRISPR-Cas9 system 

generates blunt (non-overhanging) ends, which are more stable (Bibikova et al. 2001; 

Nerys-Junior et al. 2018). It does not apply to all Cas proteins. For example the Cpf1 protein 

is an alternative to the Cas9 protein and it mediates a staggered double stranded cut with 

5’ 4 or 5 nt long overhang and requires only a 42 nt long crRNA without a tracrRNA 

(Zetsche et al. 2015). 

1.4.5 Specificity and Off-target Activity 

Dimerization of ZFNs and TALENs creates higher target specificity. The sgRNA 

in the CRISPR-Cas system typically targets a 20-bp sequence compared to TALENs, which 

usually bind 30 - 40 bp long target (Cradick et al. 2013).  

The length of the target corresponds to the level of specificity, which is important 

for the safety use of the tool.  

Off-target activity of PNs is a big issue, it can generate multiple oncogenic 

mutations and cause severe complications and thus this is the main concern for bringing 

PNs into human therapy. Off-target activity is closely related to the specificity of the PN. 

Usually, the longer recognition sequence is, the more specific the PN. It is necessary to 

mention, however, that even highly specific endonucleases, such as I-SceI, that recognize 

the 18-bp sequence not present in the entire human genome, have off-target DNA cleavage 

activity when presented to a human cells (Petek, Russell, and Miller 2010).  

All three platforms have a low ability to avoid of off-target sequences. In the case 

of CRISPRs, the system tolerates even a few mismatches in a target sequence, this is 

probably because of its original purpose, which is to recognize viral genomes that evolve 

rapidly and can contain many mismatches (Chandrasegaran and Carroll 2016). Another 



9 
 

reason for this can be naturally occurring differences in the PAM sequence that can be, 

albeit less efficiently, recognized by a Cas9 protein also as 5’-NAG-3’ or 5’-NGA-3’ (Hsu 

et al. 2013).  

This is why many scientists are trying to find the way how to increase the specificity 

of each platform and reduce off-target activity. Examples are given in tab. 1.  

 
a selection of a target sequence which is unique in the entire genome (Szczepek et 

al. 2007) 

All PNs 

a modification of the FokI cleavage domain that allows the formation of 

heterodimers instead of homodimers (Szczepek et al. 2007) 

ZFNs and 

TALENs 

an addition of two extra guanine nucleotides at the 5’ terminus of the sgRNA (D. 

Kim et al. 2015) 

CRISPR-Cas 

a truncation of the ds part of a sgRNA (tru-sgRNA) from 20-nt to 17-nt ensures 

the enhanced sensitivity of mismatches, caused by reduced binding energy a 

mutation of one of the Cas9 active sites converts it to a nicking enzyme that cleaves 

only one strand of the DNA target sequence, thus it is necessary to have two 

sgRNA directed at two different target sequences in close proximity and two 

mutated Cas9 proteins (Ran et al. 2013) 

CRISPR-Cas 

a transient exposure to PNs by using, for example a ribonucleoprotein delivery 

instead of stressful plasmid transfection (S. Kim et al. 2014). 

All PNs 

  
Tab. 1.  

Off-target activities must be monitored carefully and supressed as much as possible. 

Identifying potential off-targets and assessing their magnitude is quite challenging and 

many laboratories came up with strategies for capturing the cleavage sites more broadly, 

the majority of them are reviewed by Koo et al. (Fig. 4.).  

The application of PN tools and the selection of reagents, therefore depend on a risk 

vs. benefit analysis comparing parameters like efficacy, specificity as well as many others. 

These parameters are clearly stated in tab. 2.  

In a next chapter of this thesis, I would like to introduce some selected strategies 

that use PN platforms for the treatment of significant human diseases.  

Tab. 2. The comparison of a properties of the three main PN platforms. Adapted from (Yi and Li 2016). 
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Fig. 4. (A-F) Schematics of methods for measuring an off-target activity (A) Chromatin immunoprecipitation 

coupled with deep sequencing using an anti-Cas9 antibodies Ab and catalytically-dead Cas9 dCas9 (ChIP-

Seq). (B) Systemic evolution of ligands by exponential amplification (SELEX) using a randomized 

oligodeoxynucleotide ODN library. (C) Integrase-deficient lentivirus (IDLV) capture or genome-wide, 

unbiased identification of DSBs enabled by sequencing (GUIDE-seq). (D) High-throughput genomic 

translocation sequencing (HTGTS). (E) Breaks labelling, enrichments on streptavidin and next-generation 

sequencing (BLESS). (F) In vitro nuclease-digested genome sequencing using the whole-genome sequencing 

method WGS (Digenome-seq). Adapted from (Koo, Lee, and Kim 2015) 
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2. PNs in Human Therapy 

Some of genome disorders will affect most people at some point in their lives. Even rarely 

occurring disorders, such as monogenic diseases, affect about 6% of all people (Aymé et 

al. 2011). Diagnosis and treatment of genome disorders is still insufficient. Till recently 

the care was primarily palliative, focusing on disease management and aftermaths treating 

without addressing the underlying genetic defects. A loss of function of some gene is a 

quite simple process, whereas repair of the function is quite challenging. (Prakash, Moore, 

and Yáñez-Muñoz 2016)  

PNs can be used for targeted gene manipulation by creating short insertion/deletion 

mutations (indels), large chromosomal deletions, chromosomal inversions, chromosomal 

translocations, non-functional gene corrections or expression cassette integrations. These 

manipulations are achieved by two main repair pathways. The induced DSB can be repaired 

by the predominant non-homologous end joining (NHEJ) or by the highly accurate 

homology-directed repair (HDR) in the presence of donor DNA. Naturally, the NHEJ 

occurs mostly during the G1 phase of the cell cycle and the HDR is active mostly during 

the S and G2 phases, when homologous chromatids are available. The HDR uses the 

homologous donor sequence as a repair template, whereas during the NHEJ the two DNA 

ends are simply re-ligated and can prior undergo few nucleotides addition or removal (Fig. 

5.). (Rahman et al. 2011; Haas, Dettmer, and Cathomen 2017)  

 

 

Fig. 5. (A-D) Targeted DSB mediated by ZFN. (A) Targeted disruption: DSB is repaired by a NHEJ 

pathway resulting in indel mutations m at the cleavage site (B) Targeted deletion: two simultaneous 

DSBs are repaired by NHEJ resulting in a deletion of the targeted locus. (C) Gene correction: DSB is 

repaired by HDR and the co-introduced wt donor DNA fragment resulting in a correction of the 

mutation m. (D) Targeted integration: DSB is repaired by HDR and the co-introduced donor DNA 

fragment with inserted cassette V. Adapted from (Rahman et al. 2011). 
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Some of genome disorders allow treatment that cause gene disruption. In these 

cases, we can exploit NHEJ. Some genome disorders, however, have to be solved through 

HDR. Current gene-editing approaches using HDR are limited by efficacy of 

modification, safety concerns related to it and delivery of gene-editing tools to target cell 

types. That is why, most of recent strategies edit the patient cells in vitro, reproduce 

successfully-edited cells and afterwards provide them to patient.  

Germ-line editing is another possibility how to treat such diseases and even to 

eradicate such diseases causing genes forever. It is mediated by targeting of a genome in 

germ cell or embryo instead of already developed somatic cells that can’t contribute to 

gamete formation. It causes changes that are theoretically present in all cells of treated 

organism which could be very hazardous (Ormond et al. 2017). 

In this chapter I would like to introduce selected genetic diseases that are exemplary 

candidates for targeted gene therapy using ZFNs, TALENs or CRISPR-Cas9 system. 

 

2.1 HIV/AIDS 

An acquired immune deficiency syndrome (AIDS), caused by an infection of the 

human immunodeficiency virus type 1 (HIV-1), has threatened society since the late 1970s 

(Centers for Disease Control (CDC) 1982).  The C-C chemokine receptor type 5 (CCR5) 

is expressed on the surface of our CD4+ T-cells and serves as one of the major co-receptors 

for the HIV-1 cell entry. To prove that fact, it was found that some of the Northern Europe 

populations carry the genetic mutation CCR5Δ32 that causes the non-functional CCR5 

production and thus also causes protection from infection of CCR5-tropic HIV-1 (Oh et al. 

2008). Homozygosity for CCR5Δ32 doesn’t however, mean complete resistance to the 

HIV-1, non-CCR5-tropic variants, such as a CXCR4-tropic viruses are able to use C-X-C 

chemokine receptor type 4 (CXCR4) as a co-receptor for cell entry (Westby et al. 2006). 

Progress in HIV therapy accelerated very quickly, because of the high incidence of 

this disease. To date, the most effective treatment technology seems to be the highly active 

antiretroviral therapy (HAART) which, prolongs the life of HIV-positive patients and 

slows down the progression of the disease. Unfortunately, it requires lifelong medication 

that can lead to cumulative toxicities and an escape of viral resistance mutants (Rossi, June, 

and Kohn 2007). And so, replacing HAART by once-in-a-lifetime treatment would be a 

great asset for both, patients and the health care system. Allogeneic human stem-cell (HSC) 

transplantation is a possibility, nevertheless a lack of finding HLA-matched donors, who 

are screened for homozygosity in CCR5Δ32, is a problem (Hütter et al. 2009). 
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The publication of a successful bone marrow transplant from the naturally 

CCR5Δ32 homozygous, HLA-matched, unrelated donor into the HIV positive patient with 

acute myeloid leukaemia proved the concept’s efficiency. The donor cells repopulated the 

peripheral blood, the viral replication was terminated and the patient reversed into a 

persistent aviremic state for more than 27 months without requiring additional 

antiretroviral therapy (Hütter et al. 2009). 

The ZFN discovery broke the “HLA-match” limitation, because it allowed a de 

novo production of HIV-1-resistant genotype and the utilization of an autologous CD34+ 

HSC transplant for each patient. This strategy was firstly used by Perez et al. in 2008 when 

the CD4+ T cells of healthy donors were transduced using adenoviral ZFN expression 

vector. The ZFN pair was engineered to target the DNA sequence encoding the first 

transmembrane domain TM1 of CCR5 on a chromosome 3. The created DSB was then 

repaired by an NHEJ pathway and indel mutations were introduced. This led to the 

disruption of the open-reading frame and non-functional CCR5 transmembrane protein. 

Statistically, 12 clones expanded from 52 treated CD4+ T-cells containing CCR5 

disruption and only 4 of these 12 mutant clones were homozygotes. They also observed 

appreciable off-target activity at the C-C chemokine receptor type 2 (CCR2) locus, which 

is the closest relative of CCR5 in human genome (Perez et al. 2008). A concomitant loss 

of CCR2 and CCR5 shouldn’t be problematic, but the fusion epitope can lead to the 

elimination of the engineered T-cells by the host immune system (M. W. Smith 1997).  

Another step made by Holt and his colleagues was to knock out the CCR5 locus 

using nucleofection of ZFN expression plasmids into the isolated HSCs and co-transplant 

them with the HIV-infected peripheral blood cells into immunodeficient mice. Whereas 

these mice underwent selection for CCR5-negative cells and had significantly lower levels 

of HIV-1, the control mice, who received untreated HSC with the HIV-infected peripheral 

blood cells, displayed profound CD4+ T cell loss. Some of Holt’s results are shown in 

(Holt et al. 2010). 

There are a few ongoing clinical studies who use ZFN platforms for the treatment 

of HIV infected patients (NCT03617198, NCT00842634, NCT01044654, NCT02500849, 

NCT02225665 and NCT01543152). All these clinical studies have more or less a similar 

purpose, to observe the safety and the antiviral activity of the infusion of the ZFN-modified 

autologous CCR5 -/- CD4+ T cells in HIV positive patients. The majority of the mentioned 

clinical studies are in phase 1, which means they examine the safety of the drug and focus 

on the adverse effects, drug degradation and drug excretion. Healthy volunteers are usually 
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used for phase 1 of clinical studies. Two of the mentioned studies are already in phase 2, 

gathering preliminary data on whether a drug works on individuals with a certain condition 

(HIV positivity in this case) (‘Glossary of Common Site Terms - ClinicalTrials.Gov’ n.d.). 

Other PN tools are also used for CCR5 gene disruption. Liu et al. in 2017 designed 

the lentivectors with combined sgRNAs targeting both, the CXCR4 and the CCR5 

simultaneously. The sgRNAs-Cas9 lentivectors could induce a mutation of both genes in 

the murine CD4+ T cells without any nonspecific editing and without obvious cytotoxic 

effects, which suggests that the loss of CXCR4 may be immune tolerant (Liu et al. 2017).  

There is an ongoing clinical study using such CRISPR-Cas9 modification of CCR5 

gene in CD34+ T cells (NCT03164135). 

An additional finding about CCR5 locus is, that individuals, who are naturally 

homozygous for CCR5Δ32, are healthy and show no visible phenotype differences, thus 

we can presume that CCR5 is probably a “safe harbour” locus for the insertion of other 

therapeutic genes (Camenisch, Brilliant, and Segal 2008). Genomic safe harbours are 

locations, where some transgenes can integrate without disrupting other gene activity or 

stimulating cancer. An integration near or within the cancer-related genes poses a big 

concern and the avoidance of such genes is the main priority (Sadelain, Papapetrou, and 

Bushman 2012).  

Another approach, which has been developed, uses the highly specific targets 

within the conserved HIV-1 LTR U3 region. Its disruption, the RNA-guided Cas9-

mediated genome cleavage inactivates the viral gene expression and replication in the 

latently infected T cells. Concurrently, the pre-existence of the sgRNA-Cas9 system in 

cells leads to the elimination of the new HIV-1 virions before they integrate into the host 

genome and also leads to the immunization of the cells against HIV-1 infection (W. Hu et 

al. 2014).  

 

2.2 Cancer 

Cancer exists in multiple complex forms and for this reasons it is difficult to find a 

versatile tool for its treatment. The current treatment strategies are surgery, radiotherapy 

and chemotherapy. Alterations of cancer-related genes, such as activated oncogenes, 

inactivated tumour suppressors, mutations in genes that confer chemo-resistance or repair 

mechanisms, provide an opportunity for an PN approach (Yi and Li 2016). Recently, ZFNs 

and TALENs were used to treat cancer, but their limitation in targeting epigenetic changes 
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was an obstacle. For this reason, the CRISPR-Cas9 is in many cases the system of choice 

(Khan et al. 2016). 

Here are some examples of the CRISPR-Cas9-mediated cancer-related gene 

modifications reviewed by Yi and Li in 2016 (Yi and Li 2016): Effectively and specifically 

inhibited bladder cancer cell proliferation and induced cancer cell apoptosis caused by 

activation of tumour suppressors, such as the p21, E-cadherin and hBax.; Reversing drug 

resistance of cancer cells by knocking out the multidrug resistance gene 1 (MDR1) by 

targeting its exon 5 in the osteosarcoma cell lines.; Proposal to correct or destroy the 

mutated gene for the epidermal growth factor receptor (EGFR) in the lung cancer.; An 

induced apoptosis of the Burkitt lymphoma cells due to a deletion of the induced myeloid 

leukaemia cell differentiation protein (MCL-1). 

There is another approach for the treatment of various cancers, it is based on PN-

mediated editing of immune system cells instead of cancer cells. One of these cancer 

immunotherapy strategies is the disruption of the programmed death protein 1 (PD-1). PD-

1 is a receptor presented on the activated T cells surface. In case it binds to the ligand PD-

L1, the T cell’s immune response is inhibited. PD-L1 is not expressed only in individual’s 

tissue to mediate peripheral tolerance, but it is also expressed on some tumour cells to 

inhibit the antitumor immune response (Keir et al. 2008). Su et al. demonstrated the 

enhanced immune response of the CRISPR-Cas9 mediated PD-1 KO T cells in 2016. They 

targeted the exon 2 of the PD-1 gene in primary human T cells using co-transfection of 

sgRNA-Cas9 expression plasmid via electroporation, which provided intended transient 

down-regulation of the PD-1 (Su et al. 2016). 

There are many dose-escalation studies of ex-vivo mediated PD-1 knockout-T cells 

in patients with various cancer types (NCT03081715, NCT02863913, NCT02867345, 

NCT02867332 and NCT02793856).  

Another cancer immunotherapy strategy, is based on manipulation with high-

avidity T-cell receptor (TCR) α and β chain genes. These genes are isolated from the rare 

tumour-specific lymphocytes and transferred into the polyclonal T cells to create chimeric 

antigen receptor (CAR) T cells. The transduced cells, however, already contain endogenous 

TCR α and β chains, so they express four different TCR chains, which compete for the 

TCR formation. These dual-specific T cells have lower avidity for targets and it can also 

can lead to mispairing of exogenous and endogenous α and β chains causing harmful 

unpredictable specificities (Kessels et al. 2001). Provasi et al. introduced the ZFN-based 

strategy for disruption of endogenous α and β chain genes to overcome this adverse pairing.  
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They combined the ZFN-driven disruption of endogenous α and β with lentiviral delivery 

of Wilms Tumor Antigen-specific TCR. The ZFN-edited T cells infused in mice showed 

enhanced tumour killing ability and sharply reduced alloreactivity. (Provasi et al. 2012)  

There are two ongoing phase 1 clinical studies, who evaluate the feasibility and 

safety of the CRISPR-Cas9 mediated PD-1 KO T cells and endogenous TCR KO CAR T 

cells in patients with multiple solid tumours (NCT03545815 and NCT03747965). 

 

2.3 HPV Infection 

Cervical cancer, caused by the malignant transformation abilities of a high-risk 

human papillomavirus (HR-HPV), is commonly diagnosed in the women patients who are 

persistently infected with this virus (Walboomers et al. 1999). The malignant 

transformation is dependent on the sustained expression of the viral E6 and E7 oncogenes 

which makes it an ideal target for gene therapy. Host cell-cycle progression is promoted 

because of the E6 product, which degrades the tumour suppressor p53, and the E7 product, 

which interacts with the tumour suppressor RB1, releasing the transcription factor E2F 

(Moody and Laimins 2010). 

There are various non-invasive cervical cancer treatment studies describing the 

targeted cleavage of the E7 or the E6 oncogene in HPV-positive cervical cancer cell lines 

using ZFNs (Ding et al. 2014), TALENs (Z. Hu et al. 2015) or CRISPR-Cas9 systems (Z. 

Hu et al. 2014). A down-regulation of expression of these oncogenes leads to the restoration 

of the tumour suppressor genes RB1 and p53, an apoptosis and growth inhibition of the 

PN-treated HPV-positive cervical cancer cells. 

There are some clinical studies in progress which evaluate the safety and efficacy 

of human cervical intraepithelial neoplasia treatment using mentioned non-invasive 

approaches (NCT02800369, NCT03057912 and NCT03226470). 

 

2.4 Duchenne Muscular Dystrophy 

Duchenne muscular dystrophy (DMD) is a genetic disease that leads to muscle 

degeneration, loss of mobility and premature mortality in male patients. It is caused by 

various deletions leading to the disruption of the dystrophin-gene reading frame. 

Fortunately, a milder form of this disease exists, Becker muscular dystrophy (BMD). BMD 

is caused by in-frame deletions of the dystrophin gene. In contrast to the non-functional 

dystrophin protein in DMD, BMD results in the expression of truncated, but partially 

functional dystrophin protein. (England et al. 1990)  
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In 2016, Tabebordbar et al., and soon after them Nelson et al., used the CRISPR-

Cas9 system to convert the DMD form of the dystrophin gene to the BMD form. They used 

a mouse model of DMD, which has a nonsense mutation in exon 23, and treated it with the 

adeno-associated virus (AAV) vector. They directed the sgRNAs to target the introns 22 

and 23 in order to excise the exon 23. The purpose was to produce internally truncated, but 

functional, dystrophin protein, typical for BMD. They delivered components of the 

CRISPR-Cas9 system to the terminally differentiated skeletal muscle fibers and 

cardiomyocytes. The muscles were, after few weeks, harvested and analysed for the 

presence of exon 23. This method led to the recovery of dystrophin expression, muscles 

morphology recovery and reduction of fibrosis. (Tabebordbar et al. 2016; Nelson et al. 

2016)  

 

2.5 Haemophilia B 

Most genetic diseases affect organs that do not enable ex vivo cell manipulation, 

one of such diseases is haemophilia B. The disorder is caused by congenital deficiency of 

blood coagulation factor IX (F.IX), which is encoded by the F9 gene and produced by the 

liver. The severe form of this disease is characterized by the circulation of F.IX below the 

level of 50 ng/ml, whereas the mild form at a level of at least 250 ng/ml. (Scriver 1995). 

 In contrast to the editing strategies mentioned above, the following strategy uses 

HDR pathway of DSB repair instead of NHEJ, it co-delivers the wt donor of the F9 gene 

fragment. In 2011, Li at al. created ZFNs that targeted the first intron of the F9 gene and 

co-delivered them with the wt cDNA fragment of exon 2 - 8 to encompass all the mutated 

variants of the F9 gene. (Fig. 6.). They injected the hepatotropic AAV vector expressing 

F9 ZFNs from a liver-specific enhancer into the tail vein of the human-haemophilia B 

mouse model to evaluate the targeted delivery of such a vector into the liver. Their results 

showed that the in vivo AAV delivery of the donor template and the ZFNs induced gene 

targeting caused the correction of the F9 gene and increased the circulating F.IX levels. (Li 

et al. 2011).  

An ongoing clinical trial, (NCT02695160), examines therapeutics for ZFN-

mediated genome editing of the F9 gene. The corrective copy of the F9 transgene is placed 

under the control of highly expressed endogenous albumin locus of patient hepatocytes. It 

is expected that this correction would provide permanent, lifetime, liver-specific 

expression of the F.IX. 

 

https://www.zotero.org/google-docs/?Nr9yfl
https://www.zotero.org/google-docs/?Nr9yfl
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Fig. 6. Design of the F9 gene correction. ZFNs cause the DSB who is marked by arrow and promotes 

integration of the donor wild-type F9 exons 2–8 into the hF9mut intron 1. The left homology arm 

spans from the beginning of exon 1 to the ZFN target site. The right homology arm spans intronic 

sequence 3’ of the ZFN target site. Adapted from (Li et al. 2011). 

 

2.6 Tyrosinemia 

Tyrosinemia type I, a metabolic liver disorder, is often drug resist and requires a 

liver transplant. This hereditary disease is caused by recessive mutation of the Fah gene, 

which encodes the last enzyme, the fumarylacetoacetate hydrolase, in the tyrosine catabolic 

pathway. The lack of this enzyme leads to the accumulation of the cytotoxic homogentisate 

and its oxidative products (Scriver 1995).  

In 2016, Pankowicz et al. introduced principle, metabolic pathway reprogramming, 

which is based on the findings from Endo at al. (Endo et al. 1997). This strategy uses the 

power of the CRISPR-Cas9 for the genetic deletion of the Hpd, another key gene of the 

tyrosine catabolic pathway. Deletion of the Hpd gene disables accumulation of the 

homogentisate and therefore supports growth, repopulation of the affected liver and lethal 

phenotype rescue (Fig. 7.). Pankowicz et al. designed the CRISPR-Cas9 platform to target 

introns next to the exon 3 and 4 of the Hpd gene. Using the mouse model, they successfully 

converted the (Fah -/- ; Hpd +/+) hepatocytes to the (Fah -/- ; Hpd -/-) hepatocytes by the 

hydrodynamic injection of the pX330 vector into the tail vein (Pankowicz et al. 2016).  

It is necessary to say that both the above mentioned strategies, haemophilia B as 

well as tyrosinemia I, use vector hydrodynamic injection into the tail vein. Unfortunately, 

this approach is not considered to be clinically practicable on humans (Guan et al. 2016).  



19 
 

 

 

 

 

 

 

 

 

Fig. 7. Metabolic pathway reprogramming, the 

therapeutic conversion of Hereditary tyrosinemia 

type I HT-I to Hereditary tyrosinemia type III HT-

III by the Hpd gene deletion. Adapted from 

(Pankowicz et al. 2016).
 

 

2.7 Sickle Cell Disease and β-Thalassemia 

The treatment of genetic disorders, such as sickle cell disease and β-thalassemia, 

uses an attractive approach for the correction of β-globin, utilising the occurrence of 

haemoglobin switching. (M. D. Hoban et al. 2015; Megan D Hoban et al. 2016; Dever et 

al. 2016) (NCT03728322). The transcriptional factor BCL11A silences the γ-globin, the 

fetal globin gene, during development, and regulates fetal haemoglobin (HbF) switching 

(Sankaran et al. 2008).  Approaches focused on BCL11A gene disruption were developed, 

because it was discovered, that adult individuals with elevated HbF levels have milder 

symptoms of β-haemoglobinopathies (Uda et al. 2008). Bjurström et al. discuss the 

utilization of all three PN platforms for BCL11A gene disruption in human primary CD34+ 

cells as well as in immune-deficient mice (Bjurström et al. 2016).  

Restoration of the functional erythrocytes, which is mediated by the reactivation of 

the γ-globin gene through NHEJ pathway, is a much simpler procedure than the HDR-

mediated correction of the β-globin gene. For this reason the majority of ongoing clinical 

trials evaluate the safety and efficacy of the autologous CD34+ human stem and progenitor 

cells (HSPCs) with PN-mediated BCL11A gene disruption. All of them are already in 

phase 2 of a clinical study (NCT03655678, NCT03745287, NCT03432364 and 

NCT03653247). 

 

All mentioned clinical studies are available at https://clinicaltrials.gov (‘Home - 

ClinicalTrials.Gov’ n.d.). 

 

 

 

https://clinicaltrials.gov/
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3. Question of Ethics 

I have mentioned some strategies that use programmable nucleases for the treatment of 

hereditary disorders. All of which are focused on editing genetic information in somatic 

cells which is not able to be passed on from individuals to their offspring. The stated 

strategies intend to treat patients with life threatening symptomatology. Even this very 

straightforward scenario raises serious worries about unintended consequences. There are 

still limits to our knowledge of gene-environment interactions and the disease/treatment 

pathways that can differ in each patient (Baltimore et al. 2015).  

Numerous discussions have been raised since germ-line modification was 

facilitated by PN platforms. A controversial question for those involved in these 

discussions is, whether or not gene editing of human embryos for therapeutic reasons 

should be considered or categorically ruled out (Bosley et al. 2015). Ormondo et al. divides 

the ethical concerns of germ-line genome editing into two categories, those arising from its 

potential failure and those arising from its success (Ormond et al. 2017). Often repeated 

concerns are for example: the fear of possibility altering essential characteristics, 

insufficient specificity of the PNs, the permanency and heredity of the targeted changes, 

the lack of knowledge about the consequences of such alterations, the inability to obtain 

informed consent of yet unborn patients or the fate of the children being produced by such 

technology. Moreover, nobody can decide if it is appropriate to exchange disease-causing 

genetic mutation to a sequence more typical among “healthy” people. Though there are 

some exceptions, most of the prominent scientists claim that human germ-line modification 

should only be undertaken for prevention, diagnostic or therapeutic purposes 

(Chandrasegaran and Carroll 2016; Baltimore et al. 2015; Bosley et al. 2015; Ormond et 

al. 2017). The summary of recommendations and attitudes of major scientific institutions 

related to human germ-line gene editing is seen in (tab. 3.).  

An article published in 2015, by a group of Chinese scientists, has introduced the 

use of CRISPR-Cas9 in human tri-pronuclear zygotes and has provoked international 

outcry. The paper, initially submitted to journals like Nature and Science, was eventually 

rejected, because of the involved ethical considerations (Krishan, Kanchan, and Singh 

2016; Liang et al. 2015).  

Equally, the very recent Chinese born twins, who have secretly had the CCR5 gene 

disruption edited by the CRISPR-Cas9 tool, have provoked shock and outrage among 

scientists around the world (‘Statement on Claim of First Gene-Edited Babies by Chinese 
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Researcher’ 2018; ‘Statement from the Organizing Committee on Reported Human 

Embryo Genome Editing’ n.d.).  

 

 

Tab. 3. The summary of recommendations and attitudes of major scientific institutions related to a human 

germline gene editing. NAS - US National Academy of Sciences; NAM - US National Academy of Medicine; 

CAS - Chinese Academy of Sciences; ASGCT - American Society for Gene and Cell Therapy; JSGT - Japan 

Society of Gene Therapy; ISSCR - International Society for Stem Cell Research; EGE - European Group on 

Ethics in Science and New Technologies; ACMG - American College of Medical Genetics; NIH - National 

Institutes of Health; HFEA - UK Human Fertilization and Embryology Authority. Adapted from (Ormond et 

al. 2017). 
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Summary and Prospects for the Future 

Programmable nucleases are a very useful tool that have fuelled the genome engineering 

revolution further by introducing the possibility of targeted editing. In my thesis, I have 

focused on strategies that are used for the treatment of life-threatening genetic disorders of 

various origins, having discussed examples of the most widely used approaches.  

One of them being, the disruption of the gene that enables the disease to develop, 

such as the CCR5 gene, which mediates the HIV entry into the T-cells. The same principle 

is used for treating haemoglobinopathies, where the disruption of the BCL11A gene leads 

to the restoration of fetal haemoglobin, which replaces the function of non-functional adult 

haemoglobin. 

Another important example is the disruption of the pathogen genome, which is 

suitable for infectious diseases, such as HPV or HIV infection.  

The modification of polyclonal T-cells is useful for treating cancer, where the 

mutations can be highly variable. Enabled by the disruption of the endogenous high-avidity 

T-cell receptor (TCR) α and β chain genes and addition of the exogenous TCR α and β 

chain genes that are isolated from the rare tumour-specific lymphocytes.  

There are other modifications that are able to compensate the function of the 

affected protein. In case of treating Duchenne muscular dystrophy, the non-functional 

dystrophin protein is partially knocked out for the purpose of creating truncated, but 

partially functional, dystrophin protein typical for Becker muscular dystrophy. 

Tyrosinemia is treated with the targeted conversion of the (Fah -/- ; Hpd +/+) hepatocytes 

to the (Fah -/- ; Hpd -/-) hepatocytes, which doesn’t cure the non-functional tyrosine 

catabolic pathway, but it prevents the toxic product accumulation. 

Lastely, the most challenging of the strategies mentioned, which is used in the rest 

of the cases, where we cannot use other easier strategies, is the correction of a mutated 

gene. This strategy is demanding because of the necessity of donore DNA presence and 

low efficiency of involved HR. It is used for example for haemophilia B, where we replace 

the majority of the mutated gene.  

Up until now, all the above discussed approaches are still in testing and 

improvement phases. The treating strategies that are based on gene disruption and achieved 

by NHEJ are much closer to common clinical treatment. I dare say that, for example, the 

disruption of the CCR5 gene in T-cells of HIV positive individuals could soon be a 
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commonly available treatment strategy. On the contrary, gene correction is still very 

challenging and primarily its safety needs to be improved. 

In regards to the individual characterisation of each PN platform, one has to decide 

which of the PN tools is suitable for the specific use. It depends on their properties, such 

as size, specificity, ease of production, cost etc. So far, ZFNs and TALENs are closer to 

clinical application then the CRISPR-Cas9 system, due to the length of time they have been 

in the testing process. On the other hand, the majority of scientists are using the CRISPR-

Cas9 system for the development of new therapeutic strategies. It is the system of choice 

because of its versatility, simplicity and availability even to small laboratories. 

In order to implement the use of programmable nucleases into clinics is critical to 

further understand the physiology of the cells and tissues. In my opinion, we still don’t 

know enough about all the cellular pathways and potential consequences. As with any other 

treatment strategy, the risks can be tolerated only when the reward of success is higher than 

the loss caused by the disease. Unfortunately, in many cases it is not yet possible to make 

this decision, firstly we have to improve the assessment methods.  

Avoidance of potential off-target activity, which is still quite frequent and is the 

obstacle to introducing these technologies in clinics, is another field that should be 

upgraded. Some of the developed strategies for off-target activity inhibition are mentioned 

in tab. 1. 

Similarly, the delivery systems of PN-tools need to be further evaluated and 

optimized because the delivery into human tissues still causes problems. For this reason, 

many studies attempt to create similar conditions, such as human murine models or 

monkeys. The testing of such delivery systems, as well as off-target activity, can be newly 

done on human organoids, the self-organized 3D tissue cultures that are derived from 

HSCs. The use of organoids was extensively reviewed by Clevers et al. (Clevers 2016). 

This thesis does not discuss other possible therapeutic activities of programmable 

tools, such as RNA base editing technology using the type VI CRISPR-associated RNA-

guided RNase Cas13. This tool controls cellular processes at the transcript level, which 

represents safer strategy then the DSB induction by PNs (David B. T. Cox et al. 2017). 

Similar programmable tools have potential for further research and therapy. 

Utilization of PNs in the treatment of human patients still raises numerous 

discussions and social concerns. These discussions have intesified since germ-line 

modification was facilitated by PN platforms. The arisal of strict rules is necessary for the 

clinical utilization of PNs. 
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It is a matter of time before the use of programmable nucleases, especially the 

CRISPR-Cas system, is implemented in daily clinical use or in personalized and precision 

medicine. It will depend on our ability to eliminate the above mentioned obstacles and 

improve the safety assays. 
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Abbreviations 

 

AAV - adeno-associated virus 

AIDS - acquired immune deficiency 

syndrome 

BMD - Becker muscular dystrophy 

bp - base pair 

CAR - chimeric antigen receptor 

Cas - CRISPR-associated protein 

CCR2 - C-C chemokine receptor type 2 

CCR5 - C-C chemokine receptor type 5 

CRISPR - clustered regularly 

interspaced short palindromic repeats 

crRNA - CRISPR RNA 

CXCR4 - C-X-C chemokine receptor 

type 4 

DMD - Duchenne muscular dystrophy  

DSB - double-strand break 

EGFR - epidermal growth factor 

receptor 

F.IX - blood coagulation factor IX 

HAART - highly active antiretroviral 

therapy 

HbF - fetal haemoglobin 

HIV - human immunodeficiency virus 

HDR - homology-directed repair 

HR - homologous recombination 

HR-HPV - high-risk human 

papillomavirus 

 

 

HSC - human stem cell 

HSPC - human stem and progenitor cell 

indel - insertion/deletion mutation 

KO - knockout 

LTR - long terminal repeat 

MCL-1 - myeloid cell leukaemia 1 

MDR1 - multidrug resistance gene 1 

NHEJ - non-homologous end joining 

PAM - protospacer adjacent motif 

PD-1 - programmed death protein 1 

PN - programmable nuclease 

RNAi - RNA interference 

RVD - repeat variable diresidue 

sgRNA - single-guide RNA 

TALE - transcription activator-like 

effector 

TALEN - transcription activator-like 

effector nuclease 

TCR - T-cell receptor 

tracrRNA - trans-activating crRNA 

tru-sgRNA - truncated sgRNA 

U3 - unique sequence at 3’ end of the 

LTR region 

wt - wild type 

ZF - zinc finger 

ZFN - zinc-finger nuclease
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