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Abstract 

 
 Order Diplomonadida includes parasitic and free-living species that adapted to the 

oxygen-poor environment. They possess reduced form of mitochondria (hydrogenosome or 

mitosome). These organelles lack Krebs cycle and membrane electron-transport chain. ATP 

synthesis by oxidative phosphorylation and other mitochondrial metabolic pathways are 

modified or entirely absent. Main difference between hydrogenosome and mitosome is 

synthesis of hydrogen using the enzyme hydrogenase and ATP synthesis by substrate level 

phosphorylation in hydrogenosomes that are absent in mitosomes. The most studied 

diplomonads are a human pathogen Giardia intestinalis possessing the mitosomes and a salmon 

parasite Spironucleus salmonicida with hydrogenosomes. This thesis was focused on 

determining the type of mitochondrial organelles in angelfish parasite Spironucleus vortens and 

free living Hexamita sp. It has not been described whether they possess the hydrogenosomes or 

the mitosomes so far.  

 In both protists transmission electron microscopy revealed presence of double 

membrane vesicles, possibly their mitochondrial organelles. Homologous S. vortens anti-

hydrogenase and anti-HydE antibodies were produced and tested in order to determine their 

cellular localization. Using the western blot analysis and immunofluorescence microscopy, 

hydrogenase was detected in the cytosol whereas HydE in mitochondrial organelles of S. 

vortens. Moreover, expression of HydE, HydG and IscU recombinant proteins was performed. 

All three proteins were detected in the organellar fraction. These results suggest that S. vortens 

possesses mitochondrial organelles with characteristics corresponding to the mitosomes. 

 Hexamita sp. genomic DNA and total RNA was sequenced and the genome was partially 

assembled. Sequences of proteins involved in ATP synthesis, production of hydrogen, 

conversion of serine into glycine, H-cluster synthesis and Fe-S cluster synthesis were predicted 

to reside in the mitochondrial organelle of Hexamita. Based on this genome, mitochondrial 

organelle of Hexamita sp. was described as the hydrogenosome. 

 

 

 

 

 

 



Abstrakt 

 
 Řád Diplomonadida zahrnuje parazitické i volně žijící prvoky, kteří se přizpůsobili 

prostředí s nedostatkem kyslíku. Jejich mitochondriální organely (hydrogenosom nebo 

mitosom) jsou redukované, neobsahují Krebsův cyklus nebo elektron-transportní řetězec a 

některé metabolické dráhy (jako například tvorba ATP pomocí oxidativní fosforylace) jsou zde 

modifikované nebo úplně chybí. Hlavními rozdíly mezi těmito dvěma organelami je 

hydrogenosomální produkce vodíku díky enzymu zvaném hydrogenáza a absence tvorby ATP 

substrátovou fosforylací v mitosomech. Nejvíce prostudované jsou mitosomy lidského 

patogena Giardia intestinalis a hydrogenosomy parazita lososů Spironucleus salmonicida. Tato 

práce byla zaměřena na střevního parazita skalár Spironucleus vortens a volně žijícího prvoka 

Hexamita sp. s cílem identifikovat typ jejich mitochondriálních organel, u kterých zatím není 

jasné, jestli mají spíše metabolismus hydrogenosomu či mitosomu. 

 Oba prvoci byli pozorováni transmisní elektronovou mikroskopií, pomocí které byly 

detekovány dvoumembránové váčky, patrně jejich mitochondriální organely. Dále byla 

připravena homologní protilátka proti hydrogenáze a hydrogenázové maturáze HydE u S. 

vortens. Hydrogenáza byla pomocí western blotu a imunofluorescenční mikroskopie 

detekována v cytosolu tohoto prvoka. Na druhou stranu HydE byl lokalizován v 

mitochondriálních organelách. Provedena byla také overexprese tří proteinů, HydE, HydG a 

IscU v buňkách S. vortens. Všechny tři proteiny byly detekovány v organelách. Tyto výsledky 

naznačují, že S. vortens pravděpodobně obsahuje mitosomy. 

 U prvoka Hexamita sp. byla sekvencována DNA a celková RNA, následně byla 

sestavena částečná sekvence genomu. V genomu byly nalezeny sekvence mitochondriálních 

proteinů účastnících se tvorby ATP, syntézy vodíku, H-clusteru a Fe-S center a proteinu 

katalyzujícího přeměnu serinu na glycin. Na základě této analýzy byla mitochondriální organela 

Hexamita sp. predikována jako hydrogenosom. 
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1. Introduction 

 

 Mitochondrion is one of the key organelles present in virtually all eukaryotic cells that 

has a vital role in many biochemical processes. Main function of mitochondrion is aerobic 

respiration that leads to adenosine triphosphate (ATP) production. This molecule is used as the 

source of energy for variety of metabolic pathways occurring inside the cell. However, there 

are other crucial mitochondrial processes, such as iron-sulfur (Fe-S) cluster biogenesis, 

biosynthesis of heme, lipids and steroids, apoptosis, amino acid and nucleotide metabolism, 

protein synthesis and β-oxidation of fatty acids. 

 

 Several species adapted to oxygen-limited environment that led to reductive evolution 

of their mitochondria. These mitochondrion-derived organelles have lost to various extend 

typical mitochondrial functions, such as respiratory chain, Krebs cycle or fatty acid metabolism. 

The two most reduced mitochondria called hydrogenosome and mitosome have even lost its 

own genome, furthermore, mitosome does not have any ATP production pathways. 

Diplomonadida is one of the groups adapted to anaerobiosis. Apart from having modified 

mitochondria, diplomonads possess double karyomastigont (karyomastigont = nucleus, 4 basal 

bodies of flagella and associated microtubules) and lack typical Golgi and peroxisomes. The 

most studied organisms from this group are Giardia intestinalis (human pathogen causing 

diarrhea) possessing mitosomes and Spironucleus salmonicida (salmon parasite) having the 

hydrogenosomes. However, much less data is available on other diplomonads. This thesis is 

focused mainly on fish parasite Spironucleus vortens and free-living protist Hexamita sp. As 

other diplomonads, these species possess unusual mitochondria, however very limited 

experimental data are available to define whether these organelles represent hydrogenosomes 

or mitosomes (Sterud and Poynton, 2002; Millet et al., 2013).  
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2. Review of literature 

 

2.1. Types of mitochondria 
 

 Process of transformation of prokaryotic to eukaryotic cell called eukaryogenesis 

proceeded around 1,5 - 2 mld. years ago (Knoll et al., 2006). Several different hypotheses about 

the specific timing of mitochondrial origin were introduced. According to the ‘mitochondria-

early’ hypotheses, origin of mitochondria could have triggered the whole eukaryogenesis or at 

least was one of the first steps in the prokaryotic cell transformation (Martin and Müller, 1998; 

Martin et al., 2015). On the other hand, ‘mitochondria-late’ hypotheses suggest, that some 

features of the eukaryotic cell had already evolved before acquisition of mitochondria 

(Cavalier-Smith, 1989; Martijn and Ettema, 2013; López-García et al., 2017). 

Mitochondria originated via the process of endosymbiosis (Sagan, 1967; Schwartz and 

Dayhoff, 1978; Yang et al., 1985). The most recent analyses proposed that the host cell lineage 

was a close relative to a newly discovered group of Archaea, called Asgards (Spang et al., 2015; 

Zaremba-Niedzwiedzka et al., 2017). On the other hand, mitochondrial endosymbiont was 

related to the α-proteobacteria, however which specific lineage of these bacteria was the closest 

relative of mitochondria is still matter of discussion (Rodríguez-Ezpeleta and Embley, 2012; 

Wang and Wu, 2015; Martijn et al., 2018). After the engulfment, the autonomous endosymbiont 

had to undergo many specific changes in order to transform into the organelle such as genome 

reduction and endosymbiotic gene transfer to the nucleus, incorporation of the protein transport 

machinery into the outer and inner membrane and exchange and coordination of biochemical 

pathways between symbiont and host (Roger et al., 2017). Due to these transformation 

processes, most of the proteins targeted to contemporary mitochondria are encoded in the cell’s 

nucleus and they are transported into the organelle post-translationally.  

 Several eukaryotic lineages live in an oxygen-poor environment and had to adapt their 

metabolism to the lack of oxygen, including the reduction of the mitochondrial biochemical 

pathways. Based of biochemical pathways and presence of the genome, mitochondria were 

classified into 5 different groups: aerobic mitochondria, anaerobic mitochondria, H2-producing 

mitochondria, hydrogenosomes and mitosomes (Muller et al., 2012). However, the recently 

studied mitochondria in free-living protists like Dysnectes brevis don’t fit into any of these 

categories and it seems that the reduced mitochondrial organelles exist as a functional 
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continuum from the aerobic mitochondrion to the mitosome (Leger et al., 2017). In the case of 

Monocercomonoides sp., mitochondria have been lost completely (Karnkowska et al., 2016). 

 

2.1.1. Aerobic mitochondrion 

 

 Vast majority of contemporary eukaryotes possess aerobic mitochondria. It is generally 

accepted that aerobic mitochondria derived from α-proteobacterial symbiont during the 

evolution of the eukaryotic cell (Sagan, 1967; Spang et al., 2015; Zaremba-Niedzwiedzka et 

al., 2017). All the other types of mitochondria are most likely derived from this aerobic type 

although anaerobic character of original mitochondria is still discussed (Martin and Müller, 

1998; Martin et al., 2015). 

The organelle is surrounded by two membranes (outer and inner) dividing 

mitochondrion into two parts, intermembrane space and matrix. Inner membrane forms specific 

folds called cristae, which enlarge the membrane surface to accommodate the respiratory chain. 

The mitochondrial membranes contain translocases TOM (translocase of the outer membrane) 

and TIM (translocase of the inner membrane), which are used for the import of mitochondrial 

pre-proteins from cytosol into organellar membrane, intermembrane space or matrix. Matrix 

mitochondrial pre-proteins usually have the N-terminal mitochondrial targeting sequences 

which enables the transport to the organelle (Neupert and Herrmann, 2007).  Inside 

mitochondria, the targeting sequence is cleaved by mitochondrial processing peptidase (Yaffe 

et al., 1985). 

 Several biochemical pathways responsible for energy fixation in the form of ATP are 

present inside the organelle. ATP is then exported to the other compartments of the eukaryotic 

cell. First step of the eukaryotic cell energy metabolism occurs in the cytosol, where glycolysis 

takes place. In this process, glucose is catabolized into pyruvate, the main mitochondrial 

substrate. Then, pyruvate is transported into mitochondrial matrix via the pyruvate transporter 

(Herzig et al., 2012).  

In matrix, pyruvate is oxidatively decarboxylated via pyruvate dehydrogenase (PDH) 

and forms acetyl-CoA, CO2 and electrons. Acetyl-CoA then enters the citric acid cycle (Krebs 

cycle). This set of chemical reactions is responsible for decarboxylation and oxidation of citric 

acid while water, carbon dioxide and electrons are the end products of this cycle. The electrons 
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are crucial for the function of the electron transport chain (respiratory chain). NADH and 

FADH2 coenzymes are used for the transport of electrons from the citric acid cycle to this chain. 

Electron transport chain is formed by 4 protein complexes, NADH: ubiquinone oxidoreductase 

(Complex I), succinate dehydrogenase (Complex II), ubiquinol-cytochrome c oxidoreductase 

(Complex III), cytochrome c oxidase (Complex IV) and is localized on the inner mitochondrial 

membrane. 

The key molecule in this complicated process is oxygen. Oxygen is absorbed by the 

eukaryotic cell, transported into mitochondrial matrix and used as the final electron acceptor. 

Ubiquinone and cytochrome c in the respiratory chain are responsible for the transport 

of electrons from reduced coenzymes to oxygen with formation of H2O as byproduct. Protein 

complexes I, III and IV are transporting protons from matrix into intermembrane space which 

generates proton gradient. Finally, this gradient is used by ATP synthase (Complex V) for the 

ATP production by the oxidative phosphorylation. 

Another source of energy is β-oxidation of fatty acids, which is one of the typical 

mitochondrial biochemical pathways. In order to cross both mitochondrial membranes, fatty 

acids have to bind carnitine in the cytosol. Carnitine serves as a carrier and is able to carry the 

fatty acid through the carnitine transporter into the matrix, where β-oxidation takes place. For 

every β-oxidation, two carbons are cleaved from the fatty acid and one acetyl-CoA is formed 

together with NADH and FADH2 coenzymes. Acetyl-CoA enters the Krebs cycle and 

coenzymes are used for the electron transport to the respiratory chain complexes. 

Apart from energy fixation, aerobic mitochondria are responsible for various 

biosynthetic pathways such as steroid, heme and biotin synthesis (Ajioka et al., 2006; Miller, 

1995), metabolism of lipids and amino acids or formation of Fe-S clusters (Lill et al., 2005). 
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Figure 1. Overview of the energy metabolism in the aerobic mitochondria (Alberts et al., 2014). 

 

2.1.2. Anaerobic mitochondrion 

 

 Organisms with anaerobic type of mitochondria are able to adapt its metabolism 

according to the amount of oxygen present in the environment. In the oxygen-rich surroundings, 

mitochondria work as the typical aerobic one. If the oxygen depletion occurs, some of the 

mitochondrial functions are changed. Fumarate, succinate and nitrate are used as the final 

electron acceptors instead of oxygen (Tielens, 1994; Kobayashi et al., 1996; Tielens et al., 

2002). This type of mitochondrion does not use ubiquinone as the electron transporter, but 

instead possesses rhodoquinone, which transports the electrons from complex I to the fumarate 

reductase (the enzyme responsible for conversion of fumarate into one of the end products, 

succinate) (Takamiya et al., 1999). The other two metabolic end products in anaerobic 

mitochondria are acetate and propionate (Komuniecki et al., 1989; Muller et al., 2012). 
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Alternatively, pyruvate can be metabolized by pyruvate:NADP+ oxidoreductase (PNO) 

or pyruvate formate lyase (PFL) (Inui et al., 1987; Mus et al., 2007). We can typicaly find 

anaerobic mitochondria in parasitic helminths (like Ascaris lumbricoides or Fasciola hepatica) 

and sea annelids (Tielens, 1994; Muller et al., 2012; Parvatham and Veerakumari, 2013). 

Surprisingly, anaerobic mitochondria were also discovered in two aerobic protists, Euglena 

gracilis and Chlamydomonas reinhardtii (Hoffmeister et al., 2004; Cardol, 2005). These 

organisms are able to switch their mitochondrial metabolism from aerobic to anaerobic one 

when they temporarily encounter low-oxygen environments. 

 

2.1.3. H2-producing mitochondrion 

 

 This organelle is basically a hybrid between anaerobic mitochondria and 

hydrogenosome. The electron transport chain is partially present (Complex I and II) and is used 

for generating the proton gradient. In case of Brevimastigomonas, several subunits of Complex 

V has also been found (Gawryluk et al., 2016). Furthermore, the organelle possess hydrogenase, 

anaerobic enzyme, which uses protons as a terminal electron acceptor and produces molecular 

hydrogen (Boxma et al., 2005). The organellar genome is still present. Pyruvate can be 

metabolized by PDH complex, PNO, PFL or pyruvate:ferredoxin oxidoreductase (PFO) 

(Lantsman et al., 2008; Muller et al., 2012; Youssef et al., 2013; Stairs et al., 2014). In H2-

producing mitochondria (and hydrogenosomes as well), ATP is generated by a process called 

substrate level phosphorylation. An acetate:succinate CoA-transferase (ASCT) and succinyl-

CoA synthetase (SCS) enzymes are involved in this reaction (Stechmann et al., 2008) (Figure 

2A). However, ATP can be also generated by acetyl-CoA synthetase (ACS) through conversion 

of acetyl-CoA to acetate (Figure 2B). This metabolic process occurs mainly in the cytosol (via 

ACS1), in case of Cantina marsupialis has been also localised into the mitochondrial organelle  

(Noguchi et al., 2015). 

Organisms with this type of organelle are for example ciliate Nyctotherus ovalis, protist 

from the group Stramenopila Blastocystis hominis (Akhmanova et al., 1998; Stechmann et al., 

2008), Pygsuia biforma (Maguire and Richards, 2014; Stairs et al., 2014), Brevimastigomonas 

moltovehiculus (Gawryluk et al., 2016), Orpinomyces sp. strain C1A (Youssef et al., 2013), 

Acanthamoeba castellanii (Gawryluk et al., 2014) or C. marsupialis (Noguchi et al., 2015). 
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Figure 2. Two types of ATP synthesis in H2-producing mitochondria and hydrogenosomes A. ATP synthesis via substrate-
level phosphorylation process. B. Generating of ATP directly via conversion of acetyl-CoA into acetate. [1] = 

acetate:succinate CoA-transferase (ASCT) [2] = succinyl-CoA synthetase (SCS) [3] = acetyl-CoA synthetase (ACS) (Muller et 
al., 2012). 

 

2.1.4. Hydrogenosome 

 

Hydrogenosome was discovered in 1973 in a cattle parasite Tritrichomonas foetus 

(Lindmark and Müller, 1973). The organelle was named after the metabolic end product, 

hydrogen, which is synthesized by the enzyme hydrogenase. PFO oxidatively decarboxylates 

pyruvate into acetyl-CoA, carbon dioxide and reduced ferredoxin. [FeFe] hydrogenase utilizes 

electrons and transfers them from reduced ferredoxin to redox partners of the enzyme (protons), 

forming the hydrogen molecule (Vignais et al., 2001).  ATP is in most cases synthesized by 

substrate-level phosphorylation using ASCT and SCS (Cerkasov et al., 1978; Muller, 1993). In 

Spironucleus salmonicida, ACS2 enzyme is used for the ATP fixation in hydrogenosomes 

(Jerlström-Hultqvist et al., 2013).  

Hydrogenosomes do not possess any complexes of electron transport chain or citric acid 

cycle and the genome is entirely absent (Muller, 1993; Clemens and Johnson, 2000; Hrdy et al., 

2004). However two soluble proteins of complex I (NuoE and NuoF) were discovered in 

hydrogenosome of T. vaginalis, they are responsible for the electron transport from NADH to 
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[2Fe2S] ferredoxin (Hrdy et al., 2004). Inner membrane does not form cristae. However, small 

intermembrane calcium containing vesicles can be observed in hydrogenosomes of T. vaginalis 

and T. foetus (Benchimol, 2009).  

Hydrogenosomes can be found in other anaerobic protists like Mastigamoeba 

balamuthii (Gill et al., 2007), Sawyeria marylandensis (Barberà et al., 2010), Piromyces sp., 

Neocallimastix frontalis (Akhmanova et al., 1999) or in one of the diplomonads, Spironucleus 

salmonicida (Jerlström-Hultqvist et al., 2013). Specific type of the hydrogenosome with no 

ATP synthesis has been predicted in the excavate flagellate Dysnectes brevis (Leger et al., 

2017). This organellar condition could be the direct evolutionary transition between 

hydrogenosome and mitosome. 

 

2.1.5. Mitosome 

 

 The mitosome (syn. crypton) is the most reduced mitochondrion-related organelle and 

was described for the first time in 1999 in pathogenic amoeba, Entamoeba histolytica.(Mai et 

al., 1999; Tovar et al., 1999). 

 Mitosomes do not synthesize ATP, the energy is generated exclusively in the cytosol. 

Hydrogenase or PFO (if present) are localized to the cytosol (Emelyanov and Goldberg, 2011). 

Organellar DNA is absent, therefore (just like in the hydrogenosome) all proteins are imported 

into the organelle from the cytosol.  

The only known function of the mitosome is Fe-S cluster assembly. One exception is E. 

histolytica, where formation of the Fe-S clusters takes place in the cytosol (Dolezal et al., 2010; 

Nyvltova et al., 2013). In this case, the organelle has another specific function, the sulfate 

activation pathway (Mi-ichi et al., 2009). Sulfate has the positive effect on the cell growth and 

proliferation. Moreover, sulfate in the form of 3-phosphoadenosine-5-phosphosulfate is crucial 

for the production of sulfolipids and for the incorporation of sulfate into cysteine or methionine 

molecules (Mi-ichi et al., 2011).  

Apart from E. histolytica, there are other protists possessing mitosome, for example 

apicomplexan Cryptosporidium parvum (LaGier, 2003), rhizarian Mikrocytos mackini (Burki 

et al., 2013), microsporidia species Trachypleistophora hominis, Encephalitozoon cuniculii and 
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Amphiamblys sp. (Katinka et al., 2001; Williams et al., 2002; Mikhailov et al., 2016) and 

diplomonad Giardia intestinalis (Tovar et al., 2003). 

 

2.2. Fe-S cluster assembly 

 

 Iron-sulfur (Fe-S) clusters are cofactors necessary for the function of various proteins 

involved in regulation of gene expression, electron transfer and oxygen sensing (Kiley and 

Beinert, 1998). Many of these proteins can be found in aerobic mitochondria (NADH: 

ubiquinone oxidoreductase, succinate dehydrogenase or ubiquinol-cytochrome c 

oxidoreductase) as well as in their anaerobic forms like hydrogenosomes (hydrogenase, PFO, 

ferredoxin or NADH dehydrogenase). Characteristics of iron allow the broad redox potential of 

the clusters, ranging from -500mV up to +500mV (Capozzi et al., 1998). Iron atom is present 

in the form of Fe2+ or Fe3+ and it is coordinated by 4 S2- atoms. There are many various types 

of Fe-S clusters, the most common are rhombic [2Fe2S] type and cubane [4Fe4S] type 

(assembled from two [2Fe2S] units) (Beinert, 2000; Johnson et al., 2005). Reduced Fe and S 

are rather toxic for the cells, consequently they are not present within cytosol in free soluble 

form (Fontecave et al., 2005). Therefore, specific machineries are necessary for their transport 

and assembly into Fe-S clusters inside the cell. 

 There are four different types of Fe-S cluster machinery: Nitrogen fixation pathway 

(NIF), Sulfur mobilization pathway (SUF), Iron-sulfur cluster assembly pathway (ISC) and 

Cytosolic Iron-sulfur cluster assembly pathway (CIA). First three originated from bacteria and 

the eukaryotes either inherited them from the bacterial endosymbiont (SUF, ISC) or were 

obtained by lateral gene transfer (SUF, NIF). CIA pathway can be found exclusively in 

eukaryotes within the cytosol and it is necessary for the incorporation of the Fe-S clusters into 

cytosolic and nuclear proteins. (Lill and Mühlenhoff, 2005). 

ISC assembly pathway is the most important system of the Fe-S cluster production and 

maturation in bacteria and eukaryotes as well. Almost every eukaryotic cell possesses ISC 

pathway in its mitochondrial organelles that was inherited from α-proteobacteria (Lill and 

Mühlenhoff, 2005; Tachezy et al., 2001). ISC system is also responsible for maintaining the 

homeostasis of iron in the cell (Kispal et al., 1997).  
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 We can divide ISC pathway in eukaryotes into early ISC machinery (with homologous 

proteins to prokaryotes, forming the [2Fe2S] clusters) and late ISC machinery responsible for 

the [4Fe4S] cluster assembly, which is not present in bacteria (Braymer and Lill, 2017). The 

pathway components are encoded in the nucleus and must be transported into the mitochondria.  

 First step of Fe-S cluster assembly requires the complex of proteins IscS-Isd11-Acp1. 

Cysteine desulfurase IscS (called Nfs1 in yeast) catalyzes the conversion of L-cysteine (source 

of sulfur for the cluster assembly) into alanine and sulfur in the form of persulfide (-SSH). 

Persulfide is bound to a catalytic cysteine residue of IscS (Zheng et al., 1993, 1994; Kato et al., 

2002). Isd11 and Acp1 proteins are necessary for the stabilization of the Nfs1 and can be found 

only in the eukaryotes (Adam et al., 2006; Wiedemann et al., 2006; Van Vranken et al., 2016; 

Braymer and Lill, 2017).  

IscU (Isu1 and Isu2 in yeast) is the main scaffold domain, which requires sulfur from 

the IscS-Isd11-Acp1 complex. S0 atom is transferred to IscU and then reduced to S-2. Ferredoxin 

(Yah1) is providing the electrons for this reaction (Nakamura et al., 1999). Mitochondrial 

membrane channels Mrs3 and Mrs4 are necessary for the iron (Fe2+) import into the organelle 

(Foury and Roganti, 2002). However, it is still not clear which atom is bound first to the cluster 

formation site, whether iron or sulfur. Frataxin is another important protein in the pathway but 

its specific function is still unclear (Layer et al., 2006). It has been suggested that it might be a 

donor of iron for the Fe-S clusters (Pastore et al., 2007), it could help cysteine desulfurase with 

the L-cysteine conversion (Pandey et al., 2013), or it could transport sulfur from IscS to the 

IscU scaffold (Parent et al., 2015). IscU and IscS interact with each other directly and de novo 

synthesis of [2Fe2S] clusters is enabled after the conformational change (Urbina et al., 2001).  

After the formation of [2Fe2S] cluster on IscU, the cluster is transported to the 

apoprotein (protein without Fe-S cluster). Fe-S cluster is released from the IscU scaffold by 

Ssq1 chaperone (Hsp70 type of chaperone). ATP is required for this step. Co-chaperone Jac1 

is catalyzing ATPase activity of Ssq1 and Mge1 protein serves as the exchange factor, it 

exchanges ADP for ATP on Ssq1. Monothiol glutaredoxin 5 (Grx5) then transports released 

Fe-S center into the mitochondrial apoproteins (Uzarska et al., 2013). 

IscU can also form [4Fe4S] clusters together with the complex of late ISC machinery 

proteins, Isa1-Isa2-Iba57 (Gelling et al., 2008; Mühlenhoff et al., 2011; Sheftel et al., 2012; 

Adrover et al., 2015; Braymer and Lill, 2017). Grx5 protein transports the cluster on this protein 

complex and [4Fe4S]2+ is formed from two [2Fe2S] clusters (Kim et al., 2010; Brancaccio et 



11 
 

al., 2014). Carriers like Nfu1, Ind1 or Bol proteins facilitate transport of the complete [4Fe4S] 

clusters into specific apoproteins (Bych et al., 2008; Py et al., 2012; Melber et al., 2016). 

Atm1 ABC half transporter resides in the inner mitochondrial membrane and is 

responsible for export of possibly activated sulfur to the cytosolic CIA pathway (Leighton and 

Schatz, 1995; Kispal et al., 1999; Srinivasan et al., 2014). For a graphical overview of ISC 

pathway, see Figure 3. 

 

Figure 3. Overview of the ISC pathway in the mitochondria (Peña-Diaz and Lukeš, 2018). 

 

 NIF pathway is used by bacteria for synthesis of complex clusters for nitrogen-fixation 

protein – nitrogenase (Dean et al., 1993). In eukaryotes, this pathway have been found only in 

Archamoebae E. histolytica and its free-living relative M. balamuthii (Ali et al., 2004; Gill et 

al., 2007). In the amoebae, proteins of the NIF pathway were most likely acquired from ɛ-

proteobacteria by lateral gene transfer (LGT) and it replaces the ISC pathway. Two NIF 

subunits (NifS and NifU) have dual localization in the cytosol and hydrogenosomes of 

Mastigamoeba, in Entamoeba have been localized only to the cytosol (Dolezal et al., 2010; 

Nyvltova et al., 2013; Nývltová et al., 2015). 

 SUF pathway is used by various bacteria and archaebacteria during iron starvation 

conditions or oxidative stress instead of ISC pathway (Nachin et al., 2001; Fontecave et al., 

2005). In eukaryotes, SUF system is typically localized into plastids evolved from 

cyanobacteria (Takahashi and Tokumoto, 2002). Moreover, in Blastocystis hominis possesses 

fused protein Suf-CB that is situated into cytosol and it might contribute to the Fe-S clusters 
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biosynthesis under the oxidative stress in addition to the ISC and CIA pathway (Tsaousis et al., 

2012). Suf-CB protein has been also observed in mitochondrial organelles of Pygsuia biforma 

(Stairs et al., 2014). Monocercomonoides is the only known eukaryote without mitochondria, 

therefore the Fe-S cluster assembly takes place only in cytosol. This organism also replaced the 

ISC pathway with the SUF machinery (Karnkowska et al., 2016). 

  

2.3. Types of hydrogenase 

 

 The main function of the hydrogenase is to catalyze following chemical reaction: 2H+ + 

2e- ↔ H2. Some hydrogenases are able to form hydrogen, some are more active in the opposite 

direction in order to form protons and electrons, and most of them can catalyze the reaction in 

both directions. Even though this enzyme is more typical for the metabolism of prokaryotes, 

we can find hydrogenase in various unicellular eukaryotic organisms (Vignais and Billoud, 

2007; Tsaousis et al., 2014). 

 Hydrogenases could be classified according to the type of specific electron acceptors 

and donors including cytochromes, NAD, coenzyme F420 or ferredoxins (Vignais and Billoud, 

2007; Yagi and Higuchi, 2013). Nowadays, however, hydrogenases are divided into three 

different groups according to type of metal atoms in their active site. 

 [NiFe] hydrogenases are the most studied and can be found only in prokaryotes. As the 

name suggests, they have a Ni and Fe atom at their active site. The enzyme is a heterodimer 

composed from two subunits. Larger α-subunit (cca 60 kDa) contains the active site of the 

enzyme and the β-subunit is hosting various Fe-S clusters (Higuchi et al., 1997; Garcin et al., 

1999; Vignais and Billoud, 2007; Shomura et al., 2011). Most of the [NiFe] hydrogenases have 

a role in the H2 consumption (Vignais et al., 2001). 

 [Fe]-hydrogenase, also called Hmd (5,10-methenyltetrahydromethanopterin 

hydrogenase), has been found only in several methanogenic archea so far (Vignais and Billoud, 

2007). It is a homodimer (38kDa) with only one atom of Fe in the active site. Surprisingly, this 

enzyme lacks any Fe-S clusters (Pilak et al., 2006). 

 Finally, [FeFe] hydrogenases can be found in anaerobic bacteria and protists. Its 

function is mainly to produce hydrogen (Vignais et al., 2001). These enzymes can form 

monomers, heterodimers, trimers and/or tetradimers. Catalytic subunit contains several Fe-S 
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cluster domains and conserved domain within the active site, called H-cluster. This H-domain 

is formed by two parts: [4Fe-4S] cluster, used for electron transport and Fe-Fe center, which is 

the place for reverse oxidation of the hydrogen. The domain contains 3 conserved sites in the 

protein sequence, CCP, PCxxKxxE and MxCxxGCxxG (Meyer, 2007). For the purposes of this 

thesis, we will focus only on the maturation processes of the [FeFe] hydrogenase.  

 

2.4. [FeFe] hydrogenase maturases 

 

 There are three accessory proteins crucial for the proper H-cluster synthesis. Two of 

them are radical S-adenosylmethionine (SAM) enzymes, specifically HydE and HydG and the 

third one (HydF) belongs to the GTPase family (Posewitz et al., 2004). HydF protein has two 

main functions: It serves as scaffold for the [2Fe-2S] cluster, which is precursor of Fe-Fe center 

and it also transports this center directly into H-cluster. Binding of CO, CN- and dithiolate 

bridging ligand, as well as GTPase hydrolysis are necessary for the proper function of this 

enzyme (Nicolet et al., 2010; E. M. Shepard et al., 2010). HydE is possibly involved in the 

synthesis of dithiolate ligand and binds the ligand to [2Fe-2S] precursor (Nicolet et al., 2008). 

Precursor of the dithiolate ligand is tyrosine. HydG catalyzes conversion of tyrosine to p-cresol 

and dehydroglycine (DHG), which is crucial for the dithiolate ligand formation. In addition to 

that, HydG is also responsible for synthesis of CO and CN- ligands (Driesener et al., 2010; Eric 

M. Shepard et al., 2010). This process is the final step in the assembly of the [FeFe] center and 

after transportation into the active site of the hydrogenase by HydF, the hydrogenase is fully 

maturated for the hydrogen production.  

 

Figure 4. Biosynthesis of the H-cluster (E. M. Shepard et al., 2010).  
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2.5. Mitochondrion-related organelles in Diplomonadida 

group 

 

Organisms from the order Diplomonadida are parasitic protists or free-livnig 

commensals that inhabit oxygen-poor niches. They have a single or mostly double 

karyomastigont (karyomastigont = nucleus, 4 basal bodies and flagella and associated 

microtubules), lack peroxisomes and typical Golgi. This order is divided into three main 

families: Enteromonadidae (polyphyletic taxon that includes protists with a single 

karyomastigont), Hexamitidae and Giardiidae. The typical characteristics of Hexamitidae is 

presence of two cytostomes. The members of this family include Trepomonas, Hexamita and 

Spironucleus. Family Giardiidae include Octomitus and Giardia, in which the cytostomes are 

absent. Moreover, Giardia species possess a ventral disc used for the adhesion to the gut 

epithelium.  

All studied diplomonads except Giardia species use alternative genetic code, where 

UAA and UAG codons (normally stop codons) encode glutamine (Keeling and Doolittle, 1996, 

1997; Kolisko et al., 2008). The only common characteristics of the mitochondrial organelles 

in diplomonads is the presence of  ISC pathway (Leger et al., 2017). 

I will focus on the differences in mitochondrion-derived organelles in diplomonads, 

specifically in Trepomonas, S. salmonicida, S. vortens and G. intestinalis. Carpediemonas-like 

organism Dysnectes brevis will be also included, since it is considered as one of the closest 

relatives to the order Diplomonadida (Figure 5) (Takishita et al., 2012). No study about 

Hexamita sp. mitochondrial organelle has been published so far. 
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Figure 5. Phylogenetic tree of certain Metamonads based on SSU rRNA and six other proteins (α-tubulin, β-tubulin, 
Hsp70, Hsp90, EF-1α and EF2). Maximum likelihood phylogeny was used (Takishita et al., 2012). 

 

2.5.1. Dysnectes brevis 

 

 Functions of mitochondrial organelle of the free-living protist Dysnectes brevis have 

been predicted recently. These organelles could surprisingly illuminate transition from the 

hydrogenosome into the mitosome. The transcriptomic data revealed several genes for the 

protein transport including TOM component Tom40, two TIM components Tim 17 and Tim 44 

and two PAM components Pam 18 and Hsp70 (Leger et al., 2017). Interestingly, both subunits 

of mitochondrial processing peptidase are present, which suggests that some mitochondrial 

proteins may have N-terminal targeting sequence. No data about Fe-S cluster assembly in 

Dysnectes have been published. 

Genes for mitochondrial [2Fe2S] ferredoxin, hydrogenase and its three maturases have 

been identified in the transcriptome, moreover, HydE and HydF possess mitochondrial 

targeting sequences. This could support the hypothesis about hydrogen production inside the 

mitochondrial organelle in D. brevis. Surprisingly, two subunits of complex I, NuoE and NuoF 

that were originally found in T. vaginalis, were also reported in Dysnectes (Hrdy et al., 2004; 

Leger et al., 2017). Furthermore, a glycine cleavage system (GCS) and its four components 

(GCSH, GCST, GCSP and GCSL) were also discovered in the transcriptome. In general, GCS 

is responsible for reversible metabolization of glycine into ammonium and CO2 with associated 

reduction of NAD+. Another protein possibly present in mitochondrial organelle is serine 
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hydroxymethyltransferase (SHMT) which is responsible for conversion of serine into glycine 

(the reaction may occur reversibly) (Leger et al., 2017; Fernandes et al., 2018). 

It has been proposed, that NuoE and NuoF could transfer the electrons from NADH 

(produced by GCS) to ferredoxin and reoxidate the NADH cofactors. [FeFe] hydrogenase can 

then utilize electrons from ferredoxin and transport them to the protons, forming the hydrogen 

molecules. This whole process might function independently on pyruvate metabolism and it 

was predicted that hydrogen production functions only as an electron acceptor for amino acid 

metabolism. 

 Regarding the ATP synthesis, only the cytosolic ACS1 has been found in the 

transcriptome, which suggests that this mitochondrion organelle has lost its energy metabolism. 

Therefore D. brevis organelle may represent, a transitional state between the hydrogenosomes 

and mitosomes (Leger et al., 2017). 

 

Figure 6. Mitochondrial organelle of D. brevis representing the intermediate state between the hydrogenosome and the 
mitosome (Leger et al., 2017). 
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2.5.2. Trepomonas sp. 

 

 Only a single transcriptomic study of this secondary free-living protist has been 

performed so far (Xu et al., 2016). According to the available bioinformatic data, the 

mitochondrial organelle of the Trepomonas sp. might contain hydrogenase, all three 

hydrogenase maturases, ferredoxin and SHMT (Leger et al., 2017). However, GCS proteins are 

possibly not present, therefore source of electrons for hydrogen production is unclear. Only 

cytosolic form of ACS1 was found in the transcriptome which suggests, that synthesis of ATP 

might occur only in cytosol. 

 

2.5.3. Spironucleus salmonicida 

 

 S. salmonicida is a parasite causing infections in various salmon fish (Kent et al., 1992; 

Jørgensen and Sterud, 2006). Five different PFO genes and seven hydrogenases were found in 

the genome of this parasite. Only in the case of PFOR5 and two hydrogenases (FeHyd5 and 

FeHyd6), the mitochondrial localization was confirmed by the immunostaining and epitope 

tagging, the other paralogs are cytosolic (Jerlström-Hultqvist et al., 2013). All three 

hydrogenase maturases were localized to the mitochondria, together with acetyl-CoA 

synthetase (ACS2), whereas ACS1 is most likely present in the cytosol. These components 

allow a typical hydrogenosomal energy metabolism using pyruvate as a substrate that is 

converted into acetyl-CoA and subsequently into acetate, enabling the ATP synthesis. In 

addition. Cpn60, SHMT and GCSH (other three GCS proteins are absent), main components of 

the ISC pathway (like IscU, IscS, Jac1, frataxin, two ferredoxins and Nfu) and several proteins 

from the protein import machinery (Tom40, Pam18 and Hsp70) have been localized to the 

mitochondria (Jerlström-Hultqvist et al., 2013). All hydrogenosomal proteins lack the N-

terminal targeting sequence, that is consistent with absence of both subunits for the 

mitochondrial processing peptidase. Altogether, characteristics of the mitochondrial organelle 

of S. salmonicida correspond to the hydrogenosome (Jerlström-Hultqvist et al., 2013). 
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Figure 7. Hydrogenosomal metabolism of S. salmonicida (Jerlström-Hultqvist et al., 2013). 

 

2.5.4. Spironucleus vortens 

 

 Hole-in-the-head disease in ornamental fish is associated with the presence of S. vortens 

(Paull and Matthews, 2001). It has been discovered that S. vortens produces hydrogen in rather 

high quantity (77 nmol/min/107 cells) (Millet et al., 2010). Four different heterologous 

antibodies against hydrogenase, frataxin, Isu1 and ferredoxin were tested for the possible 

mitochondrial localization. (Millet et al., 2013). The study suggests that S. vortens possess two 

different types of mitochondrion-derived double-membraned organelles in terms of size and 

antibody localization. Anti-hydrogenase antibody was detected in larger (200-1000 nm) 

organelles and anti-Isu1 and anti-frataxin antibody was localized in smaller (100-150 nm) 

mitochondria (Millet et al., 2013; Williams et al., 2013). 

Hydrogenase, all three maturases, Tom40, IscU and IscS were found in the genome of 

S. vortens (Leger et al., 2017). ACS1 is possibly responsible for ATP synthesis in the cytosol, 

mitochondrial ACS2 has not been found in the genome. However, the cellular localization and 

consequently the type of mitochondrial-derived organelle has not been clarified. 
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2.5.5. Giardia intestinalis 

 

 G. intestinalis is an intestinal parasite causing a malabsorption of nutrients and greasy 

diarrhea in mammals including humans (Adam, 2001). Giardia possesses ventral adhesive disc, 

which is used for the adhesion to the gut epithelium. Furthermore, the most reduced 

mitochondrial organelle (the mitosome) has been discovered in this protist. The only known 

function of mitosomes is Fe-S cluster biosynthesis (Tovar et al., 2003). There are two different 

types of mitosomes according to their cell localization. Central mitosomes form a rod-like 

structure between nuclei, under basal bodies. Peripheral mitosomes are scattered throughout the 

cytosol, mostly in the caudal part of Giardia (Martincová et al., 2012; Voleman et al., 2017). 

 ISC pathway proteins IscS, IscU, Isa, Hsp70, Jac1, Nfu, glutaredoxin and [2Fe2S] 

ferredoxin are localized to the mitosomes of Giardia (Tovar et al., 2003; Rada et al., 2009; 

Jedelský et al., 2011; Rout et al., 2016). However, frataxin is absent from the genome (Jedelský 

et al., 2011). IscU and ferredoxin proteins possess the N-terminal targeting sequence, while 

IscS and chaperones Hsp70 and Cpn60 contain internal targeting signals (Dolezal et al., 2005; 

Santos et al., 2018). 

Surprisingly, three proteins of the CIA pathway (Cia2, Nbp35-1 and Nbp35-2) have dual 

localization, they are present in the cytosol and in the mitosomes (Pyrih et al., 2016). In the 

organelle, Cia2 was localized to the intermembrane space and both Nbp35 proteins seem to be 

associated with the outer mitosomal membrane. This unexpected localization of CIA 

components may reflect a specific interaction between ISC and CIA machineries in Giardia. 

GCS proteins are absent from the genome (Leger et al., 2017). Mitochondrial transport 

proteins MOP35, Hsp70, Pam 16, Pam18, Tom40, Tim17 and Tim44 were localized to the 

mitosomes (Martincova et al., 2015; Pyrihová et al., 2018).  
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3. The aims of the thesis 

 

 This study is focused on characterization of mitochondrial organelles in Spironucleus 

vortens and Hexamita sp. and their comparison with other diplomonads. 

 Specific aims of the thesis: 

1) To select suitable orthologous proteins that are known to reside in 

mitochondrion-related organelles of other anaerobes, to develop specific 

antibodies against them and to investigate their cellular localization in S. 

vortens using the immunofluorescence microscopy and subcellular 

fractionation 

2) Alternatively, to develop a single and double transfectants of S. vortens 

expressing selected proteins for localization studies 

3) To sequence DNA and RNA of Hexamita sp. using next generation 

sequencing and to analyze the genomic data with focus on the identification 

of genes coding mitosomal/hydrogenosomal proteins and to estimate the type 

of Hexamita sp. mitochondrial organelles 

4) To reconstruct the evolution of mitochondria in diplomonads based on 

available data and the results of this thesis. 
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4. Materials and methods 

 

4.1.  Cultivation of the organisms 
 

4.1.1. Cultivation of protists 

 

S. vortens (strain ATCC_50386) was isolated from a lip lesion in angelfish 

Pterophyllum scalare and was obtained from American Type Culture Collection (ATCC). 

Hexamita sp. was isolated from a lake in Řevnice, Czech Republic by prof. J. Kulda. Both 

organisms were cultivated in 10 ml of modified TYI-S-33 medium (pH 6,8) under anaerobic 

conditions at 24°C (Diamond et al., 1978). S. vortens was maintained in KIMAX glass culture 

tubes. In case of Hexamita sp., NunclonTM Delta Surface tubes were used. S. vortens was 

transferred every 2-3 days in fresh media, Hexamita sp. every 5-7 days. Culture of S. vortens is 

axenic, whereas Hexamita sp. culture is monoxenic, containing the proteobacteria 

Stenotrophomonas maltophilia. 

 

4.1.2. Cultivation of Escherichia coli 

 

Bacterial strains TOP10 or XL-1 Blue of E. coli were used. The cells were incubated on 

the shaker (220 rpm) in Luria-Bertani broth (LB) medium (Bertani, 1951), at 37°C. 

Transformed cells were grown on LB plates with 100 µl of 5-bromo-4-chloro-3-indolyl-β-D-

galactoside - X-gal (20 mg/ml) and 30 µl of screening antibiotics, Kanamycin (50 µg/ml) or 

Ampicillin (100 µg/ml) according to the specific cloning vectors. For long-term storage of E. 

coli cells, we used LB medium with 20 % glycerol and cells were stored at -80°C. 
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4.2.  Cultivation media 
 

Modified TYI-S-33 medium (pH 6,8) (Diamond et al., 1978): 

 Trypticase Peptone (Sigma)    20 g 

 Yeast extract (Sigma)     10 g 

 Glucose (Sigma)     10 g 

 NaCl (Sigma)      2 g 

 K2HPO4 (Sigma)     1 g 

 KH2PO4 (Sigma)     0,6 g 

 L-Cysteine (Sigma)     1 g 

 Ascorbic acid (Sigma)    0,2 g 

 Ammonium iron(III) citrate (Sigma)   22,8 mg 

 Distilled H2O      total volume 890 ml 

 Inactivated Adult Bovine Serum (Sigma)  100 ml 

 Penicillin-Streptomycin (100 000 IU/ml) (Sigma) 10 ml 

After dissolving all components in distilled H2O, pH was adjusted with 3M NaOH to 

6,8. Then, serum and antibiotics were added and medium sterilized by filtration (VWR® 

Vacuum Filter). 

 

LB medium: 

 LB medium (Sigma)    20 g 

 Distilled H2O     final volume 500 ml 

 

LB plates: 

 LB agar (Sigma)    17 g 

 Distilled H2O     final volume 500 ml 

 

SOC medium (pH 7):  

 

 Tryptone (Sigma)    2 g 

 Yeast extract (Sigma)    0,5 g 

 NaCl (Sigma)     0,058 g 

 250 mM KCl (Sigma)    1 ml 

 Distilled H2O     final volume 100 ml 
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 20 % glucose (sterile)    1,8 ml (added after sterilization) 

 2 M MgCl2 (sterile)    0,5 ml (added after sterilization) 

Stored in -20°C. 

 

4.3. Buffers and Solutions 

 

4.3.1. Solutions used for DNA fragment cloning 

 

5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal): 

X-gal (ThermoFisher)           100 mg 

N,N‘-dimethylformamide (Sigma)   2 ml 

 

Antibiotics: 

 Ampicillin (Sigma)    100 mg/ml 

 Kanamycin (Sigma)    50 mg/ml 

 Penicillin-Streptomycin (Sigma)  100 000 IU/ml 

 Puromycin     50 µg/ml 

 G418 (Geneticin)    100 µg/ml 

 

DNA electrophoresis buffer (Ogden and Adams, 1987): 

 1x Tris-Acetate-EDTA (TAE) (Bio-Rad) 

 

DNA staining dye: 

 SYBR® Safe DNA gel stain (ThermoFisher) 

 

4.3.2. SDS PAGE and Western blot analysis 

 

SDS PAGE buffer: 

 1x Tris-Glycine-SDS (TGS) (Bio-Rad) 

 

 

Blotting buffer: 
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 10x concentrated SDS buffer (Bio-Rad) 100 ml 

 Methanol (Lach-Ner)    200 ml 

 Distilled H2O     700 ml 

 

Blocking buffer: 

 Dry milk (Nutristar)    10 g 

 Tween 20 (Sigma)    500 µl 

 Phosphate buffered saline (PBS)  total volume 200 ml 

 

10x PBS: 

 NaCl (Sigma)     80 g 

 KCl (Sigma)     2 g 

 NaH2PO4 * 12 H2O (Sigma)   14,4 g 

 KH2PO4 (Sigma)    2,4 g 

 Distilled H2O     total volume 1 l 

 

Coomassie Brilliant Blue solution (CBB): 

 Coomassie Brilliant Blue (Sigma)  200 mg 

 Denatured ethanol (Lach-Ner)  225 ml 

 Distilled H2O     225 ml 

 Acetic acid (Lach-Ner)   50 ml 

 

Destain solution: 

 Denatured ethanol (Lach-Ner)  250 ml 

 Acetic acid (Lach-Ner)   100 ml 

 Distilled H2O     650 ml 

 

Ponceau S: 

 Ponceau S (Merck)    0,5 % 

 Acetic acid (Lach-Ner)   1 %  

 

 

Substrate for alkaline phosphatase: 

 Sigma Fast BCIP/NBT tablet   1 piece 
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 Distilled H2O     10 ml 

 

Substrate for horse radish peroxidase: 

 Western HRP substrate Forte (Merck) 1 ml per membrane 

 

 

4.3.3. Antibodies 

 

Primary antibodies: 

- anti-5xHis monoclonal antibody (mouse IgG) (QiaGen) (1:1000) 

- anti-HA monoclonal antibody (mouse IgG) (Exbio) (1:400) 

- anti-V5 monoclonal antibody (rabbit IgG) (Exbio) (1:1000) 

- anti-hydrogenase (S. vortens) polyclonal antibody (rabbit) (Davids 

Biotechnologie) (1:500) 

- anti-HydG (S. vortens) polyclonal antibody (rabbit) (Moravian 

Biotechnology) 

- anti-HydE (S. vortens) polyclonal antibody (rat) (Jan Mach, Charles 

University) 

 

Secondary antibodies: 

- antibody against mouse IgG conjugated with alkaline phosphatase produced 

in goat (ICN/CAPPEL) (1:2000) 

- antibody against rat IgG conjugated with alkaline phosphatase produced in 

goat (ICN/CAPPEL) (1:2000) 

- antibody against rabbit IgG conjugated with alkaline phosphatase produced 

in goat (ICN/CAPPEL) (1:2000) 

- antibody against mouse IgG conjugated with horse radish peroxidase 

produced in goat (Novex ECL) (1:2000) 

- antibody against rat IgG conjugated with horse radish peroxidase produced 

in goat (Novex ECL) (1:2000) 

- antibody against rabbit IgG conjugated with horse radish peroxidase 

produced in goat (Novex ECL) (1:2000) 

- Alexa Fluor 594 dye mouse/rat/rabbit (ThermoFisher) 1:1000 

- Alexa Fluor 488 dye mouse/rat/rabbit (ThermoFisher) 1:1000 
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4.3.4. Immunofluorescence 

 

2x PEM buffer (pH 6,9) (Mooberry et al., 1999): 

 PIPES (Sigma)      30,2 g 

 0,5mM EGTA (Sigma)     2 ml 

 1M MgSO4 (Sigma)      100 µl 

Add NaOH until the buffer get transparent color. Adjust pH to 6,9 and fill in distilled 

water up to 500 ml. Use the autoclave for sterilization. 

 

PEMBALG: 

 1x PEM buffer      100 ml 

 BSA (Sigma)       1 g 

 Lysin (Sigma)       1,8 g 

 Cold water fish skin gelatin (Sigma)    0,5 g 

 

4.3.5. Fractionation of the S. vortens, Hexamita sp. and G. intestinalis 

 

Sacharose-Tris (ST) buffer (pH 7,2): 

 Sacharose (Sigma)      42,85 g 

 Tris base (Sigma)      0,6 g 

 KCl (Sigma)       18,5 mg 

 Distilled H2O       total volume 500 ml 

Stored at -20°C. 

 

Protease inhibitors: 

 Tosyl-L-lysine-chlormethylketone (TLCK) (Sigma) 25 mg/ml 

 Leupeptin (Sigma)      5 mg/ml 

 E-64 (Sigma)       10 mM 
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4.3.6. Purification of recombinant proteins under denaturation 

conditions (Purification of HIS-tagged proteins) 

 

Lysis buffer (pH 8): 

 100 mM NaH2PO4 (Lach-Ner) 

 10 mM Tris-HCl (Sigma) 

 8 M Urea (Sigma) 

 

Wash buffer (pH 6,3): 

 100 mM NaH2PO4 (Lach-Ner) 

 10 mM Tris-HCl (Sigma) 

 8 M Urea (Sigma) 

 

Elution buffer D (pH 5,9): 

 100 mM NaH2PO4 (Lach-Ner) 

 10 mM Tris-HCl (Sigma) 

 8 M Urea (Sigma) 

 

Elution buffer E (pH 4,5): 

 100 mM NaH2PO4 (Lach-Ner) 

 10 mM Tris-HCl (Sigma) 

 8 M Urea (Sigma) 

 

4.3.7. DNA isolation using phenol-chloroform extraction (Chomczynski 

and Sacchi, 1987) 

 

Lysis buffer: 

 Guanidium thiocyanate (Sigma)    35,5 g 

 0,5 M Ethylenediaminetetraacetic acid (EDTA) (Sigma) 1 ml 

 β – mercaptoethanol (Sigma)     350 µl 

 Sodium lauroyl sarcosinate (Sigma)    250 mg 

 1 M Tris-HCl (pH 8) (Sigma)    5 ml 

 Distilled H2O       total volume 50 ml 
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5M NaCl 

 NaCl (Sigma)       29,2 g 

 Distilled H2O       total volume 100 ml 

 

TE buffer 

 1 M Tris (pH 7,4) (Sigma)     1 ml 

 0,5 M EDTA (pH 8) (Sigma)     200 µl 

Distilled H2O       total volume 50 ml

  

 

4.4. Methods 

 

4.4.1. Cell fractionation 

 

We used following protocol to obtain the cytosolic and organellar fractions: 

1) Transfer 1x107 cells into 15ml VWR® Centrifuge Tube 

2) Spin down at 1000 x g / 10 min / 4°C (Hettich Universal 32R centrifuge) 

3) Discard the supernatant 

4) Resuspend the pellet in 30 ml of ST buffer 

5) Spin down the cells at 1000 x g / 10 min / 4°C 

6) Resuspend the pellet in 1 ml of ST buffer and transfer it to the Eppendorf 

tube 

7) Add TLCK and Leupeptin to final concentrations 50µg/ml and 10 µg/ml, 

respectively 

8) In case of S. vortens add also 10 mM of E-64 protease 

9) Sonicate on ice for 30 seconds, 1 second pulses and amplitude 40 (QSonica 

Q125 sonicator) 

10) Check the cells under microscope after sonication and stop when about 95% 

of the cells are disrupted 

11) Take 100 µl aliquot of lysate and store 

12) Spin the homogenized cells at 2500 g / 10 min / 4°C to remove whole cells 

and cell debris  
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13) Transfer the supernatant into the 2ml Beckman polycarbonate centrifuge 

tube and spin at 100 000 x g / 35 min / 4°C (Beckman Optima MAX-XP 

centrifuge, MLA-150 fixed angle rotor) 

14) Collect supernatant (cytosolic fraction) and pellet (organellar fraction) 

 

4.4.2. Immunofluorescence microscopy 

 

4.4.2.1. Protocol for immunofluorescence slides preparation using 

methanol-acetone 

 

1) Spin 10 ml of cells at 900 x g / 5 min. / 4°C (Hettich Universal 32R centrifuge) 

2) Discard supernatant and resuspend the pellet in 10 ml of PEM buffer 

3) Spin the cells at 900 x g / 5 min. / 4°C (Hettich Universal 32R centrifuge) 

4) Discard supernatant and resuspend the pellet gently in 450 µl of PEM buffer 

by 1 ml Pasteur pipette 

5) Place the cells in PEM buffer onto silanized microscope slides (150 µl per 

slide) and let it dry for 30 minutes 

6) incubate the slides in methanol at -20 °C for 5 minutes 

7) immediately incubate the slides in acetone at -20 °C for 5 minutes 

 

Following steps proceed in the moister chamber at room temperature: 

8) Add 100 µl of PEMBALG buffer, incubate 60 minutes 

9) Remove buffer, add primary antibody in PEMBALG, incubate for 90 minutes 

10) Remove buffer, wash in PEM buffer 3x (5, 10 and 15 minutes) 

11) Remove buffer, add secondary antibody in PEMBALG, incubate for 60 

minutes in the dark 

12) Remove buffer, wash in PEM buffer 3x (5, 10 and 15 minutes) 

13) Add Vectashield Antifade Mounting Medium with 4′,6-Diamidine-2′-

phenylindole dihydrochloride (DAPI)  

14) Cover the slides with cover slip (170 µm thick) and fix it with nail polish 

15) Slides are prepared for the immunofluorescence microscopy, store at 4°C 
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4.4.2.2. Protocol for immunofluorescence slides preparation using 

formaldehyde: 

 

1) Add 1% formaldehyde to 10 ml of the cell culture and incubate at the 

temperature of cultivation (24°C) for 30 minutes 

2) Spin the cells at 900 x g / 5 min. / 4°C (Hettich Universal 32R centrifuge) 

3) Discard supernatant and resuspend the pellet in 10 ml of PEM buffer 

4) Spin the cells at 900 x g / 5 min. / 4°C (Hettich Universal 32R centrifuge) 

5) Discard supernatant and resuspend the pellet gently in 450 µl of PEM buffer 

by 1 ml Pasteur pipette 

6) Place the cells in PEM buffer onto silanized microscope slides (150 µl per 

slide) and let it dry for 30 minutes 

 

Following steps will proceed in moister chamber at room temperature: 

7) Permeabilize the cells using PEM buffer with 1% Triton TX-100 for 10 

minutes 

8) Remove the PEM with Triton from the slides and wash in PEM buffer 3x for 

5 minutes 

9) Next steps are the same as steps 8-15 in methanol-acetone protocol 

 

4.4.3. Genomic DNA isolation using phenol-chloroform extraction 

 

Day 1 

1) Spin the cells (500 ml culture) at 900 x g / 5 min. / 4°C (Hettich Universal 

32R centrifuge) 

2) Discard the supernatant and wash the pellet in 40 ml of sterile PBS 

3) Spin the cells at 900 x g / 5 min. / 4°C (Hettich Universal 32R centrifuge) 

4) Discard the supernatant and resuspend the pellet in 2-5 ml of sterile PBS 

5) Transfer the cells into small sterile beaker with magnetic stirrer 

6) Stir the solution slowly and add Lysis buffer (2-5 ml) until the solution gets 

transparent 

7) Slowly add isopropanol (10 ml), collect precipitated DNA with Pasteur 

pipette and put it into 50ml Sigma centrifuge tube with 20 ml of 75% ethanol 

+ 20mM NaCl 
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8) Spin at 9000 x g / 5 min. / 4°C 

9) Wash 3x in 75% ethanol + 20mM NaCl and spin at 9000 x g / 5 min. / 4°C 

in between 

10) Remove as much ethanol as possible from the centrifuge tube by pipetting 

11) Dry the DNA pellet in the flow box for 20 minutes 

12) Add 1 ml of TE buffer, 0,5% SDS and proteinase K (100 µg/ml) 

13) Seal the centrifuge tube with Parafilm and incubate at 56°C overnight in 

hybridization oven while shaking 

Day 2 

1) Add 4 ml of TE buffer and 100 µl of 5M NaCl 

2) Prepare Phenol-chloroform solution – put 10 ml of chloroform and 10 ml of 

phenol into the 50 ml Sigma centrifuge tube and mix 

3) Add 5 ml of phenol-chloroform solution to the centrifuge tube with DNA 

and TE buffer 

4) Shake by hand for 30 seconds and spin at 9000 x g / 5 min. / 20°C 

 

There are 3 different phases in the centrifuge tube after spinning: upper phase 

with DNA, middle white phase (proteins) and lower phase (phenol). 

5) Transfer the upper phase into a new centrifuge tube 

6) Repeat step 3-5 three times 

7) Transfer the upper phase into a new centrifuge tube and add 2,5x more of 

96% ethanol 

8) Incubate in -20°C overnight 

 

Day 3 

1) Spin at 9000 x g / 5 min. / 20°C 

2) Wash the pellet 2x with 75% ethanol + 20mM NaCl 

3) Dry the DNA pellet 

4) Add 1 ml of TE buffer and RNAse (100 µg/ml) 

5) Incubate in hybridization oven at 37°C for 6 hours with rotation speed 10 

rpm 

6) Add 4 ml of TE buffer and 100 µl of 5M NaCl 



32 
 

7) Repeat the phenol-chloroform extraction (Day 2, steps 2-8) 

 

Day 4 

1) Spin at 9000 x g / 5 min. / 20°C, remove supernatant and dry the pellet in 

flow box 

2) Resuspend pellet in 200-500 µl of TE buffer 

3) Store the DNA in -80°C 

 

4.4.4. Transfection of S. vortens 

 

1) Prepare 100 ml of the well-grown cells 

2) Use the Beckman Z2 Coulter® Particle Count and Size Analyzer for counting 

the number of cells (100 µl of cells diluted in 10 ml of isotonic buffer, size 

of the cells from 5 to 15 and set the dilution factor to 100) 

3) Incubate the cells on ice for 15 min., then spin at 1000 x g / 5 min. / 4°C 

(Hettich Universal 32R centrifuge) 

4) Discard the supernatant, resuspend the pellet in cold fresh TYI-S-33 medium 

to final concentration 3·107 cells per 1 ml 

5) Add 300 µl of the solution into 4 mm electroporation cuvette (Bio-Rad) 

6) Add 40 µg of plasmid DNA, mix gently and leave it on ice for 10 min. 

7) Proceed with electroporation (GenePulser Xcell, Bio-Rad) 

 

Following electroporation protocols were used: 

a) exponential protocol – 350 V, 1500 uF, ∞ Ω 

b) exponential protocol – 400 V, 1000 uF, 700 Ω 

c) time-constant protocol – 350 V, 175 ms 

8) Immediately immerse the cuvettes with cells in ice for 10 min. 

9) Transfer the cells into fresh TYI-S-33 medium with Penicillin and 

Streptomycin added 

10) Add Puromycin (50 µg/ml) or Geneticin (G418) (100 µg/ml) after 24 hours 

11) Select transfeceted cells for 1-2 weeks 

12) Test expression of the recombinant protein in lysate and cellular fractions of 

S. vortens using the Western blot 
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4.4.5. SDS-PAGE 

 

Protein samples were prepared for the SDS-PAGE by dissolving in the SDS sample 

buffer and denaturation at 95°C for 5 minutes. 13,5% polyacrylamide gel with SDS was used 

for the protein separation under denaturing conditions. We used PageRuler™ Plus Prestained 

Protein Ladder (ThermoFisher) for the molecular weight determination. Mini-PROTEAN Tetra 

Cell was used for the SDS-PAGE. 

 

4.4.6. Western blot analysis (Laemmli, 1970) 

 

1) Soak the polyacrylamide gel together with 2 papers and nitrocellulose 

membrane (of the same size as gel) in the blotting buffer 

2) Stack the components on the blotting machine (semi-dry blot Biometra) in 

the following order: from the bottom 1 filter paper, nitrocellulose membrane, 

gel and 1 filter paper 

3) Blot at 3 mA per cm2 for 35 minutes 

4) Stain the membrane by Ponceau S (5%) for 30 seconds in order to visualize 

the proteins 

5) Destain by washing in distilled H2O 

6)  Incubate the membrane in the blocking buffer for 1 hour at room 

temperature or overnight at -4°C 

7) Incubate the membrane with primary antibody in the blocking buffer for 1 

hour at the room temperature or overnight at 4 °C 

8) Wash the membrane 3x for 5 minutes in the blocking buffer 

9) Incubate the membrane with secondary antibody in the blocking buffer for 

30-60 minutes at room temperature 

10) Wash the membrane 2x for 5 minutes in the blocking buffer and 1x for 5 

minutes in PBS 

11) Incubate the membrane with substrate for horse radish peroxidase or alkaline 

phosphatase 

12) Amersham Imager 600 was used for the image capturing 
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4.4.7. Gene cloning 

 

4.6.7.1. Amplification of the genes 

 

S. vortens genes for hydrogenase, HydG and HydE (all sequences are listed in 

Appendix 1) were amplified by PCR (polymerase chain reaction). Genomic DNA of S. 

vortens was used as a template, that was obtained by High Pure PCR Template 

Preparation kit (Roche). Primers with required restriction sites were designed in 

Geneious® software (Biomatters). 

 

List of primers for the gene amplification: 

hydrogenase, restriction sites NdeI, HindIII 

forward 5'-CATATGTGCATCGAGATCATCTACG-3' 

reverse 5'-AAGCTTCTCGGTCGAGAGCTGCTT-3' 

HydG, restriction sites NdeI, HindIII 

forward 5'-CATATGAACCCGCAGCTCGTACGC-3' 

reverse 5'-AAGCTTGCCGACTCCCATCGTGTC-3' 

HydE, restriction sites VspI (AseI), XhoI 

forward 5'-ATTAATATGGCTCTTCAAACCACGC-3' 

reverse 5'-CTCGAGCCGGCCGCCGGGAGGTA-3' 

 

PCR reaction protocol: 

 5x Q5 reaction buffer (NEB)    5 µl 

 5x Q5 High GC enhancer (NEB)   5 µl 

 10 mM dNTPs (ThermoFisher)   0,5 µl 

 10 µM forward primer    1,25 µl 

 10 µM reverse primer     1,25 µl 

 genomic DNA  (150 ng/µl)    1 µl 

 Q5® High-fidelity DNA polymerase  (NEB)  0,25 µl 

 MiliQ H2O      10,75 µl 



35 
 

Thermal cycler program: 

  

Nr. of cycles 1x 25x 1x 

Temperature (°C) 98 98 47 - 72 72 72 4 

Time (sec) 30 10 25 30 120 ∞ 

 

4.6.7.2. DNA electrophoresis and PCR product purification 

 

DNA samples were analyzed by a horizontal electrophoresis in 1x TAE buffer 

using the 1% agarose gel. SYBR® Safe dye (Invitrogen) was used for the DNA 

visualization. Samples were mixed with 6x concentrated sample buffer (Fermentas). 

The electrophoresis run under 130 V. GeneRulerTM DNA Ladder Mix was used as a 

standard. DNA was visualized by UV transilluminator. Bend of a predicted size was cut 

off from the gel by sterile scalpel. QIAquick Gel Extraction Kit (250) (Quiagen) was 

used for DNA purification. 

   

4.6.7.3. Ligation into pJET vector 

 

We subcloned genes of interest (hydrogenase, HydG and HydE) into 

pJET1.2/blunt vector (Ampicillin resistance) and used for transformation of E. coli 

TOP10 with this plasmid for a gene expression. The correct insertion was verified by 

sequencing. 
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Figure 8. pJET1.2/blunt Vector Map (from CloneJET PCR Cloning Kit User Guide) 

 

4.6.7.4. E. coli transformation (TOP10 and BL21-DE3 strains) 

 

1) Incubate frozen competent bacteria on ice until they thaw (5-10 min.) 

2) Add the plasmid (ligation sample) and leave it for 20 min. on ice 

3) Thaw the SOC medium 

4) Incubate bacteria with plasmid in water bath (42°C) for 35 sec. 

5) Incubate for 2 min. on ice 

6) Add 250 µl of SOC medium 

7) Incubate at 37°C for 30-60 min. 

8) Add 30 µl of antibiotics and 10 µl of X-gal 

9) Distribute the transformed cells on the LB plate 

10) Incubate at 37°C overnight 

11) Store the plates at 4°C 

 

4.6.7.5. Isolation of plasmid DNA  

 

Plasmids with genes of our interest were isolated from 5 ml of bacterial culture 

using the Miniprep High Pure Plasmid Isolation Kit (Roche) or from 100 ml of bacterial 

culture using the Midiprep High Pure Plasmid Isolation Kit (Roche) according to the 

manufacturer protocols. 
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4.6.7.6. Restriction reaction 

 

Plasmid     10 µg 

Digest buffer     3 µl 

Restriction enzyme Nr. 1   1 µl 

Restriction enzyme Nr. 2   1 µl 

MiliQ H2O     total volume 30 µl 

 

Reaction was incubated at 37°C overnight. Results of restriction were 

checked by the horizontal DNA electrophoresis using the 1% agarose gel. 

 

 

4.6.7.7. Ligation of genes into expression vector 

 

pET42b (Kanamycin resistance) was used as a vector for expression of 

recombinant hydrogenase, HydG and HydE. The correct insertion was verified by 

sequencing.  

 

Figure 9. pET-42b Vector Map (from GenScript database) 
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4.6.7.8. Recombinant protein expression 

 

E. coli BL21(DE3) strain was used for the production of the recombinant 

proteins with polyhistidine tag at C-terminus.  

1) 100 ml of transformed bacterial culture cultivate with 100 µl of 

Kanamycin (50 µg/ml) overnight in LB medium on the shaker at 

37°C, 220 rpm. Add into 2 l of LB media and incubated with shaking 

220 rpm at 37°C 

2) When OD (optical density) value reaches 600 (after 1-3 hours), add 

250 µM IPTG and 400 mM ammonium iron(II) sulfate 

3) Incubate on the shaker for 4-8 hours 

4) Spin at 3000 x g / 8 min. / 4°C 

5) Discard the supernatant and resuspend pellet in 40 ml of PBS buffer 

6) Spin at 4500 x g / 10 min. / 4°C 

7) Discard the supernatant, pellet is ready for the protein purification 

(can be stored at -20°C) 

 

4.6.7.9. Recombinant His-tagged protein purification under 

denaturing conditions 

 

Recombinant proteins were purified by affinity chromatography using 

PerfectPro NiNTA agarose (Qiagen) according to the manufacturer protocol: 

 

1) Resuspend the pellet in 30 ml of lysis buffer 

2) Sonicate the cells (amplitude 60, 1 second pulses, 90 seconds, 

sonicator Vibra Cell) 

3) Spin at 100 000 x g / 35 min. / 4°C 

4) Add 500 µl of PerfectPro NiNTA agarose (Qiagen) to the supernatant, 

mix by inverting the falcon several times and transfer the mixture to 

the column 

5) Collect the flow-through 

6) Wash the column 2x with the 4 ml of Wash buffer, collect the flow-

through 
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7) Wash the column 5x with the 500 µl of Elution buffer D, collect the 

flow-through 

8) Wash the column 5x – 8x with the 500 µl of Elution buffer E, collect 

the flow-through 

9) Analyze the fractions by SDS-PAGE and Western blot 

 

4.4.8. Single transfection of S. vortens 

 

We obtained three genes (HydG, HydE and IscU) subcloned in 

pSvor_PAC_3xHA_C plasmid from laboratory of prof. S. Svard (Uppsala, Sweden). 

The plasmid contained the ampicillin gene (AmpR) for the selection in bacteria and pac 

gene for puromycin selection in S. vortens. Pac resistance gene was inserted between 

alpha-tubulin upstream and downstream regions (cloned between KpnI/XhoI and 

NcoI/HindIII restriction sites). The multiple cloning site was flanked by a 3xHA tag and 

termination was handled by a short stretch of the ribosomal protein S15A 3’UTR 

(cloned between ApaI/SacI sites). The C-terminal 3xHA tag was cloned between NotI 

and ApaI sites (for a detailed map of pSvor_PAC_3xHA_C with constructed cassette 

and restriction sites see Figure 10). HydG, HydE and IscU with their 5’ upstream region 

containing native promoters were cloned into pSvor_PAC_3xHA_C using MluI and 

NotI restriction sites.  

 

 

Figure 10. Detailed map of pSvor_PAC_3xHA_C vector showing constructed cassette and restriction sites (Jerlström-
Hultqvist et al., 2013). 
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4.4.9. Double transfection of S. vortens 

 

For double transfection, we obtained empty pSpiro_NptII_NEO plasmid 

(Uppsala, Sweden). Instead of pac gene, this vector contains gene for neomycin (G418 

resistance) that is flanked by fructose bisphosphate aldolase (FBA) 3’UTR and 5’UTR. 

The genes for HydG, HydE and IscU with their 5’ upstream regions containing native 

promoters (333, 239 and 206 base pairs respectively) were subcloned into this plasmid. 

The 3xHA tag was replaced with V5 tag (Figure 11). 

 

Figure 11. Detailed map of pSpiro_NptII_NEO_V5 vector showing constructed cassette and restriction sites. Adjusted 
from Jerlström-Hultqvist et al., 2013. 

 

Primers used for the gene amplification and cloning into pSpiro_NptII_NEO: 

HydE 

HydE Vor DS F - MluI 5'-ACGCGTGATGATGAAGAACTCACTCGT-3' 

HydE Vor DS R - NotI 5'-GCGGCCGCTTACAATTACACTTATGCGGC-3' 

HydG 

HydG DS F - MluI 5'-ACGCGTCACCACGTCGCGGTAGT-3' 

HydG V5 DS R – 

ApaI/V5tag/NotI 

5'-GGGCCCAGTAGAATCTAAGCCTAATAAAGG 

ATTAGGAATAGGTTTGCCCGCGGCCGCGAACA 

ACTGGCCACGCTT-3' 

HydG Inner primer 5'-AAGGACAAGGAGCTGCG-3' 

IscU 

IscU Vor DS F – MluI 5'-ACGCGTGAAGGGCTTTTCATTTGG-3' 

IscU V5 DS R - 

ApaI/V5tag/NotI 

5'-GGGCCCAGTAGAATCTAAGCCTAATAAAGGATT 

AGGAATAGGTTTGCCCGCGGCCGCCTTCTTAGACT 

TCTTATTTTTGTC-3' 
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4.4.10.  Preparation of polyclonal antibodies 

 

4.6.10.1. Anti-Hydrogenase polyclonal antibody 

 

Purified recombinant protein (4mg) was sent for the immunization of rabbit to 

Davids Biotechnologie (Regensburg, Germany) in soluble form (4 M Urea). 

Preimmune serum and serum after the final 4th immunization was tested on the 

western blot. We obtained 80 ml of blood serum with polyclonal antibody after the 

4th immunization. Azide was added to the serum in the final concentration of 0,01%, 

several aliquots (500 µl) were stored at 4°C, the stock was kept at -80°C (same 

storage process was used for the other two antibodies). 

 

 

4.6.10.2. Anti-HydG polyclonal antibody 

 

Two milligrams of purified protein were submitted for the immunization to 

Moravian Biotechnology (Brno, Czech Republic) in soluble form (2 M Urea). Two 

rabbits were selected for the immunization. Preimmune serum and serum after the 

final 4th immunization was tested on the western blot. After the last immunization, 

we obtained 80 ml of blood serum with polyclonal antibody. 

 

4.6.10.3. Anti-HydE polyclonal antibody 

 

Sample from the protein purification containing 2 mg of HydE protein was 

mixed with SDS sample buffer and loaded on the 13,5% acrylamide preparative gel. 

After separation, the gel was stained with CBB and destained with Destain solution. 

Gel containing the protein was cut out with scalpel, homogenized in Dounce 

homogenizer and used for the rat immunization (Jan Mach Ph.D., Department of 

Parasitology, Charles University, Prague). Preimmune serum was tested before 

immunization to test nonspecific reaction of the serum with cell lysate of S. vortens.  
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4.4.11.  Transmission electron microscopy (TEM) 

For transmission electron microscopy (TEM), pellets of S. vortens and Hexamita 

sp. were fixed for 24 h in 2,5% glutaraldehyde in 0,1 M cacodylate buffer (pH 7,2) and 

post fixed in 2% OsO4 in the same buffer. Fixed S.vortens/Hexamita sp. was dehydrated 

through an ascending ethanol and acetone series and embedded in Araldite - Poly/Bed® 

812 mixture. Thin sections were cut on a Reichert-Jung Ultracut E ultramicrotome and 

stained using uranyl acetate and lead citrate. Sections were examined and photographed 

using JEOL JEM-1011 electron microscope. Fine structure measurements were 

performed using a Veleta camera and iTEM 5.1 software (Olympus Soft Imaging 

Solution GmbH). 

4.4.12.  Sequencing of Hexamita spp. genome 

 

Genomic DNA for sequencing was obtained by a phenol-chloroform extraction. 

NucleoSpin RNA extraction kit (Roche) was used for the genomic RNA isolation. 

Purity of RNA was verified by Agilent 2100 Bioanalyzer (Agilent technologies) in 

OMICS-Genomics laboratory, Biotechnology and Biomedicine Center in Vestec – 

BIOCEV. Two different next generation sequencing methods were used: PacBio SMRT 

(single molecule real time sequencing) at the Uppsala Genome Center (Sweden) and 

MiSeq Illumina sequencing at the OMICS-Genomics laboratory (BIOCEV, Czech 

Republic). 

 

4.4.13.  Bioinformatic analysis tools 

 

Hexamita sp. genomic and transcriptomic data were assembled in Laboratory of 

prof. S. Svard, Uppsala University, Sweden. BLASTp program was used for finding the 

hypothetical mitochondrial proteins in genomic data of Hexamita sp. Sequence 

alignments were constructed in Geneious v8.0.1 and BioEdit v7.0.5 software. 

Mitochondrial targeting sequences were predicted by TargetP (Emanuelsson et al., 

2007), MitoFates (Fukasawa et al., 2015) and PSORT II Prediction servers (Nakai and 

Horton, 1999). Promega BioMath Calculator was used for the estimation of protein 

molecular weight (https://www.promega.com/a/apps/biomath/?calc=dnaprotein).  
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4.7. Supplementary data 
 

Supplementary data 1 contain partial sequences of hydrogenase, HydE and HydG used 

for the preparation of homologous polyclonal antibodies, complete sequences of HydG, HydE 

and IscU used for the overexpression experiments. Moreover, these data include three complete 

protein sequences of hydrogenase discovered in the draft genome of S. vortens provided by 

Laboratory of prof. S. Svard (Uppsala University, Sweden) and seven sequences of S. 

salmonicida hydrogenase paralogs.  

Partial sequences of S. vortens hypothetical mitochondrial proteins found in the Joint 

Genome Institute (JGI) genome database are listed in Supplementary data 2. 

Supplementary data 3 contain seven partial sequences of hydrogenase found in the JGI 

genome of S. vortens and their alignment with the three complete hydrogenase sequences of S. 

vortens provided by Laboratory of prof. S. Svard (Uppsala University, Sweden). 

Internal database of mitochondrial protein sequences from Saccharomyces cerevisiae 

and hydrogenosomal protein sequences from S. salmonicida provided by C. Stairs (Uppsala 

University, Sweden) can be found in Supplementary data 4. 

Supplementary data 5 is a list of proteins which were or were not found in the genome 

of Hexamita sp. The table cover complete sequences of the proteins and the results from 

PSORTII, TargetP and MitoFates programs illustrating the possibility of having the 

mitochondrial targeting presequence. Higher probability predictions are highlighted in blue 

(threshold was set at 0.3). Hypothetical mitochondrial proteins are highlighted in green, the 

cytosolic ones in red, proteins with possible dual localization are colored in orange. 

All supplementary data are uploaded on the CD attached to this thesis. 
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5. Results 

 

5.1. Characterization of mitochondrial organelle in Spironucleus 

vortens 
 

5.1.1. Transmission electron microscopy (TEM) 

 

First, we investigated the ultrastructure of the cells with aim to identify their 

mitochondrial organelles using TEM. Two nuclei, cytostomes, flagella and various number of 

vacuoles were observed (Figure 12A). Endoplasmic reticulum was scattered in the cell with no 

specific pattern and distribution (Figure 12B). In addition, the cells possess organelles of 400 - 

500 nm in diameter. The web of filamentous material forming circular patterns with the same 

electron density as cytosol was visible inside of these vesicles (Figure 13B, 13D and 13F). Two 

membranes surrounding the organelle were observed at higher magnifications (Figure 13B), 

which is the main characteristics of mitochondrial organelle. Comparison of the membrane 

thickness between vacuole and observed mitochondria is present in Figure 13D. Only one to 

three mitochondrial organelles were found on the single section of S. vortens, suggesting 

relatively low number of these organelles within the cell. 

 

Figure 12. TEM of S. vortens. A. Overview of the whole cell of S. vortens – lateral section (scale bar = 2000 nm); B. Cell 
section of S. vortens with clearly visible endoplasmic reticulum and various vesicles (scale bar = 1000 nm); n = nucleus, v = 

vacuole, c = cytostome, bb = basal body of flagellum, f = flagellum, er = endoplasmic reticulum, m = double-membrane 
mitochondrial organelle. 
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Figure 13. TEM of S. vortens with sections containing mitochondrial organelles. A.+C. S. vortens cell overview (scale bar = 
2000 nm). E. Cell section with detail of endoplasmic reticulum and one mitochondrial organelle (scale bar = 1000 nm). 

B.+D.+F. Cell section with detail of double-membrane mitochondrial organelle (scale bar = 200 nm). v = vacuole, c = 
cytostome, f = flagellum, er = endoplasmic reticulum, m = double-membrane mitochondrial organelle. 
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5.1.2. Prediction of putative mitosomal proteins in S. vortens genome 

 

I analyzed partially assembled genome of S. vortens, available at JGI genome database 

to find suitable mitochondrial candidates for the preparation of homologous polyclonal 

antibodies against corresponding recombinant proteins. The genome was downloaded from the 

JGI website (https://genome.jgi.doe.gov/portal/Spivo0/Spivo0.home.html) and imported into 

Geneious v8.0.1 software. Amino acid sequences of S. salmonicida hydrogenosomal proteins 

were selected as a query (GeneBank accession numbers AFV80041 - AFV80087), tblastn 

program was used against the JGI S. vortens genome database. Only hits with e-value lower 

than 1x10-5 were considered relevant. Partial sequences of IscU, IscS, ferredoxin, hybrid cluster 

protein, frataxin, Tom40, Tim14, hydrogenase, all three hydrogenase maturases, DnaK, Hsp70, 

Cpn60, SHMT, PFO ACS1 were found in the S. vortens genome (Supplementary data 2). 

S. vortens as well as the other diplomonads (except for G. intestinalis) uses alternative 

genetic code – stop codons TAG and TAA are translated as glutamine and the only signal for 

termination is TGA (Keeling and Doolittle, 1997; Kolisko et al., 2008). Moreover, predicted 

proteins lack mitochondrial targeting sequence.  

For the purposes of antibody preparation, partial gene sequences of three suitable 

candidates (hydrogenase, HydG and HydE) were selected for recombinant protein production. 

Hydrogenase and HydG sequence did not have any TAG or TAA codons encoding glutamine, 

HydE sequence had one TAG codon inside (see Supplementary data 1). 

 

5.1.3. Hydrogenase of S. vortens 

 

5.1.3.1. Comparison of the hydrogenase sequences in S. vortens 

 

Seven orthologs of hydrogenase from S. salmonicida were used as query to search for 

hydrogenase in S. vortens (Supplementary data 1). I obtained seven different partial sequences 

of hydrogenase (Supplementary data 3). These sequences were sent to the prof. S. Svard at 

Uppsala University who resequenced genome of S. vortens (unpublished data) for comparison. 

Three orthologous genes of hydrogenase were found in this draft genome of S. vortens 

(complete protein sequences were provided by Xu FeiFei from Laboratory of prof. S. Svard, 

Uppsala University, Sweden). For the alignment of seven partial and three complete 

hydrogenase sequences in S. vortens, see Supplementary data 3. Seven hydrogenases of S. 

https://genome.jgi.doe.gov/portal/Spivo0/Spivo0.home.html
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salmonicida were aligned to three complete hydrogenase sequences of S. vortens in order to 

confirm the presence of conserved motifs (Fe-S clusters and H cluster) in the sequences (Figure 

14). Hydrogenase 1, 2 and 3 from S. vortens are 469, 480 and 468 base pairs long which 

strongly correspond with the length of cytosolic hydrogenase 1 (468 bp) and hydrogenosomal 

hydrogenase 5 (467 bp) in S. salmonicida. Other two shorter S. salmonicida cytosolic 

hydrogenases 3 and 7 have 404 and 427 base pairs respectively. 

According to the PSORT analysis (Gavel program), mitochondrial presequence was 

predicted in Hydrogenase 2 of S. vortens (Figure 14). However, TargetP program analysis 

showed only 0.209 score with reliability prediction class 3 (1 means the strongest prediction, 5 

indicates the weakest) and MitoFates program predicted the probability of presequence with 

score 0.013. Predicted cleavage site is located between DRN and FS amino acids and the 

alignment illustrates, that this site is not unique for Hydrogenase 2 and is present with certain 

modifications in all hydrogenase sequences listed in the alignment. Moreover, based on the 

percentage identity of amino acid residues, all three hydrogenases from S. vortens are most 

identical with the cytosolic Hydrogenase 1 from S. salmonicida (Table 1), which also have 

similar number of base pairs. Percentage identity of amino acid residues between the 

hydrogenases of S. vortens ranged from 46,7 % to 59,5 % (Table 2). 

 The alignment also demonstrates that length of the sequences does not correspond with 

the cell localization. Hydrogenase 2, Hydrogenase 4 and Hydrogenase 6 of S. salmonicida are 

approximately 50 base pairs longer than other hydrogenases in the alignment and only 

Hydrogenase 6 is targeted to the mitochondrial organelle. Considering the shorter hydrogenase 

sequences, only Hydrogenase 5 from S. salmonicida has been localized to the hydrogenosome. 
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Figure 14. Protein sequence alignment of S. vortens and S. salmonicida hydrogenase. Three different hydrogenases of S. 
vortens were aligned to seven hydrogenase paralogs of S. salmonicida. [4Fe4S] cluster and H-cluster motifs are highlighted 

in red. Cleavage site prediction in Hydrogenase 2 of S. vortens is colored in purple. Similar amino acids are highlighted in 
blue, identical amino acids in yellow. Threshold for shading was set at 50%. Hydrogenosomal hydrogenases of S. 

salmonicida are highlighted in green. Hyd Vor = hydrogenase sequence in S. vortens Hyd Salmo = hydrogenase sequence in 
S. salmonicida. 

 Hyd 1 Salmo Hyd 2 Salmo Hyd 3 Salmo Hyd 4 Salmo Hyd 5 Salmo Hyd 6 Salmo Hyd 7 Salmo 

Hyd 1 Vor 55,7% 43,1% 27,6% 44,1% 48,4% 43,6% 24,9% 
Hyd 2 Vor 49,1% 40,2% 27,3% 40,0% 46,1% 40,6% 22,8% 
Hyd 3 Vor 51,0% 44,0% 28,7% 42,1% 47,3% 41,9% 22,2% 

 

Table 1. Comparison of percentage identity of amino acid residues in hydrogenase sequences of S. vortens and S. 
salmonicida (analysis was performed by Geneious 8.0.5 software). Hyd Vor = hydrogenase sequence in S. vortens, Hyd 
Salmo = hydrogenase sequence in S. salmonicida. 
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 Hyd 1 Vor Hyd 2 Vor Hyd 3 Vor 

Hyd 1 Vor  49,4% 59,5% 
Hyd 2 Vor 49,4%  46,7% 
Hyd 3 Vor 59,5% 46,7%  

Table 2. Comparison of percentage identity of amino acid residues in hydrogenase sequences of S. vortens (analysis was 
performed by Geneious 8.0.5 software). Hyd Vor = hydrogenase sequence in S. vortens. 

  

 

 

5.1.3.2. Preparation of polyclonal anti-hydrogenase antibody 

 

For the antibody preparation, 720 base pairs long partial sequence of hydrogenase 

(corresponding to Hydrogenase 3 in S. vortens) was selected (see Supplementary data 1). 

Hydrogenase gene fragment was subcloned into pJET1.2/blunt plasmid and then re-cloned into 

the expression vector pET42b. Plasmid with hydrogenase gene was used for transformation of 

BL21-DE3 E. coli. Four different clones were selected to test induction of protein expression 

using the IPTG. Ni-NTA-based affinity chromatography was used for the purification of the 

recombinant protein with 6x-HIS tag (Figure 15). Majority of the recombinant protein was 

released in E1-E4 elution fractions (pH 4,5). Altogether, 4 mg of purified protein were obtained 

in 8 M Urea, diluted into 4 M Urea and used for the rabbit immunization. Before the 

immunization, the pre-serum was tested for the nonspecific protein reaction on the lysate of S. 

vortens (Figure 16A). We received the final blood serum with desired antibody after the 4th 

immunization of the animal. 
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Figure 15. SDS-PAGE illustrating the purification of hydrogenase for the production of specific antibody. FT = flow through, 
C1-C2 = wash buffer, D1-E5 = elution buffers with released protein. 

 

 

 

5.1.3.3. Cellular localization of hydrogenase in S. vortens using the 

western blot analysis 

 

Western blot analysis was used for the detection of hydrogenase on subcellular fractions 

from S. vortens. The antibody recognized compete protein of expected size (52kDa) in the lysate 

and in the cytosolic fraction (Figure 16B). No signal was observed in the organellar fraction, 

which suggests only cytosolic localization of hydrogenase in S. vortens. 
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Figure16. Western blot analysis of pre-serum and serum after 4th immunization containing the anti-hydrogenase 
antibody. A. Test of preimmunized serum from selected rabbit as a primary antibody on a lysate of S. vortens B. Test of final 

serum after 4th immunization as a primary antibody on a subcellular fractions of S. vortens. L = total lysate, C = cytosolic 
fraction, M = organellar fraction containing mitochondrial organelles. 

 

5.1.3.4. Cellular localization of hydrogenase in S. vortens using the 

immunofluorescence microscopy 

 

Subsequently, the anti-hydrogenase antibody was used as a primary antibody for the 

hydrogenase detection in S. vortens using the immunofluorescence microscopy. The signal was 

observed in the large number of small dots that were evenly distributed throughout the cells, 

that most likely correspond to the cytosolic localization (Figure 17). These results are consistent 

with the western blot analysis of the cellular fractions.  
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Figure 17. Detection of hydrogenase in S. vortens by polyclonal antibody (red). The nuclei were stained by DAPI (blue). 
Formaldehyde protocol was used for the slide preparation. DIC = differential interference contrast, DAPI = 4ˈ,6-diamidine-

2ˈ-phenylindole dihydrochloride. 

 

5.1.4. Preparation of polyclonal anti-HydE antibody 

 
Partial sequence of HydE gene coding protein with total molecular weight of 22 kDa 

was selected (see Supplementary data 1). Although the sequence had one stop codon (in S. 

vortens coding glutamine) in the middle, the Taq polymerase caused a random mutation in this 

specific codon identified by sequencing in one of the bacterial colonies. During the HydE 

protein purification, high amount of protein remained in flow through fraction and did not bind 

to the NiNTA column (Figure 18). Despite of that, we were able to collect 2 mg of protein in 

E1-E4 elution fractions (pH 4,5). E1, E2, E3 and E4 samples containing HydE protein were 

loaded on the preparative SDS-PAGE for purification. Fragment of the gel was sent to Mass 

Spectrometry analysis that confirmed presence of HydE in the sample.  2 mg of purified HydE 

were used for the rat immunization in form of SDS-PAGE homogenate. The pre-serum of the 

rat was tested for the nonspecific reaction in subcellular fractions of S. vortens (Figure 19A). 

After the 4th immunization, the serum with antibody was harvested from the rat. 
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Figure 18. SDS-PAGE illustrating the purification of recombinant HydE protein for the production of specific antibody. FT 
= flow through, C1-C2 = wash buffer, D1-E5 = elution buffers with released protein. 

         

 

 

5.1.4.1. Cellular localization of HydE using the western blot analysis 

 

In order to investigate the cellular localization of HydE, I performed the cellular 

fractionation of S. vortens and tested the anti-HydE antibody on the western blot. Purified 

recombinant protein, lysate, cytosolic and organellar fraction containing mitochondrial 

organelles were tested (Figure 19B). Recombinant HydE with polyhis tag was used as a positive 

control. Anti-HydE as well as anti-His antibody recognized partial purified recombinant protein 

(22kDa). In cellular fractions, a protein with molecular weight of about 50 kDa was detected in 

lysate and in organellar fraction containing mitochondrial organelles using the anti-HydE 

antibody. These results indicate that HydE protein is most likely localized in mitochondrial 

organelles of S. vortens. 
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Figure 19. Western blot analysis of rat pre-serum and serum after 4th immunization containing the anti-HydE antibody. A. 
Test of preimmunized serum from selected rat as a primary antibody on a lysate of S. vortens B. Test of final serum after 4th 
immunization of selected rat as a primary antibody on a subcellular fractions of S. vortens. +k = anti-HIS  primary antibody, 

P = partial purified recombinant protein, L = total lysate, C = cytosolic fraction, M = organellar fraction containing 
mitochondrial organelles. 

 

5.1.4.2. Cellular localization of HydE using the immunofluorescence 

microscopy 

 

Subsequently, the anti-HydE antibody was used for the protein detection in S. vortens 

using the immunofluorescence microscopy. Anti-HydE antibody labeled small number of 

vesicles (six to twelve) dispersed within the cell (Figure 20). Relative low number of labeled 

organelles and their distribution in the cell correspond with the results from TEM. Therefore, it 

is most likely that these vesicles represent the mitochondrial organelles of S. vortens.  
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Figure 20. Detection of HydE antibody in the cells of S. vortens. A. HydE detection using rat polyclonal anti-HydE antibody 
and anti-rat IgG secondary antibody, Alexa Fluor 594 (red). B. HydE detection using rat polyclonal anti-HydE antibody and 
anti-rat IgG secondary antibody, Alexa Fluor 488 (green). The nuclei were stained by DAPI (blue). Methanol-acetone protocol 
was used for the slide preparation. DIC = differential interference contrast, DAPI = 4ˈ,6-diamidine-2ˈ-phenylindole 
dihydrochloride. 
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5.1.5. Preparation of polyclonal anti-HydG antibody 

 
For the gene cloning, I used gene coding partial HydG protein of approximate molecular 

weight 28,5 kDa (see Supplementary data 1). Recombinant protein produced in E. coli was 

released from the NiNTA column in D and E elution buffer fractions (pH 5,9 and 4,5 

respectively), with the highest yield in fraction E1 (Figure 21). Total amount of 2 mg was 

diluted in 2 M Urea and sent to Moravian Biotechnology (Brno, Czech Republic) for the rabbit 

immunization (two rabbits were used). Preimmune sera of the two selected animals were 

obtained after the start of the immunization process. Sera were tested on the purified 

recombinant protein and on the lysate and subcellular fractions of S. vortens (concentration 

1:100) (Figure 22). Anti-HIS antibody was tested on the purified recombinant protein as a 

positive control. The estimated size of a complete HydG protein was 57,6 kDa. The sera 

recognized proteins of various sizes in all fractions. In the case of preimmune serum from rabbit 

1, there was a strong bend with the same size as partial HydG protein in organellar fraction. 

Moreover, weak signal was detected around 58 kDa in lysate and cytosol. Rabbit 2 pre-serum 

visualized weak bends with the same size as complete HydG protein (57,6 kDa) in lysate, 

cellular fraction and also in the organellar fraction. The sera after the 4th immunization were 

tested for the comparison (Figure 23). Serum from rabbit 1 recognized protein of the expected 

size in the lysate, however only slightly higher and slightly lower bend was detected in 

organellar fraction. In case of final serum from rabbit 2, protein of the approximate size 58 kDa 

was visualized in lysate, cytosolic and organellar fraction. We did not proceed to the antibody 

purification and further experiments due to the non-specific detection of protein of expected 

size by the pre-sera of both rabbits. 
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Figure 21. SDS-PAGE illustrating the purification of recombinant HydG protein for the production of polyclonal antibody. 
FT = flow through, C1-C2 = wash buffer, D1-E4 = elution buffers with released protein. 

 

Figure 22. Test of preimmune sera from two selected rabbits as a primary antibody on a subcellular fractions of S. 
vortens. +k = anti-HIS primary antibody, P = purified recombinant HydG protein, L = total lysate, C = cytosolic fraction, M = 

organellar fraction containing mitochondrial organelles. 
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Figure 23. Test of the sera from two selected rabbits after 4th immunization as a primary antibody on a subcellular 
fractions of S. vortens. +k = anti-HIS primary antibody, P = purified protein, L = total lysate, C = cytosolic fraction, M = 

organellar fraction containing mitochondrial organelles 

 

5.1.6. Cellular localization of Cpn60 in S. vortens using the western blot 

analysis and the immunofluorescence microscopy 

 
Homologous antibody against Cpn60 in S. vortens has been developed by Eva Nývltová 

Ph.D. (Charles University, Laboratory of prof. J. Tachezy). Antibody was tested on the western 

blot using the S. vortens subcellular fractions. Slightly visible bend around the expected size 

(60kDa) was detected in lysate and organellar fraction. However, many of non-specific signals 

were repeatedly visualized (Figure 24A).  

In addition to that, slides for the immunofluorescence microscopy were prepared. Anti-

Cpn60 antibody labeled rather large number of unevenly distributed vesicles (Figure 24B). This 

observation does not correspond with the anti-HydE antibody results. It is unlikely that the anti-

Cpn60 antibody labeled only mitochondrial organelles, therefore we believe that this antibody 

is not suitable for localization studies. 
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Figure 24. Test of anti-Cpn60 antibody in S. vortens A. Western blot analysis of Cpn60 antibody tested on subcellular fractions 
from S. vortens B. Detection of Cpn60  by rat anti-Cpn60 antibody (green). The nuclei were stained by DAPI (blue). L = total 
lysate, C = cytosolic fraction, M = organellar fraction containing mitochondrial organelles, DIC = differential interference 
contrast, DAPI = 4ˈ,6-diamidine-2ˈ-phenylindole dihydrochloride. 

 

5.1.7. Test of antibodies against G. intestinalis mitosomal proteins in 

subcellular fractions of S. vortens and cellular localization via 

immunofluorescence microscopy 

 
Four different heterologous antibodies developed against G. intestinalis mitosomal 

proteins (Tom40, IscU, IscS and Cpn60) were tested for labeling of the mitochondrial 

organelles in S. vortens. G. intestinalis (WB strain, ATCC_50803) lysate and subcellular 
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fractions were provided by the Laboratory of P. Doležal (Charles University, BIOCEV, Czech 

Republic) and used for experiments as positive control. (Figure 25).  

Precursor of IscU protein in G. intestinalis (GenBank accession number AAM14634.1) 

with the expected molecular weight of approximately 17,7 kDa. was detected in the lysate and 

the cytosolic fraction. Maturated form with cleaved mitochondrial targeting sequence was 

visualized in the lysate and the organellar fraction. Tom40 (expected molecular weight 39 kDa, 

GenBank accession number EDX54229.1), IscS (expected molecular weight 47,6 kDa, 

GenBank accession number AAK39427.1) and Cpn60 (expected molecular weight 60,2 kDa, 

GenBank accession number AAC38821.1) were observed in the lysate and predominantly in 

the organellar fraction (Figure 25A). 

Expected size of IscU protein in S. vortens is 21,3 kDa (see Supplementary data 1). 

Since we did not find complete sequences of IscS, Tom40 and Cpn60 in the genome of S. 

vortens, so we anticipated similar size of the protein bends as in S. salmonicida (43,9 kDa for 

IscS, 30,3 kDa for Tom40 and 60,2 kDa for Cpn60). IscU appeared as bend in all three fractions 

with approximate size of 17 kDa (Figure 25B). Anti-IscS antibody labeled several bends with 

the strongest signal for protein of approximate molecular weight 45 kDa, which correspond 

with our expectation. Antibody against Tom40 visualized two bends in the lysate and the 

cytosolic fraction (cca 40 and 35 kDa) and single bend in the organellar fraction (39 kDa). This 

antibody did not label any bend of anticipated molecular weight of 30 kDa.  Finally, anti-Cpn60 

antibody visualized a bend of 30 kDa in the lysate and the organellar fraction. In addition, a 

weak bend of expected molecular weight of 60 kDa was labeled by the antibody in the 

organellar fraction suggesting that the Cpn60 could be degraded. Overall, the results from the 

western blot analysis indicate that anti IscU and anti-IscS antibody from G. intestinalis might 

label the mitochondrial organelles of S. vortens. 

Next, we tested antibodies against four G. intestinalis proteins using the 

immunofluorescence microscopy (Figure 26). IscU antibody was observed within S. vortens 

cell in about 8 to 14 small bright vesicles but was also detected in the cytosol. Tom40 signal 

was localized to approximately forty slightly bigger vesicles and IscS antibody signal was 

distributed over the whole cell. Cpn60 was detected mostly in one vesicle located in the apical 

part of the cells which is likely an artifact. Even though heterologous anti-IscU antibody 

detected bend in the cytosol on the western blot, results from the immunofluorescence 

microscopy suggest, that it might be a suitable mitochondrial marker. However, no further 

localization experiments were performed with this antibody yet. 
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Figure 25. Test of anti-IscU, anti-Tom40, anti-IscS and anti-Cpn60 antibodies from G. intestinalis on the western blot A. 
Western blot analysis of G. intestinalis subcellular fractions using antibodies developed against four Giardia proteins B. Four 
Giardia antibodies tested on subcellular fractions of S. vortens. L = total lysate, C = cytosolic fraction, M = organellar fraction 
containing mitochondrial organelles. 



62 
 

 

Figure 26. Detection of IscU, Tom40, IscS and Cpn60 proteins in S. vortens (green). Antibodies were raised against proteins 
of G. intestinalis. The nuclei were stained by DAPI (blue). Formaldehyde protocol was used for the slide preparation. DIC = 

differential interference contrast, DAPI = 4ˈ,6-diamidine-2ˈ-phenylindole dihydrochloride.  
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5.1.8. Expression of recombinant HydE, HydG and IscU proteins in S. 

vortens 

 
5.1.8.1. Single-transfection 

 
We used pSvor_PAC_3xHA_C plasmid for expression of HydE, HydG and IscU with 

C-terminal HA tag in S. vortens (see Chapter 4.4.8). Three different electroporation protocols 

were used and the transfectants grew under the puromycin selection pressure (concentration 50 

µg/ml). After two weeks, stable tranfectant lineages were established from all three different 

electroporations, illustrating that the protocols were equally efficient. For the confirmation of 

the protein expression within the cells, the western bolt analysis on the subcellular fractions 

was performed using the anti-HA antibody (Figure 27). All three proteins were present in the 

lysate and organellar fraction. Expected molecular weight of IscU was approximately 21 kDa, 

which was confirmed on the western blot. Even though, molecular weight 43,1 kDa of complete 

HydE protein was calculated, anti-HA antibody labeled bends around 50 kDa. This observation 

corresponds with the test of anti-HydE antibody (see Chapter 5.1.4.1). Calculated molecular 

weight of HydG was 57,6 kDa. The anti-HA antibody labeled bends of approximate molecular 

weight of 54 kDa and 70 kDa. Lower bend was localized to the lysate and organellar fraction 

and the molecular weight was similar to the predicted one. Upper bend with molecular weight 

around 70 kDa was even slightly detected in the cytosol.  

In addition to the western blot analysis, the anti-HA antibody was used for the detection 

of tagged IscU, HydE and HydG S. vortens transfectants using the immunofluorescence 

microscopy (Figure 28). All three proteins were localized to the small vesicles distributed in 

the cell. Number of vesicles (6 to 16) correspond to the results from anti-HydE antibody 

localization. We did not proceed to co-localization experiments due to the possible cross-

reaction of anti-HA mouse antibody and anti-HydE rat antibody. 
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Figure 27. Western blot analysis of anti-HA mouse antibody tested on subcellular fractions from S. vortens expressing 
Iscu/HydE/HydG protein with HA tag. L = total lysate, C = cytosolic fraction, M = organellar fraction containing 

mitochondrial organelles. 
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Figure 28. Detection of IscU, HydE and HydG proteins by mouse anti-HA antibody in S. vortens (red). The nuclei were 
stained by DAPI (blue). Formaldehyde protocol was used for the slide preparation. DIC = differential interference contrast, 

DAPI = 4ˈ,6-diamidine-2ˈ-phenylindole dihydrochloride. 
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5.1.8.2. Double-transfection 

 

Empty pSpiro_NptII_NEO plasmid with HA tag for the double transfection experiments 

was obtained from laboratory of prof. S. Svard (Uppsala, Sweden). Cleavage of HA tag from 

the original vector was done by the ApaI and MluI restriction enzymes. I subcloned the IscU, 

HydE and HydG genes with the 5´UTR containing the native promotors. In case of HydG and 

IscU, V5 tag flanked by ApaI and NotI restriction sites was added to the reverse primer. 

pSpiro_NptII_HydG_NEO_V5 and pSpiro_NptII_IscU_NEO_V5 plasmids were successfully 

constructed. HydE gene had the restriction site for ApaI inside its gene sequence, therefore the 

V5 tag could not be directly added to the reverse primer. Because of that, HydG sequence from 

already constructed pSpiro_NptII_HydG_NEO_V5 plasmid was cut by MluI and NotI 

restriction enzymes. HydE sequence was inserted into this plasmid, therefore 

pSpiro_NptII_HydE_NEO_V5 plasmid was constructed. 

pSpiro_NptII_NEO plasmids containing HydE, HydG and IscU sequences with V5 tag 

were used for the transfection of strains with confirmed expression of HydE, HydG and IscU 

cloned in pSvor_PAC_3xHA_C plasmid. Electroporation was performed, using all three 

different protocols, however, only transfectants established with protocol 1 (see Chapter 4.4.4) 

survived two weeks of antibiotic selection pressure (puromycin with concentration 50 µg/ml 

and geneticin G418 with concentration 100 µg/ml). Established double-transfected strains are 

listed in Figure 29. The subcellular fractionation and western blot analysis of the three 

established double-transfected strains were performed. Anti-HA antibody detected protein bend 

of expected size in organellar fraction of HydE_HA + IscU_V5 double transfectant. Signal in 

the lysate was not detected, however, it could be explained by lower concentration of HydE 

protein with HA-tag in total lysate. In IscU_HA + HydE_V5 and IscU_HA + HydG_V5 double-

transfected strains, anti-HA antibody labeled IscU protein of expected molecular weight 

predominantly in lysate and organellar fraction (Figure 30). Anti-V5 antibody detected a bend 

in the organellar fraction of all three double-transfectants. Molecular weight of the bend was 

approximately 45 kDa which does not correspond with the size of IscU, HydE and HydG 

proteins verified by the anti-HA antibody in single and double-transfected strains. Because of 

that, I did not proceed to the immunofluorescence microscopy co-localization experiments. 
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Figure 29. Schematic illustration of plasmid combinations we used for the double transfection of S. vortens. ✔ = strains 
which survived the antibiotic selection pressure, X = strains which died during selection process. 

 

Figure 30. Western blot analysis of anti-HA mouse antibody tested on subcellular fractions from double-transfected 
strains of S. vortens. Detected proteins are highlighted in the title above the blot. L = total lysate, C = cytosolic fraction, M = 

organellar fraction containing mitochondrial organelles. 
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Figure 31. Western blot analysis of anti-V5 rabbit antibody tested on subcellular fractions from double-transfected 
strains of S. vortens. Tested proteins are highlighted in the title above the blot. L = total lysate, C = cytosolic fraction, M = 

organellar fraction containing mitochondrial organelles. 
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5.2. Characterization of mitochondrial organelle in Hexamita 

sp.  

 
5.2.1. Transmission electron microscopy (TEM) 

 
In the cells of Hexamita sp. (like in other diplomonads), two nuclei, endoplasmic 

reticulum, cytostomes, flagella and various vesicles were observed. Stacked rough endoplasmic 

reticulum was detected and localized to the both lateral parts of the Hexamita (Figure 32A and 

32C). Only one double-membrane organelle (400 - 1000 nm in diameter) has been observed on 

the plane section in the cells (Figure 32B, 32D and 32F), suggesting even lower number of 

mitochondria-derived organelles present in comparison with S. vortens. Unlike the filamentous 

structure of mitochondria of S. vortens, matrix inside these mitochondrial organelles was rather 

densely dappled. The organelles were also much more electron-dense. Two membranes 

surrounding the vesicles had more space in between them (clearly depicted in Figure 32F). 
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Figure 32. TEM of Hexamita sp. A.+C. Hexamita sp. cell overview (scale bar = 2000 nm). B.+D.+E.+F. Cell section with detail 
of double-membrane mitochondrial organelle (scale bar B.+D. = 500 nm; E. = 200 nm; F. = 100 nm) n = nucleus, v = vacuole, 
c = cytostome, f = flagellum, er = endoplasmic reticulum, m = double-membrane mitochondrial organelle. 
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5.2.2. Strategy of Hexamita sp. genome sequencing 

 

Hexamita sp. DNA was isolated from 1 l of culture using the phenol-chloroform 

extraction. 700 µg of genomic DNA was sent to Uppsala University (Sweden) for Pacific 

Bioscience sequencing and another 700 µg were sequenced by Illumina method at Charles 

University (Czech Republic). Isolation of RNA was performed with NucleoSpin RNA 

extraction kit from 50 ml of Hexamita culture. 30 µg of DNA-free RNA was sequenced by 

Illumina method in Czech Republic, other 30 µg was sent to Sweden for PacBio sequencing. 

Original plan was to combine the genomic and transcriptomic data from Illumina and PacBio 

sequencing, however only genomic data from PacBio were used for the bioinformatic analysis 

so far. 

 

5.2.3. Bioinformatic analysis of Hexamita sp. genome 

 

Internal database containing sequences of mitochondrial proteins from S. cerevisiae and 

hydrogenosomal proteins from S. salmonicida was provided by C. Stairs (Uppsala University, 

Sweden) and was used as a query for searches in preliminary assembly of Hexamita sp. genome 

(sequences listed in Supplementary data 4). Putative mitochondrial protein sequences found in 

the genome are listed in Table 3, only the hits with e-value lower than 1x10-5 were considered 

as relevant. Several mitochondrial presequences were predicted by PSORTII, TargetP and 

MitoFates in some of the proteins, however, no mitochondrial processing peptidase was 

identified in the genome of Hexamita sp. (Supplementary data 5). Based on predictions and 

considering cellular localization of known orthologs, I predicted cellular localization of 

analyzed proteins as summarized in Table 3. Proteins which are part of Fe-S cluster synthesis 

or H cluster synthesis were considered as mitochondrial even without having any mitochondrial 

presequence. Protein not typically localized to hydrogenosomes or mitosomes were considered 

as cytosolic. I also predict dual localization of PFO, hydrogenase and CDP-diacylglycerol-

glycerol-3-phosphate 3-phosphatidyltransferase (CDGPP). For the complete protein and 

nucleotide sequences and mitochondrial presequence prediction, see Supplementary data 5. 

 Predicted 

mitochondrial 

localization 

Predicted 

cytosolic 

localization 

 

Acetyl-CoA synthetase 1 

 

 

 

 

✔ 
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Acetyl-CoA synthetase 2 

 
✔ 

 

Tom40 

 

 

✔ 

 

 

PFO 

 

 

✔ 

 

✔ 

 

Malic enzyme 

 

  

✔ 

 

IscS 

 

 

✔ 

 

 

IscU 

 

 

✔ 

 

 

HydE 

 

 

✔ 

 

 

HydF 

 

 

✔ 

 

 

HydG 

 

 

✔ 

 

 

Hydrogenase 

 

 

✔ 

 

✔ 

 

SHMT 

 

 

✔ 

 

 

Frataxin 

 

 

✔ 

 

 

Nfu 

 

 

✔ 

 

 

[2Fe2S] ferredoxin 

 

 

✔ 

 

 

Cytosolic Hsp70 

 

 

 

 

✔ 

 

Mitochondrial Hsp70 

 

 

✔ 

 

 

DnaJ 

 

 

✔ 
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Cpn60 

 

 

✔ 

 

 

Alanine aminotransferase 

 

  

✔ 

 

Aspartate aminotransferase 

 

  

✔ 

 

Branched-chain 

amino acid aminotransferase 

 

  

✔ 

 

Serine palmitoyltranferase 

 

  

✔ 

 

Tryptophanase 

 

  

✔ 

 

Pyruvate carboxylase fusion protein 

 

  

✔ 

 

Nucleotide-binding protein 1 

 

  

✔ 

 

Multidrug resistance-associated protein 

 

  

✔ 

 

CDP-diacylglycerol-glycerol-3-phosphate 3-

phosphatidyltransferase 

 

 

✔ 

 

✔ 

 

Phosphatidylserine decarboxylase 

 

 

✔ 

 

 

 

3-ketoacyl-CoA reductase 

 

  

✔ 

 

Peroxiredoxin 

 

 

 

 

✔ 

 

Formate-acetyl transferase 

 

  

✔ 

Table 3. Predicted localization of proteins found in the genome of Hexamita sp. 

 Three different hydrogenases were found in the genome of Hexamita sp. Percentage 

identity of amino acid residues indicate that Hydrogenase 1 from Hexamita is most related to 

the cytosolic Hydrogenase 1 from S. salmonicida (Table 4).  However, Hydrogenase 3 of 
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Hexamita sp. displayed the highest percentage identity with hydrogenosomal Hydrogenase 5 

from S. salmonicida even though it is just 26,9%. This suggest that the Hexamita sp. 

Hydrogenase 3 sequence is incomplete due to the insufficient genome assembly. Nevertheless, 

at least one of the hydrogenases might be present in the mitochondrial organelle of Hexamita 

sp. Moreover, one of the PFO paralogs and one of the acetyl-CoA synthetase (related to 

hydrogenosomal ACS2 in S. salmonicida) have the mitochondrial presequence suggesting that 

mitochondrial organelle of Hexamita could produce ATP.  

 Hyd 1 Salmo Hyd 2 Salmo Hyd 3 Salmo Hyd 4 Salmo Hyd 5 Salmo Hyd 6 Salmo Hyd 7 Salmo 

Hyd 1 Hexa 60,5% 42,9% 27,5% 41,8% 49,2% 42,4% 24,5% 
Hyd 2 Hexa 48,0% 39,9% 27,4% 38,4% 44,8% 36,2% 22,1% 
Hyd 3 Hexa 25,2% 25,2% 17,1% 23,8% 26,9% 24,7% 11,7% 

Table 4. Comparison of percentage identity of amino acid residues in hydrogenase sequences of Hexamita sp. and S. 
salmonicida (analysis was performed by Geneious 8.0.5 software). Hyd Hexa = hydrogenase sequence in Hexamita sp. Hyd 
Salmo = hydrogenase sequence in S. salmonicida. 
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6. Discussion 
 

6.1. Mitochondrial organelle of S. vortens 
 

We have found three different paralogs of hydrogenase in the genome of S. vortens. 

PSORTII, TargetP and MitoFates programs were used for the prediction of N-terminal 

mitochondrial presequence and cleavage site. In hydrogenase 2, cleavage site was recognized 

by PSORTII program, however this prediction was not supported by other two prediction 

programs. Moreover, the cleavage site predicted in S. vortens Hydrogenase 2 was not unique 

just for this protein but was present with certain modifications in all other hydrogenases listed 

in the alignment (Figure 14). We compared the hydrogenase sequences of S. vortens with seven 

hydrogenases from S. salmonicida, including two paralogs that have been localized in 

hydrogenosomes. The three hydrogenases from S. vortens were the most similar to the cytosolic 

hydrogenase 1 of S. salmonicida. 

 Absence of N-terminal targeting sequences does not mean, that proteins could not be 

targeted to mitochondrial organelle. It has been shown, that all proteins experimentally 

localized in the hydrogenosome of S. salmonicida do not possess mitochondrial presequence 

(Jerlström-Hultqvist et al., 2013). This finding underlines the importance of experimental 

localization studies using specific antibodies or cell transfection systems to confirm in silico 

predictions. 

Partial sequence of hydrogenase 3 from S. vortens has been subcloned into expression 

vector, recombinant protein was amplified in E. coli and purified. Homologous antibody against 

hydrogenase 3 from S. vortens has been developed. The experimental results strongly suggest 

that hydrogenase of S. vortens is present exclusively in cytosol, whereas there is no evidence 

for its localization in the mitochondrial organelle. Using the western blot analysis, specific anti-

hydrogenase antibody raised against S. vortens hydrogenase 3 detected protein bend of expected 

molecular weight (52 kDa) in the lysate and the cytosolic fraction. This observation was 

supported by the immunofluorescence microscopy, where the antibody labeled large number of 

small dots evenly spread in the cells of S. vortens, resembling the cytosolic distribution. It is 

likely that this polyclonal antibody recognizes all three hydrogenase paralogs that have protein 

sequence identity ranging from 46,7 % to 59,5 %. However, because all three hydrogenases in 

S. vortens have similar molecular weight (around 52 kDa), it is not possible to distinguish 

hydrogenase 3 from other two paralogs based on their mobility in western blots. To exclude a 
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possibility that the antibody reacts specifically only with hydrogenase 3, comparing the 

reactivity of the antibody with all three recombinant hydrogenases will be necessary in the 

future.  

 Interestingly, heterologous antibody against the [FeFe] hydrogenase of B. hominis has 

been tested on the S. vortens, using the immunofluorescence microscopy (Millet et al., 2013). 

This antibody visualized vesicles, which have been interpreted as mitochondria-related 

organelles. However, western blot analysis of subcellular fractions to confirm organellar 

localization of hydrogenase have not been performed and the specificity of the heterologous 

antibody for S. vortens hydrogenase is unclear.  

 The cytosolic localization of hydrogenase in S. vortens, labeled in our experiments with 

homologous anti-hydrogenase antibody is consistent with the measuring of hydrogenase 

activity in cell fractions (E. Nývltová, unpublished). Hydrogenase activity was present 

exclusively in the cytosol of S. vortens whereas in S. salmonicida, the hydrogenase activity was 

found in the cytosolic and organellar fraction (E. Nývltová, unpublished).  

 Interestingly, it has been reported, that S. vortens produced significantly more hydrogen 

(77 nmol/min/107 cells) than G. intestinalis (2 nmol/min/107 cells) where hydrogen is produced 

exclusively in the cytosol or T. vaginalis (20 nmol/min/107 cells), organism containing 

hydrogenosomes (Millet et al., 2010). Because maturation of hydrogenase is dependent on the 

presence of specific hydrogenase maturases, we were interested in their cellular localization. 

Thus, we attempted to develop a polyclonal antibody against two maturases, HydE and HydG. 

Anti-HydE polyclonal antibody was successfully developed and used for the cell localization 

studies. HydE signal was detected in the cell lysate and organellar fraction. 

Immunofluorescence microscopy confirmed the localization of HydE to the small vesicles 

(possibly mitochondrial organelles) unevenly distributed in the cell. Unfortunately, 

development of anti-HydG antibody was not successful. To further support organellar 

localization of maturases we expressed HydE and HydG (and IscU as a mitochondrial marker) 

with C-terminal HA tag in S. vortens using pSvor_PAC_3xHA_C expression vectors. Plasmids 

were designed to facilitate the antibiotic selection of transformants with puromycin (50 µg/ml) 

and detection of proteins by the immunofluorescence and western blot analysis with anti_HA 

tag antibody. Western blot analysis and immunofluorescence microscopy confirmed organellar 

localization of HydE, HydG and IscU proteins. Unfortunately, we could not perform co-

localization with the polyclonal anti-HydE antibody. This primary antibody was developed in 

the rat and HA tag was detected by the mouse antibody. Since secondary anti mouse and rat 
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antibodies could cross-react with the target primary antibody, these antibodies cannot be 

reliably used for co-localization studies. Therefore, we decided to establish double transfectants 

for the co-localization experiments. HydE, HydG and IscU genes with the native promotor and 

V5 tag were subcloned to pSpiro_NptII_NEO vector, enabling antibiotic selection with 

geneticin (100 µg/ml) and detection of the proteins by anti-V5 tag antibody. Even though some 

double transfectants survived the selective pressure of two different antibiotics (puromycin and 

geneticin), they were only expressing proteins with HA tag. These experiments need to be 

repeated.  

Even though the double transfection experiment was not successful, we showed the cytosolic 

localization of hydrogenase and possibly organellar localization of HydE, HydG and IscU. 

There are other protists with specific localization of hydrogenase and its maturases to the 

cytosol or to the mitochondrial organelle. In G. intestinalis, no hydrogenase maturases have 

been discovered in the genome (Leger et al., 2017). However, hydrogenase is present and active 

in the cytosol, although the activity is rather low (2 nmol/min/107 cells) (Lloyd et al., 2002; 

Emelyanov and Goldberg, 2011). Another protist with cytosolic hydrogenase is E. histolytica 

(Nixon et al., 2003). Like in Giardia, no data for the presence of hydrogenase maturases in E. 

histolytica are available. In another amoeba, M. balamuthi, the hydrogenase activity was 

measured (Nyvltova et al., 2013). The activity was predominantly detected in the cytosol 

(approximately 1,351 µmol/min/mg), much lower activity was associated with 

hydrogenosomes (approximately 0,024 µmol/min/mg). Two hydrogenosomal (with N-targeting 

sequences), two cytosolic hydrogenases and HydE maturase were found in the genome. HydE 

maturase was localized to the hydrogenosomes of M. balamuthi via the immunofluorescence 

microscopy and western blot analysis (Nyvltova et al., 2013). Naegleria gruberi also possess 

hydrogenase which is localized exclusively in the cytosol. Surprisingly, HydE maturase has 

been also detected specifically in the cytosol (Tsaousis et al., 2014). Ten paralogs of 

hydrogenase have been discovered in the genome of T. vaginalis, however only five of them 

were found in the hydrogenosomal proteome (Carlton et al., 2007; Schneider et al., 2011). One 

paralog has been recently localized to the cytosol of T. vaginalis by immunofluorescence 

microscopy and western blot analysis (A. Dohnálková, Diploma thesis, 2015). However, all 

three hydrogenase maturases were specifically targeted to the hydrogenosomes of T. vaginalis 

(Pütz et al., 2006). In S. salmonicida, two paralogs of hydrogenase were localized to the 

hydrogenosome, other five are exclusively cytosolic (Jerlström-Hultqvist et al., 2013). All three 

hydrogenase maturases were detected specifically in the hydrogenosome of S. salmonicida 
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(Jerlström-Hultqvist et al., 2013). Overall, S. vortens is the first known organism with 

exclusively cytosolic localization of hydrogenase and organellar localization of all three 

hydrogenase maturases. How the organellar maturases can serve for the H-cluster formation of 

the cytosolic hydrogenases is therefore not clear. 

Laboratory of prof. D. Lloyd proposed that S. vortens possess two different double 

membrane organelles, larger with the 200-1000 nm in diameter and smaller ones with 90-170 

nm in diameter (Millet et al., 2013). Moreover, hydrogenase was supposedly detected in the 

larger organelles by heterologous anti-hydrogenase antibody from B. hominis using the 

immunofluorescence microscopy (Millet et al., 2013). I wanted to verify these observation by 

using the transmission electron microscopy (TEM). However, I observed only electron-dense 

double-membraned organelles of 400-500 nm in diameter. Furthermore, immunofluorescence 

microscopy experiments did not detect two distinct populations of vesicles as well. 

Apart from the test of homologous antibodies against S. vortens hydrogenase, HydE and 

Cpn60 and expression of HydG, HydE and IscU recombinant proteins, I also tested 

heterologous antibodies against G. intestinalis proteins IscU, IscS, Tom40 and Cpn60 to 

identify another suitable mitochondrial marker for S. vortens. Anti-Tom40 antibody detected 

two bends in the lysate and the cytosolic fraction (cca 40 and 35 kDa) and single bend in the 

organellar fraction (39 kDa). However, the antibody did not label any protein of expected 

molecular weight of 30 kDa, therefore it might not be specific. Antobody against IscS detected 

bends of 45 and 54 kDa molecular weight in the cytosol and in the mitochondrial organelle, 

even though IscS typically resides in the mitochondria. Cpn60 antibody labeled protein of 30 

kDa molecular weight in the lysate and organellar fraction, which might be degraded Cpn60. 

IscU was detected in both cytosolic and the organellar fraction, which did not correspond with 

the overexpression of IscU in the cells of S. vortens. Western blot analysis of heterologous 

antibodies was repeated four times always with the fresh cell fractionation samples and only 

the best western blots are presented in this thesis. I can definitely exclude the fractionation 

protocol failure since all other fractionation experiments were performed in the same way and 

the results were satisfactory. Overall, anti-IscS, anti-Cpn60 and anti-Tom40 heterologous 

antibodies were considered as not suitable for the mitochondrial labeling in S. vortens. Anti-

IscU might label the mitochondrial organelles, however, further co-localization experiments 

have to be done. 

Based on localization studies and analysis of S. vortens genome, I propose that the 

mitochondrial organelles contain all three hydrogenase maturases, two proteins of 
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mitochondrial import machinery Tom40 and Tim14, three chaperones Cpn60, Hsp70 and 

DnaK, proteins involved in the Fe-S cluster assembly (IscU, IscS, ferredoxin and frataxin) and 

SHMT enzyme responsible for conversion of serine into glycine. ATP synthesis probably 

occurs in the cytosol via the PFO and ACS1 enzymes. All the proteins with predicted or proved 

localization into the mitochondrial organelle of S. vortens are shown in Figure 33. Based on the 

cytosolic hydrogenase localization, I suggest that the mitochondrial organelles in S. vortens are 

most likely the mitosomes. The only possible functions of the S. vortens mitosomes are Fe-S 

cluster and H-cluster assembly and conversion of serine into glycine using the SHMT. 

 

Figure 33. Mitosome of S. vortens. Proteins, which localization was verified by western blot analysis and 
immunofluorescence microscopy are highlighted in yellow. Proteins found in the genome of S. vortens with no 

experimental verification are highlighted in blue. ACS = acetyl-CoA synthetase, Fd = ferredoxin, Fxn = frataxin, PFO = 
pyruvate:ferredoxin oxidoreductase, SHMT = serine hydroxymethyltransferase 
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6.2. Mitochondrial organelle of Hexamita sp. 
 

Genome of the Hexamita sp. was partially sequenced and preliminary assembly was 

searched for the mitochondrial proteins. Protein sequences (listed in Table 3 and Supplementary 

data 5) were analyzed by PSORTII containing Gavel program predicting the cleavage sites and 

by TargetP and MitoFates programs illustrating the probability of mitochondrial presequences.  

 Regarding the ATP synthesis in the Hexamita sp. mitochondrial organelle, pyruvate 

might be metabolized to acetyl-CoA by one of the four paralogs of PFO (in PFO 3, the predicted 

cleavage site by PSORTII was supported by the TargetP program prediction of mitochondrial 

presequence). ATP could be generated by one of the two paralogs of ACS through conversion 

of acetyl-CoA to acetate. In ACS2 from Hexamita sp., the predicted cleavage site was strongly 

supported by both TargetP and MitoFates programs. Localization of ACS2 has been 

experimentally detected in the hydrogenosome of diplomonad S. salmonicida and was predicted 

in H2 producing mitochondrion of C. marsupialis (Jerlström-Hultqvist et al., 2013; Noguchi et 

al., 2015). Cytosolic ACS1 has been found in the genome of Hexamita sp. suggesting dual 

localization of ATP synthesis in both the cytosol and the mitochondrial organelle.  

 Three different paralogs of hydrogenase have been found in the genome of Hexamita 

sp. All of them have cleavage site motif (detected by PSORTII), however no mitochondrial 

presequence have been predicted by TargetP and MitoFates programs. Hydrogenase 1 and 2 

from Hexamita sp. were the most similar to the cytosolic hydrogenase 1 from S. salmonicida. 

However, amino acid percentage identity of Hexamita hydrogenase 3 was the highest with the 

hydrogenosomal hydrogenase 5 from S. salmonicida, even though the number was just 26,9%. 

This might indicate that sequence of Hexamita sp. Hydrogenase 3 is incomplete due to the 

insufficient assembly. Nevertheless, I propose that the mitochondrial organelle of Hexamita sp. 

possess at least one hydrogenase paralog and consequently produce hydrogen. Specific 

hydrogenase localization could be proved by developing of the homologous polyclonal 

antibodies against all three paralogs of hydrogenase in Hexamita to observe, if any of them are 

targeted to the organelles. All three hydrogenase maturases are also present in the genome 

(HydE in three paralogs). Only HydF and one paralog of HydE (HydE 2) have the predicted 

mitochondrial presequence. However, I presume that HydG is also targeted to the organelle 

even without the targeting sequence. 



81 
 

 The only biochemical pathway common to all mitochondrial organelles in diplomonads 

is Fe-S cluster assembly (Leger et al., 2017). In Hexamita sp. genome, genes for proteins that 

are responsible for the cluster assembly were identified: IscS (three paralogs), IscU (two 

paralogs), ferredoxin, frataxin (two paralogs, however both sequences were incomplete) and 

Nfu. None of them had the cleavage site or mitochondrial targeting sequence predicted. Since 

the mitochondrial processing peptidase was not found in the genome of Hexamita sp., N-

terminal targeting sequences might not be necessary for the organellar localization. Since the 

cleavage sites and mitochondrial presequences were predicted in some protein sequences, they 

might be cleaved by other enzyme than mitochondrial processing peptidase. Another possibility 

is that the genomic data are incomplete, therefore mitochondrial processing peptidase was not 

found. In S. salmonicida and S. vortens, no mitochondrial presequences were observed 

(Jerlström-Hultqvist et al., 2013). In G. intestinalis, only IscU and ferredoxin have the N-

terminal targeting sequence for mitosome localization (Dolezal et al., 2005). Specific 

processing peptidase (GPP) is localized in Giardia mitosomes and is responsible for cleaving 

the mitochondrial presequences in these two proteins (Šmíd et al., 2008). Hexamita sp. 

mitochondrial proteins could also contain the internal targeting sequence, like IscS, Cpn60 and 

Hsp70 in Giardia (Dolezal et al., 2005). 

 Mitochondrial organelle of Hexamita sp. might have the metabolic function of 

converting serine molecule into glycine, since two paralogs of SHMT were found in the genome 

(without mitochondrial presequence). In S. salmonicida, SHMT has been localized to the 

hydrogenosome and in another diplomonad Trepomonas sp. was the gene for SHMT also found 

in the genome (Jerlström-Hultqvist et al., 2013; Leger et al., 2017). 

 Typical mitochondrial proteins responsible for the protein import (Tom40) and proper 

protein folding (Cpn60, Hsp70 and DnaJ) were predicted to reside in the mitochondria-related 

organelles of Hexamita sp. No N-terminal targeting sequence was predicted in these proteins. 

 Phosphatidylserine decarboxylase (PSD) and CDGPP are both typically localized in the 

inner mitochondrial membrane (Carman and Belunis, 1983; Zborowski et al., 1983). 

Mitochondrial presequence was predicted in both paralogs of PSD. This enzyme is responsible 

for conversion of phosphatidyl-L serine into phosphatidylethanolamine and CO2 in the process 

of phospholipid metabolism (Satre and Kennedy, 1978). However, its localization into 

hydrogenosomes or mitosomes has not been previously observed. Another enzyme involved in 

the phospholipid synthesis, CDGPP has been also found in the genome of Hexamita sp. In one 

of the two paralogs, MitoFates program predicted N-terminal targeting sequence, therefore this 
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protein might be targeted to the mitochondria. I cannot exclude possible dual localization since 

the other paralog of CDGPP does not have the mitochondrial presequence predicted. 

 Glycine cleavage system was not found in the genome which corresponds with the 

absence of this system in all other diplomonads (Leger et al., 2017). 

 The scheme of predicted metabolic pathways in Hexamita sp. mitochondrial organelles 

is depicted in Figure 34. Main biochemical processes are probably ATP synthesis using the 

PFO and ACS2, production of hydrogen, conversion of serine into glycine using the SHMT, H-

cluster synthesis and Fe-S cluster synthesis. Therefore, this organelle should be called the 

hydrogenosome. Furthermore, 3 chaperones, Tom40 channel and two enzymes of 

phospholipid metabolism were found in the genome of Hexamita sp. and they are possibly 

localized into this hydrogenosome. 

 

Figure 34. Hypothetical metabolism of Hexamita sp. hydrogenosome. ACS = acetyl-CoA synthetase, CDGPP = CDP-
diacylglycerol-glycerol-3-phosphate 3-phosphatidylserine transferase, Fd = ferredoxin, Fxn = frataxin, HydA = hydrogenase, 

PFO = pyruvate:ferredoxin oxidoreductase, PSD = phosphatidylserin decarboxylase, SHMT = serine 
hydroxymethyltransferase. 
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6.3. Reductive evolution of diplomonads 
 

In 2017, the hypothesis about reductive evolution in Diplomonadida group have been 

published (Leger et al., 2017). D. brevis, common diplomonad ancestor, S. salmonicida and G. 

intestinalis are included in this hypothesis. Apparently, mitochondrial organelle of the closest 

relative of diplomonads, D. brevis was able to produce hydrogen (which was not coupled with 

the pyruvate metabolism), it had glycine cleavage system and SHMT enzyme. D. brevis 

probably produces ATP exclusively in the cytosol using the ACS1. According to this 

hypothesis, diplomonad ancestor has lost glycine cleavage system and two subunits of complex 

I (NuoE and NuoF) found in Dysnectes. Interestingly, it has been proposed that S. salmonicida 

acquired the pyruvate metabolism secondarily during the taxon evolution. G. intestinalis is the 

last step of the reductive evolution, this parasite does not have SHMT and enzymes for 

hydrogen production and H-cluster assembly. Only function of Giardia mitochondrial organelle 

called mitosome is Fe-S cluster assembly.  

Phylogenetic analysis of diplomonads based on SSU rRNA gene shows that two distinct 

lineages evolved from the common diplomonad ancestor, family Giardiidae and Hexamitidae 

(Kolisko et al., 2008, 2010). Therefore, it is necessary to put the reductive evolution of 

diplomonad mitochondrial metabolism into this context. It has been proposed that common 

diplomonad ancestor lacked ATP synthesis inside its mitochondrial organelle and only 

functions of the organelle were H-cluster and Fe-S cluster synthesis, hydrogen production and 

conversion of serine into glycine via SHMT enzyme (Leger et al., 2017). In Giardiidae, all 

mitochondrial functions were lost during the reductive evolution, except Fe-S cluster synthesis. 

However, in Hexamitidae, mitochondrial ATP synthesis has been acquired secondarily since 

the ACS2 is present in hydrogenosome of S. salmonicida. Hexamita and Trimitus are the most 

distant species on the diplomonad phylogenetic tree from the common ancestor (Kolisko et al., 

2010). However, based on the genome analysis I predicted that Hexamita sp. might possess 

hydrogenosome with the same metabolic pathways which are also present in the 

hydrogenosome of S. salmonicida. On the other hand, S. vortens mitochondrial organelle has 

lost its ability to produce hydrogen and synthetize ATP during the reductive evolution and 

transformed into the mitosome, same organelle that is found in Giardia species. The only 

difference between the Giardia and S. vortens mitosomes is the absence of SHMT and 

hydrogenase maturases in Giardia. My hypothetical scheme of the reductive evolution in 

diplomonads is depicted in Figure 35. It might be interesting to analyze the genomes of 
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Octomitus, Trimitus or for example one of Enteromonas species, in order to better understand 

this mitochondrial reductive evolution processes. It might clarify, whether the mitochondrial 

organelle of Octomitus is the transitional state between the possible hydrogenosome-like 

organelle of common diplomonad ancestor and the mitosome of Giardia. Another question is, 

if Trimitus species possess the same mitochondrial organelle as Hexamita sp. since they are 

close relatives (according to the SSU rRNA phylogenetic tree). Also, genome sequencing of 

parasitic Hexamita species (for example Hexamita salmonis or Hexamita meleagridis) might 

uncover the interesting correlation between mitochondrial organelles of free-living and 

parasitic diplomonads. 

 

Figure 35. Proposed scheme of reductive evolution of mitochondrial organelle in diplomonads. Red arrows illustrate loss 
of described metabolic functions. Green arrow indicates the secondary acquisition of ATP synthesis. 
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7. Conclusion 
   

This work was focused on determination of mitochondrion-related organelles in 

diplomonad species S. vortens and Hexamita sp. I detected double membrane bound 

organelles of both protist using TEM and described their structure. The homologous 

antibody against hydrogenase and HydE of S. vortens has been developed. Using the 

western blot analysis and immunofluorescence microscopy, cytosolic localization of 

hydrogenase in S. vortens has been suggested. HydE was experimentally localized to the 

possible mitochondrial organelle of S. vortens. In addition to that, overexpression of IscU, 

HydE and HydG was performed in the S. vortens transfected cells. All three proteins were 

detected in the vesicles that might be mitochondrial organelle using both the western blot 

analysis and immunofluorescence microscopy. Unfortunately, no double-transfected strains 

were established to perform co-localization studies. 

 Homologous anti-HydG antibody was not successfully developed. Available antibody 

against S. vortens Cpn60 was not considered as suitable for the labeling of the 

mitochondrion organelle. Four heterologous antibodies raised against IscU, IscS, Tom40 

and Cpn60 of G. intestinalis were tested. Using the western blot analysis, none of them 

showed exclusive localization of the protein to the mitochondria of S. vortens. Results from 

the immunofluorescence microscopy showed that heterologous IscU antibody labeled small 

vesicles that might be considered as mitochondrial organelles. However, no co-localization 

experiments using the anti-IscU antibody from G. intestinalis were performed. 

 DNA and RNA from Hexamita sp. has been extracted and sequenced. Genomic data 

were used for the identification of mitochondrial proteins. ATP synthesis, production of 

hydrogen, conversion of serine into glycine using the SHMT, H-cluster synthesis and Fe-S 

cluster synthesis were predicted to the hypothetical mitochondrial organelle of Hexamita. 

 Based on the experimental data presented in this thesis, mitochondrial organelle of S. 

vortens was classified as the mitosome. Hexamita sp. mitochondria was proposed to be the 

hydrogenosome. 
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8. List of abbreviations 
 

ACS = Acetyl-CoA synthetase 

ASCT = Acetate:succinate CoA-transferase 

ATCC = American Type Culture Collection 

ATP = adenosine triphosphate 

BIOCEV = Biotechnology and Biomedicine Center in Vestec 

CBB = Coomassie Brilliant Blue solution 

CDGPP = CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase 

CIA = Cytosolic Iron-sulfur cluster assembly pathway 

DAPI = 4′,6-Diamidine-2′-phenylindole dihydrochloride 

DHG = Dehydroglycine 

DIC = Differential interference contrast 

EDTA = Ethylenediaminetetraacetic acid 

FBA = Fructose bisphosphate aldolase 

GCS = Glycine cleavage system 

ISC = Iron-sulfur cluster assembly pathway 

JGI = Joint Genome Institute 

LB = Luria-Bertani broth medium 

NIF = Nitrogen fixation pathway 

PacBio SMRT = Pacific Biosciences single molecule real time sequencing 

PBS = Phosphate buffered saline 

PDH = pyruvate dehydrogenase 

PFL = pyruvate formate lyase 

PFO = pyruvate:ferredoxin oxidoreductase 

PNO = pyruvate:NADP+ oxidoreductase 

PSD = Phosphatidylserine decarboxylase 

SAM = S-adenosylmethionine 

SCS = Succinyl-CoA synthetase 

SHMT = Serine hydroxymethyltransferase 

ST = Sacharose-Tris buffer 

SUF = Sulfur mobilization pathway 

TEM = Transmission electron microscopy 

TGS = Tris-Glycine-SDS buffer 
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TLCK = Tosyl-L-lysine-chlormethylketone 

X-gal = 5-bromo-4-chloro-3-indolyl-β-D-galactoside 
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