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Abstract

This thesis is mainly about classical planning for artificial intelligence (AI).
In planning, we deal with searching for a sequence of actions that changes

the environment from a given initial state to a goal state. Planning problems
in general are ones of the hardest problems not only in the area of AI, but
in the whole computer science. Even though classical planning problems
do not consider many aspects from the real world, their complexity reaches
EXPSPACE-completeness. Nevertheless, there exist many planning systems
(not only for classical planning) that were developed in the past, mainly
thanks to the International Planning Competitions (IPC).

Despite the current planning systems are very advanced, we have to boost
these systems with additional knowledge provided by learning. In this the-
sis, we focused on developing learning techniques which produce additional
knowledge from the training plans and transform it back into planning do-
mains and problems. We do not have to modify the planners.

The contribution of this thesis is included in three areas. First, we pro-
vided theoretical background for plan analysis by investigating action de-
pendencies or independencies. Second, we provided a method for generating
macro-operators and removing unnecessary primitive operators. Experimen-
tal evaluation of this method brought promising results, because we were able
in many cases to boost planners’ performance at the cost of the little time
spent on learning. Third, we provided a method for eliminating unnecessary
actions. Like the previous method, this method gathered also very promising
results, because we were also able to boost planners’ performance at the cost
of the little time spent on learning.

viii



Chapter 1

Introduction

This thesis presents results achieved during my PhD study at Charles Uni-
versity in Prague. This thesis is about learning techniques used for classical
planning for Artificial Intelligence (AI).

AI planning deals with the problem of finding a sequence of actions trans-
forming the world from some initial state to a desired goal state. Generally,
solving planning problems is about search, where we exhaustively test pos-
sible alternatives (action sequences in this case) whether they lead (or not)
to the solution. Even for the simplest planning problems the number of such
alternatives is very high which classifies planning problems as ones of the
hardest problems in AI1. It means that we still require innovations which
can improve techniques for solving planning problems. In addition, planning
problems have utilization in practice, for example, in manufacture process,
autonomous agent planning etc.

The research in the planning area is holding several decades. During this
time, many promising planning techniques have been developed. Especially,
since 1998, every two years the International Planning Competition (IPC)
is being organized. It results in development of many advanced planning
systems and significant improvement of the planning process. Despite this
improvement, many planning problems still remain hard and challenging.

An opportunity to help the planners rests in gathering additional knowl-
edge hidden in planning domains or problems, so called learning for plan-
ning. By this additional knowledge we can mean macro-operators, relations

1Classical planning problems, we are focusing on in this thesis, do not consider many
aspects normally appearing in the real world, but still the complexity of classical planning
remains very high (EXPSPACE-complete).
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between predicates or operators etc. Despite the idea of learning for planning
is not very new [25], there are not so many techniques supporting this. In
2008, the learning track was firstly organized on the IPC. It may cause that
learning for planning become the one of the most growing research areas in
near future.

1.1 Contributions

The contributions presented in this thesis are related to learning for classical
planning. We focused on developing such learning techniques that produce
additional knowledge from training plans and transform it back into planning
domains or problems. It means that we do not have to modify the planners’
source code.

First, we proposed a theoretical background describing action dependen-
cies and independencies in plans and possibilities of plan decompositions [18].
In addition, we studied possibilities of making plans shorter [15] and we found
out that if actions match specific criteria, then they can be removed from
the plan without losing its validity.

Then, we proposed a method for generating macro-operators by investiga-
tion of action dependencies and independencies in training plans. It has been
initially studied in [18] and more thoroughly studied in [16]. The method is
used for learning macro-operators from simpler training plans (generated by
the common planners), the learned macro-operators are encoded back into
the domains and the primitive operators replaced by the macro-operators are
removed from the domains. Such domains can be passed to planners without
modifying the source code of planners.

Finally, we proposed a method that is able to detect connectivity (called
entanglements) between initial or goal predicates and operators from given
training plans and encode it back into planning domains and their related
planning problems. Again the transformed domains and problems can be
easily passed to existing planners. The advantage of the method rests in
pruning unnecessary instances of operators.

All the contributions presented in this thesis were published in interna-
tional conferences or workshops. All the papers were reviewed by at least
two experts in the given areas.
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1.2 Thesis overview

This thesis is organized as follows:

Chapter 2: Classical planning – This chapter is devoted to preliminaries
for classical planning and give the readers an overview of the research
status and existing approaches in this area.

Chapter 3: Learning for classical planning – This chapter is devoted
to a brief introduction and overview of learning techniques that are
currently used for classical planning.

Chapter 4: Action dependencies in plans – This chapter is devoted to
a description of action dependencies and independencies in plans and
discusses some theoretical results in this area.

Chapter 5: Learning macro-operators by plans investigation – This
chapter is devoted to the method for learning macro-operators.

Chapter 6: Eliminating unpromising actions – This chapter is devoted
to eliminating actions that are unnecessary for the planning process.

Chapter 7: Conclusion and future work – In this chapter, we conclude
this thesis and give possible directions of future research.

Summarized, chapters 2 and 3 serve as an introduction of classical plan-
ning and learning techniques used in planning and discuss related works in
these areas. Chapters 4-6 presents new results gathered during my PhD
studies.

3



Chapter 2

Classical planning

This chapter is devoted to preliminaries for classical planning which are re-
quired to fully understand to the text of this thesis as well as to give the
readers an overview of the research status and existing approaches in this
area.

2.1 Motivation

Planning [34] is an important branch of artificial intelligence (AI). Despite
significant improvements of the planning process during last decades many
planning problems remain hard and challenging, because planning itself has
been proved [12, 28] as one of the hardest problems in the whole AI.

Traditionally, AI planning deals with the problem of finding a sequence
of actions transforming the world from some initial state to a desired goal
state. In figure 2.1 there is showed a simple example of a classical planning
problem. In this particular case we want to find a sequence of actions for a
robotic hand for swapping blocks A and B. We consider that the hand is able
to unstack a block from another block, pick up a block from the table, stack a
block to another block and finally put down a block to the table. Intuitively,
we know that every action can be performed if particular conditions are
satisfied (for instance the hand must be empty before picking or unstacking
the block). We also know that after the performance of some action the
world will be modified. The feasible solution (plan) of our example is showed
in figure 2.2. In addition, the presented solution is optimal (regarding the
plan’s length) because there does not exist any plan with a smaller length.
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Figure 2.1: Example of a planning problem

Such kind of a problem we have just informally introduced is usually called a
classical planning problem. In classical planning we consider such problems
that do not care about time, resources and uncertainty. Nevertheless there
exist extensions of classical planning that can handle those features.

Planning is also essential for many real world problems where an appli-
cation of autonomous robots or agents is necessary. A good example of such
an application is space exploring missions. One of the first successful appli-
cations of planning in space exploration was the Deep Space 1 mission [7].
During the mission there was applied the Autonomous Remote Agent sys-
tem [60], software based on planning techniques. Another application of
planning in space exploration was used during the Mars Rover mission [1, 53],
where the autonomous vehicles (rovers) were successfully used for Mars explo-
ration. The newest results in the area of planning usage in space exploration
are presented for example in [13, 14]. Beside the space exploration there
are many other applications of planning in practice, for example planning
of manufacturing processes [61], planning routes for drivers with different
preferences [71] or planning autonomous robots in rescue missions [24, 67].

2.2 Representation

In the previous section we informally introduced classical planning. This
section is devoted to a formal description of classical planning. We discuss
three different ways how to represent classical planning [34] where all the
ways are equivalent in their expressive power. Classical planning is based on

5



Figure 2.2: Example of a solution of a planning problem

a state-transition system1 which is a deterministic, static, finite and fully ob-
servable with implicit time and restricted goals [34]. In addition, we assume
that this system does not consider contingent events (i.e., events that may
suddenly change the state).

2.2.1 Set-theoretic representation

In the set-theoretic representation there is a finite set of propositional sym-
bols intended to represent various propositions about the world. For exam-
ple, proposition carryingA specifies that the crane is carrying block A and
proposition clearB specifies that no box is stacked on box B.

1State-transition system is an abstract machine that consists of a set of states and
transitions between states. State transition systems with a finite number of states and
transitions can be represented as directed graphs.

6



Definition 2.1: Let L = {p1, . . . pn} be a finite set of propositional sym-
bols. A (set-theoretic) planning domain on L is a restricted state-transition
system Σ = (S,A, γ) such that:

• S ⊆ 2L, i.e., each state s ∈ S is a subset of L. If p ∈ s then p holds
in the state represented by s, and if p 6∈ s then p does not hold in the
state represented by s.

• Each action a ∈ A is a triple of subsets of L, which we will write as
a = (p(a), e−(a), e+(a)). The set p(a) is called the precondition of a,
the set e−(a) is called the negative effects of a and the set e+(a) is
called the positive effects of a. We require these two sets of effects to
be disjoint (e−(a)∩ e+(a) = ∅). Action a is applicable (or performable)
to state s if p(a) ⊆ s.

• S has the property that if s ∈ S then for every action a that is applica-
ble to s, (s\e−(a))∪e+(a) ∈ S. It means that if an action is applicable
to a state then after the application of the action to the state, another
state is produced.

• The state-transition function γ : S × A → S is defined such that
γ(s, a) = s \ e−(a)) ∪ e+(a) if a ∈ A is applicable to s ∈ S, γ(s, a) is
undefined otherwise.

• We can extend the transition function for sequences of actions. γ(s, 〈〉) = s,
γ(s, 〈a1, . . . , ak〉) = γ(γ(s, a1), 〈a2, . . . , ak〉) if a1 is applicable to s and
γ(s, 〈a1, . . . , ak〉) is undefined otherwise.

Definition 2.2: A (set-theoretic) planning problem is a triple P =
(Σ, s0, g) where:

• s0 ∈ S is an initial state.

• g ⊆ L is a set of goal propositions that give the requirements that a
state must satisfy in order to be a goal state, i.e. Sg = {s ∈ S | g ⊆ s}
is a set of goal states.

Definition 2.3: A plan is a sequence of actions π = 〈a1, . . . ak〉, where
k ≥ 0. The length of the plan π is |π| = k, where k represents the number
of actions. Let P = (Σ, s0, g) be a planning problem. A plan π is a solution
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for P if g ⊆ γ(s0, π). π is minimal if no other solution for P contains fewer
actions than π.

Remark 2.4: In classical planning the minimality of a plan means the
optimality of the plan.

We have formally defined what the planning domain, the planning prob-
lem and the plan mean (in the set-theoretic representation). Straightfor-
wardly, the planning domain describes the world with its own rules, the
planning problem describes the task we want to solve in the world and the
plan represents the solution of the task. In practice the planning domain is
defined only by a (finite) set of proposition symbols (L) and a (finite) set of
actions (A). This is because the state space (S) can be very large (up to 2L

elements) even for small domains. If we recall the example from figure 2.1
then the (set-theoretic) planning domain can be defined as showed in fig-
ure 2.3 and the (set-theoretic) planning problem can be defined as showed in
figure 2.4. Despite the set-theoretic representation is quite straightforward it
has a big disadvantage. The set-theoretic planning domain depends on the
exact number of objects in a particular planning problem because we have
to define the propositions and the actions for every object apart.

2.2.2 Classical representation

The classical representation generalizes the set-theoretic representation by
replacing the proposition symbols by the first-order logic predicates. It gives
us a possibility to bypass the main disadvantage of the set-theoretic repre-
sentation allowing us to define the planning domains independently of the
exact number of objects in particular planning problems.

Definition 2.5: A planning operator is a 4-tuple o = (n(o), p(o), e−(o), e+(o))
whose elements are defined as follows:

• n(o), the name of the operator o, is an expression of the form name(x1, . . . , xk)
where name is called an operator symbol (or name), x1, . . . , xk are all of
the variable symbols that appear in the operator, and name is unique.

• p(o), e−(o) and e+(o) are generalizations of the preconditions, negative
and positive effects of the set-theoretic action (instead of being sets of
propositions, they are sets of predicates).
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Proposition symbols: onAB, onBA, ontableA, ontableB, clearA, clearB,
carryingA, carryingB, handempty.

Actions:

pickupA = { p = {ontableA, clearA, handempty},
e− = {ontableA, clearA, handempty},
e+ = {carryingA} }

pickupB = { p = {ontableB, clearB, handempty},
e− = {ontableB, clearB, handempty},
e+ = {carryingB} }

putdownA = { p = {carryingA},
e− = {carryingA},
e+ = {ontableA, clearA, handempty} }

putdownB = { p = {carryingB},
e− = {carryingB},
e+ = {ontableB, clearB, handempty} }

unstackAB = { p = {onAB, clearA, handempty},
e− = {onAB, clearA, handempty},
e+ = {carryingA, clearB} }

unstackBA = { p = {onBA, clearB, handempty},
e− = {onBA, clearB, handempty},
e+ = {carryingB, clearA} }

stackAB = { p = {carryingA, clearB},
e− = {carryingA, clearB},
e+ = {onAB, clearA, handempty} }

stackBA = { p = {carryingB, clearA},
e− = {carryingB, clearA},
e+ = {onBA, clearB, handempty} }

Figure 2.3: Example of a set-theoretic planning domain

9



Initial state:

s0 = {ontableB, onAB, clearA, handempty}

Goal propositions:

g = {ontableA, onBA, clearB, handempty}

Figure 2.4: Example of a set-theoretic planning problem

Remark 2.6: The states in the classical representation are represented
by sets of grounded predicates. Actions are grounded instances of planning
operators. Actions applicability and results of actions performance are sim-
ilar to the set-theoretic representation (instead of the propositions we have
the grounded predicates). We do not consider the function symbols in the
classical representation.

Definition 2.7: Let L be a first-order language that has finitely many
predicate symbols and constant symbols. A (classical) planning domain in
L is a restricted state-transition system Σ = (S,A, γ) such that:

• S ⊆ 2{all ground atoms of L}

• A = {all ground instances of operators in O}, where O is a set of op-
erators as defined before.

• γ(s, a) = s \ e−(a)) ∪ e+(a) if a ∈ A is applicable to s ∈ S, and γ(s, a)
is undefined otherwise.

• S is closed under γ which means that if s ∈ S then for every action
a ∈ A that is applicable to s, γ(s, a) ∈ S.

Definition 2.8: A (classical) planning problem is a triple P = (Σ, s0, g),
where:

• s0 ∈ S is the initial state.

• g is any set of grounded predicates - the goal

• Sg = {s ∈ S | g ⊆ s}

10



Predicate symbols: on(X, Y ), ontable(X), clear(X), carrying(X),
handempty.

Actions:

pickup(X) = { p = {ontable(X), clear(X), handempty},
e− = {ontable(X), clear(X), handempty},
e+ = {carrying(X)} }

putdown(X) = { p = {carrying(X)},
e− = {carrying(X)},
e+ = {ontable(X), clear(X), handempty} }

unstack(X,Y ) = { p = {on(X, Y ), clear(X), handempty},
e− = {on(X, Y ), clear(X), handempty},
e+ = {carrying(X), clear(Y )} }

stack(X,Y ) = { p = {carrying(X), clear(Y )},
e− = {carrying(X), clear(Y )},
e+ = {on(X, Y ), clear(X), handempty} }

Figure 2.5: Example of a classical planning domain

Initial state:

s0 = {ontable(B), on(A,B), clear(A), handempty}

Goal predicates:

g = {ontable(A), on(B,A), clear(B), handempty}

Figure 2.6: Example of a classical planning problem

11



We have formally defined the classical representation for classical planing,
where we used the predicates instead of the propositions that we used in
the set-theoretic representation. In practice the planning domain is defined
(likewise in the set-theoretic representation) by a (finite) set of predicates (L)
and a (finite) set of planning operators (O). If we recall again the example
from figure 2.1 then the (classical) planning domain can be defined as showed
in figure 2.5 and the (classical) planning problem can be defined as showed
in figure 2.6. In the classical representation the planning domain does not
depend on the exact number of objects in particular planning problems. This
brings a big advantage against the set-theoretic representations, because we
can use the same planning domain definition for all the planning problems
that can be defined under this domain. In addition, the classical planning
problems can be easily transformed to the set-theoretic planning problems
by grounding.

2.2.3 State-variable representation

The state-variable representation differs from the set-theoretic and classical
representations by using of functions instead of the logic-based propositions
or predicates. Let D be a set of all constant symbols in a planning domain.
D can be partitioned into various classes of constants (for instance trucks,
boxes, cranes etc.). We will represent each constant by an object symbol (i.e.,
truck1, box2,crane1 etc.). To write the unground expressions, we will use the
object variables that range over the sets of constants. Each object variable v
has a range Dv that is the union of one or more classes. A term is either a
constant or an object variable.

Definition 2.9: Let fo : S → P be an explicit function, such that the
value of fo(s) gives the unique property p ∈ P of object o in state s. Here,
the symbol fo is a state-variable symbol that denotes a state-variable function
whose values are characteristic attributes of the current state.

For example, state-variable function on(A) specifies which block is stacked
on the block A, i.e., if on(A) = B, then block B is stacked on the block A.

Definition 2.10: A k-ary state variable is an expression of the form
x(v1, . . . , vk), where x is a state-variable symbol, and each vi is either an
object symbol (partitioned into disjoint classes, corresponding to the object
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of the domain) or an object variable (ranges over a class or the union of
classes of constants). A state variable denotes an element of the state-variable
function:

x : Dx
1 ×Dx

2 × . . .×Dx
k × S → Dx

k+1

where Dx
i ∈ D is the union of one or more classes.

Definition 2.11: A planning operator is a 4-tuple o = (n(o), p(o), e−(o), e+(o))
whose elements are defined as follows:

• n(o), the name of the operator o, is an expression of the form name(u1, . . . , uk)
where name is called an operator symbol (or name), u1, . . . , uk are all
of the variable symbols, and name is unique.

• p(o) is a set of expressions on the state variables and relations (for
instance, x(t1, . . . tk) = y(t1, . . . tl) or x(t1, . . . tk) > z(t1, . . . tm))

• e(o) is a set of assignments of values to the state variables of the form
x(t1 . . . , tk) ← tk+1, where each ti is a term in the appropriate range.

Definition 2.12: Let L be a planning language in the state variable
representation defined by a finite set of state variables X and by a finite set
of rigid relations R (properties that do not vary from one state to another). A
(state-variable) planning domain in L is a restricted state-transition system
Σ = (S, A, γ) such that:

• S ⊆ ∏
x∈X Dx, where Dx is the range of the ground state variable x; a

state s is denoted s = {(x = c) | x ∈ X}, where c ∈ Dx.

• A = {all ground instances of operators in O that meet the relations
in R}, where O is a set of operators as defined before; an action a is
applicable to a state s iff every expression (x = c) ∈ p(a) is also in s.

• γ(s, a) = {(x = c) | x ∈ X}, where c is specified by an assignment
x ← c in e(a) if there is such an assignment, otherwise (x = c) ∈ s.

• S is closed under γ which means that if s ∈ S then for every action a
applicable to s γ(s, a) ∈ S.

Definition 2.13: A (state-variable) planning problem is a triple P =
(Σ, s0, g), where s0 is an initial state in S and the goal g is a set of expres-
sions on the state variables in X.
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State-variable functions: on(X), ontable(X), holding().

Actions:

pickup(X) = { p = {ontable(X) = 1, on(X) = null, holding = null},
e = {ontable(X) ← 0, holding ← X} }

putdown(X) = { p = {holding = X},
e = {ontable(X) ← 1, holding ← null} }

unstack(X, Y ) = { p = {on(Y ) = X, on(X) = null, holding = null},
e = {on(Y ) ← null, holding ← X} }

stack(X, Y ) = { p = {holding = X, on(Y ) = null},
e = {on(Y ) ← X, holding ← null} }

Figure 2.7: Example of a state-variable planning domain

Initial state:

s0 = {ontable(B) ← 1, ontable(A) ← 0, on(A) ← B, on(B) ← null, holding ← null}

Goal predicates:

g = {ontable(A) = 1, on(B) = A, on(B) = null, handempty = null}

Figure 2.8: Example of a state-variable planning problem
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We have formally defined the state-variable representation for classical
planing, where, instead of the set-theoretic or the classical representations, we
used the (state-variable) functions for representation of the properties of the
world. Here, we do not have to distinguish between the positive and negative
effects, because the effects in the state-variable representation mean changes
of the values of state-variable functions. In practice the planning domain
is defined (likewise in the other representations) by a (finite) set of state-
variable functions and a (finite) set of planning operators. If we recall again
the example from figure 2.1 then the (state-variable) planning domain can
be defined as showed in figure 2.7 and the (state-variable) planning problem
can be defined as showed in figure 2.8. Like in the classical representation
the state-variable planning domain does not depend on the exact number of
objects in particular planning problems. As we said before the state-variable
representation and the classical representation have equivalent expressivity.
The predicates from the classical representation can be easily represented by
the state-variable functions with values {0, 1}. State-variable functions from
the state-variable representation can be represented by predicates as follows:

• x(t1, . . . , tn) = v (appearing in the initial states, the goals and the
preconditions) is replaced by x(t1, . . . , tn, v).

• x(t1, . . . , tn) ← v (appearing in the effects) is replaced by x(t1, . . . , tn, v)
(positive effect) and ¬x(t1, . . . , tn, w) (negative) , and also put x(t1, . . . , tn, w)
into the operator’s precondition.

Classical and state-variable representations are more expressive than the set-
theoretic representation even though all the representation schemes can still
represent the same set of planning domains. A set-theoretic representation of
a planning problem may take exponentially more space than the equivalent
classical or state-variable representation.

2.3 Complexity of classical planning

As mentioned before, classical planning, even though it is decidable [28], is
one of the hardest classes of AI problems. For the set-theoretic (or ground
classical) representation of classical planning, it has been proven in [12]
that the complexity of plan existence is PSPACE-complete depending on
the length of the particular problem representation. For classical represen-
tation, it has been proven in [28] that the complexity of plan existence is
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EXPSPACE-complete depending on the length of the particular problem rep-
resentation. Similarly, for state-variable representation, it has been proven
in [46] that the complexity of plan existence is EXPSPACE-complete depend-
ing on the length of the particular problem representation. The difference of
the complexity between set-theoretic representation and the other represen-
tations rests in the fact that an equivalent set-theoretic representation may
take exponentially more space than the other representations. These com-
plexity results refer to classical planning in general, giving upper bounds to
domain-independent planning systems. However, these bounds lie too high,
making classical planning (recall that classical planning is quite restricted)
very hard and challenging. On the other hand, it has been proven in [37, 40]
that many planning domains and their related planning problems can be
much easier (P or NP).

2.4 Extensions to classical planning

Classical planning itself is not expressive enough to be able to take into
account different quantities such as time, resources, or uncertainty.

Planning with resources [6, 36] extends classical planning by adding of
(consumable) resources like fuel, energy or containers capacity. Resources
are usually represented by integer functions with value range 〈0, c〉, where c
represents the maximal capacity of a particular resource storage.

Temporal planning [2, 3, 52] extends classical planning by adding dura-
tions into actions. Instead of having immediate effect of action performance
in classical planning, in temporal planning every action performance takes
some time, i.e., effects of an action may be considered when the action per-
formance is finished.

Planning under uncertainty [23, 30] extends classical planning by adding
uncertainty to effects of actions and to initial states. Usually uncertainty is
represented by probability values attached to predicates, telling us what a
chance of a predicate to be presented in a particular state is. A special case
of planning under uncertainty is partially observable planning [70], where we
are not able to gather full information about the world.

Hierarchical task network (HTN) planning [27, 62] uses a different point
of view to planning. In HTN planning the problem definition does not consist
of primitive operators only like in the classical planning but also the non-
primitive operators assembled from the primitive and non-primitive ones.
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2.5 Planning domain definition language

Planning Domain Definition Language (PDDL) [33] is a LISP-based language
for formalization of planning domains and planning problems. PDDL became
very popular since it has been used in the International Planning Competi-
tions (IPC). Foundations of PDDL are related to STRIPS language [29]. It
allows to define the planning operators and the planning problems analogous
to the classical representation. PDDL, however, incorporates many other
additional features. The most common one is typing which assigns objects
their own types (like blocks, depots, trucks etc.). If we extend our example
by allowing multiple number of robotic hands, then the planning domain can
be represented in PDDL like in figure 2.9 and a sample planning problem
can be represented in PDDL like in figure 2.10.

One of the well known extensions of PDDL is ADL [64]. ADL allows
to encode negative preconditions, conditional effects, disjunctive goals etc.
However, those features required more complex kind of representation, be-
cause none of the three representations discussed in this thesis do not fully
support these features. Another extension of PDDL called fluents [56] allows
to define the state-variable or numeric functions. Last but not least interest-
ing extension of PDDL is Probabilistic PDDL [69] which is used for planning
under uncertainty. PDDL, certainly, has many more extensions that can be
used to represent, for example, durative actions, additional constraints and
so on.

2.6 State-of-the-art planners

If we recall that the classical planning is based on a restricted state-transition
system, then the first idea how to solve planning problems might refer to a
problem of path finding in directed graphs. Despite it looks quite straight-
forwardly such an approach is, however, almost impossible even for simpler
problems, because the number of states in such state-transition systems is
extremely huge. Classical approaches [34] use classical forward (from an ini-
tial state to a goal state) or backward (from a goal state to an initial state)
search, usually accommodated with heuristics [10]. Neo-classical approaches
are based on a structure called planning graph [9] which can significantly
improve the planning process by removing of symmetries (actions that can
be performed in any order obtaining the same state) that may occur during
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(define (domain blocksworld)

(:requirements :typing) (:types block hand)

(:predicates (clear ?b-block)

(on-table ?b - block)

(empty ?h - hand)

(holding ?h - hand ?b - block)

(on ?b1 ?b2 - block))

(:action pickup

:parameters (?h - hand ?b - block)

:precondition (and (clear ?b) (on-table ?b) (empty ?h))

:effect (and (holding ?h ?b) (not (clear ?b)) (not (on-table ?b))

(not (empty ?h))))

(:action putdown

:parameters (?h - hand ?b - block)

:precondition (holding ?h ?b)

:effect (and (clear ?b) (empty ?h) (on-table ?b)

(not (holding ?h ?b))))

(:action stack

:parameters (?h - hand ?b ?underb - block)

:precondition (and (clear ?underb) (holding ?h ?b))

:effect (and (empty ?h) (clear ?b) (on ?b ?underb)

(not (clear ?underb)) (not (holding ?h ?b))))

(:action unstack

:parameters (?h - hand ?b ?underb - block)

:precondition (and (on ?b ?underb) (clear ?b) (empty ?h))

:effect (and (holding ?h ?b) (clear ?underb)

(not (on ?b ?underb)) (not (clear ?b)) (not (empty ?h)))))

Figure 2.9: Example of a typed strips PDDL planning domain
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(define (problem blocksworld-n10-1)

(:domain blocksworld)

(:requirements :typing)

(:objects h - hand b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 - block)

(:init

(empty h)

(on b1 b7)

(on-table b2)

(on-table b3)

(on-table b4)

(on-table b5)

(on b6 b9)

(on-table b7)

(on b8 b10)

(on-table b9)

(on b10 b6)

(clear b1)

(clear b2)

(clear b3)

(clear b4)

(clear b5)

(clear b8)

)

(:goal (and

(on b4 b2)

(on b5 b10)

(on b7 b5)

(on b8 b9)

(on b10 b4))

) )

Figure 2.10: Example of a typed strips PDDL planning problem
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classical backtrack search.
Since 1998, planning systems recorded a significant improvement thanks

to the International Planning Competition (IPC)2. IPC is being held bian-
nually, where many planners are challenging each other in a growing num-
ber of competition’s tracks. One of the most famous planners is Fast For-
ward (FF) [42] which won the 2nd IPC and was a top performer in STRIPS
track on the 3rd IPC. FF is a forward chaining heuristics state space plan-
ner, where the heuristics tries to estimate the solution length by relaxing
of the original planning problem by removing of negative effects of planning
operators. FF has many extensions - for example Metric-FF [41] which can
handle with numeric state variables or Probabilistic-FF [26] for planning un-
der uncertainty. The other famous planner which was awarded on the 3-rd
and the 4-rd IPC is LPG [32]. LPG is based on local search and planning
graph techniques and can handle numeric functions and durative actions.
The best performance in optimal deterministic propositional planning track
of the 5th IPC had SATPLAN [48] and MAXPLAN [68], planners based
on the transformation of planning problems into boolean satisfiability [47].
SATPLAN also won the same track on the 4th IPC. An absolute winner of
the 5th IPC in the all sub-optimal deterministic tracks was SGPLAN [44].
SGPLAN is a planner that decomposes problems into subproblems, then it
solves them by FF-based techniques. LAMA [65] won the sub-optimal track
in the 6th IPC. LAMA is based on FF-based heuristics and Causal Graph
heuristics (similarly to Fast Downward planner).

2http://ipc.icaps-conference.org
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Chapter 3

Learning for classical planning

This chapter is devoted to a brief introduction and overview of basic learning
techniques that are used for classical planning. We discuss mainly techniques
related to analysis of planning domains, problems or plans that can gather
knowledge used for improving of solving efficiency for more complex planning
problems.

3.1 Motivation

Despite a significant improvement of the planning systems (recall the previ-
ous section) during recent years many planning problems remain hard and
challenging. This is, because the planners are using ‘brute force‘ search
techniques that often recompute results gathered earlier even though such
a search is usually guided by good heuristics. To avoid (or lower) such re-
computations it is required to use a knowledge base. One of the most sig-
nificant works in this area [25] discusses a system called REFLECT which
uses preprocessing for gathering additional knowledge (detecting incompati-
ble predicates or generating macro-operators) required by the solver. Control
rules [59] (i.e., logical rules describing dependencies between predicates or op-
erators) are designed as an additional support for the planners. For instance,
if we recall our example (BlocksWorld domain) we can (informally) define the
following rules:

1. Take down the initial ‘towers‘ of blocks, i.e., all blocks will be on the
table.
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2. Build the goal ‘towers‘.

Simply, we can see that the rules can significantly help the planner making
every BlocksWorld problems. Using of (control) rules is not a new tech-
nique in planning. There are planners supporting control rules, for instance,
well known TALplanner [51] which is based on temporal logic. However,
TALplanner (and other similar based systems) are not able to learn the rules
by themselves. It means that it is required to define the rules by domain
experts or use some approach based on machine learning techniques. In the
following text we focus on such learning techniques that can be used domain
independently (in terms of generality - i.e. the techniques are applicable to an
arbitrary domain even though they generate domain dependent knowledge).

3.2 Existing techniques for domain analysis

Different kinds of domain, problem or plan analysis can be useful for devel-
oping heuristics or gathering other additional knowledge for the planners.
Work [31] refers about action languages, formalisms describing the relations
between the effects of actions. This work describes a couple of action lan-
guages which are divided into two main classes (action description languages
for describing the system and action query languages for making queries to
the system). Another work [54] defines a language for expressing causal
knowledge and gives an approach of formalizing actions. However, the con-
tribution of both of the works is mainly theoretical. Opposite to these works
we did not only focus on the theoretical framework, but we also took into
account the possible practical usage (for example, generation of the macro-
operators)

One of the useful tools for analysis of planning problems is called Land-
marks [43] - facts that must be true in some point of every valid plan. Land-
marks serve like ‘navigators‘ of the searching process. However, finding such
Landmarks and their ordering is PSPACE-complete. Hopefully, there is a
greedy algorithm for finding ordered Landmarks which is, however, not sound
but anyway it gathered good results in connection with FF or LPG planner.

In [49] there is presented a structure called Causal Graph, useful for
domain (and problem) analysis. Graph G = (V,E) (for domain analysis) is
a directed graph, where vertices (V ) are representing propositions and edges
(E) are defined in the following way:
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• If there exists an action a such that p ∈ e+(a)∪e−(a)∧q ∈ e+(a)∪e−(a),
then (p, q) ∈ E and (q, p) ∈ E

• If there exists an action a such that p ∈ e+(a) ∪ e−(a) ∧ q ∈ p(a), then
(p, q) ∈ E

Causal Graph is obtained from G in such a way that all strongly connected
components in G are reduced to single vertices. Applying topological sort
on Causal Graph [49] brings us an abstraction hierarchy which can help us
to decompose planning problems into easier ones. Causal Graph was an
inspiration for developing heuristics presented in [38]. Work [35] discuss
(time) complexity for problems having simple Causal Graph.

Both the Landmarks and the Causal Graph are techniques for domains
or problems analysis. These techniques were used for developing heuristics
that some modern planners use (for example, LAMA). Opposite to these
techniques, we provided the framework for plan analysis that can be used for
the analysis of the training plans.

Another kind of domain analysis rests in detecting of unnecessary actions.
FF planner [42] generates only reachable actions (i.e. actions that can be ap-
plicable at some point of the planning process). In work [39] they go further,
because they try to achieve goals of the planning problem consecutively fo-
cusing on actions that might be relevant for the particular goals. Opposite
to these works, which eliminate only unreachable actions, we are trying to
eliminate actions that are normally reachable, but unnecessary for the plan-
ning process (see Chapter 6). It means that we can use our method together
with these techniques (modern planners usually include them). However,
our method does not ensure that reformulated problems are solvable as the
original ones, but experiments (Section 6.3) showed that it happens only
occasionally.

3.3 Macro-operators and macro-actions

Macro-operators or macro-actions [50] behave like normal planning operators
or actions but they consist of sequences of primitive operators or actions.
Reasons, why macro-operators (or macro-actions) are used in planning pro-
cess, are quite straightforward - reduction of the depth of the search space,
however, for the cost of increase of the branching factor.
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(:action unstack-putdown

:parameters (?h - hand ?x - block ?y - block)

:precondition (and (clear ?y)(on ?y ?x)(empty ?h))

:effect (and (clear ?x)(clear ?y)(ontable ?y)(empty ?h)

(not (on ?y ?x))(not (holding ?y)) )

)

Figure 3.1: Example of a macro-operator

Recalling the BlocksWorld domain, we can define macro-operator UNSTACK-
PUTDOWN (see figure 3.1) which is made by assembling UNSTACK and
PUTDOWN operators (in order). Macro-operators in general can be assem-
bled from two or more (primitive) operators. Formally, operators oi and oj

can be assembled into a macro-operator oi,j in the following way:

• p(oi,j) = (p(oi) ∪ p(oj)) \ e+(oi)

• e−(oi,j) = (e−(oi) ∪ e−(oj)) \ e+(oj)

• e+(oi,j) = (e+(oi) ∪ e+(oj)) \ e−(oj)

It can be easily seen that this approach can be generalized for more operators
by successive assembling of pairs of (macro-)operators. For example, if we
would like to assemble operators oi, oj and ok we assemble oi and oj into oi,j

and then oi,j and ok into oi,j,k. Assembling operators into macro-operators is
more deeply discussed in [20].

The idea of macro-operators (or macro-actions) is not very new. One of
the oldest approaches, STRIPS [29], generates macro-actions from all sub-
sequences of plans. This approach, however, generates many useless macro-
actions. REFLECT [25] builds macro-operators from pairs of primitive op-
erators that are applied successively and share at least one argument. In this
case, macro-operators are learnt directly from the domain analysis. How-
ever, it may also lead to a generation of useless macro-operators. FM [55]
follows the ideas used by STRIPS, but unlike STRIPS, FM compiles learnt
sequences of operators into one single operator representing the whole se-
quence of primitive ones. In addition, FM learns additional knowledge that
help it with instantiating of macro-actions. Even though FM gained a signif-
icant improvement against STRIPS, still it produces many useless and too
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complex macro-operators. MORRIS [58] learns macro-operators for STRIPS
from parts of plans appearing frequently or being potentially useful (but
having low priority). Macro Problem Solver (MPS), presented in [50], learns
macro-actions only for particular goals. It needs different macro-actions when
the problem instances scale or goals are different. MACLEARN [45] gener-
ates macro-actions that can ’traverse’ from one peak of a particular heuristic
function to another peak.

One of the state-of-the-art approaches, MARVIN [21, 22] learns macro-
operators online from actions sequences that help FF-based planners to es-
cape plateaus. It also learns the macro-operators from the plans of the re-
duced versions of the given problems. One of the most outstanding works in
the area of macro-actions is Macro-FF [11], a system for generating macro-
operators through the analysis of static predicates. In addition, Macro-FF
can learn macro-operators from training plans by analyzing successive ac-
tions. Macro-FF is produced in two versions, CA-ED - designed for arbi-
trary planners without changing their code and SOL-EP - planner (in this
case FF) is enchanted for handling macro-operators. WIZARD [63] learns
macro-actions from training plans by genetic algorithms. There are defined
several genetic operators working over action sequences appearing in the
training plans. WIZARD is designed for arbitrary planners. DHG [4, 5] is
able to learn the macro-operators from the static domain analysis by explor-
ing of the graph of dependencies between the operators. Even though these
systems gathered good results there remains a space for improvements.

Our method for generation of the macro-operators (see Chapter 5) is de-
signed for domain-independent planning and for arbitrary planners like the
other systems (for, example WIZARD). The macro-operators can be built
only from dependent operators, in term that one operator provide the predi-
cate (or predicates) to the other one. It is similar to the existing approaches.
Nevertheless, there are some differences between our method and the existing
approaches. We are able to detect pairs of actions that can be assembled into
the macro-actions but the actions do not have to be necessarily successive
in the training plans. In addition, we are able to update the training plans
in such a way that the updated training plans consider generated macro-
operators. So, it is not necessary to run the planners again. It can help
us with another issue, removing of the unnecessary primitive operators that
can be replaced by the generated macro-operators. Despite the potential
loss of completeness of some planning problems, the planners benefit from
the removal of the primitive operators and the experiments we made on IPC
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domains did not reveal any problem that became unsolvable. More thorough
comparison of our method with the existing ones is done in Subsection 5.4.4
(last paragraph).
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Chapter 4

Action dependencies in plans

This chapter is devoted to a description of action dependencies or indepen-
dencies in plans. Likewise the other approaches (like Causal Graph [49]) did,
we focused on developing a theoretical framework as a supporting tool for
learning methods (in our case, macro-operators - see Chapter 5). In addition,
we provided a brief theoretical study regarding using of action dependencies
for plan optimizations.

4.1 Basic aspects of action dependencies

(Sequential) planning is about looking for valid sequences of actions (plans)
which solve the planning problems. The actions usually need certain pred-
icates to be true before the action can be performed. These predicates can
be provided by the initial state or by the other actions that were performed
before. There are several existing techniques for the domain analysis, for
example, previously mentioned Causal Graph [49] or analysis of action de-
pendencies made in DHG [5]. Our approach studied in [18] is focused on
analyzing action dependencies (and independencies) in plans. If we have a
plan solving a planning problem, we can identify which actions are providing
these predicates to other actions. The following definitions describes such
relations formally.

Definition 4.1: Let 〈a1, . . . , an〉 be an ordered sequence of actions. Ac-
tion aj is straightly dependent on action ai (denoted as ai → aj) if and only
if i < j, (e+(ai) ∩ p(aj)) 6= ∅ and (e+(ai) ∩ p(aj)) 6⊆

⋃j−1
t=i+1 e+(at).
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init

a1

a2

a3a4

a8

a9

a6

a5 a7

a10

goal

a1: LIFT(hoist0,crate1,pallet0,depot0)

a2: LOAD(hoist0,crate1,truck1,depot0)

a3: DRIVE(truck1,depot0,distributor0)

a4: LIFT(hoist1,crate0,pallet1,distributor0)

a5: LOAD(hoist1,crate0,truck1,distributor0)

a6: UNLOAD(hoist1,crate1,truck1,distributor0)

a7: DRIVE(truck1,distributor0,distributor1)

a8: UNLOAD(hoist2,crate0,truck1,distributor1)

a9: DROP(hoist2,crate0,pallet2,distributor1)

a10: DROP(hoist1,crate1,pallet1,distributor0)

Figure 4.1: Example of the relation of straight dependency in Depots domain,
problem depotprob1818

Definition 4.2: Action aj is dependent on action ai if and only if
ai →∗ aj where →∗ is a transitive closure of the relation of straight de-
pendency (→).

Definition 4.3: Let 〈a1, . . . , an〉 be an ordered sequence of actions. Let
E(ai, aj) be a set of predicates defined in the following way:

• E(ai, aj) = (e+(ai) ∩ p(aj)) \
⋃j−1

t=i+1 e+(at) iff ai → aj

• E(ai, aj) = ∅ otherwise

Remark 4.4: Negation of the relations of straight dependency and de-
pendency is denoted in the following way:

• ai 9 aj means that aj is not straightly dependent on ai (i.e. ¬(ai → aj)).

• ai 9∗ aj means that aj is not dependent on ai (i.e. ¬(ai →∗ aj)).

Clearly, it holds that if ai → aj, then ai is the last action in the sequence
that provides a predicate (or predicates) essential for the action aj. This
predicate (or predicates) is stored in E(ai, aj). Notice that an action may
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be straightly dependent on more actions (if it has more predicates in the
precondition). We can extend the definitions by describing that an action is
straightly dependent on an initial state or that a goal is straightly dependent
on some actions. However, to model these dependencies we have to use two
special actions: a0 = (∅, ∅, s0) (s0 represents the initial state) and an+1 =
(g, ∅, ∅) (g represents a set of goal predicates). Action a0 is performed before
the plan and action an+1 is performed after the plan. To get more familiar,
see figure 4.1.

Let us now define the notion of action independency which not necessarily
complementary to action dependency. The motivation behind this notion is
that two independent actions can be swapped in the action sequence without
influencing the plan.

Definition 4.5: Let 〈a1, . . . , an〉 be an ordered sequence of actions. Ac-
tion aj is independent on action ai (denoted as ai = aj) (we assume that
i < j) if and only if ai 9∗ aj, p(ai) ∩ e−(aj) = ∅ and e+(aj) ∩ e−(ai) = ∅.

Remark 4.6 Since the relations of dependency and independency are
not complementary, we define the following symbol:

• ai ↔ aj means that aj is not independent on ai (ie. ¬(ai = aj)).

The symbol for relation of action independency evokes a symmetrical re-
lation even though according to Definition 4.5 the relation is not necessarily
symmetrical. The reason for using the symmetrical symbol is hidden in the
property of the independency relation mentioned bellow (lemma 4.7) [18].
This property can be used to modify the plans without losing their validity.

Lemma 4.7: Let π = 〈a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an〉 be a plan solv-
ing planning problem P = (Σ, s0, g) and ai = ai+1. Then plan π′ =
〈a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an〉 also solves planning problem P .

Proof: Assume that π solves planning problem P . Let sj (respectively s′j)
be a state obtained by performing the first j actions from π (respectively π′).
It is clear that sk = s′k for k ≤ i−1. From the assumption we know that π is
valid which means that sn is a goal state. Now, we must prove that s′n is also
a goal state. From Definition 4.5 we know that e+(ai)∩p(ai+1) = ∅ (otherwise
ai+1 must be dependent on ai which breaks one of the independency condi-
tions) which means that action ai+1 can be performed on state s′i−1 which
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results in state s′i = (s′i−1 \ e−(ai+1)) ∪ e+(ai+1). From definition 4.5 we also
know that e−(ai+1)∩p(ai) = ∅ which means that ai can be performed on state
s′i which results in state s′i+1 = (((s′i−1\e−(ai+1))∪e+(ai+1))\e−(ai))∪e+(ai).
Finally, we know that e+(ai+1) ∩ e−(ai) = ∅ which implies in s′i+1 ⊇ si+1

(si+1 = (((si−1 \ e−(ai)) ∪ e+(ai)) \ e−(ai+1)) ∪ e+(ai+1)). It is clear that
after performing the remaining actions from π′ (beginning from the (i + 2)-
nd action) on state s′i+1 we obtain state s′n ⊇ sn which is also the goal state. 2

The previous lemma showed that any two adjacent actions independent
on the effects can be swapped without loss of validity of plans. This feature
can be easily generalized for longer subsequences of actions where all actions
in the sequence are pairwise independent.

Corollary 4.8: Let π = 〈a1, . . . , ai, . . . , ai+k, . . . , an〉 be a plan solving
planning problem P and ai+l = ai+m for every 0 ≤ l < m ≤ k. Let λ be a
permutation over sequence 〈0, . . . , k〉. Then plan π′ = 〈a1, . . . , ai+λ(0), . . . ,
ai+λ(k), . . . , an〉 also solves planning problem P .

Proof: The proof can be done in the following way. Action ai+λ(0) is
shifted to position i by repeated application of lemma 4.7. The relation
ai+l = ai+m remains valid during these shifts so we can then shift ai+λ(1) to
position i + 1 etc. 2

4.2 Auxiliary algorithms

This section discusses how the relations of action dependencies or indepen-
dencies can be computed from given training plans. The idea of algorithms
for the computation of these relations is quite straightforward. First, we have
to compute the relation of straight dependency (definition 4.1) from a given
training planning problem and a plan solving it. In addition, we compute
also the set of predicates E (definition 4.3). The algorithm (figure 4.2) has a
quite straightforward behavior. Each predicate p is annotated by d(p) which
refers to the last action that created it. We simulate the execution of the
plan and each time action ai is executed, we find the dependent actions by
exploring d(p) for all predicates p from the precondition of ai.
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Procedure COMPUTE-STRAIGHT-DEPENDENCY(IN planning prob-
lem P = (Σ, s0, g), IN plan π = 〈a1, . . . , an〉, OUT straight dependency re-
lation SD, OUT set of predicates E)

1: SD := ∅;
2: ForEach p ∈ s0 do d(p) := 0;
3: For i := 1 to |π| do
4: ForEach j ∈ {d(p) | p ∈ p(ai)} do
5: SD := SD ∪ (aj, ai);
6: E(aj, ai) := {p | d(p) = j ∧ p ∈ p(ai)};
7: EndForeach
8: ForEach p ∈ e+(ai) do d(p) := i;
9: EndFor
10: ForEach j ∈ {d(p) | p ∈ g} do
11: SD := SD ∪ (aj, an+1);
12: E(aj, an+1) := {p | d(p) = j ∧ p ∈ g};
13: EndForeach

Figure 4.2: Algorithm for computation of the relation of straight dependency

Theorem 4.9: Algorithm COMPUTE-STRAIGHT-DEPENDENCY is
sound.

Proof: We must show that for every planning problem P = (Σ, s0, g)
and plan π = 〈a1, . . . , an〉 solving P the algorithm COMPUTE-STRAIGHT-
DEPENDENCY computes the straight dependency relation SD ((aj, ai) ∈
SD iff aj → ai) and the set of predicates E (E(aj, ai) = (e+(aj) ∩ p(ai)) \⋃i−1

t=j+1 e+(at) iff aj → ai (Def. 4.3)). From lines 2 and 8 it is clear that
d(p) always refers to an action which created p (actions in the cycle (lines
3-9) are processed incrementally, i.e., from a1 to an). i-th step of the cycle
(lines 4-7) identifies all actions aj satisfying aj → ai (line 4) and computes
E(aj, ai) (line 6). At first, let us show that all conditions from Definition
4.1 (j < i, (e+(aj) ∩ p(ai)) 6= ∅ and (e+(aj) ∩ p(ai)) 6⊆

⋃i−1
t=j+1 e+(at)) are

met. It is clear that j < i (actions are processed incrementally). We al-
ready showed that if d(p) = j, then p ∈ e+(aj) and there is no action at,
t ∈ 〈j + 1, i− 1〉 such that p ∈ e+(at). Together with j ∈ {d(p) | p ∈ p(ai)}
(line 4) we can see that the remaining conditions are also met. Similarly,
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E(aj, ai) := {p | d(p) = j ∧ p ∈ p(ai)}; (line 6) corresponds with the condi-
tions in Definition 4.3. The soundness of the cycle (lines 10-13) considering
special action an+1 can be proved analogically. 2

Theorem 4.10: Algorithm COMPUTE-STRAIGHT-DEPENDENCY
runs at most in O(n2) steps, where n = |π|.

Proof: It is clear that the cycle (lines 3-9) is performed just n times. The
cycle (lines 4-7 or 10-13) is performed at most n times, because every action
can be straightly dependent only on actions performed before it. Compu-
tation of the set {d(p) | p ∈ p(ai)} (line 4 or 10) can be done in O(|p(ai)|)
(similarly on the 6-th and 12-th line), where the set of all grounded predicates
referring to the given planning problem is extensionally defined (it costs the
constant time to access the particular predicate). If we assume that the ac-
tions’ preconditions or positive effects contain only the small number of pred-
icates (it holds for larger n), then the algorithm COMPUTE-STRAIGHT-
DEPENDENCY runs in O(n2) steps. 2

The relation of straight dependency can be naturally represented as a
directed acyclic graph, so the relation of dependency is obtained as a transi-
tive closure of the (acyclic) graph, for example using the algorithm presented
in [57]. The algorithm runs in the worst case in O(n3) steps.

Independency relation can be computed by testing all pairs of actions,
whether they satisfy the conditions from Definition 4.5. It can be easily seen
that such an approach can be done in O(n2) steps.

4.3 Decomposition of planning problems

Decomposition of planning problems into smaller or easier subproblems seems
to be a very promising technique. Some sort of decomposition has been used
in STRIPS planning method [29], where goals were satisfied successively.
From state-of-the art planners, for instance SGPLAN [44] uses some decom-
position techniques. In this section, we discuss possibilities of decomposition
of planning problems from theoretical point of view with respect to action
dependencies in plans [18].

The following definition formally follows an intuitive idea what a subplan
should stand for.
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Definition 4.11: Let π be a plan solving planning problem P = (Σ, s0, g).
Subplan πi is a subsequence of π (not necessarily continuous) which solves
some planning problem Pi = (Σi, s0i

, gi), where Σi ⊆ Σ.

The following lemma describes how plans can be decomposed into sub-
plans and what relationship is between subplans and planning subproblems.

Lemma 4.12: Let π = 〈a1, . . . , an〉 be a plan solving planning problem
P = (Σ, s0, g), a0 = (∅, ∅, s0) and an+1 = (g, ∅, ∅). Let πi = 〈ai, . . . , ai+m〉
be a subsequence of π. πi is a subplan which solves a planning subproblem

Pi =
(
Σ,

⋃
r∈{0,...,i−1},u∈{0,...,m} E(ar, ai+u),

⋃
s∈{m+1,...,n+1},v∈{0,...,m} E(ai+v, as)

)
.

Proof: It is clear that both π and πi are plans whose actions belong to the
planning domain Σ. The predicates needed for the execution of the subplan
πi can be provided only by the actions performed before the actions from
πi (including the special action a0). These predicates represent the initial
state of subproblem Pi. Analogically we know that predicates obtained by
execution of subplan πi are needed for the other actions from π (including the
special action an+1) that are straightly dependent on them. These predicates
represent the goal of subproblem Pi. 2

Decomposition of a planning problem into subproblems described in lemma
4.12 is made from plans. It means that we have to solve an original problem
before it can be decomposed. It may be accommodated with some learning
techniques that can detect some relationships between the original problems
and its subproblems. Even though we allow picking only subsequences from
the original plans, according to lemma 4.7 the actions in the original plans
can be moved. One example of such a decomposition are macro-operators.
This technique is studied in Chapter 5. Another example of a ‘special‘ kind
of planning subproblems is such a problem whose solution contains actions
that are independent on themselves (due to Corollary 4.8 the actions can be
performed in any order). This idea has been studied in [18] and more deeply
in [17], formally:

Definition 4.13: Let π = 〈a1, . . . , an〉 be a plan solving planning prob-
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lem P = (Σ, s0, g), a0 = (∅, ∅, s0) and an+1 = (g, ∅, ∅). Let level : A → N0

be a function such that:

1. level(a0) = 0

2. For each j < i, where aj ↔ ai level(aj) < level(ai) holds.

3. For each action a level(a) is as small as possible.

Definition 4.14: Let π = 〈a1, . . . , an〉 be a plan solving planning prob-
lem P = (Σ, s0, g), a0 = (∅, ∅, s0) and an+1 = (g, ∅, ∅). Let a sequence of
actions with the same value of level function be a layer. Let slk be an after-
layer state defined as slk =

⋃
E(ai, aj), for every i, j where level(ai) ≤ k and

level(aj) > k.

Layering, introduced in the definitions above, decomposes plans into lay-
ers, where every layer contains actions that are all independent on themselves
(following the point 2 in Def. 4.13), i.e., they can be performed in any order.
After-layer states are such states that are gained after performance of actions
in first k layers. Even though we present here only the definition of layering,
it may be useful in connection with planning techniques based on the Plan-
ning Graph. Even though we did not prove it, we believe that by layering,
we will be able to transform ‘classical‘ sequential plans (i.e., makespan of the
‘classical‘ sequential plans is equal to the number of actions in these plans)
to plans considering parallel actions, usually provided by Planning Graph
based planners, for example, SATPLAN.

4.4 Plans optimization

Investigation of action dependencies can be also useful in plans optimiza-
tion [15]. State-of-the-art planners, however, usually do not provide opti-
mal plans and often the optimality is very low. Complexity results [37, 40]
showed that finding optimal plans can be much more harder than any plans.
Nevertheless, we can provide possible approaches that remove unnecessary
actions from plans making them shorter but of course not optimal at least.
However, provided approaches is currently only in theoretical shape, but we
believe that the approaches will be useful, especially with the other methods
(see Chapter 5 and 6) presented in this thesis.

34



One kind of unnecessary actions are actions that are not required to ac-
quire the goal. In terms of actions dependencies, we mean such actions on
which the special goal action is not dependent.

Proposition 4.15: Let π = 〈a1, . . . , an〉 be a plan solving planning prob-
lem P = (Σ, s0, g), a0 = (∅, ∅, s0) and an+1 = (g, ∅, ∅). Let A = {ai | 0 <
i ≤ n, ai 9∗ an+1} be a set of actions. If all actions from A are removed
from π then the new plan is valid and solves problem P .

Proof: Let A0 = {ai | 0 < i ≤ n, ∀j : aj ∈ π ∨ aj = an+1, ai 9 aj}
be a set of actions, where no other action is straightly dependent on them.
According to Definition 4.1, we know that there is no action from π which
requires predicates provided by actions from A0. It means that actions from
A0 can be removed from π without losing its validity. Let A1 = {ai | 0 < i ≤
n, ∀j : aj ∈ π \ A0 ∨ aj = an+1, ai 9 aj} be a set of actions, where no other
action (except actions from A0) is straightly dependent on them. We showed
before that actions from A0 are unnecessary and can be removed without
losing plan validity. We also know that there is no action from π (except
those from A0) which requires predicates provided by actions from A1. It
means that actions from A1 can be also removed from π without losing its
validity. We can construct sets A2, . . . An analogically (it is clear that Ak = ∅
for k > n) and show that actions in these sets are unnecessary and can be
removed from π without losing its validity. It can be easily observed from the
acyclicity of the relation of straight dependency that A = A0∪A1∪. . .∪An. 2

The successive application of inverse actions on some state results in the
same state as before the application. Planning domains usually contains the
inverse actions (for example, actions PICKUP(A) and PUTDOWN(A)). By
observation of straight dependencies between inverse actions, we are able to
detect useless couples of inverse actions and remove them from plans without
losing their validity.

Proposition 4.16: Let π = 〈a1, . . . , an〉 be a plan solving planning prob-
lem P = (Σ, s0, g), a0 = (∅, ∅, s0) and an+1 = (g, ∅, ∅). Let {i1, . . . , ik} be a
set of indices such that 0 < i1 < . . . < ik ≤ n. Let s = γ(s0, 〈a1, . . . ai1−1〉). If
γ(s, 〈ai1 , ai2 , . . . , aik〉) = s and ∀j, l : 0 ≤ j < k, l 6= ij+1 : aij → aij+1

∧ aij 9
al, then actions ai1 , . . . , aik can be removed from π without losing its validity.
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Proof: It is clear from the assumption that the successive application
of actions ai1 , . . . , aik leads to the same state as before the application. In-
dices i1, . . . ik are not necessarily successive, but together with the condition
that action ai2 is straightly dependent only on ai1 , action ai3 is straightly
dependent only on ai2 etc. we can see that predicates provided by actions
ai1 , . . . , aik−1

are not required by any other action from π (except ai1 , . . . , aik).
Predicates provided by action aik may be required by other actions from π,
but from the assumption we know that all these predicates are presented in
the state before the application of action ai1 . 2

Approach described in Proposition 4.16 can be applied repeatedly until
the assumptions hold. In this case, we are able to remove only the unneces-
sary actions (satisfying the assumptions from Propositions 4.15 and 4.16). As
mentioned before this approach does not provide optimal plans in all cases,
because it does not take into the account certain situations, where some
longer subsequence of actions can be replaced by a shorter one. For exam-
ple, sequence DRIV E(t1, l1, l2), DRIV E(t1, l2, l3) means that truck t1 goes
from l1 to l3 via l2. If we do not need t1 in l2 and there is a direct road from
l1 to l3 we may replace the sequence by a single action DRIV E(t1, l1, l3).
However, for larger sequences it becomes a hard problem.
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Chapter 5

Learning Macro-operators by
plans investigation

This chapter is devoted to a method for learning macro-operators. The
method is based upon investigation of action dependencies and independen-
cies in the training plans [16]. Knowledge learned by the method is domain
dependent, but the method itself is domain independent. The method dif-
fers from the existing ones (for example MacroFF [11]) by the fact, that the
method is able to detect even pairs of actions for assemblage that are not ad-
jacent in the training plans and, in addition, the method detects unnecessary
primitive operators that can be replaced by generated macro-operators.

5.1 Identifying actions for assemblage

As discussed in Section 3.3., a macro-action can be obtained by assembling
a sequence of two or more actions. Macro-actions can be encoded like the
‘normal‘ actions which may be useful for the planning systems. Similarly,
macro-operators can be obtained by assembling a sequence of two or more
planning operators.

Now, the task is how the sequences of actions suitable for possible as-
semblage to macro-actions can be identified. We have a planning domain,
several (simpler) planning problems and the plans (sequences of actions)
solving them. We can analyze these (training) plans, where we focus on the
actions that are or can be successive. If we analyze the training plans only
by looking for the successive actions, then we can miss many pairs of non-
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Figure 5.1: Four different situations for moving the intermediate actions
(grey-filled) before or behind one of the boundary actions (black-filled).

successive actions that may be successive in ‘special‘ circumstances. By the
‘special‘ circumstances we mean that the intermediate actions can be moved
without the loss of plans’ validity before or behind the actions to make them
successive. If we recall the main property of the independency relation (def-
inition 4.5), then we can found out how the intermediate actions can be
moved. Figure 5.1 shows four different situations (actually two situations
and their mirror alternatives) for moving the intermediate actions. Clearly,
if the intermediate action is adjacent and independent on the boundary ac-
tion we can move this action before or behind it (according to lemma 1.4). If
the intermediate action is not independent on one of the boundary actions,
then we can move it only before or behind the other boundary action which
means that this intermediate action must be independent on all actions in
between (including the boundary action).

Algorithm (fig. 5.2) is based on the repeated application of the above
steps. If all intermediate actions are moved before or behind the boundary
actions, then the boundary actions can be assembled (became adjacent). If
some intermediate actions remain and none of the steps can be performed,
then the boundary actions cannot be assembled. Anyway, if the algorithm
returns true (i.e., actions can be assembled), we obtain also the lists of action
indices representing the (intermediate) actions that must be moved before
(respectively behind) actions ai and aj. The usage of these lists will be
explained in the following section.
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Function DETECT-IF-CAN-ASSEMBLE(IN index i, IN index j, IN inde-
pendency relation S, OUT list of indices L, OUT list of indices R) : returns
bool

1: D := {k|i < k < j}
2: L := R := ∅
3: Repeat
4: chg := false
5: k := min(D) or 0 if D = ∅
6: If k > 0 and (i, k) ∈ S then
7: D := D \ {k}
8: chg := true
9: L := L ∪ {k}
10: EndIf
11: k := max(D) or 0 if D = ∅
12: If k > 0 and (k, j) ∈ S then
13: D := D \ {k}
14: chg := true
15: R := R ∪ {k}
16: EndIf
17: Z := {x|x ∈ D ∧ (i, x) 6∈ S}
18: k := max(Z)
19: If k > 0,(k, j) ∈ S and ForEach l ∈ D ∧ l > k (k, l) ∈ S holds then
20: D := D \ {k}
21: chg := true
22: R := R ∪ {k}
23: EndIf
24: Z := {x|x ∈ D ∧ (x, j) 6∈ S}
25: k := min(Z)
26: If k > 0,(i, k) ∈ S and ForEach l ∈ D ∧ l < k (l, k) ∈ S holds then
27: D := D \ {k}
28: chg := true
29: L := L ∪ {k}
30: EndIf
31: Until not chg
32: If D = ∅ then Return true else Return false

Figure 5.2: Algorithm for detecting pairs of actions that can be assembled.
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5.2 Generation of macro-operators

If we consider the classical representation, we know that the planning do-
mains include planning operators rather than actions. Assembling opera-
tors rather than actions is more advantageous, because macro-operators can
be more easily converted to more complex problems than macro-actions.
The idea of detecting such operators, which can be assembled into macro-
operators, is based on the investigation of training plans, where we explore
pairs of actions (instances of operators) that can be assembled on more places.

Definition 5.1 Let M be a square matrix where both rows and columns
represent all planning operators in the given planning domain. If field M(k, l)
contains a pair 〈N, V 〉 such that:

• N is a number of such pairs of actions ai, aj that are instances of k-th
and l-th planning operator (in order), ai → aj and both actions ai and
aj can be assembled in some example plan. In addition ai (resp. aj)
cannot be in such a pair with the other instances of l-th (resp. k-th)
operator.

• V is a set of variables shared by k-th and l-th planning operators.

then M is a matrix of candidates.

Informally said, the matrix of candidates describes how many pairs of
particular instances of operators are presented in training plans. In addition,
the matrix contains the minimal sets of arguments that the particular pairs
of operators are sharing. To get more familiar, see the example in figure 5.3.

The algorithm (fig. 5.4) constructs the matrix of candidates from the
given set of training plans solving the planning problems in the same domain
(i.e, this approach is domain-independent, but generates domain-dependent
knowledge). It is quite straightforward how the numbers N in the ma-
trix of candidates are computed. The computation of the sets of vari-
ables that operators share should be clarified. For instance, if we recall
our example of BlocksWorld domain, we know that there are operators
UNSTACK(box,surface) and STACK(box,surface). If we decide to make a
macro-operator UNSTACK-STACK (consisting of UNSTACK and STACK
operators in this order), then we can also see that box is always the same
(we are unstacking and stacking the same box in time), only the surface may
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Figure 5.3: Matrix of candidates built from two training plans (depot-
prob1818 and depotprob7512) generated by SGPLAN

differ. Generally, we observe which parameters (objects) are shared by ac-
tions and we select such parameters that are shared by all pairs of actions
(instances of the given operators) that can be assembled.

Now, we have to explain the purpose of lists L and R that are generated
in function DETECT-IF-CAN-ASSEMBLE (fig. 5.2). If we have to update
the plans by replacing the selected actions by the macro-actions (instances
of the generated macro-operators), then we must also reorder other actions
to keep the (training) plans valid. The following approach shows how to
reorder actions in plan π = 〈a1, . . . , an〉 if a pair of selected actions ai, aj is
assembled into macro-action ai,j (an example can be seen in fig. 5.5):

• actions a1, . . . ai−1 remain in their positions

• actions listed in L are moved (in order) to positions i, . . . , i + |L| − 1

• macro-action ai,j is added to i + |L|-th position

• actions listed in R are moved (in order) to positions i+ |L|+1, . . . , j−1

• actions aj+1, . . . , an are moved one position back (to positions j, . . . , n−
1)
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Procedure CREATE-MATRIX(IN set of plans P , OUT matrix M)

1: Set M as empty square matrix
2: ForEach π in P do
3: Compute D as a relation of straight dependency on actions from π
4: Compute S as a relation of independency on actions from π
5: ForEach (i, j) ∈ D do
6: If DETECT-IF-CAN-ASSEMBLE(i, j, S, L, R) then
7: Set k as the id of the operator whose ai is an instance
8: Set l as the id of the operator whose aj is an instance
9: Compute V as a set of arguments that ai and aj share
10: If Mk,l is empty then
11: Mk,l := 〈1, V 〉
12: Else
13: 〈N,OV 〉 := Ml,k

14: If ai resp. aj were not yet selected as a candidate
with l-th operator resp. k-th operator
then N1 := N + 1 else N1 := N

15: Ml,k := 〈N1, OV ∩ V 〉
16: EndIf
17: EndIf
18: EndForeach
19: EndForeach

Figure 5.4: Algorithm for creating the matrix of candidates.

Figure 5.5: Example showing how the training plan is updated when the
given pair of action is assembled into the macro-action
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Procedure GENERATE-MACRO(IN set of plans P , OUT set of macro-
operators O)

1: O := ∅
2: Repeat
3: picked := false
4: CREATE-MATRIX(P,M)
5: If SELECT-CANDIDATE(M,C) then
6: picked := true
7: ASSIGN-INEQUALITY-CONSTRAINTS(C)
8: O := O ∪ {C}
9: UPDATE-PLANS(P,C)
10: EndIf
11: Until not picked

Figure 5.6: Algorithm for generating macro-operators.

(:action pickup_stack

:parameters (?x ?y)

:precondition (and (clear ?x)(ontable ?x)(handempty)(clear ?y))

:effect (and (clear ?x)(on ?x ?y)(handempty)

(not (ontable ?x))(not (holding ?x))(not (clear ?y)) )

)

Figure 5.7: Example of PICKUP-STACK macro-operator.

(:action pickup_stack

:parameters (?a ?a)

:precondition (and (clear ?a)(ontable ?a)(handempty))

:effect (and (clear ?a)(on ?a ?a)(handempty)

(not (ontable ?a))(not (holding ?a))(not (clear ?a)) )

)

Figure 5.8: Example of PICKUP-STACK macro-operator, where the argu-
ments were set as equal.
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To generate the macro-operators from the training plans (in the given do-
main) we can use the following approach (formally in fig. 5.6). The macro-
operators are generated repeatedly until no other macro-operator can be
generated. At first, we have to compute the matrix of candidates from all
the training plans (CREATE-MATRIX). Then, we select a proper candidate
for creating the macro-operators (SELECT-CANDIDATE) which means that
such a candidate must satisfy certain conditions (it will be explained later).
To ensure the soundness of the generated macro-operators we have to assign
inequality constraints for the macro-operators arguments. It prevents a pos-
sible instantiation of invalid macro-actions if these arguments are set as equal.
In figure 5.7 we can see an example of PICKUP-STACK macro-operator. If
the arguments are set as equal (fig. 5.8) we can simply see that such an in-
stance is applicable, but invalid (when unfolded). Inequality constraints can
be easily detected in the following way:

• Instantiate the given macro-operator in such a way that just two argu-
ments have the same value

• Define a planning problem, where the preconditions of the instantiated
macro-operator represent the initial state and the positive effects of the
instantiated macro-operator represent the goal.

• Unfold the instantiated macro-operator into primitive actions

• Apply the primitive actions on the initial state of the problem

• If we successfully reach the goal, then these arguments may be equal,
otherwise the inequality constraint for these arguments must be defined

• This approach must be applied for every pair of macro-operator’s ar-
guments (considering the types, we have to test only such pairs that
have the same type)

After the macro-operator is generated from the selected candidate, we
must update all training plans (UPDATE-PLANS) which means that we
replace particular pairs of actions by the corresponding instances of the new
macro-operator. UPDATE-PLANS procedure can be easily implemented by
application of the previously described approach (reordering actions after
assembling) on every pair of actions (instances of the selected operators) in
every plan.
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Last but not least, the remaining unexplained issue is the selection of the
proper candidates for becoming macro-operators (SELECT-CANDIDATE).
We suggested to select such a candidate that satisfies the following conditions
(let f(o) represent the frequency of operator o (how many instances of op-
erator o occur in all the training plans), a(o) represent the arity of operator
o (number of arguments of o), Ni,j represent number N in field Mi,j of the
matrix of candidates and Vi,j represent the set of variables shared by the i-th
and j-th operators):

max

(
Ni,j

f(oi)
,

Ni,j

f(oj)

)
≥ b (5.1)

Ni,j∑
k f(ok)

≥ c (5.2)

a(oi) + a(oj)− | Vi,j | ≤ d (5.3)

Condition 5.1 says that we are looking for such operators whose instances
usually appear (or can appear) successively. Constant b ∈ 〈0; 1〉 represents a
pre-defined bound which prevents selecting such operators whose instances
do not appear successively so often. It is clear that if we set the bound too
small, many operators may be assembled. It usually causes that generated
macro-operators are representing almost the whole training plans which does
not bring any contribution to the planners. On the other hand, if the bound
is too big, almost no operators may be assembled which means that the
domains may remain unchanged. However, in some cases we are not able to
prevent generation of such macro-operators representing a huge part of some
training plan even though b is set quite big. The reason for this rests in the
fact that sometimes only one (or very few) instances of some operator occur
in all the training plans. Almost always, we can find some other action that
can be assembled with this instance, because the ratio between the number
of candidates (stored in the matrix of candidates) and the frequency of the
operator becomes 1. It means that the operator will be certainly selected
for assemblage. To prevent this unwanted selection we can add condition 5.2
allowing only selection of such operators whose ratio between the number of
instances being able to be assembled (stored in Ni,j) and the number of all
actions from all the training plans reaches predefined constant c.

Another problem, we are faced with, rests in the fact that many planners
use grounding. It means that the planners generate all possible instances
of operators that are used during planning. However, the macro-operators
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usually have more parameters than the primitive operators which means
that the macro-operators may have much more instances than the primitive
operators. To avoid troubles with planners regarding grounding, we should
limit the maximum number of parameters for each macro-operator by a pre-
defined constant d (condition 5.3). If there are more candidates satisfying all
the conditions then we prefer the candidate with the maximum value of the
expression listed in condition 5.1.

We must also decide which macro-operators will be added to the domain
and which primitive operators will be removed from the domain. Here, we
decided to add every macro-operator whose frequency in the updated training
plans is non-zero. Similarly, we decided to remove every primitive operator
whose frequency in the updated training plans becomes zero. It is clear that
it may cause a possible failure when solving other (non-training) problems.
Fortunately, in IPC benchmarks, we used for experiments, it usually does not
happen (we did not experience any such a problem during the experiments).
If for some problem planners fail to find a solution, then it is possible to bring
the removed primitive operators back to the domain and run the planners
again.

5.3 Soundness and Complexity

Our method assumes that all inputs (especially the training plans) are valid.
Training plans are generated by planners participating on IPCs, so we do
not assume that the planners are producing invalid plans. Soundness and
complexity of the algorithms for constructing the straight dependency and
independency relations have been discussed in Section 4.2. The algorithms
listed in this Chapter are discussed in the following paragraphs.

Proposition 5.2: Algorithm DETECT-IF-CAN-ASSEMBLE (fig. 5.2)
is sound and can be computed in the worst case in O(l2) steps, where l is the
number of intermediate actions (actions between ai and aj).

Proof: The idea of the algorithm is based on moving the intermediate ac-
tions before or behind the defined actions. It is clear that a pair of adjacent
actions can be assembled into a macro-action (we must follow their order)
without loss of validity of the examined plan. The moving of intermediate
actions can be done in the four cases (fig. 5.1), where two of them are mirror
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of the other two. Without loss of generality we prove the soundness and
complexity only in two cases (on the left hand side on fig. 5.1), because the
soundness and complexity of the other ones can be proved analogically. First
(lines 5-10), if ai = ai+1, then by applying of lemma 4.7, we can move ai+1

before ai without loss of plan’s validity and it takes a constant time (i.e.,
O(1)). Second (lines 17-23), assume that ai ↔ ak, k < j and k is the largest
possible value. If ∀l : k < l < j ak = al, then by repetitive applying of
lemma 4.7, we can move ak behind aj also without loss of plan’s validity. It
can take at most O(l) steps. Analogically for the situations (lines 11-16 and
24-30). The algorithm always terminates because in each run of the loop
(lines 3-31) we remove at least one intermediate action. When no interme-
diate action remains, the loop ends. It means that the cycle is performed
at most l times. So, in the worst case the algorithm requires O(l2) steps to
perform. 2

Remark 5.3: In the last proposition (5.2), we proved the soundness of
DETECT-IF-CAN-ASSEMBLE function (i.e., if this function returns true,
then the actions can be become neighbors and hence assembled). We did not
manage to prove whether this function is able to detect all the possible pairs
of action for assemblage.

Proposition 5.4: Algorithm CREATE-MATRIX (fig. 5.4) is sound and
can be computed in the worst case in O(n4) steps, where n is the total length
of all the training plans.

Proof: At first the algorithm computes the relations of straight depen-
dency and independency (fig. 4.2), which takes at most O(n3) steps (see
Section 4.2). For each training plan the algorithm explores each pair of ac-
tions being in the relation of straight dependency (lines 5-18) by algorithm
DETECT-IF-CAN-ASSEMBLE (fig. 5.2), which is sound (proposition 5.2).
It can be simply seen that we can build the matrix of candidates consistent
with the previously stated conditions. It is also clear that in the worst case we
can have O(n2) relations of straight dependency and algorithm DETECT-
IF-CAN-ASSEMBLE in the worst case can be performed in O(n2) steps
(proposition 5.2 - considering that l is close to n). Summarized, it gives us
the time complexity O(n4) in the worst case. 2

Theorem 5.5: Algorithm GENERATE-MACRO (fig. 5.6) is sound and
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can be computed in the worst case in O(n5) steps, where n the total length
of all the training plans.

Proof: From the soundness of algorithms DETECT-IF-CAN-ASSEMBLE
(proposition 5.2) and CREATE-MATRIX (proposition 5.4) we know that
each candidate for assemblage represents a pair of actions that can be as-
sembled without loss of plans’ validity. If we generalize it and consider the
inequality constraints, then we can simply see that each macro-operator pro-
duced by this algorithm is valid. The algorithm also always terminates be-
cause in each step of the loop (lines 2-11) the total length of the training
plans decreases at least by one which means that the loop can be performed
in the worst case n − 1 times. Together with the worst case time complex-
ity O(n4) of algorithm CREATE-MATRIX (proposition 5.4), it gives us the
time complexity O(n5) in the worst case. Consider that procedures ASSIGN-
INEQUALITY-CONSTRAINTS (line 7) and UPDATE-PLANS (line 9) have
much less time complexity than the procedure CREATE-MATRIX. 2

Remark 5.6: The time complexity estimation of the algorithm GENERATE-
MACRO can be lowered to O(n4). Considering how many times the cycle
(lines 2-11) is usually performed, we can easily find out that it is much lower
than the total length of the training plans.

Remark 5.7: It is well known that if we add a generated macro-operator
into the domain, then the domain remains valid. It means that the complete-
ness of the planning process is not violated. If we decide to remove certain
primitive operators from the domain (i.e., such primitive operators that are
replaced by the generated macro-operators), then we may lose the complete-
ness of the planning process. On the other hand it never occurred during
our experiments. From our observation we found out that the completeness
is not usually lost, while the training problems and testing problems have
similar styles of the initial states and goals (differs only by the number of
objects).

5.4 Experimental results

In this section, we present the experimental evaluation of our method. We
compare the performance of the given planners between the original domains
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and the domains updated by our method. The planning domains and the
planning problems, we used here, are well known from the IPC. We have
done the evaluation in the following steps:

• Generate several simpler training plans as an input for our method.

• Generate the macro-operators by our method and add them to the
domains, remove such primitive operators that no longer appear in the
updated training plans.

• Compare the running times for more complex problems between the
original domains and the updated domains. The time limit was set to
600 seconds.

We used SATPLAN 2006 [48] and SGPLAN 5.22 [44] both for the generation
of the training plans (for the learning phase) and for the comparison of the
running times and plans quality. We also used LAMA [65] for the comparison
of running times and plans quality (not for the learning phase). The choice
of the planners was motivated by superior results that the planners achieved
on the (several last) IPCs. Because SATPLAN cannot handle negative pre-
conditions (which are necessary for representation of inequality constraints),
we used a tool called ADL2STRIPS1 which can produce grounded STRIPS
domain from ADL domain.

5.4.1 Tested domains

We chose several planning domains for our experiments to ensure that the
proposed approach is generally applicable (rather than specific for a partic-
ular planning domain). In particular, we used domains well known from the
IPC.

Blocks domain is a planning domain from the 2nd IPC. The domain
consists of a table, a gripper and cubical blocks. The blocks are distributed
in columns placed on the table. We can move only the topmost blocks to the
table or to the other topmost blocks.

Depots is a planning domain from the 3rd IPC. This domain accommo-
dates both blocks and logistics environments. They are combined to form a
domain in which trucks can transport crates around and then the crates must
be stacked onto pallets at their destinations. The stacking is achieved using

1Available on IPC4 website
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hoists, so the stacking problem is like a blocks-world problem with hands.
Trucks can behave like ‘tables‘, since the pallets on which crates are stacked
are limited.

Zeno Travel is a planning domain from the 3rd IPC. This domain involves
transporting people around in planes, using different modes of movement:
fast and slow.

Satellite is a planning domain from the 4th IPC. This domain is one of the
domains inspired by space-applications. It involves planning and scheduling
a collection of observation tasks between multiple satellites, each equipped
in slightly different ways.

Rovers is a planning domain from the 3rd IPC. Inspired by planetary
rovers problems, this domain requires that a collection of rovers navigate a
planet surface, finding samples and communicating them back to a lander.

Gripper is a planning domain from the 1st IPC. In this domain, there is
a robot with two grippers. It can carry a ball in each. The goal is to take N
balls from one room to another.

Gold Miner is a planning domain from the 6th IPC learning track. A
robot is in a mine and has the goal of reaching a location that contains
gold. The mine is organized as a grid with each cell either being hard or
soft rock. There is a special location where the robot can either pickup an
endless supply of bombs or pickup a laser cannon. The laser cannon can shoot
through both hard and soft rock, whereas the bomb can only penetrate soft
rock. However, the laser cannon will also destroy the gold if used to uncover
the gold location. The bomb will not destroy the gold.

5.4.2 Learning phase

As mentioned in the previous text, the generation of macro-operators depends
on pre-defined bounds b, c and d (conditions 5.1, 5.2 and 5.3). The number of
training plans for each domain differs from 3 to 6 with respect to their lengths.
The average time taken by both SGPLAN and SATPLAN to generate a
training plan was (mostly) within tenths of second.2 Despite the high (worst-
case) time complexity O(n5) (theorem 5.5), the average time taken by one
run of our method (GENERATE-MACRO procedure) was within the tenths
of second.3

2performed on XEON 2.4GHz, 1GB RAM, Ubuntu Linux
3performed on Core2Duo 2.66GHz, 4GB RAM, Win XP SP2
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Problem
SGPLAN SATPLAN
b c d b c d

Blocks 0.8 0.05 3 0.8 0.05 3
Depots 0.8 0.1 5 0.8 0.1 5
Zeno travel 0.8 0.1 7 - - -
Rovers 0.8 0.1 7 - - -
Satellite - - - 0.8 0.1 3
Gripper 0.8 0.03 4 0.6 0.03 6
Gold miner 0.8 0.08 3 0.8 0.08 3

Table 5.1: Settings of the bounds for SGPLAN’s and SATPLAN’s training
plans

We used different settings of bounds b,c and d and two different planners
(SATPLAN 2006, SGPLAN 5.22) for the generation of the training plans
(see table 5.1). First, bound d was set to N +1 (except Satellite domain and
Gripper domain for SATPLAN’s training plans), where N represents the
largest number of arguments of operators in the particular domain, because
we did not want to generate too complicated macro-operators. If bound b
was set too low, then many useless macro-operators were generated. We
found out that a reasonable value of bound b can be almost in all cases 0.8,
only in Gripper domain (for SATPLAN’s training plans) we lowered it to 0.6.
Setting bound c was not as definite as setting the other bounds. Usually, the
reasonable value was between 0.1 and 0.05, but in Gripper domain it was set
to 0.03. The reason of keeping the bound c low (0.03 − 0.05) rested in the
fact that in Blocks and Gripped domains, all the primitive operators were
replaced by the generated macro-operators. The choice of the planner for the
generation of the training plans brought several differences - only in Blocks
domain, it resulted in the same result. In Depots domain, we were not able
to remove some primitive operators when SATPLAN’s training plans were
used as we did when SGPLAN’s training plans were used. In Zenotravel and
Rovers domains, we were not able to learn any suitable set of macro-operators
when SATPLAN’s training plans were used. Likewise in Satellite domain,
when SGPLAN’s training plans were used. In Gripper domain, the results
of learning differed with respect to planners’ strategies - SATPLAN prefers
to carry balls in both robotic hands, SGPLAN prefers to carry balls just in
one robotic hand. In Gold Miner domain, the planners preferred different
operators which resulted in slightly different results of learning.
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Domain Added macro-operators Removed primitive
operators

Blocks PICKUP-STACK, UNSTACK-
STACK, UNSTACK-
PUTDOWN

PICKUP, PUT-
DOWN, STACK,
UNSTACK

Depots LIFT-LOAD, UNLOAD-DROP LIFT, LOAD, UN-
LOAD, DROP

Zenotravel REFUEL-FLY REFUEL
Rovers CALIBRATE-TAKE-IMAGE CALIBRATE, TAKE-

IMAGE
Gripper PICK-MOVE-DROP, MOVE-

PICK-MOVE-DROP
MOVE, PICK, DROP

Satellite SWITCH-ON-CALIBRATE SWITCH-ON, CAL-
IBRATE, SWITCH-
OFF

Gold Miner MOVE-PICKUP-LASER,
MOVE-DETONATE-BOMB-
MOVE-PICK-GOLD

PICKUP-LASER,
PICK-GOLD,
DETONATE-BOMB

Table 5.2: Suggestion of our method - the best results for the particular
domains

The results of learning (best for the particular domains we achieved) are
showed in table 6.1. We stated only such alternatives that provided the best
results in the running times and plans quality comparison for the particular
domains.

5.4.3 Running times and plans quality comparison

In this evaluation, we used SGPLAN 5.22, an absolute winner of the IPC 5,
SATPLAN 2006, a co-winner of the optimal track in the IPC 5, and LAMA,
a winner of the IPC 6 suboptimal track. The benchmarks ran on XEON
2.4GHz, 1GB RAM, Ubuntu Linux. The results are presented in tables 5.3,
5.4 and 5.5. We chose such problems (in the most domains) that were neither
so easy nor so hard for the particular planners, because the evaluation of these
problems usually tells us the most about the particular domains. The less
complex problems were solved in the updated domains almost as fast as or
a bit slower than in the original ones (except Rovers domain in SATPLAN’s
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Problem
Time (in seconds) Plan length

orig upd-SG upd-SAT orig upd-SG upd-SAT
Blocks14-0 >600.00 0.03 0.03 N/A 48 48
Blocks14-1 >600.00 0.03 0.03 N/A 44 44
Blocks15-0 >600.00 0.32 0.32 N/A 88 88
Blocks15-1 179.84 0.05 0.05 114 54 54
depots1817 24.56 15.52 20.71 100 104 94
depots4534 >600.00 0.53 54.71 N/A 112 110
depots5656 410.94 0.32 7.70 133 132 82
depots7615 8.48 1.88 2.14 98 102 91
zeno-5-20a 0.88 0.75 - 98 101 -
zeno-5-20b 1.07 0.77 - 92 97 -
zeno-5-25a 1.74 1.05 - 124 122 -
zeno-5-25b 0.57 0.58 - 117 125 -
rovers4621 2.31 0.03 - 48 44 -
rovers5624 0.10 0.02 - 52 52 -
rovers7182 4.32 0.12 - 90 91 -
rovers8327 3.53 0.06 - 78 71 -
gripper16 0.05 0.05 1.11 135 135 101
gripper17 0.06 0.06 1.31 143 143 107
gripper18 0.06 0.07 1.56 151 151 113
gripper19 0.06 0.07 1.83 159 159 119
gripper20 0.07 0.08 2.13 167 167 125
satellite26 3.73 - 29.99 138 - 138
satellite27 4.73 - 13.20 138 - 139
satellite28 12.87 - 260.26 193 - 193
satellite29 18.69 - 70.36 195 - 195
satellite30 31.57 - 117.52 231 - 231
satellite31 56.65 - 201.36 272 - 272
gminer7x7-06 err 0.01 0.01 N/A 33 30
gminer7x7-07 err 0.02 0.01 N/A 34 65
gminer7x7-08 err 0.01 0.01 N/A 25 26
gminer7x7-09 err 0.01 0.01 N/A 29 32
gminer7x7-10 err 0.01 0.02 N/A 33 43

Table 5.3: Comparison of running times and plans lengths (we assume that
macro-actions are unfolded into primitive actions) for SGPLAN.
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Problem
Time (in seconds) Plan length

orig upd-SAT upd-SG orig upd-SAT upd-SG
Blocks14-0 23.58 3.14 3.14 38 56 56
Blocks14-1 38.06 3.84 3.84 36 88 88
Blocks15-0 46.90 7.24 7.24 40 60 60
Blocks15-1 45.68 7.63 7.63 52 142 142
depots4321 5.24 4.40 2.07 43 41 38
depots5656 222.42 >600.00 143.33 70 N/A 59
depots6178 6.82 43.14 26.11 51 50 42
depots7654 10.04 25.96 16.45 41 56 39
depots8715 35.96 46.95 err 50 38 err
zeno-3-10 3.77 - 4.17 31 - 35
zeno-5-10 34.07 - 48.19 42 - 38
zeno-5-15a 92.13 - 30.93 50 - 51
zeno-5-15b err - err N/A - N/A
rovers4621 182.20 - >600.00 47 - N/A
rovers5624 4.30 - >600.00 62 - N/A
rovers8327 1.17 - >600.00 45 - N/A
gripper8 >600.00 8.14 0.03 N/A 53 71
gripper9 >600.00 12.86 0.06 N/A 59 79
gripper10 >600.00 19.78 0.04 N/A 65 87
gripper11 >600.00 err 0.07 N/A err 95
gripper12 >600.00 err 0.06 N/A err 103
satellite15 82.79 88.25 - 68 70 -
satellite16 >600.00 115.07 - N/A 69 -
satellite17 129.39 127.62 - 74 73 -
satellite18 25.05 24.40 - 44 43 -
satellite19 >600.00 574.46 - N/A 66 -
gminer7x7-06 6.00 5.07 6.34 33 35 34
gminer7x7-07 6.08 4.91 5.82 38 38 37
gminer7x7-08 3.06 2.08 2.81 25 25 25
gminer7x7-09 4.24 3.47 4.26 33 30 29
gminer7x7-10 5.96 4.83 6.05 35 35 35

Table 5.4: Comparison of running times and plans lengths (we assume that
macro-actions are unfolded into primitive actions) for SATPLAN.
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Problem
Time (in seconds) Plan length

orig upd-SG upd-SAT orig upd-SG upd-SAT
Blocks14-0 0.12 0.08 0.08 84 84 84
Blocks14-1 0.13 0.06 0.06 52 44 44
Blocks15-0 0.44 0.10 0.10 144 52 52
Blocks15-1 0.27 0.14 0.14 112 62 62
depots1817 >600.00 93.68 >600.00 N/A 122 N/A
depots4534 243.61 1.39 9.81 122 67 107
depots5656 >600.00 0.53 7.70 N/A 70 98
depots7615 >600.00 5.71 61.61 N/A 77 78
zeno-5-20a 1.22 0.87 - 91 91 -
zeno-5-20b 1.55 0.75 - 83 91 -
zeno-5-25a 2.85 0.98 - 95 105 -
zeno-5-25b 7.18 1.42 - 100 115 -
rovers4621 0.06 0.06 - 47 47 -
rovers5624 0.08 0.04 - 50 50 -
rovers7182 0.23 0.18 - 90 90 -
rovers8327 0.15 0.10 - 71 77 -
gripper16 0.05 0.06 3.76 101 135 101
gripper17 0.05 0.07 4.49 107 143 107
gripper18 0.06 0.08 5.26 113 151 113
gripper19 0.07 0.08 6.13 122 159 119
gripper20 0.07 0.10 7.02 128 167 125
satellite26 3.85 - 7.37 139 - 139
satellite27 2.80 - 3.63 135 - 139
satellite28 >600.00 - 11.76 N/A - 194
satellite29 16.82 - 19.88 190 - 191
satellite30 72.18 - 32.63 229 - 229
satellite31 40.46 - 67.47 269 - 272
gminer7x7-06 0.22 0.04 0.03 170 31 31
gminer7x7-07 0.04 0.04 0.03 65 34 65
gminer7x7-08 >600.00 0.03 0.03 N/A 25 26
gminer7x7-09 0.14 0.04 0.03 130 29 32
gminer7x7-10 0.30 0.04 0.03 176 31 43

Table 5.5: Comparison of running times and plans lengths (we assume that
macro-actions are unfolded into primitive actions) for LAMA.
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evaluation). The hardest problems (both original and updated) were not
solved within the time limit of 600 seconds.

SGPLAN performed well in the original domains on almost all the tested
problems except Blocks problems, some Depots problems and Gold Miner
problems. Running times in the updated domains were always better except
Gripper domain where the running times were slightly worse and Satellite
domain where the results were significantly worse. The quality of plans4 gen-
erated in the updated domains was not much worse, however, sometimes the
quality was slightly better and, surprisingly, in one Blocks problem more than
twice better. The best results SGPLAN reached in Blocks domain where the
speed-up was quite impressive. The possible reason may rest in the fact that
SGPLAN’s heuristics (FF-based) do not handle well problems like Blocks
or Depots, because the plan quality was significantly better in the updated
problems as well. SGPLAN’s behavior in Gold Miner domain was weird, be-
cause for all more complex (original) problems, SGPLAN terminated without
throwing any error message after about 3 minutes of running.

SATPLAN, unfortunately, did not benefit often from our method. In
Blocks domain, SATPLAN was able to generate the plans faster, but at the
price of significantly worse plans quality. On the other hand, SATPLAN pro-
duced very good results in the updated Gripper domain, where the problems
normally unsolvable (in 600 seconds) were solved in a couple of seconds (for
the domain updated on the basis of SATPLAN’s training plans) or in hun-
dreds of second (for the domain updated on the basis of SGPLAN’s training
plans). The reason of that rests in the fact that SATPLAN uses Planning
Graph and each tested problem in the updated Gripper domain can be solved
in only two layers. SATPLAN also gained quite good results in Satellite and
Gold Miner domains. Errors thrown by SATPLAN were caused by an insuf-
ficient memory or a large domain file (produced by ADL2STRIPS tool).

LAMA is a planner that combines Causal Graph heuristic and FF-based
heuristics. In Depots, Blocks and Gold Miner domains, the plans quality was
significantly better in the updated domains. In addition, the time comparison
for Depots domain showed a significant increase of performance. The results
correlates a bit with the results achieved by SGPLAN, because SGPLAN
uses FF-based heuristics as well.

4a ratio of the length of the plans in the original domains and the length of the plans
in the updated domains - macro-actions are unfolded into primitive actions
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5.4.4 Additional discussion

The presented results showed an interesting improvement for more complex
problems in the domains updated by our method. Even though we used
only at most 6 training plans for each domain (depending on the length of
the training plans), we usually gathered enough knowledge for updating the
domains. Even though we removed primitive operators from the original do-
mains, we were able to solve correctly each problem in the updated domains.
The reason may be that the planning problems from the IPCs usually differ
by the number of objects and not by the different types of the initial states
or goals.

The generated macro-operators used in the comparison were in almost
all cases combined only from two primitive operators, except in Gripper
and Gold-Miner domains. Despite the construction of more complex macro-
operators may reduce a depth of search, such macro-operators may have
much more instances that can cause troubles to planners (increased branching
factor).

The success of our method depends on several factors. At first, the train-
ing plans should be optimal (shortest) or nearly optimal, because non-optimal
plans may contain flaws (useless actions) that may prohibit detection of use-
ful macro-operators or useless primitive operators. At second, we have to
decide what result of our method (generated macro-operators and removed
primitive operators) is the best. We followed the strategy, where the partic-
ular generated macro-operator replaces at least one primitive operator which
is removed from the domain. The experiments showed that our strategy is
reasonable and contributive in many cases. Of course, there is a possible
improvement that considers planners’ specifics and strategies. SGPLAN is
a planner that decomposes a problem into subproblems and solves them by
other planning techniques, mostly FF-based. LAMA also uses the FF-based
heuristics and in addition the Causal Graph heuristics. The FF-based plan-
ning techniques usually experience difficulties with plateaux. So, if there are
such macro-operators that help the FF-based planner to escape the plateaux
then the performance of the planner should significantly increase. It has
been already studied in [22]. SATPLAN is a planner that translates Plan-
ning Graph into SAT and then use a SAT solver to solve the problem. The
potential success, in this case, mainly rests in the reduction of makespan
(i.e., the numbers of the layers of the planning graph that must be explored).
However, if makespan is reduced only slightly, it may not result in speed-up,
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because the layers can be much more complex. It also depends on the first
appearance of instances of particular macro-operators in the Planning Graph
(the later the better).

For the most of the older approaches (typically for STRIPS or MPS), it
is quite common to generate more complex macro-operators to penetrate the
depth of the search as much as possible. Our method is able to generate more
complex macro-operators, if bounds b and c are kept lower and bound d is
kept higher. However, such macro-operators are very problem specific which
makes them unusable for larger scale of problems in the given domain. Sys-
tems like PRODIGY or DHG use static domain analysis and do not require
training plans for their learning. Some macro-operators learned by these sys-
tems may be unnecessary (i.e., instances of these macro-operators usually do
not appear in solutions of the most of problems). State-of-the-art systems
Marvin or Macro-FF (SOL-EP version) are build on FF planner. These sys-
tems achieved very promising results, but they cannot be applied with other
planners. WIZARD and Macro-FF (CA-ED version) are, like our method,
designed as a supporting tool for arbitrary planners without changing their
code. WIZARD learns the macro-operators genetically from the training
plans which is quite a different policy than our method does. The usability
of the macro-operators is evaluated by monitoring of running behavior of
planners on updated training problems (by the macro-operators). WIZARD,
in comparison to our method, reported better results, for example, in Satel-
lite domain, but on the other hand, WIZARD spends many hours for learn-
ing phase, where our method spends seconds. Macro-FF (CA-ED version)
generates the macro-operators from the analysis of static predicates, then
adds them into the domain and then generate the training plans (with the
macro-operators). Unlike that, our method generates macro-operators from
the training plans gathered from the original training problems and does not
require to resolve them (by the planners) in their updated form (with macro-
operators). The idea, how the usability of macro-operators is evaluated, is
quite similar to our method, but a bit simpler - Macro-FF (CA-ED version)
picks the n most frequent macro-operators (assembled from two primitive
operators). In addition, our method detects which primitive operators can
be removed (with the risk of the losing completeness). For example, in De-
pots domain, our method and Macro-FF (CA-ED version) found the same
macro-operators. Our method, in addition, removed 4 (resp. 2) primitive
operators by using SGPLAN (resp. SATPLAN) for generation the training
plans. Removing the primitive operators brought much more benefit to the
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planners’ performance and often also to a plans quality.
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Chapter 6

Eliminating unpromising
actions

This chapter is devoted to eliminating actions that are unnecessary for the
planning process [19]. Opposite to the other works [39, 42] (discussed in Sec-
tion 3.2), which eliminate only unreachable actions, we are trying to eliminate
actions that are normally reachable, but unnecessary for the planning pro-
cess. Concretely, we are trying to learn connections between the actions and
the initial or goal predicates.

6.1 Theoretical background

The planning systems process the planning domains with the corresponding
planning problems to produce their solutions, plans. Informally said, the
planning domains serve like the abstract templates for given environments,
and the planning problems, on the other hand, describe those environments
concretely and define certain planning tasks. The main challenge for planning
is exploration of a huge search space defined by the number of applicable
actions. We focus on the problem of the excessive number of actions that
may mislead the planners when looking for the solutions. If we consider an
operator with s arguments and a planning problem with n (untyped) objects
then the number of all possible instances of this operator is ns. It means,
simply, that too many actions have to be considered during the planning
process. In fact, many of these actions may be useless and not all these
actions can be pruned by checking their reachability by the methods discussed
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in Section 3.2. Our goal is to reduce the number of such useless actions
(especially reachable ones) by analyzing simpler (training) plans.

We found out that in some cases there exists a connection between the
operators’ predicates in the preconditions and the initial predicates or the
operators’ predicates in the positive effects and the goal predicates. Now, we
formally define several notions describing these kinds of connections.

Definition 6.1: Let P = 〈Σ, s0, g〉 be a planning problem, o be a plan-
ning operator from Σ and p be a predicate. Operator o is entangled by
init (resp. goal) with predicate p in planning problem P if and only if
p ∈ p(o) (resp. p ∈ e+(o)) and there exists a plan π that solves P and
for every action a ∈ π which is an instance of o and for every grounded in-
stance pground of the predicate p holds: pground ∈ p(a) ⇒ pground ∈ s0 (resp.
pground ∈ e+(a) ⇒ pground ∈ g).

Definition 6.2: Let Σ be a planning domain, o be a planning operator
from Σ and p be a predicate. Operator o is fully entangled by init (resp. goal)
with predicate p if and only if there does not exist any planning problem P
over Σ where o in not entangled by init (resp. goal) with p in P . In addition
we define a set plans(P, o, p, init (resp. goal)) = {π | π is a solution of P , if
π contains the instance(s) of o, then the conditions of entanglement between
o and p regarding Def. 6.1 must hold}.

The entanglement by init (resp. goal) says that in a particular planning
problem we can use only the actions sharing a predicate (or predicates) in
the preconditions (resp. the positive effects) with the initial (resp. goal)
predicates. The full entanglement extends this for every solvable planning
problem in a particular domain.

If we recall our example of the BlocksWorld problem (from Chapter 2),
then we can see on figure 6.1 a simple example of entanglements. We can
see that the operator UNSTACK is fully entangled by init with predicate on.
Analogically, the operator STACK is fully entangled by goal with predicate
on. It means that we allow only to unstack boxes from their initial position
and stack boxes to their goal positions. Picking up and putting down is
unlimited (i.e., every box can be putted down to the table and picked up
from the table without any restrictions).

In the following lines, we shall show that all the static predicates (the
predicates that do not appear in the effects of any operator) with respect to
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Figure 6.1: An example of entanglements in a simple BlocksWorld problem

the operators having these predicates in preconditions satisfy the conditions
to be fully entangled by init.

Definition 6.3: Let Σ be a planning domain and p be a predicate such
that there does not exist any substitution Θ and any operator o belonging
to Σ such that pΘ ∈ e−(o) or pΘ ∈ e+(o) (in the other words pΘ represents
a variant of p). Then p is a static predicate with respect to Σ.

Proposition 6.4: Let Σ be a planning domain and p be a static pred-
icate (with respect to Σ). Then for every operator o belonging to Σ where
there exists a substitution Ψ such that pΨ ∈ p(o), it holds that o is fully
entangled by init with p and for every planning problem P plans(P, o, p, init)
contains all plans that solve P .

Proof: Let P = 〈Σ, s0, g〉 be an arbitrary solvable planning problem and p
be a static predicate with respect to Σ. Let s be an arbitrary state reachable
from s0 which means that there exists a valid sequence of actions (instances
of the operators from Σ) transforming state s0 to s. We shall show that
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all instances of p from s0 belong also to s and no other instance of p can
belong to s. From the assumption we know that no variant of p appears
in positive or negative effects of any operator from Σ. It means that we
cannot add or remove any instance of p from s0 which implies that in any
reachable state from s0 we have the same instances of p. Consequently for
any action a in the above valid sequence of actions starting in s0, it holds
pground ∈ p(a) ⇒ pground ∈ s0 (otherwise the action is not applicable to a
reachable state). Hence, operator o from Σ giving these actions as its in-
stances is entangled by init with predicate p in problem P . As P can be
arbitrary planning problem in domain Σ, operator o is fully entangled by init
with p. It is also clear that plans(P, o, p, init) contains all plans that solves
P . 2

Definition 6.2 ensures the existence of plans for every solvable planning
problem when pruning the actions violating the full entanglement conditions.
For the static predicates as we proved before, the sets of plans solving par-
ticular (solvable) planning problems remain the same. In the general case,
each full entanglement somehow restricts the sets of plans allowing only such
actions that do not violate the particular full entanglement. However, the
restrictions of the sets of plans differ regarding to the particular full entan-
glements. We have to restrict using the full entanglements together in such
a way that every solvable planning problem remains solvable even if actions
violating at least one full entanglement are pruned.

Definition 6.5: Let Σ be a planning domain, SFE a set of triples SFE =
{(o1, p1, t1), . . . , (on, pn, tn)}, where oi is an operator from Σ, pi is a predicate
from Σ and ti ∈ {init, goal} (i.e., oi is fully entangled by ti on pi). If for ev-
ery solvable planning problem P over Σ such that

⋂n
i=1 plans(P, oi, pi, ti) 6= ∅

holds, then SFE is a set of compatible full entanglements.

The following proposition formally describes how the full entanglement
affects the possible operators’ instances (actions).

Proposition 6.6: Let Σ be a planning domain, P = 〈Σ, s0, g〉 be an arbi-
trary planning problem that is solvable and SFE = {(o1, p1, t1), . . . , (on, pn, tn)}
be a set of compatible full entanglements. Let A be the set of all actions a
meeting the following conditions:
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1. a is an instance of planning operator o from Σ

2. if (o, p, init) ∈ SFE then ∀Θ : pΘ ∈ p(a) ⇒ pΘ ∈ s0

3. if (o, p, goal) ∈ SFE then ∀Θ : pΘ ∈ e+(a) ⇒ pΘ ∈ g

Let Σ′ be a grounded planning domain containing the set of actions A
and the corresponding set of grounded predicates. Then, planning prob-
lem P ′ = 〈Σ′, s0, g〉 is solvable and the plan for P ′ is a plan for P too.

Proof: We have to prove that the reformulated planning problem P ′ is
solvable and a plan for P ′ is also a plan for P . We can simply see that every
plan for P ′ contains only the actions from A. As we can see from the assump-
tion, the actions from A meet three conditions. For the first condition, it is
clear that any solution of P contains only such actions that are instances
of the operators defined in Σ. For the second condition, we know that if
any operator o is fully entangled by init with any predicate p, then we allow
only such actions (instances of o) whose instances of p in the preconditions
correspond with instances of p belonging to the initial state. From defini-
tion 6.1 (entanglement) we know that there exists a plan π containing such
actions satisfying the following conditions. If action a ∈ π is an instance
of operator o which is entangled by init with any predicate p in P then
∀Θ : pΘ ∈ p(a) ⇒ pΘ ∈ s0 (Θ is a substitution from variables to constants,
so pΘ is a grounded predicate). Analogically it holds for the third condition.
Considering SFE is a set of compatible full entanglements, we know that
there exists at least one plan which satisfy the entanglement conditions (def.
6.1) for all operators and predicates that are fully entangled. Now it is clear
that P ′ is also solvable. 2

Informally said, if some operator is fully entangled on some predicate
(or predicates) then we can omit such instances of this operator where the
predicate (or predicates) in the preconditions or positive effects are not cor-
responding with the particular predicates belonging to the initial or goal
states. We assume that by detecting (compatible) full entanglements we can
omit a lot of unnecessary actions. Full entanglements can be understood as
a piece of knowledge that we can pass to existing planners via the definition
of the planning problem without updating the source code of the planner.
There are (at least) two ways how the information about full entanglements
can be encoded in the planning domain/problem. The first option rests in
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(:action unstack

:parameters (?x ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (emptyhand) (stai_on ?x ?y))

:effect (and (holding ?x) (clear ?y)

(not (on ?x ?y)) (not (clear ?x)) (not (emptyhand))))

Figure 6.2: Example of reformulated unstack operator which is entangled by
init with predicate on - stai on represents an added static predicate

the production of grounded domains (and problems) as we did it in Propo-
sition 6.6. The main disadvantage of this approach rests in the fact that the
grounded domains may be very large which may cause a significant slow-
down of the planner in the pre-processing phase (loading the problem). It
may also disallow some other techniques such as lifting. The second option
rests in the extension of the planning domains by special static predicates.
We shall present this approach in the following paragraphs.

Definition 6.7: Let Σ be a planning domain and P = 〈Σ, s0, g〉 be an
arbitrary planning problem. If operator o from Σ is fully entangled by init
(resp. goal) with predicate p and p is not a static predicate then we define
reformulated domain Ref(Σ, o, p) and reformulated problem Ref(P, o, p) in
the following way:

1. create a new predicate p′ which is not present in Σ and has the same
arity as p

2. create an operator o′ = (p′(o), e−(o), e+(o)), where p′(o) = p(o)∪p′ (the
arguments of p′ correspond with the arguments of p)

3. create a reformulated domain Ref(Σ, o, p) from Σ by adding p′ and
replacing o by o′

4. create a reformulated problem Ref(P, o, p) = 〈Ref(Σ, o, p), s′0, g〉, where
s′0 = s0 ∪ {p′Θ | pΘ ∈ s0 (resp. pΘ ∈ g)}

An example of reformulated operator unstack which is entangled by init
with predicate on is showed in fig. 6.2. It is clear that we have to also add
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stai on predicates into the initial state (s0) in such a way that if on(X, Y ) ∈
s0, then stai on(X, Y ) is added to s0.

Theorem 6.8: Let P = 〈Σ, s0, g〉 be a planning problem and SFE =
{(o1, p1, t1), . . . , (on, pn, tn)} be a set of compatible full entanglements. Let
P ′ be a problem obtained from P by a successive application of Ref(P, o, p)
for every (o, p, t) ∈ SFE, where p is not a static predicate. Then, if P is
solvable then P ′ is solvable and the plan for P ′ is a plan for P too.

Proof: Recall Definition 6.7, where Ref(P, o, p) was introduced. We
added the predicate p′ into the reformulated domain and problem. It is
clear that p′ is a static predicate, because it does not appear in the effects of
any operator. From the proof of Proposition 6.4 we know that static pred-
icates hold through the whole planning process without being changed. It
can be easily observed that no action with the instance of p′ in the precon-
dition that do not correspond with the initial instances of p′ can be applied
to any state. From the 2nd and 4th point of Def. 6.7 we can see that the
arguments of p′ correspond with the arguments of p. From Proposition 6.6
we know that if we remove such operators’ instances from the domain that
‘break‘ full entanglements from SFE (recall conditions 2 and 3 from Proposi-
tion 6.6), then it does not affect the solvability of the reformulated problem.2

6.2 Heuristic detection of full entanglements

In the previous section, we showed that if we find out the full entanglement
relations then we can restrict the set of grounded actions (Definition 6.7 and
Theorem 6.8) to be assumed during planning without affecting solvability
of the planning problem. The remaining question is how the (compatible)
full entanglements can be detected. Theoretically, we are facing the problem
of validating the entanglements for all solvable planning problems over the
particular domains. For the static predicates the detection is easy and can
be realized for every domain (Proposition 6.4). For the other predicates we
have two options. First, we can prove the (compatible) full entanglements
theoretically (it is not practically possible to explore all solvable planning
problems) or second, we can use the heuristics to guess that a given operator
can be fully entangled with a given predicate by exploring only a fraction
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of planning problems (training planning problems). In the first case, we can
fully exploit the theoretical results from the previous section and we are sure
that we cannot break the solvability of planning problems by the pruning
of actions mentioned above. In the second case we cannot assure that the
solvability is preserved because the heuristic method does not guarantee full
entanglement (theoretically).

In our opinion, the first option may require domain-dependent approaches
and hence a domain expert who can handle it. Therefore, in the rest of the
chapter we will focus on the second option with the goal to have a fully auto-
mated domain-independent approach. It motivates us to develop a method
for detection of full entanglement based on heuristics.

The main idea of our approach is following. Instead of exploring all
planning problems and finding a plan validating the condition from Defini-
tion 6.1, we assume only a subset of problems, so called training problems,
together with the existing plans for these problems. The entanglement condi-
tion as specified in Definition 6.1 is checked only for these training problems
and plans and if validated we declare the full entanglement as the following
heuristics specifies.

Heuristics 1: Let Σ be a planning domain. If for each training planning
problem P over Σ together with a plan solving the problem it holds that op-
erator o from Σ is entangled by init (resp. goal) on predicate p then operator
o is considered as fully entangled by init (resp. goal) with predicate p. We
also consider that all detected full entanglements are compatible.

Heuristics 1 gives us an opportunity to develop the algorithm (fig. 6.3)
for detection of full entanglement (by init or goal) at the cost of losing its
soundness. It means that the algorithm may declare full entanglement even
if it does not hold. On the other hand we believe that it happens only
occasionally because the planning problems (over the same planning domain)
usually differ only in the number of objects.

The algorithm starts with an assumption that every operator from given
domain is fully entangled by init (resp. goal) with every predicate listed in
the corresponding preconditions (resp. positive effects). The behavior of the
algorithm is quite straightforward. The algorithm is verifying if the condi-
tions of entanglement are satisfied in each training plan for every operator
and the corresponding predicate. If the condition of entanglement is broken
(once is enough) then we set the particular pair (operator and predicate) as
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Procedure DETECT-FULL-ENTANGLEMENTS(IN planning domain Σ,
IN set of planning problems and their plans, OUT a set of compatible full
entanglements)

1: Set the full entanglements by init (resp. goal) between all operators and
predicates from the corresponding preconditions (resp. positive effects) from Σ

2: ForEach planning problem P do
3: ForEach operator o from Σ do
4: ForEach p ∈ p(o) do
5: ForEach a ∈ π where a is an instance of o

and π is a plan solving P do
6: If ¬∃Θ : pΘ ∈ s0 ∧ pΘ ∈ p(a), where

s0 is an initial state of P
then Unset the full entanglement by init
between o and p

7: EndForeach
8: EndForeach
9: ForEach p ∈ e+(o) do
10: ForEach a ∈ π where a is an instance of o

and π is a plan solving P do
11: If ¬∃Θ : pΘ ∈ g ∧ pΘ ∈ e+(a), where

g represents a set of goal predicates of P
then Unset the full entanglement by goal
between o and p

12: EndForeach
13: EndForeach
14: EndForeach
15: EndForeach

Figure 6.3: Algorithm for heuristic detection of the full entanglements by
init or by goal.
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not fully entangled.

Theorem 6.9: Let n be the number of training planning problems
Pi = 〈Σ, si

0, g
i〉 and πi be a plan solving Pi. Let O be the set of operators

from Σ and ℘ be the set of predicates from Σ. Then the worst case time com-
plexity of the algorithm is O (|O||℘|∑n

i=1 (|πi|) (
∑n

i=1 (|si
0|) +

∑n
i=1 (|gi|))).

Proof: At, first we show that the cycle (lines 5-7) runs in at most |πi||si
0|

steps. We are going through the given plan πi and for each action a and
the given predicate p, we are trying to find a predicate from si

0 that matches
the instance of p being presented in p(a). From this, we get the time com-
plexity at most |πi||si

0|. Similarly for the cycle (lines 10-12), where we get
the time complexity at most |πi||gi|. Hence the cycle (lines 4-8) has the
time complexity at most |℘||πi||si

0|, because we can perform the cycle (5-7)
for every predicate presented in the domain Σ. Similarly, the cycle (lines
9-13) has the time complexity at most |℘||πi||gi|. The cycle (3-14) has the
time complexity at most |O||℘||πi|(|si

0| + |gi|), because we perform the cy-
cles (lines 4-8 and 9-13) for every operator and the given plan πi. The
main cycle (lines 2-15) is performed for every training planning problem
Pi and its plan πi. That gives us the time complexity in the worst case
O (|O||℘|∑n

i=1 (|πi|) (
∑n

i=1 (|si
0|) +

∑n
i=1 (|gi|))). The time complexity of the

line 1 is clearly |O||℘| which do not affect the complexity of the main cycle. 2

Remark 6.10: In the most common planning domains and their corre-
sponding planning problems it holds that the number of the operators and
the number of the predicates are quite small. Similarly, the number of the
goal predicates is usually small. Hence we can lower the time complexity
estimation to O (

∑n
i=1 (|πi|)

∑n
i=1 (|si

0|)).

The low time complexity of the algorithm means that we can run the
algorithm even for more training problems. However, we need to consider
that every training problem must be solved before the algorithm can start
computation (we need a training plan). Even though there are good planners
around, solving of many training problems can still be very time consuming.
It means that we should use ‘reasonable‘ training plans - usually toy problems
- only.

Moreover, the existing planners frequently do not produce the shortest
plans even though some of them successfully participated in optimal tracks
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of IPC. This may cause problems to our heuristic algorithm (fig. 6.3) be-
cause if the training plan contains actions that are not necessary to solve the
problem, these actions may break the condition of full entanglement. Hence
we suggest to weaken the heuristics further to allow ‘a few‘ violations of the
entanglement condition.

Heuristics 2: Let Σ be a planning domain. If for each training plan-
ning problem P over Σ holds that operator o from Σ is NOT entangled by
init (resp. goal) on predicate p in less or equal than n% times (‘flaws‘ ratio),
then operator o is considered as fully entangled by init (resp. goal) with pred-
icate p. We also consider that all detected full entanglements are compatible.

The ‘flaws‘ ratio describes the ratio between the number of violations of
full entanglements and the total number of instances of a particular operator
in all training plans. To follow heuristics 2 the detection algorithm can be
updated in such a way that instead of unsetting of full entanglements we
increase the number of violations of these full entanglements (lines 6 and 11)
and decide about the full entanglement at the end based on the ‘flaws‘ ratio.
Clearly, the risk of ‘false positive‘ detection of full entanglements is getting
higher as the ‘flaws‘ ratio raises.

‘Flaws‘ ratio introduces a parameter to the algorithm which raises the
question how to set this parameter. In the lines bellow we shall present an
approach which can help to determine the ‘flaws‘ ratio.

1. set flaws to n, where n ∈ (0; 1); according to our experiments we
suggest starting with n = 0.1

2. generate the entanglements by the modified algorithm using ‘flaws‘ ra-
tio flaws

3. compare the generated entanglements to the entanglements obtained
by the original algorithm (without ‘flaws‘). If same then quit (we are
not able to gather additional entanglements).

4. generate a reformulated domain and reformulated training problems
considering the generated entanglements (according to Definition 6.6)

5. run the planner on all the reformulated training problems. If succeed
then quit (we found proper full entanglements with respect to training
plans).
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6. otherwise set flaws := flaws− ε (ε > 0, for example ε = 0.01) and go
to the second step.

Remark 6.11: The time complexity of the Heuristics 2 do not differ
from the time complexity of the Heuristics 1. Considering the algorithm
determining the ‘flaws‘ ratio, we have to run the planner again to test if
the reformulated domain works with the training problems (step 5 in the
previously mentioned approach). According to the complexity of classical
planning we may reach at worst EXPSPACE-complete problem. On the
other hand, we consider only toy problems that are solved fast.

6.3 Experimental results

We evaluated our approach experimentally in the following way. At first, we
looked for what our methods can learn (how many new predicates are added
to modified domains by applying Definition 6.6). At second, we compared
running times and plans quality1 of well known planners SATPLAN 2006 [48]
(winner of the 5th IPC optimal track), SGPLAN 5.22 [44] (winner of the 5th
IPC sub-optimal track) and LAMA [65] (winner on the 6th IPC sub-optimal
track) on a couple of planning domains well known from the IPC. In summary,
we proceeded the evaluation in the following steps:

• generate several simpler training plans (by SATPLAN),

• run our methods (with and without ‘flaws‘ ratio) for detection of en-
tanglements,

• generate reformulated domains and problems considering the detected
entanglements,

• run the planners both on the original problems and on the reformulated
problems and compare results.

6.3.1 Tested domains

We chose several planning domains for our experiments to ensure that the
proposed approach is generally applicable (rather than specific for a partic-

1In this case, the plans quality is greater if the plan lengths is smaller.
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ular planning domain). In particular, we used domains well known from the
IPC. Some domains are the same as in Chapter 5.

Depots is a planning domain from the 3rd IPC. This domain accommodate
both the blocks and logistics environments. They are combined to form a
domain in which trucks can transport crates around and then the crates must
be stacked onto pallets at their destinations. The stacking is achieved using
hoists, so the stacking problem is like a blocks-world problem with hands.
The trucks can behave like ‘tables‘, since the pallets on which crates are
stacked are limited.

Driver Log is a planning domain from the 3rd IPC. This domain involves
driving trucks around delivering packages between locations. The complica-
tion is that the trucks require drivers who must walk between the trucks in
order to drive them. The paths for walking and the roads for driving form
different maps on the locations.

Zeno Travel is a planning domain from the 3rd IPC. This domain involves
transporting people around in planes, using different modes of movement:
fast and slow.

Storage is a planning domain from the 5th IPC. This domain is about
moving a certain number of crates from some containers to some depots by
hoists. Inside a depot, each hoist can move according to a specified spatial
map connecting different areas of the depot. The test problems for this
domain involve different numbers of depots, hoists, crates, containers, and
depot areas.

Gold Miner is a planning domain from the 6th IPC learning track. A
robot is in a mine and has the goal of reaching a location that contains
gold. The mine is organized as a grid with each cell either being hard or
soft rock. There is a special location where the robot can either pickup an
endless supply of bombs or pickup a laser cannon. The laser cannon can shoot
through both hard and soft rock, whereas the bomb can only penetrate soft
rock. However, the laser cannon will also destroy the gold if used to uncover
the gold location. The bomb will not destroy the gold.

Matching Blocksworld is a planning domain from the 6th IPC learning
track. This is a simple variant of the blocks world where each block is either
positive or negative and there are two hands, one positive and one negative.
The twist is that if a block is picked up by a hand of opposite polarity then
it is damaged such that no other block can be placed on it. The interaction
between the hands and blocks of the same polarity is just as in the standard
blocks world.
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Problem
no flaws ratio with flaws ratio

Unary Binary Unary Binary
Depots 1(2) 2(2) 1(2) 3(3)
Driverlog 1(1) 2(2) 1(1) 2(3)
Storage 2(2) 1(1) 2(2) 1(1)
Zenotravel 0(0) 2(2) 0(0) 2(2)
GoldMiner 3(3) 0(0) 3(3) 0(0)
MatchingBW 5(9) 2(4) 5(9) 3(5)
Parking 3(4) 2(2) 3(4) 2(2)
Thoughtful 15(47) 3(6) 15(47) 3(6)

Table 6.1: The number of added unary and binary predicates into the do-
mains and how many times they were added to operators’ preconditions (in
brackets).

Parking is a planning domain from the 6th IPC learning track. This
domain involves parking cars on a street with N curb locations where the
cars can be double parked but not triple parked. The goal is to move from
one configuration of parked cars to another configuration by driving the cars
from one curb location to another.

Thoughtful is a planning domain from the 6th IPC learning track. This
domain models a simplified version of Thoughtful Solitaire, which is a solitaire
variant that is played with all of the cards visible. The rules follow those
described in [8] but simplified so that one can turn each card from the talon
rather than 3 cards at a time.

6.3.2 Learning phase

For the learning phase we used 3 to 6 training planning problems depending
on the particular domain. For the generation of the training plans we used
SATPLAN. The selected training planning problems were not too complex
which results that the training plans were generated mostly within tenths of
seconds. The detection of the full entanglement with generation of reformu-
lated domain and problems took at most half of second2.

In table 6.1 it is shown how many unary and binary predicates were added
into the domains and how many times they were added to operators’ pre-

2performed on Core2Duo 2.66GHz, 4GB RAM, Win XP
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conditions (in brackets). We focused only on unary and binary predicates,
because nullary predicates did not bring any useful information and ternary
predicates (or more) were not presented in tested domains (or never detected
as fully entangled). We also compared both methods - without and with
‘flaws‘ ratio. We found out that using the ‘flaws‘ ratio contributed in De-
pots, Driver Log and Matching BlocksWorld domains. The other domains
remained the same as reformulated by the method without ‘flaws‘ ratio.

6.3.3 Running times and plans quality comparison

The results of the evaluation are showed in tables 6.2 (running times compar-
ison) and 6.3 (plan lengths comparison)3. Symbol ’-’ in the cells of the table
was used only in columns representing reformulated problems by the method
with ‘flaws‘ ratio where it indicates the fact that this method did not reveal
additional knowledge than the method without ‘flaws‘ ratio (see the previous
subsection). Term ’err’ in the table cells means that the planner terminated
with an unexpected error. All reformulated problems remained solvable ex-
cept thoughtful-s7-t5b and thoughtful-s7-t5c. This was caused by the fact
that the (toy) training problems for Thoughtful domain took in account full
entanglements that were applicable for the problems of type thoughtful-s5-t4,
but too restrictive for the problems of type thoughtful-s7-t5.

The best results were acquired by SATPLAN. Running times of refor-
mulated problems (especially those that were generated by the method with
‘flaws‘ ratio) were (mostly significantly) better in all tested cases. The plan
quality (the less plan length the better) were also in most cases better in
the reformulated problems. Even though SATPLAN produces optimal plans
in makespan, it does not ensure the optimality with respect to the number
of actions. SATPLAN simply finds the first plan with the lowest makespan
(actions can run in parallel). The reformulated problems operate with the
smaller number of actions than the original ones. It may result in the better
plan quality for the reformulated problems.

SGPLAN’s running times of the reformulated problems were mostly bet-
ter than the original ones (especially in the reformulated Matching BlocksWorld
domain and Parking domain). However, in some cases the running times of
the reformulated problems were significantly worse. The reason of this may
lie in SGPLAN’s heuristics that is based on heuristics used in Metric-FF [41].

3performed on XEON 2.4GHz, 1GB RAM, Ubuntu Linux
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problem
SATPLAN SGPLAN LAMA

orig ref no fr ref with fr orig ref no fr ref w fr orig ref no fr ref with fr
depotprob1817 >1000 >1000 >1000 24.69 391.46 0.15 331.03 95.94 3.64
depotprob1916 137.57 49.27 5.32 0.41 >1000 80.95 1.70 0.58 0.14
depotprob4321 5.32 2.24 0.48 0.02 0.10 0.00 4.96 3.69 0.03
depotprob4398 1.08 0.72 0.27 0.04 0.03 0.00 0.23 0.10 0.03
depotprob5646 0.39 0.26 0.08 0.01 0.01 0.00 0.17 0.07 0.02
depotprob5656 222.84 76.73 5.92 411.33 337.18 0.24 >1000 >1000 3.42
depotprob6178 6.87 4.54 1.50 0.11 0.06 0.02 11.66 6.06 0.06
depotprob6587 3.35 2.18 0.55 0.06 0.06 0.00 0.43 0.19 0.05
depotprob7654 10.08 6.13 1.39 0.09 0.04 0.01 1.48 46.58 12.41
depotprob8715 35.68 28.31 8.70 0.26 0.13 0.05 1.66 0.54 0.17
dlog-2-3-6a 24.67 3.52 3.35 0.94 0.05 0.02 2.20 1.68 1.68
dlog-2-3-6b 3.82 1.31 1.25 0.01 0.01 0.01 1.61 1.03 1.01
dlog-3-3-6 2.86 1.00 0.90 0.56 0.14 0.07 0.15 1.63 1.63
dlog-4-4-8 28.94 13.08 8.72 0.04 0.01 0.01 0.13 0.06 0.06
dlog-5-5-10 >1000 167.16 169.36 >1000 25.20 17.82 18.24 7.55 7.43
dlog-5-5-15 507.89 110.19 121.43 6.93 3.81 1.63 14.33 6.20 6.04
dlog-5-5-20 >1000 >1000 406.60 23.15 >1000 >1000 17.75 9.24 8.88
storage-11 85.47 9.25 - 0.00 err - 0.56 0.08 -
storage-12 38.01 9.65 - 0.00 0.00 - 0.70 0.06 -
storage-13 153.45 64.26 - 0.00 0.00 - 1.25 0.02 -
storage-14 24.70 23.58 - 0.00 0.00 - 5.15 0.33 -
storage-15 8.28 0.60 - 0.01 0.00 - 0.88 0.56 -
ztravel-3-7 1.90 1.59 - 0.01 0.00 - 0.04 0.04 -
ztravel-3-8a 1.71 1.31 - 0.01 0.00 - 0.05 0.04 -
ztravel-3-8b 0.86 0.65 - 0.01 0.00 - 0.04 0.03 -
ztravel-3-10 3.79 3.78 - 0.02 0.01 - 0.05 0.05 -
ztravel-5-10 34.49 22.53 - 0.22 0.19 - 0.24 0.20 -
ztravel-5-15a 92.04 40.70 - 0.12 0.09 - 0.48 0.37 -
ztravel-5-15b err err - 0.58 0.47 - 0.62 0.48 -
gold-miner-7x7-01 5.99 4.97 - err 0.00 - 0.30 0.04 -
gold-miner-7x7-02 4.36 3.58 - err 0.00 - 0.16 0.04 -
gold-miner-7x7-03 4.12 3.46 - err 0.01 - 0.29 0.04 -
gold-miner-7x7-04 9.15 7.62 - err 0.01 - 0.21 0.02 -
gold-miner-7x7-05 9.78 8.16 - err 0.00 - 0.38 0.03 -
gold-miner-7x7-06 6.00 4.96 - err 0.00 - 0.18 0.02 -
gold-miner-7x7-07 6.08 4.85 - err 0.01 - 0.04 0.02 -
gold-miner-7x7-08 3.06 2.60 - err 0.00 - >1000 0.02 -
gold-miner-7x7-09 4.24 3.61 - err 0.01 - 0.14 0.03 -
gold-miner-7x7-10 5.96 4.92 - err 0.00 - 0.29 0.05 -
thoughtful-s5-t4d 3.20 0.47 - 0.04 0.02 - err err -
thoughtful-s5-t4e 44.41 2.56 - 0.05 0.02 - err err -
thoughtful-s5-t4f 5.46 0.94 - 0.02 0.02 - err err -
thoughtful-s5-t4g 3.92 1.11 - 0.03 0.02 - err err -
thoughtful-s5-t4h 3.26 0.58 - 0.04 0.01 - err err -
thoughtful-s7-t5a 288.57 99.73 - 0.10 205.71 - err err -
thoughtful-s7-t5b 136.44 unsolvable - 1.39 unsolvable - err err -
thoughtful-s7-t5c 232.32 unsolvable - 0.13 unsolvable - err err -
matching-bw-n15a 27.81 19.93 1.95 >1000 >1000 0.25 0.22 0.22 0.25
matching-bw-n15b 34.25 10.18 1.37 >1000 >1000 170.39 0.36 0.31 0.38
matching-bw-n15c 26.80 9.39 1.20 >1000 20.89 284.65 0.71 1.74 0.14
matching-bw-n15d 40.74 14.41 1.45 >1000 >1000 >1000 0.51 0.29 0.18
matching-bw-n15e 59.00 14.62 1.73 >1000 >1000 47.17 0.17 0.80 0.07
matching-bw-n20a >1000 189.75 15.00 >1000 >1000 >1000 0.46 0.37 0.25
matching-bw-n20b 245.12 54.35 4.39 >1000 >1000 0.35 3.63 3.44 0.93
matching-bw-n20c 363.36 60.94 5.62 >1000 533.89 237.64 >1000 55.72 1.36
matching-bw-n20d 195.87 43.04 4.31 >1000 10.40 >1000 0.77 1.43 0.48
parking-a >1000 399.11 - 0.67 0.02 - 0.16 0.15 -
parking-b >1000 98.13 - 0.73 0.11 - 0.22 0.14 -
parking-c 304.47 17.68 - 0.53 0.08 - 0.16 0.12 -
parking-d >1000 889.98 - 0.02 0.01 - 0.34 0.13 -
parking-e >1000 167.20 - 0.76 0.05 - 0.31 0.14 -
parking-f >1000 >1000 - 0.47 0.27 - 0.20 0.13 -
parking-g >1000 >1000 - 17.89 0.83 - 14.16 0.58 -
parking-h >1000 >1000 - 19.39 0.71 - 0.55 1.01 -

Table 6.2: Comparison of the running times (in seconds) of original problems
and problems reformulated by our methods (without and with ‘flaws‘ ratio).
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problem
SATPLAN SGPLAN LAMA

orig ref no fr ref with fr orig ref no fr ref w fr orig ref no fr ref with fr
depotprob1817 N/A N/A N/A 100 99 95 118 111 93
depotprob1916 79 74 70 83 N/A 57 62 59 60
depotprob4321 43 46 39 41 35 34 39 38 37
depotprob4398 32 36 35 28 28 28 30 27 26
depotprob5646 31 28 28 26 26 28 26 26 26
depotprob5656 70 71 69 133 70 62 N/A N/A 63
depotprob6178 51 51 46 48 48 37 41 41 39
depotprob6587 30 29 26 28 26 24 25 25 23
depotprob7654 41 39 40 35 33 33 33 35 33
depotprob8715 50 46 44 34 34 36 34 33 33
dlog-2-3-6a 46 43 38 41 42 42 44 49 49
dlog-2-3-6b 27 27 28 32 32 32 39 30 30
dlog-3-3-6 37 38 35 46 41 41 51 46 46
dlog-4-4-8 54 52 53 47 47 47 44 44 44
dlog-5-5-10 N/A 98 95 N/A 103 105 132 114 114
dlog-5-5-15 92 84 89 110 106 106 112 95 95
dlog-5-5-20 N/A N/A 92 105 N/A N/A 127 114 114
storage-11 22 20 - 17 N/A - 32 20 -
storage-12 24 24 - 17 20 - 32 20 -
storage-13 18 18 - 18 20 - 38 20 -
storage-14 22 22 - 19 26 - 32 24 -
storage-15 25 26 - 21 20 - 22 20 -
ztravel-3-7 22 19 - 18 18 - 15 18 -
ztravel-3-8a 27 25 - 27 27 - 24 23 -
ztravel-3-8b 27 29 - 29 29 - 28 28 -
ztravel-3-10 31 38 - 36 36 - 31 30 -
ztravel-5-10 42 38 - 40 40 - 41 39 -
ztravel-5-15a 50 53 - 60 60 - 47 47 -
ztravel-5-15b N/A N/A - 55 55 - 57 57 -
gold-miner-7x7-01 35 35 - N/A 33 - 176 31 -
gold-miner-7x7-02 32 32 - N/A 30 - 161 28 -
gold-miner-7x7-03 32 32 - N/A 34 - 257 32 -
gold-miner-7x7-04 43 42 - N/A 41 - 130 41 -
gold-miner-7x7-05 39 41 - N/A 39 - 157 39 -
gold-miner-7x7-06 33 34 - N/A 33 - 182 33 -
gold-miner-7x7-07 38 38 - N/A 36 - 65 34 -
gold-miner-7x7-08 25 25 - N/A 27 - N/A 25 -
gold-miner-7x7-09 33 29 - N/A 31 - 130 29 -
gold-miner-7x7-10 35 35 - N/A 33 - 176 31 -
thoughtful-s5-t4d 37 37 - 28 30 - N/A N/A -
thoughtful-s5-t4e 41 36 - 33 31 - N/A N/A -
thoughtful-s5-t4f 36 32 - 31 28 - N/A N/A -
thoughtful-s5-t4g 38 38 - 32 32 - N/A N/A -
thoughtful-s5-t4h 41 36 - 31 34 - N/A N/A -
thoughtful-s7-t5a 58 65 - 50 49 - N/A N/A -
thoughtful-s7-t5b 65 N/A - 84 N/A - N/A N/A -
thoughtful-s7-t5c 71 N/A - 51 N/A - N/A N/A -
matching-bw-n15a 42 42 42 N/A N/A 46 68 62 50
matching-bw-n15b 56 52 52 N/A N/A 54 66 78 60
matching-bw-n15c 38 42 38 N/A 74 34 66 72 46
matching-bw-n15d 40 42 42 N/A N/A N/A 58 60 56
matching-bw-n15e 34 36 36 N/A N/A 42 40 44 34
matching-bw-n20a N/A 52 50 N/A N/A N/A 62 66 66
matching-bw-n20b 48 50 48 N/A N/A 60 78 68 50
matching-bw-n20c 54 54 54 N/A 90 36 N/A 70 72
matching-bw-n20d 46 46 46 N/A 74 86 92 64
parking-a N/A 16 - 20 31 19 31 -
parking-b N/A 15 - 22 36 20 31 -
parking-c 12 12 - 25 29 15 23 -
parking-d N/A 14 - 18 18 31 18 -
parking-e N/A 13 - 29 56 27 20 -
parking-f N/A N/A - 25 39 21 19 -
parking-g N/A N/A - 34 52 30 20 -
parking-h N/A N/A - 37 58 19 38 -

Table 6.3: Comparison of the plan lengths of original problems and problems
reformulated by our methods (without and with ‘flaws‘ ratio).
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FF based heuristics is vulnerable to problems that may contain dead-ends
(i.e. we can reach such a state from which the goal is unreachable). Prun-
ing of actions done by our methods may cause that some problems become
dead-ended. The quality of plans was better in most of the reformulated
Depots problems, slightly worse in the reformulated Storage problems and
significantly worse in the reformulated Parking domain.

LAMA’s running times of the reformulated problems were mostly better
than the original ones. However, similarly to SGPLAN, the running times
of several reformulated problems were worse. The reason of this also may
rest in LAMA’s heuristics (based on FF and Causal Graph) that may be
vulnerable to problems with dead-ends. The most interesting and also a bit
surprising result was achieved in Gold Miner domain, where the quality of
solutions of reformulated problems were significantly better than in original
ones.

6.3.4 Discussion

The presented results showed that our approach is reasonable and can help
planners and increase their performance. SATPLAN, which gained the best
results, is based on transforming of the planning graph [9] into SAT formulae.
We suppose that SATPLAN benefits from our methods because our methods
result in a significant reduction of the size of the planning graph. Planners
like SGPLAN or LAMA using FF-based heuristics may occasionally experi-
ence difficulties when using our approach. It was discussed in the previous
subsection that the main problem of this (we suppose) rests in the fact that
problems reformulated by our methods may contain dead-ends. On the other
hand in most of problems our methods are still helpful. For instance, Match-
ing BlocksWorld domain is a good example of problems with dead-ends. As
we anticipated, SGPLAN experienced difficulties when solving the original
problems. Our methods helped SGPLAN to solve these problems, often in
a very good time. It shows that our methods can be successfully used in
a connection with planners based on FF-based heuristics (like SGPLAN)
mostly for problems with dead-ends. In addition, many planning problems,
especially real world ones, have dead-ends.
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Chapter 7

Conclusion and future work

This thesis brings the contributions to the area of learning for classical plan-
ning. Besides the theoretical background that we proposed, we focused on
learning additional (domain-dependent) knowledge from the training plans
and encoding it back to the domains or problems. Hence, we do not need to
modify the existing planners’ source code.

First of the proposed methods is a method for generating macro-operators
and removing useless primitive operators from planning domain. The method
explores pairs of actions (not necessarily adjacent), which can be assembled,
in the given training plans. It results both in the detection of suitable macro-
operators and primitive operators that can be removed. The method can be
used with arbitrary planners. The presented evaluation (Section 5.4) showed
that using the method is reasonable and can transparently improve the plan-
ning process, especially on more complex planning problems. Nevertheless
the results were obtained by evaluation of IPC benchmarks only. Proba-
bly, the main disadvantage of IPC benchmarks rests in similarities of the
planning problems (the problems differ only in the number of objects) which
makes analyzing of plans structures much easier. In real world applications,
it may be more difficult to use our method properly (for example, we need
a set of good training plans etc.). Classification of such problems where
we can remove particular primitive operators without loss of the problems’
completeness remains an open problem.

The second proposed method performs domain and problem transforma-
tions that can prune many unnecessary actions that may mislead planners
when solving the planning problem. The proposed methods are based on the
detection of connectivity (here defined as full entanglements) between the
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operators’ instances in the training plans and the initial or goal predicates in
the corresponding planning problems. The main advantage of the proposed
approach rests in the possible reduction of the search space. The presented
experimental evaluation (Section 6.3) confirmed that in most cases our ap-
proach reduced the time needed to find a solution. Like in the first case,
the reformulated domains and problems can be used with common planners
without changing their source code.

Despite the progress given by this thesis, there still remain many pos-
sibilities for future research. Even though the presented methods (macro-
operators, entanglements) were developed and evaluated separately, we see
an opportunity in putting them together. It may produce more sophisticated
knowledge and increase the performance of planners. Because our methods,
especially the method for generating the macro-operators, also depends on
the pre-defined parameters (a different set of parameters may result in differ-
ent outputs) it is quite necessary to evaluate somehow these outputs, because
we have to produce the best (or nearly the best) ones. This task still requires
research, but there exists a system [66] that is able to predict planners’ be-
havior on particular domains and problems. The possible connection of our
methods with this system may be beneficial.
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Appendix A

Contents of CD

This thesis include an attached CD with an additional material in electronic
form. Concretely, the contents of the CD is following:

Domains — Contains the original and reformulated planning domains and
problems. The original planning domains and problems are taken from
IPC website (http://ipc.icaps-conference.org)

Results — Contains the results in XLS files.

Sources — Contains the source codes for the generator of the macro-operators
and the entanglement detector which are implemented in SWI-Prolog
version 5.6.8. There are also domains and problems encoded in prolog
which are required by the generator of the macro-operators and the
entanglement detector.

Thesis — Contains the text of this thesis in PDF format.

The planners we used for the experiments are not listed on the CD, be-
cause it may cause the possible violation of their licenses.
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