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Abstract

The broad aim of this thesis is to clarify the relationship between syntax
and semantics, mainly in connection with languages with exactly specified
structure. The main questions we raise are: What is it that makes a se-
mantic concept genuinely semantic? What exactly makes a merely semantic
characterization of such a concept inadequate? What is the decisive step
we have to make if we want to start speaking about the meaning-side of
language? We approach these questions indirectly: via an analysis of a
typically semantic concept, namely that of truth. Our principal question
then becomes: What conceptual resources are required for a satisfactory
definition of truth?

To investigate the concept of truth and different ways in which it can
be defined, we have chosen three individual systems: (a cumulative version
of) Russell’s ramified theory of types, Zermelo’s second-order set theory
and Carnap’s logical syntax. Each of the systems is studied in considerable
detail. The presented thesis is, in effect, a collection of three case-studies
into the ways in which the concept of truth is explicitly definable and into the
requisite conceptual background, each study forming a more or less closed
unity. It should be noted that we are not interested in a historically faithful
representation of these systems; our goal is to get the best of them while
making use of suitable contemporary insights.

The general conclusion reached on the basis of the results obtained in
the individual studies of the concept of truth is that the key step marking
the transition from syntax to semantics consists in a specific combination
of restricting and expanding the syntactic resources available. At the very
end, some philosophical consequences following from this idea are outlined.
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Abstrakt

Širš́ım ćılem této práce je vyjasnit vztah mezi syntax́ı a sémantikou, zejména
pokud jde o jazyky s přesně specifikovanou strukturou. Hlavńı otázky, kte-
rými se zabýváme, jsou: Co čińı sémantický pojem sémantickým? Co zp̊uso-
buje, že je pouhá sémantická analýza takového pojmu nedostatečná? Co je
t́ım rozhoduj́ıćım krokem, který muśıme učinit, abychom pronikli k význa-
mové stránce jazyka? Těmito otázkami se nezabýváme př́ımo, ale prostřed-
nictv́ım analýzy typického sémantického pojmu, a sice pravdivosti. Naš́ı
hlavńı otázkou tedy je: Jaké pojmové prostředky jsou nezbytné pro uspoko-
jivou definici pravdivosti?

Ke zkoumáńı pojmu pravdivosti a jednotlivých zp̊usob̊u, jak jej lze de-
finovat, jsme si vybrali tři konkrétńı systémy: kumulativńı verzi Russellovy
rozvětvené teorie typ̊u, Zermelovu druhořádovou teorii množin a Carnapovu
logickou syntax. Každý systém je podroben d̊ukladnému studiu. Předkláda-
ná práce je tedy souborem tř́ı v́ıce méně samostatných studíı, jež popisuj́ı
možnosti explicitńı definice pravdivosti a nezbytného pojmového zázemı́.
Poznamenejme, že naš́ım ćılem neńı historicky věrná prezentace uvedených
systémů, nýbrž snaha o daľśı rozvinut́ı toho cenného, co nab́ızej́ı, ve světle
současných poznatk̊u.

Obecným závěrem, k němuž dospějeme na základě výsledk̊u źıskaných
v jednotlivých studíıch pojmu pravdivosti, je teze, že kĺıčový krok, který je
třeba učinit pro přechod od syntaxe k sémantice, spoč́ıvá ve specifické kom-
binaci omezeńı a rozš́ı̌reńı syntaktických prostředk̊u, které jsou k dispozici.
Na samotný závěr načrtneme některé filosofické d̊usledky tohoto zjǐstěńı.

vi
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Chapter 1

Introduction

This thesis deals with four central concepts: syntax, semantic, truth and
meaning, and with their mutual relationship. Although none of these con-
cepts is regarded as more eminent than the others, they are not treated in
an equal way. This follows from the consideration of how they are interre-
lated. Syntax and semantics represent—alongside the third member of the
“trinity”, pragmatics—two distinct layers or aspects of language. Semantics
as a discipline is usually characterized as a study of all the various aspects
of meaning of linguistic expressions. This, however, does not entail that to
study semantics, we have to be directly occupied with the concept of mean-
ing. The way the concept of meaning is approached in this thesis is inspired
by the idea that in order to contribute to the study of the meaning-side
of language, it is not necessary to invoke the concept of meaning at all.1

Semantics is not an enquiry into the unique concept of meaning. Rather,
it strives to account for how it comes about that expressions mean what
they do. Thus we can contribute to the study of meaning by elucidating
the functioning of some particular concept other than meaning itself. If we
succeed in elucidating the meaning of a particular word, if we gain a better
understanding of how a complex concept functions in our language, we have
solved one problem of semantics, and we have clarified a little region in the
abstract realm of meaning.

The concept we have taken up as a focal point of our investigations is
that of truth. There is a sense in which truth cannot be appropriated by
any single science or domain of knowledge since they all are after the truth;
however, the questions such as: What makes a sentence or a statement
true? What is the general criterion of truth? How can truth be defined? are
usually treated within semantics. Yet, how about syntax? What does syntax
has to do with meaning or truth, these being chief topics of semantics? The
key question we are going to ask can be formulated in the following way.

1To be more precise, we are inspired by Dummett’s depiction of the theory of meaning
in Dummett [1981], p. 675.

1



2 Syntax and Semantics

By definition, the syntactic components of language taken in isolation are
meaningless and there is no way how we could attribute to them semantic
properties such as truth. To get hold of the meaning or truth of expressions,
we need to take into account the whole semantic aspect of language. But
what is that? How do we add the semantic dimension to language? How do
we assign meanings to expressions or what do we do to gain the ability to
treat them as true or false? What is it that marks the transition from syntax
to semantics? When do we stop doing syntax and begin doing semantics?
What is the fundamental move that could be identified with the passage to
semantics?

Our main task is to answer this complex of questions. First of all, though,
we need to make the whole issue more precise.

1.1 Syntax and Semantics

It needs to be said right at the beginning that we will deal mainly with
formal languages. (This decision is further discussed in section 1.4.) Unlike
in so-called ‘natural languages’ such as English or Czech, in formal languages
it is precisely specified what counts as a well-formed expression of such a
language, be it simple or complex (e.g., a sentence). This is usually achieved
by specifying the basic symbols and the rules of formation of the given
language. This part of language, i.e., the vocabulary and the formation
rules, constitutes syntax in the narrow sense; it is, in effect, combinatorics
of some chosen basic elements. Sometimes also the formal specification of
what counts as a theorem is included in syntax. This is typically done
by laying down axioms and rules of inference; no reference to an intended
meaning is yet made. This is syntax in the wider sense. A full exploitation of
this deductive component of language leads to proof theory. The deductive
component is often constituted not only by logic but also by axioms or rules
of special theories. A clear-cut separation of logic from other, extended
systems is not always unproblematic and can sometimes be viewed as more
or less arbitrary. We will generally stick to the convention of regarding
standard predicate calculus, both first- and higher-order, as formal logic
while collections of axioms including other primitive expressions as formal
theories.

So far we have considered only syntax. Semantics begins when we start
to enquire into the interpretation of the language, so far considered purely
formally. We investigate the meanings of expressions, truth or falsity of
sentences, definability of concepts by formulas etc. Typically, the field of
study dealing with interpretations of formal systems is model theory.

As an illustration of a formal theory, take Peano Arithmetic, PA. It
is formulated in a standard language of first-order logic, to which it adds
the constant ‘0’, the one-place functor ‘s’ and the two-place functors ‘+’,
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‘×’. Its formation rules are standard. All this belongs to syntax in the
narrow sense. Its deductive system consists in standard axioms and rules
of inference of first-order logic plus the six axioms governing the use of the
aforementioned extra-logical constants and the axiom schema of induction;
it gives us properties such as that of being a PA proof or being a theorem of
PA. This constitutes syntax in the wide sense. Semantics for PA is typically
provided by specifying a structure (model) which interprets the parameters
of PA, i.e., the quantifiers and the extra-logical constants listed above, and
which makes all theorems of PA true. The structure 〈N,+,×, 0, s〉—where
‘N’ specifies that the quantifiers of the language of PA range over the domain
of natural numbers, and the remaining symbols assign individuals from N
and functions on N to the constants—is taken to be the standard model
of PA. Consideration of the intended model and other possible structures
satisfying PA leads to the development of a variety of semantic concepts for
the given formal theory.

It should be stressed that without an interpretation, a formal language
is only a collection of basic symbols from which we or a suitably designed
machine can generate, following explicit rules, well-formed formulas or other
kinds of expressions. Similarly, a formal theory is a collection of sentences
that are generated from some initial sentences we accept from the start,
again mechanically applying explicit inferential rules. In this sense, a formal
theory is just a collection of specific objects, say, strings of symbols. As it is
not interpreted, it cannot be seen as saying or asserting anything at all. This
changes when we consider a formal language together with its interpretation,
i.e., when we take into account how the strings of symbols are to be “read”.
It is clear that unless it is provided with semantics, a formal language is not
a genuine language at all. So to establish a formal language in the full sense
is to provide both its syntax and its semantics.2

Before it took on the respectable, technical form of model theory, se-
mantics was regarded by “scientifically-minded philosophers” with suspicion.
The reason is not hard to find. The assignment of meaning to a given formal
language is seen as establishing a relationship between the expressions of a
language and something extra-linguistic. That is, in dealing with the seman-
tics of a language, we leave the realm of the linguistic and enter the world of
objects considered outside the medium in which they are given to us. This is,
indeed, problematic on several accounts. Firstly, it does not seem, at least at
a first glance, unacceptable to say, e.g, that the phrase ‘the tree outside the
window’ designates the tree growing outside the window. However, when
we leave the domain of discrete tangible objects, the things get complicated.
With Frege, we may raise the question: What is the meaning of a number

2Sometimes the term ‘formal language’ is used only to refer to the uninterpreted syntac-
tic part; at times the distinction between the formal language (excluding interpretation)
and the formalized language (including both syntax and semantics) is made. We do not
observe this distinction.



4 Truth

word? In general, what are the assertions involving designations of abstract
objects about? What about the talk of properties and relations? To provide
an acceptable interpretation of a more complex language is nothing but to
answer some perennial philosophical questions that keep haunting us from
the antiquity. The complexity of such a task only grew with the discovery of
paradoxes at the beginning of the 20th century. Secondly, it must be asked:
How do we grasp the extra-linguistic entities that are assigned to linguistic
expressions as their meanings? In the same way as it is hard to find out
what the object that is seen looks like when it is not seen, it is also hard
to determine what the meaning expressed by a sentence is when it is not
expressed by any sentence. The task of interpreting a language seems to
involve this hardly acceptable requirement that we should be able to grasp
the meanings we assign to expressions in some non-mediated way.

Semantics responds to this difficulty by strictly observing the distinction
between the object-language and the metalanguage.3 The interpretation of
expressions of the object-language is not carried out in an extraterrestrial
observatory but simply in a metalanguage. The meanings to be assigned are
expressed or designated by the expressions of the metalanguage. This is to
say that the object-language is interpreted in the metalanguage. In practice,
this will typically include a translation of the object-language into the met-
alanguage, as a result of which we will be able to associate the expressions
of the object-language with the entities designated by the metalanguage.

This is all fair enough; but the necessary requirement is that the meta-
language itself is already interpreted, i.e., it is a fully-fledged language with
proper semantics. Of course, one can formalize also the metalanguage but
this just pushes the requirement that we be in possession of a fully mean-
ingful language as a metalanguage one step further. In the end, if we are
to avoid an infinite regress, we end up with a language for which we do not
have any metalanguage. How does one study the semantics of such a lan-
guage? With no metalanguage to climb upon and with the assumption that
the option of acquiring a direct acquaintance with the meanings is hardly
acceptable, this questions does not seem to have an easy answer.

1.2 Truth

To make our investigations more specific and as focused as possible, we
have picked out a single central semantic concept, namely that of truth.
The significance of the property of truth for formal theories became appar-
ent in connection with Gödel’s incompleteness theorems. Before Gödel’s
groundbreaking result it could have been hoped that a suitable choice of ax-
ioms together with proper rules of inference would make it possible to prove

3Cf. Tarski [1936b], p. 402: ‘People have not been aware that the language about which
we speak need by no means coincide with the language in which we speak.’
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every true sentence of the given language. Had this been the case, truth
would turn out to coincide with theoremhood: truth would be whatever
a well-constructed formal theory can prove. Then, of course, truth would
be redundant and could be eliminated without a significant loss. Yet, this
was not meant to be. The incompleteness theorems changed profoundly our
understanding of formal systems. Among other things they established that
provability and truth do not generally coincide. It follows that truth can
be and should be investigated as a unique, independent concept in its own
right, and that the study of the truth-aspects of formal languages is a gen-
uinely worthwhile task that duly supplements the study of their syntactic
aspects.

The conception of truth usually associated with the semantic study of
language is that of Tarski’s, published and promoted in the 1930s. This is not
to say that truth was not studied before Tarski but it was in Tarski’s mono-
graph (Tarski [1933]) where a precise axiomatic treatment and an explicit
definition for truth was proposed for the first time.4 Without going into
details (as these are provided in subsequent chapters, especially throughout
chapter 4), it suffices to say that Tarski proceeds in two steps. First, he
introduces a criterion specifying what is to count as a truth predicate for a
given object-language. This is nothing else than the well-known convention
T. The second step consists in giving the definition of truth based on an-
other semantic notion, namely on the relation of satisfaction of formulas by
sequences of objects. The specifications of satisfaction and of truth can take
on two different forms, depending on the expressive or deductive resources
available in the metalanguage. If the metalanguage is what Tarski calls “es-
sentially richer” than the object-language, the relations of satisfaction and
truth can be explicitly defined. This means that they can be eliminated,
i.e., replaced in the metalanguage by their definienda, and that the meta-
language does not need to contain expressions such as ‘true’ or ‘satisfies’
among its primitive vocabulary. On the other hand, if the metalanguage is
not essentially richer than the object-language, the explicit definition is not
possible. Satisfaction and truth can then be defined at most implicitly, i.e.,
the predicates ‘true’ and ‘satisfies’ must belong to the primitive vocabulary
of the metalanguage, and the deductive system of the metalanguage (the
metatheory) has to include special axioms governing the use of these unde-
fined constants. The specification of truth in this latter case will thus have
a form of an axiomatic theory of truth, which is in no way eliminable.

So Tarski’s semantic conception of truth offers two possibilities. On
the first, truth for the object-language can be fully subsumed under the
essentially richer conceptual machinery of the metalanguage. On the second,
it can be introduced via suitable axioms as an undefined primitive concept.
Both alternatives have their philosophical drawbacks. In the former case,

4For a slightly more complete account of the story see the beginning of chapter 5.
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we already need to assume what we are looking for or even more, only at a
higher level. In the latter case, the axiomatic theory of truth is, in effect,
a formal theory which can be understood in terms of syntax in the wider
sense; as such it requires an interpretation. That is, we need to assign
meaning to the primitive constants ‘true’ and ‘satisfies’. Now, in view of
these drawbacks, we do not mean to suggest that the semantic conception
of truth is without merits. On the contrary, it led to the rehabilitation of
the concept of truth in logic and mathematics, it opened up the possibility
for this concept to be employed in a consistent fashion, and it brought out
the compositional character of the relation of satisfaction, etc. However, it
can hardly be seen as an ultimate solution to the philosophical problem of
grasping the meaning-side of language.

In the light of this somewhat disappointing situation, is there a more
promising way of approaching truth other than either via accepting the
existence of a peculiar cognitive capacity that would show us the absolute
truth in itself or via assuming the same concept that is to be clarified in
the metalanguage? Another question closely related to the one just asked
is this: Is there a way in which the truth-predicate could be introduced and
consistently used without climbing up onto the appropriate metalanguage?
That is, is the transition to a different language really a necessary condition
for an acceptable definition of truth?

1.3 The Problem and the Way Forward

The chief problem we aim to deal with can be formulated in the following
way. Assume that truth can be somehow defined for a particular language.
Given that it is a semantic concept par excellence, i.e., a concept that has
to do with the meaning-side of language and cannot be properly exploited
using syntactic means alone, its definition will necessarily involve certain
semantic elements. What are these semantic elements that such a definition
must make use of? This is a crucial question. Answering it will provide,
among other things, an answer to the question with which we have started,
namely that of what marks the passage from syntax to semantics, at least
with respect to this specific concept. A particular task is to find out what
role in such a definition of truth is played by the distinction between the
object-language and the metalanguage.

It is hoped that if we manage to obtain a satisfactory answer to these
questions, it will become clearer whether the concerns raised in connection
with the very business of semantics can be dispelled, and, if this is so, how it
can be done. There is a chance that a thorough study of the elements that
make the concept of truth definable—i.e., of the elements to which truth can
be reduced or of the components of which it is built—will open up a different
way of looking at the modus operandi of semantics and suggest a somewhat
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different, philosophically less discouraging approach to the whole meaning-
side of language. This is, indeed, a very ambitious project, requiring a great
deal of hard labour without any guarantee that the results actually obtained
will be worthwhile.

The strategy adopted for dealing with the task we have set for ourselves
consists in carrying out three more or less extensive case-studies into the
different ways in which the concept of truth is definable in particular sys-
tems. The method chosen is partly quasi-historical, and partly systematic.
I have used the term ‘quasi-historical’ to emphasize that we are going to
deal with systems put forward by actual philosophers and logicians within
determinate historical contexts but we do not at all attempt to present them
with historical accuracy. The historical systems are taken mainly as mate-
rial for a further study, which is conducted with great liberty. That is, we
attempt to extract from our material as much as possible, and we some-
times develop the systems into shapes that they historically never assumed.
The systematic element suggests that we strive to make use of the most
contemporary theoretical resources and analyze the concepts using modern
techniques; sometimes, as in chapter 4, we focus on the systematic develop-
ment entirely, leaving historical considerations almost entirely aside.

To be specific, we investigate how truth is defined within the following
systems: (a cumulative version of) Russell’s ramified theory of types, Zer-
melo’s second-order set theory and Carnap’s logical syntax. Each case-study
comprises a single chapter except for the second one which spans two chap-
ters, the latter being concerned not so much with Zermelo’s thoughts but
with prospects for the definition of truth in set theory in general. This is the
most technical part of the whole thesis, and some ideas and techniques only
assumed or informally touched upon in other sections are fully developed
there. The individual studies are, on the whole, supposed to be independent
of one another and should form more or less integral wholes. They may be
read in a different order without seriously impairing the reader’s ability to
follow the arguments presented and concepts discussed.

In all the three studies, the focus is on the development of the concepts
needed for the definition of truth. The problem formulated at the outset of
the present section is not explicitly addressed until the conclusion, in which
an attempt is made to discern a unifying thread in the different theories and
approaches examined in the body of the thesis, and conclusions are drawn.

1.4 Formal Languages

At the beginning of section 1.1 we made the decision to deal with formal
languages, in the sense specified, and not with natural languages. Formal
languages are constructed languages; their rules have been explicitly stated,
which makes them unproblematic in some areas where natural languages,
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owing to their complexity and instability, are rather difficult to come to
terms with. Does not this decision threaten to undermine the validity of
our whole project? What philosophical impact can have a definition of a
technical concept whose use is entirely restricted to a specific constructed
language? How does it contribute to our grasping of the concept of truth
for the language we commonly speak if we succeed in obtaining a precise
explicatum for truth, say, in second-order set theory? The question of the
relationship between constructed and natural languages and the philosoph-
ical relevance of the former for understanding the latter is a rather difficult
one. We will not attempt to solve it. We will merely make a few remarks
that will hopefully bring some light into the issue and will, in the end, justify
our decision.

Formal languages and formal theories can be understood in diametrically
opposite ways. On the one hand, they can simply be objects of study (thence
‘object-languages’). This approach is decisively external: we investigate
the syntax and the semantics of a formal language from the outside, from
the vantage point of a different language, which is no longer studied as
an object but actively used. Taken as objects of study, formal languages
or theories can be viewed as models; not in the sense of models of model
theory but as simplified representations of selected aspects of reality that are
put together in such a way that their nature and mutual relations become
more transparent and detectable. On the other hand, formal languages and
theories can be seen as fragments of natural languages. Let us look at this
option more closely.

When Frege introduced his formal language called ‘Begriffsschrift’ in
Frege [1879], he considered the question of how it is related to natural lan-
guage.5 Frege’s formal language arose out of the need to overcome the inad-
equacy of natural language for the purpose of reliably treating the chains of
inference, i.e., proofs. Frege compares the usefulness of his formal language
to that of a microscope for the human eye. For general purposes of seeing
the world around us, the eye alone is more useful; however, for a very spe-
cific sort of purposes, its capacities need to be extended. Similarly for the
proposed formal language: its utility consists in analyzing proofs and logical
connections between sentences, which are not always manifest in natural
languages.

However, since logical relations can be seen as underlying any meaningful
use of language, the actual ambitions behind Frege’s formal language are far
greater:

It is possible to view the signs of arithmetic, geometry, and chem-
istry as realizations, for specific fields, of Leibniz’s idea [of a uni-
versal characteristic]. The ideography proposed here adds a new

5These considerations are presented in the preface to Begriffsschrift. Viz. Frege [1879],
pp. iii–viii.
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one to these fields, indeed the central one, which borders on all
the others. If we take our departure from there, we can with the
greatest expectation of success proceed to fill the gaps in the ex-
isting formula languages, connect their hitherto separated fields
into a single domain, and extend this domain to include fields
that up to now have lacked such a language. (Frege [1879], p. vi;
Bauer-Mengelberg’s translation.)

Then Frege goes on to suggest that his formal language may be extended
so that it applies to analysis, to geometry and to physics, and there is no
obstacle to including other scientific disciplines. This is to say that Frege’s
formal language is proposed as a formal language that can incorporate, with
suitable extensions, the whole language of science. And not only that; the
ambition connected with it goes even further. Being a ‘formula language of
pure thought’, it can include, contrary to Kant’s strongly held belief,6 also
the field of philosophy:

If it is one of the tasks of philosophy to break the domination of
the word over the human spirit by laying bare the misconceptions
that through the use of language often almost unavoidably arise
concerning the relations between concepts and by freeing thought
from that with which only the means of expression of ordinary
language, constituted as they are, saddle it, then my ideography,
further developed for these purposes, can become a useful tool
for the philosopher. (Frege [1879], p. vi–vii; Bauer-Mengelberg’s
translation.)

It follows from these considerations that Frege’s formal language was not
thought of as an object of study. It was put forward as a language into which
sentences of natural language as well as sentences belonging to other possible
formal languages of different special sciences are translatable, and its whole
raison d’être was to make explicit the logical form of these sentences. It
was designed to be a language that is to be actively used, and not just
studied as a representative of a rare species. It makes more sense to look
upon it as a precisely crafted fragment of natural language rather than as a
remote system of formal logic, separated by a deep divide from the rest of
our linguistic abilities and practices.

There is no doubt that Russell’s ramified theory of types was conceived
of as an attempt to establish a universal logical language in which the some-
what hidden logical form of sentences of natural language could be exposed.
As far as Zermelo’s system of set theory goes, it makes sense to see it as

6Kant consistently refused the idea that philosophy could successfully employ mathe-
matical methods such as the use of symbolism. The reason is that while mathematics relies
on intuition, philosophy must deal with pure concepts. See Kant [1998b], A712/B740–
A738/B766, in particular A734/B762–A735/B763.
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a precisely specified fragment of the language of science whose chief goal
is to fully exploit the mathematics of the membership relation. With Car-
nap’s syntax, the situation is a bit more complex as Carnap programatically
refuses to accept that there is a single language of science, claiming that
everyone has freedom to choose the language he or she finds best suited for
the desired purposes. This perspective of language plurality involves consid-
eration of the individual candidate languages as objects. However, Carnap
is sensitive to the distinction between working within a language and study-
ing a language from the outside. The languages proposed as candidates for
playing the role of language of science need to be studied so that we are
aware of their powers and limitations as well as their advantages or disad-
vantages in comparison with other candidates. However, the ultimate goal
of any such candidate language is to become a language of science, i.e., an
explicitly specified language that is to be used to advance progress of all sci-
entific disciplines. In this sense, Carnap’s candidate languages should not be
thought of as aspiring at being accepted as suitably sharpened fragments of
natural language; they are put forward as its adequate replacements. They
are to become natural languages sui generis.

To conclude, there is a perspective that permits viewing formal languages
as languages that can be used. This makes them genuinely philosophically
significant.



Chapter 2

Russell: Hierarchy of
Functions

The main aim of this chapter is to show how truth can be defined in Russell’s
ramified theory of types. Yet it needs to be noted right at the beginning that
Russell’s brisk development combined with not so clear intentions behind
some of his assertions make it at some points rather difficult to estimate
what his true philosophical positions were. Fortunately, as what we are after
is not a historical investigation but rather a further development of certain
possibilities contained in the ramified theory of types, we are free to make use
of a modern reconstruction of the theory of types and a particular construal
of the underlying hierarchy of propositional functions without much regard
to the question whether it can be genuinely ascribed to Russell.

It is well known that the theory of types was not something Russell was
ecstatic about; it arose out of the necessity to save the foundations of logic
and mathematics from contradictions such as those that afflicted the system
developed in Frege’s Grundgesetze der Arithmetik (Frege [1893, 1903]). So,
before turning our attention to Russell’s diagnosis and the proposed cure,
it is requisite to understand the problem, and to say a few words about
the collapse of Frege’s attempt to coach arithmetic in logical terms. After
this preparatory part, we will describe Russell’s response, the vicious-circle
principle and the ramified theory of types. Then we will show how semantic
concepts such as truth can be defined within our broadly Russellian system.
Eventually, we will tackle the issue of expressibility within the language of
the ramified theory of types.

2.1 Frege: Trouble with Basic Law V

Frege’s project aiming to show that arithmetic is in essence nothing but
logic is well known and has been widely discussed, especially in connection
with different sorts of ‘neologicist’ attempts to partially revive the basic

11
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idea without giving rise to a contradiction or to a commitment to blatantly
unlogical assumptions.1 In the light of this, we will not describe Frege’s
conception of logic and arithmetic in any detail; we will just say the follow-
ing. Arithmetic deals with numbers. Numbers are understood as unique
objects given to us in language as the meanings of number-words. The con-
text principle requires that we investigate the meaning of a number-word in
the context of sentences containing it. A prominent role for determining the
meaning of a word is played by sentences expressing the identity of objects.
Frege’s task then becomes to determine the meanings of the number-words
flanking the equality sign ‘=’ and secure their existence in such a way that
the sentences of arithmetic can be assigned a definite truth value. The True
and the False are assumed as primitive objects, and the other members pop-
ulating the domain of objects required for the sentences of arithmetic to be
true are provided by specifying the meanings of complex terms in identity
statements. Where do these objects come from? What are they, and in
what sense can they be said to be logical? The crucial idea of Frege’s is that
these objects are constituted as extensions of concepts, or, more generally,
courses of values, or value-ranges, of functions.

Frege considers the logical universe to comprise two basic kinds of en-
tities, functions and objects, which are separated by an unbridgeable di-
vide.2 However, despite being essentially different from objects, functions
are thought to be associable with certain objects, namely with the courses
of their values. A concept, a special case of function whose value is a truth
value, is associated with its extension, i.e., the collection of objects falling
under it. To designate functions, Frege replaces the constants in the argu-
ment position by Greek consonants representing the empty argument place,
e.g., ‘f(ξ)’. A course-of-values of a function is represented by using a Greek
vowel and prefixing a binding operator, which is the same Greek vowel with
the smooth breathing, i.e., ‘–εf(ε)’ designates the course-of-values of a func-
tion f(ε), and ‘–εF (ε)’ the extension of a concept F (ξ).

The principle that introduces courses-of-values into Frege’s system is
nothing else than the infamous Basic Law V:

–εf(ε) = –αg(α)↔ ∀x(f(x) = g(x)), (A-BLV)

which says that a function f(ξ) has the same course-of-values as a function
g(ξ) if and only if both of the functions always assign the same value to the

1For a nice survey of basic neologicist strategies, see Linsky and Zalta [2006].
2The key characteristic separating functions from objects is, according to Frege, the

fact that the function considered in itself is not a complete whole, or is ‘unsaturated’ (cf.
Frege [1891], p. 6). The object is specified negatively: it is anything that is not a function
(op. cit., p. 18). It is important to realize that the distinction strictly complies with the
context principle in the sense that whether a string of words designates a function (or a
concept) or an object depends on its function within a sentence. Thus, to use an often
quoted example of Frege’s, ‘the concept horse is not a concept’ but an object (Frege [1892],
p. 196).
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same argument.3 Obviously, Basic Law V codifies the criterion of identity
for courses-of-values. However, it is actually much stronger than that; it
has important corollaries that reveal that it is a fully-fledged abstraction
principle. Using (A-BLV), it is easy to prove that every function has a
course-of-values:

∀f∃x(x = –εf(ε)).

(To prove this, we instantiate f to g in (A-BLV), then, as ∀x(g(x) = g(x))
is valid, we derive that –εg(ε) = –εg(ε), from which it follows by existential
generalization that ∃x(x = –εg(ε)), which can be universally generalized on
g to obtain the corollary.) Furthermore, given that the membership rela-
tion is explicitly definable in Frege’s system, (A-BLV) entails the principle
of extensionality as well as the classical “naive” comprehension principle:
∀F∀x(x ∈ –εF (ε) ↔ F (x)).4 So Basic Law V is a very powerful principle
establishing not only the criterion of identity but also the existence of a
special kind of abstract objects together with some of their basic properties.

Of course, it is well known that Frege’s system is inconsistent, and that
Basic Law V represents the “serpent of inconsistency” in Frege’s paradise.5

In order to see where the trouble lies, it is important (and almost sufficient)
to realize that—as the course-of-values –εf(ε) is an object which corresponds
to a first-level function f(ξ)—Basic Law V, in effect, posits a second-level
function that maps first-level functions to objects.6 This fact can be ex-
pressed by the following statement:

∃m∀x∀g∀f
(
mβ(f(β)) = mβ(g(β))↔ f(x) = g(x)

)
, (S-AlB)

in which the sign ‘mβ(f(β))’ is Frege’s expression for a second-level function.
A half of this biconditional does not lead to problems, namely the implication
from the right to the left, which says that there is a second-level function m
that yields identical values whenever its arguments (i.e., first-level functions)
return the same values for the same arguments. In other words, there are
no two coextensive first-level functions for which the second-level function
m would return two distinct values. The implication that is responsible for

3Cf. Frege [1893], §3. If we wanted to use a more contemporary notation, we would need
to distinguish between Basic Law V as applicable to functions (using Church’s lambda-
notation):

λxf(x) = λxg(x)↔ ∀x(f(x) = g(x))

and Basic Law V as applicable to classes:

{x | F (x)} = {y |G(y)} ↔ ∀x(F (x)↔ G(x)).

Cf. Kolman [2002], p. 201. In Frege’s system, though, as classes are extensions of concepts,
and concepts are nothing but special cases of functions, the class version would be seen
merely as a more specific variant of the version for functions.

4For proofs, see Zalta [2009], section 2.4.
5Cf. Dummett [1991], p. 209.
6Cf. Ricketts [1997], p. 199.
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the contradiction is the one from the left to the right, which says that there
is a second-level function m which is such that whenever it yields identical
values, its arguments (i.e., first-level functions) are coextensive. To put it
differently, the faulty implication states that our second-level function has
to be injective, i.e., that it is not the case that one value yielded by the
second-level function m gets associated with two non-coextensive first-level
functions.

The trouble lies in the fact that in Frege’s system it can be proved that
there is no second-level function of which the statement (S-AlB) would be
true. Frege himself proves this result in the appendix to the second volume
of Grundgesetze7 by deriving the following theorem (concerning concepts,
though, not functions in general):

∀m∃x∃G∃F
(
mβ(F (β)) = mβ(G(β)) ∧ ¬[F (x)↔ G(x)]

)
. (S-χ)

This theorem says that for every second-level function (whose only argument
is a first-level function of one argument) there are first-level concepts to
which it assigns the same values although these concepts are not coextensive.
To put it simply, there is no injective function from concepts to objects. As
Frege executed the derivation of the theorem (S-χ) without the use of Basic
Law V, he showed that the rest of the logical system of Grundgesetze is
incompatible with it.

Basic Law V thus turns out not to be a law, i.e., a truth that is universally
valid. It follows from (S-χ) that there are certain “rogue” concepts that
block its universality. What do they look like? Russell’s paradox, which
revealed inconsistency of Frege’s system, involved the property of being a
class that does not belong to itself, or, as Frege puts it, the property of being
the extension of a concept that does not fall under this very concept. In
Frege’s system, this property can be expressed as follows:

R(ξ)↔Def. ∃G(–εG(ε) = ξ ∧ ¬G(ξ)). (D-R)

It is easy to see that –αR(α) has the property R, i.e., that R(–αR(α)). Yet if
we expand R back into its full form, we obtain the following: ∃G(–εG(ε) =
–αR(α) ∧ ¬G(–αR(α))). This result, combined with R(–αR(α)), immediately
yields a counterexample to Basic Law V:

∃G
(–εG(ε) = –αR(α) ∧ [¬G(–αR(α)) ∧R(–αR(α))]

)
. (S-Coe)

(There is a variant of this argument, also considered by Frege, based on the
property ∀G(–εG(ε) = ξ → ¬G(ξ))).8

7Cf. Frege [1903], p. 260. The appendix was hastily added after Frege was informed of
Russell’s paradox. See also Kolman [2002], p. 232.

8However, what we have constructed is not, properly speaking, an explicit counterex-
ample to Basic Law V but merely a statement asserting its existence. Frege acknowledged
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To sum up, the cause of the contradiction lies in the “brute fact” that
the power set of a set cannot be injected into that set,9 which result is
otherwise known as ‘Cantor’s theorem’. There are always strictly fewer
objects than (first-level) concepts, so there cannot be any injective function
from concepts to objects, neither can there be any surjective function from
objects to concepts.

2.2 From Concepts to Objects

The introduction of courses-of-values as abstract objects associated with
functions was an essential element of Frege’s effort to provide arithmetic
with a logical foundation. He was rather clear about this:

I should gladly have relinquished [Basic Law V] if I had known
of any substitute for it. And even now I do not see how arith-
metic can be scientifically founded, how numbers can be con-
ceived as logical objects and brought under study, unless we are
allowed—at least conditionally—the transition from a concept to
its extension. (Frege [1903], p. 253; Furth’s translation in Frege
[1964], p. 127.)

Moreover, Frege realized that what was under a threat was not only the
system he had laid down in Grundgesetze but any system making use of
extensions of concepts, classes or sets and, in general, the whole project of
establishing a logical foundation for arithmetic.10 So it seems that the logi-
cist project can survive only if one manages to save logical objects. However,

that he was unable to explicitly define such a concept itself:

We should like to have an example of this: how is such a concept to be found?
It cannot be done without a more precise specification of our function –εΦ(ε),
of the extension of a concept; for our previous criterion for the coinciding of
extensions at this point forsakes us. (Frege [1903], p. 262; Furth’s translation
in Frege [1964], p. 138.)

Thus unlike the well known Cantorian argument against the existence of a second-level
function from objects onto first-level functions—which provides the explicit definition of
a “rogue” first-level function that does not get associated with any object—the Fregean
argument against the existence of an injective second-level function from first-level func-
tions to objects described above offers just a general existence claim. (The same goes for
the aforementioned variant of the argument.) It is not the case, though, that an explicit
definition of a counterexample to Basic Law V cannot be constructed. Two versions of
such an explicit definition can be found in Boolos [1997].

9Cf. Boolos [1993], p. 234.
10In a footnote (Frege [1903], p. 253), Frege picks out Dedekind and his ‘systems’ as

an example of such an endangered species. Indeed, as Kamareddine et al. [2002], p. 199,
point out, Frege’s mature system of Grundgesetze was not the only inconsistent system out
there since Russell’s paradox ‘could be formulated in all the systems that were presented
at the end of the 19th century (except for Frege’s Begriffsschrift)’, in particular in the
influential and popular system of Peano’s. The case of Cantor is discussed below.
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what are the chances of success? If Basic Law V has failed, what can replace
it? Is it really possible to establish the existence of abstract objects using
logic alone?11

Frege responded to Russell’s paradox by providing a quick patch to Basic
Law V which excluded from its scope precisely those “rogue” concepts that
were identified as responsible for the contradiction. Nevertheless, not only
was the amended principle unable to serve as a proper abstraction principle
but it fared no better that the original Basic Law V. The amended system
was proved to be contradictory by Leśniewski12 and Quine [1955].13 As
Potter points out, Russell’s paradox ‘is merely the simplest of a great variety
of paradoxes which can be derived in Frege’s system; blocking one is no
guarantee of blocking them all’ (Potter [2000], p. 113). To be just, it should
be admitted that Frege well understood that his system was in ruins, and
without any doubt did not expect anything from his quick patch.14 Later
on, in a letter written in 1925, Frege exclaims: ‘We must set up a warning
sign visible from afar: let no one imagine that he can transform a concept
into an object’ (Frege [1980], p. 55). The transition from concepts to objects
is declared impassable.

Still, before pronouncing the final verdict, Frege outlined two different
general strategies for blocking Russell’s contradiction while retaining exten-
sions of concepts as objects. The first strategy is based on the denial of
the universality of the abstraction principle. That is, it is conceded that
some functions are not associated with any courses-of-values. Frege rejects
this path since it forces us to accept that there are properly formed symbols
in our language—viz. the names of the courses-of-values—that do not de-
note anything. The sham names of courses-of-values cannot then be seen as
dissociable logical components of meaningful larger compounds,15 therefore,
it will be illicit to replace them by variables. But then, as numbers are

11Note that we are not exhausting all options. One might give up the idea of obtaining
a domain of well-established abstract objects that could count as logical, and one might
argue that a form of the logicist program is still achievable if we follow the strategy
developed and rejected by Frege in his Grundlagen der Arithmetik (Frege [1884]) that is
based on a different abstraction principle, called ‘Hume’s Principle’. This is the neologicist
position promoted, above all, by Crispin Wright. For arguments showing that this type
of neologicism does not live up to its philosophical promises, see, e.g., Dummett [1998] or
Kolman [2008], pp. 316–320.

12Leśniewski’s proof survived only in the account presented in Sobociński [1949].
Sobociński reports that Leśniewski arrived at his proof in 1938.

13The only additional assumption required for the proof of inconsistency of the amended
system is that there are at least two objects. As Frege’s truth values are considered to be
objects, the acceptance of a universe comprising just a single object means a collapse of
the object True and the object False into a single object.

14Cf. Kolman [2002], p. 233
15A name of a course-of-values will not be a logical component of a sentence in the same

way in which ‘car’ is not a logical component of ‘cart’. This illustration is taken from
Potter [2000], p. 180.
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construed by Frege as a special kind of courses-of-values, it follows that we
lose the ability to generalize about numbers. Interestingly enough, Russell
himself, in a brief note added to Appendix A to The Principles of Math-
ematics devoted to the discussion of Frege’s Grundgesetze, expressed the
opinion that this was very likely ‘the true solution’.16 An elaboration upon
this general strategy leads to Zermelian axiomatic set theory.

The other strategy is to keep the abstraction principle intact but, in
Frege’s words, to deny the validity of the law of excluded middle for courses-
of-values. It would no longer be the case that a course-of-values could be
either an object or nothing but it could be a different kind of an object, i.e.,
an ‘improper’ object. This implies, in effect, giving up the unity of objects
and accepting a stratification of objects into fundamentally distinct types.
Frege counters that this strategy would require distinguishing a great mul-
tiplicity of different types of functions according to the levels of arguments
they can take, which, in turn, would increase the complexity of the system
of types of objects. Moreover, besides the excessive complexity Frege doubts
that there can be some general “legislation” for deciding what are the ad-
missible types of arguments and values for what functions.17 Without such
an underlying principle justifying the division into types, the whole solution
would be hopelessly ad hoc. As suspected, this is the general direction taken
by Russell in the theory of types.

The two strategies have important and profoundly different consequences
for the question of what it is to be an object. They share the assumption that
we can admit without difficulty ground level entities that are not associated
with any functions or concepts or that are not conceived of as collections of
other objects. This is the level of individuals or urelements. Traditionally,
the extension of a concept is the class of all the objects that fall under
this concept. Thus when we are given a concept, we are given a means for
determining, for every individual object, whether it belongs to the extension
of this concept or not. To grasp a concept is to be in possession of a criterion,
or a rule. On the other hand, there is another way of specifying a collection
of objects, which consists simply in determining, for every given object,
whether it belongs to the collection or not. This time, we are not applying
a rule, we are not classifying objects; it is the membership in the collection
itself that determines the collection and that is taken as basic. We may call
the collections specified by a rule ‘logical’, and speak of them as of ‘classes’,
as opposed to the collection specified by listing their members which may be
named ‘combinatorial’ and addressed as ‘sets’.18 In the remaining sections
of this chapter, we will be dealing with Russell’s ramified theory of types,

16Cf. Russell [1903], p. 522.
17Cf. Frege [1903], p. 255.
18For a more recent discussion of the distinction between classes and sets or between

the logical and combinatorial collections, see Parsons [1974], Maddy [1990], pp. 102–106,
and Lavine [1994], pp. 63–98.
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and hence with the “logical”, concept-based approach. To accentuate the
difference between the two conceptions, let us say just a few words about
the “combinatorial” contender.

Cantor’s early set theory, as developed in his Grundlagen einer allge-
meinen Mannigfaltigkeitslehre (Cantor [1883]), can be seen as exploiting the
combinatorial notion of set. A fundamental concept applicable to sets is that
of well-ordering, which Cantor defines as follows: a set a is well-ordered
by a binary relation R if every strictly bounded subset of a has an immedi-
ate successor in a.19 The concept of well-ordering is taken to be absolutely
central to set theory:

The concept of well-ordered set turns to be fundamental for the
entire theory of manifolds. In a later article I shall discuss the
law of thought that says that it is always possible to bring any
well-defined set into the form of a well-ordered set—a law which
seems to me fundamental and momentous and quite astonishing
by reason of its general validity. (Cantor [1883], p. 886; Cantor’s
emphasis; Ewald’s translation.)

This assertion is an expression of the so-called ‘well-ordering principle’: ev-
ery set can be well-ordered.20 Conversely: whatever cannot be well-ordered
is not a set. The notion of well-ordering played a key role in Cantor’s devel-
opment of transfinite set theory. Interesting as it is, for our present purposes
it is only essential to see its close relationship with the notion of counting.
A well-ordering of a set unequivocally determines the succession of all its
elements. Therefore, if we are given a well-ordered set, we can count it ‘by
following that well-ordering’ (cf. Lavine [1994], p. 53).21 Conversely, if we
have counted all the members of a set, we have, in effect, produced its well-
ordering; we have imposed a specific order on its elements. Now, given the
fact that a set is determined by its members, it is essential that we have a

19A subset b of a is strictly bounded in a if there is an x ∈ a such that x is greater
than every member of b. A subset b of a has an immediate successor in a if there is the
least x ∈ a such that x is greater than all the members of b.

The above is a slightly modified version of the definition in Cantor [1883], p. 884. Nowa-
days, it is more common to define well-ordering differently: a set a is totally ordered
by a binary relation R if R is irreflexive and transitive, and if R satisfies ‘trichotomy’ on
a, namely: for any x, y ∈ a, it is either the case that xRy, or yRx, or x = y. If a totally
ordered set a also satisfies the requirement that every non-empty subset of a has a least
element, it is said to be well-ordered. Cantor’s original definition is essentially equivalent
to the contemporary one; see Lévy [1979], pp. 38–39, for a proof.

20Cantor never gave a proof for his well-ordering principle, so it remained merely a
fundamental assumption underlying his set theory. In 1900, Hilbert included it in his
famous list of mathematical problems (as a part of the first problem, ‘Cantor’s problem
of the cardinal number of the continuum’, cf. Hilbert [1900], pp. 263–264). The proof was
given four years later by Zermelo (in Zermelo [1904]) but it provoked strong reactions due
to the explicit use of the axiom of choice.

21Cf. also Floyd and Kanamori [2006], p. 419.
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way of listing or counting its members. Therefore, if there is a totality whose
members cannot be counted, it cannot be regarded as a set. To conclude,
for Cantor of the Grundlagen, whatever is a set can be well-ordered, and
whatever cannot be counted is not a set.

Because Cantor’s sets are conceived of as possessing this twin property
of being well-orderable and subject to counting, they are not affected by
the paradoxes in the same way that Frege’s courses-of-values are. Let us
illustrate the matter on Burali-Forti’s paradox, sometimes also referred to
as the ‘paradox of the largest ordinal’, the first of the notorious set-theoretic
paradoxes.22 It concerns the notion of ordinal number, which can be defined
in the following way. Let us say that two sets have the same order type
if they are order-isomorphic (i.e., if there is an order-preserving one-to-one
correspondence between them). Then the ordinal number is defined as
an order type of a well-ordered set.23 Cantor proved that ordinal numbers
can be totally ordered.24 Now let Ω be the collection of all ordinal numbers
and let us suppose that it is a well-ordered set. Given this assumption, Ω
must have an order type, i.e., a specific ordinal number, say γ. By definition,
γ ∈ Ω. This means, however, that the ordinal number γ determines a subset
of all the ordinals in Ω that are smaller than γ; but this subset has no other
ordinal number than γ itself. Therefore, the ordinal number of Ω—which
is, by definition, equal to γ—has to be, at the same time, greater than γ,
which is a contradiction.

Burali-Forti himself took the paradox to show, by reductio ad absur-
dum, that ordinal numbers cannot be totally ordered, which contradicted
the aforementioned theorem of Cantor’s. What was Cantor’s reaction to the
paradox? In fact, he did not consider it to have any detrimental effect on his
theory of sets at all. It is not that we should cease conceiving of the ordinal
numbers as totally ordered; we merely need to realize that the totality of
ordinal numbers is not a set. We have already seen why: precisely because
it cannot be counted, i.e., it cannot be numbered by an ordinal number.25

It lies beyond the realm of sets; the word Cantor uses in the Grundlagen

22The paradox carries the name of Cesare Burali-Forti who published an argument in
which the paradox was implicit in Burali-Forti [1897], although it was apparently discov-
ered earlier by Cantor himself. Burali-Forti stated the paradox not in terms of the relation
of well-ordering, which he presented erroneously, but in terms of a more comprehensive
relation of ‘perfect ordering’. Despite a corrective note published in the same year, the
outcome of Burali-Forti’s article was rather a confused controversy than a fruitful debate
(cf. Copi [1958], p. 281).

23This definition is based on Cantor’s first ‘Beiträge’ (Cantor [1895], p. 497). See also
Dauben [1979], p. 184.

24Cf. Cantor [1897], p. 216.
25To be more specific, in the Grundlagen the requirement that every set should be (in

the aforementioned sense) countable takes on the form of two principles of generation,
according to which every ordinal number has an immediate successor, and every set has
a least upper bound (Cantor [1883], pp. 907–909). Neither of the principles of generation
of numbers is applicable to the totality of ordinal numbers.
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to refer to this totality is the ‘absolute’.26 Later, in the letter to Dedekind
dated 3 August 1899, he famously states: ‘The system Ω of all numbers
is an inconsistent, absolutely infinite multiplicity’ (Ewald [1996], p. 933).
And not only that Ω cannot be a set, but any collection that has the same
order-type as Ω is also an inconsistent multiplicity, as well as any collection
into which Ω is injectable.

There is no abstraction principle at work here, so we are not forced into
recognizing any object corresponding to the property of being an ordinal
number. Sets are well-orderable, countable, and not just arbitrary collec-
tions. However, the question must be faced: What are sets? How are they
given to us? Leaving aside the problem of how Cantor himself conceived of
sets, which is a rather complex issue in itself, this question needs to be posed
in the most general fashion. Having repudiated an abstraction principle that
would open to us a whole domain of abstract objects, we are left with con-
ditions and stipulations, whose development ultimately leads to axiomatic
set theory. Sets simply have to be assumed to exist as the objects that sat-
isfy the axioms we have laid down for them to satisfy, and the membership
relation has to be taken as primitive. But this does not amount to anything
else than to accepting set theory as a specific discipline standing on its own
feet, with assumptions going far beyond those that can be subsumed under
the wings of logic. This might be fair enough but, from the logicist point
of view, it is an outright capitulation and an acquiescence that logicism has
failed.

2.3 Russell’s Diagnosis

Russell’s logicist conviction, at least at around 1903, was even stronger than
Frege’s, who restricted his claims only to arithmetic. In The Principles of
Mathematics Russell declares:

All mathematics, we may say—and in proof of our assertion we
have the actual development of the subject—is deducible from
the primitive propositions of formal logic: these being admitted,
no further assumptions are required. (Russell [1903], §434, p.
458.)

Of course, the proof consisting in the ‘actual development of the subject’
was something with which Russell struggled for the whole following decade.
After trying virtually every possible response to the paradoxes, and after
developing his theory of denoting, he ended up with the ramified theory of
types. Fortunately, we will not deal with these intermediate struggles; we

26Thus Burali-Forti’s paradox can be seen to have, in a peculiar sense, a positive effect on
Cantor’s set theory. As Kanamori puts it, Cantor ‘used it positively to give mathematical
expression to his Absolute’ (Kanamori [1996], p. 13).
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will merely outline Russell’s response to the paradoxes and the rationale
justifying his conception of the hierarchy of propositional functions.

Russell believed that the individual paradoxes were not disparate strokes
of bad luck. Rather, they should be viewed as closely related symptoms of
a single disease that inevitably afflicts certain attempts to build mathemat-
ics on a logical basis. In other words, the paradoxes reveal that there is
something fundamentally wrong with the conception of logical objects. The
furthest point of Russell’s effort to uncover a common root of the paradoxes
is reached in the article ‘On Some Difficulties in the Theory of Transfinite
Numbers and Order Types’ (Russell [1906b]). There (pp. 142–143) he comes
up with the following schema for a property ϕ and a function f :27

∀u
(
∀x[x ∈ u→ ϕ(x)]→ [∃z(z = f(u)) ∧ ϕ(f(u)) ∧ f(u) /∈ u]

)
. (S-Com)

In English: for any class u, if all members of u are ϕ, then there exists an
object z assigned to the class u by the function f such that z is ϕ but it is
not a member of u. This, as it stands, is no contradiction. Assuming that
all u’s members are ϕ, (S-Com) merely states that not everything that is ϕ
belongs to u, and that the value that f assigns to u is a witness.

What is remarkable about the function f of this schema is that it can be
used to generate a well-ordered sequence ϕ whose ordering corresponds to
that of Cantor’s series of ordinal numbers. How can this be done? Assume
a function f and an x such that f assigns a value to x, i.e., such that
∃z(z = f(x)). Let us take f(x) to be the only member of u. It follows that
we have defined the first term of the sequence ϕ, and we have obtained a
class u = {f(x)}. Incidentally, we have confirmed that the antecedent of the
implication is satisfied, which means that the right-hand side of (S-Com)
holds, i.e., ∃z(z = f(u)) ∧ f(u) /∈ u. This gives us the next term of the
sequence ϕ, namely f(u), so our sequence ϕ has already two members:
f(x) and f({f(x)}). Put them both into a class, and apply the right-hand
condition again to obtain the third term f({f(x), f({f(x)})}), etc. In this
way we obtain a sequence of immediate successors. If u is a class of elements
of which none is the greatest, the next term in the sequence is the least
upper bound of u. This represents Cantor’s two principles of generation,
and produces a sequence ‘ordinally similar to that of all ordinals’ (Russell
[1906b], p. 143).

We have said that (S-Com), as it stands, represents no contradiction.
However, if it is combined with the additional assumption that there is a
class {x | ϕ(x)} which is in the range of ∀u, the contradiction is immediate.
Burali-Forti’s paradox results if ϕ(x) is ‘x is an ordinal number’, and f(x) is
the least ordinal number greater than every ordinal in x. Russell’s paradox
results if ϕ(x) is ‘x /∈ x’, and f(x) = x. Note that without the assumption

27Russell [1906b] did not present anything of this symbolically. I build upon the symbolic
rendering that can be found in Kanamori [1997], p. 295.
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that any ϕ determines a class, we do not obtain Russell’s paradox but merely
a sequence of classes that do not belong to themselves, without there being
any single class collecting them all. Russell does not provide examples of
how other paradoxes can be put into this common form, and we will not
attempt to answer the question whether they all really share the suggested
structure. We will merely add two more examples. First, Berry’s paradox
of ‘the smallest natural number not denoted by any expression of English of
fewer than seventeen words’. The paradox can be obtained from (S-Com) if
we take ϕ(x) to be ‘x is a numerically determinate expression of English’,
and f(x) to be the expression ‘the smallest natural number not denoted by
any member of x of fewer than seventeen words’. Secondly, an analogue of
the liar paradox for the concept of arithmetical truth. Let us take ϕ(x) to be
‘x is the Gödel number of a truth of arithmetic’, and f(x) to be the Gödel
number (say, g) of the diagonalization of the formula ¬ψ(x), where ψ(x)
defines an arithmetic set of Gödel numbers of truths of arithmetic. Then g
is the Gödel number of a truth of arithmetic but is not a member of the set
defined by ψ(x).

The force of the schema (S-Com) comes from the fact that it represents
a key principle standing behind the whole theory of ordinal numbers and,
consequently, a core component of set theory as a mathematical discipline.
Furthermore, it appears perfectly unobjectionable as a tool for defining cer-
tain complex properties or sequences of objects. Nonetheless, it is incom-
patible with the twin requirement that every property should determine a
class, and that the range of the individual variable should be unrestricted.
It is worth at this point to quote Russell in full.

[T]he contradictions result from the fact that, according to cur-
rent logical assumptions, there are what we may call self-repro-
ductive processes and classes. That is, there are some properties
such that, given any class of terms all having such a property, we
can always define a new term also having the property in ques-
tion. Hence we can never collect all the terms having the said
property into a whole; because, whenever we hope we have them
all, the collection which we have immediately proceeds to gener-
ate a new term also having the said property. (Russell [1906b],
p. 144; Russell’s emphasis.)

The conclusion is that not every property determines a class. However, we
have seen that this already became obvious in connection with Frege’s Basic
Law V. The main virtue of Russell’s analysis is that it attempts to formulate
an underlying principle that will make it possible to uniformly distinguish
between the concepts that do determine classes and the “rogue” ones that
do not, i.e., those that do not have determinate extensions. Russell’s di-
agnosis states that without determinate extensions are those concepts that
are self-reproductive. We could also employ Dummett’s term ‘indefinitely
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extensible’, which is better known.28 A concept ϕ is considered to be self-
reproductive if there is a function f such that the condition (S-Com) holds.
Note, however, that it does not necessarily follow that self-reproductive con-
cepts do not possess extensions. It only follows that the extension of a
self-reproductive concept cannot be a class that itself falls under this very
concept. Seen from this perspective, the trouble with Basic Law V does
not consist in positing that every function has a course-of-values or that
every concept has an extension.29 It rather lies in assuming that every
course-of-value and every extension can be construed as a class, i.e., as a
well-determined object falling within the range of the individual variable.
Hence, according to Russell’s analysis, Frege’s system ended in ruins be-
cause it failed to recognize the existence and the extraordinary nature of
self-reproductive concepts.

The starting point of Russell’s logicist solution to the paradoxes is thus
the distinction between the concepts or, to be more faithful to Russell’s
terminology, propositional functions of one variable that do determine a
class, for which Russell introduces the term ‘predicative’,30 and those that
do not, i.e., those that are impredicative. The latter are, indeed, the self-
reproductive propositional functions. As we have seen, self-reproductive con-
cepts may be conceived of as generating an unbounded sequence of classes,
and if they are taken only as such, they do not lead to a contradiction, not at
least in any straightforward way. However, the contradiction is immediate
once we attempt to encompass the whole sequence and reapply the given
concept to it. It is this attempt to break the sequence by a circle that brings
about the collapse.

Although a form of circularity is clearly implicit in Russell’s analysis, the
idea that the unifying cause of the individual contradictions lies in a vicious
circle comes from Poincaré. In 1905-1906 he published the first two parts
of his three-part series entitled ‘Les mathématiques et la logique’ (Poincaré
[1905] and Poincaré [1906a]). Then he read Russell [1906b] (and a letter by
Zermelo replying to his two articles), and in response published the third
sequel bearing the same name (Poincaré [1906b]), developing (in section IX)

28The notion of indefinite extensibility has been a persistent feature of Dummett’s writ-
ings ever since Dummett [1963]. In Dummett [1993b], p. 441, an indefinitely extensible
concept is characterized as ‘one such that, if we can form a definite conception of a to-
tality all of whose members fall under that concept, we can, by reference to that totality,
characterize a larger totality all of whose members fall under it.’

29This does not entail, however, that everything can be rectified by a simple modifica-
tion of Basic Law V such as: –εF (ε) = –αG(α) ↔ (Self -reprod.(F ) ∧ Self -reprod.(G)) ∨
∀x(F (x) ↔ G(x))). As Shapiro and Wright [2006], pp. 284–285, point out, it is not
clear how to characterize self-reproductiveness (or indefinite extensibility) in purely logi-
cal terms. Moreover, such a modified version of Basic Law V would, taken on its own, fail
to provide for infinite objects.

30 Russell [1906b], p. 146, states: ‘We define a predicative propositional function as one
which determines a class (or a relation, if it contains two variables).’ This is the first of
three different meanings of the word ‘predicative’ we encounter in this chapter.
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the notion of a vicious circle in connection with the paradoxes of Richard’s
and Burali-Forti’s. (Besides, Poincaré found viciously circular also Cantor’s
definition of ℵ1.) The definitions (i.e., not concepts) that commit a vicious
circle are called ‘non-predicative’.31 However, apart from identifying the
vicious circularity itself, Poincaré’s analysis of the phenomenon has little
more to offer to a logicist. Nonetheless, in his reply to Poincaré called ‘Les
paradoxes de la logique’ (Russell [1906a]), Russell concedes to the vicious-
circle diagnosis, and formulates a so-called ‘vicious-circle principle’ (op. cit.,
p. 198).

Unfortunately, we are facing here a rather problematic and much de-
bated issue concerning how exactly the vicious-circle principle should be
understood. Not only Russell does not manage to articulate the principle
unambiguously but he states it somewhat differently at different places. In
Russell [1908] alone we can find at least four distinct versions (on pp. 75,
101, and two on p. 63).32 Anyway, instead of striving to decipher the true
meaning of the vicious-circle principle and reconstruct the intended theory
behind it, we will take an easier route. We will sketch a particular interpre-
tation, as coherent as it stands, of the principle together with the ontology
underlying Russell’s conception of logic. Still, merely outlines of a broader
picture are drawn in this section. Technical aspects of the ramified theory
of types are postponed to section 2.4.

Let us take as paradigmatic the two following formulations of the vicious-
circle principle that appear in Principia (Russell and Whitehead [1962], p.
39 and p. 40, respectively; my emphasis):

[G]iven any set of objects such that, if we suppose the set to have
a total, it will contain members which presuppose this total, then
such a set cannot have a total. (VCP-P)

If, provided a certain collection had a total, it would have mem-
bers only definable in terms of that total, then the said collection
has no total. (VCP-D)

We will read the words ‘a collection has a total’ as meaning that the given
collection may be taken as a single object, that the expression designating
it is subject to the substitution rules, and that it may be quantified over.33

To put it simply, a propositional function ϕ has a total if it determines a
class.

Now how are we supposed to understand what (VCP-P) and (VCP-
D) demand? Let us first render (VCP-P). It has been rather convincingly
argued by Jung [1999], pp. 60–61, that presupposition in (VCP-P) is the

31This is the second meaning of the word ‘predicative’ that appears in this chapter.
32Some have claimed that Russell, strictly speaking, does not formulate a single vicious-

circle principle but a number of them. Gödel, for instance, uncovers three (Gödel [1944],
p. 135).

33Here we follow Jung [1999], p. 60.
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relation of ontological dependence which can be further characterized as be-
ing asymmetric, transitive, and having the strength of supervenience. Jung
suggest that we should construe the requirement imposed by (VCP-P) as
equivalent to well-foundedness in set theory,34 and paraphrases it in this
way: ‘all totalities that may be treated as objects are well-founded’ (p.
61). In particular, (VCP-P) prohibits chains of the following kind: f1(f2),
f2(f3),. . . , fn−1(fn), and fn(f1).

The latter formulation (VCP-D) is slightly more complex. First, it con-
tains the term ‘definable’. As Quine points out, it is hardly definability that
is in question here since a definition primarily concerns notation; the circu-
larity of (VCP-D) thus must not be understood as smuggling the definien-
dum into the definiens.35 It makes more sense to think of what really goes
on here in terms of a specification of classes combined with the assumption
of class existence, which is nothing else than the application of an abstrac-
tion principle. We will say that to specify a propositional function f is to
provide a formula of the form: ∃f∀x1, . . . , xn(f(x1, . . . , xn) ↔ ϕ) (where ϕ
does not contain ‘f ’ free), and we will read (VCP-D) as meaning specifia-
bility instead of definability. Secondly, it is clear from other statements by
Russell that ‘in terms of’ needs to be understood as ‘by means of quantifica-
tion over’. Thus (VCP-D) commands: no totality t may contain an object
that is specifiable only by means of quantification over t.36

Of the two formulations, (VCP-P) certainly appears more plausible. An
analogue of this principle has been adopted in standard systems of set theory,
and, taken on its own, (VCP-P) provides justification for a simple theory
of types. On the other hand, (VCP-D), justifying the ramification of the
type theory, has been subject to strong criticism. The main charge has
been that (VCP-D) may be acceptable only if we understand our ontology
constructivistically, i.e., if, by specifying an object, we are somehow creating
it. Once we assume that objects exist independently of our specifications—
viz. Ramsey’s example of the tallest in a group or Quine’s most typical Yale
man37—there does not seem to be any reason for prohibiting specifications
quantifying over all objects. Certainly, Russell was no constructivist, at
least not the Russell of the period between the Principles and Principia.
How can he hold (VCP-D) then?

In his remarkable paper, Jung [1999], pp. 67–74, identifies two logico-
ontological assumptions that, if adopted, justify (VCP-D) on the realist
reading. The first assumption is that the logical form of the formula speci-
fying a proposition or a propositional function as an object corresponds to
the ontological form of the object being specified in the sense that to the log-
ical components of the formula there correspond ontological components of

34The concept of well-foundedness in set theory is treated in section 3.1.
35Quine [1969], pp. 242–243.
36Here again I am indebted to the analysis and arguments in Jung [1999], pp. 65–67.
37Cf. Ramsey [1925], p. 204, and Quine [1969], p. 243, respectively.
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the object. Among other consequences, this assumption permits a stronger
formulation of the principle of abstraction suitable for intensional contexts.
Instead of the extensional equivalence one is entitled to the intensional use
of identity: ∃f(f = ϕ(x̂1, . . . , x̂n)) (where ϕ does not contain ‘f ’ free).
Consequently, as identity of propositions and propositional functions is no
longer extensional, our assumption yields intensional abstraction principles,
which make it possible to distinguish between two propositions with the
same truth value or two propositional functions satisfiable under the same
conditions. The other assumption identified by Jung is the assertion that a
variable presupposes the terms that make up its range.38 For instance, the
propositional function ∀x(f(x, ŷ)) presupposes the range of the variable x,
and the range of x presupposes its members. Now the two logico-ontological
assumptions just described reveal the logical relationship between (VCP-P)
and (VCP-D). For it is easy to see that (VCP-P) plus the two assumptions
implies (VCP-D): assume that (VCP-D) is not true. Then there will be
a formula specifying a function f which will contain a quantified variable,
say g, whose range contains f . By the first principle, g will be a genuine
component of f , hence f presupposes g. Yet, by the second principle, g
presupposes f . These two results put together contradict our construal of
(VCP-P).39 Therefore, if we accept (VCP-P) as well as the two principles
identified by Jung, we have to accept also (VCP-D). Of the two renderings
of the vicious-circle principle, (VCP-P) is the one that is more general, and
(VCP-D)—once supplemented by the two assumptions—is merely a special
case of (VCP-P).

It is time to sum up. When searching for a common root of the para-
doxes, Russell comes to realize that the contradiction brought about by
Frege’s Basic Law V is caused by our failure to recognize the existence and
peculiar nature of self-reproductive concepts. These concepts themselves
neither involve nor give rise to immediate contradiction, and there does not
seem to be any firm ground for denying that they have an extension. What
does lead to the contradiction is taking the extensions of these concepts
to be objects over which our variables range. It is this additional assump-
tion which, therefore, must be banned. And the ban takes the form of the
vicious-circle principle.

Let us move on and describe in some detail the outcome of Russell’s
attempt to produce a system of logic that would succumb to the vicious-circle
principle, in both of its versions (or, which is the same, in its more general
version supplemented by the two aforementioned assumptions), namely his
ramified theory of types.

38A similar claim, presented as a “speculation”, can be found in Goldfarb [1989], p. 37:
‘Russell takes a variable to presuppose the full extent of its range.’

39Cf. Jung [1999], p. 72.



Russell: Hierarchy of Functions 27

2.4 The Ramified Theory of Types

It is well known that Russell’s progress towards the ramified theory of types
was anything but straightforward. First, in The Principles of Mathematics,
he came up with a “tentative” version of the simple theory of types, which,
however, he himself showed to be inconsistent, the culprit being nothing else
than the paradox of propositions.40 Three years after the publication of the
Principles, in the article ‘On Some Difficulties in the Theory of Transfinite
Numbers and Order Types’, he presented three other solutions to the para-
doxes, namely the “zigzag” theory, the theory of the limitation of size and
the substitutional theory.41 Nonetheless, none of the suggested solutions
was found acceptable. Eventually, Russell turned again to the theory of
types but this time the types were no longer simple. The result appeared as
‘Mathematical Logic as Based on the Theory of Types’ (Russell [1908]).

A coherent presentation of Russell’s theory of types is made rather trou-
blesome by several facts. Firstly, in the years to come Russell put forward
other, slightly different versions of the theory of types in the article ‘La
théorie des types logiques’ (Russell [1910]) and in Principia Mathematica
(Russell and Whitehead [1962]). To add to the confusion, the theory of
types is described twice in Principia: first in chapter II of the introduc-
tion, which is more or less a transformation of the aforementioned French
article, and then in section ∗12.42 The fact that the two presentations of
the theory of types differ in certain respects is openly acknowledged in the
preface to Principia where it is said that the hierarchy described in ∗12 is
“stricter” than the one in the introduction, and that it ‘is that which is as-
sumed throughout the rest of the book’.43 Secondly, Russell, relying on the
concept of ‘typical ambiguity’, never produced a symbolism for specifying
individual types and orders. Modern treatments of the notation for the ram-
ified theory of types have thus to be inventive. Perhaps the most commonly
used is the one due to Church [1976], though there are other formulations.44

Thirdly, Russell’s treatment of the foundations of logic is ‘greatly lacking in
formal precision’ (Gödel [1944], p. 126). Extraction of precise contents from
sometimes quite confusing statements may often be a rather difficult task.

Fortunately, as we are interested only in a particular aspect of Russell’s
theory of types, we will not take positions on the various interpretative issues
the theory poses. Our goal is just to formulate a coherent, broadly Russellian

40Cf. Russell [1903], pp. 523–528. This paradox is discussed in section 2.5.
41Cf. Russell [1906b], pp. 144–156.
42Cf. Russell and Whitehead [1962], pp. 37–65 (chapter II of the introduction) and pp.

161–167 (section ∗12).
43See Russell and Whitehead [1962], p. vii. For a discussion of the differences between

the accounts of the theory of types, cf. Linsky [1999], pp. 73–88.
44Cf., for example, Hatcher [1968], Copi [1971], Chihara [1973], pp. 19–23, Myhill [1979]

or Kamareddine et al. [2002], pp. 199–230. A concise comparison of the former four
particular formulations with that of Church’s can be found in Linsky [1999], pp. 66–72.
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theory, and not to engage in historical investigations or in the consideration
of remote technical aspects. In what follows, we will outline a version of
the ramified theory of types based on the formulation presented in Church
[1976], pp. 747–751. A major difference is that whereas Church assigns
the ramified types to variables, i.e., expressions, we will primarily attribute
them to entities over which the variables range, and only secondarily to the
variables themselves.

The key idea behind the ramified types—or ‘r-types’, as Church calls
them to distinguish them from the types of the simple theory of types—is
that entities are not stratified into different types only on the basis of the
character of the entities that can fill in the empty argument places (which
would yield the simple types) but also on the basis of the character of all the
other entities that the given entity presupposes in a broader sense (this leads
to the notion of order). Unsurprisingly, the r-types are thus determined in
a rather complex way. The r-type of an entity is defined inductively as
follows:

– There is an r-type ι for individuals.
– Suppose that m ≥ 0, n ≥ 1 and β1, . . . , βm are any r-types; then

there is an r-type (β1, β2, . . . , βm)/n to which belong m-ary proposi-
tional functions of level n with the arguments of r-types β1, . . . , βm,
respectively.

The order of an entity is just a natural number. It is defined inductively
in the following way:

– The order of an individual is 0.
– The order of a propositional function of r-type (β1, β2, . . . , βm)/n is
k + n where k is the greatest of the orders corresponding to the r-
types β1, . . . , βm, and if m = 0, k = 0.

The value of the auxiliary notion of level n, occurring after the slash in
the designations of all r-types except those for individuals, is determined as
follows. Assume a propositional function of r-type (β1, β2, . . . , βm)/n, and
let k be the greatest of the orders of β1, . . . , βm and j the greatest of the
orders of the bound variables occurring in the definition of this propositional
function. Then n = 1 if j ≤ k, and n = j + 1 if j > k.

According to the theory of types developed by Russell, the ramified types
are mutually exclusive: whatever belongs to one r-type does not belong to
any other.45 In other words, a propositional function containing an empty

45In Russell and Whitehead [1962], p. 161, we read:

In virtue of ∗9·14, if ϕx, ϕy, and ψx are significant, i.e. either true or false,
so is ψy. From this it follows that two types which have a common member
coincide, and that two different types are mutually exclusive.

There is evidence that Russell considered the possibility of construing the hierarchy as
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argument space that requires an argument of a certain ramified type is con-
sidered applicable only to arguments of that given type but not to arguments
of lower types. Contrary to this decision of Russell’s, Church constructs his
system of r-types as cumulative: a given r-type is to serve only as a ceiling
of the range of significance of a propositional function; it is not to coincide
with it. Cumulativeness is brought in the system by means of the relation
of being directly lower: the r-type (α1, α2, . . . , αm)/k is directly lower
than the r-type (β1, β2, . . . , βm)/n if α1 = β1, α2 = β2, . . . , αm = βm, and if
k < n. (Note that the relation of being directly lower does not translate into
the simple comparison of orders in the sense that the r-type of propositional
functions of order < n would be directly lower than that of propositional
functions of order n. For instance, the second-order r-type ((ι)/1)/1 is di-
rectly lower that the third-order r-type ((ι)/1)/2, but it is not directly lower
than the third-order r-types (ι)/3 and (((ι)/1)/1)/1.) Once we have the
relation of being directly lower, we obtain cumulativeness by stating that if
a propositional function can take as arguments members of a certain r-type,
it can also take as arguments members of any directly lower r-type.

The notation we have introduced allows for assigning r-types not only
to propositional functions, whose number of empty argument places is at
least one, but also to propositions, which do not contain any empty argu-
ment places at all. The r-type of propositions is thus ()/n, where n is the
appropriate level. It is the level indicator that prevents the collapse of all
propositions into a single type, and which gives rise to a subhierarchy of
propositions within the hierarchy of r-types.46

A terminological remark. A propositional function that does not contain
any bound (“apparent”) variables but only free (“real”) variables is said to
be a matrix. A propositional function whose level indicator n equals to 1 is
called predicative.47 From these specifications it follows that any matrix

cumulative (cf. Potter [2000], pp. 146–147) but rejected it without providing any com-
pelling argument. The rationale Russell gave in a letter to Hawtrey, a friend of his who
recommended to him to take the path of cumulativeness, consisted in nothing more than
‘a sort of symbolic instinct, which I rely upon more than I can explicitly justify’ (quoted
from Potter [2000], p. 146).

Let us also point out that the decision between the cumulative and non-cumulative
construction of the hierarchy has some interesting consequences. Peressini [1997] shows on
the examples of Grelling’s and Bouleus paradoxes that the choice to understand the r-types
cumulatively allows us to formulate certain questions—which may or may not be answered
with the resources at our disposal—that are not formulable in the non-cumulative theory.
Still more importantly, it can be shown that the non-cumulative syntax makes problematic
some class symbols that are perfectly acceptable if types are construed cumulatively. For
details, see Peressini [1997], pp. 394–396.

46The decision to accept the hierarchy of propositions is somewhat controversial. See
note 52 on p. 32.

47This is a new, third and final meaning of the word ‘predicative’, related to the two
meanings mentioned in section 2.3. In what follows, we will use this word in the sense
defined here.
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as well as any first-order propositional function is predicative.48

In order to visualize how the orders, levels and r-types all fit together,
let us represent their relationship graphically in the following table:49

orders r-types

. . . . . .
5 (ι)/5 . . .
4 (ι)/4 ((ι)/1)/3 ((ι)/2)/2 (((ι)/1)/1)/2 ((ι)/3)/1

((ι)/1)/2)/1 (((ι)/2)/1)/1 ((((ι)/1)/1)/1)/1
3 (ι)/3 ((ι)/1)/2 ((ι)/2)/1 (((ι)/1)/1)/1
2 (ι)/2 ((ι)/1)/1
1 (ι)/1
0 ι

The table clearly pictures that the number of different r-types of each order
grows exponentially: in general, for n > 0 there are 2n−1 r-types of each
order n.

There are, in general, three basic ways in which propositional functions
of higher r-types can be obtained from the function of lower r-types. First,
simply by putting functions of higher orders together in a matrix, such
as f(g(ẑ), x), which has the r-type ((ι)/1, ι)/1. Secondly, by quantifying (in
the definition introducing the given function) over predicative functions. For
example, ∃g(f(g(ẑ), x)) of r-type (ι)/2 is obtained by prefixing a quantifier
to our predicative matrix ranging over the predicative functions g(ẑ). (We
are using the word ‘matrix’ here to denote the expression, which makes the
word ambiguous. Yet, no confusion should arise as the intended meaning
should always be clear from the context.) The third method is based on
abstraction.50

48It needs to be noted that it is not always clear how the expressions ‘matrix’ and
‘predicative function’ are meant to be used in Principia. Both are introduced in the
Introduction, cf. Russell and Whitehead [1962], p. 50 and p. 53, respectively. However, in
section ∗12, we read that ‘a function is said to be predicative when it is a matrix’ (p. 164),
which goes against what we said above. The whole issue is discussed by Linsky [1999],
pp. 77–85, who reaches the conclusion that the restriction of the intended meaning of the
expression ‘predicative function’ is to do with the strictness of the theory of types of ∗12,
which is then rebalanced by the greater strength of the axiom of reducibility.

49The table is based on the table in Chihara [1973], p. 21, Chihara’s notation having
been replaced by Church’s.

50In fact, Russell assumed that propositional functions of higher types are obtained
exclusively by the first two of the three ways mentioned. In particular, he claimed that
any non-predicative function is obtained from a predicative matrix by quantifying over
some of the variables in the argument positions ranging over the predicative functions (cf.
Russell and Whitehead [1962], p. 54). There has been a whole discussion about whether
this is a result of a mere oversight on the part of Russell or whether warding off certain
functions was a deliberate decision.

To see how abstraction gives rise to a propositional function which cannot be obtained
by quantifying over predicative functions, consider the example mentioned in Hylton
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So far we have introduced the system of r-types as a hierarchy of propo-
sitional functions, sticking out upwards from the ground level of individuals.
That is to say, we have dealt mainly with the ontological aspect of the theory
of types. It remains to outline the main features of the logical dimension
of the theory of types, i.e., it remains to describe the language and the de-
ductive apparatus as based on the particular construal of the type theory
given above. We will not attempt to reconstruct the actual system devised
in Principia Mathematica, though, nor will we describe the system in full.
A standard system of many-sorted predicate calculus with identity will be
supposed, and only peculiar features related to the adoption of the ramified
theory of types will be explicitly elaborated.

The language of the ramified theory of types will be designated as ‘LRTT’.
It is assumed that it contains the usual quantifiers and propositional con-
nectives, and that there is an unlimited supply of variables of each r-type.
The formation rules of LRTT require that f(x1, . . . , xm) is a well-formed
formula only if the r-type of f is (β1, . . . , βm)/n and the r-types of the
variables x1, . . . , xm are β1, . . . , βm, respectively, or any respective directly
lower r-types. The circumflex notation is used to form abstracts for propo-
sitional functions: ‘f(x̂1, . . . , x̂m)’ is a term, and ‘f(x̂1, . . . , x̂m)(y1, . . . , ym)’
is a well-formed formula. Quantification over propositions is permitted, and
a propositional variable standing alone is considered to be a well-formed
formula.

The deductive system contains—besides the standard axioms and rules
of inference—three additional axiom schemata of abstraction.51 The first is
an abstraction principle for propositional functions:

∃f∀x1, . . . , xm(f(x1, . . . , xm)↔ ϕ), (A-CoF)

where f is a functional variable of r-type (β1, . . . , βm)/n, x1, . . . , xm are
variables of r-types β1, . . . , βm, respectively, and the order of the bound
variables occurring in ϕ is less than that of f , the order of the free variables
and constants occurring in ϕ is less than or equal to that of f , and f does
not occur free in ϕ. The second axiom schema is an abstraction principle
for propositions:

∃p(p↔ ϕ), (A-CoP)

[1990], p. 309 (attributed to Thomas G. Ricketts). Take the statements: ∀xι(R(ι)/1(x)→
P (ι)/1(x)) ∧ P (a) and ∀xι(R(ι)/1(x) → Q(ι)/1(x)) ∧ Q(b), where ‘P ’, ‘Q’ and ‘R’ are
predicate constants and ‘a’ and ‘b’ are individual constants. By existential general-
ization, we get the following statements: ∃f (ι)/1[∀xι(R(ι)/1(x) → f(x)) ∧ f(a)] and
∃f (ι)/1[∀xι(r(ι)/1(x) → f(x)) ∧ f(b)]. Then, by abstracting from the individuals a and
b, we obtain the propositional function ∃f (ι)/1[∀xι(r(ι)/1(x)→ f(x))∧ f(ẑ)] whose r-type
is (ι)/2, which holds of both a and b. Hence we may conclude that ∃g(ι)/2(g(a) ∧ g(b)).
This propositional function g(ẑ) of r-type (ι)/2 has not been obtained by quantification
over predicative functions.

51The first two schemata are presented in Church [1976], p. 750. The remaining one is
based on ∗9·15, cf. Myhill [1979], p. 82, or Linsky [1999], p. 60.
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where p is a propositional variable of r-type ()/n, the order of all the bound
variables occurring in ϕ is less than n, and the order of the constants oc-
curring in ϕ is less than or equal to n.52 The remaining schema is the
abstraction principle generating terms that may be subject to existential
generalization:

∀y1, . . . , ym(ϕ(x̂1, . . . , x̂m)(y1, . . . , ym)↔ ϕ), (A-CoT)

where ϕ is a propositional function of r-type (β1, . . . , βm)/n, and y1, . . . , ym
are variables of r-types β1, . . . , βm, respectively.

As the axiom schemata (A-CoF), (A-CoP) and (A-CoT) employ the
connective for material equivalence, ‘↔’, they are obviously extensional.
This is to say that they guarantee the existence of a propositional function
that is coextensive or of a proposition that is just extensionally equivalent
to a given formula. If we wanted to express a stronger, intensional relation,
we would need to introduce a symbol for equality of higher-order entities,
that is, either we could extend the permissible use of the symbol ‘=’ to
propositional functions and propositions, or we could follow Church, and
supply a new symbol such as ‘≡’. The extensional axiom schemata (A-CoF),
(A-CoP) and (A-CoT) could then be transformed into the intensional ones
by replacing the biconditional ‘↔’ by the chosen symbol. The decision taken
up here is to extend the use of the symbol ‘=’ to propositions but to keep
the schemata extensional, as the intensional versions are not required for
our specific purposes.

To obtain a full system of the ramified theory of types which would be
adequate for rendering classical mathematics, it is also necessary to suppose
some form of the axiom of choice, and add the notorious axioms of infin-

52It is true that the introduction of the abstraction principle for propositions appears to
go against the spirit of Principia in which quantification over propositions is not used apart
from very few exceptions such as in ∗14·3; and there we can read that the quantification
over propositions is not legitimate ‘without the explicit introduction of the hierarchy of
propositions with a reducibility axiom’ (Russell and Whitehead [1962], p. 185). The
suspicion that propositions might not be seen in Principia as fully-fledged, autonomous
entities on a par with individuals and propositional functions is further strengthened by
the statement that the symbols for propositions are considered ‘incomplete symbols’ (op.
cit., p. 44). There are some, e.g., Cocchiarella [1989], p. 45, who consequently refuse to
accept propositions as genuine entities, and repudiate them from the hierarchy of r-types.
However, from the fact that symbols for propositions are incomplete it does not follow
that they are ‘contextually defined’ or that they disappear on analysis, i.e., that we can
get rid of assuming propositions as entities. (For an illuminating discussion of these three
interrelated notions see Neale [2001], pp. 224–232.) The fact of the matter is that Russell’s
logical reconstruction of mathematics based on the contextual analysis of class terms
requires only the hierarchy of propositional functions; the hierarchy of propositions is not
needed. For this reason, as Linsky [1999], p. 58, puts it, the decision not to quantify over
propositions ‘seems a matter of convenience’ rather than ‘some eliminativist ontological
position’. Therefore, we follow Church, and we keep propositions among the genuine
entities.
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ity and reducibility.53 We will designate the full system including all the
aforementioned axioms as ‘RTT’.

2.5 Ramified Types and Propositions

The purpose of this section is twofold: firstly, to illustrate the functioning of
the ramified theory of types—in particular its treatment of propositions—
on a sample paradox, and secondly, to face a widespread criticism of the
need for ramification of types first formulated by Ramsey. Nonetheless, the
present section may be viewed merely as an appendix to the previous section
which contained the substantial development.

The example that will be presented is Russell’s paradox of propositions.
It is discussed in §500 of The Principles of Mathematics (Russell [1903], p.
527) but it is not mentioned in the list of paradoxes in Russell [1908], pp.
59–64, or in Russell and Whitehead [1962], pp. 60–65, and it apparently
does not reappear in Russell’s subsequent writings.54 The paradox involves
a construction analogical to the one used in Russell’s paradox, and it leads
to the conclusion that there cannot be a class of all propositions.55 The
paradox presupposes that there are such entities as propositions and that
these entities are intensional.56 The criterion of identity for propositions is
to be the identity of their constituents:

∀f(f(ϕ) = f(ψ))→ ϕ = ψ. (S-IdP)

This is nothing else than a form of the principle of identity of indiscernibles,
the more controversial half of so-called ‘Leibniz’s law’. However, once we
assume that there are such entities as propositions, and that these entities
are intensional, (S-IdP) follows.

We are ready for the paradox.57 Let us define a propositional function

53The axiom of infinity is stated in Principia in ∗120·03, the axiom of reducibility in
∗12·1 and ∗12·11. The latter is discussed below in section 2.7.

54Cf. Goldfarb [1989], p. 39.
55The paradox is sometimes called ‘Russell-Myhill Paradox’ owing to the fact that, half

a century later, it was independently rediscovered by John Myhill (cf. Myhill [1958]) who
found it to affect Church’s intensional system developed in Church [1951].

56Note that it does not matter whether we use the word ‘propositions’. What the
paradox requires is the existence of intensional entities that are referred to by sentences, be
it facts or whatever else. This paradox thus does not directly affect Frege’s system since, for
Frege, sentences were names of the truth values, not of propositions. In the correspondence
with Frege, Russell attempted to reformulate the paradox so that it affected Frege’s theory
of senses (‘Sinne’) but, in the end, he accepted that this cannot be done (cf. Landini [1992],
p. 168). For a modern attempt at a formulation of this paradox in the way that would
show the inconsistency of Frege’s theory of senses, see Klement [2001], pp. 18–24.

57In this reconstruction of the paradox, I build more or less on the formal treatment
found in Linsky [1999], pp. 63–66, and Potter [2000], pp. 131–134, who do without classes.
For a version of this paradox with classes, which is perhaps slightly closer to Russell’s
original formulation, see Landini [1992], pp. 163–168, or Urquhart [2003], pp. 288–289.
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f(ϕ̂):
f(ϕ) =Def. ∀p(ϕ(p)→ p). (D-PPr1)

f(ϕ̂) is a function that takes as an argument a propositional function ϕ(p̂)
such that every proposition that is ϕ is true. To put the same thing differ-
ently, f(ϕ̂) assigns a value (i.e., a proposition) to a propositional function of
propositions, i.e., f(ϕ̂) is a function from functions of propositions to propo-
sitions. This is, indeed, a familiar situation: f(ϕ̂) is just another attempt to
establish, in effect, a one-to-one correspondence between propositions and
classes of propositions. Inevitably, given the assumption (S-IdP), a contra-
diction is bound to be round the corner.

To see how it can be derived, consider the propositional function w(ϕ̂),
defined as follows:

w(ϕ) =Def. ∃m(ϕ = f(m) ∧ ¬m(ϕ)). (D-PPr2)

Now take the proposition f(w) and ask whether f(w) is w. Assume first
that ¬w(f(w)). Then—by simply putting ‘f(w)’ for ϕ in (D-PPr2) and by
applying the negation to the right-hand side—we obtain:

¬w(f(w))↔ ∀m[f(w) = f(m)→ m(f(w))].

As the propositional function w(ϕ̂) lies within the range of ∀m, we can get
f(w) = f(w) → w(f(w)), which is the same as w(f(w)). The assumption
that f(w) is not w thus leads to a contradiction. So assume the contrary,
i.e., that w(f(w)). Then this holds:

w(f(w))↔ ∃m[f(w) = f(m) ∧ ¬m(f(w))].

From this, however, together with the principle (S-IdP), it immediately
follows that ¬w(f(w)). Again, a contradiction.

How is the paradox blocked in the the ramified theory of types? Consider
what the r-type of f(ϕ̂) is. Given its definition (D-PPr1), it must be at least
((()/1)/1)/1, i.e., third-order. Now let us add the r-type superscripts to the
definition (D-PPr2):

w(()/1)/2(ϕ)↔ ∃m(()/1)/1(ϕ = f ((()/1)/1)/1(m) ∧ ¬m(ϕ)).

Assuming that ϕ is a first-order proposition, w(ϕ̂) is a third-order propo-
sitional function taking first-order propositions as arguments. However, as
f(ϕ̂) is, in this case, also a third-order function, it follows that these two
functions cannot be combined. If we wanted to assert that f(w), we would
need another propositional function f∗((ϕ̂)) at least of r-type ((()/1)/2)/1,
i.e., a fourth-order function. Similarly, we would need a new, sixth-order
function w∗(ϕ̂) to obtain w∗(f∗(w)). Hence the expressions ‘f(w)’ and
‘w(f(w))’ are not well-formed, and the derivation of the paradox is no longer
possible.
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The paradox of propositions is noteworthy because, on the assumption
that there are intensional entities denoted by sentences, it represents a
counterexample to Ramsey’s influential division of paradoxes into the set-
theoretic paradoxes on the one hand and the semantic paradoxes on the
other.58 The former affect set theory (or the theory of classes), and can be
easily solved by a simple theory of types, i.e., a type theory without the
level indicators. The paradoxes of the second group, according to Ramsey,
‘cannot be stated in logical terms alone; for they all contain some reference
to thought, language, or symbolism, which are not formal but empirical
terms’ (Ramsey [1925], p. 183). Ramsey’s conclusion is, to put it bluntly,
that we do not need to care about the latter paradoxes since they belong to
the subject matter of special, empirical sciences.

The paradox of propositions does not make use of any extra-logical vo-
cabulary. Propositions are meant to be logical objects, which is to say that
they are to be the subject matter of logic, and not of any special science.
The paradox would thus presumably fall among the logical (and, in its al-
ternative formulation for classes, set-theoretic) paradoxes. Yet, it is not
solved by the simple theory of types. To see this, it is sufficient to realize
that, according to the simple theory of types, all propositions belong to the
simple type (). Therefore, the proposition f(w) is a legitimate argument for
the propositional function w(()), so we can legitimately assert that w(f(w)).
Then, however, there is nothing that can prevent the reconstruction of the
paradox. To block the paradox, we need, in addition to the hierarchy of
propositional functions, a hierarchy of propositions. Yet the whole point of
the simple theory of types is to remove this additional hierarchy.

We may conclude that, unless we take the assumption that sentences
denote some sort of intensional entities to be a claim of a special or empirical
discipline or unless we refute it as ill-founded, Ramsey’s claim that the
simple theory of types is sufficient for solving the logical paradoxes has to
be regarded as incorrect.

2.6 Truth in the Ramified Theory of Types

The system of the ramified theory of types as described above is able to make
assertions about propositional functions designated by the function terms
of LRTT and propositions expressed by the sentences of LRTT. Obviously,
since it does not contain names of its own expressions and sentences, it
cannot directly express anything about its own syntax. However, RTT is a

58Cf. Ramsey [1925], pp. 183–184, 187–192. To be more precise, Ramsey calls the first
group of paradoxes ‘logical or mathematical’ and claims that, without proper measures
taken to prevent their appearance, ‘they would occur in a logical or mathematical system
itself’ (op. cit., p. 183). However, since that time set theory and logic have become clearly
separated, and as most of the paradoxes of the first group involve set-theoretic notions, it
is now customary to call them ‘set-theoretic’ rather than ‘logical’.
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rather powerful theory; it allows for the development of arithmetic, analysis
or large parts of set theory. Consequently, it is sufficiently rich for the
introduction of a coding scheme that would associate natural numbers or
other objects it can speak of with the syntactic objects of LRTT such as
symbols and formulas. In other words, its syntax can be arithmetized. We
will not, however, follow the path of arithmetization in this section, and we
will not develop any such coding. A reason for this decision is that this
path is followed throughout chapter 4, a system of arithmetization being
described in section 4.1. Moreover, it is interesting in its own right to see
how the semantic notions may be brought into the system of RTT without
the technique of arithmetization. It is just important to remember that
arithmetization can be carried out in LRTT, so it is not necessary to introduce
any special primitive constants, which we are going to do in the subsequent
paragraphs.

Yet before anything else, we will make one more assumption concerning
the syntactic objects of LRTT, namely we will suppose that our variables of
r-type ι range also over symbols and formulas of LRTT, i.e., that syntactic
objects are among the individuals. The rationale behind this decision is that
we do not wish to impose any unnecessary restrictions on the domain of in-
dividuals, and as symbols and formulas are well defined objects, there is no
reason to exclude them. Thus the variables of r-type ι range, among other
things, over formulas and sentences of LRTT, while the variables of appropri-
ate higher-order r-types range over the entities designated or expressed by
these syntactic objects, namely propositional functions and propositions.59

So, in LRTT, we can speak about the symbols and expressions as well as
about the designated or expressed entities. Is there a way to exploit this
capacity and throw some light on the very expressive powers of language?
Well, yes. But there is still something missing. What is missing is a craftily
forged link connecting these different kinds of entities. This link will now be
introduced by means of the primitive relation constant ‘V al’, accompanied
by meaning postulates governing its use.60

To be precise, a special relation V al needs to be introduced for each
r-type (of order greater than 1). With the superscript indicating the given

59Later, in his article ‘Logical Atomism’, Russell himself explicitly endorsed the view
that all syntactic objects, in contrast to their meanings, belong to a single r-type: ‘All
words are of the same logical type; a word is a class of series, of noises or shapes according
as it is heard or read. But the meanings of words are of various different types’ (Russell
[1924], p. 332). Russell does not state that the single type to which all words belong is
the type of individuals but this choice seems decisively the most natural.

60The relation constant V al in its full generality is introduced in Church [1976], pp.
754–756. There are, indeed, other ways to go about this “missing link”, such as by means
of a designation relation constant introduced by Myhill [1979], p. 86, or an ‘expresses’
constant discussed in Hazen [1983], pp. 371–373. However, our aims are broader than
those of Myhill’s and Hazen’s, which makes the constant V al more suitable.
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r-type, V al becomes:
V al(ι,...,ι,(β1,...,βm)/n)/1,

where m ≥ 0, n ≥ 1, β1, . . . , βm are any r-types, and the number of ι’s
preceding ‘(β1, . . . , βm)/n’ is m + 1. The r-type indicator reveals that the
relation V al holds between m + 1 individuals and a propositional function
of r-type (β1, . . . , βm)/n. If m = 0, it holds between a single individual and
a proposition ()/n. Note that V al is predicative, i.e., its level is always 1.
If k is the order of the propositional function of r-type (β1, . . . , βm)/n, the
order of V al is k+ 1. In some cases, it will suffice to indicate only the order
of V al by means of a superscript instead of its full r-type. This yields the
sequence: V al2, V al3, . . . , V alk+1.

What is the primitive constant V al supposed to mean? Let f be a
propositional function of r-type (β1, . . . , βm)/n, let aι1, . . . , a

ι
m range over

the variables of r-types β1, . . . , βm, respectively, and let the value of vι be
a well-formed formula with only the variables aι1, . . . , a

ι
m free. Observe that

aι1, . . . , a
ι
m, v

ι all range over variables taken as symbols, i.e., as individuals
of r-type ι. Given these assumptions, the following well-formed formula of
LRTT:

V al(ι,...,ι,(β1,...,βm)/n)/1(aι1, . . . , a
ι
m, v

ι, f (β1,...,βm)/n) (P-Val)

is intended to mean that for every assignment of the values xβ11 , . . . , x
βm
m

to the variables aι1, . . . , a
ι
m occurring in the formula vι as free, the value of

vι is f (β1,...,βm)/n(xβ11 , . . . , x
βm
m ). To put it simply, disregarding the r-type

indicators, the relation V al relates a formula and its free variables (i.e.,
syntactic objects treated as individuals) with the appropriate entities from
the hierarchy of r-types that are assigned to them as their values. So V al is
supposed to provide the aforementioned missing link between the syntactic
objects and their values.

The meaning of V al that we have just specified informally can be fixed
formally by means of three special axioms, or ‘meaning postulates’.61 To
make the statements of the axioms shorter and more easily readable, we
will always assume that the r-type of f is (β1, . . . , βm)/n, that the r-type
of g is (β1, . . . , βm)/k, and that the r-type of V al is the lowest possible,
namely (ι, . . . , ι, (β1, . . . , βm)/n or k)/1. The first axiom is the principle of
univocacy of V al:

∀a1, . . . , am∀v∀f
(
V al(a1, . . . , am, v, f)→ ∀g[V al(a1, . . . , am, v, g)→
∀x1, . . . , xm(f(x1, . . . , xm)↔ g(x1, . . . , xm))]

)
.

(A-Val1)

In simple English, the same formulas and free variables are assigned the same
values. This axiom, as it asserts the equivalence of two propositional func-
tions, is extensional but it can be turned into a stronger, intensional principle

61Again, we are following Church [1976], p. 755.
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which asserts the identity of the two functions. The intensional formulation
is obtained by replacing ‘∀x1, . . . , xm(f(x1, . . . , xm)↔ g(x1, . . . , xm))’ with
‘f = g’. In what follows, we will only need the weaker, extensional version
of the axiom.

The second axiom is the following comprehension schema:

∃a1, . . . , am∃v∃f
(
V al(a1, . . . , am, v, f)∧
∀x1, . . . , xm[f(x1, . . . , xm)↔ ϕ]

)
,

(A-Val2)

where ϕ is a formula containing only the variables x1, . . . , xm free, whose
bound variables are all of order less than that of f , and whose constants
are all of order less than or equal to that of f . The schema (A-Val2) says
that any formula ϕ satisfying these restrictions is equivalent to some for-
mula f(x1, . . . , xm) and that there are syntactic objects a1, . . . , am, v such
that V al(a1, . . . , am, v, f). A stronger, intensional version of this axiom is
obtained if the biconditional ‘↔’ gets replaced with identity ‘=’. As with
the axiom (A-Val1), we will not need the intensional version of (A-Val2).

Finally, the remaining axiom:

V aln+1(a1, . . . , am, v, f)→ V alk(a1, . . . , am, v, f), (A-Val3)

where k > n + 1, expresses the cumulativeness of the relation V al. Now
it is true that we have said that V al is to be predicative. However, V al’s
being predicative just signifies that its level number is 1. If, for instance,
V alk is introduced for f (ι)/2, its r-type will be (ι, ι, (ι)/2)/1 of order 3. Yet,
owing to the cumulativeness property introduced on p. 29, V al(ι,ι,(ι)/2)/1 will
also be applicable to f (ι)/1, which is directly lower than f (ι)/2, and to which
we would primarily apply V al(ι,ι,(ι)/1)/1 of order 2. The goal of the axiom
(A-Val3) is then nothing else than to explicitly express the requirement that
the predicative relation V al should be employed cumulatively. If we consider
cumulativeness to be a fully general feature of the formation rules of LRTT,
the axiom (A-Val3) is superfluous, and may be dropped.

Let us call the ramified theory of types with the primitive constant V al
and the axioms (A-Val1), (A-Val2), and (A-Val3) ‘RTT+Val’. Having the
primitive relation V al in hand, we are immediately able to define the rela-
tions of satisfaction and truth.62 Let us start with satisfaction, which can
be defined as follows:

Sat(ι,...,ι,β1,...,βm,ι)/n+1(aι1, . . . , a
ι
m, x

β1
1 , . . . , x

βm
m , vι)↔Def.

∃f (β1,...,βm)/n(V al(ι,...,ι,(β1,...,βm)/n)/1(a1, . . . , am, v, f) ∧ f(x1, . . . , xm)).

(D-Satr)

62The definitions of Sat and Tr that follow are taken from Church [1976], pp. 756–757,
with the difference that Church presents them only with the implication connective, i.e.,
merely as expressing a necessary condition.
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In English, (D-Satr) says that a formula v containing the variables a1, . . . , am
free is satisfied by the entities x1, . . . , xm if and only there is a propositional
function f such that V al(a1, . . . , am, v, f), and f holds of x1, . . . , xm. It is
important to understand how the notion of order works in this definition.
Let the order of f be k+n, where k is the greatest of the orders of x1, . . . , xm.
Then the order of V al is k+n+1. Now, despite the fact that the arguments
of Sat are only of r-types ι, . . . , ι, β1, . . . , βm, ι, the order of Sat is not just
k+1. The reason is that Sat is an abbreviation for its defining formula, which
contains quantification over f whose order depends partly on its bound
variables, indicated by n. Hence the order of Sat has to be the same as that
of V al, namely k + n+ 1.

Although it does not differ from (D-Satr) in substance, the definition of
truth looks much neater:

Tr(ι)/n+1(vι)↔Def. ∃p()/n(V al(ι,()/n)/1(v, p) ∧ p). (D-Trr)

I.e., a sentence v is true if and only if it expresses a proposition p and it
is the case that p. Here again the order of Tr equals that of V al since its
definition includes quantification over p.

Two closely related aspects of these definitions deserve a particular at-
tention. Firstly, the property Tr is not a property of propositions but a
property of sentences, understood as syntactic objects, i.e., individuals of
r-type ι. Thus there is no discrimination between sentences with respect to
the property of truth: Tr of any order can be meaningfully applied to any
sentence whatsoever. If it is applied to a sentence expressing a proposition
of an incorrect order, the result is not a meaningless sentence but a false
sentence. For instance, let v be a true sentence expressing a second-order
proposition. The second-order property Tr2 is, indeed, applicable to v but
the defining condition ∃p1(V al2(v, p) ∧ p) is not fulfilled since it is only the
case that ∃p2(V al3(v, p)). The sentence ‘Tr2(v)’ is thus false, and it fails to
express any proposition at all.63 Similarly for the relation Sat. The rela-
tion Sat(a1, . . . , am, x1, . . . , xm, v) is a relation that holds between a formula

63In spite of the fact that there is nothing, as far as I know, in Principia Mathematica
and other writings concerned with the ramified theory of types that would suggest that
Russell might have intended a definition of truth along the lines proposed by Church,
we seem to be in agreement with Russell’s general remarks on truth in the section III of
chapter II of the Introduction to Principia (Russell and Whitehead [1962], pp. 41–47).
There we can read:

[W]hen we judge ‘a has the relation R to b,’ our judgment is said to be true
when there is a complex ‘a-in-the-relation-R-to-b,’ and is said to be false
when this is not the case. This is a definition of truth and falsehood in
relation to judgments of this kind. (Russell and Whitehead’s emphasis; p.
43.)

Here, if we construe the ‘complex’ as ‘proposition’, and if we understand the relation V al
as explicitly furnishing the relation of ‘expresses’ which is present only implicitly in the
structural similarity of the sentence ‘a has the relation R to b’ to the proposition ‘a-in-
the-relation-R-to-b’, our definition (D-Trr) becomes virtually a verbatim transcript of the
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and its free variables on the one hand—which are all syntactic objects be-
longing to the r-type ι—and appropriate entities of different r-types on the
other. Assume that v expresses that a second-order propositional function
f (ι)/2 holds. Then the statement that Sat(ι,ι,ι)/2(aι, xι, vι) is meaningful but
it is false as it is an abbreviation for ∃f1(V al2(a, v, f) ∧ f(x0)). Owing
to cumulativeness, however, both Tr and Sat of higher orders can hold of
sentences or formulas expressing propositions or propositional functions of
much lower orders. For instance, Tr5(vι) is true of a sentence v expressing
a true first-order proposition.

It is this intricate relationship between sentences and formulas, i.e., syn-
tactic objects, and entities of other appropriate r-types, mediated by the
constant V al, that makes the introduction of concepts such as truth or sat-
isfaction an interesting and significant accomplishment. The relations V al,
Sat or Tr are valuable precisely as tools for investigating the relationship
between the language taken as a system of symbols and a system of entities
designated or expressed by the symbols or their combinations. Were we in-
terested only in the truth itself, i.e., in the actual true propositions without
any regard to sentences expressing them, we would not need to introduce
any explicit truth predicate at all. The system of RTT as we described it
in section 2.4 makes it possible to assert that a proposition is true without
employing the property of truth at all. The fact that a proposition having
a property ϕ is true can be easily expressed as:

ϕ(p)→ p. (S-ImT)

Similarly, saying that a proposition with a property ϕ is false is rendered just
as: ϕ(p) → ¬p. Indeed, this concept of truth, which is implicit in the logic
of Principia Mathematica, is something very different from our Tr, which
is a property of sentences taken as objects of r-type ι. It is presumably the
latter that can help investigate the semantics of language.

The second aspect deserving attention concerns the multitude of the
relations V al, Sat and Tr. A property Trn can be defined for any order
n ≥ 2, and as we take r-types to be cumulative, each property Trn can
also hold of all the sentences expressing propositions of orders < n. Yet, as
there is no greatest order, there is no single property Tr whose extension
would include all true sentences whatsoever. Similarly for satisfaction. So
there is a sequence of the distinct relations Sat and Tr, each of a different
order and each holding only of formulas or sentences expressing propositional
functions or propositions of lower orders, but there is no single relation Sat
or Tr expressible in LRTT+Val or definable in RTT+Val which would be true
of formulas or sentences expressing propositional functions or propositions
of any order whatsoever. Our definitions have thus fulfilled Russell’s dictum
that ‘the words “true” and “false” have many different meanings, according

quoted characterization of truth.
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to the kind of proposition to which they are applied’ (Russell and Whitehead
[1962], p. 42).64

Thus there is no way we can establish a single class of all true sentences of
LRTT+Val; however, having the properties Tr2, T r3, . . . , T ri, . . ., we can, in
a rather straightforward manner, establish such a class for all the sentences
expressing propositions of a given order. To do this, though, we need to
assume the principle of bivalence for sentences to the effect that any well-
formed sentence is either true or false. If we grant this assumption, it is easy
to set up a classification of sentences of LRTT+Val, taken as objects of r-type
ι, according to the order of propositions they aim to express. Employing the
constant V al, we may introduce the following relation: Oern+1(vι, n) =Def.

∃pn(V aln+1(v, p) ∨ V al(v,¬p)), which assigns to each sentence v the order
n of the proposition it aims to express. With this relation in hand, we can
specify a class {v | Oer(v, 1)} of all the sentences that express first-order
propositions or their negations; similarly for second-order propositions, etc.
In this fashion, we obtain a comprehensive classification of sentences (i.e.,
individuals of order 0) according to the orders of propositions they aim to
express. On the basis of this classification, it is easy to define the subclass of
all true sentences belonging to any given class. For the sentences expressing
propositions of order 1 (or their negations) it is {v | Oer(v, 1) ∧ Tr2(v)},
and similarly for any higher order. To conclude, we are able to determine
a sequence of classes comprising all sentences that express propositions of a
given order (or their negations) as well as a sequence of classes containing
all true sentences of a given class, and—which is the most important matter
to realize—we are able to do all this within one and the same language
LRTT+Val.

To be sure, there is nothing that prevents us from making a decision
to separate our single language LRTT+Val into a hierarchy of languages of
increasing orders. This is the path taken up by Church [1976], who permits
the language of order n to contain only bound variables of order n−1 and free
variables of order n. Then a language Ln+1 of order n+ 1—which contains
the full language Ln plus the variables ranging over the r-types of higher-
order objects that are not allowed in Ln and the appropriate V al constants—
can be considered to be a ‘semantical meta-language of Ln’ (op. cit., p. 756).
Nevertheless, from what we described in the preceding paragraphs, it follows
that the talk of different languages is not essential; it is merely a result of a
decision to give to one’s investigations a format that is deemed convenient.
Church is explicit about this:

[I]t is quite indifferent whether we speak of a single language L

64Of course, the property Tr has been defined as applicable to sentences, and not to
propositions; therefore, we would have to read this statement as: ‘according to the kind of
proposition expressed by the sentence to which they are applied’. However, the quotation
well supports our replacement of a single concept of truth with a multitude of different
concepts, which I take to be the more substantial part of its message.
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and a hierarchy of orders of variables and predicates within it or
whether we speak of an infinite hierarchy of languages L1, L2, L3,
. . . , as it is evident that the distinction is merely terminological.
(Church [1976], p. 756.)

2.7 Reducibility and Expressibility

A remarkable feature of Russell’s conception of the hierarchy of propositional
functions is revealed by analyzing the effects of the axiom of reducibility.
This ill-famed axiom, stated in ∗12·1 and ∗12·11 of Principia, can be ren-
dered as follows:

∃f (β1,...,βn)/1∀x1, . . . , xn(ϕ(x1, . . . , xn)↔ f(x1, . . . , xn)). (A-Red)

It asserts that for any propositional function ϕ(x̂1, . . . , x̂n) there is an ex-
tensionally equivalent predicative propositional function f(x̂1, . . . , x̂n), i.e.,
one whose r-type is the lowest compatible with the r-types of the arguments.
On the logicist reading, (A-Red) is a powerful abstraction principle assert-
ing the existence of entities without specifying them. (On the other hand,
if we assume the existence of a full hierarchy of propositional functions be-
forehand, and approach the axiom of reducibility from such a non-logicist
point of view, its role becomes similar to that of a comprehension schema of
set theory such as the axiom of separation of ZFC.65 But obviously, Russell
needs the strong, logicist reading of the axiom.)

The axiom of reducibility is required to make the system of Principia
adequate for classical mathematics. To understand why, let us cite Russell’s
eliminative definition of classes (∗20·01):

f{z | ψ(z)} =Def. ∃ϕ(∀x[ϕ!(x)↔ ψ(x)] ∧ f(ϕ!(ẑ))). (D-Cla)

We have used ‘!’, Russell’s “typically ambiguous” symbol for a predicative
function, rather than our r-type indicators to make (D-Cla) more compact.
It says that a class of ψs is f just in case there is a predicative function
ϕ coextensive with ψ which is f . In brief, classes are identified with the
predicative functions coextensive with their defining properties. (To obtain
a full eliminative theory of classes, we would also want a definition of the
membership relation ∈ and definitions permitting the elimination of bound
class variables. These all appear in ∗20·02, ∗20·07 and ∗20·071 of Principia;
but we will not discuss them here.) In the light of (D-Cla) it is clear that,
in contrast with propositional functions, the talk of classes is extensional.

The definition of classes is the core of Russell’s “no-class” theory, an
attempt to do without classes as objects. According to this theory, ‘class’
is merely a locution belonging to a mode of speech that can always be

65This was observed by Gödel [1944], pp. 140–141.
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eliminated, and transformed back into the “real” talk of propositional func-
tions. Now, just in this paragraph, let us remain within the bounds of
this “virtual” talk of classes—it makes the deficiency of the system of Prin-
cipia without reducibility quite easy to articulate. In this virtual talk, the
introduction of classes amounts to the introduction of a whole hierarchy of
virtual objects within the hierarchy of propositional functions. Hence within
the broader, more robust hierarchy of intensionally construed propositional
functions there can be identified a thinner, virtual subhierarchy of exten-
sionally construed entities. Once we have got the subhierarchy of classes,
we may investigate whether it is adequate for conveying classical mathe-
matics. Assume that standard set theory is adequate for mathematics. Can
the same be said also of this theory of virtual classes? The answer is: No,
unless we add the axiom of reducibility. The reason why the theory of vir-
tual classes cannot stand on its own lies in the fact that it does not supply
enough classes; the virtual subhierarchy does not contain some classes that
are required. The most quoted example of a central mathematical notion
that cannot be obtained without reducibility is the least upper bound of a
bounded class of real numbers. The failure consists in the fact that if we at-
tempt to specify the least upper bound without reducibility, we always end
up with an impredicative propositional function and, as a result, with an
entity of a higher order than that of the members of the class. A predicative
propositional function would get us all that is needed but we do not seem
to be able to specify any. So we have to turn to the axiom of reducibility
for help. Indeed, the whole purpose of this axiom is precisely to supply all
the predicative functions we need, so that the lacunae in the hierarchy of
classes are filled.

There is no pretense that the axiom of reducibility is satisfactory. The
problem that affects it has two sides. Firstly, how can an assertion of the
existence of all these predicative functions be justified? Note that owing
to the abstraction axiom schemata (A-CoF) and (A-CoT) the hierarchy of
functions already includes every single propositional function we are able to
pick out by a specifying formula. The very point of the axiom of reducibility
is to enlarge the amount of functions available by positing also functions for
which we do not possess a specification. This is a notorious difficulty, one
that Russell himself was well aware of and that significantly contributed to
the eventual demise of logicism. Yet, as this problem is well known, we
will not discuss it here any further. Instead, we will deal with the other
side of the coin, namely with the issue of expressibility. Provided that the
axiom (A-Red) guarantees the existence of all possible predicative functions,
even those for which we do not have specifications, the conclusion seems
inevitable that our language, LRTT (possibly with added constants for all
specifiable functions), fails to accommodate them all, i.e., to provide a means
for designating them by constants of appropriate r-types or picking them out
by specifying formulas. Evidently, they can be quantified over, so we can
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express that they exist but can we express what exactly they are? After
all, if we were forced to admit entities that cannot be designated and about
which not enough facts are expressible, what would be left of the logicist
project? Would not we get something bordering on the metaphysics of
entities beyond all specification, rather than a logical analysis of what is
given to us in language? It is this concern that is dealt with in the rest of
this section.

There is a paradox which has particularly significant consequences that
throw light on the issue of expressibility of predicative propositional func-
tions whose existence is guaranteed by RTT, namely Grelling’s “heterologi-
cal” paradox.66 Moreover, a careful analysis of this paradox helps to refute
the charge that the axiom of reducibility reinstates some of the paradoxes
that are blocked in the system without reducibility.67 We will build upon
the formalization presented in Church [1976], pp. 751–754, 758–760. Let us
start by the definition of the following constants:

Hetn+1(v) =Def. ∃a∃f (ι)/n(V aln+1(a, v, f) ∧ ¬f(v)), (D-Het)

where all the variables without r-type or level indicators are of r-type ι.
(D-Het) says that, disregarding the orders, a predicate v containing one free
variable is Het if and only if it designates a propositional function f(x̂) but
itself is not f . In other words, a predicate (a syntactic object) is Het if it
does not have the property it expresses.

We will formalize neither the paradox nor the solution to it in RTT+Val
in full. We will merely list the main three theorems that can be obtained
without the axiom of reducibility. Complete proofs are supplied in Church
[1976], pp. 753–754. The theorems are:

[V alm+2(a, v, f (ι)/m+1) ∧ ∀x(f(x)↔ Hetm+1(x))]→
¬Hetn+1(v), if m ≥ n,

(S-Het1)

[V alm+2(a, v, f (ι)/m+1) ∧ ∀x(f(x)↔ Hetm+1(x))]→
Hetn+1(v), if m < n,

(S-Het2)

∃a, v∃f (ι)/m+1[V alm+2(a, v, f) ∧ ∀x(f(x)↔ Hetm+1(x))]. (S-Het3)

Theorems (S-Het1) and (S-Het2) state, for each m of the associated rela-
tion V alm+2, whether a predicate v does or does not have the particular
property Hetn+1. Theorem (S-Het3) asserts that there exist a variable a, a

66This paradox first appeared in Grelling and Nelson [1907/08] but the authorship is
ascribed to Grelling.

67This objection was articulated by Chwistek [1921] against Richard’s paradox. Against
Grelling’s antinomy, it was reformulated by Copi [1950]. A reply to this line of argument
against the axiom of reducibility is implicit in Church [1976] and explicit in Myhill [1979]
and Hazen [1983], pp. 365–375.
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predicate v and an appropriate function f(x̂), so the antecedents of the con-
ditionals of the first two theorems are satisfied. Consequently, both of the
consequents hold. There is nothing paradoxical about this situation since
the level requirements make them all compatible. Obviously, a contradiction
immediately arises once we remove the level indicators.

What happens when we make recourse to the axiom of reducibility?
Can the paradox be reinstated, as it has been charged? Given the definition
(D-Het), the axiom of reducibility yields the following existential claim:68

∃h(ι)/1∀v(h(v)↔ ∃a∃f (ι)/n[V aln+1(a, v, f) ∧ ¬f(v)]), (S-h1)

i.e., there is a predicative, namely first-order propositional function that is
extensionally equivalent to the impredicative function Het whose order is
n+ 1. This may be put also as:

∃h(ι)/1(h(x)↔ Hetn+1(x)). (S-h2)

We will now take ‘h(ι)/1’ to be a schematic letter which can be replaced
by a constant designating any propositional function satisfying statements
(S-h1) and (S-h2), or quantified to become a regular variable. Granted this
convention, we may assert that ∀v(h(ι)/1(v) ↔ Hetn+1(v)). Yet, it is then
possible to derive the following analogues of theorems (S-Het1) and (S-Het2):

[V al2(a, v, f (ι)/1) ∧ ∀x(f(x)↔ h(ι)/1(x))]→ ¬h(v), (S-h3)

[V al2(a, v, f (ι)/1) ∧ ∀x(f(x)↔ h(ι)/1(x))]→ h(v). (S-h4)

However, an analogue of (S-Het3) has not been derived and it does not seem
derivable. Therefore, we may take the antecedent of the two implications
to be false, and avoid the conclusion that ¬h(v) ∧ h(v). It follows that
the paradox has not been reinstated. However, we are forced to regard the
antecedents to be false, and this has important consequences.

The fact of the matter is that the following result can be obtained by
a simple transformation from (S-h3) and (S-h4): ∀x(f(x) ↔ h(ι)/1(x)) →
¬V al2(a, v, f). By a substitution for ‘h’ and standard logic it is possible to
derive the following theorem:

∀a, v∀h(ι)/1(∀x[h(x)↔ Hetn+1(x)]→ ¬V al2(a, v, f)). (S-h5)

In English, if h(ι)/1(x̂) is a propositional function coextensive with Hetn+1,
there is no predicate v (with a variable a free) such that its value is h(ι)/1(x).
Since, according to the result established as (S-h2), such an h(ι)/1(x̂) does
exist, we have to conclude that the function h(ι)/1(x̂) cannot be designated
by any predicate v of LRTT+Val. Therefore, Russell’s ramified theory of types
with the axiom of reducibility, i.e., full RTT+Val, entails the existence of

68The argument that follows is again based on the one in Church [1976], pp. 758–760.
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unnameable propositional functions. So not only are propositional functions
extra-linguistic entities but there are some among them that are, in a sense,
beyond the reach of language, LRTT+Val. Hence our suspicion expressed
several pages back has been fulfilled.

What should we make of this curious situation? One conclusion is
clear: the axiom of reducibility does not reintroduce a contradiction where
RTT+Val without reducibility blocks it, at least not in connection with
Grelling’s paradox and not in any straightforward fashion. However, as we
have just remarked, the contradiction is avoided only if it is accepted that
there exist unnameable propositional functions. Still, one should be careful
not to get carried away, and consider a bit more cautiously what the fact
that some propositional functions are unnameable means. It obviously does
not signify that nothing can be expressed about these functions. After all,
we have already established several non-trivial properties of an unnameable
function h(ι)/1(x̂). The key points to realize are, firstly, that the talk of such
functions in LRTT+Val can only be extensional, and secondly, that it is is
strictly hierarchical. We will very briefly comment on both these points,
starting with the former.

The axiom of reducibility asserts the existence of a coextensive proposi-
tional function, and that is simply all we get. Since propositional functions
are intensional, i.e., there can be different functions that assign the same
values to the same arguments, any extensional talk of propositional func-
tions obviously fails to represent intensional differences between functions
and pick out functions as single entities. So we can make all sorts of different
assertions about our function h(ι)/1(x̂) but they will be valid of any other
function coextensive with it.

The other point is closely connected with the first. Recall what form
the extensional statements concerning h(ι)/1(x̂) had. To take the simpler of
the two biconditionals (S-h1) and (S-h2) stated above, h(ι)/1(x̂) was intro-
duced by: ∃h(ι)/1(h(x)↔ Hetn+1(x)). The lowest order Het can have is 2,
while the order of h is 1. Thus the lowest possible combination of orders
we can get is the following: ∃h1(h(x) ↔ Het2(x)). It follows that the very
existence of a first-order propositional function h1(x̂) extensionally equiva-
lent to the given function Het2(x̂) is expressible by means of a second-order
sentence. And given the fact that h1(x̂) is unnameable, we can speak of it
only using a sentence of at least second-order. Now if we introduce another
predicative (first-order) function as extensionally equivalent to impredicative
Het3(x̂), this new unnameable function will only enter possible talk through
the medium of third-order sentences. That is, second-order sentences that
conveyed the introduction of h1(x̂) do not permit introduction of first-order
functions equivalent to impredicative functions Het of orders greater than
2. So, although the individual predicative equivalents are all first-order, the
talk of them is structured strictly hierarchically, alongside with that of the
impredicative constants Het.
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Indeed, the existence of unnameable functions should not have come to
us as a surprise. As Church puts it, this fact ‘not only is intelligible but
even is to be expected in the light of Tarski’s theorem about truth’ (Church
[1976], p. 759). Recall our definition (D-Trr) in section 2.6. Evidently, the
axiom of reducibility is applicable to the properties Tr of appropriate orders
in the same way as it were to Het, so we get: ∃t(ι)/1(t(x)↔ Trn+1(x)). This
gives us an unnameable predicative propositional function t(ι)/1(x̂), and the
theorem (S-h5), as Church notes, becomes an expression of Tarski’s theorem:

∀a, v∀t(ι)/1(∀x[t(x)↔ Trn+1(x)]→ ¬V al2(a, v, f)).

So what we have established that holds of h(ι)/1(x̂) and Hetn+1(x̂), holds
also of t(ι)/1(x̂) and Trn+1(x̂), and presumably of other semantic notions.

The issue of expressibility can also be articulated in terms of classes. A
class of ϕs contains all objects that have the property ϕ. We have seen that,
according to Russell’s “no-class” theory of classes, in order to determine a
class, it is required that we are in possession of a predicative propositional
function. From the conclusions we draw above concerning the notions of Het
and Tr it follows that these properties themselves, being impredicative, do
not directly determine classes of predicates or classes of sentences, respec-
tively, but they do so only via the intermediary of coextensive predicative
functions such as h(ι)/1(x̂) and t(ι)/1(x̂). Hence, in order to establish a class
of first-order truths of LRTT+Val, we need to introduce a predicative function
t1(x̂) via the impredicative second-order function Tr2(x̂). To obtain a class
of second-order truths of LRTT+Val, we need an impredicative Tr3(x̂), etc.
In general, a class of truths of order n can only be specified using sentences
of order at least n + 1. Similarly for Het and presumably other semantic
notions.

Let us conclude. We have established that there are unnameable propo-
sitional functions but we have also seen that this does not amount to saying
that no significant facts about such functions are expressible. They can well
partake in extensional talk. However, if we restrict ourselves to LRTT+Val

sentences not exceeding a certain specific order n—for instance, along the
way suggested at the end of section 2.6—we will realize that while we are
able to express many facts regarding concepts of orders ≤ n, there are facts
that are expressible only if we permit ourselves to release the restriction
and admit concepts of order n + 1. Indeed, as the statement of the very
existence of such facts requires concepts of order > n, we cannot even rec-
ognize that there is something we have failed to express. To realize that, we
have to make a step upwards and add variables of higher r-types. And this
procedure can be iterated.

What causes this peculiar never-ending spiral of failure to express ev-
erything that, as if, should have been expressible? I propose that we should
view this issue in terms of self-reproductive concepts identified in section
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2.3. Both Tr and Het are such concepts. If this is so, the ramified theory of
types (with the axiom of reducibility) appears to have achieved exactly what
it was intended to. It permits self-reproductive concepts to be employed
substantively in language, while blocking the paradoxes by not letting the
classes determined by the corresponding predicative functions t and h form
completed unities. This is surely a great merit deserving to be emphasized:
Russell’s ramified theory of types does not deal with the “rogue” concepts
simply by shutting the door and pushing them outside the system. It lets
them in, and permits to make a good use of them; they are just stripped off
the “vicious” features that would bring in contradictions.



Chapter 3

Zermelo: Hierarchy of Sets

How can truth be defined within set theory? The primary goal of chap-
ters 3 and 4 is to answer this question. In the present chapter, we will
describe in some detail Zermelo’s cumulative hierarchy of sets. This task is
rather complex and requires introduction of a number of special concepts
such as well-foundedness, being an inaccessible ordinal or quasi-categoricity.
Close attention will be devoted to the criticism coming from Skolem since it
threatens to break the whole Zermelian set-theoretic project down. Above
all, though, we will strive to draw a coherent picture of a particular, and in
some ways rather unorthodox, conception of set theory and the set-theoretic
universe. In chapter 4, we will get to the business of finding, within set the-
ory, an acceptable definition of set-theoretic truth. An attempt will be made
to combine the hierarchical approach underlying Zermelo’s conception of set
theory with the findings resulting from the appreciation of some peculiar
features of the concept of truth.

When Zermelo, more than 20 years after the publication of his famous
paper containing the first axiomatization of set theory (Zermelo [1908]),
returned to the foundational issues in the article ‘Über Grenzzahlen und
Mengenbereiche. Neue Untersuchungen über die Grundlagen der Mengen-
lehre’ (Zermelo [1930]), his focal point was not the actual development of
an axiom system itself but rather the study of the structures satisfying the
axioms. The axiom system considered consists of the following standard
first-order axioms of Zermelo-Fraenkel set theory:

– extensionality,
– pairing,
– union (sum),
– power set.

These axioms, in which only the variables ranging over sets occur, are sup-
plemented by three axioms that contain also higher-order variables, namely:

– separation (often referred to by its German name ‘Axiom der Ausson-
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derung’),
– foundation (regularity),
– replacement.

The axiom of choice is not listed among the axioms because Zermelo takes it
to be ‘a general logical principle’ (Zermelo [1930], p. 1220), i.e., a principle of
wider generality, underlying the very logic of the language in which set theory
is formulated. A notable thing is Zermelo’s omission of the axiom of infinity,
which is normally included among the standard axioms of set theory. The
reason is that the axiom of infinity, without which the existence of infinite
sets cannot be proved, is seen by Zermelo as a special strengthening of the
underlying, ontologically lighter, set theory. Therefore, its adoption makes
the resulting set theory less general.1

The theory Zermelo presents is second-order. This has the convenient
property that the last three of the axioms stated above can be formulated
as single axioms, not as schemata, as is the case in first-order set theory.
To simplify the matter as much as possible, I will include in the theory con-
sidered in the present section the axiom of infinity, which Zermelo leaves
out. The omission of the axiom has certain consequences that will always
be explicitly mentioned—viz. p. 62 and the discussion at the end of section
3.6—so our simplification should not lead to any confusion or erroneous
conclusions. I will refer to the resulting axiom system as to second-order
Zermelo-Fraenkel set theory with the axiom of choice, ZFC2. For the stan-
dard first-order theory I will use the abbreviation ‘ZFC’.2

3.1 Well-foundedness

Among the axioms there is one that deserves a special attention, namely
the axiom of foundation. With a certain degree of simplification, it can
be said that this axiom was a novelty.3 It aims at excluding circular or
non-grounded sets by means of ensuring that the membership relation has

1Cf. Zermelo [1930], p. 1219. We will touch upon the issue of Zermelo’s striving for
utmost generality in section 3.6.

2To be more precise, some of the axioms listed above can be shown to be redundant as
they are provable from the other axioms of ZFC or ZFC2. The dispensable axioms are: the
axiom (schema) of separation, which can be derived from the axiom (schema) of replace-
ment, and the axiom of pairing, obtainable from the axioms of extension, replacement and
power set. Still, they are, for the sake of comfort, usually listed among the axioms ZFC
and ZFC2. Besides, we will see shortly that there is also a first-order version of the axiom
of foundation. This latter version is sufficient and may be kept without change in ZFC2

since the second-order version of the axiom of foundation is provable from the first-order
version together with the second-order axiom of replacement.

3The concept of well-foundedness can be traced back to Mirimanoff [1917], the discus-
sion of an axiom ruling out the infinite descending chains can be found in Skolem [1923],
von Neumann [1925] and von Neumann [1929], but Zermelo was the first to actually
include the requirement of well-foundedness in the axiom system itself.
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a special property called ‘well-foundedness’. A (binary) relation R on a
set a is well-founded if there is no infinite sequence x1, x2, . . . , xn, . . . of
members of a such that R(x1, x0), R(x2, x1), . . . , R(xn+1, xn), . . . all hold.
This is often expressed by saying that R is well-founded if there are no
infinitely descending R-sequences or R-chains. In particular, the mem-
bership relation is well-founded if there is no infinite ∈-chain such that
. . . ∈ xn+1 ∈ xn ∈ . . . ∈ x1 ∈ x0. In a derivative way, a set is said to
be well-founded if the membership relation on this set is well-founded. Zer-
melo’s axiom of foundation is then nothing else than the requirement that
every (descending) ∈-chain, in which each term is a member of the preceding
term, be of a finite length.4

However, in standard ZFC it is more common to define well-foundedness
differently; the axiom then takes a different shape, too. The alternative
definition goes as follows: the relation R on a set a is well-founded if every
non-empty subset x of a has an R-minimal member, i.e., if there is a z ∈ x
such that ¬R(y, z) for every y ∈ x. In particular, the membership relation
on a is well-founded if every non-empty subset x of a has a member which
itself does not have any members (in x). Reflecting this definition of well-
foundedness, the alternative axiom of foundation assumes the following form:

∀x
(
x 6= ∅→ ∃y[y ∈ x ∧ ∀z(z ∈ y → z /∈ x)]

)
, (A-Fou)

i.e., every non-empty set x has some member y such that the intersection of x
and y is empty.5 Zermelo claimed that the two versions of well-foundedness
we have just described were equivalent. Yet, this is not so generally. It has
been proved by Mendelson [1958] that in order to get the latter version (A-
Fou) from the former, we need the axiom of choice. Of course, we have said
that Zermelo assumed the axiom of choice so, in his system, this condition
is fulfilled; obviously, the same goes for ZFC2.

To see that the version (A-Fou) of the axiom of foundation rules out the
infinite (descending) ∈-sequences is easy. Assume, as a counter-example,
that there is a sequence x0, x1, . . . , xn, xn+1, . . . such that xn+1 ∈ xn for
each n, i.e., that there is an infinite (descending) sequence . . . ∈ xn+1 ∈ xn ∈
. . . ∈ x1 ∈ x0. Then there is a set a containing all the terms of this sequence.
Now apply the axiom (A-Fou) to a. The set a has to have a member, say xk,
which is disjoint from a, i.e., xk ∩ a = ∅. However, xk and a have always a

4Cf. Zermelo [1930], p. 1220.
5This is a so-called ‘local’ version of the axiom of foundation. The axiom is sometimes

expressed ‘globally’ using classes, A 6= ∅ → ∃y(y ∈ A ∧ ∀z(z ∈ y → z /∈ A)), or as a
schema, ∃y(ϕ(y)) → ∃y(ϕ(y) ∧ ∀z(z ∈ y → ¬ϕ(z))), where z is not free in ϕ. If ϕ(y) is
taken to be y ∈ x, the local version is equivalent to an instance of the schema. Note that,
in contrast to the other axiom schemata, if we assume the so-called ‘minimal member
principle’ for well-founded relations, which can be proved without the use of the axiom of
foundation, the schema of foundation can be shown to be equivalent to its local instance.
See Lévy [1979], p. 72, for details.
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member in common, namely xk+1. Therefore, the existence of the sequence
assumed above is in contradiction with the axiom of foundation (A-Fou).
How does the axiom preclude the existence of cyclical sets, i.e., sets that are
members of themselves? If a set contains only itself, a = {a}, this is obvious
as, in such a case, a ∩ {a} = a. Yet if the set contains more elements than
just itself, the axiom of foundation eliminates it only in conjunction with
the axiom of pairing, according to which, for any two sets, there is always
a set containing just these two sets and nothing else. Since a singleton is
considered to be a special, degenerate case of a pair, we can conclude that
for any set a there is always a set {a}. Now if a contains itself, the existence
of the set {a}, guaranteed by the axiom of pairing, is in contradiction with
the axiom of foundation (A-Fou). An analogical procedure can be applied
to exclude sets that contain themselves not directly but are nested deeper
inside their members.

Zermelo did not think that the axiom of foundation had the same status
as the remaining axioms. It is true that, intuitively, it seems rather plausible
but one thing is our inability to conceive of the possibility of the existence
of non-well-founded sets and another thing is to say that they really are
impossible.6 Zermelo himself did not attempt to present any argument for
the truth of the axiom; in fact, he thought that it represented a restriction
imposed on the set-theoretic universe, so it can be claimed with good reason
that he did not believe that the axiom was true.7 The axiom of foundation is
thus to be more properly viewed as a decision to circumscribe the universe of
sets rather than a statement of a descriptive truth about sets. At the same
time, despite its somewhat ambiguous status, the inclusion of the axiom of
foundation among the axioms of set theory represents no imminent danger.
It was proved already by von Neumann [1929] that adjoining the axiom of
foundation to the rest of the axioms does not make the resulting theory
inconsistent provided the original axioms were not inconsistent.

In justifying the axiom, Zermelo satisfies himself with a practical reason,
noting that it ‘has always been satisfied in all practical applications of set
theory’ so, in spite of its being of a restrictive nature, it does not restrict
the theory in any essential way after all—not at least ‘for the time being’
(Zermelo [1930], p. 1220). This is, indeed, correct. It can be shown that
arithmetic, analysis and virtually any branch of mathematics can be fully
developed with the axiom of foundation. At the same time, however, work in
all these disciplines can also be carried out without the axiom. The axiom

6Cf. Parsons [1977], p. 296. For instance, Suppes [1960], p. 53, satisfies himself with
challenging the reader who does not find the idea of there being two distinct sets a and
b such that a ∈ b ∧ b ∈ a counterintuitive to give an example of these sets that would
satisfy this condition. The task of constructing non-well-founded sets and, in general, of
developing non-well-founded set theory by employing a so-called ‘anti-foundation’ axiom
instead of the axiom of foundation has been most influentially taken up by Aczel [1988].

7Cf. Lavine [1994], p. 135.
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of foundation is precisely the one axiom that is not necessary for doing
mathematics in set theory, i.e., all the substantial mathematical results can
be obtained without it. In this sense, it can be said that the notion of
well-foundedness is characteristic of set theory proper as an autonomous
field of study. As Kanamori [1996], p. 28, puts it, ‘current set theory is at
base the study of well-foundedness, the Cantorian well-ordering doctrines
adapted to the Zermelian generative conception of sets’. But what is the
point of indulging in a study of a notion that does not seem to have any
significant practical implications for the very subject matter we are trying
to understand, i.e., mathematics? The answer to this question is that well-
foundedness becomes significant from a metatheoretical perspective, in an
analysis of the structures satisfying the axioms.

However, it is necessary to add an important qualification. A metathe-
oretical study of structures is also a field where the question of the order of
the theory comes to have decisive consequences. That is, it turns out that
well-foundedness cannot be captured in first-order set theory in the sense
that the membership relation would be well-founded in all the models sat-
isfying the axioms. Despite the presence of the axiom of foundation, there
will always be models of ZFC containing non-well-founded sets. How can
this be? It is a corollary of the compactness theorem for first-order logic
that a theory which has a model involving sequences of any finite length
also has a model containing a sequence of an infinite length.8 It was already
pointed out by Skolem [1923], pp. 298–299, that the finitude of an R-chain is
a higher-order property which cannot be successfully enforced in first-order
ZFC since ZFC lacks the resources to exclude all infinite (descending) mem-
bership chains. In fact, it is able to exclude only those infinite chains that
are definable in ZFC.

As we have seen, the axiom system presented in Zermelo [1930] is second-
order. Although Zermelo does not present his axioms formally so it cannot
be read off the axioms themselves, he states that the functions involved in
the axioms of separation and replacement are to be read as ‘quite arbitrary ’,
without being in any way restricted (Zermelo [1930], p. 1220). So there is
textual evidence for the claim that what he had in mind was a full second-
order formulation of the axioms (i.e., with standard semantics).9 Indeed, the

8For a discussion of the second-order character of well-foundedness see Shapiro [1991],
pp. 108–109 and 113–114, and Kolman [2008], pp. 426–427.

9However, as Tait [1998b], p. 469n., points out, the question about what Zermelo
intended is obscured by the fact that, immediately after asserting the arbitrariness of the
aforementioned functions, he refers to his article on the concept of ‘definiteness’ (Zermelo
[1929]) in which he identifies the definite functions with those definable in second-order
set theory. If his arbitrary functions were supposed to be taken from among the definite
functions, Zermelo’s subsequent results would become invalid since they are only valid if
we assume arbitrary functions without any restriction. Ebbinghaus [2007], pp. 183–186,
depicts a gradual shift in Zermelo’s conception of definiteness leading to the identification
of this notion with categorical definability, and eventually to its absorption into the notion
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textual evidence notwithstanding, the main reason for the full second-order
reading of the axioms is the fact that, following the impossibility of enforc-
ing well-foundedness in a set theory formulated in the first-order language,
Zermelo’s most significant results concerning the question of categoricity of
the proposed axiom system, about which we will speak shortly, are not valid
for first-order set theory. Hence, in what follows, we will be working with
(second-order) ZFC2 with standard semantics.

3.2 The Hierarchy and Inaccessible Ordinals

As we have seen, the axiom of foundation demands that the ∈-relation be
well-founded; by imposing a restriction on the notion of set it globally char-
acterizes the set-theoretic universe. A straightforward consequence of the
axiom is that all sets can be stratified into a hierarchy based on the length
of the appropriate ∈-chain of their elements. As all the descending ∈-chains
eventually lead to the empty set or to some primitive base-level objects with-
out members that are not sets, so-called ‘urelements’, they can be compared,
figuratively speaking, with respect to the number of “steps” needed to get all
the way down to the base level. Accordingly, sets may be viewed as forming
a hierarchy which can be represented as a (well-ordered) sequence of disjoint
layers (Zermelo uses the word ‘Schichten’). The hierarchy is cumulative in
the sense that the sets in any given layer may take their members from any
of the layers preceding the layer into which they themselves belong but not
from this layer itself or any succeeding layers.

We shall now specify the cumulative hierarchy more precisely. To do
this, we need to introduce the concept of von Neumann ordinal and the rank
function. Zermelo called von Neumann ordinals ‘basic sequences’ (‘Grund-
folgen’), without giving any credit to von Neumann [1923] where they were
introduced.10 We will stick to the standard usage; but we will often ab-
breviate and write ‘ordinals’, meaning ‘von Neumann ordinals’. A von
Neumann ordinal α is defined as a well-ordered set of the smaller von
Neumann ordinals. Von Neumann ordinals form a sequence constructed as
follows: ∅ = 0; the successor of any ordinal α is α ∪ {α}; if b is a set of
ordinals, the union

⋃
a∈b a is an ordinal. Whenever a von Neumann ordinal

α is smaller than a von Neumann ordinal β, then α ∈ β and α ⊆ β, i.e.,

of set. To illustrate Zermelo’s stance on the issue of arbitrariness, Ebbinghaus (op. cit.),
p. 191, adds a quotation from a manuscript written in 1931 in which Zermelo argues
against any attempt to restrict the scope of universality of the quantification over subsets
of a given set. Hence, it seems reasonable, at least for our purposes, to view Zermelo’s
footnote as misleading and to read the requirement of arbitrariness as unrestricted. For
a further discussion of the higher-order character of Zermelo’s theory, see, for example,
Hallett [1984], pp. 266–269, or Lavine [1994], p. 136.

10It is believed that Zermelo defined the sequence of von Neumann ordinals indepen-
dently already around 1915 but did not publish his definition (cf. Ferreirós [2007], p.
376).
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von Neumann ordinals are transitive. (A set a is transitive if, for every
x ∈ a, x ⊆ a or, equivalently, if y ∈ x and x ∈ a imply that y ∈ a.) It can
be shown that every well-ordered set is order-isomorphic to exactly one von
Neumann ordinal, i.e., there is a bijection f from the well-ordered set a to
a von Neumann ordinal β such that, for every x, y ∈ a, x ≤ y if and only
if f(x) ≤ f(y). In this way, rather than being identified with equivalence
classes of order-isomorphic sets—and that was, as we saw on p. 19, how
ordinal numbers were defined by Cantor, whose definition was also taken up
by Russell—von Neumann ordinals canonically represent such equivalence
classes.

It remains to introduce the rank function. The rank of a set is the von
Neumann ordinal determining the level of the hierarchy at which the set first
appears. It can be defined within ZFC as: ρ(x) =

⋃
{ρ(y) + 1 | y ∈ x}.11

It can be shown that the rank is defined for all sets; that the rank of an
ordinal is the ordinal itself; and that if x ∈ y, then ρ(x) < ρ(y).

Now we are ready to describe the hierarchy itself. Take U to be a (possi-
bly empty) set of urelements;12 then the cumulative segments (‘Abschnitte’)
of the hierarchy Vα, where α designates the appropriate rank, can be defined
by transfinite induction in the following way:

V0 = U ∪∅;

Vα+1 = Vα ∪ ℘(Vα);

Vδ =
⋃
α<δ

Vα for limit ordinals δ.

Ultimately, the entire universe V of sets is represented by the union of all
segments:

V =
⋃
α

Vα.

It should be noted that while this specification of the hierarchy presented
by Zermelo assumes urelements, in contemporary set theory it is customary
to keep urelements out of the picture and deal exclusively with pure sets.13

11Cf. Drake [1974], pp. 35–36.
12Note, however, that no reason has been provided for the contention that the base, i.e.,

the collection of urelements, forms a set. As this issue is rather remote from the topic of
this chapter, I will avoid discussing it; I would just like to mention the so-called ‘urelement
set axiom’ introduced by McGee [1997], used to derive McGee’s ‘categoricity theorem’.
For a further treatment, see Uzquiano [2002].

13Again, as with Zermelo’s leaving out the axiom of infinity, what is at issue here
is generality. A theory capable of coping with urelements as well as with pure sets is
clearly more general than a theory capable of handling pure sets only. Indeed, as Kreisel
[1967], p. 147n., points out, ‘the classical structures of mathematics occur already, up
to isomorphism, in the cumulative hierarchy without individuals [that is, urelements].’
Therefore, Zermelo’s interest in keeping set theory maximally general must have its roots
elsewhere than in purely mathematical considerations. We will return to this issue in
section 3.6.
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The specification of segments Vα remains valid if we disallow urelements but
it can be simplified: the first line becomes just V0 = ∅ and the second line
becomes Vα+1 = ℘(Vα).14

Each ordinal α indexes a level of the hierarchy. Some of these levels Vα
have a rather special status, namely those that are indexed by what Zermelo
called ‘boundary numbers’, and what is today referred to as ‘(strongly)
inaccessible numbers’.15 In brief, the segments indexed by these numbers
are particular because they provide models for Zermelo-Fraenkel set theory;
however, before going into the enquiry into models of ZFC2, we need to
understand what these numbers are. Unfortunately, the path leading to
the definition of a strongly inaccessible ordinal is rather complex, and it is
necessary to start off with several preparatory definitions. In particular, we
need to understand the notions of being a (strong) limit ordinal and being
regular. Furthermore, the latter presupposes the concept of cofinality.

Let us begin with the property of being a limit. An ordinal number α > 0
is a limit ordinal if there is no ordinal number β such that β + 1 = α,
i.e., if it cannot be reached by the successor operation. An ordinal number
α > 0 is a strong limit ordinal if there is no ordinal number β such
that 2β = α, i.e., if it cannot be reached by the power-set operation. Note
that every strong limit ordinal is, at the same time, a limit ordinal. The
other way round, however, the matter is less straightforward. In order to
claim that every limit ordinal is also a strong limit ordinal, we would have
to show that there are no limit ordinals between ω and 2ω, in particular,
and between ωα and 2ωα for every ordinal number α, in general. And this
amounts to nothing else than to Cantor’s continuum hypothesis, i.e., to the
statement that ℵ1 = 2ℵ0 , and to the generalized continuum hypothesis (first
conjectured by Hausdorff [1908]), which is the statement that ℵα+1 = 2ℵα ,
respectively. Thus, if the generalized continuum hypothesis is assumed to
hold, strong limit ordinals are precisely limit ordinals.

The next auxiliary notion we need to introduce is that of cofinality. A
function f : β 7→ α is cofinal (in α) if the image f [β] is unbounded in α, i.e.,
if ∀ξ ∈ α ∃η ∈ β(ξ ≤ f(η)). The cofinality cf(α) of an ordinal number α
is then defined as the smallest ordinal number β such that there is a cofinal
function f : β 7→ α, i.e., cf(α) = min{β | there is a cofinal function f :
β 7→ α}. The notion of cofinality deserves several brief remarks.16 First,

14The simplification of the second line is based on the fact that, disallowing urelements,
it can be shown that, for any ordinal α, Vα is a transitive set (cf. Balcar and Štěpánek
[2000], p. 193).

15The theory of inaccessible numbers, which plays a key role here, was developed by
Hausdorff [1908]. Hausdorff used the term ‘exorbitant’ instead of ‘inaccessible’, and ap-
plied it to what would now be called ‘weakly inaccessible’ numbers. Hallett [1996], p.
1210n., points out that the term ‘inaccessible’ was probably first introduced by Sierpin-
ski and Tarski [1930] who used it for what would be now called ‘strongly inaccessible’
numbers.

16A more complete treatment of the concept of cofinality can be found, for example, in
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the cofinality of any ordinal number α is less than or equal to α since the
identity function is cofinal. Secondly, cf(0) = 0. The cofinality of every
successor ordinal is 1 since there is a function f : 1 7→ α + 1 such that
f(0) = α which is cofinal in α + 1. If cf(α) = 1, α has a greatest element
since there is always a cofinal function (in α) from 1 to this element. The
cofinality of a limit ordinal is ≥ ω; in particular, if α < ω1, then cf(α) = ω.
An ordinal number α is called singular if cf(α) < α; if, on the other hand,
cf(α) = α, the ordinal number α is said to be regular. The only finite
numbers that are regular are 0 and 1; all the other natural numbers are
singular. ω is regular. If we follow the usual path and accept the axiom of
choice, any infinite successor ordinal ωα+1 is regular. Every infinite ordinal
that is regular is also a so-called initial ordinal, i.e., an ordinal number
such that every smaller ordinal has a smaller cardinality.17 But not every
initial ordinal is regular since there are also singular initial ordinals: a limit
of regular ordinals is an initial ordinal although it is typically not regular,
for instance, ωω whose cofinality is merely ω. A characteristic property of
a singular infinite initial ordinal α (which is often used as an alternative
definition of singularity) is also that α can be represented as the union of
< α sets each of which is of cardinality < α. Assuming the axiom of choice,
this is equivalent to the condition that α can be represented as the sum of
< α cardinals each of which is < α.18 If no such representation is possible,
the ordinal α is regular.

To sum it up, ω and the successor ordinals are regular but limit ordinals
ωα with α a limit ordinal are typically singular. Yet what does the ‘typically’
mean? Are there, besides ω and the regular successor ordinals, also regu-
lar limit ordinals? An ordinal that satisfies the properties just mentioned,
namely:

– is > ω (alternatively, is uncountable),19

– is regular and
– is a limit ordinal,

is called a weakly inaccessible ordinal. If we strengthen the third con-
dition imposed on the ordinals from being a limit ordinal to being a strong

Lévy [1979], pp. 133–141, and Ciesielski [1997], pp. 74–76.
17Provided that every set can be well-ordered, which follows from the axiom of choice,

every cardinal has an initial ordinal. It is, therefore, customary to identify cardinal num-
bers with their corresponding initial ordinals. As both strongly and weakly inaccessible
ordinals defined below are always initial ordinals, they can be identified with their corre-
sponding cardinals; in fact, they are usually presented as inaccessible cardinals. However,
with the intention of making the matter as simple as possible and avoiding introducing
cardinal numbers, we will stick to speaking of inaccessible ordinals.

18For proofs of the equivalence of these two conditions with the defining condition of
regularity, see Lévy [1979], pp. 134–135.

19The additional condition of uncountability is there to exclude ω from the inaccessible
ordinal numbers. The issue of ω being the first inaccessible ordinal in Zermelo’s system is
discussed below.
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limit ordinal, we get a (strongly) inaccessible ordinal (hereafter only an
‘inaccessible ordinal’). Equivalently, a weakly or strongly inaccessible ordi-
nal is an ordinal that cannot be reached ‘from below’ by the general cardinal
addition as well as (if it is weakly inaccessible) by the successor operation,
i.e., by passing from ωα to ωα+1, or (if it is strongly inaccessible) by the
exponential operation, i.e., by passing from ωα to 2ωα . Indeed, as we have
already pointed out, if we assume the generalized continuum hypothesis,
these two notions coincide.

Our definition of the notion of inaccessible ordinal is now complete. It is
clear that if such numbers exist, they have to be enormous, much larger than
the ordinals that arise in ordinary mathematical practice (cf. Jech [1991],
p. 42). Yet the question that needs to be asked is: Do such numbers exist?
It is certainly conceivable that inaccessible ordinals exist, but do they? We
will deal with this question and its consequences in the next section; for
the time being, let us just say that the existence of uncountable inaccessible
ordinals cannot be proved in ZFC or ZFC2.

Note Zermelo’s conception of the cumulative hierarchy of sets is some-
times put in connection with the so-called ‘iterative conception of set’. The
iterative conception was first clearly described in print in Gödel [1947], pp.
473–477, and later it was developed in Shoenfield [1967], pp. 238–240, Boo-
los [1971], Scott [1974] and Wang [1974], pp. 181–193. The primary goal
of the iterative conception is to provide an independent and intuitively ac-
ceptable justification for the axioms of set theory via supplying an intended,
standard model. On its basis, systems of set theory such as ZFC can be
defended against the accusation that they are ad hoc—built chiefly as a
response to the threat of the set-theoretic paradoxes—and lack any serious
intuitive or philosophical appeal.20 The central metaphor of the iterative
conception is that, at any moment, we can produce new sets by gathering
together objects that we already have at our disposal. Then, by iterating
the operations of creating new and new layers of sets on top of those already
present, we usually arrive at the familiar cumulative hierarchy of Zermelo’s.
However, the cumulative hierarchy seems to be all that Zermelo [1930] and
the iterative conception have in common. Zermelo’s article is above all a
study in models satisfying the axioms of ZFC2, and not an attempt to philo-
sophically justify the axioms by building on our ontological or metaphysical

20Boolos claims that the iterative conception is ‘natural’ (cf. Boolos [1989], p. 89, or
Boolos [1998b], p. 127) in the sense that ‘without prior knowledge or experience of sets,
we can or do readily acquire the conception, easily understand it when it is explained to
us, and find it plausible or at least conceivably true’. However, the assertion that the
conception is natural has recently been subjected to criticism. A challenge has appeared
in the development of non-well-founded set theory (cf. Aczel [1988]) and in the attempts
to show that the iterative conception can be relatively easily modified to justify also non-
well-founded universes of sets (see, e.g., Sharlow [2001]).
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intuitions. As Taylor [1993], p. 553, argues, if understood in this way, Zer-
melo [1930] does not develop the iterative conception, and should not be
seen as its forerunner.

3.3 The Sequence of Models

We have said that each ordinal α indexes a segment within the cumulative
hierarchy described in section 3.2, and that among segments there are some
which are particularly significant, namely those indexed by inaccessible or-
dinals. These segments provide models of Zermelo-Fraenkel set theory. We
are now ready to address this issue in a slightly greater detail.

In general, a model, or a structure, is a complex object consisting of
a domain, which is usually taken to be a set of objects, and an interpretation
function that assigns appropriate objects from the domain of the model to
the primitive non-logical vocabulary of the language of the theory, i.e., to
the individual constants, relation symbols and function symbols. In the
particular case of set theory, a model will contain a domain together with
the interpretation of the single primitive relation symbol, ‘∈’. If ∈a is the set
of all ordered pairs 〈x, y〉 such that both x and y are members of a and x ∈ y,
and Vα is a segment within the cumulative hierarchy defined in section 3.2
with α being an inaccessible ordinal, then the ordered pair 〈Vα,∈Vα〉, which
I will designate simply by ‘Mα’, can be shown to be a model of ZFC or
ZFC2.

21 Let us call models of this form normal models. (When Zermelo
[1930], pp. 1220, 1224, speaks of objects satisfying his axiom system with
respect to the ∈-relation, he speaks of ‘domains’—which he calls ‘normal
domains’—, not of ‘models’. In what follows, I will stick to ‘normal models’
to avoid confusion of models and domains.)

Of course, the segments of the cumulative hierarchy indexed by inaccessi-
ble ordinals are not domains of models of ZFC2 by accident. It can be shown
that a segment’s being indexed by an inaccessible ordinal is a condition that
is both necessary and sufficient for its being the domain of a normal model
of ZFC2. It is sufficient if it can be shown that the domain of a normal
model contains (at least) every set whose existence can be proved in ZFC2.
It is straightforward to see that this requirement is satisfied by inaccessible
segments. If α is a limit ordinal, then Vα already provides for all the sets
provable by the axioms of extensionality, separation, pairing, union, power
set and foundation. If α > ω, Vα provides for the axiom of infinity.22 It
remains to show that Vα also contains all the sets obtainable by the axiom

21We have already mentioned the fact that if the axiom of infinity is removed from ZFC
or ZFC2, the existence of ω becomes unprovable. If, moreover, we drop, as Zermelo does,
the condition of being greater than ω from the definition of the inaccessible ordinal, ω will
come out as the first inaccessible ordinal. Then the normal modelMω will be a model of
such a ‘finitistic’ version of set theory.

22For the detailed proofs, see Jech [2003], pp. 165–166.
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of replacement, which says, in the extended notation, that

if f is any function, then for every set z the image f [z] is a set. (A-Rep)

To show that the axiom of replacement does not lead us outside the segments
indexed by inaccessible ordinals, assume that there is a set z ∈ Vα and a
function f : z 7→ Vα, with α an inaccessible ordinal. The following facts
may be stated: (a) for any z ⊆ Vα, z ∈ Vα if and only if |z| < α; and
(b) the cardinality of the image f [z] is less than or equal to that of z, i.e.,
|f [z]| ≤ |z|. Thus we get |f [z]| ≤ |z| < α, from which it follows by (a)
that f [z] ∈ Vα.23 Therefore, it can be concluded that a segment indexed
by an inaccessible ordinal contains all the sets obtainable by the use of the
operations of set formation sanctioned by the axioms of ZFC2; hence the
condition of being indexed by an inaccessible ordinal is, indeed, sufficient.

The same condition is necessary if it can be ruled out that some other
domains, smaller than the segments indexed by inaccessible ordinals, can
serve equally well as models of ZFC2. This is to say that we need to show
that ZFC2 is satisfied by only those segments indexed by ordinals that are
> ω, regular and strong limit. We may skip the property of being > ω as
it has already been discussed, and go straight to regularity. Assume that
Vα is a domain of a model of ZFC2 and that α is singular. Then there
will be an ordinal β < α and a cofinal function f : β 7→ α (with the
image f [β] unbounded in α) such that f ⊆ Vα. Hence the supremum of
f [β] = α. However, by the axiom of replacement we get that f [β] is a set,
i.e., f [β] ∈ Vα, from which it follows that the supremum of f [β] also has
to belong to Vα, i.e., α ∈ Vα. And that is a contradiction. It remains to
show that α has to be strong limit. Again, assume that it is not. Then
there will be a β < α such that |℘(β)| = 2β ≥ α, and, obviously, by the
power set axiom, the power set ℘(β) is a set, i.e., ℘(β) ∈ Vα. Yet, there
will be a surjective function f : ℘(β) 7→ α such that the image of ℘(β)
under f is equal to α, i.e., f [℘(β)] = α. But then, by the application of the
axiom of replacement, also the image f [℘(β)] ∈ Vα, from which it follows
that α ∈ Vα. And that is a contradiction.24 It is important to observe
that the necessity of the condition cannot be established without crucial
application of the full second-order axiom of replacement (A-Rep). This
entails that there are models of (first-order) ZFC whose rank is smaller than
the smallest inaccessible ordinal.25

We have established that any segment Vα with α an inaccessible ordi-
nal provides a model of ZFC2. But certainly, there will be a multitude of

23This proof is taken from Kanamori [2003], p. 18.
24This proof is also taken from Kanamori [2003], p. 19. An informal argument in support

of the necessity condition is already present in Zermelo [1930], pp. 1221–1224. The formal
proof is attributed to Shepherdson [1952].

25This result was proved in Montague and Vaught [1959]. As they point out on p. 220,
this is equivalent to saying that the axioms of ZFC do not insure the existence of all
“accessible” ordinals.
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different, non-isomorphic models. What is the relationship between them?
What differences may one expect? One direction in which they may differ
is obviously the cardinality of their base, i.e., the set of urelements. This
has been called the “width” of the model. The other direction in which
models may differ is their rank, that is, their “height”. It is a chief result
obtained by Zermelo that, in general, there can be no other point of dif-
ference between models of ZFC2. Any normal model of ZFC2 is uniquely
specified (up to isomorphism) by a pair of characteristic cardinal numbers,
namely by its height and by its width. Moreover, all normal models of equal
width but different height have another particular property. As the hier-
archy of sets is cumulative, i.e., each segment Vα contains all the segments
with ranks < α, models Mα and Mβ differing only by their ranks α and β
differ (up to isomorphism) only in the layers situated, within the hierarchy,
between Vα and Vβ. A similar situation obtains with the cardinality of the
base. Zermelo saw this result as a particular form of categoricity, sometimes
called ‘almost-categoricity’ or ‘quasi-categoricity’: let us say that a theory
is quasi-categorical if any domain (of a model satisfying it) with a lower
height is isomorphic to a (proper or improper) subdomain of the domain
with a higher height, and the domain with a lower width is isomorphic to a
(proper or improper) subdomain of the domain with a higher width.

So, we have seen that the property of being indexed by an inaccessible
ordinal α is both sufficient and necessary for Vα to be the domain of a
normal model of ZFC2, and that the models of ZFC2 have a peculiar quality
of being quasi-categorical. Yet, there still remains an important question
to be touched upon, namely that of the existence of inaccessible ordinals.
We claimed in the previous section that the existence of these ordinals is
unprovable in ZFC2. Why is this so? Once it has been established that
the segments of the cumulative hierarchy indexed by inaccessible ordinals
are domains of normal models of ZFC2, the unprovability of the existence
of these ordinals becomes immediate. For had ZFC2 been able to prove the
statement that there is an inaccessible ordinal α, it would have been able to
prove the existence of its own modelMα, which amounts to nothing else than
proving its own consistency. Of course, by Gödel’s second incompleteness
theorem, this is impossible unless the theory is inconsistent.26 Therefore,
the existence of inaccessible ordinals cannot be proved in ZFC2.

However, this does not settle the question whether these ordinals do or

26The fact that provability of the existence of an unaccessible ordinal is inconsistent with
ZFC2 can also be established without recourse to Gödel’s second incompleteness theorem,
in a rather straightforward way. Assume that we are able to prove the existence of some
inaccessible ordinals in ZFC2. There will be the smallest such ordinal, call it ‘θ’. We
have shown that the segment Vθ will be a model of ZFC2. Now, because θ is the smallest
inaccessible ordinal there will be no inaccessible ordinal in Vθ. However, the existence of
θ being provable, θ, an inaccessible ordinal, has to be in Vθ. And that is a contradiction.
This argument goes back to Kuratowski [1925].
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do not exist. We have merely found out that, if they exist, they cannot
be shown to exist in ZFC2 by means of a formal proof. Before going into
the informal argument in support of their existence, let us point out that
the situation we have here is, in a sense, remarkably similar to that of the
question whether there are infinite sets in set theory lacking the axiom of
infinity, which was, as we have seen, the system presented in Zermelo [1930].
Of course, the existence of ω is provable in ZFC. (Provided that we do not
restrict the definition of inaccessible ordinals to those strictly greater than
ω (or the uncountable ones), it can be proved that the statement that ω
is the only inaccessible ordinal is consistent with ZFC. But this is merely a
rewording of the fact that the existence of ω is provable in ZFC.) The reason
for the provability of the existence of ω, however, lies nowhere else than in
the presence of the axiom of infinity in ZFC. The axiom of infinity can be
stated in the extended notation as the following statement:

∃z(∅ ∈ z ∧ ∀x(x ∈ z → x ∪ {x} ∈ z)). (A-Inf)

In English, the axiom says that there is a set z such that it contains the
empty set together with the union of each of its members with its singleton.27

It is easy to see that this set contains all finite von Neumann ordinals, i.e., all
natural numbers; therefore, it must be infinite. The axiom thus postulates
the existence of an actually infinite set, and it does so without providing
a recipe for its construction using the operations sanctioned by the other
axioms. Take (A-Inf) out, and the existence of any infinite set will become
unprovable. Moreover, if ZFC without the axiom of infinity is consistent,
the negation of the axiom of infinity can be adjoined to the other axioms,
and the resulting system will also be consistent. In this way we obtain a
set theory equivalent to elementary number theory, i.e., arithmetic (cf. Jech
[1991], pp. 38–39), in which all objects concerned are finite. Consequently,
it can be said that the provability of the existence of ω in ZFC is achieved
by our decision to add (A-Inf) to the remaining axioms, and thus to have ω
among the provable sets. Indeed, this decision can be perfectly legitimate
if there are good reasons justifying it (into which we will not go) but the
fact is that it remains a decision. This stipulative character of the axiom of
infinity is presumably the reason why Zermelo leaves it out from ‘general’
set theory.28

27This is the standard, most commonly used version of the axiom of infinity. For the
comparison of the deductive strength of other, different versions of the axiom, including
Zermelo’s original one, see Uzquiano [1999], pp. 290–294.

28A word of caution is needed here. Kanamori [2004], pp. 524–525, points out that
ZFC2 without the axiom of infinity (A-Inf) and with only the local version of the axiom of
foundation such as our (A-Fou) does not establish the theorem of transitive containment
(which says that every set is a subset of a transitive set), without which the second-order
form of the axiom of foundation cannot be derived. Such a second-order set theory thus
has non-well-founded models. So if we want to preserve well-foundedness of all the models
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Let us go back now to the question of the existence of inaccessible ordi-
nals. What reasons, if any, can we put forward for their existence? If there
cannot be a formal proof, is there a compelling informal argument? Before
anything else, notice that if there are normal models whose domains contain
infinite sets, i.e., if there is any “infinitistic” set theory at all, these mod-
els contain the sequence of all the ordinals whose existence can be proved
in ZFC2. To say that there is an inaccessible ordinal is then just another
way of saying that there is an ordinal limit of this sequence of “accessible”
ordinals, and that, in contrast to the “accessible” ordinals, this limit is not
a set of ZFC2. Still, why should we accept that there is a number greater
than all the numbers that are provable in ZFC2? What does Zermelo have
to say? His argument for the existence of inaccessible ordinals (cf. Zermelo
[1930], p. 1232) is based on the observation that the height of each natu-
ral model of ZFC2 is uniquely fixed by the totality of inaccessible ordinals
that it contains as members. This follows from the simple fact that the seg-
ment Vα indexed by an inaccessible ordinal α will contain all the ordinals,
including the inaccessible ones, that are < α. If Vα does not contain any
inaccessible ordinals at all, α must be the smallest one; if it contains exactly
one, α has to be the second smallest one, etc. As only the width of the
domain is relevant for the question of the existence of inaccessible ordinals,
let us deal for now only with models of equal width. Assume that there is
an inaccessible ordinal α in the domain but no ordinal > α, and let us add
this assumption to ZFC2 as a new axiom. Such an extended theory will be
satisfied uniquely (up to isomorphism) by the model with the domain Vβ
with β the first inaccessible ordinal > α. (If we were after fixing the domain
indexed by the smallest inaccessible ordinal, we would have to append the
axiom that there are no inaccessible ordinals at all.) In this way we are able
to obtain from quasi-categorical ZFC2—disregarding the urelements—a se-
quence of its categorical extensions. This entails, at the same time, that any
domain whose rank is an inaccessible ordinal can be categorically specified.

Categoricity is a property of prime significance to Zermelo. He puts
forward, as a ‘general hypothesis’, the following principle:

[E]very categorically determined domain can also be interpreted
[aufgefaßt] as a set in some way, i.e. can appear as an element
of a (properly chosen) normal domain. (Zermelo [1930], p. 1232;
Hallett’s translation.)

To put it simply, the principle states that any collection of sets that can be
categorically determined by means of a suitable extension of ZFC2 is also
a set. What is the justification for such a principle? It is rather simple:

satisfying the axiom system of ZFC2 without the axiom of infinity, we have to have a full
second-order version of the axiom of foundation. For a detailed analysis of the dependence
of the property of well-foundedness of second order Zermelo set theory on various versions
of the axiom of infinity, see Uzquiano [1999].
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recall that, disregarding the urelements, ZFC2 is quasi-categorical, i.e., it
is satisfied exclusively by the sequence of models that differ just in their
height. Moreover, as we have seen, models of greater height contain the
models of smaller height as proper subsegments. Now, provided that any
model can be uniquely fixed (up to isomorphism) by a categorical extension
of ZFC2, any model apart from the one with the smallest height will contain
all the smaller inaccessible ordinals as elements. And as elements of the
cumulative hierarchy, they will be ordinary sets. Without categoricity, there
is no clear way of establishing whether a given inaccessible ordinal is or is
not an element of the normal domain and, consequently, whether or not it
can be treated as a set. This concludes the argument for the existence of
inaccessible ordinals. A notable quality of the whole argument is, as Zermelo
quickly adds (op. cit., pp. 1232–1233), that it provides us not merely with
a single inaccessible ordinal but, in one sweeping move, with an unbounded
sequence of ever greater inaccessible ordinals.29 And naturally, given this
unbounded sequence of inaccessible ordinals, there will be an unbounded
sequence of larger and larger normal models of ZFC2.

So we can now understand why, despite the fact that no inaccessible
ordinal can be obtained from the base by means of the operations sanctioned
by the axioms of ZFC2, and despite the fact that no inaccessible ordinal is
a set of ZFC2, Zermelo makes a decision—an ‘inspired move’, as Kanamori
[2004], p. 522, puts it—to take the number characterizing the height of the
normal model to be again a standard (von Neumann) ordinal, subject to
a proper set-theoretic treatment in an extension of ZFC2.

30 By this move,
the characteristic α of a normal model Mα of ZFC2 is kept outside the
model but still within set theory.31 Thus every single one of normal models
can be fully specified set-theoretically, i.e., it can become an ordinary set
capturable by the resources of set theory, provided that the existence of
the requisite ordinal number is assumed. In contrast to this, however, the
matter is entirely different as regards the whole universe of sets. If we
want to capture a segment of the hierarchy as a set, we need to, so to
speak, make a step upwards onto a higher layer. Obviously, this requirement
makes capturing of the universe of all sets by means of any extension of
ZFC2 impossible. Or, as Feferman [1999], p. 101, puts it, since any closure
condition on sets specifies a set, i.e., an object within the universe, the
whole universe of sets cannot be captured by any set-theoretic closure. To
sum it up, the cumulative hierarchy of sets contains an unbounded sequence

29In fact, one is not forced to stop with the sequence of inaccessible ordinals. Analog-
ical methods may be applied in arguing for the existence of ‘hyper-inaccessible’ ordinals,
defined as those inaccessible ordinals α that have α inaccessible ordinals below them.
Segments indexed by hyper-inaccessible ordinals will be models of ZFC2 extended by the
axioms postulating ordinary inaccessible ordinals (cf. Tiles [1989], p. 181).

30Cf. also Ebbinghaus [2007], p. 190.
31Cf. Hallett [1996], pp. 1209–1210.
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of higher and higher normal domains, each of which is capturable by a set-
theoretic closure, except for the universe of sets, the hierarchy in its entirety,
which remains, for any extension of ZFC2, perfectly elusive.

3.4 The Challenge of “Skolemism”

Zermelo’s efforts in the period in which his ‘Grenzzahlen’ article was pub-
lished were focused most prominently on the struggle against the dangers of
“Skolemism”,32 which he saw as threatening the very constitution of math-
ematics.33 The pivotal role in “Skolemism” is played by the Löwenheim-
Skolem theorem. To state this theorem in its most general contemporary
form,34 we need to be able to assess the cardinality of a language. By saying
that a language has cardinality λ, we will mean that it contains λ symbols
or, equivalently, that it has λ well-formed formulas (to be more precise, the
equivalence holds for all languages containing infinitely many symbols, which
requirement is satisfied, among other things, by all languages based on stan-
dard predicate logic, e.g., by the language of set theory). In particular, if
the cardinality of a language is > ℵ0, the language is said to be uncountable;
otherwise it is countable. Now let T be a theory in a first-order language of
cardinality λ. Then the downward Löwenheim-Skolem theorem says
that if T has a model, it has a model with the domain of cardinality ≤ λ.
In particular, if T is a theory in a countable language, it has a countable
model, i.e., a model with the domain of cardinality ≤ ℵ0. The upward
Löwenheim-Skolem theorem says that if T has an infinite model, it also
has a model of every cardinality κ ≥ λ. Thus even if T is intended to deal
exclusively with countably infinite sets, it still has models with domains of
uncountable cardinalities.

It follows from the Löwenheim-Skolem theorem that formal theories at-
tempting to characterize simple countable structures such as that of natural
numbers are bound to characterize equally well also much more complex

32I use the double quotation marks to stress that what I am after is not the true nature
of Skolem’s ideas concerning set theory but rather just those aspects of the doctrines of
Skolem’s that, like a scarecrow, deter Zermelo from taking all the field of set theory as
granted. For an elaboration of Skolem’s views concerning the foundations of set theory,
see Jané [2001].

33Cf. Ebbinghaus [2007], pp. 200–202.
34Cf. Enderton [2001], pp. 151–155. The history of the theorem is relatively complex.

A version of the downward Löwenheim-Skolem theorem limited to a single formula was
published in Löwenheim [1915]. Löwenheim’s proof was reworked and extended to possibly
infinite sets of formulas in Skolem [1920]. The upward part of the theorem has allegedly
been proved by Tarski in 1928 but Tarski did not publish his result (cf. Moore [1982], pp.
257–258). Still, the upward part is sometimes called Löwenheim-Skolem-Tarski theorem.
The theorem in its full generality was proved in Malcev [1936]. As Hodges [1997], p. 127,
points out, it is somewhat paradoxical that Skolem’s name is associated with the upward
part of the theorem since ‘Skolem didn’t even believe it, because he didn’t believe in the
existence of uncountable sets’.
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structures of huge uncountable cardinalities, while theories powerful enough
to prove the existence of uncountable sets, e.g., of the continuum of real
numbers, can also be satisfied by natural numbers. Not only that such the-
ories are not categorical but their non-categoricity is such that it seems to
undermine some of the most fundamental set-theoretic notions. Just recall
that at the very heart of Cantor’s set theory was its ability to distinguish
different magnitudes of infinity. The Löwenheim-Skolem theorem then tells
us that even though we can prove that there are sets of huge cardinalities
that are uncountable within the “sandbox” of ZFC, what we have really
achieved by such proofs is only that we have obtained new results charac-
terizing, inter alia, the natural numbers. This perplexing phenomenon has
been called ‘Skolem’s paradox’.

Skolem’s own response to the challenge presented by this state of af-
fairs was relativism according to which every ‘thoroughgoing’ axiomatization
of set theory ‘leads to a relativity of set-theoretical notions’. Specifically,
‘higher infinities exist only in a relative sense’ (Skolem [1923], p. 296).35

Not surprisingly, such a position was utterly unacceptable for Zermelo, and
his conception of the cumulative hierarchy may be viewed as a reply to this
relativism of Skolem’s.36

Now, at a first glance, it might look as if Skolem’s relativism need not
worry Zermelo at all since, as it is formulated in a full second-order lan-
guage with standard semantics, ZFC2 is immune to the Löwenheim-Skolem
theorem in either direction. The significance of the requirement that Zer-
melo’s theory should be understood to be second-order was already dis-
cussed in connection with the notion of well-foundedness. The immunity to
the Löwenheim-Skolem theorem is just another feature characterizing a full
second-order system; once a system of set theory becomes satisfiable only if
all sets are well-founded, it is no longer affected by the Löwenheim-Skolem

35Just a word of caution. As Bernays [1957], p. 8, stresses, from this relativity it does not
follow that one and the same set, e.g., ℘(ω), is uncountable in one theory and countable
in another. Cantor’s cardinality theorems are invariant with respect to different systems
of axiomatic set theory; the set ℘(ω) is uncountable in every axiomatic set theory. The
relativity lies rather in the fact that the totality of the subsets of ω that are definable in
a given theory T1 can be countable in a different, more comprehensive theory T2. In T2,
however, this totality will no longer be the set ℘(ω).

36Here it should be noted, though, that Zermelo’s understanding of the Löwenheim-
Skolem theorem, its underlying causes and its consequences was problematic. It can be
evidenced that Zermelo, who got into both professional and scientific isolation during the
1930s, did not fully catch on with the development in the field of logic and set theory,
which shifted decisively towards first-order systems and a study of their different models.
Ebbinghaus says: ‘It is a tragic coincidence that Zermelo, although having contributed
crucial model-theoretic features in the Grenzzahlen paper, completely missed this devel-
opment’ (Ebbinghaus [2007], p. 204). At the same time, one is most probably not justified
in concluding that Zermelo simply missed the point of the Löwenheim-Skolem theorem. A
more charitable reading of Zermelo’s late attempts at a refutation of Skolem’s relativism
consists in realizing that in Zermelo’s version of set theory ‘no Skolem phenomenon could
occur’ (van Dalen and Ebbinghaus [2000], p. 158).
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theorem. Thus the threat of a collapse of the set-theoretic universe and of
its replacement by dissimilar models of all possible cardinalities has been
staved off. Nevertheless, for the reasons that will appear shortly, Zermelo
could not sensibly defend his view of set theory merely by pointing out that
he was working out a second-order system of set theory. Skolem’s critique
cuts deeper.

When Cantor introduced uncountable sets, it was on the basis of his
diagonal proof which established that no countable set of sets of integers
can contain all sets of integers or, alternatively, that no countable set of
subsets of a countably infinite set a can contain all the subsets of a. Yet,
from this result itself it does not follow that there is an uncountable set of
sets of integers or a set of subsets of a.37 This requires an additional step
which is provided for in ZFC by the power set axiom, according to which,
for any set x, there exists a set ℘(x) consisting of all the subsets of x. In
the extended notation:

∀x∃y∀z(z ∈ y ↔ z ⊆ x). (A-Pow)

However, in theories formulated in a first-order countable language, the
power set axiom only establishes the existence of the set ℘(x) of all the
subsets of x that are first-order definable. Therefore, as the number of
the first-order definable subsets is countable, such theories are satisfiable
by countable models. This situation does change in theories formulated in
higher-order languages with standard semantics, in which the quantifiers are
assumed to range over all subsets of a domain, no matter whether second-
or higher-order definable or not. It is only in such a higher-order framework
that the power set axiom establishes the existence of “genuine” uncount-
able sets (‘genuine’ being used to indicate that theories containing theorems
about such sets cannot be satisfied by countable models). Thus, in order
to block the Löwenheim-Skolem theorem, one has to presuppose full higher-
order logic, which amounts to assuming ‘that if one countenances a domain
d, one also countenances each subset of d, and each relation and function on
d’ (Shapiro [1991], p. 255). Unfortunately, this assumption appears to be
somewhat problematic. We can certainly prove the existence of uncountable
sets simply by requiring that the quantifiers of a given language range over
uncountably many subsets of a given domain. Yet, this just appears to beg
the question. Skolem may respond: When one is considering the possibility
of introducing second-order variables ranging over arbitrary propositional
functions, ‘the question arises: what is the totality of all propositional func-
tions?’ (Skolem [1928], p. 516).38 How can it be specified? The totality
obviously cannot be fixed by a system of axiomatic set theory itself.

37Cf. Jané [2001], p. 130.
38Indeed, for Skolem, the only ‘scientifically tenable’ propositional functions are those

that do not lie beyond the means available to a given first-order theory, namely those
that are first-order definable. This is the position he assumed in Skolem [1923] in the
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The whole argument against the existence of uncountable sets and the
acceptability of the assumption of arbitrary subsets of a domain can be
generalized and directed against the utility of the whole business of axiom-
atization of set theory. For it is axiomatic set theory that is supposed to
determine or implicitly define the objects and their properties that satisfy
the conditions it imposes, viz. its models. Yet, once it has been shown that
the capability of axiomatic set theory of characterizing models is rather
limited, the existence and properties of models simply need to be assumed
beforehand. That is, it needs to be assumed that we are, in general, able
to deal with models in a direct manner. But how are we supposed to do
that? After all, ‘models are usually taken to be set-theoretical objects’ (Jané
[2001], p. 142), and it would seem that if we want to deal with them, we
need a proper set-theoretic framework, namely an axiomatic system. Hence,
we have to conclude that in order to set up axiomatic set theory, we need
to presuppose a general conception of model but, at the same time, in order
to study models, we need to have a decent system of axiomatic set theory.
Thus we seem to be trapped in a circle:

If we adopt Zermelo’s axiomatization, we must, strictly speaking,
have a general notion of domain in order to be able to provide a
foundation for set theory. [. . . ] But clearly it is somehow circular
to reduce the notion of set to a general notion of domain. (Skolem
[1923], p. 292.)

The circularity would not obtain if we succeeded in describing a model with-
out recourse to axiomatic set theory. Now the main thrust of Skolem’s criti-
cism of axiomatic set theory lies in the conviction that it is actually possible
to produce such a particular model of (first-order) axiomatic set theory, but
that such a model is only countable. The reason being that, for Skolem, un-
countability is a concept internal to axiomatic set theory in the sense that
there are no uncountable objects to be found by the means available outside
or without axiomatic set theory.39

This statement deserves two notes. Firstly, one might object that count-
able and uncountable sets were first distinguished in the original set theory
of Cantor’s, which was not axiomatic. Cantor’s informal set theory was not
directly affected by the set-theoretic paradoxes, so it was not straightaway
contradictory, as Skolem [1923], p. 291, claimed. Yet, we should not look
to Cantor’s set theory with much hope. On the one hand, it is crucial to
ask what Cantor’s proof of uncountability of all sets of integers relies on.
The famous diagonal proof published in Cantor [1891] shows, in effect, that

famous debate concerning the notion of ‘definit’ property introduced by Zermelo [1908] in
connection with his axiom of separation. The other participants in the debate were Weyl,
Fraenkel, and Zermelo himself; this debate was one of the catalysts that contributed to the
‘historical triumph’ of first-order logic. For its history, see Shapiro [1991], pp. 181–190.

39Cf. Jané [2001], p. 143.
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the sets of integers we are able to specify do not exhaust the totality of sets
of integers, since we are always able to come up with a new set that has
escaped our specification. In other words, for any particular specification,
there always exist sets that have not been specified, and we can exemplify
such sets by providing a specification for them. Assuming that the number
of specifications we are able to provide is only countable,40 the totality of
specifiable sets is also only countable. Putting it all together, the key as-
sumption behind the argument for the uncountability of the sets of integers
is that there is a domain of sets of integers comprising the entirety of such
sets, no matter whether specifiable or not. As Hallett [1984], p. 58, puts it,
this assumption ‘goes most of the way towards acceptance of the existence
of arbitrary sub-domains’, which, in the case of sets, may be viewed as an
implicit assumption of the full power set operation. On the other hand, as I
have already mentioned, if we want to prove that there are uncountable sets,
the first step consisting in showing the uncountability of the sets of integers
needs to be supplemented by the second step establishing that the sets of
integers form a set. Unfortunately, as we pointed out in section 2.2, Can-
tor’s concept of set was not sufficiently clear, and I do not wish to contribute
to the debate of how to explicate it most naturally. Nevertheless, it seems
uncontroversial to say that a collection of numbers—for instance, of the real
numbers, R—is a set provided it is a proper segment of numbers. This is
nothing else than to say that it is a set only if there are greater numbers
succeeding it.41 Hence showing that the real numbers form a set requires es-
tablishing that there are greater collections than that of real numbers. The
method for producing ever greater sets on the basis of those already given
was, indeed, based on the diagonal argument introduced in Cantor [1891];42

it was generalized in Cantor [1895], pp. 486–488, where it was called the
‘exponentiation of powers’. The exponentiation provides the cardinal num-
ber of the set of all functions f : β 7→ α. In particular, let N be the set of
natural numbers and ℵ0 its cardinality. Then we obtain by exponentiation
the cardinal number 2ℵ0 , which is the cardinality of the set of functions
f : N 7→ {0, 1}. Although Cantor arguably never got as far as the standard
power set operation,43 his exponentiation shares with the former, again, the

40If we are strict and take into account the crude fact that our time is always limited,
the number of specifications will be merely finite.

41An analogical idea is behind the guiding principle distinguishing sets from (proper)
classes in the systems of set theory that include classes, such as von Neumann-Bernays-
Gödel set theory (NBG) or Morse-Kelley set theory (MK). We will say more about these
theories in section 3.5.

42Cf. Dauben [1979], p. 167.
43Lavine [1994], pp. 90–98, interprets Cantor’s exponentiation of powers introduced in

the ‘Beiträge’ as a form of the power set operation, and he sees in it a profound shift from
Cantor’s previous version of set theory developed in the Grundlagen. Lavine claims (p. 95)
that, for the first time, Cantor was able to prove that the real numbers form a set, instead
of merely assuming that they do. At the same time, the newly shaped set theory that
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assumption that we are dealing with all the functions. So it can be con-
cluded that Cantor’s informal set theory employed—both with respect to
proving the uncountability of the totality of all sets of natural numbers and
with respect to arguing for the admissibility of such uncountable totalities
as sets—virtually the same assumption Skolem argued against, namely that
there is an uncountable totality of arbitrary functions.

Secondly, to say that there are no uncountable objects outside axiomatic
set theory does not entail that the terms such as ‘uncountable’ cannot be
used or understood outside set theory. After all, we saw in section 2.1 that
it can be stated in Frege’s system that there is no one-to-one correspondence
between concepts or functions on the one hand and objects on the other,
and we discussed in section 2.3 Russell’s attempt to formulate a common
principle behind all the set-theoretic paradoxes. Therefore, the concept of
uncountability can be found and meaningfully employed outside axiomatic
set theory.44 (It is true that both systems, Frege’s as well as Russell’s, were
strong enough to explicitly define the membership relation, so they incorpo-
rated a large degree of set theory. Yet, from this it only follows that some
concepts of set theory are implicit in some presumably more basic and sat-
isfactory concepts. These concepts are regarded to be of a logical character,
and they are articulated as unprovable self-evident universal truths. This
perspective characteristic of Frege and Russell is very different from that of
Hilbert’s—according to whom axioms are put forward as implicit definitions
of whatever satisfies them—and does not require that we have set theory
available in order to interpret our system.)

emerged in the ‘Beiträge’ made problematic some of the basic principles that had been
so far taken for granted (cf. also Moore [1982], p. 46). This interpretation by Lavine was
criticized, e.g., by Tait [2000], pp. 282–285, or Ferreirós [2007], p. 265. Ferreirós argues
that the closest that Cantor comes to introducing the power set axiom is in the letter
to Hilbert written on 10th October 1898, in which he shows that there is a one-to-one
correspondence between the power set ℘(N) and the set of functions from N to {0, 1}, and
thus R. In combination with two principles—namely that (i) whenever two collections can
be put into one-to-one correspondence and one of them is an admissible set, the other is
also an admissible set, and that (ii) the set ℘(x) of all the subsets of a set x is an admissible
set, which is a clear statement of the power set operation—this result enables Cantor to
reach the desired conclusion that R form an admissible set. However, only two days later
Cantor wrote in another letter to Hilbert that his argument supporting the principle (ii)
was illusory. The acceptability of the power set operation was thus set in doubt. This
leaves the whole argument that R form an admissible set inconclusive for Cantor.

44This perspective forces us to refuse, for instance, the distinction made by Resnik
[1966], p. 435. He claims that the meaning of some of the terms of set theory, such as
‘is a member of’, is learned with the help of ordinary language; these terms are used and
understood also outside axiomatic set theory. On the other hand, some other terms of
set theory, e.g., ‘uncountable’ or ‘limit ordinal’, are learnt and used exclusively within set
theory; learning these terms, Resnik asserts, equals learning set theory itself. On the basis
of this distinction, Skolem’s claim might be taken to be that the models of axiomatic set
theory that can be described without the use of set-theoretic terms proper are always only
countable. However, if we accept that the terms such as ‘uncountable’ can be meaningfully
used outside set theory, this construal of Skolem’s position can no longer be maintained.
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Let us repeat once again that the key point of Skolem’s critique is not
that the concept of uncountability does not have a proper meaning outside
axiomatic set theory but rather that uncountable objects cannot be shown to
exist without relying on the machinery of axiomatic set theory. And unless
we are able to show that there is an uncountable model without employing
axiomatic set theory itself, we are trapped in a circle, assuming what we are
striving to demonstrate.

3.5 Second-Order Set Theory

How does Zermelo’s system fare with respect to the weighty scenery set up by
“Skolemism”? To be sure, it does not suffice to respond to Skolem’s critique
merely by pointing out the second-order character of ZFC2. Rather, the
following question inevitably forces itself upon us: What is it that second-
order variables of the language of ZFC2 range over? We saw already in
section 3.1 that Zermelo’s system requires a standard semantics, i.e., the as-
sumption that second-order variables range over all or arbitrary properties
and relations (henceforth just ‘relations’) or functions, and not only those
that are definable within the system. But we have to ask: what are these
relations and functions? How are we to construe quantification over them?
In standard second-order logic, the issue is relatively straightforward. First-
order variables range over the members of the universe (individuals), while
second-order variables range over (all or arbitrary) sets of individuals. How-
ever, in set theory, the members of the universe (other than the urelements)
are called ‘sets’; so already the first-order variables are supposed to range
over all sets whatsoever, including the power sets of sets. This is to say that
if we interpreted relations and functions as sets (of sets), our presumably
second-order set theory would, as a matter of fact, collapse into a first-order
system. And as we know, there is nothing in first-order systems articulated
in countable languages that can assure us that we really quantify over all
sets. How then should we deal with the second-order variables of ZFC2?

It has become customary in set theory to follow Frege’s impulse and
replace the talk of relations and functions by the talk of their extensions,
called ‘classes’. A system of set theory with classes alongside sets was first
developed in von Neumann [1925]. Owing to subsequent contributions by
Bernays and Gödel, the resulting system is usually called ‘von Neumann-
Bernays-Gödel set theory’ (NBG). However, NBG is a conservative extension
of ZF, i.e., a sentence couched in the language of NBG without classes is
a theorem of NBG if and only if it is a theorem of ZF. Classes are used
mainly for expediency; they allow us, among other things, to replace axiom
schemata with single axioms, i.e., they make room for finite axiomatizability.

The most prominent system of set theory with classes that is not con-
servative with respect to ZF is Morse-Kelley set theory (MK). The key step
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that gives MK the extra strength over NBG is that it lifts the restriction
forbidding us to substitute for ‘ϕ(x)’ in the axiom schema of class compre-
hension:

∀x∃X(x ∈ X ↔ ϕ(x)), (A-Cla)

where ϕ does not contain ‘X’ free, any formula containing quantification over
classes. This is to say that, in MK, we are allowed to put for ‘ϕ(x)’ any well-
formed formula of the extended language whatsoever, including formulas
obtained by the application of (A-Cla).45 This gives rise to impredicative
classes, i.e., classes defined by means of quantification over the totality of
classes. The extended deductive power of MK over NBG and ZFC manifests
itself in the fact that MK is capable of proving the consistency of these
weaker theories.

It was proved by Weston [1977] that MK is ‘almost the same theory’ as
ZF2 (p. 499). More precisely, let ϕ be a formula of the language of MK and
let ϕ∗ be its translation into the language of ZF2, in which each atomic part
of the form x ∈ X is replaced by one of the form P (x). Then MK ` ϕ if and
only if ZF2 ` ϕ∗. (To obtain this result, we also need to employ a logical
principle of substitution for ZF2 to the effect that ∀P (ϕ(P )) → ϕ(ψ(x)),
where ‘ϕ(ψ(x))’ is the result of substituting a formula of the form ψ(x)
for ‘P (x)’ (certain restrictions apply), and we need to devise a principle of
identity for relations such as the one stating that P = Q ↔ ∀x(P (x) ↔
Q(x)).) This entails that MK and the second-order system of ZFC2 are very
similar in terms of their proof-theoretic capabilities.

However, their semantic properties significantly differ. The most impor-
tant feature of MK in this respect is that it is not a genuine second-order
theory. In fact, it is not second-order at all, and there is even a case to
be made for considering it a single-sorted first-order theory. It is true that
it distinguishes two kinds of objects, i.e., sets and classes, and that classes
are intended to be the objects of the level Vα+1, where Vα is the intended
model of ZFC. However, MK habitually identifies sets with classes: every
set is a class, and every class that has the same members as a set is identical
with that set. The classes that are not identical with sets are called ‘proper
classes’. This identification allows us to explicitly define the property of
being a set. Assuming there are no urelements, sethood can be defined as
follows:

Set(X)↔Def. ∃Y (X ∈ Y ). (D-Set)

This means, that in MK we could do with only a single sort of variables,
namely the variables ranging over classes. In other words, two different sorts

45Contrary to NBG, MK is not finitely axiomatizable. NBG can be finitely axioma-
tized because the schema (A-Cla) is, in its restricted form, provably equivalent to the
conjunction of a finite number of its instances, i.e., the axioms of class existence or class
construction. Giving up the aforementioned restriction makes any finite number of in-
stances insufficient to capture the full power of the class comprehension schema, thence
the lack of finite axiomatizability of MK.
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of variables are not used out of necessity, but rather for the sake of user-
friendliness. A consequence of this slightly concealed first-order character of
MK is that standard results concerning first-order theories apply. Among
others, MK is affected by the Löwenheim-Skolem theorem, and has non-
well-founded models. Moreover, the identification of sets with classes raises
some important philosophical questions: What is it that prevents us from
identifying all classes with sets?46 If we cannot identify all classes with sets,
how does it come about that we can identify any?47 We will deal with some
of the questions concerning the nature of classes in section 4.8.

If ZFC2 is to be a genuinely second-order system, it has to be interpreted
as involving two ultimately distinct kinds of objects. Sets must not be a mere
subclass of classes but must form an autonomous domain. Yet, of the two
orders of objects, sets are definitely the clearer ones; how should we think
of properties and relations or functions? Given the relative obscurity of
these notions when taken in themselves, we will interpret the second-level
objects of ZFC2 as classes. This decision is easily justifiable since properties
can be represented by classes of objects, and relations and functions by
classes of ordered n-tuples.48 In any case, the penchant for classes in place
of properties, relations and functions should be construed as a matter of
convenience, a welcome simplification, rather than a decision with a decisive
ontological impact. Nonetheless, if they are to be genuinely second-order,
it is crucial to interpret classes as objects distinct from sets. In general, we
will interpret classes as objects of exactly the level Vα+1 = ℘(Vα), where Vα
is the domain of a model of ZFC2. (Note that, when describing a model
of ZFC2, it is not necessary to specify a domain of classes over which the
class variables range alongside that of sets. Once we have provided the set
domain, we have implicitly given also the class domain: class variables range
over all possible collections of the objects of the set domain.)

In this way, sets and classes remain separated as distinct kinds of entities
even if they contain the same members. However, if a certain class contains
the same objects as a particular set, there is nothing that prevents us from
replacing the talk of that class by the talk of the corresponding set. The
classes that do not have any counterparts among sets are proper classes.
From this it follows that classes cannot reach out far from the hierarchy
of sets in the sense that there cannot be a membership chain of exclusively
proper classes such that X1 ∈ X2 ∈ . . . ∈ Xn. The members of any member-
ship chain of classes will always be, apart from the closing one, representable

46Cf. Tait [1998a], pp. 279–280.
47Cf. Potter [2004], pp. 313–315.
48This statement needs to be qualified: there are purposes for which the representation

of relations and functions by means of classes is not viable, for instance, the purpose of
dealing with so-called ‘positive formulas’ in the context of the higher-order reflection (cf.
Tait [1998a], pp. 276, 283–289). Nonetheless, the representation of relations and function
by classes suffices for everything we are going to do, so we will stick to it.
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by sets. In other words, there is no hierarchy of proper classes alongside that
of sets. Proper classes can be identified with the universe of all sets or with
the collections that can be put into a one-to-one correspondence with the
universe of all sets.49

3.6 Zermelo’s Relativism

The universe of all sets V was defined on p. 55 as the union of all segments,⋃
α Vα. In an analogical manner, we can specify the totality Ω of all ordinal

numbers as {x | x is a von Neumann ordinal}. Yet, what are these speci-
fications? What does it mean to say: ‘all segments’ or ‘all von Neumann
ordinals’? To specify the meaning of the quantifier binding the first-order
variables is nothing else than to specify the domain of a model of the given
theory; in the case of normal models, this amounts to specifying the do-
main Vα, where α is an inaccessible ordinal. As there is no normal model
whose domain contains the universe of all sets in the absolute sense, the
only definite meaning we are able to assign to the quantifier is restricted
to the domain of this or that particular normal model. Hence, given any
such normal model M, V simply has to refer to the domain Vα of M and
Ω has to refer to all the von Neumann ordinals within Vα. Then, indeed,
there are just as many such totalities as there are models, and the meaning
of an expression denoting such a totality becomes clear only once we have
specified the model.50 In other words, the symbols ‘V ’ and ‘Ω’ as well as
their specifications mentioned above do not denote totalities that would be
preserved across models but their meaning changes from model to model.

The totalities such as those denoted by ‘V ’ and ‘Ω’ are, indeed, proper
classes. Recall now that the sequence of inaccessible ordinals, and hence
also of normal models, is unbounded, and that, as we saw at the end of
section 3.3, the domain of any normal model can become an object within
the domain of another, higher model. From this it follows that proper classes
of one model can become sets of another model. This means that both the
notion of set and that of proper class become relative. It is important to
understand the particular nature of this relativity. In a sense, the meaning
of every symbol of any theory is relative with respect to a model since
the model is precisely from where the meaning gets assigned. However,
Zermelo’s relativity is not of this crude sort. Rather, it consists in the claim
that one theory can be so reinterpreted, i.e., provided with such a model,
that the truth value of all the statements involving proper classes will be
preserved, while the variables ranging over classes will be assigned values

49The statement that every subclass of the universe of sets is either a set or can be
put into a one-to-one correspondence with the universe of sets is sometimes called ‘von
Neumann’s principle’. It can be derived in NBG from class versions of the axiom of
foundation, replacement and choice; viz. Smullyan and Fitting [1996], pp. 91–93.

50This argument can be found in Tait [1998b], p. 473.
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from collections that are sets within a higher normal model.51 If the axioms
for sets are supposed to implicitly define what a set is, and if the axioms for
classes are to implicitly define what a class is, then one has to conclude that,
according to Zermelo’s cumulative picture, no single system of set theory can
claim to have achieved such a goal: what one system implicitly defines as
a proper class will be a set in another system. Tait’s saying: ‘there are
no absolute proper classes’ (Tait [2005a], p. 142) may be appended by the
rejoinder: ‘no collection is so peculiar that it cannot become a set’.

This relativism of Zermelo’s serves a double purpose. First, it provides
the core of a solution to the set-theoretic paradoxes. Where Cantor dis-
tinguished between the determinate infinite totalities, i.e., sets, and the
absolute or inconsistent infinite totalities, Zermelo supplied the distinction
between (on the one hand) totalities that are so large that they cannot
be captured within a given system of set theory and (on the other hand)
collections that appear as ordinary sets in an extended system; the latter
collections can, however, be shown within the extended system to be iden-
tical with the former, unsurmountable totalities. The distinction between
the consistent and the inconsistent, which is arguably not very helpful,52

has thus been supplanted by the distinction between the inside and the out-
side of a theory. This involves a significant shift in the way set theory is
viewed and treated. We will return to the nature of this shift in a moment;
for the time being, let us just say that it consists in Zermelo’s replacement
of Cantor’s conception of a fixed or static universe of sets by the dynamic
relativism of the essentially open cumulative hierarchy.

Secondly, and more importantly for us at the moment, the purpose of
Zermelo’s relativism is to make available a viable vindication of “genuinely
uncountable” set theory against the dreaded dangers of “Skolemism”. Writ-
ing about his allowing non-sets of one normal model to be genuine sets in a
higher model, Zermelo says:

By “relativizing” the notion of set in this way, I feel able to refute
Skolem’s “relativism” that would like to represent the whole of
set theory in a countable model. It is simply impossible to give all
sets in a constructive way [. . . ] and any theory founded on this
assumption would by no means be a theory of sets. [Zermelo’s
emphasis; quoted in Ebbinghaus [2007], p. 203.]

Given the relativism described above, the requirement that set theory should
be a theory of all sets should also include all the non-sets, i.e., proper classes,

51We already saw this in section 3.3. Assume that we extend the original system of
ZFC2 by adding the axiom stating the existence of the first inaccessible ordinal, thus
obtaining the system ZFC2+I. By extensionality, the domain Vα of the model of ZFC2

will be identical with an ordinary set in the domain Vβ , β > α, of the model of ZFC2+I.
52Cf. Kolman [2008], p. 384.
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since they can become sets provided that we assume higher and higher in-
accessible ordinals. By such a reinterpretation of (the extensions of) proper
classes of one system as sets of another system, set theory becomes capable
of including also strongly impredicative collections among its objects. At
the same time, the true object of set theory, namely the unbounded cumu-
lative hierarchy of sets, cannot be exhausted by any single system since no
system is powerful enough to provide us with all sets there are. From this
perspective, it is manifest that confining our attention only to a hierarchy
of countable sets is nothing but a mutilation: we deliberately cut off a large
portion of healthy flesh and deal only with a part of the subject matter.
Once again, what we come across here is the issue of generality. It is re-
quired that set theory should be a theory of all sets, and not merely of those
manifesting certain favourable qualities.

Having covered the preliminaries, we can turn to the broader question we
are pursuing, namely to Zermelo’s response to the dangers of “Skolemism”.
As Zermelo’s whole late conception of set theory is built on the grounds of
second-order logic with standard semantics, which, as we know, amounts
to nothing else than to assuming the existence of uncountable collections
from the very beginning, Zermelo’s defence against Skolem obviously can-
not and does not lie in providing an independent justification for the exis-
tence of uncountable collections; the centre of Zermelo’s response to Skolem
lies elsewhere. We can put the whole issue slightly differently and say that
the feature that makes ZFC2 satisfiable only by models with uncountable
domains is its ability to quantify not only over sets, i.e., “combinatorial”
collections that can be reached by a repeated application of the operations
sanctioned by the axioms and that can be located within a definite segment
of the cumulative hierarchy, but also over arbitrary relations and functions
(or, in our construal, classes). The latter entities represent collections that
are, rather than by composition from elements, obtained by a “logical” divi-
sion of the universe. In the simplest case of properties, the universe of sets
is divided into two parts: one consisting of the sets that have the property
in question, the other of those that do not. A pressing question, of course,
is what these relations and functions (or classes) are, and how they are to
be dealt with. Yet, what is even more disquieting is the very fact that it
turns out to be necessary, for obtaining full set theory in the sense described
above, to assume the existence of other kinds of collections besides sets. In
other words, if we want to obtain Zermelo’s quasi-categorical hierarchy of
sets, and with it truly uncountable set theory, we have to go beyond sets.
This is the “Skolemite” worry to which Zermelo’s reply is directed.

Having explained all the things above, the reply does not come as any-
thing new but is essentially a repetition. As Zermelo’s conception involves
a relativism of (in our construal) proper classes, according to which every
proper class can eventually become a set, there is no requirement of going
beyond sets in any absolute sense. Proper classes of one system of set theory
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can become ordinary sets of an extended system, and so on. No stepping
outside set theory is needed. Therefore, it is true that, in order to obtain
a theory of truly uncountable sets, we have to quantify over non-sets but it
is not true that we have to move beyond the cumulative hierarchy of sets.
Once we do not restrict our view of set theory to a particular system of
axioms, but rather consider it to be an open-ended sequence of stronger
and stronger axiom systems that contain axioms asserting the existence of
greater and greater inaccessible ordinals, some objects of set theory will be-
come truly uncountable and set theory fully self-sustained, in the sense that
no employment of any extra-set-theoretic assumptions is necessary.

There is a remarkable consequence of this view of set theory which is
worth emphasizing. We already signalized on three separate occasions (dis-
cussing, first, Zermelo’s refusal to accept the axiom of infinity as an axiom on
a par with the other axioms of ZFC2, secondly, the inclusion of urelements,
and eventually, the insistence on comprehending everything that may, on
any level, become a set) that set theory was conceived of by Zermelo so as
to be as comprehensive as possible. It was meant to be a theory of unlimited
generality in the sense that it was to concern whatever systems of objects
satisfying the axioms. The act of narrowing down the variety of such sys-
tems by excluding urelements, by requiring them to contain infinite sets,
or by letting go the collections that are not sets of ZFC2 but only proper
classes, and concentrating only on ZFC and the instrumental facets of set
theory that are really needed for doing mathematics threaten to blur our
understanding of what sets are as well as impair the philosophical signifi-
cance of set theory as a whole. By contrast, the Zermelian view leads to a
recognition of the inherently dynamic and open nature of the set-theoretic
universe, which eludes any attempt at a definitive characterization by a
fixed system of axioms. This dynamism is in a direct opposition not only
to Cantor’s conception of the fixed or static universe of sets,53 but also to
Hilbert’s model-theoretic view of the axiom system as an implicit definition
of a structure, or a number of structures, satisfying the axioms. The reason
for the discrepancy does not lie in the fact that the axioms are incapable of
characterizing the structure up to isomorphism but rather in a form of in-
completability inherent in Zermelo’s conception. As Hallett [1996], p. 1215,
puts it, ‘the very fixing of a model reveals an ordinal that cannot be in
that model’. That is, the very determination of a structure satisfying the
axioms immediately opens up objects that lie beyond that structure, forcing
us to step onto a next layer of the hierarchy.54 Set theory as a theory of all

53For the discussion of Zermelo’s shift in conceiving of the universe of sets, see, e.g.,
Moore [1982], p. 271, Kanamori [2004], p. 528, or Ebbinghaus [2007], p. 194.

54For a discussion of differences between Zermelo’s and Hilbert’s views of formal theories
and their models see Taylor [1993], pp. 542–545. In brief, Taylor argues that despite a
shared method Zermelo’s conception of the subject matter of set theory was not the
model-theoretic one of Hilbert’s.
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sets, i.e., of the entire cumulative hierarchy, is inexhaustible by any single
axiomatic system. The universe of sets can possibly only be exhausted by
the universe of ever stronger set theories.



Chapter 4

Truth in the Hierarchy of
Sets

In this chapter, we will elaborate upon some of the themes connected with
the cumulative hierarchy developed by Zermelo. In particular, we will be
interested in the possibilities of defining the property of truth and developing
a theory of truth within the broadly Zermelian framework. Whereas the
previous chapter mainly comprised the discussion of motives coming from
Zermelo’s groundbreaking paper, in this chapter we will set the historical
concerns aside, and we will attempt to formulate some ideas concerning truth
in a more or less systematic fashion. In the process of getting to the view
concerning the property of truth we wish to defend, it will be necessary to
introduce several auxiliary technical notions. They are really indispensable,
so we have to undergo the pains and develop them in sufficient detail, even
though they do not partake in our proper goals.

4.1 Arithmetization of Syntax

Truth or falsity are properties of sentences of a given language. A theory
of sets such as ZFC2 is formulated in the standard language of LZFC2 . The
vocabulary of this language contains just the usual vocabulary of second-
order logic plus a single two-place relation constant, ‘∈’. It does not contain
any expressions that would make it possible to speak of sentences and other
syntactic objects. As is well know, there is a technique that allows us to
get past this difficulty by switching the talk of syntactic objects for the
talk of the objects that a theory such as ZFC (or PA) can speak about,
namely sets (or natural numbers). The technique of arithmetization was first
developed in Gödel [1931], and since then it has become an indispensable
tool in metamathematical investigations. Briefly, it consists in correlating
the syntactic objects of a given language such as expressions, (well-formed)
formulas, proofs etc.—in general, finite sequences of symbols—with natural
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numbers or, if we are working in set theory, with sets. The correlation has to
be workable in both directions: there has to be an encoding algorithm, i.e.,
a mechanical procedure which takes us in a finite number of steps from an
expression of a given language to the natural number or the set associated
with it, and there has to be a decoding algorithm which takes us back to the
original expression. Indeed, the coding scheme can be designed in a wide
variety of different ways. If it satisfies the aforementioned condition, it is
deemed acceptable.

The goal of arithmetization of syntax is twofold. First, as already sug-
gested, it enables us to convert assertions about syntactic objects into as-
sertions about natural numbers or sets. Secondly, it makes it possible to
convert some of these assertions about numbers or sets into sentences of the
formal language.1 Put together, the technique of arithmetization opens up
the possibility for a formal theory to express and prove certain facts about
numbers or sets that reflect its own syntactic properties. This is often ex-
pressed by means of autoreference: a system of arithmetization (or of ‘Gödel
numbering’, as it is often called) is said to give a formal theory the ability
to speak about itself. The talk of autoreference is fine provided we keep in
mind that the sentences of a given formal theory do in reality speak only
about numbers or sets—whose properties, however, reflect the properties of
the correlated syntactic notions.

It is not necessary for our limited purposes to develop a coding scheme
in full. Therefore, we will save ourselves the time and the effort, and we will
merely sketch a simplified scheme in which expressions are represented by
ordered n-tuples,2 and we will do that just for a fragment of LZFC. That is,
we will develop a coding scheme only for formulas containing just the “core”
symbols of LZFC, namely the individual variables, the propositional connec-
tives ‘∨’, ‘¬’, the relation expressions ‘=’, ‘∈’ and the existential quantifier
‘∃’. It is well known that the remaining usual sentential connectives and
the universal quantifier can be explicitly defined by means of these, hence
any formula containing the additional connectives can be transformed into
one that is composed merely out of the core ones. Alternatively, there is
no obstacle to extending the coding scheme so that it covers also formulas
containing the additional symbols.

The set correlated with a formula ϕ according to our coding scheme will
be called the ‘Gödel set’ of ϕ, and it will be designated by ‘pϕq’. Assume that
we have a single infinite sequence of individual variables v1, v2, . . . , vi, vj , . . .,
where any i, j < ω. Then the Gödel sets are correlated with the formulas in
the following way. For atomic formulas:

pvi = vjq is 〈0, i, j〉,
1Cf. Enderton [2001], p. 224.
2This method is described in Drake [1974], p. 90. Drake attributes the original idea to

Dana S. Scott but does not provide any reference.
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pvi ∈ vjq is 〈1, i, j〉.

For complex formulas:

pϕ ∨ ψq is 〈2, pϕq, pψq〉,
p¬ϕq is 〈3, pϕq〉,
p∃viϕq is 〈4, i, pϕq〉.

Bearing in mind the acknowledged limitations, it may be maintained that
our coding scheme provides any formula of LZFC with its Gödel set, which
is just an ordered n-tuple containing possibly other ordered n-tuples. Note
that, as only formulas of finite length are accepted, every Gödel set belongs
to the level Vω of the cumulative hierarchy.

Later on, we will need to assume that we have a coding scheme also
for the formulas of LZFC2 as well as for more complex syntactic objects
than formulas such as proofs. We will simply assume that we have such a
scheme at our disposal, without bothering with describing it. To be sure, the
scheme for LZFC2 would need to incorporate the clauses for the higher-order
variables. The coding for proofs, or sequences of formulas in general, would
require a technique more sophisticated than that of the n-tuples described
above. However, it is well known that all this can be done, and there is
nothing particularly deep or exciting about it. Hence we can feel free not to
stop here and carry on further.3

4.2 Truth for LZFC

Once the technique of arithmetization of syntax has been introduced, it
becomes possible to work with the syntactic aspects of the given language
and formally prove facts about them within a given axiomatic system. One
might wonder whether the relations of satisfaction and truth for the given
language are among those that are susceptible to such a treatment. After all,
we have found a way of speaking about expressions, formulas or sentences
within the given language, and the ability to express facts about sets was
here from the beginning, so this objective might perhaps, at least at a first
glance, seem feasible. Of course, it is well known that it is not. In this
section we will examine why.

Let us just note that in the present section and the sections that follow,
we will focus our attention primarily on the first-order system of ZFC rather
than on second-order ZFC2, with which we have been dealing for most of
the time. The underlying language will be LZFC. This is because we want to
make manifest that the definitions that will be given later can be formulated

3For a nice detailed treatment of the arithmetization of syntax, see, e.g., Smith [2007],
pp. 124–137. Smith includes the proofs that some basic numerical relations reflecting the
syntactic ones are primitive recursive.
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in the first-order framework. Of course, as ZFC2 is an extension of ZFC, it
goes without saying that these definitions may also be given in ZFC2; but
since the second-order framework is not necessary, our prevailing focus will
be confined to the first-order system of ZFC.

What do we require of the property of truth deserving that name? We
will conform to the classic analysis given by Tarski in his monograph on
truth4 as it has become standard. If there is a set-theoretic property of
truth, Tr, for LZFC, it should hold of (the Gödel set of) any LZFC sentence
ϕ if and only if ϕ is true. Now suppose that there is such a set-theoretic
property, and that it is expressed by the formula Tr(x) of an extended
language LZFC+ which includes LZFC. The requirement imposed on the
set-theoretic property of truth can then be formulated as the schema of
LZFC+: Tr(pϕq)↔ ϕ. We may conclude that a formula is the set-theoretic
truth-predicate for LZFC if and only if this schema is true for every LZFC
sentence ϕ. In other words, ‘Tr’ is the set-theoretic truth-predicate for LZFC
if and only if its extension is precisely the set of the Gödel sets associated
with the true sentences of LZFC.

It is one thing to be able to express by a predicate the property of
truth that satisfies the aforementioned requirement, and another thing to
be able to prove that the requirement is met. The former is a matter of the
expressive richness of the language, the latter of the deductive strength of
the theory. If a theory T is able to prove that the requirement is satisfied,
i.e., if the following schema of LZFC+ (which is an extension of LZFC) holds
for every sentence ϕ of LZFC:

T ` Tr(pϕq)↔ ϕ, (C-T)

we will say that T is the theory of truth or the definition of truth
for LZFC. Of course, (C-T) generalized for any language and its extension
is nothing else than the famous and widely debated convention T pushed
forward by Tarski as the criterion of adequacy of any admissible truth defi-
nition.5

The question we asked at the outset of this section can now be sharpened.
In fact, it is not one question but two: Is it possible to introduce in LZFC
the truth predicate expressing truth for LZFC? Is it possible to develop the
theory of truth for LZFC within ZFC? Similar questions may be asked about
the relation of satisfaction; after all, as we will see, the concept of truth
can be viewed merely as a particular representative of the more general
concept of satisfaction. However, despite its being decisively more general,
we will regard the relation of satisfaction as more or less auxiliary. This

4Cf. Tarski [1933], especially pp. 186–189.
5The convention T was first introduced in Tarski [1933], pp. 187–188. The biconditional

part of (C-T) in its schematic form is nowadays usually called the ‘T-schema’, while the
individual instances of the schema are called ‘T-sentences’.
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is why we will sometimes give preference in our mode of speaking to the
concept of truth, bearing in mind, of course, that the two concepts are
deeply intertwined.

We have suggested that the relations of satisfaction and truth for LZFC
cannot be defined in ZFC. Given what we have just said, this is to be read
as claiming both that the set-theoretic property of truth for LZFC cannot
be expressed in LZFC, i.e., that there is no such truth predicate available
in LZFC, and that ZFC does not contain the theory of truth for LZFC, i.e.,
that the set-theoretic property of truth for LZFC cannot be explicitly defined
in ZFC. It is rather important to indicate why the relations of satisfaction
and truth cannot be expressed and defined in this way. Therefore, we will
attempt to work out the “definitions” of these undefinable general relations
in as much detail as possible. The effort will not be invested in vain since we
will be able to use the modified versions of the definitions with better success
later. To prevent confusion, we will mark the relations whose definitions are
not acceptable by an asterisk.

As it has become our usual practice, we need to introduce a couple of
auxiliary notions before getting to the thing itself. The first one is a three-
place relation Fm(u, s, n) obtaining between a Gödel set u associated with
a formula, a formation function s and a natural number n.6

Fm(u, s, n)↔Def.

Func(s) ∧ dom(s) = n+ 1 ∧ s(n) = u ∧ Int(n) ∧
∀k ≤ n

(
∃i, j < ω[s(k) = 〈0, i, j〉 ∨

s(k) = 〈1, i, j〉] ∨
∃l,m < k[s(k) = 〈2, s(l), s(m)〉 ∨

s(k) = 〈3, s(l)〉] ∨
∃l < k∃i < ω[s(k) = 〈4, i, s(l)〉]

)
.

(D-Fm)

‘∃i, j < ω’ is, of course, the abbreviation for ‘∃i∃j(i < ω ∧ j < ω ∧ . . .)’.
‘Func(s)’, ‘dom(s)’ and ‘Int(n)’ mean ‘s is a function’, ‘the domain of s’
and ‘n is a (non-negative) integer’, respectively. These concepts are all
definable in ZFC. In English, ‘Fm(u, s, n)’ says that s is a function describing
the formation of the set u as the Gödel set of a formula in n + 1 steps,
starting from atomic formulas and continuing by induction. It can be used
to obtain an explicit ZFC definition of the property of being a formula,
namely: Form(u) ↔Def. ∃n < ω∃s ∈ Vω(Fm(u, s, n)). (The requirement
imposed on s that it be finite is, of course, justified by the decision to accept
only finite formulas in LZFC.)

To illustrate how the definition (D-Fm) works, let us describe an elemen-
tary example. Consider a rather simple formula: ∃v1∃v2(v1 ∈ v2). This for-
mula can be seen as constructed in three steps: (1) v1 ∈ v2, (2) ∃v2(v1 ∈ v2),

6The definition that follows is taken from Drake [1974], p. 91.
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and finally (3) ∃v1∃v2(v1 ∈ v2). The construction of the resulting formula,
ϕ, can thus be represented by means of a sequence ϕ0, ϕ1, ϕ2, where ϕ2 is ϕ.
The purpose of the formation function s is to assign a particular value to each
step; thus s(0) = 〈1, 1, 2〉; s(1) = 〈4, 2, 〈1, 1, 2〉〉; s(2) = 〈4, 1, 〈4, 2, 〈1, 1, 2〉〉〉.
The relation Fm then holds, in this particular example, if the Gödel set
〈4, 1, 〈4, 2, 〈1, 1, 2〉〉〉 is the value that the function s assigns to the natural
number 2, which it does. So the relation holds.

The remaining auxiliary relation that is required is the following three-
place relation S∗:

S∗(k, t, s)↔Def.

∃i, j < ω
(
[s(k) = 〈0, i, j〉 ∧ t(k) = {a| a(i) = a(j)}]∨
[s(k) = 〈1, i, j〉 ∧ t(k) = {a| a(i) ∈ a(j)}]

)
∨

∃l,m < k
(
[s(k) = 〈2, s(l), s(m)〉 ∧ t(k) = t(l) ∪ t(m)]∨
[s(k) = 〈3, s(l)〉 ∧ t(k) = {a| a /∈ t(l)}]

)
∨

∃i < ω∃l < k[s(k) = 〈4, i, s(l)〉 ∧ t(k) = {a| ∃x(a(i/x) ∈ t(l))}].

(D-S∗)

Here ‘a(i/x)’ signifies the function a with the value at i replaced by x,
which can be defined in ZFC as (a − {〈i, a(i)〉}) ∪ {〈i, x〉}. The definition
(D-S∗) is fairly lengthy but the purpose of the relation S∗(k, t, s) should
be clear. Its goal is to correlate the formation function s, which assigns a
“syntactic” value to every step k in the process of formation of the Gödel
set of a formula, with the function t, whose value for any k is the set of
appropriate assignments according to the particular value of s(k). Thus S∗

may be regarded as a function correlating sets that represent a “syntactic”
facet of a formula with other sets that represent its “semantics”.

In order to briefly illustrate how the definition works, let us take up again
our previous example of the formula ∃v1∃v2(v1 ∈ v2). We have said that
s(2) = 〈4, 1, 〈4, 2, 〈1, 1, 2〉〉〉. Now to each step 0, 1 and 2 there corresponds a
value of the function t. Thus we obtain the sequence t(0) = {a| a(1) ∈ a(2)};
t(1) = {a| ∃y(a(1) ∈ y)}; t(2) = {a| ∃x∃y(x ∈ y)}. The relation S∗ holds for
k = 2 if and only if s(2) = 〈4, 1, 〈4, 2, 〈1, 1, 2〉〉〉 and t(2) = {a | ∃x∃y(x ∈ y)}.
Indeed, this is obviously so. So the relation S∗ provides a correlation between
s(0) and t(0), s(1) and t(1), etc.

With the auxiliary relations Fm and S∗ in hand, let us try our luck and
attempt to define the relation of satisfaction. This might seem to be doable
by putting the relations Fm and S∗ together and filling in some of the places
occupied by the free variables:

Sat∗(u, b)↔Def.

∃t∃s, n ∈ Vω
(
Fm(u, s, n) ∧ Func(t) ∧

dom(t) = n+ 1 ∧ b ∈ t(n) ∧ ∀k ≤ n(S∗(k, t, s))
) (D-Sat∗)

In English, Sat∗(u, b) says, with some simplification, that the Gödel set u
associated with a formula is satisfied by the assignment b. To return to our
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familiar example once again, the Gödel set u = 〈4, 2, 〈1, 1, 2〉〉 corresponding
to the formula ∃v2(v1 ∈ v2) is satisfied by an assignment b if and only if
b ∈ {a | ∃y(a(1) ∈ y)}, i.e., if ∃y(b(1) ∈ y).

Finally, employing the relation Sat∗ we can try to explicitly introduce
the property of truth. For this, however, we would need a definition of the
property of being the Gödel set associated with a sentence of LZFC. This
property, Sent(u), can be explicitly defined in a fashion similar to that of
defining Form(u) with the help of the formation function s. Alternatively,
we could use the fact that the sentence is just a formula without free vari-
ables, and define a property that would hold of a Gödel set of a formula if
and only if the associated formula did not contain any free variables. In any
case, we will do ourselves the favour of simply assuming that we have the
property Sent at our disposal, without putting down its actual definition.
Then we can state quite simply:

Tr∗(u)↔Def. Sent(u) ∧ ∀b(Sat∗(u, b)), (D-Tr∗)

which says that the Gödel set u associated with a sentence is true if and
only if it is satisfied by all assignments.

We have said that the relations of satisfaction and truth for LZFC are not
definable in ZFC. We have also duly marked the relations S∗, Sat∗ and Tr∗

with asterisks. What is wrong with these relations? Well, to put it harshly,
it can be shown that the relations S∗, Sat∗ and Tr∗ do not exist. There
does not exist a set whose members would be exactly the ordered pairs 〈u, b〉
such that u is the Gödel set of a LZFC formula ϕ and ϕ is satisfied by the
sets assigned to u by b. There does not exist a set whose members would be
exactly the Gödel sets u associated with true LZFC sentences ϕ. Of course,
this is rather a rewording than an explanation, so we need to ask further:
Why do these sets not exist?

The reason of the trouble lies already in the auxiliary relation S∗. It
contains the abstraction operator ‘{ | }’, and as we are restricted to the
limited expressive resources of LZFC, we are bound to interpret it as a set.
Thus if we have, e.g., {x| ϕ(x)}, we have to read it as ∃z∀x(x ∈ z ↔ ϕ(x)) (z
must not occur in ϕ). Take, for instance, the equation t(k) = {a| a(i) ∈ a(j)}
occurring in the second clause of (D-S∗). It says that the value assigned to
k by t is the set of the functions a such that the value a assigns to i is
a member of the value a assigns to j. The domain of a is the set of sets
representing the free variables of LZFC formulas. Hence the domain of a
is restricted to the lower levels of the cumulative hierarchy, and Vω can be
taken as their upper bound. Therefore, the claim that the domain of a is
a set is fully justified. On the other hand, the range of a is not restricted
at all. It comprises all sets whatsoever. Now any ordered pair 〈x, y〉, where
x is a set representing a free variable and y any set in the universe, will be
a set. However, the collection of all these ordered pairs will no longer be a
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set, i.e., there is no set in the cumulative hierarchy that could be identified
as {a | a(i) ∈ a(j)}. Assuming that such a set does exist quickly leads to a
contradiction. This means that a property ‘to be an assignment’ does not
have a set as its extension. So the definition (D-S∗) has to be rejected as
faulty, and the relations S∗, Sat∗ and Tr∗ must be dumped.

Is there any way that the definition (D-S∗) could be rectified? Well, of
course, probably everything can be rectified provided the changes go deep
enough to tackle the root of the problem. In this particular case, it can be
shown that no cosmetic changes suffice. The occurrence of the totality of all
assignments in (D-S∗) is not accidental. To be sure, it is certainly possible
to put forward variants of the definition that proceed in different ways and
shun the inclusion of the totality of all assignment functions. Nevertheless,
unless such definitions differ in certain rather profound aspects that will
be discussed in the sections to come, they are all bound to fail, too. The
relations of satisfaction and truth are simply not representable as sets, and
this claim can be supported by a general argument. A particularly simple
version of it goes as follows.7 Assume that we have a definition of truth for
LZFC and that ‘Tr’ is the truth predicate (in LZFC). Suppose that we have
enumerated all formulas of LZFC with one free variable, which gets us the
sequence ϕ0, ϕ1, . . . , ϕn, . . .. Now let ψ be the formula x ∈ ω∧¬Tr(pϕx(x)q).
As ψ has one free variable, namely x, it will be among the formulas in the
numbered sequence. Say that its number is k. Let us take k and replace with
it the free variable in ψ; thus we obtain the sentence ψ(k). Is this sentence
Tr? We know that, according to the requirement imposed by the convention
T, Tr(pψ(k)q) ↔ ψ(k). However, ψ(k) is by definition ¬Tr(pϕk(k)q). As
ϕk = ψ, we get that ψ(k) is ¬Tr(pψ(k)q). Yet, by substituting back into
the convention T condition we obtain Tr(pψ(k)q) ↔ ¬Tr(pψ(k)q), which
is a contradiction. So we may conclude that no matter how Tr is defined,
the mere assumption that there is a truth predicate in the given language
L that expresses truth for L leads to a contradiction.

Specifically, if we turn to ZFC, it may be asserted that ZFC cannot
define truth for LZFC and there is no predicate of LZFC that expresses the
set-theoretic property of truth for LZFC. In its general form, this result
is known as Tarski’s theorem.8 Now what moral should we take from the
inexpressibility and undefinability of the relations of satisfaction and truth
within one and the same language? Does it mean that we have to give up
all hope and stay clear of these relations for good? In what follows we will
show how partial truth definitions can be given within ZFC and for LZFC in

7This version of the argument is inspired by the one be found in Jech [2003], p. 162.
8The original formulation can be found in Tarski [1933], p. 247, and in the postscript,

p. 273. Despite the fact that the theorem bears Tarski’s name, there is some evidence that
it was at around the same time independently discovered by Gödel and perhaps a little
later by Carnap. Cf. Gödel’s Princeton lectures, Gödel [1934], pp. 63–65, and Carnap
[1934b], pp. 207–222.
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certain extended systems. However, before we can plunge into that task we
will need to absorb some more technical buildup.

4.3 The Hierarchy of Formulas

We have spoken of second-order set theory, second-order variables, etc.
What are these higher-order objects? How are the formulas containing the
variables ranging over the higher-order objects to be treated? As a first
step towards answering some of these questions, let us introduce a system
of finite types.9 The finite types are defined inductively: let n ∈ ω be
≥ 0 and let τ1, . . . , τn be finite types; then τ = (τ1, . . . , τn) is a finite type.
If n = 0, the type τ = () is the type of sets. The type τ = ((), ()) is the
type of binary relations between sets and so on. It is useful to introduce,
alongside the concept of type of a set, also the order of (the type of) a set.
The order of the type is a natural number obtained as follows: the order
of τ = () is 1; the order of τ = (τ1, . . . , τn) is 1 greater than the maximum
order of τ1, . . . , τn. Note that the order is not a brand new concept that
would bifurcate the classification of sets into types and orders, like in Rus-
sell’s ramified hierarchy; the order is rather an abstraction from the concept
of type neglecting other compositional features of objects that the type re-
flects. In the particular case of our class construal of ZFC2, we are dealing
with objects of types τ = () of order 1 and τ = (()) of order 2. The reason
that we can do without the more complex types of second-order relations is,
as we have already said, that they can be represented by classes.

To different types and orders of objects there correspond different types
and orders of variables. This makes it possible to speak of the order of a
formula of the given language, which paves the way for the introduction of a
whole classification of formulas in terms of their order and quantificational
complexity. In general, the position of a formula within the hierarchy is
determined by its unbounded quantifiers.10 For reasons to be explained
shortly, we count neither the occurrence of free variables nor of the bounded
quantifiers as contributing to the resulting classification of the formula. The
hierarchy can be described as follows. Π0

0 = Σ0
0 is the class of formulas

without unbounded quantifiers. It is customary to take this class to be of
order 0. Σn

m+1 is the class of formulas of the form ∃Xϕ such that ϕ is Πn
m

and the order of the variable X is n+ 1. Analogically, Πn
m+1 is the class of

formulas of the form ∀Xϕ such that ϕ is Σn
m and the order of the variables

X is n + 1. (The reason why the order of X is to be n + 1 is historical: it
would be more natural to have the order of the variables simply n instead of

9The system of finite types sketched here is developed in Kreisel and Krivine [1966],
pp. 90–95, or Tait [1998a], pp. 275–276, Tait [2005a], pp. 142–144, and van Benthem and
Doets [1983], pp. 306–308.

10A quantifier is bounded if it is of the form ∀x(x ∈ y → . . .) or ∃x(x ∈ y ∧ . . .), which
we will abbreviate as ∀x ∈ y(. . .) or ∃x ∈ y(. . .), respectively.
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n+ 1 but the classification is well established in this shape, with the upper
index ‘0’ for first-order formulas, ‘1’ for second-order formulas etc., so we
will stick to the tradition.) Note that it is only quantifiers of variables of
the order n + 1 that are considered as contributing to the complexity of a
Πn
m or Σn

m formula.

Before continuing with the presentation of the hierarchy, we had rather
pause and clarify several points. The hierarchy of formulas just described
has it origins in the 1940s in Kleene [1943] and Mostowski [1947], and it
has become standard for dealing with the complexity of formulas and de-
finability of relations (about which we will speak shortly). However, it is
often presented differently. To understand that the differences are usually
not relevant, we need to bring in some of the basic facts related to it. Firstly,
the Πn

m or Σn
m formulas are often defined as those having not m single alter-

nating quantifiers but rather m blocks of like quantifiers, followed again by
a bounded or quantifier-free kernel. In fact, provided that we have a suit-
able form of induction—which is fulfilled both in Peano arithmetic, which
contains the induction schema, and in ZFC, in which we can use the axiom
of pairing—it can be proved that a formula with m alternating blocks of like
quantifiers is equivalent to a formula with m single alternating quantifiers.11

That is, the blocks of like quantifiers can be contracted.

Secondly, why have we discarded free variables and the bounded quanti-
fiers as far as the complexity of a formula goes? The reason for this disregard
is that a mere occurrence of a variable of order n in a formula does not always
necessitate accepting the existence of a well delimited domain of objects of
order n. It is the quantification that forces us to include the n-th order
domain in the interpretation of the given language, and to take the higher-
order objects seriously.12 As regards the bounded quantifiers, we will say the
following. In a theory such as Peano arithmetic this is straightforward as a
bounded quantifier ranges only over a finite number of objects, so it can be
replaced by a finite conjunction or disjunction. In standard set theory the
use of a bounded quantifier entails that we do not have to check the whole
hierarchy but we can stop at a level of a specific rank. Syntactically, the
axiom of replacement makes it possible to move all the bounded quantifiers
to the right and unbounded to the left,13 so there is a clear cut between
the bounded kernel, the range of whose bound variables is restricted to a
specific Vα, and the rest of the quantifiers ranging over the whole universe.
Thus, despite the fact that the given α may be infinite so there is no longer
the possibility to get rid of the bounded quantifiers completely in favour of
finite conjunctions or disjunctions, the analogy with arithmetic is preserved
in the sense that, in order to check the given formula, we need to check the

11For a partial proof viz. Smith [2007], p. 75.
12Cf., for example, van Benthem and Doets [1983], p. 309, on this subject.
13See, for instance, Kanamori [2003], p. 5, to see how this is done.
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sets only up to the αth level of the hierarchy. It is for a similar reason that
we disregard in our classification the quantifiers of variables of order < n+1.
In the presence of these variables we need to check only up to the types of
a specific order < n + 1 within the hierarchy of types whereas for checking
the higher-order bits of the formula we have to go further.

Now let us complete the presentation of the hierarchy. We will say that a
formula is Πn

m or Σn
m even if it does not have the required form but is merely

provably equivalent to a Πn
m or Σn

m formula. This concession, however,
requires a further specification. As any formula is equivalent to all formulas
obtained merely by prefixing “vacuous” quantifiers that do not contribute
to the contents of the formula in any significant way, it is useful to consider
a formula to be Πn

m or Σn
m where m is the smallest possible. The extension

of the classification to equivalent formulas opens room for the following
general result. It is a theorem of higher-order logic that every formula of
order n+ 1 is provably equivalent to one in the class

⋃
m<ω(Πn

m ∪Σn
m), i.e.,

that every formula of order n+ 1 is equivalent to some Πn
m formula or some

Σn
m formula.14 Hence our classification exhausts the totality of formulas.

Finally, let us add that a formula is ∆n
m if it is in the class Πn

m ∩Σn
m, i.e., if

it is equivalent both to a Πn
m formula and a Σn

m formula.
The classification of formulas just developed can be used for a classifi-

cation of definable relations. Let M be a model with the domain A, let R
be a relation of type τ = (τ1, . . . , τn) over A, let S1, . . . , Sn be objects of
types τ1, . . . , τn over A, and let ϕ be a formula of a given language with
X1, . . . , Xn free variables of types τ1, . . . , τn. Then we say that the formula
ϕ defines the relation R on M if

R(S1, . . . , Sn) if and only if M |= ϕ[S1, . . . , Sn], (D-Def)

where ‘[S1, . . . , Sn]’ signifies an assignment of values S1, . . . , Sn for the free
variables X1, . . . , Xn. Employing the concept of definability, the classifica-
tion of formulas may now be transformed into one for relations. A relation
belongs to the class Πn

m (Σn
m) if it is definable by a Πn

m formula (a Σn
m for-

mula). A relation is said to be in the class ∆n
m if it is in Πn

m ∩ Σn
m, i.e.,

if it is definable both by a Πn
m formula and a Σn

m formula. It is worth
mentioning two particular applications of this general classification of rela-
tions in terms of definability. If we restrict our attention to the structure
N = 〈N,+,×, 0, s〉, the hierarchy of Π0

m and Σ0
m relations on N is called

the ‘arithmetical hierarchy’. The hierarchy of Π1
m and Σ1

m relations on N is
called the ‘analytic hierarchy’.

We are, nevertheless, interested in classifying the formulas of the lan-
guage of set theory. We will say that a formula ϕ is ΠZFC

m (ΣZFC
m ) if it

is provable in ZFC that ϕ is equivalent to a Π0
m (Σ0

m) formula ψ, i.e., if
ZFC ` ϕ ↔ ψ. Similarly, a formula is ΠZFC2

m (ΣZFC2
m ) if it is provably

14For the proof, see van Benthem and Doets [1983], pp. 309–310.
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equivalent in ZFC2 to a Π1
m (Σ1

m) formula. Relations are classified in a sim-
ilar manner. This hierarchy, which may, indeed, be generalized to apply to
any particular theory T, is usually called the ‘Lévy hierarchy’.15 It is often
extended to cover also terms; a term t is ΠT

m (ΣT
m) if the formula x = t,

where x does not occur within t, is ΠT
m (ΣT

m). The inclusion of terms makes
it possible to classify besides definable relations also functions. It remains
to append that we will call the particular value of the lower index m the
‘degree’ of a formula. It is quite common also to speak of the ‘rank’ of a
formula in this respect but in order to prevent any mix-up with the notion
of the rank of a set, I have decided to opt for the unambiguous ‘degree’.16

Adopting the Lévy hierarchy leads to certain important results concern-
ing satisfiability of various kinds of formulas. The question can be raised: if
a formula is satisfied by a particular subdomain of the universe V , is it also
satisfied by the whole V ? And vice versa: if a formula is satisfied by the
whole universe V , is it also satisfied by a particular subdomain of V ? Recall
that any segment Vα is transitive. Let 〈M,∈〉 be any transitive substructure
of 〈V,∈〉, and let ϕ(x1, . . . , xn) be any formula of the given language. Now
if the following holds for any a1, . . . , an ∈M :

〈M,∈〉 |= ϕ(a1, . . . , an)↔ 〈V,∈〉 |= ϕ(a1, . . . , an), (D-Abs)

we will say that ϕ is absolute for M . If we have only the implication from
the left to the right, i.e., 〈M,∈〉 |= ϕ(a1, . . . , an) → 〈V,∈〉 |= ϕ(a1, . . . , an)
for any a1, . . . , an ∈M , ϕ is said to be upward persistent for M . If just
the opposite direction holds, namely 〈V,∈〉 |= ϕ(a1, . . . , an) → 〈M,∈〉 |=
ϕ(a1, . . . , an) for any a1, . . . , an ∈ M , ϕ is called downward persistent
for M .

Suppose that M is a transitive subdomain of V . Then it can be proved
that the following kinds of formulas have the following properties:17

ΠZFC
0 = ΣZFC

0 = ∆ZFC
0 formulas are absolute for M ;

ΣZFC
1 formulas are upward persistent for M ;

ΠZFC
1 formulas are downward persistent for M ;

ΠZFC
1 ∩ ΣZFC

1 = ∆ZFC
1 formulas are absolute for M .

Thus, for transitive structures, bounded quantifiers preserve absoluteness,
while existential quantifiers preserve upward persistence and universal quan-
tifiers preserve downward persistence. (The concept of absoluteness will not

15After Azriel Lévy who announced it in Lévy [1959] and published in full in Lévy
[1965], pp. 4–11. For a full development of the Lévy hierarchy and a classification of some
basic formulas and relations definable in ZFC with detailed proofs, see Drake [1974], pp.
76–89, or Devlin [1984], pp. 24–31.

16Lévy [1965], for instance, uses ‘rank’. On the other hand, ‘degree’ has been used
in a variety of different meanings; viz., e.g., Smullyan and Fitting [1996], p. 130. The
terminology does not seem to be settled.

17For the proof see Devlin [1984], pp. 27–28.
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be employed until section 4.7 but the most convenient way was to introduce
it here with the other auxiliary notions.)

This terminates our technical buildup. We have absorbed enough for the
time being, and we may get back to the relations of satisfaction and truth
we left in section 4.2.

4.4 Truth in a Set

Having suffered a failure with our first attempt at a definition of truth for
LZFC, it is clear that we have to change the strategy. We clearly understand
that to provide a full definition of truth for LZFC is not possible. Neverthe-
less, we can attempt to restrict the scope of the definition, and introduce
only partial relations of satisfaction and truth. There are two broad lines
how this idea might be developed. Either we can restrict the domain of
the relation of satisfaction, i.e., the totality of objects which are assigned as
values to the free variables occurring in formulas, or we can make use of the
hierarchy of formulas introduced in the preceding section and define such
a relation of satisfaction that will be applicable only to formulas of lower
complexity. Both paths are walkable.

Let us start with the former. It turns out that it is possible to define a
restricted property of truth for LZFC, namely the truth in a set. The idea
is, as might be expected, that if we take a particular set, we will be able to
define the set of sentences that are true in that set. Obviously, this restricted
concept of truth will never be large enough to coincide with the totality of
all the true sentences of LZFC but we know that we must not hope to achieve
that.

Fortunately, most of the work carried out in section 4.2 can be reused
without much change. The definition (D-Fm) of the relation Fm, the only
one without the asterisk, can be taken as it stands. The definition (D-
S∗) of the auxiliary relation S∗ has to be modified by incorporating certain
restrictions on the assignment functions a. The domain of a is the set of
the sets representing the free variables occurring in formulas of LZFC. The
supply of variables is infinite but as we admit only finite formulas, the actual
number of the sets that need to be assigned values by a will always be finite,
and cannot exceed that of the cardinality of the Gödel set u of a given
formula ϕ. Therefore, we can take the rank r = ρ(u) (i.e., r = ρ(pϕq))
as the convenient upper bound for the domain of a. How should the range
of a be restricted? We will permit the range of a to be any set ; it will
be indicated by the free variable w. Thus the assignment functions a will
be functions a : r 7→ w. To designate the set {f | f : r 7→ w}, we will
follow Drake [1974], p. 81, and use the expression ‘rw’. (Note that this set is
∆ZFC

1 .) This restriction guarantees that the range of the function t will be
a set, and that t itself will be representable as a set. If we include all these
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modifications, the relation Ss, a replacement of the faulty relation S∗, may
be defined as follows:18

Ss(k, t, s, r, w)↔Def.

∃i, j < ω
(
[s(k) = 〈0, i, j〉 ∧ t(k) = {a ∈ rw| a(i) = a(j)}]∨
[s(k) = 〈1, i, j〉 ∧ t(k) = {a ∈ rw| a(i) ∈ a(j)}]

)
∨

∃l,m < k
(
[s(k) = 〈2, s(l), s(m)〉 ∧ t(k) = t(l) ∪ t(m)]∨
[s(k) = 〈3, s(l)〉 ∧ t(k) = rw − t(l)]

)
∨

∃i < ω∃l < k[s(k) = 〈4, i, s(l)〉 ∧ t(k) = {a ∈ rw| ∃x ∈ w(a(i/x) ∈ t(l))}].
(D-Ss)

(The lower index ‘s’ is used to indicate that the relation Ss is only defined
for sets.) We already understand the purpose of this relation as well as the
mechanism of the definition, so no further explanations are needed.

The relation of satisfaction Sats can now be defined in very much the
same way as the faulty relation Sat∗, except for the need to bind the addi-
tional variable r:

Sats(u,w, b)↔Def.

∃t∃s, n, r ∈ Vω
(
Fm(u, s, n) ∧ r = ρ(u) ∧ Func(t) ∧

dom(t) = n+ 1 ∧ b ∈ t(n) ∧ ∀k ≤ n(Ss(k, t, s, r, w))
)(D-Sats)

As expected, ‘Sats(u,w, b)’ can be read as saying that the Gödel set u (asso-
ciated with a formula of LZFC) is satisfied in the set w under the assignment
b. Observe that the formula on the right-hand side of the definition is a ΣZFC

1

formula. However, it is provable in ZFC that this formula is equivalent to
an alternative defining formula which is ΠZFC

1 .19 This makes the relation
Sats ∆ZFC

1 .
Having amended the definition of Sats, it remains only to replace the

definition (D-Tr∗) by the following one:

Trs(u,w)↔Def. Sent(u) ∧ ∀b ∈ ρ(u)w(Sats(u,w, b)), (D-Trs)

which says that the Gödel set u (associated with a sentence of LZFC) is true
in w, i.e., satisfied by all assignments b : ρ(u) 7→ w. This truth relation is
also ∆ZFC

1 .
We will now introduce a handy notational convention. Let u be the Gödel

set of a LZFC formula ϕ. We will sometimes use, instead of ‘Sats(u,w, b)’,
the fancier notation ‘w |=s pϕq [b]’. And if u is the Gödel set of a LZFC
sentence ϕ, we will feel free to replace ‘Trs(u,w)’ with ‘w |=s pϕq’.

It is crucial to understand clearly what relations we have just defined.
The relations Sats and Trs have been defined solely for sets. This means

18This definition as well as the next one can be found in Drake [1974], p. 91.
19See Drake [1974], pp. 91–92. The equivalent formula is: ∃s, n, r ∈ Vω

(
Fm(u, s, n) ∧

r = ρ(u) ∧ ∀t[(Func(t) ∧ dom(t) = n+ 1 ∧ ∀k ≤ n(Ss(k, t, s, r, w)))→ b ∈ t(n)]
)
.
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that one can, for example, easily obtain the set x of (the Gödel sets of) the
sentences of LZFC that are true in Mω as x = {y | Trs(y, Vω)}. We know
that Mω is a model of ZFC without the axiom of infinity; thus we are able
to define in ZFC a particular set of (the Gödel sets of) those LZFC sentences
that are true in the set of finite sets. One more example: Mω+ω is, among
others, a model of ZFC without the axiom of replacement. Again, we can
take the set Vω+ω and define—with the help of the relation Trs—the set of
all the LZFC sentences that are true in Vω+ω. In general, the relation Trs
makes it possible to pick out any set whatsoever and define the set of all the
sentences of LZFC that are true in that set. The trouble is, of course, that
this relation is inadequate if what we are after is the general concept of set-
theoretic truth, namely the set of (the Gödel sets of) sentences that are true
in the set-theoretic universe, i.e., inM = 〈V,∈V 〉 since the set of (the Gödel
sets of) the sentences that are Trs can never be made sufficiently exhaustive.
Moreover, not only that our definition cannot provide the general account
of truth in the set-theoretic universe, it does not even suffice to provide a
set of truths large enough to contain all (the Gödel sets of) the theorems
of ZFC. For this, as we know, we would have to take the set Vα with α an
inaccessible ordinal, whose existence is unprovable in ZFC but would have
been required for the definitions of Sats and Trs to work. Thus the power
of the partial relations Sats and Trs is really very much limited.

4.5 Truth in a Large Set

So Trs gives us only a fragment of set-theoretic truth. Does it mean that
we cannot get more out of the strategy of restricting the domain of the
satisfaction relation? No, fortunately not. This strategy can be successfully
combined with the idea of enlarging the theory by adding new axioms. In
this way, we will be able to reach the point when the fragment of the LZFC
sentences that are Trs in a suitably chosen set becomes identical with the
totality of truths in the model of the original theory. Recall the picture
drawn by Zermelo we discussed in sections 3.4 and 3.6, according to which
no single system of set theory can exhaust the totality of sets, and, at the
same time, there is no domain that cannot be reinterpreted as a set.

As we know, if one desires to transform the domain of a model of ZFC
or ZFC2 into a set, it suffices to add an axiom asserting the existence of the
requisite inaccessible ordinal indexing the particular level of the cumulative
hierarchy. There is a variety of ways of formulating such an axiom, hinging
on the question whether we merely wish to assert that there is an arbitrary
strongly inaccessible ordinal or that there is some particular such ordinal,
e.g., the smallest one, or whether we aim at asserting the existence of a
whole transfinite sequence of inaccessible ordinals, as in the following case:

∀α∃x(Inac(x) ∧ α < x), (A-Ina)
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where ‘Inac(x)’ means ‘x is a strongly inaccessible ordinal’.20 The axiom (A-
Ina) asserts that for every ordinal α there is an inaccessible ordinal greater
than α. It immediately gives rise to the transfinite sequence θ1 < θ2 < . . . <
θα < . . . of inaccessible ordinals, which may be viewed as materializing the
conclusion of Zermelo’s informal argument in favour of the existence of the
unbounded sequence of ever greater inaccessible ordinals. It does not really
matter for our purposes which of the various axioms asserting the existence
of inaccessible ordinals we opt for. The decisive feature they all have in
common is that once adopted, i.e., once ZFC has been extended into ZFC +
a version of the axiom of inaccessibles, it becomes possible to define truth in
a set corresponding to the domain of the model of the original, unextended
ZFC. Let us choose ZFC+A-Ina, i.e., ZFC extended by the full power of
the axiom (A-Ina). In this theory, the levels Vθ1 , Vθ2 , . . . , Vθα , . . . evidently
become ordinary sets within the set-theoretic hierarchy, whose existence is
trivially provable. This gives us a repository of sets that can be employed
in defining truth for ZFC.

At this point, however, we face the following problem. Both ZFC and
ZFC+A-Ina share the same language, i.e., LZFC. But we need some means
of distinguishing between the sentences of LZFC that can be shown to be true
in any model satisfying ZFC, on the one hand, and the sentences that are
true in a model of ZFC+A-Ina, on the other. This is to say that we need
something amounting to a restriction circumventing the former sentences
within the latter. To get this restriction, let us introduce the well-known
technique of relativization. The relativization ϕs of a formula ϕ to a set
s is defined inductively:

if ϕ is atomic, i.e., either x = y or x ∈ y, ϕs is ϕ,
(ϕ ∨ ψ)s is ϕs ∨ ψs,
(¬ϕ)s is ¬(ϕs),
(∃xϕ)s is ∃x ∈ s(ϕs), i.e., ∃x(x ∈ s ∧ ϕs).

To put it briefly, the relativization ϕs makes all the quantifiers occurring in
ϕ bounded in s. (Note that if ϕ already contains bounded quantifiers, say
that ϕ is relativized to t, ϕs entails a further restriction: (ϕt)s is equivalent
to ϕ(t∩s).21)

Now let θ1 be the smallest inaccessible ordinal, whose existence is prov-
able in ZFC+A-Ina, and let ϕVθ1 be a formula of LZFC relativized to the
level Vθ1 of the cumulative hierarchy. Then the definition of the relation
Sats(u,w, b) is applicable, and the formula

Vθ1 |=s pϕ
Vθ1q [b]

20This axiom, with the difference that there it involves inaccessible cardinals instead of
ordinals, is stated in Drake [1974], p. 68. Drake attributes it to Tarski. Kanamori [2003],
pp. 20–21, confirms the attribution, making reference to two articles of Tarski’s published
at the end of the 1930s.

21Cf. Drake [1974], p. 99.
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defines the relation of satisfaction in Vθ1 , obtaining between (the Gödel set
of) a formula ϕVθ1 and the assignment b. Likewise for Trs(u,w) and truth:
if ϕ is a sentence, the formula

Vθ1 |=s pϕ
Vθ1q

defines the property of being true in Vθ1 , holding of (the Gödel set of) a
sentence ϕVθ1 . Obviously, the formula immediately yields the set of the
relativized “truths-in-Vθ1”, namely the set x = {pϕVθ1q | Vθ1 |=s pϕ

Vθ1q}.
It is very easy to see that there is no longer an immediate danger of

contradiction that would illegitimize the existence of this set of (the Gödel
sets of) truths. Recall the argument against the definability of truth on p.
86. The pivotal role in the various arguments against the definability of
truth is played by the idea of diagonalization: typically a formula asserting
a falsity about an x is made to assert a falsity about the Gödel set associ-
ated with that very formula, which leads to a contradiction. Now, in the
case of the definition of truth given above, the method of diagonalization
cannot be used to derive paradoxical results. The reason is, indeed, that the
relations of satisfaction and truth in Vθ1 have been defined only for formu-
las relativized to Vθ1 . By contrast, the definitions themselves require and
explicitly mention the existence of Vθ1 . It follows that the defined relations
hold only for formulas or sentences that do not involve quantification over
a domain that contains Vθ1 as a member. This implies that no formula in
the list of formulas to which these relations are applicable may itself involve
the relational expressions ‘Sats(u, Vθ1 , b)’ or ‘Trs(u, Vθ1)’. Therefore, the
diagonalization fails, and no contradiction ensues.

Does the ZFC+A-Ina relation Trs(pϕ
Vθ1q, Vθ1) pass the test of adequacy

imposed by the convention T (C-T)? As we know, the convention T requires
of the truth definition that it should be able to prove all the biconditionals of
the form: Tr(pϕq)↔ ϕ, where ϕ is a sentence of the language for which the
truth is defined, i.e., ϕ itself does not contain the truth predicate. Adjusted
to the shape of our truth definition (D-Trs), the convention T becomes the
requirement:

ZFC+A-Ina ` Trs(pϕVθ1q, Vθ1)↔ ϕVθ1 .

So is ZFC+A-Ina capable of proving any such biconditional?
To convince ourselves that our definition meets the requirement, we will

merely provide an example, not a full proof. Consider once again the familiar
sample sentence: ∃v1∃v2(v1 ∈ v2). Relativized to Vθ1 it becomes: ∃x ∈ Vθ1
∃y ∈ Vθ1(x ∈ y). To maximize the simplicity of the argument, we will make
our life easier and assume that this sentence was formed in only three steps
along the sequence: v1 ∈ v2, ∃v2 ∈ Vθ1(v1 ∈ v2), and ∃v1 ∈ Vθ1∃v2 ∈ Vθ1(v1 ∈
v2). Owing to the presence of ‘Vθ1 ’, the Gödel set for these formulas will
be rather complicated in structure, therefore, we will use merely the corner
quotes to denote it. Let b be any assignment b : ρ(u) 7→ Vθ1 , where u is the
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Gödel number of the appropriate formula. What we aim to derive is the
biconditional:

∀b
(
Sats(p∃x ∈ Vθ1∃y ∈ Vθ1(x ∈ y)q, Vθ1 , b)

)
↔ ∃x ∈ Vθ1∃y ∈ Vθ1(x ∈ y).

The easiest way of showing that the biconditional holds in ZFC+A-Ina is to
start with the atomic formula, and then continue by prefixing quantifiers.
When does Sats(pv1 ∈ v2q, Vθ1 , b) hold? If and only if b(1) ∈ b(2). And when
does it hold for all assignments b? The reply is, indeed, in the biconditional:
∀b(Sats(pv1 ∈ v2q, Vθ1 , b))↔ ∀b(b(1) ∈ b(2)). Let us move on to the second
step and prefix the quantifier: Sats(p∃v2 ∈ Vθ1(v1 ∈ v2)q, Vθ1 , b). This holds
if and only if ∃y ∈ Vθ1(b(1) ∈ y), which gets us to the following biconditional:
∀b(Sats(p∃v2 ∈ Vθ1(v1 ∈ v2)q, Vθ1 , b)) ↔ ∀b∃y ∈ Vθ1(b(1) ∈ y). If we repeat
the same procedure in the remaining third formation step of our sample
sentence, we arrive at the final biconditional: ∀b(Sats(p∃v1 ∈ Vθ1∃v2 ∈ Vθ1
(v1 ∈ v2)q, Vθ1 , b)) ↔ ∀b∃x ∈ Vθ1∃y ∈ Vθ1(x ∈ y). But now the quantifier
‘∀b’ on the right-hand side of the equivalence arrow has become vacuous as
there is no occurrence of ‘b’ within its scope, so it may be dropped. Thus we
end up with the biconditional we wished to prove. As any sentence of LZFC
has been formed in a finite number of steps, it will always be in principle
possible to apply a procedure similar to the one we have just suggested.

So we are free to consider ZFC+A-Ina to be an adequate theory of
truth for the LZFC sentences ϕVθ1 . Yet, we might want from our relation
Trs(pϕ

Vθ1q, Vθ1) a little bit more than just to meet the adequacy require-
ment imposed by the convention T. To understand what, let us divide the
sentences of LZFC into three broad categories. (Naturally, this division pre-
supposes that ZFC is consistent; otherwise the three categories collapse into
a single one of theorems.) In the first group are the theorems of ZFC and
their negations; to the second group, a polar opposite to the first one, be-
long the sentences about whose truth or falsity ZFC does not provide any
evidence; finally, in the third group, there are the sentences that are not
theorems of ZFC but can be, under certain assumptions, shown to be true
and their negations false. What is the relationship between the sentences
that are Trs in Vθ1 and these three broad categories of sentences? Specifi-
cally, does the property of being Trs in Vθ1 hold of the sentences belonging
to both the first and the second category?

Let us first have a quick look at the second category. These are sen-
tences that are independent of ZFC and whose truth or falsity cannot in
any way be established on the grounds of the axioms of ZFC. Examples of
such independent statements are the continuum hypothesis or the claims
concerning the existence of large ordinals and cardinals. Obviously, our re-
lation Trs(pϕ

Vθ1q, Vθ1) is not of any help with regard to establishing the
truth value of such statements. It cannot be of any use in showing the truth
or falsity of statements including large sets because such statements would
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get translated into relativizations whose truth values would be determined
by factors other than those pertaining to the existence or non-existence of
the large sets. On the other hand, the truth or falsity of statements such
as the continuum hypothesis is, in this respect, a totally different matter as
it concerns sets deep within the lower segments of the cumulative hierarchy,
in any case well below Vθ1 . Therefore, the relation Trs(pϕ

Vθ1q, Vθ1) should
in principle apply to sentences expressing the continuum hypothesis (CH)
or their negations. If these sentences are deemed meaningful and the law
of the excluded middle holds, we should have either Trs(pCHVθ1q, Vθ1) or
Trs(p¬CHVθ1q, Vθ1). Fortunately, we do not have to immerse in the debate
surrounding the continuum hypothesis.22 What is at stake at the moment
is merely the sufficiency of our definition of truth. In general, we do not
require that the definition of truth should be able to help us establish the
truth or falsity in Vθ1 of every single sentence ϕVθ1 of LZFC; the purpose of
the definition of truth is not to perform an exhaustive assortment of all sen-
tences ϕVθ1 into the sets True and False. Unless the theories we are dealing
with, i.e., ZFC and ZFC+A-Ina, provide some grounds for a decision in the
given matter, there is no reason why a theory of truth based on them should
do any better.

There is, nevertheless, one more important aspect to this problem that
needs to be pointed out. It has to do with the difference between the first-
order and second-order theories, i.e., between ZFC and ZFC2. As the logic of
ZFC is complete, whatever is provable in ZFC is also a logical consequence of
ZFC. ZFC is neither categorical, nor quasi-categorical (recall our discussion
of the Löwenheim-Skolem theorem in section 3.4), i.e., it has non-isomorphic
models even of the sentences ϕVθ1 . It follows that the continuum hypothesis,
being independent of ZFC and not being a logical consequence of ZFC, will
be true in some models of ZFC and false in others. On the other hand, the
situation of ZFC2 is very much different. Its logic is incomplete, so ZFC2

has logical consequences that are not provable in it. At the same time, it is
quasi-categorical, i.e., provided that there are no urelements, all its models
are isomorphic up to a given level Vα. This means that they all agree on
the lower levels. In particular, they have to agree on the dilemma of the
continuum hypothesis: they all have to decide it in one way or the other.
The trouble is, of course, that we do not know in which way the models of
ZFC2 solve this problem. As van Benthem and Doets [1983] put it, ZFC2

22The question of the truth value of the continuum hypothesis is, indeed, a very intri-
cate one, and it can be argued that although the proofs by Gödel and Cohen that both
the continuum hypothesis and its negation are consistent with ZFC answered the problem
figuring as number one (1a) in Hilbert’s famous list (cf. Hilbert [1900]), the whole matter
still sticks out as an unresolved issue cutting deep dividing lines between various currents
in the philosophy of mathematics. Roughly, the attitudes range from considering the con-
tinuum hypothesis to be true (e.g., Cantor, Hilbert [1926], pp. 384–392), false (e.g., Gödel
[1947], Cohen [1966], pp. 150–152) or not sufficiently determined to be either (e.g., Skolem
[1923], p. 299n., who points to the fact that ZFC, being first-order, is not categorical).
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‘knows the answers—unfortunately, we’re not able to figure out exactly what
it knows’ (p. 296).

Let us return to our three categories of sentences, and let us have a look
at the sentences belonging to the first category, i.e., the theorems and their
negations, which can be shown—unless ZFC is inconsistent—to be true or
false, respectively. That is, theorems are demonstrably true, therefore we
want them to be Trs in Vθ1 . (Note that we no longer need to relativize ϕ
because we already know that any theorem of ZFC is true in the model with
the domain Vθ1 , hence for any theorem ϕ of ZFC, ϕ↔ ϕVθ1 . This makes the
relativization superfluous.) Let ϕ be a theorem of ZFC, and let us ask: does
the relation Trs(pϕq, Vθ1) coincide with the informal relation of ϕ’s being
true in Vθ1? This question can be immediately answered in the positive.
As ZFC+A-Ina is an extension of ZFC, anything provable in ZFC will also
be provable in ZFC+A-Ina. In addition, we take ZFC+A-Ina to be able to
prove all the biconditionals required by the convention T. From this it follows
that once ZFC+A-Ina can prove a ZFC theorem ϕ, it is also able to prove
the required biconditional Trs(pϕq, Vθ1) ↔ ϕ. Hence Trs(pϕq, Vθ1) holds.
So we can conclude that the following obtains: ∀u(Prov(u)→ Trs(u, Vθ1)),
where ‘u’ is the Gödel number of a sentence of LZFC and ‘Prov(u)’ expresses
the provability property for ZFC.23 We will abbreviate this implication as
‘Trs(ZFC, Vθ1)’.

Finally, there are sentences belonging to the third category. These are
independent of ZFC but still can be shown to be true, provided that we stick
to the normal interpretation of ‘∈’ as the membership relation (and that we
interpret the sentences of LZFC as true and false at all24). It follows from
Gödel’s incompleteness theorems that no consistent recursively axiomatiz-
able theory that is capable of capturing (case-by-case proving) all primitive
recursive functions as functions25 is complete. ZFC is such a theory, hence

23The provability property Prov(u) would be defined as ∃x(Prf(x, u)) where Prf(x, u)
holds if x is the Gödel set of a ZFC proof of the Gödel set u associated with a sentence of
LZFC. However, we have not introduced any technique of arithmetization to code proofs,
i.e., sequences of formulas. Since this can be done, and there is nothing problematic about
it, we will merely assume that we have the provability property at our disposal to save us
room and effort.

24For a discussion of the relationship between Gödel’s incompleteness theorems and
mathematical truth see Franzén [2005], pp. 28–33.

25The terminology does not seem to be fixed here. I follow Smith [2007], pp. 99–105. A
one-place function f is captured (case-by-case proved) by a formula ϕ(x, y) in theory T
if and only if for any m, n:

iff(m) = n, then T ` ϕ(m,n),

iff(m) 6= n, then T ` ¬ϕ(m,n).

If, moreover:
for every m,T ` ∃!yϕ(m, y),

where ‘∃!’ is the uniqueness quantifier, the function f is captured as a function. The
concept of capturing a function can be extended to properties and relations. We say that
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it is incomplete. It is important to realize that this type of incompleteness is
rather different from the one connected with the questions of the continuum
hypothesis or the existence of large sets. Whereas those questions may be,
at least in theory, simply pushed away by adding new axioms that decide
them by fiat, the incompleteness proved by Gödel is more fundamental in
the sense that it “sticks”. It is unremovable; no matter how many new
axioms we add, provided that we do not give up the consistency or the re-
cursive axiomatizability, the theory will remain incomplete. However, as it
has been said, the sentences serving as witnesses of the irreparable incom-
pleteness of ZFC are characterized by the remarkable attribute that, under
the aforementioned conditions, they are true and can, under certain rather
basic conditions, also be shown to be true. The question then arises: does
our relation Trs(pϕ

Vθ1q, Vθ1) apply to them? Can they be shown to be Trs
in Vθ1?

In what follows, we will demonstrate that ZFC+A-Ina is able to prove
both the Gödel sentence exemplifying the incompleteness of ZFC (which is
the subject matter of Gödel’s first incompleteness theorem) and the sen-
tence asserting the consistency of ZFC (exemplifying Gödel’s second in-
completeness theorem). We will begin with the canonical Gödel sentence.
Let ‘Prov(u)’ be the provability predicate for ZFC; then the Gödel sen-
tence, G, says: ¬Prov(p¬Prov(x)q). Now the following holds: ZFC ` G↔
¬Prov(pGq).26 To prove the Gödel sentence for ZFC in ZFC+A-Ina, we
only need to recall (Fact 1) that ZFC+A-Ina can prove that Trs(ZFC, Vθ1),
i.e., ∀u(Prov(u)→ Trs(u, Vθ1)), and (Fact 2) that it is capable of proving all
the biconditionals of the convention T. Then we proceed as follows. First,
by Fact 1 ZFC+A-Ina ` Prov(pGq) → Trs(pGq, Vθ1). Secondly, by Fact 2
ZFC+A-Ina ` Prov(pGq) → G. However, G is equivalent to ¬Prov(pGq);
as Prov(pGq) is the negation of G, we can substitute, and we obtain, thirdly,
¬G → G. This implication is true only if G is true. Hence ZFC+A-Ina
` G.27

Let us move on to the example of a sentence asserting the consistency of a
theory. A theory is consistent if there is no contradiction among its theorems.

a formula ϕ(x1, . . . , xn) captures a relation R in T, if for any m1, . . . ,mn:

if R(m1, . . . ,mn), then T ` ϕ(m1, . . . ,mn),

if ¬R(m1, . . . ,mn), then T ` ¬ϕ(m1, . . . ,mn).

Similarly to the concept of definability (defined on p. 89), the purpose of the concept of
capturability is to represent functions or properties and relations of natural numbers by
means of formulas. Yet, whereas in the case of definability we deal with the truth of the
defining formula in a model, here we consider the provability of the capturing formula in
a theory.

26This statement follows from the fixed point theorem, or the diagonalization lemma.
The lemma is discussed in section 5.2, p. 120.

27This proof is based upon the proof for PA in Ketland [1999], pp. 86–88. The proof
that follows is also to be attributed to Ketland, op. cit., pp. 81–82.
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Take the sentence ‘0 = 1’ as a sample contradiction. Then ZFC is consistent,
if ¬Prov(p0 = 1q). The second incompleteness theorem, as applied to ZFC
says that unless ZFC is inconsistent, ZFC 0 ¬Prov(p0 = 1q). Now in
ZFC+A-Ina it can easily be proved that ¬Prov(p0 = 1q) as follows. First,
by Fact 1 we have that ZFC+A-Ina ` Prov(p0 = 1q) → Trs(p0 = 1q, Vθ1).
Secondly, by Fact 2 we obtain that ZFC+A-Ina ` Prov(p0 = 1q) → 0 =
1. But of course, ZFC+A-Ina can prove that 0 6= 1. Hence ZFC+A-Ina
` ¬Prov(p0 = 1q). This, of course, does not mean anything else than
that ZFC+A-Ina proves the consistency of ZFC. To sum up, the statements
exemplifying the incompleteness and consistency of ZFC can be proved, with
the help of the relation Trs(pϕ

Vθ1q, Vθ1), in ZFC+A-Ina. Therefore, we may
conclude that the relation Trs(pϕ

Vθ1q, Vθ1) performs as desired with respect
to the sentences of the third category.

We have seen that to define the concept of truth for (the Gödel sets of)
the sentences of LZFC relativized to Vθ1 it suffices to add to ZFC an addi-
tional axiom asserting the existence of the level indexed by an inaccessible
ordinal, e.g., Vθ1 . Besides its being able to prove that there exists a model
of ZFC, the resulting theory—in our case ZFC+A-Ina—is not conservative
over ZFC even with respect to the relativized sentences: it is capable of
proving the Gödel sentence for ZFC as well as the sentence expressing the
consistency of ZFC, which are both unprovable in ZFC.

4.6 Truth: a Class Form

If we want to define the relations of truth and satisfaction for LZFC, there
is yet another path we could choose to follow. Instead of adding new ax-
ioms to ZFC and relativizing the sentences of LZFC, we could turn to the
second-order set theory such as ZFC2, and exploit the availability of second-
order entities, namely classes. In the present section, we will examine this
alternative.

LZFC2 , the language of ZFC2, of course, differs from LZFC, which we were
dealing with in the preceding sections. As we know, LZFC2 is an extension
of LZFC, i.e., it is able to express everything LZFC is able to plus something
more. In section 4.1, we introduced the technique of arithmetization of
syntax only for LZFC, saying that we would not bother with providing details
of the extension of it also for LZFC2 . As it was defined only for formulas
of LZFC, it can be employed here without any change. If we wanted to
include formulas containing second-order variables, we would have to, of
course, extend the technique of arithmetization so that it covered the whole
of LZFC2 . As we have already said, this can be done without a difficulty
but, if needed, we will simply assume that such a system is available.

It turns out that, for the definitions of the class variants Satc and Trc
of satisfaction and truth, our old faulty definitions (D-S∗), (D-Sat∗) and
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(D-Tr∗) may be taken over with only minimal changes, so our progress will
be quick. First of all, the definition (D-Fm) on p. 83 will be adopted without
any change. It just needs to be born in mind that the formation function
s, which is one of the three terms of Fm, no longer describes the formation
(in n+ 1 steps) of the Gödel set of any LZFC2 formula but only of any LZFC
formula. The individual clauses of the disjunction part of (D-Fm) rule out
all formulas containing the class variables. The relation Fm(u, s, n) thus
holds only between the natural number n, the formation function s and the
Gödel set of any formula belonging to the LZFC fragment of LZFC2 .

The definition (D-S∗) can be taken without any apparent change at all.
Despite its remaining the same, let us make it readily available, and restate
once again at least its last clause:

∃i < ω∃l < k[s(k) = 〈4, i, s(l)〉 ∧ t(k) = {a | ∃x(a(i/x) ∈ t(l))}]. (D-Sc)

(Take (D-Sc) to designate the whole definition, not just this single clause.)
Although not requiring any visible intervention, the definition (D-Sc) has to
be reinterpreted. The value that t assigns to k must be a class. We already
saw that it cannot be a set in section 4.2 but at that time we did not have
any other option. Now we do have one: the abstraction operator { | } has to
be read as ‘the class of a such that etc.’ This is to say that the range of the
function t is a class of classes, which makes it no longer possible to regard
it as a set. That is, t itself needs to be recognized as a class.

A note on the notation. We will follow the habit of using the lower-
case letters for function variables to make them clearly distinguishable from
relation variables, which involve capital letters. Thus our notation does
not show whether a function variable or a relation variable is to be read as
ranging over sets or classes. To avoid ambiguity, we will always clearly state
if a variable is to be read as ranging over classes. Unless explicitly stated,
every function and relation variable is to be read as ranging over sets.

Now, with the relation Sc in hand, the definitions of satisfaction and
truth are straightforward. The definition of the class version of satisfaction
almost exactly corresponds to the faulty (D-Sat∗):

Satc(u, b)↔Def.

∃t∃s, n ∈ Vω
(
Fm(u, s, n) ∧ Func(t) ∧

dom(t) = n+ 1 ∧ b ∈ t(n) ∧ ∀k ≤ n(Sc(k, t, s))
)
,

(D-Satc)

where t ranges over classes. Eventually, the definition of the class version of
the property of being true is also almost identical to (D-Tr∗). Still, let us
write it down, for the sake of completeness:

Trc(u)↔Def. Sent(u) ∧ ∀b(Satc(u, b)). (D-Trc)

Here b, an individual assignment, is to be interpreted as a set. It is, so to
speak, the structural characteristic determining which of the sets are assign-
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ments that can only be interpreted in terms of classes but not individual
assignments. Having laid down (D-Trc), we are done.

How does the property Trc fare with respect to the convention T? The
direction ZFC2 ` Trc(pϕq)→ ϕ is unproblematic. We know that the prop-
erty Trc can hold only of the sentences of LZFC2 that are also sentences of
LZFC. To show that this implication is true, we can use the same method as
in section 4.5. On the other hand, the other direction in its full generality
does not hold. It is simply not the case that ZFC2 ` ϕ → Trc(pϕq). The
reason is obvious: ϕ is any sentence of LZFC2 , i.e., it can contain second-
order variables, for which the property Trc is not defined. So we have to
restrict the scope of sentences that are required to pass the test of the con-
vention T to those sentences of LZFC2 that are at the same time sentences
of LZFC. Note that this is not a drawback that would disqualify our defi-
nition (D-Trc) as what we have been after since the beginning was only a
partial truth definition precisely for the sentences of LZFC. It is merely a
technical obstacle that needs to be resolved. Anyway, we have, basically,
two options. Either we can impose an external condition on the convention
T restricting its applicability only to LZFC sentences. Or we can come up
with a “structural” property definable in ZFC2 that will make it possible to
insert an additional condition into the convention T. As we wish to show
that a partial concept of truth is definable within ZFC2, we need to opt for
the latter. Actually, to find such a “structural” property is nothing difficult,
and a number of approaches might be taken. The general method would be
to use or define a property holding of just those Gödel sets that are associ-
ated with sentences that do not quantify over higher-order entities. We have
used in (D-Trc) the property Sent (which we have not defined explicitly but
only assumed that it can be defined in a manner similar to that of Form on
p. 83). This property Sent has been (assumed to be) defined already within
ZFC, so it is not a general property holding of the Gödel set of any sentence
of LZFC2 , but only of a sentence of LZFC. To make absolutely clear its scope,
let us designate it as ‘SentZFC’. Employing this property, the convention
T may be transformed into the requirement that the following schema of
LZFC2 should hold for every sentence ϕ of LZFC2 :

ZFC2 ` SentZFC(pϕq)→ (Trc(pϕq)↔ ϕ). (C-Trc)

Showing that ZFC2 meets the condition imposed by C-Trc does not essen-
tially differ from what we did in section 4.5. So we can conclude that Trc
satisfies the requirement on a partial concept of truth.

The other arguments of section 4.5 also need not be repeated. Let us
just state as plain facts that, again, the method of diagonalization cannot be
used to derive an immediate contradiction, and that ZFC2 is strong enough
to prove that the theorems of ZFC are Trc, as well as the consistency of the
first-order system of ZFC.
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Let us add, as an interesting aside, that the relations of satisfaction and
truth for LZFC can be defined also in NBG and MK set theories. However, it
was demonstrated by Mostowski [1950] that NBG (unless it is inconsistent)
cannot—in spite of its expressive resources that enable it to formulate the
definition of truth in such a way that the convention T is satisfied—prove
the general statement that every theorem of ZFC is true, and consequently,
that ZFC is consistent. The reason for this is obvious. As we know, NBG is
a conservative extension of ZFC, i.e., it cannot prove more facts concerned
purely with sets than ZFC is able to. The statement that ZFC is consistent
can be formulated as a statement purely about sets. Therefore, NBG cannot
prove that ZFC is consistent unless it is itself (and ZFC) inconsistent. Thus
NBG is only a very weak theory of truth for LZFC. In MK, on the other
hand, truth for LZFC is definable.

4.7 Truth for Sentences of Restricted Complexity

In sections 4.4, 4.5 and 4.6, we aimed at developing the strategy based on the
idea of restricting the domain of objects to which the relations of satisfaction
and truth are applicable. Now we will examine the other strategy mentioned
at the outset of section 4.4, which purports to define the partial truth for
sentences whose complexity has been limited. In carrying out this task, the
Lévy hierarchy of formulas will become a vital tool. Once again, we will
focus our attention primarily on the first-order system of ZFC.

First of all, we need to expand the coding scheme introduced in section
4.1 by adding the following clause for the bounded existential quantifier:

p∃vi ∈ vjϕq is 〈5, i, j, pϕq〉.

(Strictly speaking, this clause is not necessary. However, without it we would
have to define—in order to distinguish between bounded and unbounded
quantification—a complex syntactic property that would hold of all and only
those formulas that contain bounded quantifiers. It is, of course, rather more
expedient simply to expand the coding scheme, and avoid going through a
lot of tedious labour needed to achieve this.)

Now we will define the auxiliary relation Satfun(f, n) which is to hold
if and only if f is a two-place satisfaction function f(u, b), where u is the
Gödel set of a formula ϕ belonging to ΣZFC

n ∪ ΠZFC
n and b is an assignment

of values to the free variables occurring in ϕ. The range of values of f will
be {0, 1}: f(u, b) = 1 if b satisfies u and f(u, b) = 0 if it does not. The
definition of Satfun spelled out in full looks rather complex:28

28The definition (D-Sfu) is modeled on the definition first given in Lévy [1965], p. 22.
Cf. also Drake [1974], p. 98.
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Satfun(f, n)↔Def. Func(f) ∧ rng(f) = {0, 1} ∧
∀〈u, b〉 ∈ dom(f)

(
degree(u) ≤ n ∧ dom(b) = freev(u) ∧[

∃i, j < ω
(
[u = 〈0, i, j〉 ∧ (f(u, b) = 1↔ b(i) = b(j))]∨
[u = 〈1, i, j〉 ∧ (f(u, b) = 1↔ b(i) ∈ b(j))]

)
∨

∃v, w
(
[u = 〈2, v, w〉 ∧ (〈v, b〉 ∈ dom(f) ∧ 〈w, b〉 ∈ dom(f)∧

(f(u, b) = 1↔ (f(v, b) = 1 ∨ f(w, b) = 1)))]∨
[u = 〈3, v〉 ∧ 〈v, b〉 ∈ dom(f) ∧ (f(u, b) = 1↔ f(v, b) = 0)]

)
∨

∃i, j < ω∃v[u = 〈5, i, j, v〉 ∧ ∀x ∈ b(j)(〈v, b(i/x)〉 ∈ dom(f))∧
(f(u, b) = 1↔ ∃x ∈ b(j)(f(v, b(i/x)) = 1))]∨

∃i < ω∃v[u = 〈4, i, v〉 ∧ ∀j < ω(u 6= 〈5, i, j, v〉)∧
(f(u, b) = 1↔ ∃x(Satd(v, n− 1, b(i/x))))]

])
.

(D-Sfu)

If n = 0, the last clause (i.e., the clause for u = 〈4, i, v〉) is omitted. The
expressions ‘rng(f)’, ‘degree(u)’ and ‘freev(u)’ mean ‘the range of f ’, ‘the
degree of the formula associated with u’ and ‘the set of free variables occur-
ring in the formula associated with u’, respectively. These functions are all
definable in ZFC. Note that the assignment b is a function from the set of
free variables occurring in a formula into the universe of sets, i.e., its range
is left unrestricted.

The satisfaction relation Satd(u, n, b) is defined as follows:

Satd(u, n, b)↔Def. ∃f(Satfun(f, n) ∧ 〈u, b〉 ∈ dom(f) ∧ f(u, b) = 1).
(D-Satd)

In plain words, Satd(u, n, b) holds if and only if there is a satisfaction func-
tion f satisfying the Gödel set u associated with a formula belonging to
ΣZFC
n ∪ ΠZFC

n under the assignment b. (We use the lower index ‘d’ to indi-
cate that Satd is the relation of satisfaction defined only for formulas of a
specific degree.) The relation Satd(u, n, b) is ∆ZFC

n+1 .29 Employing the rela-
tion of satisfaction, the property of truth can be defined simply as:

Trd(u, n)↔Def. Sent(u) ∧ ∀b(Satd(u, n, b)). (D-Trd)

Roughly speaking, (D-Trd) says that the Gödel set u associated with a LZFC
sentence that belongs to ΣZFC

n ∪ΠZFC
n is Trd if and only if it is satisfied by all

assignments. It is easy to see that the property Trd is also ∆ZFC
n+1 (notice that

b, by (D-Satd), is bounded). Sometimes we will use again the fancy notation
|=n
d pϕq [b] instead of Satd(pϕq, n, b), and |=n

d pϕq instead of Trd(pϕq, n).
Having defined the partial relations of satisfaction and truth, we need

to ask: What is it that makes the definitions acceptable? After all, we have

29The alternative definition of Satd(u, n, b) can be given by the equivalent formula:
u ∈ ΣZFC

n ∪ΠZFC
n ∧ ‘b is an assignment’ ∧∀f(Satfun(f, n)∧〈u, b〉 ∈ dom(f)→ f(u, b) = 1).

Cf. Drake [1974], p. 98. The full proof is in Lévy [1965], pp. 24–25.
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pointed out that the range of the assignment function b is unrestricted. How
does it come about that the relation Satfun, which is is the collection of
all the ordered pairs 〈〈〈u, b〉, 1 or 0〉, n〉, i.e., which contains all the functions
f , can still be interpreted as a set? To explain this, we need to employ the
notion of absoluteness defined in section 4.3. Recall that the universe of sets
we are considering, namely V , is the universe of transitive sets. Suppose that
ϕ is a ∆ZFC

0 formula that is satisfiable in a transitive subdomain M of V .
Then, as we know, ϕ is absolute for M . Why is this fact significant? Take,
as an elementary example, an atomic ∆ZFC

0 formula v1 ∈ v2. This formula is
satisfied by any assignment that assigns to the variables objects a and b such
that a ∈ b. In the extreme case, it is satisfiable in a domain containing just
two sets such that one is a member of the other. In general, ∆ZFC

0 formulas
are satisfiable in relatively restricted subdomains of V , and there is nothing
in these formulas that forces us to go beyond such subdomains. Absoluteness
guarantees that formulas that are satisfied in M will not cease to be satisfied
in V . Still more importantly, this also works in the other direction. Once a
∆ZFC

0 formula is satisfied in V by some sets, we may take some or all of these
sets as a domain of satisfaction of the formula. The key point to realize is
that formulas with only free variables and, for obvious reasons, formulas with
only bounded quantifiers do not force us to run through the entire universe
V when finding out whether they are satisfied by an assignment or not.
Therefore, when dealing only with ∆ZFC

0 formulas, we may consider only a
subdomain of the universe, i.e., a set. However, we need to start adding
unbounded quantifiers. This complicates the picture just drawn since the
very purpose of the unbounded quantifier is to range over every single object
in V . But even here we can interpret the collection of all the assignments
as a set. Just recall what goes on when a variable gets bound, e.g., in the
∆ZFC

0 formula v1 ∈ v2. Adding the existential quantifier, we obtain the ΣZFC
1

formula ∃v2(v1 ∈ v2). The assignments b that assigned objects to the free
variables v1 and v2 will be replaced by assignments that assign objects to
the remaining free variable v1 but at the place of the newly bound variable
they will just contain x. Symbolically, |=1

d p∃v2(v1 ∈ v2)q [b] if and only if
∃x(|=0

d pv1 ∈ xq [b]).30 It is thus not required that the assignments should
exhaust the entire universe.

It is obvious that the definition (D-Trd) escapes the contradiction de-
scribed in section 4.2. As the truth predicate Trd(pϕq, n), which itself is
∆ZFC
n+1 , is always defined only for formulas ΣZFC

m≤n ∪ ΠZFC
m≤n, the diagonaliza-

tion fails, and no formula can be made to assert truth about the Gödel set
associated with its own negation. Now the basic idea the definition (D-Trd)
is founded upon is more or less identical to that underlying (D-Trs); it merely
replaces the restriction imposed on the domain with the restriction imposed
on the complexity of formulas. Therefore, it is unnecessary to go through

30For a generalization of this idea, cf. Kanamori [2003], p. 6.
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the arguments supporting the claim that ZFC satisfies the convention T, i.e.,
that for every ΣZFC

m≤n ∪ ΠZFC
m≤n formula ϕ ZFC ` Trd(pϕq, n) ↔ ϕ. We will

also not show but merely state that, making use of the property Trd(pϕq, n),
ZFC is able to prove that every theorem of ZFC of degree ≤ n is true as well
as the consistency of the set of all the formulas belonging to ΣZFC

m≤n ∪ΠZFC
m≤n,

i.e., ZFC can prove the consistency of ZFC restricted to the sentences of
degree ≤ n.31 Because there is no upper bound on the degree of theorems
of ZFC, there is no way of restricting the formulas or sentences of LZFC so
that we could circumvent them, and prove that they are all Trd for some n,
and that ZFC is consistent.

This feature of ZFC can be described in terms of ω-incompleteness. The
formula Trd(pϕq, n) can be used to define, for each degree n, a set of true
sentences ϕ of degree ≤ n. This can achieved, for instance, by means of the
formula tn = {pϕq | Trd(pϕq, n)}. In this way we obtain the sequence of
sets t0, t1, . . . , tn, . . ., each a set of partial truth. It can be shown that ZFC,
unless it is inconsistent, can prove that there is such a truth set tn for each
particular n, i.e., ZFC ` ∃x(x = {pϕq | Trd(pϕq, n)}) for any n, but that
it cannot prove the universal closure ∀n ∈ ω∃x(x = {pϕq | Trd(pϕq, n)}).
This state of affairs, though, is not irreparable. There is a natural candidate
to consider for bridging the gap between the individual instances and the
universal closure, namely a form of induction. Let ϕ be a formula of LZFC
whose free variables are among v1, . . . , vm. Consider the following schema:

∀v1, . . . , vm([ϕ(0) ∧ ∀n ∈ ω(ϕ(n)→ ϕ(n+ 1))]→ ∀n ∈ ω(ϕ(n))). (A-Ind)

It is easy to see that this induction schema makes it possible to prove also the
aforementioned universal closure. That is to say, a new, expanded system
of set theory ZFC+A-Ind ` ∀n ∈ ω∃x(x = {pϕq | Trd(pϕq, n)}). In this
expanded theory it is possible to prove that for every ZFC theorem ϕ of any
degree n it is the case that Trd(pϕq, n), i.e., that every ZFC theorem is true.
Once we have achieved this result, the provability of consistency of ZFC in
ZFC+A-Ind easily follows.

The strategy of defining the relations of satisfaction and truth for for-
mulas of restricted complexity can also be pursued further with a view to
getting the general relations of satisfaction and truth for LZFC. Again, we
can turn to the second-order language LZFC2 and our old acquaintance ZFC2.
Without going into any detail, let us just say that once we have the liberty
to employ classes, there is no problem to define the relations of satisfaction
and truth for the formulas or sentences of the first-order fragment of LZFC2 ,
and prove the consistency of ZFC and all its truths. This can also be done
in MK set theory but not in NBG. As we saw in section 4.6, although LNBG

is rich enough to express the property of truth for LZFC, and although NBG
passes the test imposed by the convention T, so it can be thought of as

31Cf. Kanamori [2006], p. 238.
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a truth definition for LZFC, NBG cannot prove that the theorems of ZFC
are true or that ZFC is consistent. Nevertheless, if a schema of induction
along the lines of (A-Ind) is added as a new axiom, the new extended theory
obtained in this way becomes strong enough to prove what is required.

This terminates our account of the two broad strategies leading to the
definitions of truth for LZFC. In principle, it is not necessary to stop here.
We could extend our language by adding variables ranging over still higher-
order objects such as third-order classes; employing these higher-order ob-
jects, we could define truth for LZFC2 as well as prove the (relative) consis-
tency and truth of ZFC2. We will not, however, pursue this direction. A
reason why will emerge in section 4.8.

4.8 Higher-order Objects and Truth

Let us start with a brief summary. We have seen that the language LZFC
cannot contain the truth predicate for LZFC, and that ZFC cannot involve a
theory of truth for LZFC. This, of course, can be generalized. No extension
of LZFC can contain the general truth predicate, and no consistent extension
of ZFC is capable of defining truth for its own language. However, various
partial concepts of truth can be defined within ZFC. This fact is important
enough in its own right but what is crucial to recognize is that certain
partial concepts of truth can be introduced within suitable extensions of
ZFC or LZFC in such a way that these partial concepts coincide with the
original general concept of truth for LZFC. Obtaining the general truth for
LZFC requires, as we have shown, an extension of the language by adding
variables ranging over classes. Restricted concepts of truth that do not
represent properties of truth for the whole language but only for specific
fragments—which, nonetheless, have the significant property that they make
provable the truth of ZFC—are obtainable without the necessity to enrich
the language. It suffices to extend ZFC by additional axioms.

So we have established that it is possible to define truth for sets if we
employ classes. To what extent is this outcome favourable? To answer this
question will be a chief task of this section.

It has been said that to define truth for the language of sets with the help
of classes ‘is not a philosophically satisfying resolution, since we encounter
the same old difficulties when we attempt to give an explicit definition of
truth for the language of class theory’ (McGee [1990], p. 76). The definition
of truth for LZFC in ZFC2 is thus no triumphant accomplishment as this
effectively just pushes the problem a step away. This broad argument against
the meaningfulness of the whole project we have been developing can be
further sharpened into challenging the heuristic direction involved. There
is no doubt that classes are generally viewed as more obscure entities than
sets. If this is so, however, what reason is there to celebrate if we manage
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to solve a problem concerning sets at the expense of obtaining virtually the
same problem at the level of classes? In what follows, I will attempt to
defend the philosophical significance of the attempts to define truth in a
manner described in this chapter as well as the acceptability of the talk of
classes. The framework in which this defence will be set is the Zermelian
conception of set theory depicted in chapter 3. The latter problem will be
dealt with first.

The crucial question is: What is the status of classes as second-order
objects? In particular, how do classes fit in the conception of the cumulative
hierarchy of sets? Where are they localized in the hierarchy, and what role
do they play? In a sense, it seems that the universe of sets is self-sustained,
and there is no place for classes at all. A remarkable facet of the cumulative
hierarchy is that it is essentially a theory of types, although the types are
not explicitly presented as types. To perceive the types in the hierarchy,
just recall that we start with the empty domain (or, possibly, with a domain
containing urelements), and by the repeated application of the power set
operation we reach higher and higher layers of sets, each containing all the
subsets of the sets of the preceding layer. Thus there are: individuals (the
number of individuals may be zero); sets of individuals (or the null set);
sets of sets of individuals, etc. The situation is perfectly analogical to the
type-theoretic stratification of relations and functions, according to which
there are: individuals; relations and functions of individuals; relations and
functions of the relations and functions of individuals, etc. However, there
is no need to explicitly introduce this kind of types into ZFC since the set-
theoretic paradoxes are not derivable from ZFC even without the explicit
specification of types, being blocked by a judicious choice of axioms. Besides,
when we need to specify the positions sets occupy within the hierarchy,
we can use the rank function ρ, definable within ZFC. Thus, as segments
correspond to (cumulative) types, ZFC is capable of stratifying the objects
it deals with internally, without any additional type-theoretic apparatus.

In section 3.5, we said that (second-order) classes, i.e., objects of type
(()), are to be interpreted as elements of Vα+1 = ℘(Vα), where Vα is the do-
main of a model of ZFC2 (the domain of sets). Yet, if classes are interpreted
as elements of ℘(Vα), why should we bother with them at all? What pre-
vents us from taking Vα+1 as simply another level of sets on top of Vα from
the start? A very neat formulation of the criticism of classes as autonomous
objects based on this idea can be found in Drake [1974], p. 17. It is worth
quoting in full:

If we consider V to be the universe of all sets, then classes are
subcollections of things from V ; if we quantify over classes, this
implies that we have the collection of all classes to talk about,
and the collection of all classes would be exactly the thing we
should take as the next level, following all the levels used to make
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up V . In other words, talking about all classes is tantamount
to saying that we have not taken all levels, with no end, but we
have another one (the level of classes) which we have not used
for making sets.

I will attempt to answer these rather disquieting questions by presenting
two different ways of thinking about the universe of sets, which are at the
same time two different accounts of what it means to say of a set-theoretic
sentence that it is true.

Let us assume that it makes sense to view the universe of sets represented
by the entire cumulative hierarchy, V , as a unity. Whatever is a set, no
matter how large, belongs to it. Of course, as we know, ZFC2 cannot prove
the existence of any set apart from those that belong to the initial segment Vα
where α is an inaccessible ordinal. We have seen that if we supply additional
axioms, we will be able to prove also the existence of sets belonging to some
higher levels of the cumulative hierarchy, and we have sketched arguments
that might support the addition of some such axioms. However, it seems
clear that there is no way we could actually exhaust the entire universe,
i.e., introduce a system of axioms that would get us all the sets there are.
The driving force behind adding axioms asserting the existence of larger and
larger sets is thus the conviction that, as Maddy [1988], p. 502, puts it, ‘the
universe of sets is too complex to be exhausted by a handful of operations, in
particular by power set and replacement’. It is this conviction of complexity
that makes it impossible, by means of a combination of any acceptable set-
theoretic operations, to capture the universe of sets as a whole, as a unity.
We have found out that V is closed under the operations of power set and
replacement, i.e., that any set obtainable using these operations is a member
of V . The conviction that the universe is inexhaustibly complex forces us
immediately to refuse the idea that the hierarchy might end with the first
level indexed by an inaccessible ordinal. That would simply mean that the
universe was not that complex after all. So we accept this inaccessible level
as an ordinary member of the hierarchy, and we go on. The general principle
underlying this line of thought has been called ‘reflection’. It maintains
that the universe V is inexhaustible and cannot be completely described;
therefore, whatever is true of V must be true already of a certain initial
segment Vα. The use of the word ‘reflection’ suggests that the truth in V is
always reflected in a particular initial segment of V .32

32Various forms of the principle of reflection were studied in Lévy [1960a] and Lévy
[1960b]. Perhaps the most common formulation of the reflection principle is the following:

∀α∃β > α∀x1, . . . , xn ∈ Vβ(ϕ(x1, . . . , xn)↔ ϕVβ (x1, . . . , xn)). (P-Ref)

If ϕ is a formula of LZFC with only the variables x1, . . . , xn free and without abstraction
terms, (P-Ref) is provable in ZFC. In fact, it was proved by Lévy [1960a] that (P-Ref) is
equivalent to the combination of the axiom of infinity and the schema of replacement. Thus
ZFC with these two axioms replaced with the schema (P-Ref) is equivalent to standard
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Now, what happens if we enrich this picture by classes? As we have
said, class variables are supposed to range over all the subcollections of the
universe. But this just seems to cause problems. As if the universe of sets
were not mysterious enough, now we obtain another level of mystery. To be
more precise, the mystery is usually taken as affecting only proper classes,
i.e., the classes that can be put into one-to-one correspondence with V .
The other, improper classes are made perfectly acceptable since they are
identified with sets. Still, what is it that makes proper classes non-sets?
As Tait [1998a], p. 280, puts it: ‘why, when we treat [a proper class] in all
other respects as a set, we nevertheless reject it as a set’? (Recall that the
difficulties surrounding the concept of class cannot be answered by pointing
to the set-theoretic paradoxes, i.e., to the fact that letting (proper) classes in
among sets leads to an inconsistency. If adoption of a certain kind of objects
leads to a contradiction, it only means that such a kind of objects simply
cannot exist. The occurrence of a paradox entails merely that something
cannot exist in a certain way but it does not provide any reason why.)

The answers to the questions raised in the course of this section we
propose to accept consists in a profound reversal of the overall viewpoint.
The key assumption in the whole approach we have just depicted is that the
universe of sets, V , can be understood as a unity, as a determinate totality.
We have some understanding of the cumulative hierarchy as a whole and of
the place of individual sets within it, and on the basis of this understanding
we are able to derive particular or general assertions about sets. However,
why should we accept that the universe of sets is a well-defined totality,
that it is a meaningful object of understanding? The quantifiers of LZFC are
supposed to quantify over all sets there are. Yet, that is just a decision we
have made; but what does the ‘all the sets there are’ mean? And how do we
enforce this decision? What if it is impossible to distinguish, ‘by specified
means, the universe from partial universes’?33

I will not try to answer these questions. I will rather attempt to suggest
an alternative to this top-down approach, based on Zermelian relativism
described in section 3.6. The core idea is that the universe of sets should
not be understood as one, as a singular totality of all sets whatsoever that is
given to us to investigate.34 To understand what such a rejection involves,
let us outline the approach I wish to defend. We speak of different types
of objects, of sets, of classes, etc. Introduction of a type into our language
opens up a domain of objects of the given type for us. Introduction of type
() opens up the domain of sets, of type (()) the domain of classes, etc. ZFC
can be understood as a theory aiming at studying the type of sets, ZFC2

the types of sets and classes. However, to be given a domain of sets is

ZFC. The provability of (P-Ref) in ZFC motivates stronger reflection principles.
33Viz. Lévy [1960b], p. 1.
34What follows is partly inspired by ideas developed in Tait [1998a], pp. 279–283.
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something different than to be given the entire, inexhaustible universe of
sets. Zermelo’s driving idea can be construed as follows. Assume that we
have been given a domain of sets, and assume that we have accepted ZFC2

as a theory appropriate for dealing with objects of that domain. How do
we then gain some knowledge about this domain itself, and not just objects
that are its members? The answer is, as we saw in section 3.6, that we
can extend our theory by adding an axiom asserting the existence of an
inaccessible ordinal. This step makes it possible to study the initial domain
as a set. And this step may be repeated. The crucial thing to realize is
that, seen from this point of view, there is no single set-theoretic universe
of all sets; there are just different domains. The cumulative hierarchy V as
well as the totality of ordinals, Ω, are to be interpreted not as independently
determined collections but as relative with respect to different domains. The
symbols ‘V ’ and ‘Ω’ acquire in each domain a different meaning. As Tait
puts it, the universe ‘is parasitic off domains’ (Tait [1998a], p. 282).

What consequences follow from this view for truth? In short, it does not
make sense any more to think of set-theoretic truth as being ‘reflected down’
from the universe of sets. Rather, it has to be introduced ‘from below’, from
within a particular system of set theory deemed suitable for dealing with the
objects of a given type. As we have seen, truth for a given language cannot
be defined within a theory formulated in that language. This discovery
forces us to seek other, less direct paths to introduce the property of truth
into set theory. We have described some of these approaches. It has turned
out that once we introduce the type of classes, the truth for the language
of sets becomes definable. In this sense, the theory of classes is a theory
of truth. In contrast with the single set-theoretic universe, classes may lose
the mystery that might surround them if we recall what we said already
in section 3.6: the level of classes can be reinterpreted as another level of
sets in an extended domain. This is also the reason why, although there
is no technical obstacle to it, it seems considerably less fruitful to carry on
and introduce objects of third-order such as third-order classes ((())). If
second-order classes belonging to Vα can be reinterpreted as sets in a larger
domain Vα+1, the third-order classes might be reinterpreted as objects of
the domain Vα+2, and so on.
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Chapter 5

Carnap: Truth in Syntax

The definition of truth was arrived at, roughly at the same time, by three in-
dependent thinkers: Gödel, Tarski and Carnap. Yet, Gödel did not publish
his results. Tarski reached the main part of his conception of truth in 1929.
He submitted his celebrated monograph on truth (Tarski [1933]) in 1931
but the essay was not published until 1933. For the German edition (Tarski
[1935]), Tarski appended a postscript that considerably modified some con-
clusions of the monograph. Nonetheless, Tarski’s work had not been widely
known before the German edition of the ‘Concept of Truth’ and his talks at
the congress of Scientific Philosophy in Paris in September 1935, where the
ideas he presented aroused a heated controversy.1

Carnap’s fate was, at least as far as the race for truth is concerned,
quite unfortunate. He arrived—with a certain cue from Gödel (discussed in
section 5.6) but otherwise quite independently—at a definition of analyticity
which is in the essential respects similar to Tarski’s definition of (logical)
truth. However, Carnap’s results were published in 1934, i.e., after Tarski’s
Polish edition of the monograph on truth. Moreover, Carnap’s definition
is unnecessarily complex. It is also presented in a rather peculiar manner.
What is most significant, though, is the fact that Carnap made the concept of
analyticity central to a very specific, in a sense radical philosophical project
of logical syntax. To add to the confusion, after meeting with Tarski, Carnap
openly “converted” from syntax to semantics. While it is correct to say that
Carnap’s way of thinking of truth changed considerably under the influence
of Tarski, it would be a mistake to read into this change the understanding
of the terms ‘syntax’ and ‘semantics’ we have now. As we will see in section
5.5, Carnap’s conversion consisted in a relatively subtle move.

As a result of the difficulties surrounding Carnap’s treatment of analyt-
icity in The Logical Syntax of Language, it is not uncommon to come across
serious misconceptions proclaimed in connection with Carnap’s syntactic pe-

1For the depiction of Tarski’s participation at the congress, see Feferman and Feferman
[2004], 95–98.
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riod.2 The aim of this chapter is to reconstruct what Carnap’s definition of
analyticity amounts to, and investigate what role it plays within the broader
project of logical syntax.3

5.1 Analyticity for Language I

In The Logical Syntax of Language, Carnap develops in considerable detail
two sample languages, called ‘Language I’ and ‘Language II’. The former is
to be a ‘definite’ language which is to realize the ‘finitist’ or ‘constructivist’
tendencies, and as such is supposed to appeal to the intuitionist camp within
the philosophy of mathematics.4 When applied to properties, being defi-
nite is to be read as being effectively decidable.5 This can be extended to
functions: a definite function is one that is effectively computable. However,
when Carnap says that Language I is definite he does not mean to say that it
is a decidable theory in the contemporary sense, i.e., one whose property of
being a theorem is effectively decidable. What he means is explained below
on p. 116.

Language I is, in effect, an extension of a version of quantifier-free prim-
itive recursive arithmetic (PRA0). With a certain simplification, the lan-
guage of Language I, LI, may be described as follows. The primitive symbols
of LI include an unlimited supply of individual (numerical) variables, the
usual connectives of propositional calculus and the symbol for identity ‘=’.
In addition, there are these arithmetical primitives:

– the individual constant ‘0’;
– the successor functor ‘′’;
– functors for primitive recursive functions.

If we restrict the vocabulary of LI to the symbols listed above, and if we
require that we add a functor for each primitive recursive function, we get
the standard language of PRA0. Yet, LI differs from the language of PRA0

in three respects: firstly, it is not constructed as a language with a fixed vo-
cabulary, so we may add to it other primitive functors or predicates we need
besides those mentioned; secondly, Carnap does not make the requirement
that LI should include a functor for each primitive recursive function; and
thirdly, Carnap also adds bounded quantifiers as primitive symbols. We will
not, however, take bounded quantifiers into account since, given that the

2For a typical example of the accusation of Carnap of errors he evidently did not
commit, see e.g. Etchemendy [1990], pp. 156–157.

3Several parts of sections 5.2, 5.4, 5.5 and 5.6 contain ideas already published as
Procházka [2006].

4Cf. Carnap [1937], §16, p. 46.
5Carnap explains ‘definite’ as follows: a number property is definite if its ‘possession or

non-possession by any number whatsoever can be determined in a finite number of steps
according to a fixed method’ (Carnap [1937], §3, p. 11).
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variables are numerical, i.e., they range over natural numbers, the bounded
quantifiers can be eliminated by means of finite conjunctions and disjunc-
tions. The rules of formation of LI are standard, with a notable convention
that a formula containing free variables may be asserted with the effect of
asserting its universal closure.

Symbols of LI are divided into logical and descriptive. The division is
given simply by listing the logical symbols. Logical are the standard symbols
of propositional logic, ‘=’, the variables, ‘0’ and ‘′’ as well as as well as any
defined symbols whose definitions contain only logical symbols. Descriptive
are all the predicates and functors (other than ‘′’) which are either primi-
tive or their definitions contain descriptive symbols. An expression, i.e., a
complex of symbols, is logical if it does not contain any descriptive symbol.

The deductive system of Language I, TI, includes the axioms and rules
of inference of propositional logic plus the axioms for identity and a rule of
variable substitution. On the arithmetical side, there are:

– a recursive definition of the successor function;
– a recursive definition for every primitive recursive function for which

there is a functor in LI;
– the rule of complete (quantifier-free) induction.

The axioms together with the rules of inference of the deductive system are
called ‘d-rules’. They determine the relation of being directly derivable,
i.e., derivable by a single application of a rule of inference. Roughly, a
sentence is derivable if there is a derivation chain, in which all members are
directly derivable from the preceding members or from axioms or premises.
It is important to note that while the relation of direct derivability in TI is
effectively decidable (i.e., definite), the relation of derivability simpliciter is
not. (In what follows we will use the term ‘inference’ instead of ‘derivability’
simpliciter.) This requires a further explanation.

As is well known, PRA0 is a complete theory, i.e., for every sentence
ϕ of the language of PRA0, either PRA0 ` ϕ or PRA0 ` ¬ϕ. It is also
well known that any consistent complete axiomatized theory is decidable,
so PRA0 (which is consistent if PA is) is decidable. Yet the same does not
hold of TI as TI is not complete with respect to the logical part of LI. The
reason for the divergence lies in the fact that according to Carnap, as we
have pointed out, we may assert a formula containing free variables as if it
were a well-formed sentence, and not merely a schema. This little trick gives
LI the ability to express unlimited universality, which the language of PRA0

lacks. At the same time, it makes TI an incomplete theory.6 A consequence
of the incompleteness of TI is that, given its undecidable inference relation,

6In fact, Carnap does not seem to be sure whether the theory TI is or is not complete.
He merely says that ‘the case may arise’ that we come across a sentence such that neither
it nor its negation is derivable. Cf. Carnap [1937], §14, p. 37.
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it cannot be a decidable theory. Language I then should not presumably be
called ‘definite’. Carnap acknowledges this and explains that the reason why
he considers Language I to be definite is that all of its closed sentences, i.e.,
sentences that contain no free variables, are definite. In other words, TI is
a complete and decidable theory with respect to a logical sublanguage LI in
which formulas with free variables, which make general assertions possible
and which are responsible for the incompleteness of TI, are not regarded to
be assertable sentences.

Now if we consider the expressive powers and limits of LI, it is clear that
the sentence that witnesses the incompleteness of TI will involve a logical
predicate pr of LI such that every individual instance pr(0), pr(0′), pr(0′′),
. . . is derivable but the universal conclusion pr(z) is not derivable, neither is
its negation. This estimation makes Carnap to introduce another category
of rules for LI that would yield the unprovable sentence pr(z). They are the
rules of consequence, or ‘c-rules’. We will designate such a system of c-rules
as ‘SI’. Whereas inference always concerns finite sequences of sentences,
consequence is a broader, less restricted relation that permits to obtain a
conclusion from an infinite class K of sentences. There are two rules that
make a sentence S of LI a direct consequence of a class K of sentences.
Firstly, S is a direct consequence of K if K is finite and S is derivable from the
sentences belonging to K without the use of the rule of (complete) induction.
The purpose of this rule is merely to subsume the relation of inference under
the relation of direct consequence; the rule of complete induction is left out
to avoid duplication. The second rule is the ω-rule:7 let K be an infinite
class containing all the sentences of the form pr(0), pr(0′), pr(0′′), . . . . Then
pr(z) is a direct consequence:

{pr(0), pr(0′), pr(0′′), . . .} |=direct pr(z) (R-ω)

Let us say that a consequence-series is a finite sequence of classes such that
every member of the sequence is in the relation of direct consequence to
its predecessor, and the final member is the singleton containing a given
sentence S. S is a consequence of K, K |= S, if and only if there is
a consequence-series leading from K to {S}. Having the relation of conse-
quence, we can define that a sentence is analytic if it is a consequence of an
empty class of premises, i.e., if it is a consequence by the rules of SI alone.

7The ω-rule was introduced in 1930 in a lecture given by Hilbert and published as
Hilbert [1931]. In fact, Tarski considered this rule already in 1926 but it was Hilbert who
triggered a wave of interest in it. Hilbert used the new rule—about which he made the
startling claim that it was finitary—to prove Π1-completeness of PA+ω-rule. Carnap got
acquainted with the ω-rule in 1931, and debated it with Gödel who had had an exchange
of views on it with Bernays, Hilbert’s collaborator. There is some evidence that Carnap
considered putting this rule right into the deductive system TI of his Language I but in
the end decided to stick with the more familiar complete induction. For the details of the
whole story, see Buldt [2004].
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A sentence is contradictory if it has as a consequence every sentence.
Sentences that are neither analytic nor contradictory are synthetic.

The concept of consequence Carnap defines for Language I raises several
questions. First, is it extensionally adequate? That is, does it fulfill the role
it is supposed to with respect to LI, namely does it make every logical sen-
tence of LI either analytic or contradictory? Carnap shows that it does, i.e.,
that SI is a complete theory with respect to the logical part of LI (viz. theo-
rem 14.3, p. 40). Secondly, can it be generalized to apply to other languages
of a more complex logical structure? Tarski [1936a], p. 413, charges that
it cannot. However, de Rouilhan [2009], pp. 138–140, shows that Carnap’s
definition of consequence for Language I can be generalized to Language
II, whose logical structure is far more complex; so Tarski’s charge has been
proven wrong. Moreover, de Rouilhan also suggests that Tarski’s own defini-
tion formulated in the aforementioned paper can be shown to be coextensive,
with respect to sentences of LI, with that of Carnap’s.8 If this is correct,
the difference between the account given by Tarski—which paved the way
for the standard model-theoretic account of consequence based on the idea
of truth preservation—and Carnap’s definition is more in the latter’s lack
of intuitive appeal than in its inadequacy. At the same time, provided that
Carnap’s relation of consequence for Language I is, indeed, extensionally
adequate, it is interesting in its own right since it throws light on the rela-
tionship between the classical rule (or axiom) of complete induction and the
infinitary ω-rule. Therefore, Coffa’s reprimand that the strategy adopted
for defining analyticity for Language I is based on ‘an incorrect diagnosis’
of the problem and, as a result, is the ‘least interesting’ one,9 might not be
warranted.

Finally, ω-rule is obviously infinitary and, as such, non-effective. How
does it come then that Language I is considered definite, and is supposed to
appeal to the intuitionists who disapproved of infinitary operations? To un-
derstand this, recall that the system of d-rules, which we have called ‘TI’, is
a system of transformation rules of Language I. As Language I is an exten-
sion of a version of PRA0, its language LI can express all primitive recursive
functions, and the system TI can capture (case-by-case prove) all primitive
recursive functions.10 Language I is thus powerful enough to define a sys-
tem of Gödel numbering. Via some suitable system of arithmetization, it can
represent the functions and concepts that are, in Carnap’s terminology, def-
inite, i.e., effectively computable and decidable, respectively. Consequently,
as the theory TI is a system of definite d-rules, the relations based on these
rules are representable in Language I itself (i.e., expressible in LI as well as
capturable in TI). On the other hand, the theory SI is a system of indefinite

8Cf. de Rouilhan [2009], p. 133.
9Cf. Coffa [1991], pp. 287–288.

10For the definition of the concept of capturing a function or a relation, see footnote 25
on p. 99.
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c-rules for Language I which are not, in general, representable in Language
I. In the light of this distinction, I propose that we should take Language I
as a unity consisting of the language LI together with the deductive system
TI; that is, we should not think of SI as an internal component of Language
I but rather as of a separate metatheory formulated in a different language.
If we accept this proposal, the definiteness of Language I will no longer be
problematic.

What then is the status of the system SI with respect to Language I?
To put it briefly, it is a system of rules formulated for Language I in a
suitable metalanguage. As TI is an incomplete theory, there will be a logical
sentence S of LI such that neither S nor ¬S is derivable. This does not
mean, though, that TI and S are unrelated. On the contrary, there will be
a particular relation holding between this S and TI but it will be one that
Language I cannot represent. In order to represent this relation, we need to
approach Language I from a different perspective—which, in this particular
case, takes on the shape of the theory SI. To conclude, SI is an indefinite
theory introduced in the metalanguage with the aim of describing more fully
the logical structure of the definite Language I.11

5.2 Analyticity for Language II

The indefinite Language II is an expressively and deductively rich simple the-
ory of types which includes Peano arithmetic (PA). What follows is again
a simplification which omits some unnecessary features. The types of ex-
pressions are defined as follows:

– 0 is the type of numerical expressions;
– if t1, . . . , tn are the types of the n arguments composing the argument

expression Arg, then (t1, . . . , tn) is the type of the predicate Pr occur-
ring in a formula Pr(Arg);12

– if t1, . . . , tm and tn are the types of the argument expressions Arg1 and
Arg2, respectively, then (t1, . . . , tm : tn) is the type of the functor Fu
occurring in a formula Fu(Arg1) = Arg2.

Carnap also speaks of a level of an expression, which is just a natural
number: the level of expressions of type 0 is 0. The level of a predicate and
a functor is 1 higher than the greatest level of the arguments. For instance,
the level of an expression belonging to the type ((0), (0, 0 : 0)) is 2.

The vocabulary of the language LII includes the standard vocabulary of
higher-order predicate logic with identity, with unlimited supply of variables

11This reading is also supported by what Carnap himself later says in his remarks on
the Logical Syntax appended to the Introduction to Semantics. See Carnap [1942], p. 247.

12Carnap uses ‘Pr’ with the initial capital letter to signify a predicate expression, i.e., a
complex possibly composed of several symbols. ‘pr’ signifies a syntactically-simple predi-
cate. The same distinction applies to ‘Fu’ and ‘fu’.
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of each type and unbounded quantifiers. Among the primitive logical sym-
bols of LII are also ‘0’ and the successor functor ‘′’. Additional primitive
descriptive constants of suitable types may be introduced as needed. Yet,
only the expressions we have just mentioned are considered logical. The
formation rules are standard—observing, of course, the type restrictions—
but once again with the convention that a formula with free variables can
be asserted as an (open) sentence. This decision makes some subsequent
definitions of Carnap’s rather more complicated; for this reason, we will not
follow Carnap and we will accept as sentences only formulas without free
variables.

We take the deductive system TII of d-rules to include the standard ax-
ioms and rules of inference of (typed) higher-order predicate calculus with
identity. Furthermore, TII contains a version of the axiom of choice and the
law of extensionality for predicates and functors, according to which coex-
tensive predicates and functors are interchangeable salva veritate. Finally,
arithmetical axioms are represented by the recursive definition of the suc-
cessor function and the axiom of complete induction. Thus the theory TII

is, indeed, very strong. Not only that it includes (higher-order) PA but it in-
corporates a form of (higher-order) set theory (in which sets are represented
by predicates).

Still, TII is an incomplete theory with respect to the logical sentences
of LII. In fact, given that it is built on higher-order logic, which is incom-
plete, this fact is hardly surprising. Nonetheless, this time Carnap is able
to present a particular non-demonstrable sentence as a witness of TII’s in-
completeness; moreover, this sentence is first-order (first-level, according to
Carnap’s terminology). As expected, the incompleteness argument is largely
based on the technique developed in Gödel [1931].13 Yet, Carnap introduces
one innovation worth mentioning: he proceeds via a so-called ‘diagonaliza-
tion lemma’ (also called ‘fixed point theorem’).14

Carnap adopts a system of Gödel numbering, allowing to code symbols
and expressions of LII as well as sequences of well-formed formulas such as
proofs.15 As the coding system is standard, it is unnecessary to describe it.
The derivation of the diagonalization lemma proceeds in two steps.16 First,
we need two definitions. (Note that ‘A’ designates any expression of LII.)

13Carnap’s argument was—due to space restrictions—left out from the original German
edition of Logische Syntax der Sprache (Carnap [1934b]). It was published separately in
two articles as Carnap [1934a] and Carnap [1935]; it was restored in the English edition
(Carnap [1937]).

14It was Carnap who first stated it in print but it is not clear whether the lemma may
be considered his own invention. It is undoubtedly implicit in Gödel’s proof, which, after
all, involves its individual instance. Yet, it cannot be ruled out that it was really Carnap
who first arrived at the general form of the lemma. In any case, Gödel [1934], p. 63, gives
credit to Carnap.

15Cf. Carnap [1937], §19, pp. 54–58.
16Cf. Carnap [1937], §35, pp. 129–131.
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Carnap defines the function subst(x, s, y) in which x = pA1q, y = pA2q
and s = pzq. The value of the function subst thus is pA1(z/A2)q, i.e., the
Gödel number of an expression resulting from A1 by the substitution of A2

for the free variable z. Carnap goes on to define the function str(n) which
assigns to a natural number n its Gödel number. Now comes the second
step. Having the two functions in hand, Carnap considers a particular value,
subst(x, 3, str(x)), where x is a numerical variable and 3 is the Gödel number
directly assigned to x as the first numerical variable. Let ϕ be a formula
with a single free variable x, and let us see what happens if we substitute
subst(x, 3, str(x)) for x to obtain ϕ(subst(x, 3, str(x))). Let us designate
this formula as ψ. For any ϕ, the Gödel number pψq can be calculated.
This number belongs to the range of the numerical variable x, so we may
substitute it for x in ψ. Hence we obtain ϕ(subst(pψq, 3, str(pψq))). If we
abbreviate subst(pψq, 3, str(pψq)) as pSq, we immediately obtain ϕ(pSq).
However, if we unpack S, we see that it is equivalent to ψ(x/pψq), which is
in turn equivalent to ϕ(subst(pψq, 3, str(pψq))). If we put the equivalences
we have established together, we obtain that S ↔ ϕ(pSq). But we have
accomplished more than this biconditional. We have shown that for an
arbitrary formula ϕ there will be a sentence S such that this equivalence
holds. Hence we may state the diagonalization lemma as follows:

For any formula ϕ of LII with one free variable, there is a sentence
S such that TII ` S↔ ϕ(pSq). (S-Dia)

(The sentence S satisfying the lemma is often called the ‘fixed point’ for ϕ.)
This is a rather powerful result. The incompleteness of TII follows from it
in a single step; moreover, it can be used to derive additional metamathe-
matical theorems.

To see how the incompleteness of TII is established using (S-Dia), it
suffices to take as ϕ the predicate designating the property of not being
demonstrable in TII. This primitive recursive property can be explicitly de-
fined in TII but, to save us the effort, we will simply assume that we have
it available as ∀r¬BewTII

(r, x). Now it immediately follows from (S-Dia)
that there is a fixed point G such that TII ` G ↔ ∀r¬BewTII

(r, pGq).17

From this the following general result can be obtained: let TII be a con-
sistent, (primitive recursively) axiomatized theory that is able to capture
primitive recursive functions as functions, and let G be a fixed-point for
∀r¬BewTII(r, x). Then TII 0 G; and if TII is ω-consistent, TII 0 ¬G.18

(Note that there is no complete “core” such as was PRA0 in Language I, so
there is no way that Language II could be considered definite.)

17To get an example of such a sentence G, the easiest way is perhaps to take the
Gödel number g = p∀r¬BewTII(r, subst(x, 3, str(x)))q; the desired sample sentence G will
then be ∀r¬BewTII(r, subst(g, 3, str(g))). We will not present the syntactic argument
establishing that both G and ¬G are unprovable in TII.

18See Smith [2007], pp. 175–176, for the proof.
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Carnap responds to the incompleteness of the logical part of Language
II in the same way as to that of Language I: we need to introduce a system
of c-rules, SII, for Language II. However, this time the adopted strategy
follows an exactly opposite direction than before. Instead of setting up the
c-rules determining the relation of (direct) consequence, and then defining
the concept of analyticity, Carnap first defines analyticity and only then,
with its help, the relation of consequence. Furthermore, the central part in
the system of c-rules is no longer played by the ω-rule but by the notions of
valuation and evaluation, which will be described shortly. Why does Carnap
dismiss the ω-rule as a basis of the relation of consequence for Language II?
There are two reasons. Firstly, the version of the ω-rule Carnap adopts for
Language I involves only numerical variables, and it is not applicable to
higher-order variables in any straightforward manner,19 so it is inapplicable
in this form to LII. Nevertheless, as we mentioned in section 5.1, it has been
suggested by de Rouilhan [2009] that this difficulty is surmountable, and
that consequence for Language II can be defined via the ω-rule. Secondly,
as we will see below, Carnap’s new definition of consequence for Language
II entails that the ω-rule in the form given for Language I is logically valid
(analytic).

Before outlining Carnap’s new path leading to the definition of analyt-
icity, it needs to be pointed out that it is excessively complicated. Together
with the auxiliary concepts, it is elaborated in §34b–d of the Logical Syntax,
and it spans over 12 pages of rules and definitions.20 For this reason, what
follows is not a full presentation of the route towards analyticity but rather
a contracted reconstruction of the basic ideas ideas behind various Carnap’s
definitions, with considerable modifications with the aim of making the re-
sult more compact and more easily accessible.

The first stage of the progress towards analyticity consists in establish-
ing that every sentence of LII can be converted into a sentence which has a
certain basic form, namely it is atomic, it is a quantifier-free sentence formed
using the propositional connectives and negation, or it is a quantified sen-
tence in prenex normal form. Carnap calls this transformation process a
‘reduction’ and the result a ‘reduced sentence’. The whole point is simply
to reduce the number of different forms sentences can have to a very lim-
ited number, for which the subsequent definitions can be provided. Without
disclosing any details, we will assume that, as far as non-atomic sentences
are concerned, it suffices to consider the forms: ¬S, S1 ∨S2 and ∀v(ϕ(v)),
where ϕ is a quantifier-free matrix.

19Viz. the broader discussion of the ω-rule in Carnap [1937], §48, p. 173.
20E.g., Tarski [1936a], p. 414, when considering Carnap’s definition of contradictoriness,

complained that ‘Carnap’s definition of this concept is too complicated and special to be
reproduced here without long and troublesome explanations’. Kleene [1939], pp. 83–
84, responded by offering his own, much neater and shorter version of the definition of
analyticity for Language II, which is presumably equivalent to Carnap’s.
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Then come the rules of valuation. These rules provide for the assign-
ment of values both to free variables and to constants. The ranges of possible
values assigned to variables are chosen according to their types:

– the range of values for variables of type 0 is the class of numerals ‘0’,
‘0′’, ‘0′′’, . . . ;

– the range of values for variables of type (t1, . . . , tn) is the power set of
the Cartesian product B1× . . .×Bn, where B1, . . . ,Bn are valuations
for t1, . . . , tn;

– the range of values for variables of type (t1, . . . , tm : tn) is the class of
all functions from B1 × . . .×Bm into Bn, where B1, . . . ,Bm,Bn are
valuations for t1, . . . , tm, tn.

The two arithmetical constants present among the logical symbols of LII are
assigned fixed values: the value of ‘0’ is ‘0’ and the value of the functor ‘′’
is the successor function, i.e., a function from a numerical expression St to
its successor St′. It is important to note a rather special aspect of Carnap’s
strategy, namely that the value assigned to an expression A is always of the
same type as A itself.21 So the value assigned to a numeral St is not a
natural number but again a numeral; the value of a predicate is not a class
of natural numbers but a class of numerals, etc.

Having obtained the ranges of values that are to be assigned to free vari-
ables of arbitrary types and to logical constants, it remains to deal with
sentences. Yet what values are to be assigned to sentences? Truth values?
Propositions? Carnap chooses differently. He picks out two elementary
sample sentences, namely the obviously true ‘0 = 0’ and the obviously false
‘0 6= 0’. These “ultimate” sentences—i.e., strings of symbols—are, for Car-
nap, syntactic replacements of the truth and the falsehood.22 They repre-
sent, so to speak, an irreducible atomic value that is given to us in language
and that has to be accepted as evident.

Now come the rules of evaluation. Sentences are complex units but
some are more complex than other. Carnap chooses to approach first the
atomic forms. Note that the rules are so formulated that they apply equally
to atomic sentences (containing only constants) and atomic formulas (con-
taining free variables). At this particular moment, we will use ‘ϕ’ to stand
both for a formula and for a sentence. The rules of evaluation are:

– let B1 and B2 be the values assigned to Arg and Pr, respectively;
then ϕ of the form Pr(Arg) is assigned the value ‘0 = 0’ if B1 ∈ B2;
otherwise it is assigned ‘0 6= 0’;

– let B1 and B2 be the values assigned to A1 and A2, respectively; then
ϕ of the form A1 = A2 is assigned the value ‘0 = 0’ if B1 = B2;
otherwise it is assigned ‘0 6= 0’.

21Cf. Carnap [1937], p. 109.
22Cf. Coffa [1991], p. 291, who considers this choice to be another confusing aspect of

Carnap’s strategy.
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With the technique for assigning values to atomic sentences and formulas
in hand, we can proceed to more complex sentential forms. The clauses for
the basic propositional connectives can be formulated as follows:

– a sentence S of the form ¬S1 is assigned the value ‘0 = 0’ if S1 is
assigned ‘0 6= 0’; otherwise it is assigned ‘0 6= 0’;

– a sentence S of the form S1 ∨S2 is assigned ‘0 = 0’ if at least one of
the disjuncts is assigned ‘0 = 0’; otherwise it is assigned ‘0 6= 0’.

The clauses for the remaining connectives can be easily obtained on the
basis of those we have just provided. Given the fact that any well-formed
sentence or formula of LII without quantifiers is finite, the decision what
value it is to be assigned can always be reached in a finite number of steps.

It remains to deal with the assignment of values to sentences containing
quantifiers. Here ‘ϕ’ stands for a quantifier-free matrix:

– a sentence S of the form ∀v(ϕ(v)) is assigned the value ‘0 = 0’ if for
every assignment B of a value to the variable v ϕ is assigned ‘0 = 0’;
if there is at least one assignment B of a value to the variable v for
which ϕ is assigned ‘0 6= 0’, S is assigned ‘0 6= 0’.

The clause for the existential quantifier is derived from the clause for the
universal quantifier. Taken all together, the clauses listed above enable us
to evaluate a sentence of an arbitrary form.

After all these preparatory steps, we are ready to define analyticity. A
logical sentence S is analytic if the evaluation leads to the assignment of
the value ‘0 = 0’ to S. It is contradictory, if the evaluation yields the
value ‘0 6= 0’. A descriptive sentence S1 is analytic if the descriptive con-
stants it contains are replaced by universally bound variables of appropriate
types, and the resulting logical sentence S2 is analytic. It is contradictory
if every valuation for descriptive constants occurring in S1 leads to the as-
signment of ‘0 6= 0’ to S1. Carnap applies these two properties also to
classes of sentences. A sentential class K is analytic if all its members are
analytic; it is contradictory if at least one of its members is contradictory.
(If a sentential class contains descriptive sentences, the assignment of values
to the descriptive constants has to be carried out simultaneously throughout
the class, i.e., identical constants occurring in different sentences have to be
assigned identical values.) A sentence or a sentential class that is neither
analytic nor contradictory is synthetic.

On the basis of these definitions we can introduce the relation of conse-
quence. A sentence S is a consequence of the sentential class K, K |= S,
if and only if K ∪ {¬S} is contradictory. Note that this definition of con-
sequence makes the ω-rule superfluous as it is already established that an
infinite class {Pr(0),Pr(0′),Pr(0′′), . . .} |= ∀z(Pr(z)).23 It follows that the

23Cf. Carnap’s theorem 34f.10, p. 120.
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relation of consequence is not compact, i.e., there are sentences that are
consequences of an infinite sentential class without being consequences of
any of its finite subclasses.24

The complex of the rules leading to the definition of analyticity and
contradictoriness constitutes a system of c-rules, SII, for LII. Unsurprisingly,
the c-rules are indefinite. It is not, in general, effectively decidable whether
an arbitrary sentence of LII is analytic, contradictory or synthetic. Now
the system SII is very strong. Carnap is able to show in SII that every
axiom of TII is analytic, and that the relation of derivation is an instance
of consequence, i.e., that it is analyticity-preserving. Together, this yields
that every theorem of TII is analytic, from which it follows that TII is a
consistent theory.25 So Carnap is able to give a relative consistency proof
of TII: TII is consistent if SII is. Indeed, Carnap is well aware of the fact
that ‘the significance of the presented proof of non-contradictoriness must
not be over-estimated’ as it is carried out in a stronger theory SII which can
itself be inconsistent (Carnap [1937], p. 129). Furthermore, one is able to
establish in SII that also some sentences that are not demonstrable in TII

are analytic, i.e., are consequences of TII. Examples are Gödel’s unprovable
sentence G or the sentence ∀r¬BewTII

(r, p0 6= 0q), which can be shown
to be analytic. (The proofs are essentially the same as those on p. 99 in
section 4.5.) In fact, we may generalize: every logical sentence of LII is
either analytic or contradictory.26 This result can be also expressed by
saying that the theory SII is complete with respect to the logical part of LII
(i.e., SII proves every sentence involving only the logical vocabulary of LII
or its negation). This concludes the technical development of the concept of
analyticity for Language II.

5.3 Analyticity in General Syntax

How is analyticity introduced in general syntax and what is the role it is in-
tended to play within the broader framework of Carnap’s syntactic project?
One should not forget that Languages I and II are just examples; it is the
discipline of general syntax that is the true goal. Its purpose is to pro-

24Cf. Carnap [1937], §34f, p. 117.
25Cf. Carnap’s theorem 34i.24, p. 128.
26Cf. Carnap’s theorem 34e.11, p. 116, and its proof. To see that this is really the case,

assume that a sentence S is logical and synthetic. By means of the rules of reduction
and evaluation of sentences containing propositional connectives, it can be transformed
into one of these forms: 0 = 0, 0 6= 0 or Q1v1 . . . Qnvn(ϕ(v1 . . . , vn)), where Q is one of
the quantifiers and ϕ is quantifier-free. As the first form is analytic and the second one
contradictory, we only need to consider the last form. Now, the rule for the evaluation of
sentences containing quantifiers exhausts all the possibilities: for the universal quantifier,
either all assignments yield ‘0 = 0’, or there is at least one that yields ‘0 6= 0’. Similarly
for the existential quantifier. In either case, the sentence S will be assigned a singular
value. Hence, despite the assumption, it will not be synthetic.
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vide a broad framework for the philosophy of language and mathematics
that Carnap pursues. As it is supposed to be a systematic study of any
formal theory in any language, general syntax faces several challenges that
particular theories and languages do not face.

Above all, we have seen that in Languages I and II we start with the
division of the vocabulary into two distinct categories, i.e., logical and de-
scriptive, and the division is carried out simply by listing the logical terms.
Obviously, this approach is no longer feasible if we are supposed to deal
with all languages in general. Hence Carnap reverts the procedure. Instead
of seeking a relation that would make any sentence belonging to the an-
tecedently delineated logical part of the language determinate, he defines
the distinction between the logical and the descriptive on the basis of an
antecedently chosen relation of (direct) consequence. This is to say that the
relation of direct consequence is taken as the very starting point of the en-
terprise of general logical syntax. The introduction of the relation requires
that there is a system of formation rules determining what series of symbols
are well-formed formulas of the given language, LA. Once this requirement
is satisfied, we simply assume that we have got a system of transformation
rules by which the relation of direct consequence is determined.27 That is,
no specification is needed. The relation is taken to be quite arbitrary; any
relation of direct consequence will do. The transformation rules constitute
the familiar c-rules, SA, on the basis of which the relation of consequence
simpliciter can be defined: a sentence S is a consequence of a sentential
class K1 if S is a member of every class K such that (1) K is closed under the
relation of direct consequence, i.e., it contains all direct consequences of its
subclasses; (2) K1 is a subset of K. A sentence is said to be valid if it is a
consequence of an empty class; it is contravalid if it has every sentence as
a consequence. If we restrict ourselves to those among the transformation
rules that are concerned exclusively with effectively decidable properties of
(classes of) well-formed formulas, we will get a system of the familiar d-rules,
TA, determining the relation of direct derivability and inference.

Being valid is not the same as being analytic. The reason is that the
transformation rules may also involve other kinds of rules apart from the
logico-mathematical ones; e.g., physical rules or various meaning postulates
governing the use of individual descriptive concepts. Thus, if we want to
preserve the term ‘analytic’ as meaning ‘true in virtue of the rules of logic
(and mathematics) alone’—which is, as we have seen, how Carnap defines
analyticity for Languages I and II—we need to separate the rules that are
logical from those that are not. In general, we need to separate the logical
part of LA from the extra-logical, descriptive one. How can we achieve this?
Carnap’s ingenious idea is to look for a syntactic, formally specifiable prop-
erty that would make it possible to carry out the division without requiring

27Cf. Carnap [1937], §46, p. 169.
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going beyond mere symbols. The property in question is to be determinate,
i.e., to be either valid or contravalid. A slightly modified version of Carnap’s
definition of the distinction between logical and descriptive expressions can
be sketched as follows.28 Assume, for the sake of simplicity, that a sym-
bol of LA is either logical or descriptive irrespective of context. Let a be
any symbol, and let K be the largest class of symbols that fulfills the two
following conditions: (1) for every symbol a ∈ K there exists a sentence
that is composed only of members of K; (2) every sentence that is composed
solely of members of K is either valid or contravalid. Now, to guarantee
uniqueness, take Kl to be the intersection of all the classes satisfying the
aforementioned conditions. An expression is logical if it is composed only
of symbols belonging to Kl. Otherwise it is descriptive. To put it briefly,
logical is the vocabulary belonging to the intersection of classes which are
such that everything sayable by means of the symbols they contain is deter-
minate.29 On the other hand, the descriptive vocabulary does not share this
property. While some sentences containing descriptive expressions will also
be determinate, there will be descriptive sentences that are indeterminate.30

With the definition of logicality in hand, we can easily delimit the logi-
cal rules as those in which descriptive expressions occur vacuously, i.e., any
other descriptive expressions of the same kind may be uniformly substituted
for them without ruining the validity of the sentences.31 A sentence is logi-
cally valid or analytic if its validity follows from the logical transformation
rules alone; similarly for logically contravalid sentences, which are said to be
contradictory. Again, sentences that are neither analytic nor contradic-
tory are synthetic. Note that valid sentences whose validity follows from
other than logical rules are synthetic; similarly for contravalid sentences.

What are the abilities of general syntax to speak about its own linguistic
forms? We know that any theory involving a sufficient amount of arithmetic
for developing a system of Gödel numbering can arithmetize its own syn-
tax. Let TA be a consistent axiomatizable theory capable of carrying out
arithmetization. Then TA can express and prove a great deal about itself,

28Carnap [1937], §50, pp. 177–178.
29Cf. Creath [1996], p. 258. Carnap’s definition is in several respects problematic.

Several authors have been able to come up with examples of languages in which expressions
that we would want to have in the logical category, such as the existential quantifier, the
symbol for identity or numerals, come out as descriptive (e.g., MacLane [1938], p. 174,
Creath [1996], pp. 258–260). On the other hand, there are also examples of languages
in which some presumably descriptive expressions qualify as logical (Quine [1960], pp.
398–399). For a broader overview of the challenges to Carnap’s definition of logicality as
well as a proposal of a solution to them see Bonnay [2009].

30Despite the fact that Carnap articulates his definitions rather clearly, there persists a
misunderstanding. Potter [2000], pp. 268–269, for instance, presents an argument designed
to show that Carnap’s definition of logicality, implausibly, makes the universal quantifier
descriptive. However, Potter fails to recognize that it is not deductive completeness that
characterizes the logical rules but a broader property of analyticity or validity.

31Carnap [1937], §51, pp. 180–181.
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its abilities and limits. Yet it is important to realize that there are several
rather different levels on which it can do that. Firstly, (assuming a version
of Church’s thesis, we may claim that) TA can capture (case-by-case prove)
by means of formulas of LA all effectively decidable relations and effectively
computable functions. To use Carnap’s term, TA can capture its own def-
inite syntactic properties and relations. Among other things, TA is strong
enough not merely to describe but actually to capture the entire definite
kernel of Language I. However, while the relation of being directly derivable
is definite, the relation of being derivable simpliciter is not. TA will not
be able to prove for any sentence S whether the Gödel number pSq has
the property ∃r(BewTA

(r, x)). Still, the property of provability or being a
theorem is expressible in LA, and definable in TA. So the theory TA can
capture the definite relations but, moreover, it is also able to define impor-
tant indefinite properties and relations such as that of theoremhood. This is
the second way in which a theory TA is able to speak about its own syntax.

Yet what about indefinite syntactic concepts such as analyticity? Can
analyticity be defined and employed within the arithmetized syntax repre-
sentable within TA? Carnap’s answer is negative. After a consideration of
Grelling’s and Richard’s paradoxes and the paradox of the liar, he reaches
the conclusion formulated in the theorem 60c.1:

If S is consistent, or, at least, non-contradictory, then ‘ana-
lytic (in S )’ is indefinable in S. (Carnap [1937], §60c, p. 219;
Smeaton’s translation.)

This is nothing else than a version of Tarski’s theorem of undefinability of
truth. The undefinability is not restricted to analyticity; it holds also of
other c-concepts such as validity, consequence, content, etc. Closely con-
nected is the theorem stating that the theory TA, provided it is consistent,
cannot prove its own consistency (viz. Carnap’s theorem 60c.2, a version of
Gödel’s second incompleteness theorem). So one may conclude that there
are syntactic properties and facts that are inevitably beyond the reach of
any single consistent recursively axiomatized theory.

Of course, this is nothing surprising, neither for us nor for Carnap. Car-
nap knew well Gödel’s results and it was with a clear understanding of the
incompleteness theorems that he set off on his syntactic project. The metic-
ulous separation of inference from consequence, provability from analyticity,
and generally d-rules from c-rules was largely driven by the appreciation
of the incompleteness phenomena as well as by the vision of developing a
philosophical conception that would encompass all of these deficiencies and
erect foundations for a deepened philosophical approach to empirical and
pure aspects of knowledge.

So we have got the property of analyticity for LA, which is just the
truth in virtue of the logical rules of SA, and the property of validity for
LA, which is the truth in virtue of the transformation rules of SA in general.
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Before we conclude the whole expository part concerned with the concept
of analyticity, let us just add the following. Carnap uses these properties to
obtain an explicatum for the pre-theoretical notion of the meaning or the
sense of a sentence, which he calls ‘content’. The content of a sentence
S is the class of non-valid sentences which are consequences of S. If the
given theory involves only logical rules, which is the case of Languages I and
II, the content of a sentence is the class of its non-analytic consequences.
The concept of content is thus clearly intended to represent the part of the
meaning of a sentence that is not determined by the rules constitutive of
the given language; in particular, it aims to represent the extra-logical, non-
mathematical part of meaning. It immediately follows from this definition
that a valid sentence, whose class of non-valid consequences is empty, has
no content, while a contravalid sentence, which has as a consequence any
sentence whatsoever, has a total content. Obviously, among the sentences
that are without content are all the true sentences of logic and mathematics.
Note that this is no deep revelation; it simply follows by definition. Recall
that it is a characteristic property of logical expressions that the truth value
of all sentences composed solely out of them can be determined by employing
the transformation rules of SA alone. Hence the completeness of the logical
part of SA with respect to the logical sentences of LA is not something that
needs a proof: it is a defining condition imposed on the notion of logicality.
To put it slightly differently, to be a logico-mathematical sentence means to
be a sentence that does not contain any descriptive vocabulary essentially;
therefore all logico-mathematical sentences are analytic or contradictory, i.e.,
either without any content or with total content. Only sentences involving
descriptive vocabulary that does not occur vacuously have non-degenerate
content, i.e., mean something but not everything.

In conclusion of this section, there is an important point that needs
to be emphasized. Gödel [1953/9], p. 339, words an influential objection
against Carnap’s analytic–synthetic distinction as well as against his di-
vision between the logical and the descriptive. As we have seen, Carnap
claims that analytic sentences have null content, i.e., they have no non-valid
consequences. At the same time, the truth value of synthetic sentences
is supposed not to be determined by the rules of logic (and mathematics)
alone; it is supposed to reflect extra-linguistic or factual factors. This im-
plies, according to Gödel, that ‘the rules of syntax must be demonstrably
consistent, since from an inconsistency every proposition follows, all factual
propositions included’ (ibid.). That is, in order to be sure that our distinc-
tion captures what it intends to, we are required, says Gödel, to be able to
prove the consistency of the given system. However, it is well known that a
proof of consistency of any theory meeting some basic requirements can be
given only in a stronger theory whose consistency must be assumed with-
out a proof—or, once again, proved in another, yet stronger theory, etc. In
general, the requirement of the provability of consistency of a given system
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cannot be satisfied. Consequently, it cannot be maintained that analytic
sentences are devoid of extra-linguistic consequences.

This argument of Gödel’s seriously misrepresents Carnap’s position. Let
us pass over the question whether it is justifiable to require the provabil-
ity of consistency rather than just consistency. The substantial assumption
behind Gödel’s objection is that there exists an absolute, clear-cut dividing
line between the factual or extra-linguistic on the one hand and the logical
or intra-linguistic on the other. Yet, it is a crucial part of Carnap’s strategy
that there is no such absolute division. The distinction between the logical
(intra-linguistic) and the descriptive (extra-linguistic) is in no way absolute;
it does not exist prior to but is established by the definition of logical vo-
cabulary.32 Understanding what is factual or extra-linguistic presupposes
using a language in which we are able to distinguish between the logical and
the descriptive vocabulary. That is, there is no realm of empirical facts that
are given to us in some direct, non-mediated fashion. The extra-linguistic
or factual is simply whatever does not follow from the rules of the linguistic
framework itself—and if every sentence of the given language is determined
by the rules of the language, then there is simply no factual element what-
soever. Using Carnap’s later distinction, we can say that the questions of
what is factual or descriptive and what is logical, or what is contentful and
what is without content, etc., are all internal, and not external questions.33

5.4 From Consequence to Inference

We have seen that no consistent recursively axiomatized theory can capture
or define all of its own syntactic properties and relations and prove or state
certain significant facts about them. How should one react to this discovery?
The dominant perspective Carnap assumes to regard the whole issue is that
of the vantage point of the syntax-language, i.e., a metatheory formulated
in a metalanguage. We will show below that this perspective is not the
only one but for the time being we will use it as a framework to depict a
concern connected with the treatment of analyticity developed in sections
5.1–5.3. The key idea involved here is that if we cannot exhaust the total-
ity of syntactic features of a given theory from within the theory itself, we
have to approach it from a stronger metatheory formulated in a richer met-
alanguage. Aiming at making our subsequent discussion maximally clear,
let us set up the following convention. Let TA be an object-theory formu-
lated in an object-language LA. Let TM be a different theory formulated
in another language LM. We will say that TM is a metatheory for TA if it

32Cf., in particular, Carnap [1937], §50, p. 177. For a discussion of this important point,
see Friedman [1999b], pp. 224–225, and Awodey and Carus [2004], pp. 206, 211–213.

33This distinction, formulated in Carnap [1950], pp. 206–213, is further discussed in
section 5.6.
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includes a system of c-rules SA for TA. Assume that we are in possession of
a metatheory TM for TA.

The question we want to ask now is: What is the relationship between
consequence for TA and inference in TM? Does the consequence relation
persist as a unique, fundamentally distinct c-relation that coexists alongside
the relation of inference in TM? To put it differently, does TM as a system of
logic and mathematics involve two irreducibly different modes of connection
between sentences, which ultimately give rise to a logic of inference and a
different logic of consequence? Or is there a way of bringing these different
kinds of connection down to a common ground? In particular, can the
relation of consequence for TA be subsumed under the relation of inference
in TM? What exactly happens with the concepts such as consequence or
analyticity, defined for an object theory, on the level of metatheory? This
series of questions can be rephrased into a single one: Can the c-concepts
for TA be explicitly defined within the metatheory TM, i.e., can they be
eliminated in TM? Or are they explicitly undefinable, so that they must be
adjoined in the form of a special axiomatic theory, SA, to the rest of the
deductive apparatus of TM—if TM is to serve as a metatheory for TA? Note
what is at stake. Basically, if the c-concepts turned out not to be explicitly
definable in terms of d-concepts of the metatheory but had to be introduced
as undefined primitives governed by additional axioms, we would have to
furnish a sufficient justification for a whole new branch of logic.

Carnap’s outlook is rather clear. He emphasizes that the relation of in-
ference is more fundamental than that of consequence, and that the method
of derivation, or inference, has a clear logical priority. But not only that;
consequence should be regarded in a sense as derivative of inference:

[I]n fact, the method of derivation always remains the funda-
mental method; every demonstration of the applicability of any
term is ultimately based upon a derivation. Even the demonstra-
tion of the existence of a consequence-relation—that is to say, the
construction of a consequence-series in the object-language—can
only be achieved by means of a derivation (a proof) in the syntax-
language. (Carnap [1937], §14, p. 39; Smeaton’s translation.)

So in order to show in TM that a sentence of LA is a TA-consequence of a
class of sentences, TM has to be able to prove that this is the case. This is to
say that within the metatheory the relation of consequence for the object-
theory requires an inferential treatment. Naturally, the same holds of other
c-concepts. In particular, to show that a sentence of LA is analytic, it has
to be proved in TM that it is such. Hence c-concepts for LA, defined in the
metatheory TM, rather than being treated as concepts sui generis, are to be
entangled in the inferential interplay of the metatheory.34

34This reading of Carnap’s intentions is further confirmed by the statement, made eight
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The basic outlook is this: There is no special logic of consequence along-
side that of inference. Once defined, the relation of consequence, the prop-
erty of analyticity, etc., become standard pieces of inferential machinery,
and the system of c-rules by which they have been introduced gets absorbed
in the metatheory, joining the rest of the deductive apparatus.35 The idea
behind the clear-cut separation of c-rules from d-rules is not that these differ-
ent collections of rules constitute two fundamentally distinct kinds of logical
relations but rather that no logico-mathematical theory meeting some basic
requirements can be in its entirety exhausted by a single system of transfor-
mation rules. To get a full grasp of syntactic properties characteristic of the
given theory and to formulate and establish certain facts about it, we need
to extend the transformation rules in a particular direction.

However, Carnap does not give us more than a statement of his basic
vision; he does not provide the details of how a metatheory could explicitly
define c-concepts such as analyticity or consequence for the object-theory.
The definitions he offers are informal, formulated in German or English.
Yet, if Carnap’s vision is correct, they should be formalizable. Moreover,
given that the metatheory can arithmetize its own syntax, the c-concepts
of the object-theory must render themselves fully to an internal treatment
within the metatheory. With the hindsight, it is not hard to see how such
a formalization would proceed, especially in the case of Carnap’s Language
II. On the other hand, a suitable formalization of the system of c-rules for
an arbitrary object-theory in general syntax would have to be more or less
guessed. For this reason, we will briefly consider merely the question of for-
malization of the definition of analyticity for Language II, leaving Language
I and general syntax aside.

The individual clauses of the informal definition of analyticity for LII as
they were presented in section 5.2 above can be restated as clauses involving
a function f that takes Gödel numbers of sentences of LII as arguments
and assigns to them either p0 = 0q or p0 6= 0q as a value. Roughly, the
clauses of section 5.2 become formulas of the following form: ∀x((x = p. . .q∧
f(x) = p0 = 0q)↔ . . .), in which all the variables—apart from f—possibly

years after the publication of Logische Syntax in the appendix to Introduction to Seman-
tics, that at that time he would prefer to speak of ‘provable’ in a related metatheory to
speaking of ‘analytic’ in the object-theory. Viz. Carnap [1942], p. 247.

35This was no peculiarity on the part of Carnap. In Procházka [2008], I attempted
to show that Tarski’s understanding of the “semantic” concept of logical consequence
as defined in Tarski [1936a] was driven by a similar conception of logic as a discipline
occupied with the relation of inference.

Moreover, this interpretation makes it possible to defend Carnap against a serious ob-
jection to his conception of analyticity developed in Friedman [1988], pp. 89–94. With
some simplification, Friedman claims that the fact that analyticity is not definable by
means of the d-concepts of the object-theory but must be supplemented by c-concepts
undermines Carnap’s position because the methods based on c-concepts go beyond those
that are acceptable in logical syntax. However, if we accept that the c-concepts for the
object-theory are absorbed in the d-concept of the metatheory, the problem disappears.
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occurring in the given clause are bound. Note that the right-hand side of
the biconditional will typically contain occurrences of terms designating the
values assigned by the assignment function to the Gödel numbers of the
components making up the sentence with the number p. . .q. Let ‘Conj(f)’
designate the conjunction of the individual clauses for the different forms of
sentences, containing just the variable f free. Then we are able to explicitly
define analyticity as:

Ana(x)↔Def. ∃f(Conj(f) ∧ f(x) = p0 = 0q). (D-Ana)

Alternatively, (D-Ana) can be stated using the universal quantifier and the
implication connective. What is crucial to recognize is the fact that, pro-
vided that the individual clauses of the conjunction involve the assignment
function, the language in which the definition is formulated has to contain a
function variable of type (0 : t), where t is the type of the entity assigned to
the given Gödel number. The level number of the given variable will always
be 1 higher than that of t.

Obviously, if a concept is explicitly definable, it means that it has become
eliminable, i.e., it has been established that the concept does not contribute
anything new to the deductive power of the theory or the expressive power
of the language for which it has been defined. However, is such an explicit
definition always possible? Can one approach any object-language from the
vantage point of a metatheory capable of such a definition? Does one always
have available variables of an appropriate higher type than are the types of
the entities over which range the object-language quantifiers? Carnap does
not ask this question, so there is no point in turning to him for the answer.
However, this issue is investigated in Tarski’s monograph on truth (Tarski
[1933]). Unfortunately, Tarski’s dealing with the matter is in several respects
problematic; nevertheless, as the details and intricate implications are not
necessary for the line of reasoning we are following, we will merely attempt
to get a gist of a possible answer to our question.

Tarski introduces the notion of the order of a language, which is deter-
mined by the order of variables it admits. (Tarski’s order of a variable is
what Carnap would call ‘level’.) In the corpus of the monograph, he dis-
tinguishes two basic cases. If the orders of variables a language contains
have an upper bound, the language is said to be of finite order. If they are
unbounded, the language is of infinite order.36 The main result reached in
the corpus of the text is that an explicit definition of truth can be given for
any language of finite order but is impossible for any language of infinite
order.37 The reason is clear: if there is no upper bound on the order of
variables occurring in the object-language, the object-language already con-
tains variables of all possible orders, and there is no way in which a variable

36Cf. Tarski [1933], pp. 219–221.
37Viz. Tarski [1933], p. 265, theses A and B.
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of a higher order could be introduced into the metalanguage. However, the
conclusion arrived at in the postscript, written for the 1935 German edition
of the monograph, is strikingly different: truth can be explicitly defined for
any formalized language without qualification, no matter whether the orders
of its variables are bounded or not. How is this possible? What has brought
about the change? What has actually changed is the notion of order. In-
stead of taking the order of a function or relation variable to be a natural
number determined simply by the order of the arguments it actually takes,
in the postscript it is an ordinal number determined by the highest order
of all variables it could possibly take. This new notion of order allows us to
consider, for instance, function variables taking as their arguments variables
of any finite order such that these orders are not bounded by any natural
number (finite ordinal). Such a variable will not be of an absolutely infinite
order but it will be of quite a particular infinite order, namely ω. Indeed,
once the realm of infinity is breached, we can go on to higher and higher
orders: ω + 1, . . . , ω · 2, . . . , ω2, . . . , ωω, . . .. Now, the sequence of ordinals
serving as measures of the orders of languages is uncountable, whereas—
at least if we restrict ourselves to countable languages, i.e., languages with
countably many symbols—the totality of different variables of the given lan-
guage will always be only countable. It follows that it is in principle possible
to construct, for any given object-language containing variables of arbitrary
high orders, a metalanguage with variables of a yet higher order.38

That is, a truth definition can be given for any language containing
variables of any specific order. Yet, do all variables have a definite order?
Tarski’s answer is a negative one. There are languages in which variables
are taken to range indiscriminately over entities of all orders; such languages
are of indefinite order. Tarski cites, as an example of such a language, the
language of Zermelo-Fraenkel set theory. Surprising or dubious as this may
be, we will not discuss the question whether it is reasonable to take what
is usually considered to be a first-order language as a language of indefinite
order.39 The essential point is that, if we allow for languages of indefinite

38The phenomenon of the availability of uncountable orders for countable languages is
picked out by Gödel in his famous footnote 48a as the “true reason” for the incompleteness
of arithmetic:

[T]he true reason for the incompleteness inherent in all formal systems of
mathematics is that the formation of ever higher types can be continued into
the transfinite [. . . ], while in any formal system at most denumerably many
of them are available. For it can be shown that the undecidable propositions
constructed here become decidable whenever appropriate higher types are
added (for example, the type ω to the system P). (Gödel [1931], p. 610; van
Heijenoort’s translation.)

I.e., if we add variables of appropriate higher types, the explicit truth definition for the
original language will be available, and the original undecidable proposition will become
provable.

39We have touched on the issue of types in ZFC already in section 4.8
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order, there is no way we could get a metalanguage of a still higher order
and define truth for them. Or is there? Astoundingly, Tarski keeps his
thesis that truth is definable for any language intact. The only way he is
able to achieve this, though, is by introducing one more notion of order of
a language. The order of a language containing variables of indefinite order
is no longer determined by the order of expressions it contains but by the
order of entities whose existence is required for a given system of axioms
formulated in this language to be true.40 For instance, according to this
new notion of order, the order of the language of ZFC—with respect to
the ZFC axioms—is nothing else than the smallest inaccessible ordinal. As
there is no axiomatic system of set theory capable of proving the existence of
absolutely all ordinals, there is always a way of obtaining a language whose
order is higher than that of any given object-language. Once these two
distinct construals of what it means for a language to be of a higher order
are joined together, Tarski’s aforementioned fundamental result stated in the
postscript is immediate: an explicit definition of truth can be constructed
for every formalized language.41

The new notion of order, Tarski’s third in a row, is rather peculiar.
First of all, it has no syntactic component. A usual type theory involves a
correspondence between the types of expressions of a language on the one
hand and the types of entities designated or expressed by these expressions
on the other. By contrast, here we deal exclusively with the ontological side
of the equation, which is not reflected in the syntax of the language itself but
in the axioms of a theory formulated in that language. One and the same
language can be assigned different orders with respect to different theories.
A language of a certain order, say LT1 , will be capable of formulating just the
same sentences as a language of a higher order, LT2 , which is the language
of the theory T2 in which the property of truth for LT1 is to be definable.
What changes is the domain of objects over which the variables are taken
to range. Obviously, anything a theory such as T1 proves must be true if
the theory itself is to be true but nothing more is required. Therefore, we
may take the domain of objects over which the variables of LT1 range to
consist exclusively of the objects that T1 proves to exist. The class of all
and only such objects will be an entity of a higher order than anything T1

can prove, hence whatever theory can prove the existence of such a class will
be, according to Tarski’s third notion of order, formulated in a language of

40See Tarski [1983], p. 271.
41Viz. Tarski [1983], p. 273, thesis A. Tarski sometimes says that the precondition for

the possibility of the definition of truth for an object-language is that the metalanguage
must be “essentially richer” than the object-language (e.g., in Tarski [1933], p. 272–273).
Two fundamental ways in which a language can be essentially richer are, among others, the
two ways in which it can be of a higher order. For an argument that essential richness was
originally mainly an informal way of describing the higher-order condition but gradually
evolved into a broader concept, see Ray [2005], pp. 434–441.
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a higher order than LT1 .

However, were not the variables LT1 supposed to range over entities of
all different orders, i.e., over everything there is? How can we simply step
in and restrict the range of these variables to the domain of entities that
are provable in T1? Moreover, in order to formulate the restriction, we need
a stronger theory such as T2, which proves the existence of the domain for
LT1 with respect to T1. That is, why do we impose such a restriction on the
order of LT1 if this very act of restricting the range for the variables raises
additional ontological requirements? It has been rather convincingly argued
by de Rouilhan [1998] that the addition of the postscript to the monograph
on truth marks a profound change in Tarski’s conception of logic, namely
from the universalism—according to which the language of a simple theory
of types is to serve as a universal language in which the totality of human
knowledge can be formulated—to its brisk abandonment. This change is
not explicitly acknowledged but it is hard to see how the third notion of
order could be justified without it. On the other hand, the abandonment
of universalism squares very well with it: there is no preferred universal
standpoint from which one could survey all the entities there are, and there
is no universal language of science for whose orders there does not exist
any upper bound. What is left are individual languages and theories with
their partial assertions about segments of reality. The universal option being
excluded, each of these particular languages is eligible for an explicit truth
definition.42

After this fairly extensive excursus, it is time to return to Carnap. A
key idea put forward by Carnap in the Logical Syntax is his principle of
tolerance, according to which ‘everyone is free to choose the rules of his lan-
guage and thereby his logic in any way he wishes’ (Carnap [1963], p. 55).
That is, science in general is seen as an open playing field where everyone is
permitted to join in with a specific form of logic or a theory formulated in a
particular language he or she has constructed. In the light of this philosoph-
ical standpoint, Carnap’s program is decisively non-universalist. There is
no privileged language; no single system may claim a universal dominance.
Moreover, not only that none of the competing systems is entitled to uni-
versality, but it is an essential requirement that, if a system is to qualify
for joining the competition, it must be able to become an object of study of
logical syntax, i.e., it must be possible to make its rules explicit, and define
its d-concepts and c-concepts. Note that it does not follow that there is a
single, universal system of syntax in which one can study all individual pro-

42As Feferman [2008], pp. 85–86, emphasizes, though, even after undergoing this decisive
shift, Tarski does not assume the position according to which any formalized language
is just a calculus, i.e., a language that is not used with meaning but merely studied.
So if universalism is characterized by leaning towards the former side of the celebrated
distinction: logic as language vs. logic as calculus, introduced in van Heijenoort [1967b],
there are indications that Tarski remained a logical universalist even after the postscript.
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posed scientific systems. This would be indeed a reductio ad absurdum of
Carnap’s position. What is required is merely that individual competing sys-
tems must be subject to syntactic investigations, and any of the competing
systems can take up the task in accordance with its own expressive richness
and deductive power. Therefore, although it is certainly not the case that
analyticity for any language is definable in any metatheory, one seems to
be justified to conclude that there must exist a way to define analyticity for
any language without exception.

It remains to point out that analyticity does not necessarily have to be
defined for a language in its entirety. A partial property of analyticity may
be definable within a given language. Take Language II as an example.
Recall that it is a simple hierarchy of types. The language LII can be
stratified into cumulative segments, called by Carnap ‘concentric regions’
(Carnap [1937], §29, p. 88). Region 1 contains all the symbols of LII except
for bound occurrences of any variables other than the variables of type 0;
but it contains constants and free occurrences of variables of types (0, . . . , 0)
and (0, . . . , 0 : 0). Region 2 adds bound occurrences of the aforementioned
variables of level 1 plus constants and free occurrences of variables of level 2,
etc. In general, region n contains constants and free variables up to level n
and bound variables up to level n− 1. To this stratification of the language
there correspond theories TII1 , TII2 ,. . . , TIIn . Any property of analyticity
restricted to expressions belonging to individual regions is definable within
TII, namely in higher regions:

If we take as our object-language not the whole of Language
II but the single concentric regions [. . . ], then for our syntax-
language we have no need to go outside the domain of II. It is
true that the concept ‘analytic in IIn’ is not definable for any n in
IIn itself as syntax-language, but it is always definable in a more
extensive region IIn+m (perhaps always in IIn+1). Hence every
definition of one of the concepts ‘analytic in IIn’ (for the various
n), and also every criterion for ‘analytic in II’ with respect to a
particular sentence of II, is formulable in II as syntax-language.
(Carnap [1937], §34d, p. 113; Smeaton’s translation.)

In fact, as Tarski [1933] shows, Carnap’s hunch that analyticity in LIIn is
definable in LIIn+1 is correct.

In any case, LII can be identified with the region LIIω , from which it
follows that every single one of the partial concepts of analyticity is definable
within the object-theory TII. Moreover, following Tarski’s suggestion in the
postscript to the monograph on truth, we may expand Carnap’s conception
of concentric regions by allowing not just natural numbers but a full system
of ordinals as their indexes. Then analyticity for LIIω will be definable in
TIIω+1 formulated in LIIω+1 , etc. There is no hint in that direction in the
Logical Syntax but we may add that if we decided to permit languages that
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would be like the language of Language II except for containing also variables
of indefinite level, i.e., variables running through all possible levels without
a restriction, there would be no obstacle to adjusting the classification of
concentric regions so as it reflected the deductive strength of the theories
formulated in this language. Analyticity for any individual region LIIα would
be definable within any theory capable of proving the existence of the class
of entities whose existence is provable in TIIα .

5.5 Analyticity vs. Truth

Let us return to the way analyticity was defined for Language II. For a
number of reasons, this definition is highly noteworthy. Above all, it is
manifest that once we lift the restriction on the choice of the domain for
the valuation of expressions of type 0 to numerals, and once we replace the
occurrences of the basic sentences ‘0 = 0’ and ‘0 6= 0’ with ‘true’ and ‘false’,
respectively, we will get nothing else than Tarski’s definition of truth for
the logical part of LII. From this point of view, it is clearly visible that a
logical sentence is analytic if and only if it is ordinarily true; it is contra-
dictory if it is ordinarily false. At the same time, however, this is exactly
the point where the reach of Carnap’s definition ends. Recall that, in order
for a descriptive sentence to be assigned the value ‘0 = 0’, all descriptive
constants have to be replaced by (universally bound) variables, and in order
for the sentence to be assigned the value ‘0 6= 0’, all valuations of the de-
scriptive constants have to lead to ‘0 6= 0’. This twin requirement makes, in
effect, the descriptive vocabulary in sentences vacuous. Consequently, the
resulting concept is that of logical truth and logical falsity for descriptive
sentences, and not that of plain truth and plain falsity. Yet, it would be very
easy to transform Carnap’s definition of analyticity into that of plain truth
applicable also to descriptive sentences. Either we could assign permanent
values to descriptive constants of LII, keeping them fixed for all occurrences
of the symbols, or we could simply admit all descriptive symbols into the
language in which the definition of truth is given. Then we would just need
to drop the additional requirements imposed on descriptive sentences, and
we would be done. So it is clear that Carnap’s definition of analyticity is
in a very straightforward manner extensible to a full definition of truth. In
this sense, it is essentially the same as Tarski’s definition formulated in the
monograph on truth. Nevertheless, Carnap does draw a thick division line
between analyticity and truth.

This is all the more curious in the light of the fact that, in §60b of
the Logical Syntax,43 Carnap does, in a sense, outline a theory of plain
truth alongside that of analyticity. With a little effort, the following can
be extracted from what he says. Assume an object-language LT and a

43See Carnap [1937], §60b, pp. 214–217.
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metatheory S formulated in a metalanguage LS which contains the syntactic
predicates ‘W’ and ‘F’. The rules governing these predicates are to satisfy
three basic conditions: first, every sentence of LT is either W or F; second,
for any sentence S of LT, W(‘S’) and F(‘S’) are sentences; and third, the
following holds:

S `W(‘S’)↔ S. (C-T′)

Of course, this is nothing else than Tarski’s familiar convention T. Carnap
then gives a derivation of a contradiction resulting from the assumption
that a language can contain its own truth predicate. Thus, measured by
Tarski’s articulation of the conditions that any truth predicate must satisfy,
Carnap’s understanding of the concept of plain truth was perfectly adequate.
To repeat, the actual definition of analyticity for LII can be very easily
transformed, as we have seen, into the definition of plain truth; it suffices to
lift the additional condition imposed on descriptive sentences, whose only
purpose is to make the concept being defined not the plain truth but the
truth of descriptive sentences in virtue of logical vocabulary alone.

Still, Carnap obstinately refuses to recognize the link between the prop-
erty of analyticity and that of truth. In Carnap [1937], §60b, p. 216, he
unequivocally acknowledges that it is possible to develop a theory of truth
for an object-language in a metalanguage in a consistent manner. However,
he immediately adds:

A theory of this kind formulated in the manner of a syntax would
nevertheless not be a genuine syntax. For truth and falsehood are
not proper syntactical properties; whether a sentence is true or
false cannot generally be seen by its design, that is to say, by
the kinds and serial order of its symbols. (Carnap [1937], §60b,
p. 216; Carnap’s emphasis, Smeaton’s translation.)44

This is the single explicitly stated reason for Carnap’s active effort to shun
the extension of the concept of analyticity to plain truth. How should we
understand it?

44This understanding of the concept of truth was characteristic of the whole of Carnap’s
“syntactic” period. In September 1932 Gödel reported to him in a letter that he was
preparing to give a definition of truth in the planned sequel to the incompleteness article
(which was never published). Carnap reaction was that Gödel was mixing up two different
terms:

As to terminology: The term ‘true’ seems to me very unsuitable; in any case,
its usage would not be in accord with general linguistic usage. For according
to the latter, the sentence ‘Vienna has so and so many inhabitants’ is of
course true, whereas the definition proposed by you surely does not apply
to it. Thus one would surely have to say ‘logically true’ or ‘tautological’ or
‘analytic’. (Gödel [2003], p. 353; Dawson and Goldfarb’s translation.)

It was not until 1935 when Carnap met Tarski in Vienna that Carnap grasped the possi-
bility of defining the concept of plain truth. As the story told in Coffa [1991], p. 304, has
it, then the scales fell from Carnap’s eyes.
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An influential answer to this question comes from Coffa, according to
whom the chief reason for Carnap’s avoidance of ordinary truth was his
“verificationist prejudice”.45 The definition of truth is to determine the class
of true sentences. It is obvious that no definition of truth along the Tarskian
lines can decide straight away which descriptive sentences are true. This can
be done at most for analytic sentences. However, there are, in general, two
ways of determining classes of objects that share a certain property. One
consists in listing the members of such a class, while the other consists in
defining a suitable property which selects exactly the objects we would list
if we adopted the first method. Indeed, if we were to proceed according to
the first method, we would have to decide upon each sentence whether it
is true or not before putting it into the class of true sentences. Yet if we
followed the latter procedure, we could merely identify a precisely defined
property which would—by its structural, or “syntactic” design—guarantee
that only true sentences will penetrate into the desired class. In this way, we
would be able to define a class of objects but we would still be left entirely in
the dark concerning what the elements of this class are.46 Carnap, thinking
of truth only in terms of the former method, which requires the ability to
decide which sentences are actually true and which false, failed to recognize
the fruitfulness of the latter method. At least, so says Coffa.

Now, in what follows, we will not pursue the question of what was Car-
nap’s true motivation for shutting out the truth definition. We will rather
attempt to present a slightly more subtle, perhaps also more charitable pic-
ture that might throw some light on the assumptions and consequences of
such a decision. The simple fact is, as we will see, that there is no real use
for the definition of plain truth within Carnap’s broad philosophical project
of logical syntax.

The crucial condition for the concept of plain truth to become definable
is, as we have explicitly stated, that the metalanguage has to contain ei-
ther (translations of) the descriptive vocabulary of the object-language or
the metatheory must introduce a primitive interpretation function assigning
values to the descriptive constants of the object-language. Carnap was well
aware of this requirement, and he discussed it in §62 of the Logical Syntax
(pp. 227–233). To repeat, there is no technical obstacle to empowering the
metatheory in the requisite way, and Carnap must have realized this. Let us
assume that we have permitted the metalanguage to contain the descriptive
vocabulary. What consequences does this step have? The most basic conse-
quence is that the metalanguage can no longer be considered to be syntac-
tic.47 It has become a fully-fledged language containing synthetic sentences.
If S is a synthetic sentence of the object-language, the corresponding sen-

45Coffa [1991], p. 304.
46Cf. Coffa [1977], p. 229.
47For a discussion of this point, see also Ricketts [2007], pp. 220–225.
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tences S and W(‘S’) of the metalanguage will obviously also be synthetic.
If we have not managed to establish the truth of S in the object-theory
but if we succeed in establishing its truth in the metatheory, it will only be
with the help of additional descriptive rules. Nevertheless, the metatheory
as a whole will be largely insufficient to determine the truth value of the
synthetic sentences of the object-language. In the light of this fact, what do
we gain if we permit the descriptive vocabulary into the metalanguage? The
synthetic sentences are already present at the level of the object-language,
and letting them in the metalanguage does not get us anything that could
not have been gained already on the level of the object-language. In this
sense, the descriptive vocabulary is just “excess baggage”, as Coffa puts
it.48 Yes, it does make the definition of plain truth possible. Nonetheless,
although such an achievement is in itself certainly interesting and important,
it belongs to a synthetic study of language, and does not seem to contribute
with anything fundamentally revealing to the “analytic” project of logical
syntax.

Secondly, if the ban on the inclusion of descriptive vocabulary into the
metalanguage were lifted, the profound difference between the concept of
analyticity and plain truth would vanish. This upshot might perhaps not
be undesirable; however, it goes against the very goal of Carnap’s philo-
sophical undertaking. In order to see clearly what goes on here, we need to
elaborate a little bit upon Carnap’s concept of content of a sentence and a
particular aspect of the logical–descriptive distinction. It is a well known
fact, openly acknowledged by Carnap on several occasions in the Logical
Syntax as well as elsewhere, that one of the key sources of his inspiration
was Wittgenstein’s idea, developed in the Tractatus, that sentences of logic
have no “subject matter”, i.e., they do not represent anything.49 They can
be thought of as by-products of the representative capacity of language. The
concept of content is developed precisely to capture this fundamental idea.
By definition, only synthetic sentences have proper content, while analytic
sentences of logic and mathematics are without content. The latter sen-
tences do not say or represent anything; they do not have any meaning at
all. They exemplify, in a sense, a degenerate use of language. Their deter-
minate truth value is a clear sign that they do not convey any genuinely
new information. If we construct a sufficiently strong metatheory in a suffi-
ciently rich metalanguage containing exclusively logical vocabulary, such a
metatheory will be perfectly sufficient to describe the logical syntax of the
object-language. That is, it will bring out the logical scaffolding underly-
ing the non-degenerate, contentful use of the object-language. And what
is crucial, since such a metatheory will be logical and its sentences either
analytic or contradictory, i.e., without content, it will need no additional

48Coffa [1991], p. 303.
49Cf. Wittgenstein [1922], e.g., 4.0312, 6.124, pp. 68–69, 164–165.
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epistemological justification. Its truths will necessarily impose on anyone
who understands its rules and its vocabulary.

Thirdly and lastly, Carnap professed a rather special version of logicism.
As this issue is rather complex, will just say the following. It is manifest that
there is no reduction of mathematic to logic in the Logical Syntax, neither
there is any attempt to show that mathematics is in some sense inherently
logical. The construction of mathematics is thoroughly axiomatic, and it
appears to follow the lead of Hilbert rather than of Frege.50 No reduction
is taking place. As Goldfarb puts it, ‘Carnap’s true original contribution to
philosophy of mathematics [is] a version of logicism that does not require
the logicist reduction’ (Goldfarb [2009], p. 115). It is based on the idea
that what suffices is to show that both logic and mathematics can be con-
structed as analytic. If we construct a sufficiently rich language and build
upon it a reasonably strong logical theory, we will automatically obtain a
class of logical sentences of this language—which will turn out either ana-
lytic or contradictory—and we will find out that the sentences of classical
mathematics are among them. Being analytic, mathematics is without con-
tent. However, it can be applied contentfully via synthetic (or non-valid)
sentences containing descriptive vocabulary. Now, if we decide not to allow
descriptive vocabulary into the metalanguage, we will make the metathe-
ory, i.e., the whole logical syntax, a discipline of pure mathematics. So not
only that logical syntax is analytic, i.e., it follows from the very ability to
apply the rules of the given language; not only that it is without content,
i.e., it does not say anything about extra-linguistic facts; it is also purely
mathematical, i.e., it can be interpreted as a theory of numbers or sets. The
last point gives some plausibility to Carnap’s claim that ‘pure syntax is [. . . ]
nothing more than combinatorial analysis, or, in other words, the geometry
of finite, discrete, serial structures of a particular kind’ (Carnap [1937], p.
7; Carnap’s emphasis).

In conclusion, it should be clear that the decision not to give a definition
of plain truth but to dispose of it as thoroughly as possible in the syntactic
investigations is a consequence of Carnap’s broader philosophical outlook.
Logical syntax is concerned with the meaning of expressions or different
modes of connections or relations between them only insofar as they are
formally representable, and can be treated by purely logical or mathemati-
cal means.51 The decision to make the adjustments necessary for a definition

50Cf. Friedman [1988], p. 83.
51Cf. especially Carnap [1937], §71, p. 259, where Carnap asks:

Is it the business of logic to be concerned with the sense of sentences at all
[. . . ]? To a certain extent, yes; namely, in so far as the sense and relations
of sense permit of being formally represented. Thus, in the syntax, we have
represented the formal side of the sense of a sentence by means of the term
‘content’; and the formal side of the logical relations between sentences by
means of the terms ‘consequence’, ‘compatible’, and the like. (Smeaton’s
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of plain truth does not invalidate or is not incompatible with the project of
logical syntax. There is no serious difficulty in developing simultaneously
both logical syntax and descriptive syntax as different, supplementary dis-
ciplines. However, the concept of plain truth as well as the related concepts
such as content, belonging to the latter discipline, do not contribute any-
thing significant to accomplishing Carnap’s principal intentions. Perceived
from this perspective, Carnap’s subsequent shift to espousing the seman-
tic approach towards the philosophy of language and mathematics does not
consist in a sudden realization that the plain truth is, after all, definable but
rather in a profound change in the broad philosophical outlook that opened
up previously unseen ways of exploiting such a definition.

5.6 Syntax and Arbitrary Classes

There still remains a crucial problem that needs to be dealt with. It is con-
nected with Carnap’s definition of analyticity for Language II. We have
stated that Carnap’s approach towards analyticity does not differ from
Tarski’s conception of (logical) truth in any essential respects. Nevertheless,
Tarski’s conception is often called ‘semantic’, and Tarski himself promoted
his explication of truth as a ‘semantic conception of truth’.52 How does it
come about that Carnap’s concept of analyticity and the associated notions
such as the relation of consequence, are considered by Carnap to be syn-
tactic, and not semantic? Being syntactic entails, among other things, that
in determining the analyticity or contradictoriness of any logical sentence,
we do not need to go beyond the syntactic treatment of the given language.
However, is this really so? The fact of the matter is that if we recall the
details of the definition of analyticity for Language II, there turns out to be
a particular point that makes the proclaimed syntactic nature of analyticity
rather curious.

It has been well documented53 that the final shape the treatment of an-
alyticity for LII eventually received stems from Carnap’s exchange of letters
with Gödel that took place in autumn 1932.54 The crucial shift that Carnap
underwent concerned the higher-order quantification. Carnap had originally
thought of analyticity substitutionally: a sentence ∀x(ϕ(x)) is analytic if the
class of the substitution instances {ϕ(0), ϕ(0′), . . .} is analytic. However, the
method of substitution leads to problems when higher-order variables are

translation.)

On the other hand, whatever is not formally representable, he goes on, has no place in
logical syntax but is a matter of special sciences.

52Cf. Tarski [1944], especially pp. 345–346. See also his broad programmatic support
for semantics as a reputable scientific discipline in Tarski [1936b].

53See, e.g., Coffa [1991], pp. 290–291.
54See Gödel [2003], especially pp. 346–351. The correspondence between Carnap and

Gödel is a valuable source as it contains a lucid expression of Carnap’s intentions.
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considered. Look at a very simple sentence ∀F (F (0)∧ 0 = 0). To determine
whether this sentence is analytic, we would need to consider all substitution
instances of the form P (0) ∧ 0 = 0, where P is a predicate constant. Now
let us define a predicate constant P (x) as ∀F (F (x)) and execute the sub-
stitution. It turns out that we can derive the prenex form, only to obtain
once again the original sentence ∀F (F (0) ∧ 0 = 0). That is, we have moved
in a circle. This problem does not afflict the variables of type 0 because we
have clearly determined the values over which they range beforehand. As
Gödel suggests, we are free, even at higher levels, to set up a system of rules
that would block the circularity or the infinite regress affecting some pred-
icates, and arrive at a well circumscribed list of substitutable predicates.
Nevertheless, erection of such a system of additional rules would amount to
ramification of the simple theory of types, together with all the difficulties
the ramified theory suffers from. For this reason, Gödel argues that one
should rather take the quantifier binding a variable of type (t) as ranging
over classes of objects of type t, no matter whether they are specifiable by
predicates or not.

The rules of valuation detailed on p. 122 evidence that Carnap followed
the advice. Recall that we start with a well determined domain of objects
of type 0, namely numerals. This domain is by definition countable, and
its members are given to us in language as syntactic objects. In the next
step, we proceed onto the level 1 of classes of numerals, and we take our
quantifiers to range over all of them, even over those that are not specifiable
in TII. The particular choice of 0-level objects makes the the domain we
are investigating syntactic, and the technique of arithmetization of syntax
enables the treatment of any syntactic properties or entities whatsoever in
terms of numerals—provided only that we have means for representing them
via formulas of the given language. Yet we have just said that this condition
is not generally satisfied. But then a number of questions immediately forces
upon us: How are such non-representable entities given to us? How can we
claim that we are doing syntax if we have to go beyond what is representable
in our language? In Carnap’s words:

[J]ust as for every language there are numerical properties which
are not definable in it [. . . ], so there are also syntactical prop-
erties which are not definable in S. [. . . ] Thus the definition
[of analyticity] must not be limited to the syntactical proper-
ties which are definable in S, but must refer to all syntactical
properties whatsoever. But do we not by this means arrive at a
Platonic absolutism of ideas, that is, at the conception that the
totality of all properties, which is non-denumerable and there-
fore can never be exhausted by definitions, is something which
subsists in itself, independent of all construction and definition?
(Carnap [1937], §34d, p. 114; Smeaton’s translation.)
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Thus even if we begin with a well-behaved countable collection of syntactic
objects such as numerals, we soon seem to face a tough choice: either to go
beyond mere symbols, or to give up the ambition to reach a general criterion
of mathematical truth. In any case, a full study of even very simple systems
of syntactic objects of a given language requires additional resources that
the language in question is incapable of providing.55

How does Carnap respond to this problem? The core of his solution to
this problem is already contained in his correspondence with Gödel. Carnap
asserts:

The locution “ for every valuation . . . ” that occurs in the defini-
tion can still be expressed in a semantics formulated in a definite
language, namely by “(F )(. . .)”, since a valuation is of course
a semantic predicate. This is possible even though in the se-
mantics under consideration not all possible valuations, that is,
predicates, can be defined. (Gödel [2003], pp. 354–355; Dawson
and Goldfarb’s translation.)

To avoid a misunderstanding, note that the term ‘semantics’ occurring in
this quote was a working term for what Carnap later came to call ‘syntax’.
Thus the core of Carnap’s solution may be seen in the claim that the property
of being a valuation is (represented by) a syntactic predicate, i.e., a defined
predicate of the metalanguage. (Recall that valuation is an assignment of
values carried out in a metatheory which is definable in the metatheory
and expressible by appropriate formulas of the metalanguage in which the
definition of analyticity for the object-language is formulated.) Now once we
have a general notion of valuation, there is no obstacle to quantifying over
all valuations by means of ∀F (. . .). The intention that we quantify over the
totality of arbitrary valuations is assured just by our using the unrestricted
universal quantifier. How simple.

But how do we know that we really quantify over all valuations if the
metatheory is essentially incapable of capturing or defining them all? How
can we make sure that our intention is not left unfulfilled? Here is Carnap’s
answer (note that ‘S’ refers to a metalanguage in which the definition of
analyticity for an object-language is formulated):

That this phrase has in the language S the meaning intended is
formally established by the fact that the definition of ‘analytic
in S’ is formulated in the wider syntax-language S2, again in ac-
cordance with previous considerations [. . . ], not by substitutions
of the pr of S, but with the help of valuations. (Carnap [1937],
§34d, p. 114; Smeaton’s translation.)

55In his correspondence with Carnap, Gödel said that the definition of analyticity should
not be regarded as a clarification of this concept ‘since one employs in it the concepts
“arbitrary sets”, etc., which are just as problematic’ (Gödel [2003], pp. 356–657).
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So, the questions concerning the range of the quantifiers of the metalanguage
get answered in the process of formulation of the definition of analyticity
for this metalanguage. This process is, of course, carried out in a higher
metatheory, and it is to involve, once again, the totality of valuations for
expressions of the metalanguage, articulated by means of ∀F (. . .) of the
metametalanguage. And so on. In general, the quantifiers occurring in any
object-languages are to be interpreted objectually as ranging over arbitrary
classes; this interpretation is carried out within the definitions of analyticity
for the respective object-languages given within the appropriate metatheo-
ries.

Carnap’s solution can be viewed from at least two distinct angles. From
one point of view, Carnap is, rather ingenuously, avoiding a solution rather
than providing one. A particular assumption concerning the range of quan-
tifiers of a given language is required to be adopted. How is it adopted?
How is it determined that the quantifiers really range over all or arbitrary
classes? On each given level n we are said that this is determined on the
level n+ 1. So, as Goldfarb [2009], p. 120, puts it, Carnap’s position is ‘self-
supporting at each level’. This does not mean, though, that it is not wanting
or vacuous. For, if Carnap so vehemently opposes ‘a Platonist absolutism
of ideas’, and metaphysics in general, what makes his solution preferable or
more acceptable? An answer to this objection is to be found in the principle
of tolerance: despite the fact that we employ properties in logical syntax
that are not specifiable in a particular theory, we are not committed to any
metaphysical views concerning entities lying beyond the reach of language.
The reason for this is that we are not making any assertion about the ul-
timate reality. We are simply putting forward a proposal, or setting up a
convention, and observing the logical consequences of such an action. The
principle of tolerance, by transforming any vigorous assertions into mere
proposals, strips any such claims of their force. Perceived from this angle,
Carnap does not need to justify his position. By appealing to the principle
of tolerance, he has already managed to remove objections to it.56

Yet, there is another way of looking at Carnap’s solution. At the end
of section 5.3, we mentioned the distinction between the internal and ex-
ternal questions introduced in Carnap’s article ‘Empiricism, Semantics, and
Ontology’ (Carnap [1950]). External questions, asked prior to setting up
a system of rules governing certain concepts or outside such a system, are
essentially problematic since they are being raised without a clear idea of
how they can be answered. On the other hand, internal questions are asked
within an established framework, and the framework determines the way in
which they are to be answered. When an external question is raised, there

56Cf. Ricketts [2007], p. 219. Goldfarb [2009], p. 120, sees in this the very motivation
behind Carnap’s principle of tolerance: ‘it is the need to have an opening for the view
that logical syntax can use notions not specifiable in a particular system without thereby
committing itself to Platonism, infinitarism, or the like.’
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are, in principle, three different ways of dealing with it. Firstly, it can be
reinterpreted as an internal question, i.e., a system of rules can be found or
provided in which an answer to this question will get a clear shape. Sec-
ondly, it can be reinterpreted as a proposal concerning the construction or
adoption of a particular system of rules. Thirdly, it may be rejected as un-
clear and lacking a sufficient meaning that would permit its being answered
in an intelligible manner.

Now, our problem consists in the realization that in order to define ana-
lyticity for an object-language, it does not generally suffice to take the stack
of predicates that are available in the metalanguage but we need to con-
sider all properties whatsoever, no matter whether specifiable or not. In a
sense, we have to go beyond not only the resources available in the given
metalanguage but—as this problem persistently reappears at any higher
level—beyond all resources available in any language. Once we manage to
fix a system of rules, there will always emerge entities lying outside the reach
of the rules of such a system. But how are we to we treat such inaccessi-
ble entities? How can we survey them or get some definite grasp of them?
Note that, in the light of the distinction between the internal and external
questions, such questions are external questions par excellence. The basic
point of Carnap’s solution is then best viewed as an attempt to internalize
what was originally asked as an external question, i.e., transform it into a
more tangible internal question. The definition of analyticity for an object-
language requires the ability to take all the entities the object-language
can quantify over as a unity, a completed totality, a well-determined class.
This is clearly impossible to achieve at the level of the object-language it-
self; a task like this transcends the powers of such an object-language, and
any question regarding these non-specifiable entities is, with respect to the
given object-language, clearly external. However, if we introduce a richer
metalanguage with a stronger metatheory in which we manage to fulfill
the aforementioned requirement, the formerly external questions concern-
ing the object-language will become internal questions of the metalanguage.
Within the expanded framework, they will receive a precise meaning. Of
course, once these questions are internalized, there will immediately arise
new external questions. At no single level we can get a firm grasp of all that
there is. On the other hand, all that there is is in principle graspable and
can have a precise meaning, regardless of how high we must climb.



Chapter 6

Conclusion

What have we achieved? What conclusions can be drawn from the effort
invested into the development of the systems and concepts investigated in
chapters 2 to 5? We said in the introduction (chapter 1) that our principal
aim would be to investigate the relationship between syntax and semantics.
Assuming that we have all the requisite syntactic resources of a given lan-
guage at our disposal—which, of course, do not allow us to define the general
concept of truth for the given language and to develop a theory of meaning
for it in general—what exactly is the key step we must make if we are to
breach into the meaning-side of that language? What is the crucial element
that semantics possesses but syntax lacks? What does the transition from
syntax to semantics consist in?

We have investigated in considerable detail (a cumulative version of)
Russell’s ramified theory of types, Zermelo’s second-order set theory and
Carnap’s logical syntax. We concentrated above all on the way in which
truth can be defined in each theory, on the requirements that a truth defi-
nition must satisfy and on the consequences that the feasibility of the truth
definition has for our understanding of the given system as a whole. In
the remaining sections, we will attempt to discern a pattern that charac-
terizes the way truth has been treated in all the systems studied. Then we
will return to the question framing our whole journey, namely that of the
relationship between syntax and semantics.

6.1 Truth and Partial Truth: a Summary

The fundamental result is, of course, that the property of truth for a given
language LA is not, on pain of contradiction, definable by a theory formu-
lated in that language; moreover, it is not even expressible by any predicate
of LA. This obstacle is usually surmounted by adopting a different language,
LM, and defining the property of truth for LA in this new language LM. This
is easily stated, and relatively easily executed (although the technical details
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can be quite complex). However, as we mentioned in the introduction, this
comfortable solution of the problem of truth has certain consequences that
are not that easy to digest, at least from the philosophical point of view.
What have we achieved that might make one look at the things differently?

Let us first consider what an explicit definition of truth amounts to. If
TM is a theory formulated in the language LM which is able to explicitly
define truth for LA, then this property of truth can be seen as eliminable.
That is, LM does not have to contain any primitive predicate designating
this property and TM does not have to involve any special axioms governing
the use of such a predicate; still, LM will be able to express this property
and TM will be able to prove a number of facts about it. Now as long as
we remain in LM within the bounds of what is provable, i.e., at the level of
inference, it can be said that we are engaged merely in syntax (in the wide
sense). It follows that, provided that truth for LA is explicitly definable
in TM without making use of any resources beyond those belonging to the
syntax of TM, the reasoning about the property of truth in LA can be carried
out by syntactic means. Thus what initially appears as a semantic enquiry
into the meaning-side of LA can be accomplished within the syntax of a
metatheory.

We have seen how truth can be explicitly defined in three different theo-
ries, and we have found out that such a definition can be reached in several
different ways. Firstly, in sections 2.6, 4.6 and 5.4 we saw that in each
of the systems it is possible to define truth for the initial language if we
gain the ability to quantify over variables of appropriate higher orders. In
Russell’s theory of types, the constant V al that makes the explicit truth
definition (D-Trr) possible is always of order 1 higher than is the order of
the corresponding propositional function or proposition. This entails that
the property Trr can hold only of sentences expressing propositions of a re-
stricted order, namely those of order n− 1 where n is the order of the given
relation V al. In ZFC2 the property of truth for ZFC is definable by means
of the relation Satc, whose definition (D-Satc) requires quantification over
proper classes, i.e., objects of a higher order than the objects over which
the quantifiers of ZFC range. In Carnap’s logical syntax, the general def-
inition of analyticity (D-Ana) involves an assignment function that is of a
higher level than is the level of the entity it assigns to a given expression. To
conclude, we have been able to establish that, in each of the three theories,
truth is explicitly definable using quantification over variables of a higher
order. The drawback is, of course, that the property of truth thus defined
is only partial: it is not truth for the entire extended language in which
the definition is formulated but only for the initial language that does not
involve quantification over the added higher-order variables. Total truth
for the whole language might be thought of as the limit of the unbounded
sequence of the partial concepts of truth.

Secondly, in sections 4.4 and 4.5 we saw that a partial truth definition
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for LZFC can be given for any domain that is a set. In this case, the partial
property of truth in a set holds of those sentences of LZFC that are true in the
given set. Although there is no set large enough to make a definition of total
truth for LZFC possible, we can consider very large sets that do not exhaust
the universe of sets but may, in some respects or for some purposes, suffice
to approximate it. Thus if we assume that there is a segment Vα, where α
is a strongly inaccessible ordinal, we obtain all the sets whose existence is
provable in ZFC. This will give us the definition of truth which is powerful
enough to establish that whatever ZFC can prove is true and that ZFC itself
is consistent. The technique of relativization then can make the resulting
truth predicate applicable to all sentences of LZFC. In section 5.4 we saw
that it was this idea that permitted Tarski to assert that truth is definable
for any language whatsoever, and that this method is in principle available
also in Carnap’s syntax.

Thirdly, in section 4.7 we discussed a converse strategy. Rather than
adding higher-order variables or axioms asserting the existence of certain
very large sets, we can introduce a classification of sentences of the given
language based on their complexity, and define partial properties of truth for
the restricted classes of sentences. No additional requirements are needed.
The total truth is not available without the extension of the language but
again it can be thought of as a limit of the unbounded sequence of the
partial truth predicates. Naturally, if we extend the language and permit
quantification over the variables of a higher-order, the total truth for the
initial language will become definable.

Fourthly, in section 5.1 we saw that analyticity for Carnap’s Language I
is based on the infinitary ω-rule. This approach is quite problematic. Not
only that it is not applicable to more complex languages in a straightforward
manner but, more importantly, the use of an infinitary rule goes decisively
beyond the methods usually permitted in syntax. Nevertheless, aside from
these difficulties, it is worth emphasizing that the effect of the ω-rule is in a
way comparable to that of the addition of higher-order variables. To see this,
take, e.g., PA. The property of truth for LPA will be definable in second-
order PA2, the reason being that PA2 can make use of the quantification
over all sets of natural numbers, among which there is also the set consisting
exclusively of natural numbers. On the other hand, if we remain within the
first-order language LPA and instead of enlarging it we add the ω-rule as
an additional rule to the deductive apparatus of PA to obtain PAω, we will
also gain the ability to define truth for LPA.1 The way the ω-rule works
can be seen in a close analogy with coming into possession of the set of all

1As PAω is a complete theory with respect to LPA, truth can be identified with prov-
ability. However, PAω will no longer be a recursively axiomatizable theory. In particular,
valid proofs of PAω will not be effectively enumerable. This blocks Gödel’s construction
of a sentence that is true if and only if it is unprovable. To see how the completeness of
PAω can be established, see Hazen [1998], p. 514.
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natural numbers: to be able to apply the rule, we must be able to attribute
a given property to every single natural number. This means, in effect,
that we need to complete the list exhausting the natural numbers and not
containing anything but natural numbers. This list can be seen in analogy
to the set of natural numbers; the rule thus provides, in its own way, the
interpretation for the universal quantifier of LPA. All this is achieved in a
theory formulated within one and the same language LPA. The price paid is
that PAω cannot be viewed as a formal theory, which means that it should
not be viewed in any reasonable sense as syntactic. In the light of this, the
ω-rule belongs to semantics, and not to syntax.

6.2 Truth, Truths and the Metalanguage

It is time now to draw some consequences. First of all, if we restrict ourselves
solely to the resources available in syntax, we have to give up any hope that
we can introduce into our language LM a total truth predicate, i.e., a truth
predicate applicable to any sentence of this language. If this is what has
been required from us, we have failed. A totally applicable truth predicate
seems to require decisively non-syntactic methods such as application of the
ω-rule or some kind of non-mediated, non-linguistic access to the linguistic
meaning. So the first conclusion is that, in syntax, we have to abandon the
idea of a total property of truth.

All is not lost, though. We can still define partial concepts of truth,
suitably restricted so that no contradiction issues. There are two basic
options. Firstly, in order to define such a concept of partial truth, it is
necessary to impose a clear restriction on the vocabulary or the formation
rules of the given language which will determine a particular syntactic region
LA within the language LM. The partial truth predicate will be applicable
only to the sentences of the given region, not to the remaining sentences
of LM. Of course, as we have seen, not every circumscription leads to a
successful definition of partial truth for the given region. It is required
either that LM be able to employ quantified variables of a higher order than
are those of LA,2 or that it contain sentences of a higher quantificational
complexity. Secondly, we can proceed in terms of theories. Assume that
we have a theory TM formulated in LM that can prove the existence of the
totality w of entities that a theory TA formulated in the same language is
capable of proving. Then we can define in TM a partial property of being true
in w. Moreover, we can employ the technique of relativization to introduce
a partial truth predicate applicable to all sentences of LM.

2We have thus reached, though from quite an opposite direction, a generalization of the
assessment formulated and defended in Isaacson [1987], namely that the truths expressible
in the language of (first-order) arithmetic that cannot be proved in PA contain “hidden
higher-order concepts” (op. cit., pp. 154–155).
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In this way, we get a vast number of partial properties of truth, rising
upwards in continuous sequences, applicable to specific linguistic regions or
with respect to specific sets of entities. The individual concepts of partial
truth are comparable with regard to their strength; there will be properties
of truth that will be attributable to more sentences than some weaker prop-
erties of truth. In any case, the abandonment of the conception of a single
total truth for the whole language is replaced by the conception of an unlim-
ited number of partial truths obtained by suitable combination of linguistic
restrictions and deductive expansions. This is our second conclusion.

The remaining conclusion is that the significance of the distinction be-
tween the object-language and the metalanguage, so vigorously emphasized
by both Tarski and Carnap, needs to be reevaluated. Recall that Russell’s
ramified theory of types was taken to be all formulated in a single language.
The individual partial truth predicates were introduced for sentences ex-
pressing propositions of particular r-types, according to the r-type of the
V al relation. This was all done within one and the same language. Church
suggested a straightforward way of transforming the single language of the
whole type theory into a hierarchy of different languages that would per-
mit a definition of truth for every member of the hierarchy in its entirety
in a language of a higher order. Carnap’s imagery of “concentric regions”
can be approached in the same way. Either we can view the regions as
cumulative levels within one and the same language, namely that of the
simple theory of types of Language II, or we can decide to view them as
separate languages, forming an unbounded hierarchy. With the language of
set theory, it is the other way round. What is standardly considered is the
first-order system of ZFC, which is from the very start restricted to the first-
order quantification. Second-order ZFC2 is perceived as a separate theory.
There is, nevertheless, no principal objection to considering set theory as
formulated within a full-blooded theory of types projected up to arbitrarily
high orders. ZFC and ZFC2 would then be merely representatives of the-
ories formulated within the two lowest fragments of the common language
of this all-embracing type theory. Then there would not be the plurality
of languages available of which one would be the object-language and an-
other would serve as a metalanguage but only different fragments or regions
within a single language, and the individual properties of truth would be
applicable solely to the specific fragments for which they were defined. Fi-
nally, with regard to the partial truth definitions for the classes of sentences
of restricted complexity, it would seem to be an abuse of language to insist
on the distinction between the object-language and the metalanguage. We
might probably attempt to propose a separation of the formulas of LZFC into
different “languages” in such a way that LZFC0 would contain only formulas
of complexity 0, LZFC1 formulas of complexity 1, etc. Yet, this would be
bordering on the ridiculous—at least if our persistence were driven only by
an arduous effort to preserve the object-language-metalanguage distinction.
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We do not mean to say that the distinction between the object-language
and the metalanguage is fruitless, and that it should be banned once and
for all. But what is essential to realize is, first, that this distinction is of-
ten quite arbitrary and does not bring in anything essential without which
we could not get along. The introduction of this distinction is, in effect, a
decision to favour a certain terminology over another. However, secondly,
the failure to recognize that the employment or non-employment of this dis-
tinction in the development of a theory of truth reflects what essentially is
only a terminological decision can lead to an overall misconstrual of what
it is that makes the property of truth definable. The picture behind the
object-language-metalanguage distinction is roughly that we have a certain
language at our disposal, and in order to define truth for this particular
language, we need to make a step upwards onto a suitably constructed met-
alanguage. That is, the picture is typically that of expansion. With every
metalanguage, we expand the resources we have available, and it is this ad-
ditional power that makes the definition of truth possible. However, as we
have seen, what is as important as a particular form of expansion is the
restriction of the sentences for which truth is to be defined. The sentences
to which the truth predicate is to be applicable need to be restricted to a
particular syntactic form. This step is as important as the addition of the
quantifiers of a higher-order. Moreover, as we have pointed out, even within
first-order languages we can define the properties of partial truth by going
downwards, not upwards, i.e., by setting restrictions determining simpler
and simpler classes of sentences of the given language.

To repeat, it is granted that the object-language-metalanguage distinc-
tion has a perfectly acceptable and meaningful use. In most cases it is
completely natural to invoke it when we attempt to define truth. The very
fact that we take the object-language as a completed unity entails that we
have already restricted the forms of formulas for which the truth is supposed
to be defined. Unfortunately, this fact is not usually explicitly stated and
recognized as an essential element, and the distinction itself is thought to
be revealing some deep fact about the definability of truth.

The reevaluation of the significance of this distinction might have one
more interesting effect. One can naturally say: I accept that we are able
to define truth for any language provided that we have a suitable metalan-
guage in hand. However, what if we do not have any such metalanguage
available? In particular, what is to serve as a metalanguage for our natural
language or for the universal language of science discussed in section 1.4?
There clearly cannot exist such a metalanguage for natural language since
natural languages do not have sharp boundaries and they incorporate new
vocabulary or new rules at will, so it is not acceptable to forcibly close them
and forbid them to include another new layer which could then play the
role of metalanguage. The universal language of science is also constructed
so as it were indefinitely extensible. Seen through the lens of the object-
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language-metalanguage distinction, the task of finding a definition of truth
for anything as rich as natural language seems thwarted before it can even
start. On the other hand, if we dismiss the distinction, we might get a
somewhat different and perhaps more optimistic picture.

Let us stick to the universal language of science as it is more tractable.
Obviously, we cannot expect to obtain a definition of total truth for the
entire language. However, there are two ways in which we can get relatively
interesting results. Firstly, as we know, we have a number of different meth-
ods that permit us to construct different hierarchies of partial concepts of
truth. Admittedly, no single partial property of truth is sufficient in the
absolute sense but some of them may be fully sufficient for some specific
purposes, for certain particular language regions or fragments. Moreover,
when we get to partial truth properties of very high orders or defined with
respect to very large sets, we may regard these properties as approximating
the total truth. Secondly, we may follow the path suggested by Carnap in
his logical syntax. The universal language of science (or, any of the uni-
versal languages of science) will have a logico-mathematical part. If this
logico-mathematical part is constructed as a simple theory of types similar
to Language II, and if it contains enough arithmetic to be able to arithme-
tize its syntax, the universal language of science will contain as an inherent
part a mathematical theory exhibiting its logico-mathematical structure,
including the partial c-concepts of analyticity and contradictoriness, logical
consequence, content, etc. Now, among other things, this purely mathemat-
ical component of the universal language of science will contain a theory
of ordinals. As we saw in section 5.4, once we have the ordinals in hand,
there is no upper bound on the order of variables we are able to introduce.
This means that despite the fact that it does not make sense to assume
that the universal language of science can be, as a whole, superseded by a
yet more extensive metalanguage, there is no principal obstacle to accept-
ing that, within its logico-mathematical component, there is no bound on
the definability of the partial concepts of analyticity. If we translate this
idea into the language of the object-language-metalanguage distinction, this
means that within the universal language of science, to which no suitable
metalanguage exists, there is an unbounded sequence of higher and higher
languages that make it possible to define the individual partial properties
of analyticity for its logico-mathematical component. As this sequence is
unbounded, a metalanguage of this kind is always available.

6.3 Semantics and the Absolute

What light does all we have said so far throw on the problem with which we
started, namely on the relationship between syntax and semantics? Where
does the semantic enterprise start? What is the key move that makes it
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possible to introduce semantic notions such as truth or analyticity? We
have already identified the two crucial steps on which a truth definition
depends: the restriction imposed on the form of sentences to which the truth
predicate is to be applicable, and the expansion of the expressive power by
making use of additional quantified variables, which typically have to be of
a higher-order, or the expansion of the deductive power by adding stronger
rules or axioms. The former of these conditions is best viewed as purely
syntactic; it merely involves a separation of sentences into classes on the basis
of their formal characteristics. Thus only the latter requirement remains as
a candidate for the genuinely semantic component of the definition of truth.

This is the ultimate conclusion that this whole thesis tries to make ap-
pear plausible. The transition from syntax to semantics consists precisely in
gaining the ability to circumvent the totality of objects that an antecedently
restricted class of sentences is able to speak of, and to treat this totality as
a closed, completed collection. To put it in rather crude terms, in order to
gain the ability to define truth and to enter the field of semantics, one must
get hold of everything the given restricted class of sentences can quantify
over, and must be able to treat it as a closed collection. This is not done in
any non-mediated, extra-linguistic fashion but by employing suitable quan-
tifiers and variables. However, a further explication is required to avoid a
misunderstanding and to point to some consequences of our conclusion.

First of all, a consequence of our investigations is that the notion of
“everything” is, to use Russell’s term, self-reproductive. In standard lan-
guages, the linguistic means which assure that all objects of a given type are
taken into account are, indeed, the quantifiers. When we use a language, say
LA, we are confined to the quantified sentences it can formulate, and it is
through them that we attempt to grasp the totality of entities we can speak
about. Yet, the definition of truth for LA, say in LM, requires that LM be
able to quantify over the totality of entities over which the quantifiers of
LA run, taken as a completed collection. This does not mean anything else
than that the totality of entities that LM can quantify over includes entities
that were out of reach for LA, i.e., that transcend its expressive resources.
Now we may say that, in general, the totality of entities whose existence
can be asserted in language is determined by the linguistic resources avail-
able. This assertion surely does not look at all surprising. Still, it is worth
emphasizing for the following reason. It contradicts any belief that we can
express in language the existence of absolutely everything, i.e., that we can
grasp the universe in its totality. If truth is defined for a particular language,
“everything” is no different, i.e., it is as language-relative as truth is.

With this understanding of the nature of the totality of entities that a
language can speak of we may conclude the question of the relationship of
syntax and semantics. We have said that manipulation with the quantifiers
according to the formation rules of the given language and the rules of
inference belongs to syntax in the wider sense. Hence if we possess the
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required quantifiers in LM that permit us to define truth for LA, we still
remain within the syntactic enterprise. That is, in order to quantify over
the completed collection of entities that LA can speak of, we do not need
to go beyond the syntactic resources of LM. The whole situation can be
expressed in this way: the definition of truth for a restricted language, i.e.,
the definition of a semantic concept, can be given within the syntax of an
expanded language. Doing semantics essentially involves the recognition
that the expressive power of the targeted language or a class of sentences
is limited; and this recognition cannot be gained within this very language
but can be gained within the syntax of a more powerful language or a more
extensive class of sentences. To sum up, once this perspective is adopted,
it turns out—to answer our worry from section 1.2—that, to do semantics,
there is no need to go outside language to the reality itself. We can carry
out meaning analyses and enquire into semantic concepts within language;
but, at the same time, this is all we can do.

There is a sense in which the conclusion reached can throw light on the
question of what are the entities we investigate in different theories such as
natural numbers in arithmetic or sets in set theory. This issue was already
discussed in sections 4.8 and 5.6, and the position reached here is in harmony
with what we said there. To get a grasp of what the meanings of such theories
are, what are the objects they talk about, we need to seize the language of
the given theory as a restricted system, and we need to approach it with
some additional syntactic resources. This allows us to transform questions
that are external with respect to the restricted system into questions that
are internal with respect to the expanded system, which has the resources
required for them to be treated. Some systems such as that of set theory
are so immensely complex and far-reaching that it is hard to imagine how
they could be apprehended in a non-circular fashion in other way than from
within suitable extensions of themselves.

To illuminate the point we are trying to make, the following metaphor
can perhaps be used. Imagine that we are building a tower which is so vast
and so tall that it cannot be surveyed as a whole from any observation point
outside the tower. The only way to survey all we have built so far is by
adding another floor which will make surveyable all the floors below the top
one but not the top floor itself. To survey the whole tower with the top floor
included, one must build another floor on top of the former one. And so on,
ad infinitum.

This is reminiscent of Kant’s solution to the paradoxes (antinomies) of
pure reason in transcendental dialectic. The basic point is the idea that
spatio-temporal things can be grasped as single objects as well as members
of more or less large collections, which can be made larger and larger to
approximate the totality of everything that there is. However, the absolute
totality of all spatio-temporal things is not within our reach. Importantly,
the reason is not that it is so big that it exceeds our cognitive capacities but
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rather that the very idea of such a totality stems from a misunderstanding
of the way the spatio-temporal things are given to us. That is, the totality
in question does not belong to the world of spatio-temporal things but is
of a completely dissimilar nature and has a very much different purpose.
The idea of the absolute totality is not descriptive; the absolute totality
is not something that could be just found or not found to exist. It is a
prescriptive or normative unity that has its proper use as a regulative ideal
for the cognitive capacity:

[T]he transcendental ideas are never of constitutive use [. . . ].
[H]owever, they have an excellent and indispensably necessary
regulative use, namely that of directing the understanding to a
certain goal respecting which the lines of direction of all its rules
converge at one point, which, although it is only an idea (focus
imaginarius)—i.e., a point from which the concepts of the under-
standing do not really proceed, since it lies entirely outside the
bounds of possible experience—nonetheless still serves to obtain
for these concepts the greatest unity alongside the greatest exten-
sion. (Kant [1998b], A797/B825; Guyer and Woods’s translation
in Kant [1998a], p. 591.)

Seen from this viewpoint, it is suggested that the property of total truth
for the entire language we use or the absolute totality of everything we can
speak of are not concepts or entities on a par with their relative counterparts
we can incorporate into the expressive and deductive machinery of language.
They are not to be found, discovered or shown to exist, they are to be striven
for or to be approximated. Hence we are kept in “Wittgenstein’s prison”
after all.3 However, the world outside its walls is of a rather different nature
than it appears from the inside.

3Cf. Awodey and Carus [2007], pp. 33–36.
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— (2007): “Carnap’s dream: Gödel, Wittgenstein, and logical syntax”.
Synthese, vol. 159: pp. 23–45.

Awodey, Steve; Klein, Carsten (eds.) (2004): Carnap Brought Home. The
View from Jena. Open Court, Chicago.
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Lévy, Azriel (1959): “A hierarchy of formulae of set theory (abstract)”.
Notices of the American Mathematical Society, vol. 6: p. 826.

— (1960a): “Axiom schemata of strong infinity in axiomatic set theory”.
Pacific Journal of Mathematics, vol. 10: pp. 223–238.

— (1960b): “Principles of reflection in axiomatic set theory”. Fundamenta
Mathematicae, vol. 49: pp. 1–10.

— (1965): “A hierarchy of formulas in set theory”. Memoirs of the American
Mathematical Society, vol. 57.

— (1979): Basic Set Theory. Springer-Verlag, Berlin. Reprinted by Dover
Publications, Mineola, New York, 2002.



Bibliography 167

Linsky, Bernard (1999): Russell’s Metaphysical Logic. CSLI Lecture Notes
No. 101. CSLI Publications, Stanford.

Linsky, Bernard; Zalta, Edward N. (2006): “What is neologicism?” The
Bulletin of Symbolic Logic, vol. 12: pp. 60–99.
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deletions in Poincaré [1908], pp. 152–171.
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warzystwo Naukowe Warszawskie, Warszawa. English translation by J.
H. Woodger published in Tarski [1983], pp. 152–278. Page references are
to the translation.

— (1935): “Der Wahrheitsbegriff in den formalisierten Sprachen”. Studia
Philosophica, vol. 1: pp. 261–405.

— (1936a): “O pojciu wynikania logicznego”. Przeglad Filozoficzny, vol. 39:
pp. 58–68. English translation by J. H. Woodger in Tarski [1983], pp. 409–
420. Page references are to the translation.

— (1936b): “O ungruntowaniu naukowej semantyki”. Przeglad Filozoficzny,
vol. 39: pp. 50–57. English translation by J. H. Woodger in Tarski [1983],
pp. 401–408. Page references are to the translation.

— (1944): “The semantic conception of truth and the foundations of seman-
tics”. Philosophy and Phenomenological Research, vol. 4: pp. 341–376.

— (1983): Logic, Semantics, Metamathematics. Papers from 1923 to 1938.
Second edition, John Corcoran (ed.). Hackett Publishing Company, Indi-
anapolis, Indiana.

Taylor, R. Gregory (1993): “Zermelo, reductionism, and the philosophy of
mathematics”. Notre Dame Journal of Formal Logic, vol. 34: pp. 539–563.

Tiles, Mary (1989): The Philosophy of Set Theory. An Historical Introduc-
tion to Cantor’s Paradise. Basil Blackwell, Oxford.

Urquhart, Alasdair (2003): “The theory of types”. In Griffin [2003], pp.
286–309.

Uzquiano, Gabriel (1999): “Models of second-order Zermelo set theory”.
The Bulletin of Symbolic Logic, vol. 5: pp. 289–302.

— (2002): “Categoricity theorems and conceptions of set”. Journal of Philo-
sophical Logic, vol. 31: pp. 181–196.

Wagner, Pierre (ed.) (2009): Carnap’s Logical Syntax of Language. Pal-
grave Macmillan, Basingstoke, Hampshire.

Wang, Hao (1974): From Mathematics to Philosophy. Routledge and Kegan
Paul, London.

Weston, Thomas S. (1977): “The continuum hypothesis is independent
of second-order ZF”. Notre Dame Journal of Formal Logic, vol. 18: pp.
499–503.



174 Bibliography

Wittgenstein, Ludwig (1922): Tractatus Logico-Philosophicus. Routledge
& Kegan Paul, London. A German–English edition; English translation
by C. K. Ogden.

Zalta, Edward N. (2009): “Frege’s logic, theorem, and foundations for
arithmetic”. In The Stanford Encyclopedia of Philosophy (Edward N.
Zalta, ed.). Summer 2009 edition. URL http://plato.stanford.edu/

archives/sum2009/entries/frege-logic/.

Zermelo, Ernst (1904): “Beweis, daß jede Menge wohlgeordnet werden
kann”. Mathematische Annalen, vol. 59: pp. 514–516. English translation
by Stefan Bauer-Mengelberg published in van Heijenoort [1967a], pp. 139–
141.

— (1908): “Untersuchungen über die Grundlagen der Mengenlehre I”. Math-
ematische Annalen, vol. 65: pp. 261–281. English translation by Stefan
Bauer-Mengelberg published in van Heijenoort [1967a], pp. 199–215.
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