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I. INTRODUCTION 

 

Coronary heart disease (CHD) is the most common cause of morbidity and mortality in the 

developed countries. Extension of present knowledge concerning the pathogenesis of CHD as 

well as development of new approaches and drugs for its treatment are therefore highly desired. 

The most serious form of CHD represents the acute myocardial infarction (AMI). 

Experimental administration of catecholamines may evoke a pathological state in many aspects 

similar to AMI in man. The mechanisms of catecholamine cardiotoxicity have not yet been fully 

understood but includes overstimulation of the heart leading to ischaemia and redox-cycling of 

catecholamines. Both processes are associated with reactive oxygen species (ROS) production 

catalyzed by free redox-active iron which is released during and after ischaemia. 

Iron chelators may therefore act as protective drugs in catecholamine cardiotoxicity. Novel 

iron chelator from aroylhydrazone group PCTH, endogenous lactoferrin and flavonoid rutin with 

iron chelating properties were tested in this study and their effects were compared to those of 

clinically used iron chelator deferoxamine. 
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II. THEORETICAL PART 

1. Acute myocardial infarction (AMI) 

Heart diseases, especially coronary heart disease (CHD), are the most common cause of 

morbidity and mortality in the developed countries. Mortality around 20% associated with  

coronary heart disease remains important medicinal problem despite some reduction in recent 

years (Coady et al., 2001; Goldberg et al., 2006).  

The most serious syndrome of CHD represents the acute myocardial infarction (AMI). The 

prominent feature of AMI is acute localized myocytes necrosis which develops as a consequence 

of insufficient myocardial blood supply. 95% of cases of AMI are associated with atherosclerosis 

of a coronary artery with the following thrombosis (Widimský and Špaček, 2004). 

The therapy of AMI includes immediate symptomatic care  

1. pain relief by application of opiates 

2. nitrates 

3. acetylsalicylic acid 

4. oxygen inhalation 

5. eventually in specific cases other drugs, e.g. β-blockers, antiarrhythmic 

drugs 

and therapeutic approaches intended for reperfusion of infarcted area 

 thrombolytic therapy by use of fibrinolytic drugs 
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6. interventional cardiologic approaches (percutaneous coronary intervention 

or bypass surgery) (Widimský and Špaček, 2004) 

Traditionally, ischaemia following coronary artery occlusion was considered to be the 

main cause of heart injury in AMI. Nowadays, there is evidence that restoration of coronary 

blood flow (reperfusion) either spontaneous or therapeutic by above referenced medical 

approaches represents an additional risk for further myocardial tissue impairment. Because 

whole phenomenon cannot be separated in clinical conditions, a term ischaemia-reperfusion 

injury (I-R) is generally used. 

The diagnosis of AMI is based mainly on non-invasive procedures and biochemical 

parameters in the blood (WHO, 1979).  Intracellular derangement has been described only in 

post-mortem human tissue or in animal models due to ethical principles. The most relevant 

animal model of AMI has been considered the occlusional model imitating clinical AMI by 

ligation of a coronary artery and outcomes from such studies are summarized in the following 

chapters: 

1.1  Intracellular changes during ischaemia 

Ischaemia converts cellular aerobic metabolism in anaerobic glycolysis. This is associated 

with lactate production and marked drop in pH with intracellular acidosis (Ambrosio et al., 1987; 

Ravingerova et al., 2001). Additionally, free fatty acids released by peroxidation of 

plasmalemmal phospholipids may contribute to acidosis after prolonged ischaemia (Ohmi et al., 

1992). Metabolic derangement during ischaemia leads further to a significant drop in high-

energy phosphate compounds (creatine phosphate-CP and ATP) and glycogen and to an increase 

in NADH (Ambrosio et al., 1987; Lesnefsky et al., 1991; Ohmi et al., 1992; Ravingerova et al., 
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2001; Varadarajan et al., 2001). The decrease in cellular energetic sources changes cellular 

homeostasis which is maintained under physiological condition mainly by energy-dependent 

transport ways through plasmalemmal membrane. 

Xanthine dehydrogenase is an enzyme involved in normal purine metabolisms, precisely, it 

represents the terminal metabolic pathway for adenine and guanosine nucleotides. However, a 

short period of hypoxia, especially in heart tissue, stimulates its conversion into xanthine oxidase 

(XO) and, moreover, activates its enzyme transcription (McCord et al., 1985; Terada et al., 

1997). In such form, XO in presence of substrates (xanthine and hypoxanthine) and molecular 

oxygen readily generates reactive oxygen species (ROS) (Chambers et al., 1985). In addition, 

recently it has been discovered that XO may use accumulated NADH as a substrate instead of 

oxygen for generation of ROS (Berry and Hare, 2004).  

Low weight molecular iron (LWMFe) is usually negligible under physiological condition, 

but ischaemia augments LWMFe proportionally to ischaemic duration (Holt et al., 1986; Voogd 

et al., 1992). Further, hypoxia reduces the activity of antioxidant enzymes (SOD or MnSOD and 

CuZnSOD, GPx) in the heart tissue. These drops progressively increase proportionally to 

duration of ischaemia (Guarnieri et al., 1980; Roth et al., 1985; Kirshenbaum and Singal, 1992). 

Similarly, cellular glutathione content and total cellular SH-content reduces progressively in 

dependence on duration of ischaemia (Guarnieri et al., 1980; Roth et al., 1985). 

Malonyldialdehyde, generally measured as thiobarbituric acid substances (TBARS), is 

commonly used as a biomarker of lipid peroxidation caused by ROS  (Ceconi et al., 1992). 

Increased TBARS production was observed generally only after prolonged ischaemia and may 
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reflect decreased levels of antioxidant enzymes (Guarnieri et al., 1980; Roth et al., 1985; 

Kirshenbaum and Singal, 1992).  

1.2  Changes during reperfusion 

Oxygen enters previously ischaemic tissue and is quickly transformed into superoxide and 

other forms of ROS. This increase of ROS during first 5 minutes of reperfusion has been proven 

by many authors (Ambrosio et al., 1987; Bolli et al., 1990; Boucher et al., 1992; Prasad et al., 

1992). The role of catalytically active metals, especially iron and copper, cannot be omitted. Iron 

is markedly released from ischaemic tissue during the first minute after reperfusion, and 

interestingly, elevated levels of LWMFe remained in the heart tissue even during reperfusion 

(Boucher et al., 1992; Voogd et al., 1992; Chevion et al., 1993; Coudray et al., 1994; 

Berenshtein et al., 2002). Similar kinetics concerning copper has been observed although it 

appears to take place only after more severe ischaemic insult (Chevion et al., 1993; Berenshtein 

et al., 2002). “Free” iron, as well as copper, can catalyze Haber-Weiss reaction, which can be 

summarized as follows (Gutteridge et al., 1979; Gunther et al., 1995; Halliwell and Gutteridge, 

1999; Berenshtein et al., 2002):            

                                    

O2
.-
 + H2O2      →      O2 + OH. + OH- 

 Hydroxyl radical generated by this reaction is supposed to be the most potent biological 

oxidant. Further, electron paramagnetic resonance suggested that released ROS may be most 

likely alkyl peroxyl radicals (ROO
.
) and indeed, such radicals seem to come out from reaction of 

hydroxyl radical with membrane lipids or other macromolecules (Ambrosio et al., 1987). 

Fe(II)/Cu(I) 
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Additionally, the whole process may be amplified, because ROS are documented to release free 

iron (see chapter III.2).  

The increase in ROS seems to be facilitated by a decrease in antioxidants evoked during 

ischaemia. Additionally, reperfusion with burst of ROS appears to further decrease intracellular 

levels of glutathione and total SH-groups and activity of antioxidant enzymes – SOD and GPx 

after more severe (longer) ischaemia (Guarnieri et al., 1980; Lesnefsky et al., 1991; 

Kirshenbaum and Singal, 1992; Gonzalez-Flecha et al., 1993). A decrease in catalase activity, 

probably due to low physiological levels in heart tissue, seems to be significant only after even 

more sever ischaemic insult (Kirshenbaum and Singal, 1992; Gonzalez-Flecha et al., 1993). On 

the other hand, some controversy ensues from the study of Coudray et al. who did not found any 

statistical decrease in SOD, catalase or GPx levels in rat heart tissue after various period of 

global or partial ischaemia followed by reperfusion (Coudray et al., 1995).  

In general, an increase in ROS is reflected by TBARS which reached higher levels after 

reperfusion as compared to that of ischaemia in most studies (Guarnieri et al., 1980; Roth et al., 

1985; Holt et al., 1986; Omar et al., 1989; Ohmi et al., 1992; Prasad et al., 1992; Fantini and 

Yoshioka, 1993). In addition, ROS lead to oxidation of various macromolecules, e.g. unsaturated 

fatty lipid of plasmalemmal membrane. And in fact, marked plasmalemmal damage is 

documented by an augmentation in the membrane resting potential (“functional marker of cell 

membrane status”) and by a substantial release of proteins during reperfusion (Fantini and 

Yoshioka, 1993; Chevion et al., 1993). Release of lactate dehydrogenase (LDH), a known non-

specific marker of myocardial injury, has been well documented even in ischemia but, in 

addition to that it is markedly enhanced during reperfusion (Kirshenbaum and Singal, 1992). 
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An increase in myocardial calcium content has been acknowledged as one of crucial 

feature of myocardial damage many decades ago (Fleckenstein et al., 1973). An increase in 

myocardial intracellular content leads otherwise to fortification of myocardial contractile force 

but longer calcium overflow, called “calcium overload”, overstimulates myofilaments, intensifies  

oxygen demands and is associated with excessive high-energy phosphate cleavage (Fleckenstein 

et al., 1973; Sulova et al., 1998). Coronary artery ligation leads to an increase in myocardial 

calcium level as well and this myocardial calcium overload is much more pronounced during 

reperfusion (Kirshenbaum and Singal, 1992).  

It has to be emphasized that only 15 minutes of ischaemia followed by various period of 

reperfusion can be considered as a model of AMI. Shorter ischaemia does not lead to 

biochemical changes and necrosis associated with AMI (Bolli et al., 1990; Lesnefsky et al., 

1991). 

2. Catecholamines and AMI 

It has been accepted for many years that excessive release of endogenous catecholamines 

(adrenaline and noradrenaline) is associated with Western lifestyle and it appears to be an 

important trigger of AMI in human (von Kanel et al., 2002; Kloner, 2006). Moreover, high 

concentration of endogenous catecholamines or exogenous application of catecholamines are 

cardiotoxic (Rona, 1985; Persoon-Rothert et al., 1989; Tan et al., 2003). More recently, studies 

revealed that ischaemia is associated with progressive increment in endogenous catecholamines 

levels which are normalized upon reperfusion (Schomig, 1990; Lameris et al., 2000).  In light of 

these data, it is not very surprising that the catecholamine model seems to be a suitable model of 
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AMI commonly used by researchers. For such purpose, synthetic catecholamine isoprenaline 

(ISO) with non-selective betaagonistic activity has been widely employed. 

Experimentally, administration of catecholamines in relatively large doses induces in 

animals a pathological state with many similarities to AMI. The whole process of catecholamine 

cardiotoxicity has not been yet fully elucidated. It seems to be started by excessive stimulation of 

beta-adrenergic receptors, which leads to myocardial hypoxia or anoxia and to a drop in energy 

compounds. Additional pathologic mechanisms, especially the production of ROS by oxidation 

of catecholamines, play unquestionably the role and are discussed in the following paragraphs.  

2.1  Myocardial hypoxia 

Pharmacological application of ISO results quickly in tachycardia and drop in arterial 

blood pressures due to stimulation of β1- and β2-adrenoreceptors, respectively (Diaz-Munoz et 

al., 2006). Large doses produce a decrease in myocardial blood flow while small doses the 

opposite effect, although such increase is associated with a decrease in functional capillary 

density, especially in the subendocardium (Vetterlein and Schmidt, 1980; Blasig et al., 1985). 

Moreover, ISO favours coagulation as demonstrated by shortening partial tromboplastine time, 

and in fact, formation of microthrombi with apparent obstruction of many small vessels was 

observed after ISO administration (Blasig et al., 1985; von Kanel et al., 2002; Pinelli et al., 

2004). Acetylsalicylic acid markedly reduces ISO damage indicating that increased platelet 

aggregation is involved in the pro-coagulative state induced by ISO. Additionally, enhanced 

neutrophil activation is suggested (Sumitra et al., 2001). Altogether, tachycardia and the increase 

in myocardial contractility lead to elevated oxygen demands and this, along with drop in arterial 

blood pressure and capillary derangement, leads to dysbalance between oxygen demands and 
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oxygen supply. In fact, decreased myocardial oxygen tension was observed even after relatively 

small doses of ISO (Winsor et al., 1975).  

Catecholamine administration leads to rapid drop in high-energy phosphate compound 

(ATP, CP) and glycogen. The recovery depends on a dose of ISO used and is much more faster 

for glycogen and CP than for total adenine nucleotides and ATP (Tsuboi et al., 1974; Singal et 

al., 1982; Blasig et al., 1985; Kondo et al., 1987; Chagoya de Sanchez et al., 1997) . The ATP-

drop in the myocardium is accompanied by a decrease in blood ATP concentration and elevated 

levels of AMP in heart tissue, as well as in the blood (Tsuboi et al., 1974; Chagoya de Sanchez et 

al., 1997). In addition, ISO administration caused markedly elevated levels of uric acid in serum 

(Rajadurai and Prince, 2007). It has not to be emphasized that decomposition of ATP leads to 

elevated levels of hypoxantine and xanthine, which are substrates for XO. 

 

2.2 ROS and catecholamines 

The ROS generation, measured as TBARS or lipid hydroperoxide, has been well 

documented after ISO application in tissue as well in plasma and has been associated with drop 

in vitamin C and GSH levels (Sumitra et al., 2001; Tappia et al., 2001; Diaz-Munoz et al., 2006; 

Padmanabhan and Prince, 2006). Similarly, adrenaline evoked overproduction of superoxide 

(Mehta and Li, 2001). XO/xanthine dehydrogenase ratio is increased (Diaz-Munoz et al., 2006) 

and heart tissue antioxidant enzymes (catalase, GPx and SOD) and vitamin E in serum are 

reduced after ISO administration (Sumitra et al., 2001; Pinelli et al., 2004).  

Catecholamines are metabolised via catechol-o-methyltransferase and monoamine oxidase, 

but these enzymes are saturable and high concentration of catecholamines caused by any 
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alteration of metabolism, disruption of their transport or exogenous application leads to their 

oxidation. Their oxidation may proceed non-enzymatically as autooxidation by participation of 

transient metals – for details see Fig. 1, or, may be mediated by various enzymes (XO, 

tyrosinase, leucocytes myeloperoxidase, heart muscle cytochrome c oxidase) (Matthews et al., 

1985; McCord et al., 1985; Bindoli et al., 1992; Remiao et al., 2001). Importantly, 

catecholamine oxidation is facilitated by ROS and, besides, it leads alone to production of ROS 

(Matthews et al., 1985; Bindoli et al., 1992; Remiao et al., 2001). Catecholamine oxidation 

products oxidize free thiol groups and this leads to reduction in extracellular and intracellular 

GSH content as well, further they decrease activity of GPx and glutathione reductase (Bindoli et 

al., 1992; Remiao et al., 2001; Remiao et al., 2002). Based on the role of ROS and transition 

metals in their production, antioxidants as well as iron chelator razoxane were able markedly 

reduce damages caused by ISO in cell cultures, while non selective β-blocker propranolol did not 

(Persoon-Rothert et al., 1989). Moreover, perfusion of isolated rat heart and mitochondria with 

adrenochrome evoked changes similar to I-R (Takeo et al., 1981; Tappia et al., 2001). 
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Fig. 1 Catecholamine autooxidation in presence of transition metal ion (M
n+

) according to 

published studies (Bindoli et al., 1992; Remiao et al., 2001). The first step is the transformation 

of catecholamines into o-quinones, which are reactive intermediates that can undergo an 

irreversible 1,4-intramolecular cyclization leading to the formation of leucoaminochromes (2,3-

dihydroindole-5,6-quinones) and finally to aminochromes (2,3-dihydroindole-5,6-diones). 

Aminochromes can be further transformed by oxidation and/or polymerization into several other 

compounds, such aminolutins, melanins (not shown).  The whole process is associated with 

production of ROS. 

2.3  Calcium overload 

Many researchers described calcium overload caused by catecholamines (Rona, 1985; 

Tappia et al., 2001; Diaz-Munoz et al., 2006), unfortunately, the precise mechanism of this 

calcium overload remains still very elusive. Calcium influx caused by catecholamines appears to 
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start with opening of L-type calcium channels in plasmalemmal membrane. It has been well 

documented that this way of calcium influx is amplified by catecholamines (Zheng et al., 1992). 

Plasmalemmal Na
+
-Ca

2+
-exchanger appears to play a significant role, as well (Saini et al., 2006).  

Calcium influx via plasmalemmal membrane leads to an increase in intracellular calcium 

concentration, which triggers Ca
2+

-release from sarcoplasmatic reticulum (SR) (Fabiato, 1985; 

Bers et al., 1990). This process seems to be mediated by phosphorylation of ryanodine receptor 2 

which is a calcium channel releasing SR calcium. During repolarization, calcium returns to SR 

by use of SR Ca
2+

-ATPase (SERCA) and it is transported outward of the cell via Na
+
-Ca

2+
-

exchanger (this transporter is involved in both influx and efflux of calcium) and plasmalemmal 

calcium ATP-ase (Bers et al., 1990). The whole process seems to take place physiologically, as 

well. Markedly elevated levels of catecholamines alter this process by several proposed 

mechanisms: 

 A decrease in Na
+
-Ca

2+
-exchanger activity has been documented several hours 

after ISO application (Tappia et al., 2001; Diaz-Munoz et al., 2006). Additionally, this 

transporter is voltage dependent, may be therefore associated with calcium overload 

deterioration under pathological changes in cell homeostasis (Tappia et al., 2001).  

 Hyperphosporylation of ryanodine receptor 2, leading to significant calcium leak 

from SR into the cytosole, is stimulated by beta-adrenergic receptors (Curran et al., 2007; 

Ellison et al., 2007). ISO induces apoptosis in vivo experiments and this apoptosis can be 

eliminated by inhibiting ryanodine receptor 2 function (Ellison et al., 2007). 

The role of other transporters is not clear and results of studies are contradictory: An 

increase in SERCA activity was described after ISO bolus (Diaz-Munoz et al., 2006), although 
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continuous application of ISO led to a decrease in SERCA gene expression and this effect could 

be absolutely inhibited by propranolol (Boluyt et al., 1995). Likewise, raised plasmalemmal Ca-

ATPase activity was observed in one study while in another, a marked decrease was observed 

(Tappia et al., 2001; Diaz-Munoz et al., 2006).  

 

3. Laboratory diagnostic findings of AMI and comparison to 

experimental models 

According to the nomenclature, AMI diagnosis is based particularly on unequivocal ECG 

changes and/or enzyme changes (WHO, 1979; Widimský and Špaček, 2004).  Other laboratory 

diagnostic approaches, in particular echocardiography and coronarography, carry additional 

information related especially to the success of AMI-treatment and AMI-complications 

(Widimský and Špaček, 2004). 

3.1  ECG changes 

ECG of an AMI-patient shows typically elevations or depression in ST-segment, in case of 

transmural AMI abnormal, persistent Q wave and, eventually, other abnormalities (negative T 

wave). Application of ISO to laboratory animals was associated with typical AMI changes on 

ECG: ST segment elevation/depression, deep Q wave and T wave inversion. More precisely, ST 

segment derangement returned to normal at 48 hours, while Q wave persisted and negative T 

wave inversion appeared (Singal et al., 1982; Chagoya de Sanchez et al., 1997; Pinelli et al., 

2004).  
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Arrhythmias, especially ventricular fibrillation, occurring during I-R seems to develop in 2 

phases (Bernier et al., 1986; Clements-Jewery et al., 2002). The first phase takes place during 

ischaemia and is probably based on elevated levels of potassium (Sulova et al., 1998). The 

second phase appears during reperfusion and is associated with ROS production. The 

involvement of catecholamines in the second phase cannot be ruled out but remains controversial 

(Clements-Jewery et al., 2002). Clinically, interventional coronary reperfusion procedures (e.g., 

primary coronary angioplasty) are accompanied by occurrence incidence of ventricular 

fibrillations (VF) (Olsson et al., 2002) which could have identical pathophysiological mechanism 

with second phase arrhythmias. It can be hypothesized that suppression of ROS during 

reperfusion may decrease the incidence of such arrhythmias. In fact, some experimental studies 

revealed protective effects of agents diminishing ROS generation or directly scavenging ROS on 

incidence of VF but there is still large discrepancy (Singal et al., 1982; Chambers et al., 1985; 

Bernier et al., 1986). 

3.2  Biochemical markers 

Biochemical markers of AMI have changed during last decades. Formerly used creatine 

kinase (CK) or even LDH were displaced firstly by MB-isoform of CK (CK-MB) and in the 

present unambiguously by cardiac troponins. Cardiac troponin T (cTnT) is preferred by most 

laboratories although cardiac troponin I may be similarly useful (Jaffe et al., 2000). Both AMI 

models (ISO administration and coronary artery ligation) provoked marked increase in serum 

CK, CK-MB and LDH concentrations (Wexler and McMurtry, 1981; Badylak et al., 1987; 

Sumitra et al., 2001).  
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Clinical studies reported a good correlation among myocardial infarction size, enzymatic 

assessment and 6-month mortality (Gibbons et al., 2004). Both coronary artery ligation and ISO 

application lead to myocardial necrosis after sufficient time or dose, respectively. ISO has an 

advantage that the extent of necrosis is proportional to the dose (Rona, 1985). It is well known 

fact that tissue necrosis is associated with tissue functional impairment and hence both AMI 

models documented marked derangement in many parameters of heart function, e.g., in stroke 

volume, cardiac output, left ventricle developed pressure, increased end-diastolic pressure, 

alternation in coronary blood flow (Blasig et al., 1985; Ambrosio et al., 1987; DeBoer and Clark, 

1992; Tappia et al., 2001).                       

 

4 Studied compounds 

4.1  Iron chelators 

Iron chelators represent a large group of drugs with diverse chemical structure that avidly 

bind iron (Liu and Hider, 2002; Kalinowski and Richardson, 2005). Traditionally they are used 

in acute intoxication, in chronic iron overload diseases and as preventive agents hindering the 

antracycline cardiotoxicity (Olivieri and Brittenham, 1997; Hrdina et al., 2000). Quite recently, 

new therapeutic application has revealed: some of them may be useful in antitumour therapy, in 

the treatment of some neurodegenerative disorders and they seem to possess antibacterial, 

antiprotozoal and antifungal activity, too (Tam et al., 2003; Kalinowski and Richardson, 2005). 

The idea that iron chelation may be useful in various conditions associated with I-R or oxidative 

stress has been proposed many years ago. Virtually, oxidative stress is associated with chronic 

iron overload and plays a role in antracycline cardiotoxicity. Unfortunately, results concerning I-
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R are somehow conflicting (see later). Therefore, there is a need to test novel iron chelators, in 

such pathological conditions. 

Coordination number of iron is six. This enables to use various types of iron chelators. 

Hexadentate chelators possess 6 donor atoms per one molecule, so one molecule of chelator 

ligates directly all 6 iron coordination sites forming complex chelators-iron 1:1, analogously, 

chelators with 3 donor atoms are termed tridentate and form complexes 2:1 and chelators with 2 

donor atoms bidentate forming complex 3:1, chelator : iron, respectivelly (see Fig.2). In general, 

hexadentate ligands have higher stability for their ferric complexes as compared to bi- or 

tridentates (Liu and Hider, 2002). Regrettably, recently developed compounds are mostly 

bidentates or tridentates mainly due to low oral bioavailability of hexandetate drugs (Tam et al., 

2003). For hindering the redox cycling, all 6 coordination sites have to be firmly occupied 

because “loosely-bound” iron or iron with one coordination site occupied by an easily 

dissociable ligand can catalyze production of hydroxyl radical (Graf et al., 1984). Unfortunately 

not all chelators even with relatively high association constant of the chelators-Fe
III+ 

complex 

hamper redox cycling of iron with subsequent formation of hydroxyl radical. Such example 

represents the hexadentate chelators EDTA which is too small to encompass the iron atom (Liu 

and Hider, 2002). Indeed, the correlation between the association constant of chelating agent 

with Fe
III+

 and redox cycling of iron is very poor (Graf et al., 1984). More information than 

affinity constant may give redox potential of iron-chelator complex. Chelators hindering redox 

cycling have very low redox potential, e.g., deferoxamine-Fe
III

 complex has E0 -475 mV, Fe
III

-

complexes with aroylisonicotinoylhydrazines have E0 -285 ± 30 mV (Spasojevic et al., 1999; 

Bernhardt et al., 2005). Nevertheless, iron-chelators complexes which can undergo redox cycling 
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are not suitable for possible usage in I-R condition, but they may be useful as antitumour drugs 

(Kalinowski and Richardson, 2005). 
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Fig.2. Examples of iron-chelator complexes. A: hexadentate (complex deferoxamin:iron, 

1:1), B: tridentate (complex PIH:iron, 2:1), C: bidentate (complex deferiprone:iron, 3:1).  

4.1.1 Deferoxamine (DFO) 

Deferoxamine (desferrioxamine, Fig. 3) is a hexadentate microbial iron chelators extracted 

from Streptomyces pilosus. It is the most widely used iron chelators and has been the drug of 

choice for clinical treatment of iron overload conditions, especially thalassemia, since 1970s 

(Olivieri and Brittenham, 1997).  
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Fig.3. Structure of deferoxamine. 

 

Unfortunately, it has several disadvantages, particularly: 

 It is not absorbed by peroral application and its effects are limited to 

intravascular space with an exception of the liver (Liu and Hider, 2002) 

 Long-term infusion (8-12h) i.v. or s.c. 5-7 days weakly are needed to 

obtain clinical efficacy. This is associated with low patient compliance. 

 It has short elimination half-life 5-10 minutes because of rapid renal 

clearance (Liu and Hider, 2002) 

 Swelling and pain at the site of injection is documented in one third of 

patients (Kalinowski and Richardson, 2005) 

Nevertheless, DFO has high affinity for Fe
3+

 and renders chelated iron inactive and 

therefore hindering ROS propagation (Liu and Hider, 2002; Kalinowski and Richardson, 2005). 

Iron excretion is clearly augmented in urine as well in faeces after DFO admistration (Pippard et 
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al., 1982). In addition, DFO enters into the liver via a facilitated transport system and may 

therefore interact not only with extracellular iron but also with iron stored in hepatic cells 

(Hershko et al., 1978; Liu and Hider, 2002). On the other hand, limited distribution to other 

organs, especially to the heart, diminishes its clinical effectiveness. Indeed, it has been 

demonstrated that DFO improves laboratory abnormalities in hepatic function, arrest hepatic 

fibrosis, reduces significantly mortality and morbidity on cardiac disease although such therapy 

does not reverse iron-induced cardiac dysfunction in thalassemic patients treated with blood 

transfusions (Olivieri and Brittenham, 1997).  

In contrast to the documented positive effects of DFO in thalassemic patients, the 

usefulness of DFO in various I-R remains obscure. There are some reports showing positive 

effects of DFO, however, there are also some reports claiming the opposite results, as well (see 

Tab.1). It should be taken in the consideration that studies reporting positive results were based 

mostly on less severe experiemental protocol (e.g., hypoxia instead of anoxia, only 15 minutes of 

ischaemia) or were obtained from experiments performed on isolated heart or liver. In the latter 

case, DFO is much more efficient because of its reported better penetration into the liver in 

comparison to that to other tissues. This is supported by better recovery of hepatic function in 

thalassemic patients (see previous paragraph). In addition, 15 minutes of ischaemia has been 

documented not to cause myocardial necrosis (Bolli et al., 1990). Perfusion experiments carried 

out on isolated heart cannot establish the contribution of leucocytes in this injury. Moreover, 

continuous infusion of DFO appears to be more efficient probably due to short elimination half-

life of DFO. Conclusively, it seems that DFO may have positive effects on impairment caused by 

catalytical involvement of iron substantially in: 
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 Liver injury 

 Iron over-load condition 

 Longer infusion of sufficient dose   

 

4.1.2 Aroylhydrazones 

Aroylhydrazones are a large novel group of tridentate chelators containing wide range of 

analogues (see Fig.4). One of subgroups are 2-pyridylcarboxaldehyde isonicotinoyl 

hydrazones. These chelators bind iron through imine and pyridyl nitrogens and a carbonyl 

oxygen. Based on inclusion of another nitrogen in the ligation site, these chelators were expected 

to redox-cycle and therefore originally developed as antitumour drugs. Paradoxically, they 

demonstrated only low antiproliferative activity while they showed potential to replace DFO in 

the treatment of iron overload pathologies (Kalinowski and Richardson, 2005). 2-

pyridylcarboxaldehyde-2-thiophenecarboxyl hydrazone (PCTH) seems to be the most promising 

agent. Recently, PCTH has been shown to protect iron-loaded cells against oxidative stress 

caused by hydrogen peroxide (Lim et al., 2008).  

 

 

Study Animal Type 
Duration 
(minutes) 

DFO Outcomes 

Ambrosio et 
al., 1987 

rabbit 
isolated 

perfused 
heart 

30/up to 
45 

B+I 
almost total recovery of biochemical and 

functional parameters  
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Badylak et al., 
1987 

rat 
isolated 

perfused 
heart 

60/60 I 
a decrease in LDH release, mitochondrial damage 

and lesser increase in peripheral resistance 

Bolli et al., 
1990 

dog 
open-

chest 
15/240 B+I 

total recovery of functional parameters except 
for myocardial blood flow 

Bolli et al., 
1987 

dog 
ope-

chest 
15/240 B+I 

lower occurence of VF, otherwise no difference 
in arrhythmias, better recovery of myocardial 
function 

DeBoer and 
Clark, 1992 

rat 
isolated 

perfused 
heart 

25/15 B+I no amelioration in functional parameters 

Myers et al., 
1985 

rabbit 
isolated 

perfused 
heart 

60*/60 I 
almost absolute inhibition of creatine kinase 

release, amelioration of stroke volume but almost 
no effect on myocardial blood flow 

Myers et al., 
1986 

rabbit 
isolated 

perfused 
heart 

CS + 
120/60 

B 
no significant improvement of functional 

parameters except, interestingly, for coronary 
blood flow 

Omar et al., 
1989 

rat 
liver 

ischaemi
a 

30/up to 
24 h 

B 
marked improvement of liver histopathological 

injury at 24 h and a significant reduction in TBARS 
in liver tissue at 2 h 

Reddy et al., 
1991 

dog 
open-

chest 
60/up to 

24 h 
I 

no differences in mortality and necrosis,no 
amelioration in functional parameters 

 

Table 1 Studies concerning effects of DFO on I-R. Studies differ in strains of animals, type 

of methodological procedure, duration of I-R (left number is duration of ischemia, the number 

behind the slash is duration of reperfusion) and administration of DFO. Symbols and 

abbreviations: open-chest – I-R was carried out by a ligation of the left anterior descending 

coronary artery, liver ischaemia – I-R caused by ligation of entire hilar pedicle, CS – 

cardioplegic solution (27°C for 5 min), B (bolus) – DFO was administered before the beginning 

of ischaemia, B
DFO was integral part of cardioplegic solution, I (infusion) – DFO was 

continuously infused during experiment, I
+
 - DFO was infused only during reperfusion, VF – 

ventricular fibrillation on reperfusion, * - instead of absolute ischaemia, hypoxic solution was 

used. 
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Fig. 4. Aroylhydrazones. Five generation of aroylhydrazone iron chelators are depicted 

with the representative drug (mostly tested). First generation (series 100) are pyridoxal 

isonicotinoyl hydrazones and their representative is pyridoxal isonicotinoyl hydrazone (PIH). In 

series 200 pyridoxal moiety was replaced by salicylaldehyde group and representative is SIH 

(salicylaldehyde isonicotinoyl hydrazone). The series 300 contains 2-hydroxy-1-naphtaldehyde 

residue, these compounds are powerful antiproliferative agents – representative is 311. 2-

pyridylcarboxaldehyde isonicotinoyl hydrazones generation is represented by PCTH (2-

pyridylcarboxaldehyde-2-thiophenecarboxyl hydrazone). The most recent generation (di-2-

pyridylketone isonicotynoyl hydrazones) represents PKIH (di-2-pyridylketone 

thiophenecarboxyl hydrazone) - these drugs possess high antiproliferative activity. 
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4.1.3 Lactoferrins 

Lactoferrins are mammal 80-kDa large iron-binding glycoproteins, which share high-

degree of homology with each other and with transferrin at amino acid sequence as well at three 

dimensional conformation (Metz-Boutigue et al., 1984; Abdallah and El Hage Chahine, 2000; 

Baker and Baker, 2005; Weinberg, 2006). One molecule of lactoferrin has two binding sites for 

ferric ions (Fig.5). Its affinity for iron is about 260 times higher than that of transferrin and in 

contrast to the mentioned iron-carrier, lactoferrin is able to retain iron even under more acidic 

condition (Mazurier and Spik, 1980). The role of lactoferrin in man is not fully understood. Its 

presence on mucosal surfaces suggests, together with its iron binding properties, its involvement 

in the defence against microbes, especially bacteria, who necessitates iron (Weinberg, 2003). 

Moreover, lactoferrin may scavenge free iron in inflammation and therefore prevent its 

participation in ROS-generation (Legrand et al., 2004). 

Lactoferrin has been shown in vitro to inhibit hydroxyl radical formation via Fenton 

chemistry as well as to protect some food against oxidation (Baldwin et al., 1984; Raghuveer et 

al., 2002; Nielsen et al., 2004). Moreover, lactoferrin decreased ROS-generation in iron-

overloaded mice (Schaible et al., 2002). Based on the mentioned studies, lactoferrin may act 

protectively in myocardial I-R injuries and may possess special advantage over other iron 

chelators, especially by its endogenous origin. 
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Fig. 5. Molecular structure of human lactoferrin (Baker and Baker, 2005). The N-lobe is on 

the left, the C-lobe on the right. Ferric ions are synergically bound with CO3
2- 

(shown by red 

spherical atoms) in each lobe. 

 

There is a huge amount of other, in this study not tested, known iron chelators, which are 

described in details in various excellent reviews (Liu and Hider, 2002; Tam et al., 2003; 

Kalinowski and Richardson, 2005). 

 

4.2  Flavonoids 

Flavonoids (Fig. 6A) are the most common and widely distributed class of natural 

polyphenolic compounds. Intense investigation of their properties demonstrated large spectrum 

of proposed pharmacological activity (antiallergic, anti-atherogenic, anti-anflammatory, 

antidiabetic, hepato- and gastroprotective, antiviral and antineoplastic). These properties are 

probably based mainly on their ROS-scavenging properties and interaction with enzymes (e.g. 

inhibition of xantine oxidase, lipoxygenase, cyclooxygenase) (Wilcox et al., 1999; Russo et al., 

2000; Moridani et al., 2003).  
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The former is explained by at least 3 mechanisms: 

 direct reaction with superoxide ion (Chen et al., 1990; Russo et al., 2000; 

Moridani et al., 2003) 

 iron and copper chelation (Kuo et al., 1998; Mira et al., 2002) 

 inhibition of lipid peroxidation by direct reaction with lipid peroxy radicals 

(Chen et al., 1990; Russo et al., 2000) (Afanas'ev et al., 1989) 

These complex ROS-scavenging properties may predispose flavonoids as therapeutically 

useful agents in conditions associated with I-R, and indeed, their effectivity was documented 

(Ahlenstiel et al., 2003). Additionally, antracycline cardiotoxicity, in which iron and ROS 

probably play a significant role, may be reduced by various flavonoids (Kozluca et al., 1996; van 

Acker et al., 2001; Psotova et al., 2004; Kaiserova et al., 2007). The contribution of iron 

chelation on scavenging properties of flavonoids is supported by reduction of iron overload 

tissue damage by these drugs (Zhang et al., 2006). Therefore, these polyphenolic compounds 

may have some impact on catecholamine cardiotoxicity. 

4.2.1 Rutin 

Rutin (Fig. 6B), also called rutoside or quercetin-3-rutinoside), is a citrus flavonoid 

glycoside found substantially in buckwheat, as well as in other sources, e.g., in Ruta graveolens, 

whose genus name gave word origin of rutin (Kreft et al., 1999). Rutin has been extensively 

investigated like other flavonoids. Its efficiency to scavenge superoxide, to chelate iron/copper 
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and to inhibit lipid peroxidation is well documented (Chen et al., 1990; Kuo et al., 1998; Russo 

et al., 2000).  

There are more purposes why rutin was chosen as a representative of flavonoids for this 

study: 

 Its ROS-scavenging activity is high and comparable in many studies with 

other powerful antioxidant flavonoids (Chen et al., 1990; Russo et al., 2000) 

 Similarly, its iron binding properties have been well documented. 

Spectrophotometic analysis revealed that rutin forms a stable complex with 

ferrous/ferric iron in ratio 2:1 (Afanas'ev et al., 1989). Electrospray mass 

spectrometry suggested that additional complexes with other stechiometry may be 

formed in minor scale, as well (Fernandez et al., 2002).  

 On the one hand, its aglycone quercetin may be more efficient in inhibition 

of lipid peroxidation but on the other hand, it is clearly more toxic than rutin, which 

contrarily did not show any overt signs of cellular toxicity up to 500 M (Afanas'ev 

et al., 1989; Saija et al., 1995; Soares et al., 2006). 

 Better water solubility in comparison to other flavonoids enables i.v. 

administration and comparison with iron chelators also administered i.v. in this 

study. 
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Fig. 6. Structure of flavonoids. A: Flavonoids backbone forms 2-phenyl-1,4-benzopyrone. 

Flavonoid are divided mainly according to the presence of 2,3-double bound, hydroxygroup in 

position 3 and ketogroup in position 4 into several subclasses (flavanols, flavanons, flavonols, 

flavons)  B: Structure of rutin (an example of flavonol). 3-rhamnosyl-glucosyl residue is attached 

by a glycoside bound to the flavonol aglycon quercetin. 
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5 Abbreviations 

 

AMI acute myocardial infarction 

CHD  coronary heart disease 

CK creatine kinase 

CP creatine phosphate 

DFO deferoxamine (desferrioxamine) 

GPx glutathione peroxidase 

I-R ischaemia-reperfusion injury 

ISO isoprenaline 

LDH lactate dehydrogenase 

LWMFe low weight molecular iron 

PCTH 2-pyridylcarboxaldehyde-2-thiophenecarboxyl hydrazone 

ROS reactive oxygen species 

SERCA  sarcoplasmatic reticulum Ca
2+

-ATPase 

SOD superoxide dismutase 

SR sarcoplasmatic reticulum 

TBARS thiobarbituric acid reactive substances 

VF ventricular fibrillation 

XO xanthine oxidase  
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1. The fate of iron in the organism and its regulatory pathways 
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2005; 48(3):127-35  

 

 

Summary 

 

 

Iron is an essential element involved in many life-necessary processes. Interestingly, in 

mammals there is no active excretion mechanism for iron. Therefore iron kinetics has to be 

meticulously regulated. The most important step for regulation of iron kinetics is absorption. 

There are several proteins known to participate in iron absorption and its regulation, but present 

knowledge is still not sufficient for complete understanding of the entire process. Surprisingly, 

the iron regulation at the molecular level is better described. This article discusses also iron 

delivery to the cells and iron fate inside the cells. 
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Iron is an essential element for virtually all living cells. Many life-important processes, 

among others oxygen transport, ATP production and DNA-synthesis, could not exist without 

iron. Cellular iron deficiency stops the cell growth and ultimatelly leads to the cell death. The 

most important property of iron, for which iron is a necessary component of many enzymes, is its 

ability to donate and receive an electron, i.e. to convert between its ferrous (Fe
2+

) and ferric form 

(Fe
3+

). However this useful feature can be dangerous under some conditions, because iron is also 

known to generate free radicals.  

The body of an adult man consists normally of 35 to 45 mg of iron per kilogram. The largest 

amount of iron is stored in circulating erythrocytes (1,8 g), parenchymatic cells of the liver (1 g), 

reticuloendothelial macrophages (0,6 g), bone marrow (0,3 g) and muscles (0,3 g) (6). 

 

Absorption 

Absorption takes place in absorptive villi of the small intestine, near of the gastro-duodenal 

junction (22). At this place, in the proximity of stomach the pH is still low and it assists in the 

decomposition of dietary iron. Iron is presented in food either locked in heme or as ferric ions 

bound to some molecule. The process of absorption of heme iron is little known while more 

information is available about non-heme iron. Firstly, ferric ions have to be converted to ferrous 

ions. This transformation is realized on the apical (luminal) membrane (71) by means of a heme-

based ferric reductase - duodenal cytochrome b (57). Expression of cytochrome b is stimulated 

by hypoxia, iron deficiency (71) and hypotransferrinaemia and depressed by iron overload (57).  

Normally 1 to 2 mg of iron is absorbed daily, the absorption can rarely increase above 6 mg 

(22). 
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After the conversion, ferrous ions are transported through apical membrane by divalent 

metal transporter 1 (DMT-1 or previosly named divalent cationt transporter, DCT-1; natural 

resistance associated macrophage protein 2, Nramp2) localized on the same membrane. Except 

Fe
2+

, DMT-1 has an unusually broad substrate range including also Zn
2+

, Mn
2+

, Co
2+

, Cd
2+

, Cu
2+

, 

Ni
2+

 and Pb
2+

, but interestingly it does not transport calcium and magnesium (34). Xu et al. 

discovered that a simple mutation can dramatically increase calcium permeability indicating 

similarity between DMT-1 and calcium channels (86). DMT-1 mediated transport is active, 

proton-coupled and depends on the cell membrane potential. This 561 amino acids protein with 

12 transmembrane segments is ubiquitously expressed, most notably just in the proximal 

duodenum (34). DMT-1 acts also as intracellular transporter (see the paragraph “Transport and 

endocytosis of iron into the cells” and Figure 2). Importance of DMT-1 was manifested by 

Fleming et al. who found severe defects in intestinal iron absorption and erythroid iron 

utilization in microcytic, hypochromic anaemic homozygous mk/mk mice which carry missense 

(glycine/arginine) mutation in DMT-1 (28). DMT1 is upregulated by dietary iron deficiency 

(34).  

The enterocyte-entered iron can become a part of poorly defined intracellular labile iron 

pool, be incorporated into ferritin or be released into blood. The mechanism of release into the 

circulation has not been fully elucidated. Present knowledge indicates that a transmembrane 

protein named ferroportin1 (named also metal transport protein 1, MTP1) is responsible for this 

process (1, 50). Overexpression of ferroportin1 in tissue cultures caused intracellular iron 

depletion (1). Significance of ferroportin1 is documented in zebrafish with mutations in 

ferroportin1 gene, such animals were unable to synthetize this transporter and developed 
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hypochromic anemia (23).  Ferroportin1 has 10 transmembrane domains and acts probably also 

as ferric reductase (a NADP/adenine specific site was identified). This may be due to assumption 

that ferric ions need to be firstly reduced to ferrous ions and than can be transported by 

ferroportin1 from the cell into the circulation. But a clear evidence that ferroportin1 transports 

ferrous or/and ferric ions has not yet been published (50). Ferroportin1 is expressed in many 

cells, but not in plasma membrane of macrophages (1), in jejunum and ileum (23). The function 

of ferroportin1 in iron metabolism could be different in miscellaneous cells (see also Regulation 

of iron metabolism at the molecular level). Ferroportin1 was also identified at the basal surface 

of placental syncytiotrophoblasts, which indicates its possible role in delivery of iron from the 

mother to the fetus (23).  

Osaki et al. found that ferrous ions exported from the cell require before loading onto 

transferrin their conversion to ferric ions (66). For some decades it has been known that without 

copper, iron remains in enterocytes and its movement into the circulation is seriously impaired 

(52). These two facts together led finally to suggestion that ceruloplasmin, which has ferroxidase 

activity, can be involved in basolateral iron transport (66). Studying sex-linked anaemic (sla) 

mice, a ceruloplasmin analogue was discovered and it was named after a Greek god of 

metalworking, haephastin (81). Haephastin is a multicopper oxidase, which in contrast to soluble 

ceruloplasmin, has a transmembrane domain and therefore is a membrane protein (24). At the 

present, haephastin is considered to be involved in intestinal iron transport (20,24) while 

ceruloplasmin in iron transport in some other tissues, e.g. in the liver (24,35). 
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Fig. 1 Schematic illustration showing iron absorption from the lumen of small intestine and its 

transit through enterocyte. Iron is presented in food mainly in the form of ferric ions, which are 

converted by the use of duodenal cytochrome b to ferrous ions. Fe
2+

-ions are transported through 

the enterocyte membrane by divalent metal transporter-1 (DMT-1). The fate of iron in the 

enterocyte can be: 1) incorporation into ferritin, 2) becoming part of intracellular labile iron pool 

or 3) direct transit to the blood. Transport through the  enterocyte/blood membrane occurs via 

ferroportin-1. For loading of iron onto transferrin, its conversion to ferric ions, probably by 

haephastin, is needed. 
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Transport and endocytosis of iron into the cells 

Transferrin (Tf) is the main iron carrier in human, approximately 3 mg of iron is bound to 

this protein. Apo-Tf possesses two high affinity ferric binding sites, while it has very low affinity 

for ferrous ions. Normally only about 30% of Tf is saturated by iron (6). Plasma level of non-

transferrin bound iron is extremely low and it normally does not exceed 1 mol/l and is often 

under detection limits (4). Non-Tf bound iron represents iron bound to other proteins, like 

ferritin, and also non-protein iron, probably mainly attached to citrate or possibly the citrate-

acetate complex (33). Importance of non-Tf bound iron is accentuated in iron-overload disorders.  

Iron-loaded transferrin (Tf-Fe2) is cleared from the blood by specific binding to its cell 

membrane receptors, transferrin-receptor 1 (TfR1) or cubilin receptor (48). Transferrin-receptor 

2 (TfR2) does not seem to play a role in iron uptake; its role is discussed later. The binding of Tf 

to TfR1 has been described elsewhere (6, 87). TfR1 exists as a membrane homodimer that binds 

one diferric Tf per monomer (72). Attachment of Tf to TfR1 results in the endocytosis of the 

whole complex. The endosome is acidified by ATP-dependent proton pump, iron, apo-Tf and 

TfR1 are subsequently released from the complex. Apo-Tf and TfR1 return to the cell surface for 

re-utilization. Ferric ions are reduced to ferrous ions because only Fe
2+

 can be transported 

through the endocyte-membrane into cytoplasm by the use of DMT-1. There is, however, an 

important question, whether the reduction of iron occurs before or after being released from Tf.  

It was shown that Tf-Fe2 loses ferric ions under acid conditions (30), but also NADH diferric 

reductase activity on the cell membrane of hepatocytes was documented (77). Ferric ions could 

be reduced by that reductase to ferrous ions, which, as mentioned above, have low affinity to Tf 

and can be easily released from Tf. It was pointed out that TfR1 is needed for NADH differic 
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reductase activity and it is well possible that this reductase enters into endosome together with 

Tf-TfR1 complex (77). Some authors disclaimed existence of a specific NADH differic 

reductase (10, 78). Nowadays no clear evidence of such enzyme has been published, but there is 

also no evidence that differic transferrin reduction does not occur, it may be mediated by some 

non-specific NADH-reductase. 

Recently, another transferrin membrane receptor was discovered - transferrin receptor 2 

(TfR2) (44). TfR2 is composed of 2 protein transcripts:  and . Transcript  manifests 45% 

identity and 66% similarity to TfR1 extracellular domain. TfR2 expression was found to be 

limited mainly to the liver, its elevated levels are presented in erythroid precursors while other 

tissues displayed low expression (44). Surprisingly no TfR2 was detected in mature red blood 

cells (17). It is suggested that the function of TfR2 is distinct from that of TfR1. There are some 

indices supporting this assumption: TfR2 affinity to Tf-Fe2 is 30 times lower as compared to 

TfR1 and cell expression of TfR2 in cell culture corresponded with cell cycle, rather than with 

iron levels (43). Mice lacking TfR1 die before birth disclosing importance of TfR1 for 

erythropoesis and neurological development (55) and insufficiency of TfR2 to substitute the 

function of TfR1. TfR2 acts probably as an iron regulator, its involvement in iron metabolism is 

described in detail in the paragraph „Regulation of iron absorption.“ 

Interestingly, mammals without Tf can live as it ensues from rare cases of atransferrinemia 

(12). They manifest hypochromic anemia and have increased iron absorption, but surprisingly 

their total plasma iron concentration is decreased rather than increased (4) and development of 

tissues except for the red blood cells is normal (22). Non-Tf iron must therefore be available for 

tissues apart from the red blood cells precursors that have absolute need for Tf bound iron. 
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Wright and colleagues performed many experiments on rat liver and described a high efficient, 

carrier-mediated and saturable mechanism of non-Tf transport (85).  But the responsible carrier 

has not been identified as yet.  

Recently multifunctional membrane receptor cubilin was demonstrated to play 

quantitatively important role in iron supply for the renal proximal tubules. Cubilin mediates the 

endocytosis of Tf-Fe2 (48) and therefore can be classified as the third TfR.  

At this place, it has to be mentioned a glycoprotein named lactoferrin. This protein reveals a 

high degree of homology at amino acid sequence level (60) and also the three dimensional 

conformation level with transferrin (2). Even if the structure of both proteins is very similar, they 

differ significantly in their localization and function. While transferrin does not allow the 

existence of free iron in the circulation, lactoferrin may perform the same function on mucosal 

surfaces. Lactoferrin was also documented to have antimicrobial, anti-inflammatory and 

antitumoral properties (15,53,79). 
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Fig. 2 The schematic view of iron uptake via TfR1-mediated endocytosis in erythroid precursors, 

as modified according to Andrews, 1999 (6).  1. Iron-loaded transferrin (Tf-Fe2) in the blood and 

TfR1 receptor on the cell surface. 2.  Two Tf-Fe2 bind to one TfR1. 3. Internalization of complex 

Fe-Tf-TfR1. 4. The endosome is acidified by ATP-dependent proton pump and iron 

(ferric/ferrous?) is released from the complex.  5.  Ferrous ions are transported through 

endosome membrane by use of divalent metal transporter 1 (DMT-1). 6. The recyclation of TfR1 

and release of apo-Tf into the blood. 
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Iron inside cells 

After the DMT-1-mediated transport the intracellular fate of iron is somewhat unclear. It can 

be stored inside ferritin, moved to mitochondria, where it can be used for synthesis of heme or 

Fe-S clusters, or can become a part of mysterious chelatable (labile) iron pool.  

Ferritin is a 24-subunits containing protein shell with an inner core where iron is stored as 

ferrihydrite. The cavity can store up to 4500 atoms of iron, but it usually accommodates about 

2000 atoms. Apo-ferritin is heterogenous about 441 kDa large protein composed from variable 

numbers of 21 kDa heavy (H) or 19 kDa light (L) subunits. Ferritin composition is different in 

various tissues. Iron passes in form of its ferrous ion through one of the 6 pores of internal cavity 

of apo-ferritin being oxidized to ferric ion by ferroxidase activity of  H-subunit. Inside the 

ferritin structure, iron becomes a part of a growing crystal of ferrihydrite (FeOOH)x (40). If iron 

is needed, it can be easily released from ferritin, but the exact mechanism of iron “escape” and 

re-reduction to its ferrous form has not yet been published. Normally only isolated particles of 

ferritin can be seen inside the cells with the exception of the hemopoietic bone marrow and 

reticuloentdothelial system cells, where more frequent particles can be found (40). Small amount 

of ferritin normally occurs in the blood and it is usually proportional to the quantity of total body 

iron store (41). 

The second cellular iron store compound is hemosiderin. Hemosiderin is a heterogenous and 

rather insoluble particle, which contains except iron also proteins, carbohydrates and lipids. It is 

considered to be a degraded form of ferritin and its localization in siderosomes (40), iron 

containing lysosomes, suggests its possible danger for the cells. Heavily iron-loaded siderosomes 
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were shown to be less stable probably due to the iron-induced lipid peroxidation of the lysosomal 

membrane (69).  

While there is quite a good knowledge of iron storage compounds, there is little familiarity 

concerning iron transport into mitochondria. A protein named frataxin could play some role. Its 

mutation leads to neurodegenerative disorder described as Friedreich's ataxia. Experiments on 

yeast with homologous gene revealed an accumulation of iron in the mitochondrion (70). 

Accumulation of iron inside mitochondria was observed also in patients suffering from 

Friedreich's ataxia in some tissues (14). Therefore it has been thought that frataxin could play 

some role in the iron transport from and/or into mitochondria. Defects in Fe-S protein assembly 

have been recently observed in experiments on yeast implying possible involvement of frataxin 

in Fe-S cluster maturation (61).  

 

Excretion and iron recirculation 

Humans have no specific excretion mechanism for iron. Iron is eliminated only by 

exfoliation of enterocytes or by menstruation bleeding. The eliminated amount usually 

corresponds with the absorbed amount, which is normally 1 to 2 mg/day.  

As mentioned above, most iron is localized in the red blood cells. At the end of their life, the 

red blood cells are phagocyted by specialized population of reticuloendothelial macrophages. 

Degradation of hemoglobin liberates iron which is then returned to the circulation by binding to 

transferrin. Transferrin then distributes the iron through the body and delivers it to iron-requiring 

cells, preferentially again for hemoglobin synthesis. When iron is needed for hemoglobin 

synthesis, most cells are capable to release it into the circulation.  
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Iron-containing proteins 

As mentioned above, due to its ability of accept and donate electron iron forms the essential 

part of many enzymes. Iron is a common component of metalloproteins, where it can be directly 

ligated to the protein through Fe-S bound or be firmly closed in the heme structure. Heme 

proteins, including hemoglobin, myoglobin and many enzymes (cytochromes P-450, 

cytochromeoxidases, peroxidases) are known longer than the Fe-S proteins. Discovery of  iron-

sulfur clusters, where iron is bound to the protein through sulfur, opened in the 1960s new 

insight into iron metabolism and function (46). It was pointed out that Fe-S clusters form 

enzymatic sites of dehydratases, e.g. bacterial enzymes and human aconitases (8), and also the 

human enzyme succinate dehydrogenase (76). 

 Enzyme aconitase (aconitase hydratase) converts citrate to isocitrate. There are two 

different aconitases in mammals, 83 kDa large mitochondrial (m-acon) and 98 kDa cytosolic (c-

acon). Both aconitases are encoded by nuclear DNA but their genes are located on different 

chromosomes. Both are very similar 4-domains proteins with 30% sequence identity and 

containing [4Fe-4S] cluster necessary for their enzymatic activity (73). Interestingly, acon is an 

unusual case of Fe-S proteins, because only three irons are ligated directly to cysteines of protein 

while the fourth (marked as Fea, see also Fig.4) is attached to an inorganic sulfur of cluster and a 

hydroxyl group (8). Indispensability of Fea for enzymatic activity of acon ensues from the fact 

that it represents the binding site for carboxyl and hydroxyl groups of citrate (9). After 

translation m-acon is directed to mitochondria, where it executes an important step of Krebs 

cycle. Conversely, the enzymatic role of c-acon is obscure, it may regulate the non-protein bound 

iron (65), the non-enzymatic role of c-acon is discussed in the next paragraph.  
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Succinate dehydrogenase is another Krebs cycle enzyme. It comprises 3 different types of 

Fe-S clusters, [4Fe-4S], [3Fe-3S] and [2Fe-2S] (76), representing the only known enzyme 

containing all known types of Fe-S clusters.  

Regulation of iron metabolism at the molecular level 

There is quite a good knowledge concerning the posttranscriptional regulation of iron 

metabolism. Iron regulatory elements (IREs) were identified in the untranslated regions of 

mRNA encoding miscellaneous proteins involved in iron kinetics and energy metabolism. IREs 

are about 30-nucleotides long stem-loop, or more precisely stem-bulge-stem-loop (see Fig. 3), 

structures that present specific binding sites for cytoplasmic iron regulatory proteins (IRPs) IRP1 

and IRP2.  

Under conditions of iron excess, IRPs do not possess affinity to bind IREs, on the contrary, 

when iron is scarce, IRPs bind to IREs. It is generally accepted that if IRE lies in the 5´end of 

mRNA, IRE-IRP binding inhibits mRNA translation. If it lies in the 3´end, the IRE-IRP binding 

protects mRNA against degradation and synthesis of protein is enhanced (47). This rule can be 

applied in many proteins associated with iron and energy metabolism containing IREs. IREs 

were found in 5´end of mRNA of H- and L- ferritin chains (7), m-acon (75) or erythroid 5-

aminolevulic acid synthase (e-alas) (13,21,59), a key protein in erythroid heme synthesis. 

Binding of IRPs to IREs of these mRNAs stops protein synstesis by inhibiting the stable 

association of mRNA with the small ribosomal subunit (31). Increased levels of iron therefore 

raise synthesis of ferritin as well as heme/hemoglobin and ATP production (49,75). At the 3´end 

of TfR1 mRNA five types of IREs, named A-E, were found (19). Between the IRE C and IRE D 

lies an instable site, which can be easily recognized by nucleases and the mRNA degradation 



                       Mladěnka et al., The fate of iron in the 
organism. Acta Medica (Hradec Králové), 2006 

53 

 

consequently starts. If IRP binds to IRE, this instable site is not accesible for endonucleotic clip, 

mRNA is stabilized and TfR1 synthesis enabled (39). In TfR2 mRNAs, no known IRP was 

detected, suggesting another type of regulation (44). 

Discovery of ferroportin1 regulation represents only one known exception at this time. 

Ferroportin1 mRNA contains IRE as well in its 5´untranslated region (1,58). But its regulation is 

somewhat mysterious. In duodenal epithelial cells of iron-deprived mice an augmented 

expression of ferroportin1 was documented while in iron-replete it diminished. The reverse 

situation prevails in Kupffer cells of the liver: iron-deprived showed less expression while iron-

repletion augmented expression (1).  

On the basis of phylogenetic comparison, IREs are considered as strong conserved mRNA 

structures (80). Henderson et al. examined an optimal sequence and structure of IRE. They 

confirmed that loop and bulge seem to be the most necessary part of IRE. The loop was formerly 

considered to have 6 unpaired bases –CAGUGX (X – any nucleotide). Henderson et al. outlined 

paring between pyrimidine and purine bases at positions 1 and 5, respectively. In known IREs 

cytosine (pos. 1) and guanidine (pos. 5) are localized at these positions. Also combination of 

uracil (pos.1) and adenine (pos. 5) is sufficient to maintain the function of IRP1, but such 

combination has not yet been discovered in natural mRNAs (37). In harmony with this finding, 

positions 1 and 5 are much less accessible to chemical and nuclease attack than other loop 

positions (11). NMR spectroscopy confirmed the existence of hydrogen bond between positions 

1 and 5 (49). It should be emphasized, that IRP2 requires conserved cytosine-guanidine pair (45). 

Three “free” nucleotides (AGU) at loop positions 2, 3 and 4 and unpaired cytosine bulge seems 

to be specific binding sites for IRP contact. Any substitution at these positions largely decreases 



                       Mladěnka et al., The fate of iron in the 
organism. Acta Medica (Hradec Králové), 2006 

54 

 

the IRP-IRE binding in most cases (37). On the contrary, nucleotides in stems can vary if the 

base-pairing remains retained. Disrupting base-pairing of the upper stem prevents or broadly 

decreases IRE-IRP binding (11, 54). 
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Fig. 3 Structures of some IREs. The primary structures of H-chain ferritin according to 

Henderson et al., 1994 (37), of e-alas and m-acon according to Ke et al., 1998 (45). 

 

 Iron regulatory proteins IRP1 and IRP2 have high sequence identity (57% identical and 

79% similar) except for a 73 amino acid insertion in the case of IRP2 (73).  IRP1 (formerly 

termed as iron regulatory factor IRF or iron responsive element binding protein IRE-BP) is 98 

kDa bifunctional protein of 889 amino acids containing iron-sulfur cluster. When intracellular 
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iron is abundant, protein possess [4Fe-4S] cluster and act as c-acon, while the condition of low 

intracellular iron level occurs, the cluster somewhat decomposes and acts as IRP1. The 

disintegration of cluster involves more profound changes than a simple lose of Fea atom (see 

previous section and Fig. 4) (16). It should be mentioned, that m-acon lacks the IRE-binding 

activity (46). IRP2 (formerly assigned as IRPB) is a 105 kDa protein (38) containing 963 amino 

acids (73). It is not composed of iron-sulfur cluster and it lacks aconitase activity (35). Like IRP1 

also IRP2 binds to IREs in the state of iron deficiency. When iron is in excess, IRP2 is 

enzymatically degraded (45). Though IRP1 and IRP2 are very similar, they bind various IREs 

with different affinities: IRP1 affinity to all known IREs was detected to be analogous, but IRP2 

binds 10-times more IREs with 3-nucleotide bulge than IREs with single cytosine bulge (45).  

The regulation of various proteins involved in iron kinetics and energy metabolism depends 

on the strengh of IRP-IRE binding ensuing from IRE sequence. Supression of ferritin synthesis 

in iron-deplete condition is more efficient than those of m-acon (75), e-alas (59) or TfR1 (45). 

Ferritin mRNA therefore seems to be the most sensitive target for IRPs. The easiest explanation 

can ensue from the C-bulge structure. Cytosin 3-base bulge (sometimes described as internal 

loop/bulge) opposing one nucleotide presented in ferririn mRNA appeared to be 3-fold more 

effective than as single unpaired cytosine (37) presented in TfR, e-alas and m-acon mRNAs. 

Discovery of IRP2 may play the crucial role because of its higher affinity to ferritin IRE 

containing 3-base bulge than to other IREs with single cytosine, as described above. The 

distribution of IRPs in the organism is different. IRP2 prevails in the brain while IRP1 is more 

profoundly expressed in other tissues (73). High concentration of IRP2 was found out also in the 
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intestine in experiments with rodents (37). These findings, however, cannot sufficiently explain 

IRP2 contribution to iron protein regulation.  

 

 

 

Fig. 4. The double function of iron responsible protein 1 / cytosolic aconitase. The structure of 

the cluster and protein according to Beinert and Kennedy, 1989 (9) and Klausner and Rouault, 

1993 (46), respectively. In iron-replete status, the protein acts as c-acon, in iron deplete status, 

iron is released from the cluster, the cluster somewhat decomposes and the whole protein acts as 

IRP1. The double-function protein IRP1/c-acon is 4-domains protein with a cleft between 

domains 1-3 and 4 that is connected by a flexible hinge linker. 

 

Phosphorylation of IRPs may explain some questions. Eisenstein et al. found two specific 

sites (around Ser 138 and Ser 711) of IREs which can be phosporylated. It is of interest that IRP1 
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contains both specific sites, but IRP2 only one with the important change of serine to alanine 

(27). Both sites were proven to be highly conserved in vertabrates (25, 27). It was documented 

that phosphorylation of Ser-138 site of IRP1 causes loss of c-acon activity by an impairment of 

Fe-S cluster (16,27). Previously, the enhanced IRE-IRS binding of phosphorylated IRPs was 

found (25). Interestingly, on Ser-138 phosphorylated IRP1 appears to be stabilized by iron 

deprivation but in situations of iron abundance it undergoes degradation similar to dissociation of 

IRP2 (27). Therefore phosphorylation can represent a regulatory mechanism with involvement of 

either iron or some other signals. 

At least, it can be stated that the affinities of IRPs to IREs and distribution of IRPs are not 

accidental and reflect the accuracy of regulation. For the cell it is important to have some level of 

m-acon, because of its exigency in ATP synthesis. On the other hand, huge ferritin synthesis 

could create a deficiency in accessibility of iron for iron-protein synthesis (75). In the future, 

discovery of new proteins regulated by IRE sequences is awaited. At present their research is 

difficult due to variation of IRE-sequence not enabling fast analysis. 

Iron was found to be the responsible element for regulation of some other proteins but not 

via the IRP-IRE system. In Drosophila IRE was found in the mRNA of succinate dehydrogenase 

(47), in human mRNA of the homologous enzyme such IRE is not comprised, but succinate 

dehydrogenase is still regulated by iron status. Iron supplementation was found to increase 

activity of succinate dehydrogenase as well as isocitrate dehydrogenase (64). This finding in the 

concordance with the described regulation of m-acon accentuates enhanced NADH and ATP 

production in the case of iron abundance (64). 
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Fig. 5. Krebs cycle with iron regulated enzymes. Thick arrows show three enzymes which are 

known to be regulated by iron status.  

 

Regulation of iron absorption 

As generally accepted, the excess of iron is toxic for the cells. Because mammals lack a 

regulatory pathway for an active iron excretion, iron levels have to be tightly regulated by iron 

absorption. 

For many years the process of regulation of iron absorption was so foggy, that terms like 

“stores regulator”, “erythropoetic regulator” and “mucosal block” (absorption regulator) were 

used to express three proposed ways for that regulation. The present knowledge is still not 
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sufficient, but it is known that at least two of these vague regulators may represent protein called 

hepcidin. 

Hepcidin is a 25-amino acid peptide hormone, which contains 8 cysteine-residues, all 

connected by 4 intramolecular disulfide bounds. It is produced by the liver as a 84-amino acid 

long precursor. The name reflects both its site of origin and its significant antimicrobial 

properties (68). The group of Nicolas demonstrated dependence of iron status on the hepcidin 

levels: Transgenic animals overexpressing hepcidin have decreased levels of body iron, on the 

contrary mice lacking hepcidin manifested progressive iron accumulation though surprisingly 

dramatic decrease of iron stores in reticuloendothelial cells. Experimentally induced anemia 

decreases hepcidin mRNA levels in mice (62,63). 

Patients with large hepatic adenomas have severe iron refractory anemia. Adenoma 

produces inappropriately high levels of hepcidin, when adenoma was resected or the liver was 

transplanted, anemia resolved spontaneously (84). 

 Decreased iron content in the diet evoked augmented formation of duodenal cytochrome b, 

DMT-1 and ferroportin1 (hephaestin did not changed) and depression in hepcidin synthesis in 

the liver (5). In conclusion, hepcidin has been proposed as a negative regulator of iron absorption 

and reticuloentothelial macrophage iron release. 

Important role in the regulation of iron absorption plays also HFE-protein. It is a 343 amino 

acids integral membrane protein which reveals a tight homology to a major histocompatibility 

complex class I-like protein. Its significance in iron metabolism has been acknowledged for 

many years because of its defect in hereditary hemochromatosis, the most common autosomal 

recessive disorder known in human. Patients suffering from this disease show increased iron 
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absorption and develop iron overload. HFE-protein is localized in association with TfR1 and -

microglobulin in duodenum, predominantly in the crypt enterocytes and in the placenta (83). 

Lebron et al. showed that if HFE-protein is bound to TfR1, it reduces affinity of receptor for 

iron-loaded transferrin (51). However this presumption is questioned by others as the reported 

nanomolar changes in affinity do not seem to influence receptor binding properties (83). It was 

found out that one type of mutation in HFE (C282Y) inhibited HFE-protein interaction with -

microglobulin (26), leading to accelerated degradation of mutated HFE-protein (82). On the one 

hand, mice lacking -microglobulin were shown to have the same manifestations like in 

hereditary hemochromatosis, i.e. impaired iron absorption regulation associated with increased 

iron absorption and iron overload (74), seemingly proposing important role of -microglobulin 

in iron absorption control. But on the other hand, the second most common mutation of HFE 

gene (H63D), which was demonstrated to aggravate iron overload status (56), did not inhibit the 

interaction of -microglobulin with HFE-protein (26). Mice with decreased levels of TfR1 

seemed to have reduced iron absorption (55). 

Present knowledge proposes that the level of serum transferrin-bound iron informs crypt 

enterocytes via HFE-protein and TfR1 about the total body iron status. If the body iron stores are 

low, crypt cells are targeted to differentiate in enterocytes with programmed elevated absorption 

of iron (3).  This seems to be likely, because the response of iron demand lasts 2 or 3 days and 

the same period is necessary for crypt cells to migrate and differentiate in villus enterocytes. The 

programming of enterocytes involves the raised synthesis of DMT-1. This is well documented in 

hereditary hemochromatosis, where the augmented expression of DMT-1 was discovered (34, 

88). Precise mechanism how HFE is involved in iron metabolism is not known nowadays. 
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Protein The role in iron kinetics and its regulation 

ceruloplasmin oxidation of cell-released iron before binding to transferrin 

cubilin transport of iron in the renal proximal tubular cells 

DMT-1  
iron transport from the small intestine lumen into enterocytes and from 

endosome into cytoplasm 

ferritin iron storage 

ferroportin1 iron transport from cell into the blood 

haephastin oxidation of cell-released iron before loading on transferrin 

hemojuvelin regulation of iron kinetics, modulator of hepcidin expression? 

hemosiderin iron storage (detoxication) 

hepcidin 
negative regulator of iron absorption and reticuloentothelial 

macrophage iron release ? 

HFE-protein regulation of iron kinetics ? 

IRP1 regulation of iron kinetics 

IRP2 regulation of iron kinetics 

lactoferrin 
iron chelation on mucosal surfaces and the involvement in the body 

defence against pathogens  

TfR1 iron transport from the blood into cells 

TfR2 regulation of iron kinetics? 

transferrin transport of iron in the circulation 
 

Tab. 1 The overview of proteins related to iron kinetics and its regulation. 

 

From the recent studies it ensues that TfR2 plays an important role in the iron regulation. 

Mice with mutation of TfR2 manifested hemochromatosis (29). Humans with mutated TfR2 

suffer also from hemochromatosis, a disorder very similar to the hereditary hemochromatosis 

caused by HFE mutation (18). The link between the HFE and TfR2 is supported by finding that 

TfR2 and HFE-protein co-localize in the crypt duodenal cells (32). 

Recently, a new mutation in HFE2 gene responsible for protein named hemojuvelin was 

discovered. The mutation in HFE2 causes juvenile hemochromatosis, a disorder 
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indistinguishable from hepcidin-deficiency. Hemojuvelin localization is restricted to similar 

tissues as that of hepcidin. Analysis of hemojuvelin reveals its possible function as membrane-

bound receptor or secreted polypeptide hormone. Deleterious mutation of hemojuvelin reduces 

hepcidin levels despite iron overload (in such condition hepcidin expression is normally 

induced). It is thought that hemojuvelin acts as modulator of hepcidin expression (67) but further 

studies are needed for verification. 

Conclusion 

This review attempted to shed light on the fate of iron in the organism. Because the topic is 

large, it was necessary to omit willfully some important tasks. Anemias and diseases with iron 

overload were mentioned only for explication of physiological ways of iron metabolism. The fate 

of iron in the brain was reviewed successfully by Zecca et al. (87).  
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Abstract: 

 

 

The catalytic role of iron in the Haber-Weiss chemistry, which results in propagation of 

damaging reactive oxygen species (ROS), is well established. In this review we attempt to 

summarize the recent evidence showing the reverse: that reactive oxygen and nitrogen species 

can significantly affect iron metabolism. Their interaction with iron-regulatory proteins (IRPs) 

seems to be one of the essential mechanisms of influencing iron homeostasis. Iron depletion is 

known to provoke normal iron uptake via IRPs, superoxide and hydrogen peroxide are supposed 

to cause unnecessary iron uptake by similar mechanism. Furthermore, ROS are able to release 

iron from iron-containing molecules. On the contrary, nitric oxide appears to be involved in 

cellular defense against the iron-mediated ROS generation probably mainly by inducing iron 

removal from cells. In addition, NO may attenuate the effect of superoxide by mutual reaction, 

although the reaction product – peroxynitrite - is capable to produce highly reactive hydroxyl 

radicals.  
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Introduction 

 

Iron is the most abundant transition metal in the living organisms and virtually all living 

cells need it for crucial metabolic pathways. Indeed, oxygen transport, ATP production or DNA-

synthesis - all these basic processes require enzymes with iron as a cofactor. On the other hand, 

free or loosely bound iron is well known to generate free radicals that are responsible for various 

damages 
[1]

. Therefore iron has to be firmly incorporated in proteins and its homeostasis must be 

meticulously controlled.  

Cellular iron homeostasis is managed mainly by expression of transferrin receptor 1 (TfR1) 

and ferritin. The first is responsible for uptake of iron into the cell, while the latter for 

intracellular iron sequestration and cellular storage 
[2,3,4]

. Both proteins are regulated by iron 

regulatory proteins. 

 

Iron regulatory proteins 

Expression of many proteins related to iron kinetics and energy metabolism is regulated 

post-transcriptionally by cytoplasmic proteins called iron regulatory proteins (IRPs). There are 

two IRPs (IRP1 and IRP2) and both are able to bind to the specific sequences in the untranslated 

regions of mRNA known as iron responsive elements (IREs) 
[2,3,4]

. 

Iron entering the cell seems to become firstly a part of poorly defined intracellular labile 

iron pool. Such pool seems to sense cellular iron stores. Under conditions of iron excess (high 

iron pool), IRPs do not possess affinity to IREs, on the contrary, when iron is scarce, IRPs bind 

to IREs. If IRE is localized at the 5´end of mRNA, e.g. in H- and L- ferritin chains, the binding 

of an IRP to an IRE stops protein synthesis 
[5]

. Conversely, association of an IRP with IREs at 
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the 3´end of TfR1-mRNA protects mRNA against degradation and synthesis of TfR1 is 

enhanced 
[6]

. As a result, under the condition of iron lack (low iron pool), synthesis of TfR1 is 

augmented and that of ferritin stopped. When iron is abundant, the synthesis of ferritin and some 

other proteins involved in energy metabolism is increased, while TfR1 abated.  

IRP1 is a bifunctional protein (see Figure 1) which can act as an iron regulatory protein 

(described above) or as a cytosolic aconitase (c-acon). In the state of iron repletion, this protein 

contains one specific [4Fe-4S]
2+

 cluster with only three irons ligated directly to cysteines while 

the fourth (marked as Fea) is attached to an inorganic sulfur of the cluster 
[7,8]

. This fourth iron is 

necessary for enzymatic activity. Such protein is c-acon and cannot bind IREs. When iron is 

scarce, this fourth iron atom is released, probably provoking the cluster decomposition, and such 

cluster-free protein obtains the IRE-binding activity and acts as IRP1 
[9,10]

. 

 

Fig. 1: The dual function of cytosolic aconitase / iron regulatory protein 1. 

 The structure of the cluster and protein according to Beinert and Kennedy 
[7]

 and Klausner and 

Rouault 
[8]

, respectively. In iron-repleted status, the protein acts as c-acon, in iron depleted status, 
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Fe 

iron is released from the cluster, the cluster further decomposes, loses other 3 atoms of iron and 

such cluster-free protein acts as IRP1. 

IRP2 does not contain the iron-sulfur cluster and lacks the aconitase activity. Like IRP1, 

IRP2 also binds to IREs in the state of iron deficiency 
[11]

. When iron is in excess, IRP2 

undergoes enzymatic degradation 
[12]

. Mitochondrial aconitase (m-acon), an enzyme similar to c-

acon, contains the Fe-S cluster as well, but it does not act as an IRP. 

 

 Free radicals 

As mentioned above, under certain conditions, iron may facilitate formation of free radicals 

dangerous for the cells. The most potent oxidizing agent in biological systems is hydroxyl radical 

(OH
.
), which is generated by Haber-Weiss chemistry 

[1,13]
: superoxide (O2

.-
) converts ferric ions 

to ferrous ions and these react with hydrogen peroxide to produce hydroxyl radicals: 

Fe
3+

 + O2
.- 
 Fe

2 + 
+ O2 

H2O2 + Fe
2+

  Fe
3+

 + OH
. 
+ OH

-
 

The latter reaction is known as Fenton reaction after the Fenton reagent containing hydrogen 

peroxide and ferrous salt. The whole process can be summarized in so-called Haber-Weiss 

reaction: Superoxide reacts with hydrogen peroxide in the presence of iron to produce molecular 

oxygen, hydroxyl radical and hydroxide anion:  

 

O2
.-
 + H2O2  O2 + OH

. 
+ OH

-
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For the hydroxyl radical production two conditions have to be fulfilled: the presence of free 

iron and some reactive oxygen species (ROS). NADPH-oxidase can generate superoxide, its 

production is generally associated with inflammation caused by neutrophils and macrophages. 

Many tissues contain xanthine dehydrogenase, which can be easily converted to xanthine 

oxidase, an enzyme also known to generate superoxide and hydrogen peroxide 
[13,14]

. It should be 

noted that superoxide is produced also in the respiratory chain of mitochondria, although 

compartmentization seems to confine superoxide to this organelle 
[15,16]

 even though superoxide 

crossing through the outer mitochondrial membrane by use of a voltage-dependent channel was 

recently proposed 
[17]

.  

Superoxide is unstable and it is decomposed either spontaneously or much faster by 

superoxide dismutases (SODs) into hydrogen peroxide and molecular oxygen:  

2O2
.-
 + 2H

+
  O2 + H2O2 

There are two SODs in the cell: SOD-1, known as Cu,Zn-SOD, it is localized in the cytosol 

and SOD-2, marked as Mn-SOD, protecting the mitochondrial department.  

Hydrogen peroxide is then converted by catalase or glutathione peroxidase into water and 

molecular oxygen: 

 2 H2O2    O2 + 2 H2O 

It is thought that superoxide and hydrogen peroxide are present in the organism 

physiologically, which is supported by fact that SODs are ubiquitously and abundantly expressed 

[18]
. Therefore iron - the second member of the Haber-Weiss chemistry - must be meticulously 

regulated in order to avoid cellular damages. In man free iron is scarce under physiological 

conditions. Nearly all iron is sequestered by proteins: in plasma is it bound to transferrin, in 
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various cells it is locked in the structure of ferritin, in the red blood cells iron is firmly 

incorporated to hemoglobin, in muscles to myoglobin. “Free” iron means iron with at least one 

iron coordination site open or occupied by a readily dissociable ligand. All formerly mentioned 

transport and storage proteins tightly complex all six coordination sites of iron and therefore such 

iron cannot produce hydroxyl radical. In contrast, iron bound to ADP, ATP or citrate remains 

“free”, because these molecules are not able to ligand all of its 6 coordination sites 
[19]

. 

An imbalance in a cellular redox state, where the ROS production overwhelms anti-oxidant 

capacity, results in the state termed oxidative stress and recent evidence suggests that oxidative 

stress is a common denominator in many pathologies 
[1]

. The prevention of cellular damages 

caused by elevated ROS production can be efficiently achieved with iron-chelating agents and 

this was demonstrated by numerous papers, including those of our group 
[20,21,22,23]

. 

 

Superoxide and hydrogen peroxide 

In the last decade it has become obvious that superoxide and hydrogen peroxide may be 

involved in iron metabolism disturbances. Extracellular hydrogen peroxide stimulates within 60 

minutes IRP1 binding to IREs together with the decrease in c-acon activity, while the withdrawal 

of stimulus after 15 minutes does not change the induction of IRP 
[24,25,26,27]

. On the contrary, 

IRP2 is not significantly affected by hydrogen peroxide 
[27]

. Interestingly, the increased IRE-

IRP1 binding is not observed with hydrogen peroxide and cytosolic fractions 
[25,28,29]

 or 

intracellulary produced hydrogen peroxide 
[26]

, even though the c-acon activity was inhibited in 

all cases. Blockade of the respiratory chain evokes production of superoxide and interestingly 

within 2 hours it activates the IRP1-binding. The latter effect appears to be mediated via 
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hydrogen peroxide formed from superoxide, as the activation of IRP1 corresponds with 

emergence of intracellular H2O2 
[26]

. 

Hydrogen peroxide possibly reacts directly with the [4Fe-4S] cluster of c-acon, releases one 

iron atom (Fea) and subsequently inhibits the c-acon activity but it does not convert c-acon into 

IRP1 
[28,30]

. In fact, one Fe atom release from c-acon was observed in yeast with extracellulary 

added hydrogen peroxide, which is a diffusible molecule and therefore easily penetrates the 

membranes 
[9]

. The hydrogen peroxide diffusion can be observed in mammals as well, but 

activation of IRP1 with extracellular hydrogen peroxide occurs also when no detectable increase 

in intracellular hydrogen peroxide was measured 
[26]

. The effect of extracellular hydrogen 

peroxide in mammal is therefore thought not to be related to direct interaction with c-acon/IRP1, 

but rather via some non-soluble, probably membrane-associated protein with further conduction 

of the signal inside the cell. The IRP1-activation was proposed to be based on phosphorylation, 

as its induction by hydrogen peroxide could be inhibited by okadaic acid, which acts as an 

inhibitor of type I/IIa protein phosphatases 
[27]

.  

The rapid activation of IRP1 by a short stimulus of extracellular hydrogen peroxide can 

clarify some ROS-induced damages, especially in the ischemia/reperfusion injury, when ROS, 

formed by xanthine oxidase, can activate iron uptake inside the cells and contribute to the Haber-

Weiss chemistry with its deleterious consequences 
[13]

.  

The first study examining the results obtained with cell culture experiments in a more 

complex system was performed by Mueller et al. 
[31]

, and indeed, the authors, using the H2O2-

generating system in perfused rat liver, were able to show the expected increase in IRP1-IRE 

binding. 
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Escherichia coli missing cytosolic SOD reveals 8-fold increased levels of free iron as 

compared to the control bacteria, which clearly demonstrates the role of superoxide radical in 

iron release. Released iron was shown to be mainly in ferrous state. Surprisingly, most iron did 

not originate from ferritin but from four cytosolic bacterial enzymes containing Fe-S cluster 
[32]

. 

Indeed, Fe-S cluster containing aconitase of the same bacteria is reversibly inactivated by 

superoxide 
[33]

. Cu, Zn-SOD deficient mice manifest reduced enzymatic activity of c-acon, 

reduced IRE-IRP1 binding - probably due to a decrease in IRP1 synthesis - but no change in 

IRP2 expression in the liver and noteworthy normal iron metabolism as demonstrated by 

unchanged levels of ferritin and TfR1 
[34]

. Experiments in Drosophila with silencing and genetic 

mutation of the cytosolic SOD also showed abated activity of c-acon, but, in contrast, the IRP1-

IRE binding was strongly activated 
[16]

. In Drosophila, some additional type of regulation can be 

expected, which is supported by the fact, that Drosophila does not possess the vertebrate highly 

conserved site (Ser 138) of IRP1 for phosphorylation 
[35]

. Similarly, defect in SOD-2 results in 

the decrease of m-acon function 
[16]

. Superoxide produced within the mitochondria was further 

shown to slightly increase the IRP1 binding and to decrease the c-acon activity 
[15,24]

. 

Extracellulary produced superoxide has no effect on iron and energy metabolism 
[15,24] 

as should 

be expected because superoxide is not a diffusible molecule. Increased IRP1 binding and 

decreased c-acon activity, caused by mitochondrial superoxide, therefore most likely reflects its 

conversion into hydrogen peroxide. 

Treatment of rat liver lysates with xanthine oxidase, which produces superoxide a hydrogen 

peroxide 
[14,36]

, manifested decreased IRP-IRE binding but surprisingly it did not affect c-acon 
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[37]
. Macrophage cytosolic extracts with added xanthine oxidase showed highly reduced aconitase 

activity extract but did not exhibit significant effect on IRP1-IRE binding 
[28]

. 

Similarly to hydrogen peroxide, superoxide also directly reacts with Fe-S clusters of various 

enzymes, releases iron and impairs their enzymatic activity. But in contrast to hydrogen 

peroxide, the cluster decomposition of c-acon seems to be more profound as documented by 

Flint et al. 
[38]

, who showed that bacterial enzymes containg the [4Fe-4S] cluster released at least 

three iron atoms when treated with superoxide. Interestingly, such cluster disintegration appears 

not to stimulate the IRP1-IRE binding. The degradation of Fe-S cluster is therefore probably not 

sufficient for conversion of c-acon into IRP1, or it is also possible that superoxide can oxidize 

some free sulfhydryl groups 
[18]

 and prevent the IRP-IRE binding. Finally, it should be 

emphasized, that mammals are probably better equipped with defense mechanisms against ROS, 

as they do not seem to develop free iron overload. In bacteria, iron, released from Fe-S clusters 

by superoxide, accelerates DNA damages caused by superoxide or by other ROS 
[32]

. Whether 

the impairment of iron clusters caused by superoxide (and further plausible consequences, like 

DNA damages seen in bacteria) is minor in mammal cells, requires further examination. There 

are certain discrepancies among the different studies, which can be often explained by different 

methodical approach and this issue is further discussed in the chapter concerning the NO.  

Additionally, ROS also appear to affect other iron containing molecules. Richardson and 

Ponka 
[39]

 examined cellular iron uptake from transferrin after exposure of cell cultures to ferric 

ammonium citrate. They found elevated uptake of iron which was not mediated by TfR1. Further 

investigation documented involvement of superoxide and/or hydrogen peroxide and possibly also 

hydroxyl radical in release of iron from transferrin and increased transport of iron into the cell 
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[39]
. In fact, it is well known that superoxide can release iron from ferritin 

[40,41,42]
. Withdrawal of 

iron from iron store and transport molecules can represent an important step in ROS propagation.  

 

 

Nitric oxide 

Nitric oxide (NO) is a free radical with very complex biological function. It is synthesized 

from L-arginine by three different NO-synthases (NOS). NO has high affinity to metals and 

many biological effects of NO can be attributed to its chemical interaction with iron: For 

example activation of guanylyl cyclase appears to be mediated by nitrosylation of heme iron 
[43]

 

and Fe-S clusters are decomposed after interaction with NO 
[44]

. 

Many authors have shown that NO reduces c-acon activity and consequently it increases the 

IRP1-IRE binding 
[27,28,45,46,47,48,49]

. This IRP1-IRE binding is activated slowly and needs hours 

(3-12 hours - variably in different studies, which probably depends on means of NO production 

and its concentration used) for full effect 
[24,27,46,50]

. The activation seems to be analogous to 

induction caused by iron depletion and requires the presence of NO during the whole activation 

period 
[24,27]

. The modulatory effect of NO on IRP1 seems to be stronger than that of iron 

repletion, as NO has been shown to activate the IRP1-IRE binding also after hemin treatment, 

which typically diminishes the IRP-IRE binding 
[48]

. NO is a diffusible molecule which easily 

crosses biological membranes. Published data suggest that NO attacks directly the Fe-S cluster of 

c-acon. An iron-nitrosyl complex is formed, where NO firstly coordinates the crucial Fea atom of 

the cluster, as indicated by rapid inactivation of c-acon activity 
[44]

. This triggers further allosteric 

changes of the protein and finally slowly leads to the total decomposition of the cluster and 

transformation of protein into IRP1 
[24,27,44,46,48,51]

. 
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Unfortunately, at this point the relative harmony between different studies concerning the 

interaction of NO and iron metabolism ends and the findings are becoming discrepant (see Table 

1). In our opinion, the likely explanation of such diverse results could involve many aspects of 

experimental procedures. Following aspects appear to play a role: 

 The type of the cell culture used. First, the liver iron metabolism differs in some 

aspects from other tissues (for details see review)
[4]

. Furthermore, there are some cell 

cultures (e.g. leukemia L1210 cells and F6 fibroblasts) that do not produce NO and 

these are suggested to have altered management of iron metabolism as well 
[46,48]

.  

 The ratio of IRP2/IRP1. IRP2 binds with higher affinity to ferritin H-chain IRE in 

comparison to other IREs 
[12]

 and it seems to have therefore principal role in ferritin 

levels management. The high IRP2 content is present in macrophages and brain, 

while in most of other tissues it is lower 
[4,27,45,52]

. 

 Experimental method of NO production and its concentration. To date, numerous 

different experimental approaches of NO production have been used. The most 

common is a stimulation of cytokine-inducible NOS (iNOS) by cytokines and 

lipopolysacharide. However, both agents are known to trigger multiple cellular 

responses and the results obtained by such treatment may be blunted by not easily 

eliminable confounders. The combination of LPS/IFN/TNF- is documented to 

decrease total protein synthesis and may elicit some discrepancies among studies 
[53]

. 

Other means are the iNOS gene transfection, NO gas, or the use of NO-releasing 

agents – e.g. the most frequently used SNAP (S-nitroso-N-acetyl-D,L-penicilamine) 

and others (Table I). It should be mentioned that there is some controversy with 
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SNAP as penicilamine may chelate iron, even though it was manifested that SNAP 

has only low iron chelating properties 
[54]

.  

 Duration of NO exposure. As mentioned above, IRP1 activation by NO is a slow 

process. 

 The amount of NO produced. The most commonly used method for evaluation of 

NO levels is the measurement of nitrite. But it seems that nitrite levels may not be a 

reliable indication of biological active NO as peroxynitrite may significantly 

augment the nitrite levels 
[55]

 

 Redox state of the cell (i.e. the “intracellular redox background”). Under 

physiological conditions, NO can be interconverted to its redox form - nitrosonium 

(NO
+
) 

[56]
. Nitrosonium is conjectured to nitrate proteins and its effects are implied to 

be similar to peroxynitrite (see the next section). Nitrosonium does not activate or 

can even abate the IRP1-IRE binding, but it dramatically decreases the IRP-2 

binding activity 
[27,50]

. Furthermore, nitrosonium has been shown to decrease the TfR 

mRNA levels and consequently the iron uptake by cells 
[55,57]

.  

 Ambient oxygen conditions. Hypoxia is known to regulate IRP1 and IRP2 binding in 

opposite manner. IRP1-IRE binding appears to be diminished after hypoxia, while 

that of IRP2 elevated 
[58].

 

The first unresolved question is the interaction of NO with the ability of IRP2 to bind IRE. 

There are papers showing both an increase 
[27,48,53,59]

, a decrease 
[45,50,52,60,61]

 as well as unchanged 

binding 
[50,53]

. Some light into this discrepancy gave the papers showing that production of NO 

by a combination of LPS and IFN decreased the binding activity, while SNAP did not 
[50]

, and 
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that IRP2 decrease is associated with LPS and IFNindependently of NO 
[60]

. Beyond the IRP-

IRE interaction, NO induces the release of iron differently from various cells 
[50, 62, 63]

. The iron 

efflux requires glutathione, and it is probably carried out by an energy-dependent membrane 

transport mechanism 
[62]

. Stimulated iron release from cells diminishes the intracellular iron pool, 

but such condition of iron depletion also stimulates the IRPs-IREs binding. This fact can also 

explain the increased IRP2-IRE binding by NO-treatment in the study by Pantopoulos and 

Hentze 
[48]

, where the cells were transfected with iNOS gene. Such cells produce continually NO 

and they could have been chronically iron depleted, which resulted in IRP2 stabilization and 

accumulation. A conclusion cannot be made at this moment, but it appears that NO alone does 

not change directly the IRP2 affinity for IRE.  

Authors 
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Bouton et al., 1998
[60]

 RAW 264.7 LPS+IFNg 1-24 ↓ 
  

          

Cairo et al., 2002
[45]

 J774A.1* 
SIN-

1+SOD 
1 ↓ 

  
          

Kim and Ponka, 

1999
[50]

  
RAW 264.7 

LPS+IFN 10 ↓ ↓       ↑   

SNAP 10 0 ↑        ↓   

Kim and Ponka, 

2000
[61]

 
RAW 264.7 LPS+IFN 10 ↓ ↓  ↓ 0 ↑  

Mulero and Brock, 

1999 
[64]

 
J774 LPS+IFN 16/24     ↓ ↓     ↓ 

Oria et al., 1995 
[54]

 K562 SNAP 24   ↑ ↑   ↑ 0 ↑ 

Pantopoulos and 

Hentze, 1995 
[48]

 

B6.NOS NOS - ↑ ↑     ↑  ↓x↑   

RAW 264.7, 

J774.A1 
LPS+IFN 12   ↓            

Phillips et al., 1996
[53]

 FT02B 
LPS+IFN

†
 4-24  ↑ ↓      0  ↓   

SNAP 4-24 0 ↑           

Recalcati et al., 

1998
[52]

 
J774A.1 

LPS+IFN 4 / 24 ↓         ↑   

SNAP 24 ↓         ↑   

Richardson et 

al.,1995
[57]

 
K562 SNAP 18   ↑ ↑         

Wang et al., 2005
[59]

 B6,H1299 SNAP 8 ↑             
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Table I. Papers concerning more aspects of NO interaction with iron metabolism and/or IRP2. 

Notes. IRP2: activation of IRP2; FT: ferritin; FT-H: ferritin H-chain; FT-Fe: iron ferritin content; 

J774A.1, J774, RAW 264.7 are mouse macrophage cell lines; K562 is an erythroleukemic cell 

line; B6 is a mouse fibroblast cell line; B6.NOS:  mouse B6 fibroblasts transfected with NOS; 

FT02B is rat hepatoma cell line; H1299 is human lung cancer cell line; *preciselly lysate of 

J774A.1; † in combination with tumor necrosis factor  (TNF-); SIN-1: 3-

morpholinosydnonimine;  SOD: superoxide dismutase; IFN, interferon ; NOS:  NO-synthase; 

LPS:  lipopolysacharide; SNAP: S-nitroso-N-acetyl-D,L-penicilamine; ↓: a decrease; ↑: an 

increase; 0: no change; ↓x↑: cannot be clearly determined.  

It can be even speculated that activation of the IRP-IRE binding in state of iron starvation 

may be mediated via NO, but such mechanism is very unlikely, even though a regulatory loop 

between iron metabolism and the NO is known (see Figure 2 and the last paragraph of this 

section). 

The increased IRPs-IRE binding stabilizes TfR1 mRNA and should therefore lead to 

augmented iron uptake. Studies concerning levels of TfR1 again appear to be divergent, but 

when the experiments using stimulation by LPS+IFN
[48,50,53,61]

 are separated from other means 

of NO production 
[48,50,53,54,57]

, again a possible explanation arises: LPS with IFN may overcome 

the effect of NO and thus decrease the levels of TfR1 by a NO-independent manner. In 

agreement with this proposition, the increase in TfR1 density has been documented after NO 

treatment  
[54,57]

. The only study reporting a decrease in TfR1 density
[64]

 proved that this decrease 

was NO-independent and may be linked with LPS+IFN. Nevertheless, an expected raise in iron 

uptake from iron loaded transferrin (Tf-Fe2) has not been observed and surprisingly the contrary 
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process has been discovered in various cell cultures 
[55,61,63,64]

. The explanation of this 

unexpected process is hard to make at the moment. Watts and Richardson 
[63]

 proposed that 

reduced Fe uptake results, at least partly, from a decrease in levels of ATP, which is required for 

Tf-Fe2-TfR1-mediated endocytosis. The reduced ATP levels may be caused by inhibition of 

some enzymes (mainly m-acon) of respiratory chain by NO. NO did not decrease the Tf binding 

to TfR1 
[63]

, but some other NO interaction with iron uptake process cannot be precluded.  

NO appears to elevate ferritin m-RNA levels probably by some unknown pretranslational 

mechanism 
[48,54]

, although in LPS+IFNtreated cells no change in ferritin m-RNAs was 

reported  
[53,61]

. Furthermore, both an increase 
[48,50,52,61]

 and a decrease in ferritin (total or H-

chain) synthesis 
[48,49,50,53]

 have been described. But again, when the experiments using 

LPS+IFNare separated, NO seems to elevate ferritin m-RNA levels, but on the other hand (in 

the agreement with IRP-IRE theory) to decrease ferritin synthesis. It seems that LPS+IFNabate 

ferritin m-RNAs levels but paradoxically increase ferritin levels in non-hepatic cells. This 

statement is in harmony with known findings that ferritin synthesis is augmented in 

inflammation 
[65]

. In the hepatic cells, however, an alternative iron metabolism control is 

expected. 

In various cell cultures, the incorporation of iron from Tf-Fe2 into ferritin was reduced 

differently after the stimulation with NO 
[62,63,64]

, although Oria et al. 
[54]

 reported the opposite 

effect in K562 cells.  

For many years it was believed that NO induces iron release from ferritin 
[41]

. Recently, 

however, Watts and Richardson 
[62]

 did not observe such phenomenon in cell lysates. Today, this 

discrepancy can be explained, as the former group used an agent afterwards shown to release 
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NO
+
 
[41]

, while the latter a NO-releasing agent 
[62]

. Today, NO seems to intercept iron before it 

reaches ferritin 
[62]

 and it can be suggested that NO does not directly interact with iron stores 

within ferritin but it can by some indirect mechanism mobilize iron from ferritin. Whether such 

mechanism simply involves an adaptation to low cellular iron levels after increased iron efflux 

deserves further investigation. 

NO may be a biological messenger used by cells to prevent intracellular damages caused by 

ROS. As tumours have been shown to contain more TfR1 receptors and generally they have 

more pronounced iron demands 
[66]

, by elevating iron release from the cell and inhibition of 

respiratory chain, NO can inhibit ROS-damages and suppress cell proliferation. This is proposed 

to represent the defense mechanism of activated macrophages against tumour cells and 

pathogens.  

It was demonstrated that mRNA levels of iNOS are profoundly increased in iron deficiency 

and reduced in the opposite condition 
[67]

. In agreement, ferrous ions were shown to abate the 

iNOS-stimulated synthesis of NO and iron chelator o-phenantroline augmented NO-synthesis in 

cell cultures. Interestingly, the same group also found that iNOS-mediated NO-production is not 

influenced by iron in rat astrocytoma C6 cell line, supporting the assumption that NO-signaling 

may be controlled differently among various cells 
[68]

. 
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Fig. 2: Probable feedback regulation between iron and NO according to Weiss et al. 

[67] 
based on 

their own research. When the level of intracellular iron (probably reflected by labile iron pool) 

needed for metabolic processes is low, the iNOS induction is provoked. This is followed by an 

augmented NO production, decrease in ferritin synthesis and an increase in free iron pool. In the 

reversed situation, when intracellular iron is abundant, iNOS is not stimulated and the resulting 

low NO production results to an increase in ferritin synthesis and ultimately to abated 

intracellular iron. 

 

 

Peroxynitrite 

A new interesting question arises with the possible involvement of peroxynitrite in iron 

metabolism. Peroxynitrite (ONOO
-
) is the reaction product of superoxide and nitric oxide 

[69]
 and 

it is considered to be a strong oxidant and a major cytotoxic agent produced during 

inflammation, sepsis, and ischemia-reperfusion. Peroxynitrite was documented to nitrate tyrosine 

residues of proteins 
[70] 

and in fact nitrosylation of c-acon/IRP1 was demonstrated in vitro 
[44,47]

. 

In addition, peroxynitrite decreases c-acon activity in vitro more rapidly than NO and it has been 

shown to slightly enhance the IRP1-binding 
[28,44,47] 

or not change 
[27] 

or slightly decrease it 
[57]

. 

When slight stimulation of IRP1-IRE was observed, this activation with NO and superoxide was 

far less potent, when compared to a situation when macrophages were stimulated to produce NO 
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only 
[47]

. When peroxynitrite was produced extracellulary, c-acon was slightly inhibited and 

some IRP1 activation was present. NO, together with superoxide (produced within 

mitochondria), evoked pronounced inhibition of both aconitases and, paradoxically, it 

significantly stimulated the IRP1-IRE binding  
[24]

. 

It is suggested that peroxynitrite is a hardly diffusible molecule and the likely explanation of 

some increase in IRP1-IRE binding is due to the readily diffusible NO. Such proposal is 

supported by the fact that peroxynitrite did not stimulate IRP1 binding in macrophage cell 

extract, but if SOD was added, stimulation of IRP1 binding occurred 
[28]

. The paper of Cairo et 

al.
[45]

 seemingly contradicts those findings. In this study, a lower concentration of peroxynitrite-

producing agent was used and in this case a significant IRP1 activation was seen. But when a 

higher concentration was employed, no increase in IRP1 activity was observed in concordance to 

previous data 
[45]

. Similar results were reported with recombinant IRP1 
[46]

. Nitration and/or 

oxidation seem to take place in a situation when peroxynitrite is produced in sufficient quantity. 

It may be possible that low concentration of peroxynitrite cannot modify IRP1 more than NO 

alone, i.e. it removes only Fe-S cluster of c-acon and transforms it into IRP1. The decrease in c-

acon activity but no significant increase in IRP1 binding caused by higher concentrations of 

peroxynitrite can be explained by spheric hindrance of nitro group, oxidation of free sulfhydryl 

groups and/or by incomplete decomposition of the Fe-S cluster of c-acon/IRP1. Chemical 

modification evoked by higher concentration of peroxinitrite on c-acon/IRP1 can be confirmed 

by the lack of recovery of c-acon activity after treatment with ferrous sulfate and cysteine, which 

have been proven to be able to reconstruct the c-acon cluster and its enzymatic function 
[45]

. 

Activation of IRP1 binding with mitochondrial production of peroxynitrite may depend not only 
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on NO, the potential role of superoxide and/or hydrogen peroxide cannot be omitted. In addition, 

peroxinitrite is known to decrease IRP-2 binding activity even in presence of an iron chelator 
[45]

. 

Like superoxide and NO
+
, peroxynitrite was also demonstrated to mobilize iron from ferritin 

in vitro, but surprisingly, its effect was less pronounced than that of either superoxide or NO
+
 
[41]

. 

In addition, peroxynitrite can also interact with iron uptake from transferrin; a decrease in TfR 

mRNA and in Fe-uptake was observed in various cell cultures 
[55, 57]

.  

It may be implied that, in macrophages during inflammatory processes (when superoxide is 

generated), the nitration of c-acon can on the one hand protect cells against the well-known 

consequences of iron excess 
[47]

 but on the other hand it cannot be omitted that peroxynitrite 

decomposes (t1/2=0,5s) into hydroxyl and NO2
.
 radicals 

[51]
. These radicals may reduce cell 

viability and some effects of peroxynitrite can therefore be ascribed to its toxicity 
[57]

. 

 

Conclusion 

Correct iron metabolism is essential for maintenance of cellular homeostasis and both iron 

deficiency and iron overload are responsible for a number of even life-threatening pathologies. 

Reactive oxygen and nitrogen species are also abundant in cells under both physiological and 

pathological conditions and better understanding of the role of RONS in cellular iron trafficking 

is therefore of crucial importance.  

This review aimed to show that ROS cause damage not only via the Haber-Weiss chemistry, 

but they can themselves affect the control of iron metabolism, provoke iron loading into the 

cells, mobilize iron from proteins, probably most easily from Fe-S clusters and therefore further 

aggravate the vicious circle of Fe/ROS-induced cellular damage.  
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On the contrary, nitric oxide appears to be involved in cellular protection against ROS. NO 

apparently protects cells by inhibition of exceeding iron uptake into the cells and by removing of 

iron from the cells.  

Peroxynitrite also affects the cellular iron metabolism, but its impact seems to be weaker 

than that of other reactive species. On the one hand, it can be suggested that NO can protect cells 

against superoxide by reaction with it, but on the other hand, it has to be underlined that the 

reaction product - peroxynitrite - can be decomposed into highly toxic hydroxyl radical. 

Abbreviations 

c-acon, cytosolic aconitase; NOS, NO-synthase; IFN, interferon ; iNOS, cytokine-

inducible NOS; IRE, iron responsible element; IRP1, IRP2, iron regulatory proteins 1 and 2; 

LPS,  lipopolysacharide; m-acon, mitochondrial aconitase; Ser, serin; SNAP, S-nitroso-N-acetyl-

D,L-penicilamine; SOD, superoxide dismutase; ROS, reactive oxygen species; Tf-Fe2, iron 

loaded transferrin; TfR1, transferrin receptor 1; TNF-, tumor necrosis factor  

Acknowledgements 

The authors have been supported by the Charles University in Prague (grant GA UK 

98/2005/C/FaF) and by a post-doc grant from the Czech Science Foundation (GACR 

305/05/P156).  

 

References 

[1] Halliwell B, Gutteridge JM. Free radicals in biology and medicine. 3rd ed. New York: Oxford University 

Press; 1999 

[2] Andrews NC. Disorders of iron metabolism. N Engl J Med 1999;341:1986-95 

[3] Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron 

metabolism. Cell 2004;117:285-97 



                                           Mladěnka et 
al., The role of RONS. Free Radic Res, 2006 

88 

 

[4] Mladenka P, Hrdina R, Hubl M, Simůnek T. The fate of iron in the organism and its regulatory pathways. 

Acta Medica (Hradec Kralove) 2005; in press.  

[5] Aziz N, Munro HN. Iron regulates ferritin mRNA translation through a segment of its 5' untranslated region. 

Proc Natl Acad Sci U S A 1987;84:8478-82. 

[6] Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits 

operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 1996;93:8175-82 

[7] Beinert H, Kennedy MC. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A 

tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem 

1989;186:5-15. 

[8] Klausner RD, Rouault TA. A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol 

Cell 1993;4:1-5 

[9] Brown NM, Kennedy MC, Antholine WE, Eisenstein RS, Walden WE. Detection of a [3Fe-4S] cluster 

intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism 

of Fe-S cluster cycling. J Biol Chem 2002;277:7246-54.   

[10] Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA, Beinert H, Klausner RD. Cellular regulation 

of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-

affinity RNA binding. Proc Natl Acad Sci U S A 1992;89:11735-9.   

[11] Guo B, Yu Y, Leibold EA. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding 

protein without aconitase activity. J Biol Chem 1994;269:24252-60.   

[12] Ke Y, Wu J, Leibold EA, Walden WE, Theil EC. Loops and bulge/loops in iron-responsive element isoforms 

influence iron regulatory protein binding. Fine-tuning of mRNA regulation? J Biol Chem 1998;273:23637-

40. 

[13] McCord JM. Iron, free radicals, and oxidative injury. Semin Hematol 1998;35:5-12. 

[14] Berry CE, Hare JM.  Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and 

pathophysiological implications. J Physiol 2004;555:589-606 

[15] Gardner PR, Raineri I, Epstein LB, White CW. Superoxide radical and iron modulate aconitase activity in 

mammalian cells. J Biol Chem 1995;270:13399-405.   

[16] Missirlis F, Hu J, Kirby K, Hilliker AJ, Rouault TA, Phillips JP.  Compartment-specific protection of iron-

sulfur proteins by superoxide dismutase. J Biol Chem 2003;278:47365-9. 

[17] Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of 

the superoxide anion from mitochondria to cytosol. J Biol Chem 2003;278:5557-63. 

[18]   Liochev SI, Fridovich I. Superoxide and iron: partners in crime. IUBMB Life 1999;48:157-61. 

[19] Graf E, Mahoney JR, Bryant RG, Eaton JW. Iron-catalyzed hydroxyl radical formation. Stringent 

requirement for free iron coordination site. J Biol Chem 1984;259:3620-4 

[20] Hrdina R, Gersl V, Klimtova I, Simunek T, Mazurova Y, Machackova J, Adamcova M. Effect of sodium 2,3-

dimercaptopropane-1-sulphonate (DMPS) on chronic daunorubicin toxicity in rabbits: comparison with 

dexrazoxane. Acta Medica (Hradec Kralove) 2002;45:99-105. 

[21] Omar R, Nomikos I, Piccorelli G, Savino J, Agarwal N. Prevention of postischaemic lipid peroxidation and 

liver cell injury by iron chelation. Gut 1989;30:510-4.   

[22] Simunek T., Boer C., Bouwman R. A., Vlasblom R., Versteilen A.M.G., Sterba M., Gersl V., Hrdina R., 

Ponka P., de Lange J. J., Paulus W.J., Musters R.J.P. SIH - a novel lipophilic iron chelator - protects H9c2 

cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell death. J Mol Cell Cardiol 

2005;39:345-54. 

[23] Simunek T, Klimtova I, Kaplanova J, Sterba M, Mazurova Y, Adamcova M, Hrdina R, Gersl V, Ponka P. 

Study of daunorubicin cardiotoxicity prevention with pyridoxal isonicotinoyl hydrazone in rabbits. 

Pharmacol Res 2005;51:223-31. 

[24] Castro LA, Robalinho RL, Cayota A, Meneghini R, Radi R. Nitric oxide and peroxynitrite-dependent 

aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts. Arch Biochem 

Biophys 1998;359:215-24. 

[25] Martins EA, Robalinho RL, Meneghini R. Oxidative stress induces activation of a cytosolic protein 

responsible for control of iron uptake. Arch Biochem Biophys 1995;316:128-34.  



                                           Mladěnka et 
al., The role of RONS. Free Radic Res, 2006 

89 

 

[26] Pantopoulos K, Mueller S, Atzberger A, Ansorge W, Stremmel W, Hentze MW. Differences in the regulation 

of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem 1997;272:9802-

8.   

[27] Pantopoulos K, Weiss G, Hentze MW. Nitric oxide and oxidative stress (H2O2) control mammalian iron 

metabolism by different pathways. Mol Cell Biol 1996;16:3781-8  

[28] Bouton C, Raveau M, Drapier JC. Modulation of iron regulatory protein functions. Further insights into the 

role of nitrogen- and oxygen-derived reactive species. J Biol Chem 1996;271:2300-6. 

[29] Pantopoulos K, Hentze MW. Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc Natl 

Acad Sci U S A 1998;95:10559-63. 

[30] Brazzolotto X, Gaillard J, Pantopoulos K, Hentze MW, Moulis JM.  Human cytoplasmic aconitase (Iron 

regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for 

iron-responsive element binding. J Biol Chem 1999;274:21625-30. 

[31] Mueller S, Pantopoulos K, Hubner CA, Stremmel W, Hentze MW. IRP1 activation by extracellular oxidative 

stress in the perfused rat liver. J Biol Chem 2001;276:23192-6.   

[32] Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U 

S A 1996;93:13635-40 

[33] Gardner PR, Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of 

superoxide radical. J Biol Chem 1992;267:8757-63. 

[34] Starzynski RR, Lipinski P, Drapier JC, Diet A, Smuda E, Bartlomiejczyk T, Gralak MA, Kruszewski M. 

Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knockout 

mice is not associated with alterations in iron metabolism. J Biol Chem 2005;280:4207-12. 

[35] Fillebeen C, Chahine D, Caltagirone A, Segal P, Pantopoulos K. A phosphomimetic mutation at Ser-138 

renders iron regulatory protein 1 sensitive to iron-dependent degradation. Mol Cell Biol 2003 ;23:6973-81. 

[36] McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 

1968;243:5753-60. 

[37] Cairo G, Castrusini E, Minotti G, Bernelli-Zazzera A. Superoxide and hydrogen peroxide-dependent 

inhibition of iron regulatory protein activity: a protective stratagem against oxidative injury. FASEB J 

1996;10:1326-35 

[38] Flint DH, Tuminello JF, Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by 

superoxide. J Biol Chem 1993;268:22369-76. 

[39] Richardson DR, Ponka P. Identification of a mechanism of iron uptake by cells which is stimulated by 

hydroxyl radicals generated via the iron-catalysed Haber-Weiss reaction. Biochim Biophys Acta 

1995;1269:105-14. 

[40] Biemond P, Swaak AJ, van Eijk HG, Koster JF. Superoxide dependent iron release from ferritin in 

inflammatory diseases. Free Radic Biol Med 1988;4:185-98.   

[41] Reif DW, Simmons RD. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 

1990;283:537-41. 

[42] Thomas CE, Aust SD. Reductive release of iron from ferritin by cation free radicals of paraquat and other 

bipyridyls. J Biol Chem 1986;261:13064-70.   

[43] Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 

1990;30:535-60. 

[44] Soum E, Drapier JC. Nitric oxide and peroxynitrite promote complete disruption of the [4Fe-4S] cluster of 

recombinant human iron regulatory protein 1. J Biol Inorg Chem 2003;8:226-32. 

[45] Cairo G, Ronchi R, Recalcati S, Campanella A, Minotti G. Nitric oxide and peroxynitrite activate the iron 

regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic 

aconitase. Biochemistry 2002;41:7435-42. 

[46] Drapier JC, Hirling H, Wietzerbin J, Kaldy P, Kuhn LC. Biosynthesis of nitric oxide activates iron regulatory 

factor in macrophages. EMBO J 1993;12:3643-9. 

[47] Gonzalez D, Drapier JC, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-

producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on 

IRP-1 functions. J Biol Chem 2004;279:43345-51. 



                                           Mladěnka et 
al., The role of RONS. Free Radic Res, 2006 

90 

 

[48] Pantopoulos K, Hentze MW. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin 

mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci U S 

A 1995;92:1267-71. 

[49]   Weiss G, Goossen B, Doppler W, Fuchs D, Pantopoulos K, Werner-Felmayer G, Wachter H, Hentze MW. 

Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 

1993;12:3651-7.   

[50] Kim S, Ponka P. Control of transferrin receptor expression via nitric oxide-mediated modulation of iron-

regulatory protein 2. J Biol Chem 1999;274:33035-42. 

[51] Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A.  EPR characterization of molecular 

targets for NO in mammalian cells and organelles. FASEB J 1993;7:1124-34. 

[52] Recalcati S, Taramelli D, Conte D, Cairo G. Nitric oxide-mediated induction of ferritin synthesis in J774 

macrophages by inflammatory cytokines: role of selective iron regulatory protein-2 downregulation. Blood 

1998;91:1059-66. 

[53] Phillips JD, Kinikini DV, Yu Y, Guo B, Leibold EA. Differential regulation of IRP1 and IRP2 by nitric oxide 

in rat hepatoma cells. Blood 1996;87:2983-92. 

[54] Oria R, Sanchez L, Houston T, Hentze MW, Liew FY, Brock JH. Effect of nitric oxide on expression of 

transferrin receptor and ferritin and on cellular iron metabolism in K562 human erythroleukemia cells. Blood 

1995;85:2962-6. 

[55] Richardson DR, Neumannova V, Ponka P.  Nitrogen monoxide decreases iron uptake from transferrin but 

does not mobilise iron from prelabelled neoplastic cells. Biochim Biophys Acta 1995;1266:250-60   

[56] Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 

1992;258:1898-902 

[57] Richardson DR, Neumannova V, Nagy E, Ponka P. The effect of redox-related species of nitrogen monoxide 

on transferrin and iron uptake and cellular proliferation of  erythroleukemia (K562) cells. Blood 

1995;86:3211-9 

[58] Hanson ES, Foot LM, Leibold EA. Hypoxia post-translationally activates iron-regulatory protein 2. J Biol 

Chem. 1999 Feb 19;274(8):5047-52.   

[59] Wang J, Chen G, Pantopoulos K. Nitric oxide inhibits the degradation of IRP2. Mol Cell Biol 2005;25:1347-

53. 

[60] Bouton C, Oliveira L, Drapier JC. Converse modulation of IRP1 and IRP2 by immunological stimuli in 

murine RAW 264.7 macrophages. J Biol Chem 1998;273:9403-8. 

[61] Kim S, Ponka P. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are 

mediated by nitric oxide-induced degradation of iron regulatory protein 2. J Biol Chem 2000;275:6220-6.   

[62] Watts RN, Richardson DR. The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from 

cells. NO intercepts iron before incorporation into ferritin and indirectly mobilizes iron from ferritin in a 

glutathione-dependent manner. Eur J Biochem 2002;269:3383-92.   

[63] Watts RN, Richardson DR.  Differential effects on cellular iron metabolism of the physiologically relevant 

diatomic effector molecules, NO and CO, that bind iron. Biochim Biophys Acta 2004;1692:1-15 

[64] Mulero V, Brock JH. Regulation of iron metabolism in murine J774 macrophages: role of nitric oxide-

dependent and -independent pathways following activation with gamma interferon and lipopolysaccharide. 

Blood 1999;94:2383-9. 

[65] Konijn AM, Hershko C. Ferritin synthesis in inflammation. I. Pathogenesis of impaired iron release. Br J 

Haematol 1977;37:7-16.  

[66] Kwok JC, Richardson DR. The iron metabolism of neoplastic cells: alterations that facilitate proliferation? 

Crit Rev Oncol Hematol 2002;42:65-78. 

[67] Weiss G, Werner-Felmayer G, Werner ER, Grunewald K, Wachter H, Hentze MW.  Iron regulates nitric 

oxide synthase activity by controlling nuclear transcription. J Exp Med 1994;180:969-76.  

[68] Harhaji L, Vuckovic O, Miljkovic D, Stosic-Grujicic S, Trajkovic V.  Iron down-regulates macrophage anti-

tumour activity by blocking nitric oxide production. Clin Exp Immunol 2004;137:109-16. 

[69] Huie RE, Padmaja S. The reaction of no with superoxide. Free Radic Res Commun 1993;18:195-9.  

[70] Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS. Peroxynitrite-mediated tyrosine 

nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992;298:431-7. 



                                           Mladěnka et 
al., The effects of lactoferrin. Biometals, 2008 

91 

 

 

 

 

 

3. The effects of lactoferrin in a rat model of catecholamine 

cardiotoxicity 

 

 

 

 

 

Mladěnka P, Semecký V, Bobrovová Z, Nachtigal P, Vávrová J, 

Holečková M, Palicka V, Mazurová Y & Hrdina R. The effects of 

lactoferrin in a rat model of catecholamine cardiotoxicity, 

Biometals 2008, in press 

  



                                           Mladěnka et 
al., The effects of lactoferrin. Biometals, 2008 

92 

 

 

Abstract: 

Lactoferrin is recently under intense investigation because of its proposed several 

pharmacologically positive effects. Based on its iron-binding properties and its physiological 

presence in the human body, it may have a significant impact on pathological conditions 

associated with iron-catalysed reactive oxygen species (ROS). Its effect on a catecholamine 

model of myocardial injury, which shares several pathophysiological features with acute 

myocardial infarction in humans, was examined.  

Male Wistar rats were randomly divided into 4 groups according to the received 

medication: control (saline), isoprenaline (ISO, 100 mg.kg
-1

 s.c.), bovine lactoferrin (La, 50 

mg.kg
-1

 i.v.) or a combination of La + ISO in the above-mentioned doses. After 24 hours, 

haemodynamic functional parameters were measured, a sample of blood was withdrawn and the 

heart was removed for analysis of various parameters. 

Lactoferrin premedication reduced some impairment caused by ISO (e.g., a stroke volume 

decrease, an increase in peripheral resistance and calcium overload). These positive effects were 

likely to have been mediated by the positive inotropic effect of lactoferrin and by inhibition of 

ROS formation due to chelation of free iron. The failure of lactoferrin to provide higher 

protection seems to be associated with the complexity of catecholamine cardiotoxicity and with 

its hydrophilic character.  
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Background: 

Lactoferrin is an innate iron-binding glycoprotein with many proposed, potentially positive 

pharmacological activities. It shares a high degree of homology with transferrin (Abdallah and El 

Hage Chahine, 2000; Baker and Baker, 2005; Metz-Boutigue et al., 1984). In the human body, 

transferrin acts as an iron-transporting protein and is found predominantly in the blood, whereas 

lactoferrin is localized in exocrine secretes (e.g., saliva, tears, milk, bronchial mucus) and in the 

secondary granules of neutrophils (Weinberg, 2003, 2006).  Its role in man is only partially 

known. Lactoferrin inhibits the growth of many pathological microorganisms and its presence on 

mucosal surfaces represents the primary antimicrobial defence system of the organism. This 

antimicrobial property at least partially reflects its iron-binding capacity. Its affinity to iron is 

very high, about 260 times higher than that of transferrin (Baker et al., 1994) and, in contrast to 

transferrin, is able to retain iron under more acidic conditions (Abdallah and El Hage Chahine, 

2000).  

The catecholamine model of myocardial injury possesses many pathophysiological 

similarities with acute myocardial infarction (AMI). The isoprenaline (ISO, synthetic 

catecholamine) model is therefore often used as a non-invasive model of AMI  (Hasenfuss, 1998; 

Chagoya de Sanchez et al., 1997; Rona, 1985). The only possibility for myocardial tissue 

recovery in AMI represents the reperfusion of ischaemic myocardium. But the whole process, 

described as myocardial ischaemia-reperfusion (I-R), is associated with tissue derangement due 

to burst of hydroxyl radical catalyzed by free iron (Fenton reaction). In fact, studies confirmed 

increased levels of free intracellular iron and its release from ischaemic cells (Berenshtein et al., 

2002; Coudray et al., 1994). Unfortunately, studies examining the effects of some iron chelators 
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on I-R reported divergent results (Bolli et al., 1990; Reddy et al., 1991). Lactoferrin, which has 

been documented to inhibit the Fenton reaction (Gutteridge et al., 1981), may have some 

advantage in comparison to other iron chelators, in particular its endogenous origin.  

Based on the aforementioned iron participation in the pathogenesis of myocardial damage, 

this work hypothesizes the potentially positive effects of lactoferrin in a catecholamine model of 

myocardial injury. 

 

Methods: 

Animals 

Young Wistar male rats obtained from Biotest s.r.o. (Konárovice, Czech Republic), 

weighing approximately 350 g, were used after two weeks of acclimatisation. The animals were 

maintained in an air-conditioned room and were allowed free access to a standard pellet diet for 

rodents and tap water. The study was performed under the supervision of the Ethical Committee 

of the Charles University in Prague, Faculty of Pharmacy in Hradec Králové. All experiments 

were performed in concordance with the guiding principles of laboratory animal care and use. 

 

Study design 

Animals were randomly divided into 4 groups: 

control group (C, 7 animals) - received saline 1 ml.kg
-1

 s.c. 

isoprenaline group (I, 13 animals) – received 100 mg.kg
-1

 of isoprenaline (ISO; Sigma-

Aldrich,USA) in the aqueous solution s.c. 

lactoferrin (La, 7 animals) – bovine lactoferrin 50 mg.kg
-1

 (DMV International, USA) was  

administered i.v. 
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lactoferrin + ISO (LaI, 11 animals) – rats received lactoferrin i.v. 5 minutes before 

application of ISO in the same doses as above. 

Saline and/or drug were administered 24 hours before surgical procedure. 

 

Experimental procedure 

Animals were fasting for 12 hours before the experiment and were anaesthetized with 

urethane (1.2 g.kg
-1

 i.p.; Sigma-Aldrich, USA). A PE catheter (0.5/1.0 mm filled with 

heparinized saline 50 IU.ml
-1

) was inserted into the right jugular vein for the injection of cold 

saline. A thermocatheter (o.d. 0.8 mm) was introduced through the left carotid artery into the 

aortic arc. Another PE catheter (0.5/1.0 mm filled with heparinized saline 50 IU.ml
-1

) was 

inserted into the left iliac artery, which was connected with the blood pressure transducer BPR-

01 of the apparatus for measurement of haemodynamic variables Cardiosys


 (Experimentria Ltd, 

Hungary) with software Cardiosys V 1.1. This device uses the thermodilution transpulmonary 

method according to the Stewart-Hamilton principle (Spiller and Webb-Peploe, 1985).   

The first measurement was carried out following 15 minutes equilibration period after the 

surgical procedure. Functional variables were obtained in a total of four times in 5 minute 

intervals. Results are expressed as an index (variable divided by the body weight) except for  

blood pressure, heart rate and “double product” (mean blood pressure multiplied by heart rate). 

The last parameter is commonly used as an index of cardiac oxygen consumption (Lentner, 

1990). Peripheral resistance was calculated as the mean arterial blood pressure divided by 

cardiac output, and cardiac power as a product of the mean blood pressure and cardiac output. 
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Following haemodynamic measurements, approximately 5 ml of blood was withdrawn 

from the abdominal aorta to the heparinized test tube (170 IU). The animal was then sacrificed 

by i.v. KCl overdose (1 mM), after which the heart ventricles were excised, weighed and frozen 

at -20°C for further analysis of ion content. 

 

Histological analysis 

After the autopsy, a routine histological examination of cardiac ventricular tissue was 

performed. Tissue blocks of the transversely sectioned left and right ventricles (the region under 

the atria with heart apex) were fixed by immersion in 4 % paraformaldehyde for 3 days. 

Furthermore, 10 consecutive longitudinal paraffin sections through the ventricles were cut (7 µm 

in thickness) and subsequently stained with haematoxylin-eosin. 

 

Biochemical parameters  

Cardiac troponin T (cTnT) and vitamin E were measured in serum, malondialdehyde 

(MDA) was measured in plasma, antioxidant enzymes were measured in erythrocytes and total 

glutathione (GSH) was measured in the whole blood. cTnT was determined by 

electrochemiluniscence immunoassay (Elecsys 2010, Roche Diagnostics), which employs two 

monoclonal antibodies specifically directed against cTnT. MDA was measured as a red complex 

with thiobarbituric acid at 485, 532 and 560 nm using Beckman DU 640 spectrophotometer 

(Beckman, Palo Alto, USA). Capillary electrophoresis was used for the separation of glutathione, 

which was then measured by UV detection (System P/ACE 5100, Beckman) at 200 nm. 

Glutathione peroxidase (GPx) was determined spectrophotometrically using a commercial kit 
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(Ransel, Randox, United Kingdom) according to the manufacturer’s instruction as a decrease of 

absorbance at wavelength 340 nm (Cobas Mira, Roche, Switzerland). Superoxide dismutase 

(SOD) was determined spectrophotometrically at 505 nm using a commercial kit (Ransod, 

Randox, U.K.). After deproteinization, the analysis of vitamin E (-tocopherol) with fluorimetric 

detection was performed in a HPLC system HP1050 (Hewlett Packard, Germany).  

 

Microelements in the heart tissue 

Frozen samples of myocardial tissue were dried, weighed and digested by microwave 

digestion using nitric acid and hydrogen peroxide (Milestone MLS 1200 MEGA, Italy). Iron, 

copper and selenium were determined using graphite furnace atomic absorption spectrometry 

(Unicam, Solaar 959, U.K.), zinc was determined using flame atomic absorption spectrometry 

(Unicam, Solaar 959, U.K.) and calcium was measured photometrically using flame photometry 

(Eppendorf, Efox 5053, Germany). Results are expressed as mol.g
-1

 (iron, copper, zinc, 

calcium) or nmol.g
-1

 (selenium) of dry tissue. 

 

Statistics 

Data are expressed as means  SEM. Groups were compared by one-way ANOVA 

followed by Tukey's Multiple Comparison Test by means of GraphPad Prism version 4.00 for 

Windows, GraphPad Software (San Diego, California, USA). Differences between groups were 

considered to be significant when P0.05, unless indicated otherwise. 

 

Results: 
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Final numbers of rats were 7 in control, lactoferrin (La) and lactoferrin+ISO (LaI) groups 

and 9 in the ISO group (because of high results variability). None of the control animals or 

animals from the lactoferrin group died. One rat (group LaI) died during surgery. There was 

comparable mortality in I group and combined group LaI (4 and 3 animals, respectively). 

Functional parameters are summarized in Fig. 1 and Tab. 1.  

 

 

parameter/group control 
isoprenaline 

(ISO) 

lactoferrin 

(La) 
La+ISO 

heart rate        

(beats.min
-1

) 
418 ± 10 453 ± 7* 429 ± 9 470 ± 10

*∆
 

diastolic blood 

pressure (mmHg) 
110 ± 6 121 ± 9 135 ± 7 127 ± 6 

systolic blood 

pressure (mmHg) 
92 ± 4 102 ± 7 112 ± 5 107 ± 6 

mean blood 

pressure (mmHg) 
82 ± 4 93 ± 7 101 ± 5 98 ± 6 

stroke volume index 

(ml.kg
-1

) 
0.83 ± 0.07 0.36 ± 0.06* 1.19 ± 0.12* 0.69 ± 0.09

+∆
 

double product 

(mmHg.beats.min
-1

) 
38215 ± 1644 46070 ± 3652 46250 ± 3523 50319 ± 2443* 

cardiac power index     

(mmHg.ml.kg
-1

.min
-1

) 
31511 ± 2947 15917 ± 2239* 52504 ± 3490* 34481 ± 4987

+∆ 
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Table 1. Functional parameters measured 24 hours after drug(s) administration. Results are 

expressed as mean ± SEM. * p<0.05 vs. control, 
+
 p<0.05 vs. ISO, 

∆
 p<0.05 vs. La. 

 

 

 

 

Figure 1. Stroke volume index and peripheral resistance index 24 hours after drug application.  

* p<0.05 vs. control, 
+
 p<0.05 vs. ISO, 

∆
 p<0.05 vs. La. 

 

Control and lactoferrin treated animals had negligible levels of serum cTnT and there was 

no statistical difference between myocardial calcium levels in these groups. Isoprenaline brought 

about a marked cTnT release and myocardial calcium overload. Lactoferrin premedication did 

not affect the release of cTnT, however, it decreased calcium overload caused by ISO (Fig. 2). 

Heart ventricle weight index was elevated in the ISO group when compared to the control or La 

groups, and contrarily, lactoferrin premedication rather worsened this increase (Fig.3).  

There was no statistical significance in myocardial iron level (Tab.2). Similarly, no 

statistical significance was found in myocardial copper, selenium or zinc concentrations (Tab.2).  
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Figure 2. Cardiac troponin T in serum and calcium concentration in the myocardial tissue.  

* p<0.01 vs. control, 
∆
 p<0.01 vs. La. 

 

 

Figure 3. Wet ventricles weight index  

* p<0.001 vs. control, 
+
 p<0.05 vs. ISO, 

∆
 p<0.001 vs. La. 

 

Lactoferrin significantly elevated levels of total glutathione while significantly decreasing 

erythrocyte GPx and insignificantly SOD in healthy animals (Fig. 4, Tab.2). Moreover, 
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lactoferrin tended to decrease plasma thiobarbituric acid reactive substances (TBARS) but this 

decrease was not statistically significant (Tab.2). Other results concerning markers of ROS and 

antioxidants are shown in Tab. 2. 

 

Parameter/group Control 
Isoprenaline 

(ISO) 

Lactoferrin 

(La) 
La +ISO 

TBARS (mol.l
-1

) 1.3 ± 0.1 1.6 ± 0.2 1.0 ± 0.1 1.4 ± 0.1 

SOD (U.g
-1

 of Hb) 3092 ± 253 3288  ± 387 2461 ± 266 2138 ± 150*
+
 

Vitamin E (mol.l
-1) 9.0 ± 0.4 8.0 ± 0.5 8.2 ± 0.7 7.9 ± 0.7 

Copper (mol.g
-1

 of 

tissue) 
0.58 ± 0.05 0.72 ± 0.03 0.76 ± 0.09 0.83 ± 0.07 

Iron (mol.g
-1

 of tissue) 3.8 ± 0.2 3.6 ± 0.2 4.2 ± 0.1 4.2 ± 0.2 

Zinc (mol.g
-1

 of tissue) 1.09 ± 0.01 1.09 ± 0.01 0.93 ± 0.08 1.13 ± 0.07 

Selenium (nmol.g
-1

 of 

tissue) 
7.8 ± 1.2 8.6 ± 1.0 11.3  ± 1.5 11.9  ± 1.5 

 

Table 2. Biochemical parameters and myocardial element content 24 hours after drug 

administration.  TBARS: thiobarbituric acid reactive substances in plasma; SOD: superoxide 

dismutase in erythrocytes; vitamin E in serum; copper, iron, selenium and zinc in the myocardial 

tissue.  Results are expressed as mean ± SEM. * p<0.05 vs. control,
 +

 p<0.05 vs. ISO. 
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Figure 4. Total glutathione and glutathione peroxidase (GPx) in erythrocytes.  

* p<0.05 vs. control, 
+
 p<0.05 vs. ISO. 

 

          The normal structure of myocardium was found in intact control animals (Fig.5A). 

Comparable findings were also visible after administration of lactoferrin (Fig.5B). In the 

isoprenaline group (Fig.5C), severe acute diffuse toxic damage with an inflammatory reaction 

was found in the whole myocardium (with a maximum in the subendocardial region, particularly 

in the heart apex). Myocytes with intensely eosinophilic cytoplasm prevailed, and scattered 

pyknotic nuclei were also seen. Mild inflammatory infiltrate and macrophages removing the 

debris of necrotic cells, as well as slight interstitial oedema, were also observed. The 

administration of lactoferrin (Fig.5D) did not affect morphological changes in myocardium 

induced by isoprenaline. 
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Figure 5. Histological examination of myocardium of all groups. In both control (A) and 

lactoferrin treated rats (B) unaffected myocardium was found: cardiomyocytes with centrally 

located oval-shaped nuclei and cytoplasm filled with cross-striated myofibrils. On the other 

hand, severe damage of cardiomyocytes resulted in their degeneration/necrosis, seen in both 

isoprenaline and isoprenaline + lactoferrin treated groups (C, D). Moreover inflammatory 

infiltrate and as interstitial oedema were present in this initial stage of myocardial damage. 
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Lactoferrin treatment did not affect morphological changes caused by the administration of 

isoprenaline.  Haematoxylin–eosin. Direct magnification: 200x. 

 

Discussion: 

The administration of isoprenaline, a synthetic catecholamine with non-selective beta-

agonist activity, leads to tachycardia and hypotension, which in sufficient doses, is associated 

with ischaemia followed by marked damage of the myocardium. This resembles, in some 

aspects, the acute myocardial infarction in man (Chagoya de Sanchez et al., 1997; Rona, 1985). 

Ischaemia alters iron homeostasis and redox-active free (unbound or loosely bound) iron, which 

catalyses ROS-generation upon oxygen delivery restoration, appears in the circulation as well as 

intracellularly (Berenshtein et al., 2002; Coudray et al., 1994). An increase in the concentration 

of free iron in the myocardium may accompany certain medical procedures, and can be 

prevented by administration of apo-transferrin, a protein with similar structure to lactoferrin 

(Parkkinen et al., 2006). Moreover, lactoferrin has a much higher affinity to iron compared with 

transferrin and was shown to inhibit iron-catalysed ROS formation and decrease ischaemia-

reperfusion injury of corneal epithelial cells (Britigan et al., 1994; Shimmura et al., 1998). Some 

synthetic iron chelators have been well documented to alleviate the toxic effects of excess iron in 

various pathological conditions, where abundant iron may participate on ROS propagation 

(Kalinowski and Richardson, 2007; Kontoghiorghes, 2006; Sterba et al., 2007). Similarly, this 

study documented partially protective effects of lactoferrin on catecholamine-mediated injury.  

In contrast to transferrin, serum lactoferrin concentration is generally low. It rises 

significantly after exercise, sometimes reaching more than 5 g.ml
-1

, and in burnt patients may 
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even reach  up to 40 g.ml
-1  

(Fielding et al., 2000; Inoue et al., 2004; Wolach et al., 1984). In 

our study the serum lactoferrin levels were not measured; however, due to intravenous 

administration it can be assumed that its maximum concentration may reach about 1500 g.ml
-1

, 

which significantly exceeds physiological levels of endogenous lactoferrin. On the other hand, it 

is only about one half of normal human serum transferrin concentration (3150 g.ml
-1

) 

(Plomteux et al., 1987). Lactoferrin has a very short initial plasma half-life of about 2 minutes 

and, therefore, only 15% of the administered dose remained in the plasma after 10 minutes. This 

first rapid disappearance corresponds to its distribution in the liver and partly in the spleen. Only 

about 1% of the administered dose remained in plasma after 10 hours (Bennett and Kokocinski, 

1979; Karle et al., 1979; Regoeczi et al., 1985; Ward et al., 1983). Based on these data, it may be 

concluded that high initial plasma levels of lactoferrin promptly dropped and were in 

physiologically relevant concentration ranges during the experiment.  

There is some controversy concerning the role of lactoferrin in inflammation. On one hand, 

elevated levels of lactoferrin are found in patients with ischaemic stroke, and lactoferrin is 

known to promote leukocyte adhesion to the endothelial cells and to cause extravasation of 

plasma (Erga et al., 2000; Kurose et al., 1994; Oseas et al., 1981; Santos-Silva et al., 2002). On 

the other hand, lactoferrin release induced by leukocyte activation does not seem to amplify 

inflammation but, contrarily, to reduce the consequences of ROS generation during inflammation 

(Ward et al., 1983; Weinberg, 2003). Especially, apo-lactoferrin released from neutrophils (iron-

free lactoferrin) appears to have the most potent inhibitory effect on ROS-formation (Raghuveer 

et al., 2002; Weinberg, 2003).  
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The dose used in this study (50 mg.kg
-1

 i.v.) was not apparently pro-inflammatory in 

contrast to our preliminary experiments with higher doses (≥100 mg.kg
-1

 i.v.). Moreover, 

lactoferrin had a tendency to decrease plasma TBARS and to increase total blood glutathione in 

comparison with healthy animals. There was an increase in wet ventricle weight in the lactoferrin 

group. However, such an increase was neither associated with obviously conspicuous 

morphological changes nor with an increase in serum cardiac troponin T concentration, thus 

suggesting its harmlessness. The only suspicious features are a significant decrease in 

erythrocyte GPx and a non-significant decrease in erytrocyte SOD.  Erythrocyte enzymes are 

generally less susceptible to acute changes and indeed, ISO administration alone did not cause 

any change. Lactoferrin binds to various surface molecules and its interaction with some type of 

blood cells has been well documented (Britigan et al., 1994; Brock, 2002). Therefore, it seems to 

be possible that these measurements may be blunted by lactoferrin binding to erythrocytes. This 

assumption must be verified with further examination. Generally, it may be inferred that pro-

inflammatory effects of bovine lactoferrin in this study were negligible and of transient 

character.  

Other observed effects of lactoferrin on healthy animals are not linked to its pro/anti-

inflammatory properties, such as increased stroke volume and related cardiac indices. No change 

in the peripheral resistance and rather an increase in diastolic blood pressure, indicated that 

lactoferrin increased myocardial contractility (Fig. 1 and Tab. 1). This positive inotropic effect is 

very likely to be responsible for the partial amelioration of cardiovascular impairment caused by 

ISO.  ROS has been well documented to impair physiological vascular function (Paffett and 

Walker, 2007). Lactoferrin binds extracellular free iron and subsequently inhibits ROS 
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formation. Therefore, the inhibition of increasing peripheral resistance, together with a tendency 

to decrease myocardial calcium overload, is very likely to be related to the iron chelation 

properties of lactoferrin. Insignificant differences in myocardial iron concentrations are not very 

surprising. Levels of released iron both during and after ischemic insult seem to be very small, 

albeit sufficient for ROS production.  Therefore iron chelation in such conditions influences 

intracellular levels only marginally, in contrast to iron overloaded cells. Similarly, iron-loaded 

lactoferrin produces an increase in intracellular iron levels (Shimmura et al., 1998; van Snick et 

al., 1977).   

Pathogenesis of catecholamine cardiotoxicity is multifactorial and not fully understood. It 

involves ROS-generation and adrenergic stimulation (Neri et al., 2007; Rona, 1985). The first 

mechanism can be affected by iron chelation but the latter only partially, if at all. This may, at 

least in part, explain the failure of lactoferrin to decrease other catecholamine cardiovascular 

damage. The other important factor is the hydrophilic nature of lactoferrin and thus its limited 

intracellular penetration.  

 

Conclusion 

Our experiment did not show that the prophylactic administration of bovine lactoferrin (50 

mg.kg
-1

 i.v.), may reverse rat myocardial injury caused by s.c. administration of necrogenic dose 

of isoprenaline within a 24-hour period. Its partial protective effects are likely based on: 1) an 

unknown positive inotropic mechanism, which increases stroke volume index in healthy animals 

and therefore inhibits the drop in this parameter in catecholamine-treated animals; 2) 

extracellular iron chelation that inhibits an increase in peripheral resistance caused by 

isoprenaline insult. The failure of lactoferrin to provide a greater protection against 
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catecholamine cardiotoxic injury is likely to be associated mainly with its hydrophilic character 

and with the complexity of catecholamine cardiotoxicity. Further examination following this 

pilot study, which for the first time evaluated the direct effects of lactoferrin on cardiovascular 

function in healthy and isoprenaline-treated animals, is encouraged. One possible method may be 

the conjugation of lactoferrin with non-toxic polymers (Ward et al., 1983), which may enable a 

smaller initial dose of lactoferrin and the prolongation of lactoferrin elimination half-time.  
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Abstract: 

Iron (Fe) chelators are used clinically for treatment of Fe overload disease. Iron also 

plays a role in the pathology of many other conditions and these potentially include the 

cardiotoxicity induced by catecholamines such as isoprenaline (ISO). The current study 

examined the potential of Fe chelators to prevent ISO cardiotoxicity. This was done as like 

other catecholamines, ISO contains the classical catechol moiety that binds Fe and may form 

redox-active and cytotoxic Fe complexes. Studies in vitro used the cardiomyocyte cell line, 

H9c2, which were treated with ISO in the presence or absence of the chelator, 

desferrioxamine (DFO), or the lipophilic ligand, 2-pyridylcarboxaldehyde 2-

thiophenecarboxyl hydrazone (PCTH). Both these chelators were not cardiotoxic and 

significantly reduced ISO cardiotoxicity in vitro. However, PCTH was far more effective than 

DFO, with the latter showing activity only at a high, clinically unachievable concentration. 

Further studies in vitro showed that interaction of ISO with Fe(II)/(III) did not increase 

cytotoxic radical generation, suggesting this mechanism was not involved. Further studies in 

vivo were initiated using rats pre-treated intravenously with DFO or PCTH before 

subcutaneous administration of ISO (100 mg/kg). DFO at a clinically used dose (50 mg/kg) 

failed to reduce catecholamine-cardiotoxicity, while PCTH at an equimolar dose totally 

prevented catecholamine-induced mortality and reduced cardiotoxicity. This study 

demonstrates PCTH reduced ISO-induced cardiotoxicity in vitro and in vivo demonstrating 

that Fe plays a role, in part, in the pathology observed. 
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Introduction 

Iron (Fe) chelators are well known therapeutic agents administered to prevent 

complications associated with transfusional Fe overload in diseases such as β-thalassemia 

major (1-6). Iron chelators that are specifically designed for the treatment of Fe overload 

disease act by avidly binding Fe, preventing it from participating in deleterious Fenton 

chemistry that results in the generation of reactive oxygen species (ROS) and oxidative cell 

damage (4, 7). 

Endogenous catecholamines such as epinephrine (Figure 1) and norepinephrine are 

known to bind Fe(III) through their catechol groups forming 3:1 ligand:Fe complexes (8-10) 

(Figure 1). Catecholamines are elevated in cardiovascular disease and may trigger acute 

myocardial infarction (AMI) (11, 12). In addition, sufficient doses of the synthetic 

catecholamine and non-selective β-adrenergic agonist, isoprenaline (ISO; Figure 1), evoke 

cardiac pathology which shares similarities to AMI (13, 14).  

 

Figure 1. Chemical structures of epinephrine, isoprenaline (ISO), the 3:1 isoprenaline:Fe(III) 

complex, desferrioxamine (DFO) and 2-pyridylcarboxaldehyde 2-thiophenecarboxyl 

hydrazone (PCTH). 
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Catecholamines can produce cardiotoxicity through binding to adrenoceptors and also 

through oxidative pathways (15). However, the mechanisms involved in the latter process 

remain unclear. It is known that catecholamines undergo auto-oxidation and it has been 

suggested that the oxidative products of these agents are cardiotoxic (16-18). Previously, 

epinephrine  was shown to increase the production of ROS in the presence of Fe and 

hydrogen peroxide (19), suggesting the ability of catecholamines to form redox-active Fe 

complexes (Figure 1). Considering this, it can be hypothesized that the generation of such 

complexes may participate in the myocardial tissue damage observed in ISO-induced 

cardiotoxicity and also AMI. The fact that anti-oxidants limit ISO-mediated cardiotoxicity 

suggests a role of free radicals in its pathogenesis (20, 21).  

Based on the described pathogenesis of AMI-induced myocardial injury and the 

potential of catecholamines to form redox-active Fe complexes that could impart cytotoxicity, 

chelation therapy may be a useful intervention. A number of studies have investigated the role 

of the traditionally used chelator for Fe overload, namely, desferrioxamine (DFO; Figure 1), 

in models of AMI with conflicting results (22-25). It is well known that DFO has many 

limitations at binding intracellular Fe pools due to its high molecular weight, hydrophilicity 

and short plasma half-life (7). These problems result in poor Fe chelation efficacy and 

necessitates long subcutaneous (s.c.) infusion (12-24 h/day 5-6 days/week) (7, 26). Thus, the 

development of novel, lipophilic and orally-active Fe chelators is vital.  

Iron chelators of the pyridoxal isonicotinoyl hydrazone (PIH) class have shown marked 

activity in vitro and in vivo (27). Their great advantage in comparison to DFO is their greater 

lipophilicity leading to oral bioavailability. However, the lack of patent protection of PIH has 

required the development of new ligands that maintain their most important features including 

lipophilicity (7). Such compounds include the 2-pyridylcarboxaldehyde isonicotinoyl 
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hydrazone (PCIH) series of chelators that show marked Fe chelation efficacy and are 

protected by national phase patents (28).   

The PCIH analogs are a well characterized group of tridentate Fe chelators that form 2:1 

ligand:metal complexes with Fe(II) (29). Of these ligands, the chelator, 2-

pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH; Figure 1), has been shown to 

be a promising lead compound (30, 31). This chelator was previously observed to effectively 

mobilize intracellular Fe both in vitro in a number of cellular models (29, 30, 32) and 

demonstrated high efficacy and tolerability in vivo (31). In fact, PCTH was shown to be 

orally-effective in mice, having activity that was comparable to the orally-active chelators, 

PIH and deferiprone (L1) (31). Furthermore, the PCTH-Fe complex was found to be redox-

inactive, acting in a protective manner to prevent Fenton chemistry and DNA damage (29, 

33). In addition, PCTH was shown to be highly protective against H2O2-mediated cytotoxicity 

in a variety of cell types in culture (34). Collectively, these properties make PCTH an ideal 

candidate chelator for prevention of tissue impairment due to Fe-induced ROS generation. 

The current study compared the in vitro and in vivo protective effects of the Fe 

chelators, DFO and PCTH, in catecholamine-induced cardiotoxicity. At a clinically-relevant 

dose, DFO could not reduce ISO-mediated cardiotoxicity and mortality in rats, while PCTH 

completely prevented catecholamine-induced mortality at an equimolar dose. In addition, 

PCTH significantly reduced signs of cardiotoxicity in vitro and in vivo, demonstrating this 

lipophilic Fe chelator has the potential to prevent ISO-mediated cardiotoxicity. 

 

Experimental Procedures 



                               Mladěnka et al., The novel 
iron chelator PCTH. Chem Res Toxicol, 2008 

116 

 

Iron Chelators - Desferrioxamine (DFO) was from Novartis (Basel, Switzerland). 2-

Pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH) was synthesized and 

characterized as previously described (29, 30). 

In Vitro Cytotoxicity Experiments - Cell Culture - The H9c2 cardiomyoblast line 

derived from embryonic rat heart tissue was from the American Type Culture Collection 

(ATCC, Manassas, VA). Cells were cultured in Dulbecco´s modified Eagle´s medium 

(DMEM, Lonza, Belgium) supplemented with 10% fetal bovine serum, 1% 

penicillin/streptomycin and 10 mM HEPES buffer (pH 7.4)  in 75 cm
2
 tissue culture flasks 

(Techno Plastic Products AG [TPP], Trasadingen, Switzerland). Incubations were performed 

at 37°C in a humidified atmosphere of 5% CO2 in air. Cells were sub-cultured when they 

reached approximately 90% confluence.  

For cytotoxicity experiments with neutral red (NR), cells were seeded in 96-well plates 

(TPP) at a density of 10,000 cells/well. For morphological assessment and nuclei staining 

(Hoechst 33342; Molecular Probes, Carlsbad, CA), cells were seeded at a density of 75,000 

cells/well in 12-well plates (TPP). Then 24 h prior to experiments, the medium was changed 

to serum- and pyruvate-free DMEM (Sigma, St. Louis, MO). This was done to stop cellular 

proliferation to mimic the situation in post-mitotic cardiomyocytes. If the cells were kept in 

serum-containing medium, the observed effects (of ISO as well as Fe chelators) could be a 

mixture of not only cytotoxic, but also anti-proliferative activity. Pyruvate was removed from 

the medium since it is an anti-oxidant and may interfere with ROS-related toxicity. However, 

irrespective of serum or pyruvate deprivation, ISO toxicity was always observed. The H9c2 

cells were subsequently incubated for 24 h at 37
o
C with or without ISO (250 µM; Sigma, St. 

Louis, MO) and Fe chelators (DFO or PCTH: 25-250 µM) in combination or alone. To 

dissolve PCTH, DMSO was used and an aliquot added to medium, leading to a final DMSO 
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concentration of ≤ 0.1% (v/v). At this concentration, DMSO had no effect on cellular 

viability. 

 

Neutral Red Uptake Viability Assay - Cellular viability was determined using the 

cytotoxicity assay based on the ability of viable cells to incorporate NR. This is a well 

established assay showing sensitivity comparable or better than the MTT procedure (35). The 

weak cationic dye, NR, readily penetrates cell membranes by diffusion, accumulating 

intracellularly in lysosomes (35). After incubation with ISO and/or chelators, half the volume 

of medium from each well was removed and the same volume of medium with NR was added 

(final NR concentration: 40 µg/mL). After 3 h at 37°C, the supernatant was discarded and the 

cells fixed with 1% CaCl2 in 0.5% formaldehyde for 15 min. The cells were then washed 

twice with PBS and solubilized with 1% acetic acid in 50% ethanol. The optical density of 

soluble NR was measured at 540 nm using a Tecan Infinite 200M plate reader (Tecan, 

Grodig, Austria). The viability of experimental groups was expressed as a percentage of the 

untreated control (100 %). 

 

Apoptosis / Necrosis Estimations - Cellular death was determined using nuclei staining 

with Hoechst 33342 and propidium iodide (PI; Molecular Probes) that are well established 

and sensitive procedures to determine apoptosis and necrosis (36). Hoechst 33342 is a blue-

fluorescent probe (ex= 360 nm; em= 460 nm) staining all nuclei. In apoptotic cells, 

chromatin condensation occurs and apoptotic cells can thus be identified as those with 

condensed and more intensely stained chromatin. The red (ex = 560 nm; em= 630 nm) DNA-

binding dye, PI, is unable to cross the plasma membrane of living cells, but readily enters 

necrotic (or late-stage apoptotic) cells and stains their nuclei red. Cells were loaded with 10 
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µg/ml of Hoechst 33342 and 1 µg/mL of PI for 20 min at room temperature. Sample fields 

with approximately 300 cells were randomly selected and evaluated using an inverted 

epifluorescence microscope (Nikon Eclipse TS100, 10x Nikon air objective) with a digital 

camera (1300Q, VDS Vosskühler, Germany). Images were assessed with the software NIS-

Elements AR 2.20 (Laboratory Imaging, Czech Republic). The cells were scored as “intact” 

(normal appearance of dark-blue Hoechst 33342-stained nucleus as well as absence of red PI-

staining), “apoptotic” (condensed and/or fragmented nuclei but with no red PI staining - 

presumably apoptotic) and/or “PI+” (red PI-staining; necrotic or late-stage apoptotic). The 

number of intact, apoptotic and PI-positive cells were expressed as a percentage of the total 

number of nuclei counted. 

 

Ascorbate Oxidation Assay to Assess Redox Activity of the ISO-Fe(III) Complex - To 

assess redox activity of the Fe complex of ISO, an established protocol was used to measure 

ascorbate oxidation (37, 38). In brief, ascorbic acid (0.1 mM) was prepared immediately prior 

to an experiment and incubated in the presence of Fe(III) (10 M; added as FeCl3), a 50-fold 

molar excess of citrate (500 M) and the chelator (1-90 M). Absorbance at 265 nm was 

measured after 10- and 40-min at room temperature and the decrease in intensity between 

these time points calculated. The results were expressed as Fe-binding equivalents (IBE). This 

was done due to the different coordination modes of the ligands to Fe, i.e., DFO is 

hexadentate and forms 1:1 ligand:Fe complexes, while ISO is bidentate resulting in 3:1 

complexes (Figure 1). A range of ligand:Fe IBE ratio’s were used, namely, 0.1, 1, or 3. An 

IBE of 0.1 represents an excess of Fe to chelator, i.e., 1 hexadentate chelator or 3 bidentate 

chelators in the presence of 10 Fe atoms. An IBE of 1 is equivalent to the complete filling of 

the coordination sphere, i.e., Fe:DFO 1:1 or Fe:ISO 1:3. An IBE of 3 represents an excess of 



                               Mladěnka et al., The novel 
iron chelator PCTH. Chem Res Toxicol, 2008 

119 

 

chelator to Fe and is equal to either 3 hexadentate or 9 bidentate ligands in the presence of 1 

Fe atom. 

 

H2DCF Assay to Examine ISO-Induced ROS Generation - The generation of ROS by 

ISO was assessed using the widely implemented probe, 2',7'-dichlorodihydrofluorescein-

diacetate (H2DCF-DA; Sigma) (39, 40). This agent was hydrolysed to 2',7'-

dichlorodihydrofluorescein (H2DCF) in vitro and used for experiments. This reagent becomes 

highly fluorescent when oxidized by ROS (particularly hydroxyl radical and other highly 

oxidising species) to DCF (2′,7′-dichlorofluorescein) (39, 40). Fluorescence intensity is 

directly proportional to the level of ROS. Experiments were performed in vitro using a 

modification of a technique previously described (41). Briefly, cysteine (Cys; 100 μM; 

positive control) and ISO (100 μM) were tested for their ability to reduce ferric Fe (FeCl3; 

10 μM) to its ferrous form in a 25 mM HEPES buffer (pH 7.4). Then H2O2 (100 μM) was 

added to initiate the production of ROS. Fluorescence was measured using a plate reader 

(Victor 2, Wallac Oy, Turku, Finland) at λex 485 nm and λem 530 nm at 5 min intervals. 

 

Preparation of 
59

Fe-Transferrin - Transferrin (Tf; Sigma) was labeled with 
59

Fe 

(Dupont NEN, MA, USA) to produce fully saturated diferric Tf (
59

Fe–Tf), as previously 

described (42, 43).  

 

Effect of ISO, PCTH and DFO on 
59

Fe Efflux from H9c2 Cells - Iron efflux 

experiments using established techniques (44, 45) were performed to examine the ability of 

ISO to mobilize 
59

Fe from H9c2 cells compared to the well characterized chelators, DFO and 

PCTH (30, 32). The cells were initially prelabeled with 
59

Fe-Tf (0.75 μM) for 30 h at 37
o
C 
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and washed four times with ice-cold PBS. The cells were then reincubated for 3 h at 37
o
C 

with DFO (25-250 μM) or PCTH (25-250 μM) in the presence or absence of ISO (250 μM). 

Subsequently, the overlying supernatant containing released 
59

Fe was then separated from the 

cells using a pasteur pipette and placed in γ-counting tubes. The cells were removed from the 

plate in 1 mL of PBS using a plastic spatula and added to separate γ-counting tubes. 

Radioactivity was measured in both the cell pellet and supernatant using a γ-scintillation 

counter (Wallac Wizard 3, Turku, Finland).  

 

In Vivo Experiment 

Animals - Young Wistar male rats (12 weeks-old, approximately 360 g) obtained from 

Biotest s.r.o. (Konárovice, Czech Republic) were used after two weeks of acclimatization. 

The animals were maintained in an air-conditioned room, allowed free access to a standard 

rodent pellet diet and water. Animals were fasted for 12 h prior to the experiment. The study 

protocol was approved by the Ethics Committee of Charles University in Prague, Faculty of 

Pharmacy in Hradec Králové. This conforms to “The Guide for the Care and Use of 

Laboratory Animals” published by the US National Institutes of Health (NIH Publication No. 

85-23, revised 1996). 

 

Study Design - Rats were randomly divided into 10 groups (Table 1) to achieve 7 

animals in each group with the exception of those receiving isoprenaline (ISO), where the 

group consisted of 16 rats. Animals received vehicle (i.e., either physiological saline [for 

DFO] or 20% propylene glycol [PG] in physiological saline for PCTH) or chelators dissolved 

in their corresponding vehicle via intravenous (i.v.) tail vein injection 5 min before 

administration of subcutaneous (s.c.) ISO in physiological saline. We have compared the 
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efficacy of DFO and PCTH via the i.v. route because unlike PCTH, DFO is not orally 

effective. 

 

Measurement of Cardiac Function  - Animals were anaesthetized with urethane (1.2 

g/kg intraperitoneally [i.p.]; Sigma) 24 h after drug administration. A polyethylene catheter 

(0.5/1.0 mm filled with heparinized saline - 50 IU/mL) was inserted into the right jugular vein 

for injection of saline. A thermocatheter (o.d. 0.8 mm) was introduced through the left carotid 

artery into the aortic arch. Another catheter (0.5/1.0 mm filled with heparinized saline 50 

IU/mL) was inserted into the left iliac artery. This was connected to the blood pressure 

transducer BPR-01 of the apparatus for measurement of hemodynamic variables using 

Cardiosys


 (Experimentria Ltd, Hungary) with the software, Cardiosys V 1.1. 

 

Cardiac function measurements were carried out following a 15 min equilibration 

period after the surgical procedure. Functional variables (stroke volume, blood pressure, heart 

rate) were averaged from four measurements performed at 5 min intervals. The mean blood 

pressure multiplied by heart rate (double product) is a parameter commonly used as an 

indirect indicator of cardiac oxygen consumption (46).  

Following the hemodynamic measurements, the blood sample was collected from the 

abdominal aorta into heparinized (170 IU) test tubes. The animal was then sacrificed by i.v. 

KCl overdose (1 mM), heart ventricles were excised, weighed and frozen at -20°C for further 

analysis of selected metal content. 

Stroke volume and wet ventricle weights were expressed as an index of body weight. 
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Histological Analyses - After autopsy, histological examination of cardiac ventricular 

tissue was performed. Tissue blocks of the transversely sectioned left and right ventricles (the 

region under the atria towards apex) were fixed by immersion for 3 days in a 4% 

formaldehyde solution that was freshly prepared from paraformaldehyde. Paraffin sections (7 

µm in thickness) were then stained with hematoxylin-eosin. 

 

Biochemical Analyses - Cardiac troponin T (cTnT) is a highly sensitive and specific 

biomarker of cardiotoxicity (47) and was measured in serum using an electro-

chemiluminescence immunoassay (Elecsys 2010, Roche Diagnostics). This assay employs 

two monoclonal antibodies specifically directed against cTnT with a detection limit of 25 

μg/L
 
(47).  

For analysis of metal content, frozen samples of myocardial tissue were dried, weighed 

and dissolved by microwave digestion using nitric acid and hydrogen peroxide (Milestone 

MLS 1200 MEGA, Italy). Iron and selenium were determined using graphite furnace atomic 

absorption spectrometry (Unicam, Solaar 959, United Kingdom). Zinc was assessed using 

flame atomic absorption spectrometry (Unicam, Solaar 959, United Kingdom), while calcium 

was measured using flame photometry (Eppendorf, Efox 5053, Germany).  

 

Statistics 

Data are expressed as mean  SEM. Two groups were compared by using Student’s t-

test. Differences between groups were considered to be significant at p<0.05. 

 

Results 

In Vitro Studies 
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DFO and PCTH rescue ISO-Induced Cytotoxicity in H9c2 Cells - While the ability of 

anti-oxidants to prevent ISO-induced cardiotoxicity has been assessed (20, 21), there have 

been no studies examining the role of Fe in this process by using specific Fe chelators. 

Previous studies examining the ability of DFO to prevent ischemia-reperfusion injury of the 

heart have demonstrated mixed results (22-25). This can be attributed, in part, to the poor 

membrane permeability of DFO that limits intracellular access (48). Considering this, we 

have compared the effect of DFO to the membrane-permeable ligand, PCTH (30, 32), in 

preventing ISO-mediated cardiotoxicity in vitro and in vivo. 

 

Initial experiments examined the ability of DFO and PCTH (25–250 μM) to rescue the 

rat H9c2 cardiomyoblast cell line from the cardiotoxic effects mediated by ISO (250 μM) in 

vitro (Figure 2). After a 24 h exposure to ISO, pronounced changes in cellular morphology 

were evident in H9c2 cells compared to the relevant control. These observations included 

disruption of the cell monolayer, peripheral membrane blebbing and rounding up of cells with 

conspicuous nuclear shrinkage. Eventually, detachment of some cells from the substratum 

was observed (Figure 2). Exposure of cells for 24 h to 250 µM of either DFO or PCTH alone 

did not lead to significant alterations of cellular viability and induced no apparent change in 

cellular morphology. This confirms previous studies demonstrating that both DFO and PCTH 

were not markedly cytotoxic and are well tolerated in vitro and in vivo (30, 31). Interestingly, 

incubation of cells with either DFO or PCTH almost totally prevented the marked 

morphological alterations observed with ISO alone (Figure 2). 
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Figure 2. Cellular morphology and nuclear staining with Hoechst 33342 (blue) and 

propidium iodide (PI; red) after a 24 h incubation of H9c2 cardiomyoblasts with isoprenaline 

(ISO; 250 µM) alone or in a combination with the Fe chelators, DFO (250 µM) or PCTH (250 

µM). Scale bars: 100 µm. Results are typical of 4 experiments. 
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Figure 3. Increasing concentrations of the Fe chelators, PCTH and DFO (25-250 µM), rescue 

ISO (250 µM)-mediated cytotoxicity in the H9c2 cardiomyoblast cell line. (A) Cell viability, 

determined by neutral red uptake assay (expressed as a percentage of the untreated control 

group). (B, C) Cell mortality, determined by nuclear epifluorescence co-staining with PI and 

Hoechst 33342: (B) PI+ cells and (C) apoptotic cells (expressed as a percentage of the total 
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number of counted nuclei). Results are mean + SEM (4 experiments). * versus ISO, p<0.05; 

** versus control, p<0.01; *** versus ISO, p<0.001. 

Consistent with the morphological assessment in Figure 2, vital imaging with NR 

revealed that DFO and PCTH alone did not significantly affect cellular viability or cell 

mortality (PI+ or apoptotic cells; Figure 3A-C). In contrast, a complete loss of cellular 

viability was observed after a 24 h incubation with ISO (250 μM; Figure 3A). Furthermore, in 

ISO-treated cells, PI-staining showed a marked and significant (p<0.001) increase 

(approximately 5-fold) of injured (necrotic and late stage-apoptotic) cells compared to the 

control (Figure 3B). Again, as demonstrated by morphological observations, co-incubation of 

cells with ISO (250 μM) and increasing concentrations of either DFO or PCTH (25–250 μM) 

resulted in a marked and significant (p<0.001) increase of cellular viability in comparison to 

ISO alone (Figure 3A). Similarly, combination of ISO with DFO or PCTH led to a 

pronounced decrease of PI+ cells in comparison to ISO alone (Figure 3B).  

It is notable that co-incubation of DFO and ISO resulted in a marked increase in 

viability (Figure 3A) or decrease in mortality (Figure 3B) as a function of DFO concentration 

from 25-250 μM. Co-incubation of PCTH and ISO significantly (p<0.001) increased viability 

(Figure 3A) and significantly (p<0.01) decreased cell mortality (Figure 3B) relative to ISO 

alone, although no concentration dependence was noted. The concentration-dependence 

observed with DFO is consistent with its poor membrane permeability and the fact that high 

concentrations are needed to deplete cellular Fe pools (49). In contrast, PCTH is highly 

permeable, with previous studies demonstrating that concentrations of 25 μM or higher are 

effective at inducing maximum cellular Fe release (30). Thus, the use of 25-250 μM of PCTH 

in this study. It is likely that even at 25 μM, PCTH has sufficiently bound cellular Fe pools to 
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prevent the deleterious effects of Fe-mediated Fenton chemistry and that higher PCTH 

concentrations are no more effective. 

 

Examining the effects of ISO on apoptosis, it is of interest that there were no significant 

differences in the number of apoptotic cells in any group, including a comparison of the 

control and ISO-treatment (Figure 3C). This may indicate that either the mode of cell death 

was predominantly by necrosis, or that apoptosis had occurred early in the 24 h incubation 

with ISO and that the cells had entered into secondary necrosis (50). It is now well established 

that the distinction between apoptosis and necrosis may not be clear and that a spectrum exists 

between these two extremes (51). Importantly, Fe chelation with DFO or PCTH in the 

presence of ISO has been shown to prevent cellular death (Figures 2, 3A, B), irrespective of 

whether it occurs via apoptosis or necrosis. 

 

Effect of ISO on Ascorbate Oxidation 

Considering the ability of both DFO and particularly PCTH at inhibiting ISO-induced 

cardiotoxicity in vitro, studies progressed to examine the redox activity of the ISO-Fe 

complex by assessing oxidation of the physiological substrate, ascorbate (Figure 4A). 

Assessment of this reaction has provided a useful indication of the redox activity of a variety 

of chelators in previous investigations (37, 38, 52). As positive controls, we implemented 

EDTA and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) that increase this 

parameter (37, 52). In contrast, DFO and PCTH were used as negative controls as they do not 

induce ascorbate oxidation (33). 

As shown previously (33), the internal controls, DFO and PCTH, prevented ascorbate 

oxidation. For instance, PCTH at all IBE’s had little effect on ascorbate oxidation (87-95% of 

the control), while DFO decreased it to 35% and 25% at an IBE of 1 and 3, respectively 
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(Figure 4A). The positive controls, EDTA and Dp44mT, significantly (p<0.001) increased 

ascorbate oxidation, as expected (37, 52), particularly at IBEs of 1 and 3 (Figure 4A). On the 

other hand, ISO had little effect on ascorbate oxidation at IBEs of 0.1 and 1 and decreased 

ascorbate oxidation at an IBE of 3 to 70 + 1% of the control. These studies indicate that the Fe 

complex of ISO does not readily act to induce ascorbate oxidation and can inhibit this 

reaction particularly at an IBE of 3 (Figure 4A). 
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Figure 4. The lack of redox activity of the ISO-Fe complex in the absence of cells: (A) 

ascorbate oxidation, (B) DCF-DA oxidation studies, and (C)  the ability of ISO to induce 
59

Fe 

efflux from prelabelled H9c2 cells. (A) The Fe complex of ISO is not redox active in the 

absence of cells as demonstrated by the ascorbate oxidation assay. Chelators at iron-binding 

equivalent (IBE) ratios of 0.1, 1, and 3 were incubated in the presence of Fe
III

 (10 μM) and 
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ascorbate (100 μM). The UV absorbance at 265 nm was recorded after 10- and 40-min and 

the difference between the time points was calculated. The effects of  ISO and PCTH were 

compared to the positive controls, DFO, EDTA and Dp44mT. (B) Production of reactive 

oxygen species was demonstrated by oxidation of the non-fluorescent probe H2DCF to 

fluorescent DCF (5 μM). To induce production of ROS, 100 μM H2O2 was added to 25 mM 

HEPES buffer (pH 7.4) containing 10 μM FeCl3 and 100 μM cysteine (-▲-) or 100 μM 

isoprenaline (-●-). (C) H9c2 cells were incubated for 30 h at 37
o
C with 

59
Fe-transferrin (

59
Fe-

Tf; [Tf] = 0.75 μM; [Fe] = 1.5 μM) to label cellular pools, washed and then reincubated for 3 

h at 37
o
C with DFO (25-250 μM) or PCTH (25-250 μM) in the presence or absence of ISO 

(250 μM). The 
59

Fe was then assessed in the cells and overlying medium using a γ-counter. 

Results are expressed as mean ± SEM of three experiments. * versus control, p<0.05; ** 

versus ISO, p<0.01; *** versus control, p<0.001. 

 

Effect of ISO on H2DCF Oxidation in the Absence of Cells 

To further assess the effect of ISO on the redox activity of Fe, studies were initiated to 

examine the oxidation of the redox-sensitive probe, H2DCF (41) (Figure 4B). As a positive 

control to induce H2DCF oxidation, cysteine (Cys) was incubated in the presence of hydrogen 

peroxide and Fe(III). This significantly (p<0.001) increased DCF fluorescence at all time 

points (Figure 4B). In contrast, ISO significantly (p<0.05) decreased fluorescence after a 10 

min incubation with Fe(II) or Fe(III) and H2O2. This suggested that the chelation of Fe by ISO 

acted to reduce ROS generation. 

 

Effect of ISO on Inducing 
59

Fe Efflux from Prelabeled H9c2 Cells 
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The finding that the interaction of ISO and Fe led to redox-inactive Fe complexes may 

indicate that at least part of the cardiotoxicity of this agent is due to its interaction with 

cellular Fe pools. To understand the interaction of ISO with cellular Fe, we examined the 

chelation efficacy of this catecholamine by assessing its ability to induce 
59

Fe release from 

prelabeled H9c2 cells (Figure 4C). In these studies, ISO was compared to DFO and PCTH 

that have well characterized Fe chelation properties in cells (30, 32). These studies were done 

using standard procedures in our laboratory and provide data on the ability of these agents to 

permeate cell membranes and chelate intracellular Fe pools.  

Prelabeled H9c2 cells incubated with control medium released very little 
59

Fe (7% of 

total cell 
59

Fe; Figure 4C), as found for other cell types (29, 30, 45). DFO (250 μM) alone 

significantly increased 
59

Fe release (16% of total cell 
59

Fe effluxed) relative to the control.  

PCTH (250 μM) was slightly more effective than DFO and significantly (p<0.001) increased 

59
Fe release (to 23% of total cell 

59
Fe) in comparison to control media, confirming its ability 

to penetrate cells (29, 30, 32). Despite the presence of the classical catechol Fe-binding 

moiety, ISO (250 μM) did not increase 
59

Fe mobilization from cells in comparison to the 

control. As found in Figure 3A-C where a dose response was identified with DFO (25-250 

μM), a concentration-dependent increase in 
59

Fe efflux was observed when this ligand was 

combined with ISO (250 μM; Figure 4C). Consistent with previous results (Figure 3A-C), no 

dose response was observed with increasing concentrations of PCTH (25-250 μM) combined 

with ISO (250 μM), demonstrating optimal activity at 25 μM. Comparing activity of the 

ligands in the presence and absence of ISO, there was no significant alterations in 
59

Fe release 

suggesting that ISO did not act to enhance mobilization of cellular 
59

Fe pools during the 3 h 

reincubation. Similar observations were found after a 6 h reincubation (data not shown). It 

should be noted that longer incubations with ISO led to decreased cellular viability (Figure 2 
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and 3A) that could potentially alter cellular 
59

Fe release. Hence, longer reincubation periods 

were not performed. 

 

In Vivo Studies 

Mortality 

Considering the protective effects of both DFO and PCTH in preventing ISO-mediated 

cardiotoxicity in vitro (Figures 2, 3A,B), subsequent studies examined the protective effects 

of Fe chelators against ISO-induced cardiotoxicity in vivo. Subcutaneous administration of 

100 mg/kg of ISO in rats caused 31% mortality (5 of 16 animals) within 24 h (Figure 5A). 

Pre-treatment of rats with an i.v. injection of a clinically-relevant dose of DFO (50 mg/kg) or 

the lower dose of PCTH (10 mg/kg) 5 min prior to s.c. ISO administration, led to similar 

mortality (33% for both) as that observed after ISO alone (Figure 5A). However, pre-

medication with a higher dose of PCTH (20 mg/kg
 
– equimolar to the 50 mg/kg DFO dose), 

totally abolished ISO-associated mortality and this was in contrast with the mortality observed 

with ISO or ISO + PG groups (Figure 5A). In the control or solvent groups (ie., PG alone), no 

mortality occurred (Figure 5A). 

 

Histopathology 

Histological examination of the heart tissue was performed to assess the levels of 

cardiotoxicity in each treatment group (Figure 5B-E). Normal myocardial tissue was found in 

control-treated animals (Figure 5B) and comparable findings were also seen after 

administration of PCTH, DFO or PG (Figure 5C-E). In the ISO treatment group (Figure 5F), 

severe diffuse toxic damage with an inflammatory reaction was found in the whole 

myocardium (with maximum damage seen in the sub-endocardial region, particularly in the 
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heart apex). Cardiomyocytes with an intensely eosinophilic cytoplasm prevailed and 

degenerated or necrotic cells were also numerous. Slight focal interstitial edema, mild 

inflammatory infiltrate and the presence of macrophages were characteristically found (Figure 

5F). 

 

Figure 5. In vivo studies in which rats were treated with ISO with or without Fe chelator 

administration demonstrating: (A) survival rates for each treatment (expressed as a percentage 

of the total number of animals in each experimental group); (B-H) histology of the 

myocardium after treatment of rats with (B) control saline, (C) control propylene glycol (PG), 

(D) DFO (50 mg/kg), (E) PCTH (20 mg/kg), (F) ISO (100 mg/kg), (G) ISO (100 mg/kg) and 
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DFO (50 mg/kg) and (H) ISO (100 mg/kg) and PCTH (20 mg/kg). Results are mean + SEM 

(n = 7-16 animals). 

 

Although DFO was able to maintain cellular viability in vitro when co-incubated with 

ISO (Figure 2), this ligand (50 mg/kg) was unable to rescue the myocardium from the tissue 

damage mediated by ISO in vivo (Figure 5G). Interestingly, despite the decreased mortality of 

rats observed after treatment of ISO-treated rats with PCTH (20 mg/kg; Figure 5A), there was 

no effective rescue of the myocardium from the distinct morphological changes induced by 

ISO (Figure 5H). Together with the fact that even very high chelator concentrations in vitro 

did not totally prevent ISO-induced cytotoxicity (Figure 3A-C), these results suggest 

incomplete rescue of the effects of ISO by chelators in vivo. This could indicate that other 

factors insensitive to the effects of Fe chelation play significant roles in ISO-induced 

cardiotoxicity. 

 

Markers of Myocardial Injury 

Figure 6A shows serum levels of cTnT which represents released cTnT from 

myocardial cells and is a sensitive indice of cardiotoxicity in vivo (47). Controls and chelators 

did not produce any substantial release of cTnT, again demonstrating that the ligands alone 

were well tolerated at these doses. In contrast, ISO (100 mg/kg) or ISO + PG caused a 

significant (p<0.001) elevation in cTnT (ISO or ISO + PG; Figure 6A). Combination of ISO 

and DFO (50 mg/kg)  did not decrease the cardiotoxicity observed with ISO (Figure 6A), 

while the 20 mg/kg dose of PCTH (but not the 10 mg/kg dose) significantly (p<0.05) 

decreased cTnT concentration (ISO + PCTH 20) in comparison to the relevant control (ISO + 

PG; Figure 6A).  
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Figure 6. Examination of indices of cardiotoxicity in vivo after treatment with vehicles alone, 

ISO alone, chelators alone or chelators in the presence of ISO. The conditions were: control 

saline vehicle,  PG vehicle,  DFO (50 mg/kg), PCTH (10 or 20 mg/kg), ISO (100 mg/kg).   

(A) Serum cardiac troponin T (cTnT) levels 24 h after drug application; (B) myocardial 

calcium content (expressed as the difference compared to the saline control); (C) wet ventricle 

weight index (expressed as the difference in wet ventricle weight indices in comparison to the 

saline control).  Results are mean + SEM (n = 7-16 animals). * versus ISO + PG, p<0.05; *** 

versus control, p<0.001. 

 

Myocardial calcium levels (Figure 6B) and the wet weight of the ventricle (Figure 6C) 

were also measured as markers of cardiotoxicity and found to be markedly and significantly 

(p<0.001) increased after ISO administration in comparison to the controls (Figure 6B, C).  

Neither DFO nor PCTH alone had any significant impact on calcium levels or ventricle 

weights in comparison to controls. Combination of ISO with either DFO or PCTH did not 

significantly affect myocardial calcium concentration relative to the controls, namely ISO 

alone or ISO + PG, respectively (Figure 6B). In ISO-treated rats, only the higher dose of 

PCTH (20 mg/kg) significantly decreased wet ventricle weight compared to the relative 

control (i.e., ISO + PG). 

 

Functional Parameters of the Heart 

The data summarizing heart functional parameters are shown in Table 1. Administration 

of ISO significantly (p<0.05) decreased stroke volume index in comparison to the saline 

control. PG alone significantly decreased stroke volume index and this is the likely reason for 

the lack of difference between the PG + ISO and control PG groups. Heart rate was 
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significantly elevated in both ISO groups in comparison to their corresponding controls. Both 

Fe chelators alone did not affect stroke volume index as well as heart rate. Further, none of 

the chelator treatments were able to significantly attenuate the observed changes in heart rate 

or stroke volume index induced by ISO (Table 1). This demonstrated that Fe chelation did not 

affect the adrenergic activity of ISO. There were only minor differences between groups in 

regards to blood pressure with the exception of PG, which alone elevated systolic pressure in 

comparison to the saline control. 

 

Metal Content of the Myocardium 

There were no significant differences in the concentrations of Fe, selenium and zinc in 

the myocardium, except for copper (increased in control PG group) in all experimental groups 

(data not shown). It is not surprising that the low dose of PCTH used in the current study did 

not result in Fe-depletion since higher doses of the chelator, PCTH (100 mg/kg/bd), and 

longer durations of treatment are necessary for optimal Fe chelation and excretion (31). 
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Parameter / Group control control PG DFO PCTH 10 PCTH 20 ISO PG + ISO DFO + ISO PCTH 10 + ISO PCTH 20 + ISO

Stroke volume index /ml.min-1.kg-1/ 0.81 ± 0.07 0.61 ± 0.05c
0.77  ± 0.09 1.16  ± 0.15c

0.69  ± 0.10 0.37  ± 0.05c
0.49  ± 0.03 0.38  ± 0.03

c
0.51  ± 0.05 0.43  ± 0.03c

Systolic pressure /mmHg/ 108 ± 5 128 ± 7
c

119 ± 7 122 ± 9 132 ± 4 126 ± 7 132 ± 6 116 ± 3 109 ± 5
i

133 ± 7

Diastolic pressure /mmHg/ 79 ± 4 89 ± 6 70 ± 2 79 ± 7 93 ± 6 95 ± 6 101 ± 3 87 ± 2 82 ± 5
i

104 ± 6

Heart rate /beats.min-1/ 410 ± 12 418 ± 18 406 ± 13 388 ± 22 412 ± 10 459 ± 7
c

466 ± 8
c

473  ± 13
c

465 ± 12
c

479  ± 15
c

Double product /mmHg.beats.min-1/ 36575±2172 42936±4052 36151±2417 36812±4720 43833±2506 48432±3218
c

51736±1625 45525±2052
c

42284±2648
i

54130±3429
 

Table 1. Functional parameters of the heart, heart rate and blood pressure. Results are mean + SEM (n = 7-16 animals) 

Abbreviations: PG, propylene glycol; PCTH 10 or 20, PCTH at 10 or 20 mg/kg 

Statistical significance at p<0.05: c - versus relevant solvent group (control or control PG);  i
  
- versus relevant ISO group 
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Discussion 

The synthetic catecholamine, ISO, has repeatedly been shown to evoke many similar 

pathogenic features as AMI (13, 14, 53, 54). Myocardial ischemia is associated with the 

progressive increase in endogenous catecholamine concentrations and has been observed in 

patients with AMI (55, 56). The harmful effects of catecholamines are hypothesized to be due to 

a number of mechanisms, including the induction of oxidative stress (20, 21). In the current 

study, we have examined the role of Fe in ISO-induced cardiotoxicity in vitro and in vivo. This 

was initiated due to evidence that catecholamines are well known to directly chelate Fe and 

could potentially form redox-active Fe complexes (57, 58). For the first time, we demonstrate 

that the lipophilic chelator PCTH rescues, in part, ISO-induced cardiotoxicity in vitro and in vivo 

illustrating a role for Fe in the pathology observed. 

Both DFO and PCTH were able to impart significant cyto-protection against ISO toxicity 

using H9c2 cardiomyoblasts in vitro. However, DFO only approached the efficacy of PCTH in 

terms of protection at the highest tested concentration of 250 µM (Figure 3A). This is probably 

because of the lower membrane permeability and Fe chelation efficacy of this ligand (48, 49). Of 

significance, this DFO concentration greatly exceeds the highest plasma levels generally 

achieved in clinical settings, namely 10 μM (59). In contrast, the lipophilic and cell-permeable 

Fe chelator, PCTH (29, 30, 32), reduced ISO-mediated cardiotoxicity in vitro at only 25 µM 

(Figure 3A, B). Our in vivo rat model of ISO-mediated cardiotoxicity demonstrated that PCTH 

(20 mg/kg) completely prevented ISO-mediated mortality, while an equimolar dose of DFO did 

not (Figure 5A). These mortality results were supported by the significant reduction of serum 
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cTnT levels and wet ventricle weight comparing PCTH (20 mg/kg) treatment in comparison to 

the relevant ISO + PG control group (Figure 6A, C). 

It is of interest that PCTH was able to significantly reduce ISO-induced cardiotoxicity in 

vitro and in vivo, but could not completely prevent these effects. It is notable that PCTH 

completely prevented ISO-mediated mortality in rats, but signs of cardiac damage were not 

(histology, calcium levels) or only partially (increased troponin release, wet ventricle weight) 

inhibited by PCTH pre-treatment. This finding was surprising, but it should be noted that the 

cardiotoxicity of catecholamines is not fully understood. In fact, it suggests that other 

mechanisms apart from those induced by the interaction of ISO with Fe also played important 

roles in ISO-induced cardiotoxicity.  

Previous studies have demonstrated that cardiotoxicity of ISO can be mediated through 

two major mechanisms. First, β1 and β2 adrenoceptors mediating positive inotropic and 

chronotropic effects, results in ischemia due to myocardial hyper-activity, coronary hypo-

perfusion and cytosolic Ca(II) overload (60, 61). Second, the generation of free radical species 

through mechanisms including the ability of catecholamines to undergo oxidative metabolism 

with the generation of ROS and the formation of toxic aminochromes (18, 62-65). Hence, 

chelation of Fe by DFO or PCTH would aid in the inhibition of some of the oxidative processes 

mediated by Fenton chemistry, but not the adrenoceptor-mediated mechanism. This explains the 

partial rescue of cardiotoxicity observed by these chelators. Indeed, as observed, the chelators 

had no effect on the positive inotropic and chronotropic effects of  ISO (Table 1), suggesting that 

some of the cardiotoxicity observed in vivo is probably mediated through this mechanism. By 
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analogy, in a recent study, not all changes induced by catecholamines could be reverted by 

blockade of adrenergic receptors, suggesting the cytotoxic role of the oxidative processes (63). 

 

With regards to the nature of Fe-mediated ISO-cardiotoxicity, it could be hypothesized that 

due to its structural similarity to epinephrine (Figure 1) and ability to bind Fe, ISO could form a 

cytotoxic redox-active Fe complex (19). Our studies examining both ascorbate oxidation and the 

DCF radical detection technique could not confirm increased redox activity of ISO-Fe(II) or 

Fe(III) complexes (Figure 4A, B). It is also known that ISO induces marked metabolic alterations 

in the heart which include inotropic and chronotropic effects, hypotension, metabolic acidosis, 

mitochondrial swelling and decreased indices of mitochondrial function including: oxygen 

consumption, respiratory quotient, ATP synthesis and membrane potential (13, 66). How these 

alterations precisely influence cardiomyocyte Fe trafficking are unknown.  

Since the mitochondrion plays a key role in Fe metabolism (67), the marked alterations in 

this organelle could be significant in terms of Fe playing a cytotoxic role after ISO 

administration. It is also known that ISO induces ischaemia and this event has been associated 

with the release of “free” redox-active Fe (68). Again, this Fe release could be important to 

consider in terms of the chelator-mediated rescue from ISO-mediated cardiotoxicity. However, it 

is notable that ISO alone did not induce Fe release from cells nor was there any alteration in Fe 

mobilization mediated by DFO or PCTH in the presence of this catecholamine over 3-6 h (Figure 

4C). This indicated that quantitative alterations in chelatable Fe pools did not occur in the 

presence of ISO, at least over the periods assessed.  
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Considering the facts above, the Fe-mediated toxicity of ISO could be due to the well 

described generation of redox-active ISO metabolites (e.g., isoprenochrome, isoproterenol-o-

quinone, leukoisoprenochrome etc) (17, 18). In the presence of Fe, this could lead to pronounced 

cytotoxicity via Fenton and Haber-Weiss chemistry, and hence, the partial rescue mediated by Fe 

chelators. In addition, transition metals have been shown to potentiate the conversion of ISO to 

isoprenochrome (18), leading to another potential mechanism by which chelators could inhibit 

ISO-mediated cardiotoxicity.  

The effectiveness of particular Fe chelators to inhibit Fenton chemistry is linked with their 

chemical properties. The most important of these is the donor atoms involved in the coordination 

of Fe and the ability of the Fe complex to inhibit Fe-catalyzed ROS generation (69). Numerous 

Fe chelators (e.g., EDTA) form redox-active Fe complexes that promote ROS formation, making 

them unsuitable as redox-protective agents (33, 38). In contrast, chelators with very low redox 

potentials, like DFO (-475mV), form very stable complexes with Fe(III) and are poor Fenton 

chemistry catalysts (33, 38). Analogously, the Fe complex of the lipophilic chelator, PCTH, is 

redox inactive, making it appropriate for Fe chelation therapy (4, 29). 

Neither ISO nor the Fe chelators had any statistically significant effect on total Fe 

concentration in the myocardium. Previously, it has been well documented that administration of 

both DFO and PCTH led to elevated Fe excretion in vivo (31, 70). It is therefore likely that, due 

to the low dose and very limited length of treatment, the chelators in this study only resulted in 

binding Fe that was participating in the Fenton reaction, rather than inducing systemic Fe-

depletion.  
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In summary, this investigation has shown that both DFO and PCTH were able to afford 

significant cytoprotection of cardiac cells against ISO toxicity in vitro. In contrast, in vivo, DFO 

at the highest clinically-relevant dose (equimolar to 20 mg/kg PCTH) showed no positive 

influence. On the other hand, the novel lipophilic Fe chelator, PCTH (20 mg/kg), was able to 

completely prevent ISO-mediated mortality in vivo and significantly attenuate some markers of 

cardiac injury caused by a necrogenic dose of ISO. This study demonstrates that further 

investigation of lipophilic Fe chelators such as PCTH is warranted for protection against 

catecholamine-induced cardiotoxicity. 
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Abstract: 

 

High levels of catecholamines are cardiotoxic and may trigger acute myocardial infarction 

(AMI). Similarly, the synthetic catecholamine isoprenaline (ISO) evokes a pathological state 

similar to AMI. During AMI there is a marked increase of free iron and copper which are crucial 

catalysts of reactive oxygen species formation. Rutin, a natural flavonoid glycoside possessing 

free radical scavenging and iron/copper chelating activity, may therefore be potentially useful in 

reduction of catecholamine cardiotoxicity as was previously demonstrated after its long-term 

peroral administration. 

Male Wistar:Han rats received rutin (46 or 11.5 mg.kg
-1

 i.v.) alone or with necrogenic dose 

of ISO (100 mg.kg
-1

 s.c.). Haemodynamic parameters were measured 24 hours after drug 

application together with analysis of blood, myocardial content of elements and histological 

examination. Results were confirmed by cytotoxicity studies using cardiomyoblast cell line 

H9c2. 

Rutin in a dose of 46 mg.kg
-1

 aggravated ISO-cardiotoxicity while the dose of 11 mg.kg
-1

 

had no effect. These unexpected results were in agreement with in vitro experiments, where co-

incubation with larger concentrations of rutin significantly augmented ISO cytotoxicity.  

Our results, in contrast to previous studies in the literature, suggest that the reported 

positive effects of peroral administration of rutin were unlikely to have been mediated by rutin 

per se but probably by its metabolite(s) or by some other, at this moment, unknown adaptive 

mechanism(s), which merit further investigation. 
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Introduction: 

Flavonoids, naturally occurring secondary plant metabolites, have been during the last 

decades under extensive investigation because of their claimed antioxidant, anti-inflammatory, 

antiallergic, antidiabetic, cardio-, hepato- and gastroprotective, antiviral and antineoplastic 

properties (Yao et al., 2004). These proposed positive pharmacological activities have been 

mostly attributed to their free radical scavenging and metal chelating effects (van Acker et al., 

1998; Mira et al., 2002; Firuzi et al., 2005; Kaiserova et al., 2007). 

Increased endogenous catecholamine levels are associated with cardiac injury and may 

trigger acute myocardial infarction (AMI) (von Kanel et al., 2002; Kloner, 2006). Indeed, 

synthetic catecholamine isoprenaline (isoprotenerol, ISO) is often used to evoke a pathological 

state in many aspects similar to AMI (Rona et al., 1983; Diaz-Munoz et al., 2006). The 

mechanism of catecholamine cardiotoxicity is not fully understood, it involves excessive 

stimulation of adrenergic receptors and oxidative stress enhanced by redox cycling of redundant 

catecholamines (Rona et al., 1983; Behonick et al., 2001; Remiao et al., 2002). Even relatively 

small doses of ISO cause myocardial ischaemia (Winsor et al., 1975) which is associated with 

marked increase in free iron and copper, which are subsequently released to the circulation and 

promote oxidative stress (Berenshtein et al., 2002).  

Rutin (quercetin-3-rutinoside), a natural flavonoid glycoside, being already clinically used 

for strengthening of capillaries (Wadworth and Faulds, 1992), possesses as other flavonoids 

iron/copper chelating and antioxidant activity and, based on the mentioned known pathological 

mechanism, appears to be a useful drug for reduction of catecholamine cardiotoxicity. Indeed, 

previous studies have suggested very promising effects of rutin on ISO-induced cardiac injury in 
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rats. Rutin, administered orally for 42 days, significantly improved both changes in the levels of 

lipids, lipoproteins and activity of Ca
2+

-dependent Na
+
/K

+
 ATPase (Stanely Mainzen Prince and 

Karthick, 2007) as well as it reduced lipid peroxidation and increased myocardial antioxidative 

defence (Karthick and Stanely Mainzen Prince, 2006). The observed effects have been attributed 

to the antioxidant potential of rutin. However, no data have been shown on overall animal 

survival, cardiac function parameters, morphology changes in myocardium and the amount of 

rutin absorbed. Clinical or experimental studies have clearly documented that rutin is cleaved in 

the caecum and is not absorbed as the parent compound (Manach et al., 1995; Choudhury et al., 

1999; Erlund et al., 2000). It is therefore unknown whether the reported beneficial effect can be 

attributed directly to rutin or rather to its metabolites and/or to some other adaptation changes.  

Hence, this study aimed to examine the potential direct protective effect of rutin, which 

may be based on its reactive oxygen species (ROS) scavenging properties and iron/copper 

chelating ability, to reduce myocardial impairment both in an in vivo rat catecholamine model of 

AMI and compare these results with in vitro cardiotoxicity experiments using rat cardiomyoblast 

cell line H9c2. 

 

Methods: 

Animals 

Young Wistar:Han male rats obtained from Biotest s.r.o. (Konárovice, Czech Republic), 

weighing approximately 360 g, were used after two weeks of acclimatization. The animals were 

maintained in an air-conditioned room and were allowed free access to a standard pellet diet for 

rodents and tap water. Animals were fasting for 12 hours before the experiment. The study was 
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performed under the supervision of the Ethical Committee of the Charles University in Prague, 

Faculty of Pharmacy in Hradec Králové and it conforms to “The Guide for the Care and Use of 

Laboratory Animals” published by the US National Institutes of Health (NIH Publication No. 85-

23, revised 1996). 

 

IN VIVO study design 

Animals were randomly divided into 6 groups: 

 control group (C, 7 animals) received saline 1 ml.kg
-1

 s.c. 

 isoprenaline group (isoprotenerol, ISO, 10 animals) – received 100 mg.kg
-1

 ISO 

(Sigma-Aldrich, USA) in the aqueous solution s.c. 

 rutin groups – rats received either 11.5 mg kg
  -1

 (Ru11, 7 animals) or 46 mg.kg
-1

 of 

rutin (Sigma-Aldrich, USA) i.v. (Ru46, 7 animals). 

 combination groups – rats received either 11.5 mg kg
-1

 (Ru11+ISO, 10 animals) or 46 

mg.kg
-1

 of rutin i.v.  (Ru46+ISO, 17 animals) 5 minutes before application of ISO in the 

above mentioned dose.  

Saline or drug(s) were administered 24 hours before the surgical procedures and 

measurements. 

 

Cardiac function measurement 

Animals were anaesthetized with urethane (1.2 g.kg
-1

 i.p.; Sigma-Aldrich, USA). A polyethylene 

catheter (0.5/1.0 mm filled with heparinised saline 50 IU.ml
-1

) was inserted into the right jugular 

vein for injection of cold saline (approximate temperature 10C). A thermocatheter (o.d. 0.8 mm) 
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was introduced through the left carotid artery into the aortic arc. Another PE catheter (0.5/1.0 

mm filled with heparinised saline 50 IU.ml
-1

) was inserted into the left iliac artery, which was 

connected with the blood pressure transducer BPR-01 of the apparatus for measurement of 

haemodynamic variables Cardiosys


 (Experimentria Ltd, Hungary) with software Cardiosys V 

1.1. For the measurement of cardiac output, a thermodilution transpulmonary method was used 

according to the Stewart-Hamilton (Spiller and Webb-Peploe, 1985). 

The measurements were carried out following 15 minute-lasting equilibration period after 

surgical procedure. Functional variables (cardiac output, stroke volume, blood pressure, heart 

rate) were averaged from four recordings performed in 5 minute intervals. Results are expressed 

as indices (measured variable divided by the body weight) except for the blood pressure, heart 

rate and “double product” (systolic blood pressure multiplied by heart rate). The latter parameter 

is commonly used as an indirect index of cardiac oxygen consumption. Total peripheral 

resistance was calculated as mean arterial blood pressure divided by cardiac output. 

Following haemodynamic measurements the blood sample (approximately 5 ml) was 

collected from the abdominal aorta into the heparinised test tube (170 IU). Then the animal was 

sacrificed by i.v. KCl overdose (1 mM), heart ventricles were excised, weighed and frozen            

at -20°C for further analysis of selected elements content. 

 

Histological analysis 

After the autopsy, the apical parts of the hearts were fixed in Bouin´s solution and 

processed for light microscopy. Tissues were dehydrated in increasing concentrations of ethanol, 

paraffin embedded and sectioned to 5-8 µm. The tissue sections were stained with haematoxylin 
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and eosin, Masson´s trichrome and Weigert-van Gieson. Photo documentation and image 

digitizing were performed with the Olympus AX 70 light microscope, with a digital firewire 

camera Pixelink PL-A642 (Vitana Corp. Ottawa, Canada) with image analysis software NIS 

(Laboratory Imaging, Czech Republic). 

Biochemical analysis of blood 

Cardiac troponin T (cTnT) and vitamin E were measured in serum, malondialdehyde 

(MDA) in plasma and total glutathione in the whole blood. cTnT - highly sensitive and specific 

biomarker of myocardial injury (Adamcova et al., 2007) - was determined by 

electrochemoluminescence immunoassay (Elecsys 2010, Roche Diagnostics), which employs 

two monoclonal antibodies specifically directed against cTnT. Malondialdehyde (MDA) was 

measured as a red complex with thiobarbituric acid (TBARS) at 485, 532 and 560 nm using 

Beckman DU 640 spectrophotometer (Beckman, Palo Alto, USA). Capillary electrophoresis was 

used for separation of glutathione, which was measured by UV detection (System P/ACE 5100, 

Beckman) at 200 nm. After deproteinization, analysis of vitamin E with fluorimetric detection 

was performed in an HPLC system HP1050 (Hewlett Packard, Germany). 

 

Elements in the myocardium 

Frozen samples of myocardial tissue were dried, weighed and digested by microwave 

digestion using nitric acid and hydrogen peroxide (Milestone MLS 1200 MEGA, Italy). Iron, 

copper and selenium were determined using graphite furnace atomic absorption spectrometry 

(Unicam, Solaar 959, U.K.), zinc was determined using flame atomic absorption spectrometry 

(Unicam, Solaar 959, U.K.) and calcium was measured photometrically using flame photometry 
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(Eppendorf, Efox 5053, Germany). Results are expressed as mol.g
-1

 (iron, copper, zinc, 

calcium) or nmol.g
-1

 (selenium) of dry tissue. 

 

 

 

In vitro cardiotoxicity assays 

The H9c2 cell line derived from the embryonic rat heart tissue was from the American 

Type Culture Collection (ATCC, U.S.A.). Cells were cultured in Dulbecco´s modified Eagle´s 

medium (DMEM, Lonza, Belgium) supplemented with 10% Foetal Bovine Serum, 1% 

Penicillin/Streptomycin and 10 mM HEPES buffer (Sigma) in 75 cm
2
 tissue culture flasks (TPP, 

Switzerland) at 37°C in a humidified atmosphere of 5% CO2. Cells were subcultured every 3-4 

days once they reached 85-95% confluence. For cytotoxicity experiments with neutral red (NR), 

cells were seeded in 96-well plates (TPP) at a density of 10,000 cells per well. For morphology 

assessments, H9c2 cells were seeded at a density of 75,000 cells per well in 12-well plates 

(TPP). 24 hours prior experiments, medium was changed for serum- and pyruvate-free DMEM 

(Sigma, Germany). To dissolve rutin, 0.2% DMSO was present in the culture medium of all 

groups. At this concentration DMSO had no effect on cellular viability. 

H9c2 cells were incubated for 24 hours with or without ISO (200 or 250 µM) and rutin (1 - 

1000 µM) or iron chelator deferoxamine (Novartis Pharma, Switzerland, DFO - 250 µM). 

Changes in cellular morphology were documented using inverted microscope Nikon Eclipse 

TS100, 10x Nikon air objective, digital cooled camera (1300Q, VDS Vosskühler, Germany) and 

software NIS-Elements AR 2.20 (Laboratory Imaging, Czech Republic). Cellular viability was 
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determined using the cytotoxicity assay based on the ability of viable cells to incorporate neutral 

red (NR). NR is a weak cationic dye that readily penetrates cell membranes by non-ionic 

diffusion and accumulating intracellularly in lysosomes (Fotakis and Timbrell, 2006). For vital 

staining, half volume of medium from each well was removed and the same volume of medium 

with NR was added (final concentration 40 µg/ml). After incubation for 3 h at 37°C, the 

supernatant was discarded, cells were fixated with 1% CaCl2 in 0.5% formaldehyde for 15 min, 

washed twice with PBS and solubilized with 1% acetic acid in 50% ethanol. The optical density 

of soluble neutral red was measured at 540 nm using Tecan Infinite 200M plate reader (Tecan, 

Austria). The viability of all experimental groups was expressed as percentage of untreated 

controls (100 %). 

 

Data analysis 

Data are expressed as means  SEM. Groups were compared by one-way ANOVA 

followed by Tukey's Multiple Comparison Test by using GraphPad Prism version 4.00 for 

Windows, GraphPad Software (San Diego, California, U.S.A). Differences between groups were 

considered as significant at P0.05, unless indicated otherwise. 

 

 Results 

IN VIVO experiments: 

Administration of 100 mg.kg
-1

 of ISO s.c. caused 3 premature deaths (out of 10 

experimental animals in this group) within 24 hours. Again, 3 animals from 10 died when 

animals were premedicated with 11.5 mg.kg
-1

 of rutin before the administration of ISO,  



                            Mladěnka et al., Direct 
administration of rutin does not protect. Toxicology, 2008 

158 

 

however, the dose of 46 mg.kg
-1

 of rutin further increased the number of non-surviving animals 

to 53% (9 out of 17, in addition, 2 more animals died during anaesthesia). None of animals from 

control group or animals treated only with rutin (in both doses) died. 

ISO in the above mentioned dose brought about a significant increase in myocardial 

calcium content and a marked cTnT release into circulation – see Fig. 1. Similarly to mortality, 

rutin premedication failed to improve both parameters. While the lower dose had no effect, the 

higher dose of rutin tended to rather aggravate the calcium overload and cTnT release. Rats who 

received saline or rutin alone, had only negligible cTnT release and normal calcium myocardial 

concentration, with exception of the higher dose of rutin, which itself insignificantly elevated 

myocardial calcium content. 

 

 

Figure 1. Myocardial calcium content (A) and serum cardiac troponin T concentrations (B) 24 

hours after applications of rutin (Ru - 11.5 or 46 mg.kg
-1 

i.v.), isoprenaline (ISO - 100 mg.kg
-1 

s.c.) or their combinations to experimental rats. Statistical significance at p < 0.05: c vs. control 

group. 
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Rutin dose-dependently increased cardiac index (Fig. 2A) and showed a tendency to 

decrease peripheral resistance (Fig. 2B). Cardiac index drop caused by ISO was not reverted by 

either dose of rutin, although rutin in both doses significantly decreased the ISO-induced 

elevation in peripheral resistance. There were no significant differences among the groups in the 

values of blood pressure. Differences in heart rate reached statistical significance only in 

combination of the higher rutin dose with ISO. Other functional parameters as well as wet 

ventricles weight index are shown in Table 1. 

 

 

Table 1. Selected functional cardiac parameters and wet ventricle weight index 24 hours after 

applications of rutin (Ru - 11.5 or 46 mg.kg
-1

), isoprenaline (ISO - 100 mg.kg
-1

) or their 

combinations to experimental rats. Statistical significance at p < 0.05: c vs. control group. Wet 

ventricles weight index is expressed in ‰ (heart ventricles weight in mg divided by animal 

weight in grams). 
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Figure 2. Cardiac index (A) and peripheral resistance index (B) 24 hours after applications of 

rutin (Ru - 11.5 or 46 mg.kg
-1

), isoprenaline (ISO - 100 mg.kg
-1

) or their combinations to 

experimental rats.  Statistical significance at p < 0.05: c vs. control group, i vs. ISO group. 

 

 

Administration of ISO had only small and insignificant influence on myocardial copper 

and zinc concentrations (Fig. 3). Interestingly, higher dose of rutin increased significantly copper 

levels in the myocardium while both doses of rutin decreased myocardial zinc content 

independently on ISO administration, although in combination with ISO the decrease was more 

pronounced. Difference among groups concerning myocardial iron and selenium content were 

not statistically significant (data not shown). Regarding parameters of oxidative stress in the 

blood, rutin dose-dependently increased levels of total glutathione (Fig. 4A). ISO treatment had 

only small effect on this parameter, although it nearly completely abolished the increase caused 

by rutin. ISO and combination groups had slightly higher levels of TBARS without statistical 
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significance (Fig. 4B). Serum vitamin E levels were comparable and without significant 

differences in all groups (data not shown). 

 

 

Figure 3. Myocardial copper content (A) and myocardial zinc content (B) 24 hours after 

applications of rutin (Ru - 11.5 or 46 mg.kg
-1

), isoprenaline (ISO - 100 mg.kg
-1

) or their 

combinations to experimental rats. Statistical significance: c vs. control group p < 0.01, c* vs. 

control at p < 0.001, i vs. ISO group at p < 0.01. 
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Figure 4.  Blood levels of total glutathione (A) and plasma conjugated dienes - TBARS (B) 24 

hours after applications of rutin (Ru - 11.5 or 46 mg.kg
-1

), isoprenaline (ISO - 100 mg.kg
-1

) or 

their combinations to experimental rats. Statistical significance: c vs. control group at p < 0.01.  

 

The normal structure of myocardial tissue was found in both intact control animals and 

rutin treated rats by both doses (Fig. 5A). On the other hand, ISO treatment caused severe diffuse 

or focal damage of cardiomyocytes. Moreover, marked inflammatory infiltration located 

especially under endocardial epithelium (Fig. 5B) or in the thin fibrous tissue under epicardial 

epithelium was found, as well. In contrast, only rare infiltrate was presented in the area of central 

myocardium. Histopathological findings in the ISO group (Fig. 5B) and in combination groups 

ISO + rutin in both doses (Fig. 5C and 5D) were similar. 
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Figure 5.  Effects of 24-hour incubation with 250 µM ISO and its combination with 30 µM rutin 

(Ru) or 250 µM deferoxamine (DFO) on cellular morphology of H9c2 cardiomyoblast cells. 

Scale bars: 100 µm. 

 

IN VITRO experiments: 

In order to confirm the previous negative outcomes of in vivo experiments and to clarify 

the reason(s) for the failure of rutin to positively influence the ISO cardiotoxicity, the rutin 

effects on rat cardiomyoblast-derived cell line H9c2 were further studied with or without ISO. 

As seen in Fig. 6A, 24-hour incubation with rutin was well tolerated by H9c2 cells. Significant 

decrease in cellular viability (to 74% of control values) was observed only with the highest, 1000 

µM rutin concentration. 
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Exposure of cells to both 200 and 250 µM ISO resulted in pronounced changes of cellular 

morphology, including disruption of cellular monolayer, peripheral membrane blebbing and 

eventual rounding up of cells with conspicuous nuclear shrinkage. Eventually, detachment of 

some cells from the test plate bottom was observed (Fig. 7). The quality of changes was 

comparable with both used ISO concentrations, although they occurred earlier and were quicker 

with the higher (250 µM) dose. After 24 hours, vital imaging with neutral red revealed 

significant decrease of cellular viability which was partial (reduction to 46 % of control values) 

with 200 µM ISO and nearly complete at 250 µM ISO concentration (6 % of control). 

Rutin, tested over broad concentration range of 1-1000 µM, failed to afford any protection 

against the ISO toxicity. Neither improvement of cellular morphology damage induced by ISO, 

nor increase in cellular viability were observed (Figs. 6, 7). While the lower (1-10 µM) rutin 

concentrations had negligible effects on ISO-induced toxicity, at higher concentrations (≥ 30 

µM) rutin further decreased the viability of H9c2 cells, which was particularly obvious and 

statistically significant with the 200 µM ISO concentration (Fig. 6B). Of note, this significant 

aggravation of ISO toxicity was seen with 30-300 µM rutin concentrations, i.e. those at which 

rutin did not display any own significant toxicity (Fig. 6A). This suggests that potentiation, 

rather than simple addition of toxicities by ISO and rutin occurred. 
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Figure 6.  Cellular viability (percentage of untreated controls) of H9c2 cardiomyoblast cell line 

exposed to 1-1000 µM rutin (Ru) alone (panel A) or in combinations with 200 µM or 250 µM 

isoprenaline (ISO; panels B and C). Deferoxamine (DFO) was used as a positive cytoprotective 
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control. Statistical significance at p0.05: c - against control cells, i - against  ISO-treated group 

of cells. Means ± S.E.M. of at least 3 independent experiments. 

 

In contrast, co-incubation of cells with 250 µM of ISO and iron chelator deferoxamine 

(DFO) resulted in a significant increase of cellular viability (Fig. 6C) as well as preservation of 

cellular morphology (Fig. 7). 

 

 

Figure 7.  Effects of 24-hour incubation with 250 µM ISO and its combination with 30 µM rutin 

(Ru) or 250 µM deferoxamine (DFO) on cellular morphology of H9c2 cardiomyoblast cells. 

Scale bars: 100 µm. 
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Discussion 

In the past, flavonoids have been uncritically promoted for their proposed positive 

pharmacological effects based on their antioxidant and/or metal-chelating properties. However, 

many rather negative results have emerged during the last years and our present data rather 

support these facts. The reasons for unequivocal failure of rutin to reduce the catecholamine 

cardiotoxicity appear to be complex and this requires discussing both the pathogenesis of 

catecholamine cardiotoxicity and pharmaco-toxicological properties of rutin. 

ISO cardiotoxicity shares many similarities with AMI (Chagoya de Sanchez et al., 1997; 

Diaz-Munoz et al., 2006). ISO is a non-selective β-adrenoceptor agonist and its administration in 

large doses leads in the first phase to rapid hypotension and marked heart stimulation - 

acceleration in heart rate and increased contractility. This results in an insufficient myocardial 

oxygen supply, which is followed by myocardial ischaemia. Ischaemia is associated with an 

increased blood coagulation and ROS production based on a release of free iron and copper; this 

process is supposed to be similar to ischaemia during AMI (Pinelli et al., 2004; Diaz-Munoz et 

al., 2006). The final step is cardiomyocyte death by apoptosis or necrosis. 

Based on these theoretical assumptions, flavonoids should possess good potential to be 

protective drugs due to their iron/copper binding and ROS scavenging properties. In fact, rutin 

was shown to scavenge ROS, namely superoxide, hypochlorite and peroxynitrate (Haenen et al., 

1997; Russo et al., 2000; Moridani et al., 2003; Firuzi et al., 2004), to bind iron and copper (van 

Acker et al., 1998), and to diminish oxidative injuries catalyzed by free iron (Afanas'ev et al., 

1989; Russo et al., 2000; Mira et al., 2002; Kaiserova et al., 2007). Additionally, rutin was 

shown to inhibit xanthine oxidase, which is a principal ROS-generating enzyme and which 
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action is substantially augmented in ischaemic tissue as well as after ISO application (Russo et 

al., 2000; Berry and Hare, 2004; Diaz-Munoz et al., 2006). However, despite these reported 

beneficial properties, in our study rutin rather aggravated catecholamine myocardial injury both 

in vitro and in vivo. 

There are at least three main underlying factors:  

1. Hydrophilic character of rutin may represent a basis for distinction between its effects 

and those of its lipophilic aglycone - quercetin, which has been documented to penetrate the 

lipophilic barriers (Ferrali et al., 1997). Rutin seems to be more active in inhibition of oxidative 

injury in hydrophilic ambient, while quercetin in lipophilic one (Afanas'ev et al., 1989; Chen et 

al., 1990). Moreover, lipophilicity correlates with protective antioxidant effects of polyphenols 

(Sestili et al., 2002). Contrarily, highly hydrophilic iron chelator deferoxamine with documented 

low penetration inside the cells (Hershko et al., 1978) was able to markedly reduce ISO toxicity 

in our in vitro experiments. Hence, differences in lipophilic/hydrophilic nature may have 

explained the failure of rutin to protect myocardium in vivo, but cannot explain the failure of 

rutin in the in vitro model and aggravation of catecholamine injury in both models.  

2. Direct effects on cardiovascular system: Flavonoids have been shown to have positive 

inotropic and blood pressure-lowering effects (Chan et al., 2000; van Acker et al., 2001). In this 

study, rutin dose-dependently increased cardiac index and because the diastolic blood pressure 

was not substantially affected, this increase was probably evoked by increased cardiac inotropy. 

Direct effect on the blood vessels was not documented in this study in healthy animals, although 

it may play a role in animals with cardiovascular impairment as can be deduced from the 

inhibition of ISO-based peripheral resistance index elevation by both doses of rutin (Fig. 2B). In 
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the case of catecholamine injury, positive inotropic effect of rutin may have substantial impact, 

because it can lead to further augmentation in myocardial oxygen demand and more pronounced 

cardiac impairment.  

3. There seems to be a narrow dose range between antioxidant and pro-oxidant properties 

of flavonoids. More factors (e.g. concentration, pH, presence of oxidative species) can have 

influence (Ratty and Das, 1988; Moran et al., 1997; Galati and O'Brien, 2004; Boots et al., 

2007). There are several reports showing that some flavonoids caused drop in the cellular GSH 

levels and even leakage of lactate dehydrogenase (van Acker et al., 2001). Such cellular 

derangement seems to be associated with severe damage of cell membrane, but these effects are 

unlikely in our study, where in vivo no detectable release of cTnT was observed after application 

of both doses of rutin. Moreover, rutin, in contrast to some other flavonoids, is a relatively safe 

drug as was documented by others and in vitro part of this study (Soares et al., 2006). The rutin 

dose of 46 mg.kg
-1

 was selected as equimolar to 50 mg.kg
-1

 of iron chelator DFO, i.e. safe DFO 

dose in clinical practice, which was shown to protect myocardium in similar pathological models 

(Ambrosio et al., 1987). This higher dose of rutin did not cause any apparent changes in 

myocardial histology, however, it evoked some derangement in myocardial elements (especially 

an insignificant increase in myocardial calcium content - Fig 1A - and significant increase in 

copper concentration – Fig 3A). Moreover, both doses of rutin decresed myocardial zinc content 

in a dose-dependent manner – Fig.3B. It may be hypothesised that these factors may further 

influence catecholamine cardiotoxicity, because, among others, copper and zinc are components 

of antioxidant enzymes and elevated calcium level suggests non-physiological myocardial 

changes. There is some consistency that flavonoids with catechol B-ring may produce ROS and 
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oxidize glutathione or form adduct with it (Galati and O'Brien, 2004). Whether this was the case, 

cannot be sufficiently explained at the moment, especially with respect to the observed dose-

dependent increase in total glutathione (Fig. 4A).  

The outcomes of the present study are in a sharp discrepancy with those of two studies of 

Karthick and Stanely Mainzen Prince (Karthick and Stanely Mainzen Prince, 2006; Stanely 

Mainzen Prince and Karthick, 2007). In their experiments, animals were pretreated for 42 days 

with rutin using intragastric tube and then ISO in a dose of 150 mg.kg
-1

 s.c. was administered 

once daily for 2 days. These studies showed protective effect of p.o. rutin and authors concluded 

that rutin antioxidant activity was probably responsible for such protection. However, rutin is not 

absorbed following oral administration in humans or rats (Manach et al., 1995; Choudhury et al., 

1999; Erlund et al., 2000). Rather, it is cleaved by intestinal bacteria to numerous metabolites 

(e.g. quercetin, isorhamnetin, tamarixetin or various phenolic acids). Therefore, protective 

influence of p.o. rutin in those studies most likely has not been achieved with rutin itself, but 

rather by its active metabolites. On the contrary, rutin administered i.v. (as in our present study) 

is unlikely to undergo metabolization into quercetin (Choudhury et al., 1999) and the same 

applies also for our in vitro experiments. 

Even more important difference between our present and the previous studies is the fact, 

that while we have evaluated the direct effects of rutin on ISO-induced cardiotoxicity, Karthick 

and Stanely Mainzen Prince have injected ISO 24 and 48 hours after the last rutin administration, 

i.e. at the time when even its main metabolite quercetin should be in rats completely excreted 

into the bile and urine as the glucuronide and sulfate conjugates (Ueno et al., 1983). Taking 

together with our present data, it is very likely that the original authors' assumption - that the 
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protective effects of rutin against ISO-cardiotoxicity in rats were due to the antioxidant potential 

of rutin – appears to be incorrect. Interestingly, recent evidence strongly suggests that some 

indirect action(s) of flavonoids are responsible for their beneficial effects (Halliwell et al., 2005; 

Halliwell, 2007). As an example, the study of Lotito and Frei has suggested that the increase in 

antioxidant capacity of blood seen after the consumption of flavonoid-rich foods is not caused by 

the flavonoids per se, but most likely due to the increased uric acid levels that result from 

competition in active renal secretion of flavonoids (Lotito and Frei, 2006). 

 

Conclusions 

In contrast to literature data reporting positive effects of 1.5-month daily oral 

administration of rutin on catecholamine cardiotoxicity, rutin administered i.v. acutely before 

ISO was not able to reduce the catecholamine cardiotoxicity; moreover, in its larger dose it 

further aggravated the ISO-induced cardiac damage. These in vivo data are in a good agreement 

with in vitro experiments.  

The previously observed protection of catecholamine cardiotoxicity by peroral 

administration was therefore clearly have not been mediated by rutin per se. This conclusion is 

supported by the following facts: (i) i.v. rutin has no positive effects on catecholamine 

cardiotoxicity, (ii) rutin is cleaved to various metabolites by intestinal bacteria and is not 

absorbed as a parent compound, and (iii) the administration of rutin was stopped 24-48 hours 

before ISO, it is therefore unlikely, that sufficient levels of drug were in the circulation at the 

time of ISO-induced myocardial injury. 
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Hence, we support the emerging hypothesis that the beneficial effects of flavonoids are 

mediated by some indirect action(s). Further in vitro and in vivo studies are needed for better 

understanding of apparently highly complex action rutin (and/or its metabolites) in biological 

systems in order to fully exploit its protective potential while preventing its toxicity.  

Acknowledgements 

The authors wish to thank Mrs. Anezka Kunova for her excellent technical assistance. This 

work was supported by grants from the Charles University in Prague 39207/C and 51308/C. 

 

REFERENCES: 

Adamcova, M., Simunek, T., Kaiserova, H., Popelova, O., Sterba, M., Potacova, A., Vavrova, J., Malakova, 

J., and Gersl, V. (2007). In vitro and in vivo examination of cardiac troponins as biochemical markers of drug-

induced cardiotoxicity. Toxicology 237, 218-228. 

Afanas'ev, I. B., Dorozhko, A. I., Brodskii, A. V., Kostyuk, V. A., and Potapovitch, A. I. (1989). Chelating 

and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem 

Pharmacol 38, 1763-1769. 

Ambrosio, G., Zweier, J. L., Jacobus, W. E., Weisfeldt, M. L., and Flaherty, J. T. (1987). Improvement of 

postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: 

the role of iron in the pathogenesis of reperfusion injury. Circulation 76, 906-915. 

Behonick, G. S., Novak, M. J., Nealley, E. W., and Baskin, S. I. (2001). Toxicology update: the 

cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes). J Appl Toxicol 21 Suppl 1, 

S15-22. 

Berenshtein, E., Vaisman, B., Goldberg-Langerman, C., Kitrossky, N., Konijn, A. M., and Chevion, M. 

(2002). Roles of ferritin and iron in ischemic preconditioning of the heart. Mol Cell Biochem 234-235, 283-292. 

Berry, C. E., and Hare, J. M. (2004). Xanthine oxidoreductase and cardiovascular disease: molecular 

mechanisms and pathophysiological implications. J Physiol 555, 589-606. 

Boots, A. W., Li, H., Schins, R. P., Duffin, R., Heemskerk, J. W., Bast, A., and Haenen, G. R. (2007). The 

quercetin paradox. Toxicol Appl Pharmacol 222, 89-96. 

Diaz-Munoz, M., Alvarez-Perez, M. A., Yanez, L., Vidrio, S., Martinez, L., Rosas, G., Yanez, M., Ramirez, 

S., and de Sanchez, V. C. (2006). Correlation between oxidative stress and alteration of intracellular calcium 

handling in isoproterenol-induced myocardial infarction. Mol Cell Biochem 289, 125-136. 

Erlund, I., Kosonen, T., Alfthan, G., Maenpaa, J., Perttunen, K., Kenraali, J., Parantainen, J., and Aro, A. 

(2000). Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin 

Pharmacol 56, 545-553. 

Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D., and Comporti, M. (1997). 

Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron 

chelating activity. FEBS Lett 416, 123-129. 

Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G., and Saso, L. (2005). Evaluation of the antioxidant activity 

of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry. Biochim Biophys Acta 1721, 

174-184. 

Firuzi, O., Mladenka, P., Petrucci, R., Marrosu, G., and Saso, L. (2004). Hypochlorite scavenging activity of 

flavonoids. J Pharm Pharmacol 56, 801-807. 



                            Mladěnka et al., Direct 
administration of rutin does not protect. Toxicology, 2008 

173 

 

Fotakis, G., and Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT 

and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160, 171-177. 

Galati, G., and O'Brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance 

for their chemopreventive and anticancer properties. Free Radic Biol Med 37, 287-303. 

Haenen, G. R., Paquay, J. B., Korthouwer, R. E., and Bast, A. (1997). Peroxynitrite scavenging by 

flavonoids. Biochem Biophys Res Commun 236, 591-593. 

Halliwell, B. (2007). Dietary polyphenols: good, bad, or indifferent for your health? Cardiovasc Res 73, 341-

347. 

Halliwell, B., Rafter, J., and Jenner, A. (2005). Health promotion by flavonoids, tocopherols, tocotrienols, 

and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81, 268S-276S. 

Hershko, C., Grady, R. W., and Cerami, A. (1978). Mechanism of iron chelation in the hypertransfused rat: 

definition of two alternative pathways of iron mobilization. J Lab Clin Med 92, 144-151. 

Chagoya de Sanchez, V., Hernandez-Munoz, R., Lopez-Barrera, F., Yanez, L., Vidrio, S., Suarez, J., Cota-

Garza, M. D., Aranda-Fraustro, A., and Cruz, D. (1997). Sequential changes of energy metabolism and 

mitochondrial function in myocardial infarction induced by isoproterenol in rats: a long-term and integrative study. 

Can J Physiol Pharmacol 75, 1300-1311. 

Chan, E. C., Pannangpetch, P., and Woodman, O. L. (2000). Relaxation to flavones and flavonols in rat 

isolated thoracic aorta: mechanism of action and structure-activity relationships. J Cardiovasc Pharmacol 35, 326-

333. 

Chen, Y. T., Zheng, R. L., Jia, Z. J., and Ju, Y. (1990). Flavonoids as superoxide scavengers and 

antioxidants. Free Radic Biol Med 9, 19-21. 

Choudhury, R., Srai, S. K., Debnam, E., and Rice-Evans, C. A. (1999). Urinary excretion of 

hydroxycinnamates and flavonoids after oral and intravenous administration. Free Radic Biol Med 27, 278-286. 

Kaiserova, H., Simunek, T., van der Vijgh, W. J., Bast, A., and Kvasnickova, E. (2007). Flavonoids as 

protectors against doxorubicin cardiotoxicity: role of iron chelation, antioxidant activity and inhibition of carbonyl 

reductase. Biochim Biophys Acta 1772, 1065-1074. 

Karthick, M., and Stanely Mainzen Prince, P. (2006). Preventive effect of rutin, a bioflavonoid, on lipid 

peroxides and antioxidants in isoproterenol-induced myocardial infarction in rats. J Pharm Pharmacol 58, 701-707. 

Kloner, R. A. (2006). Natural and unnatural triggers of myocardial infarction. Prog Cardiovasc Dis 48, 285-

300. 

Lotito, S. B., and Frei, B. (2006). Consumption of flavonoid-rich foods and increased plasma antioxidant 

capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41, 1727-1746. 

Manach, C., Morand, C., Texier, O., Favier, M. L., Agullo, G., Demigne, C., Regerat, F., and Remesy, C. 

(1995). Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J Nutr 125, 1911-1922. 

Mira, L., Fernandez, M. T., Santos, M., Rocha, R., Florencio, M. H., and Jennings, K. R. (2002). Interactions 

of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36, 1199-1208. 

Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., and Becana, M. (1997). Complexes of iron with phenolic 

compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol 

Med 22, 861-870. 

Moridani, M. Y., Pourahmad, J., Bui, H., Siraki, A., and O'Brien, P. J. (2003). Dietary flavonoid iron 

complexes as cytoprotective superoxide radical scavengers. Free Radic Biol Med 34, 243-253. 

Pinelli, A., Trivulzio, S., Tomasoni, L., Bertolini, B., Brenna, S., Bonacina, E., and Vignati, S. (2004). 

Myocardial infarction non-invasively induced in rabbits by administering isoproterenol and vasopressin: protective 

effects exerted by verapamil. Fundam Clin Pharmacol 18, 657-667. 

Ratty, A. K., and Das, N. P. (1988). Effects of flavonoids on nonenzymatic lipid peroxidation: structure-

activity relationship. Biochem Med Metab Biol 39, 69-79. 

Remiao, F., Carvalho, M., Carmo, H., Carvalho, F., and Bastos, M. L. (2002). Cu2+-induced isoproterenol 

oxidation into isoprenochrome in adult rat calcium-tolerant cardiomyocytes. Chem Res Toxicol 15, 861-869. 

Rona, G., Boutet, M., and Huttner, I. (1983). Reperfusion injury. A possible link between catecholamine-

induced and ischemic myocardial alterations. Adv Myocardiol 4, 427-439. 

Russo, A., Acquaviva, R., Campisi, A., Sorrenti, V., Di Giacomo, C., Virgata, G., Barcellona, M. L., and 

Vanella, A. (2000). Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol Toxicol 16, 

91-98. 



                            Mladěnka et al., Direct 
administration of rutin does not protect. Toxicology, 2008 

174 

 

Sestili, P., Diamantini, G., Bedini, A., Cerioni, L., Tommasini, I., Tarzia, G., and Cantoni, O. (2002). Plant-

derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-

butylhydroperoxide via an iron-chelating mechanism. Biochem J 364, 121-128. 

Soares, V. C., Varanda, E. A., and Raddi, M. S. (2006). In vitro basal and metabolism-mediated cytotoxicity 

of flavonoids. Food Chem Toxicol 44, 835-838. 

Spiller, P., and Webb-Peploe, M. M. (1985). Blood flow. Eur Heart J 6 Suppl C, 11-18. 

Stanely Mainzen Prince, P., and Karthick, M. (2007). Preventive effect of rutin on lipids, lipoproteins, and 

ATPases in normal and isoproterenol-induced myocardial infarction in rats. J Biochem Mol Toxicol 21, 1-6. 

Ueno, I., Nakano, N., and Hirono, I. (1983). Metabolic fate of [14C] quercetin in the ACI rat. Jpn J Exp Med 

53, 41-50. 

van Acker, F. A., Hulshof, J. W., Haenen, G. R., Menge, W. M., van der Vijgh, W. J., and Bast, A. (2001). 

New synthetic flavonoids as potent protectors against doxorubicin-induced cardiotoxicity. Free Radic Biol Med 31, 

31-37. 

van Acker, S. A., van Balen, G. P., van den Berg, D. J., Bast, A., and van der Vijgh, W. J. (1998). Influence 

of iron chelation on the antioxidant activity of flavonoids. Biochem Pharmacol 56, 935-943. 

von Kanel, R., Mills, P. J., Ziegler, M. G., and Dimsdale, J. E. (2002). Effect of beta2-adrenergic receptor 

functioning and increased norepinephrine on the hypercoagulable state with mental stress. Am Heart J 144, 68-72. 

Wadworth, A. N., and Faulds, D. (1992). Hydroxyethylrutosides. A review of its pharmacology, and 

therapeutic efficacy in venous insufficiency and related disorders. Drugs 44, 1013-1032. 

Winsor, T., Mills, B., Winbury, M. M., Howe, B. B., and Berger, H. J. (1975). Intramyocardial diversion of 

coronary blood flow: effects of isoproterenol-induced subendocardial ischemia. Microvasc Res 9, 261-278. 

Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R., and Chen, S. S. (2004). 

Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59, 113-122. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                             
SUMMARY 

175 

 

IV. SUMMARY 
 

Background: Iron is an essential element necessary for many physiological processes 

involving oxygen transport, DNA-synthesis and ATP-formation. The fate of iron in the organism 

is tightly regulated especially at the absorption and distribution level probably mainly due to lack 

of specific active iron excretion mechanism. Any derangement of iron homeostatis may lead to 

appearance of free (unbound or loosely bound) iron, which can catalyse reactive oxygen species 

(ROS) production by Haber-Weiss chemistry. 

Cardiovascular diseases, particularly coronary heart disease (CHD), remain 

notwithstanding recent scientific advances important therapeutic problem. The most serious form 

of CHD represents acute myocardial infarction (AMI). The pathophysiology of AMI involves in 

most cases initial ischaemic period caused by coronary blood flow derangement due to a 

thrombus formation. Ischaemia alters substantially tissue homeostasis with subsequent cytosolic 

free iron appearance. Reconstitution of coronary blood flow (reperfusion) represents the only 

way for myocardial tissue recovery although on the other hand, it is linked with a release of free 

redox-active iron in the circulation and formation of ROS both intracellularly as well 

extracellularly.  

Iron chelators are a large group of drugs with very diverse structure. They are traditionally 

used as protective medication in conditions with suggested involvement of iron in ROS 

generation (e.g., thalassemic patients treated with blood transfusions and antracycline 

cardiotoxicity). Due to mentioned involvement of iron in the pathogenesis of AMI, drugs 

chelating iron may be useful in prevention of AMI-associated tissue impairment. The only drug 
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which has been tested extensively in occlusional models of AMI was deferoxamine. Regrettably, 

the published results have been contradictory. 

Aim and methodology: This study was aimed to investigate the effects of drugs with iron 

chelating properties on catecholamine model of AMI. For this purpose, a synthetic 

catecholamine isoprenaline (ISO) with non-selective β-agonist activity was used in a dose of 100 

mg.kg
-1

 to evoke a pathological state in many aspects similar to AMI. Male Han:Wistar rats were 

pretreated i.v. with agents as follows: deferoxamine mesylate (50 mg.kg
-1

),  equivalent doses of 

2-pyridylcarboxaldehyde-2-thiophenecarboxyl hydrazone (PCTH, 20.4 mg.kg
-1

),  rutin (46 

mg.kg
-1

) and lactoferrin in a dose of 50 mg.kg
-1

 five minutes before application of ISO. 

Additional smaller doses of PCTH (10.2 mg.kg
-1

) and rutin (11.5 mg.kg
-1

) were administered to 

other rats for obtaining dose-reponse effects. 24 hours after drug application, animals were 

anaesthetized with urethane (1.2 g.kg
-1

 i.p.). Cardiac function was assessed in terms of a 

thermodilution method using Cardiosys
®
 apparatus (Experimetria Ltd.

®
, Hungary), blood was 

withdrawn for biochemical measurement and heart ventricles removed for weight, elements and 

histological analysis. 

Results: Isoprenaline alone caused 30% mortality, a decrease in cardiac output associated 

with an increase in heart rate and peripheral resistance, marked elevation of serum cardiac 

troponin T (cTnT) concentration, an increase in wet ventricle weight, myocardial calcium 

overload and substantial impairment of cardiac tissue within 24 hours in comparison to the 

controls. There were no significant changes in plasma TBARS levels, serum vitamin C, total 

glutathione, erythrocyte antioxidant enzymes (SOD, GPx) and myocardial levels of zinc, 

selenium and iron. 



                                                                             
SUMMARY 

177 

 

Deferoxamine did not demonstrate any positive effect on ISO-impairment. PCTH in 

equimolar dose to that of deferoxamine hindered mortality, markedly reduced release of cTnT 

and partly but significantly reduced an increase in wet ventricles weight. Others parameters 

seemed not to be positively influenced by PCTH although some of its effect may be obscured 

due to used solvent – 20% water solution of propylene glycol, which alone demonstrated some 

myocardial derangement (e.g. a drop in cardiac index).  

Both lactoferrin and rutin inhibited an increase in peripheral resistance caused by ISO. 

Notwithstanding these positive effects, rutin rather negatively influenced ISO-impairment. 

Namely, higher dose of rutin increased mortality to 53% and tended to intensify cTnT release, as 

well as calcium overload. Additionally, only higher dose of rutin elevated myocardial calcium 

levels in control animals too, and caused dose-dependent myocardial zinc homeostasis 

derangement. Except for the mentioned positive effect on peripheral resistence, lactoferrin 

restored cardiac index dropped by ISO and partly decreased calcium overload. 

Discussion and conclusion: This study demonstrated for the first time that iron chelators 

can at least partly prevent myocardial injury caused by catecholamines and may probably protect 

myocardium from AMI consequences. The failure of complete inhibition of catecholamine 

myocardial injury seems to depend on the pathogenesis of ISO-cardiotoxicity. This is not fully 

understood but involves at least two main features – cardiac overstimulation by activation of ß-

adrenoreceptors and ROS-generation due to released iron, as well due to catecholamines 

themselves. Lipophilic iron chelator PCTH may revert, at least partly, this injury probably 

because the fact that it chelates both intravascullar as well as intracellular free iron. Contrarily, 

hydrophilic, therapeutically standardly used chelator deferoxamine had no possitive effect on this 
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injury. Endogenous hydrophilic ferric chelator lactoferrin had modest influence on this injury, 

which were probably mediated by extracellular iron chelation (peripheral resistence, calcium 

overload) and/or by another unknown mechanism. By contrast, rutin appeared to aggravate this 

injury in the larger dose, which can be ascribed: i) to its proposed possible pro-oxidant 

properties; ii) to an increase in myocardial calcium level which may increase physiologically 

contractile force but under pathological condition may lead to acute heart failure or arrhythmias. 
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V. SOUHRN 
ÚVOD:  Ţelezo je nezbytným prvkem pro celou řadu fyziologických procesů, mj. přenos 

kyslíku, syntézu DNA a tvorbu ATP. Osud ţeleza v organismu je pečlivě regulován zejména na 

úrovni absorpce a distribuce pravděpodobně z důvodu neexistujícího specifického aktivního 

exkrečního mechanismu pro ţelezo. Kaţdé porušení homeostázy ţeleza můţe vést k objevení se 

volného (nevázaného nebo slabě vázaného) ţeleza, které je schopno katalyzovat tvorbu 

reaktivních forem kyslíku (ROS) prostřednictvím Haber-Weissova mechanismu. 

Kardiovaskulární onemocnění, zejména pak ischemická choroba srdeční (ICHS), zůstávají 

přes recentní vědecké pokroky váţným medicinálním problémem. Nejzávaţnější formou ICHS 

je akutní infarkt myokardu (AIM). Jeho patofyziologie zahrnuje ve většině případů iniciální 

ischemickou periodu v důsledku poruchy koronárního krevního proudu způsobeného trombózou 

nasedající obvykle na ateroskleroticky postiţenou koronární tepnu. Ischémie podstatně mění 

tkáňovou homeostázu s následným objevením se volného cytosolického ţeleza. Obnova 

koronárního krevního průtoku (tzv. reperfúze) je jedinou moţností k záchraně poškozeného 

myokardu, je ale na druhé straně spojena s uvolněním zmíněného volného ţeleza do cirkulace a 

tvorbou ROS jak uvnitř tak vně buňky. 

Chelátory ţeleza představují rozsáhlou skupinu léčiv s rozmanitou strukturou. Tradičně se 

pouţívají jako ochranné látky v patologických podmínkách spojených se zvýšenou tvorbou ROS 

v důsledku katalytického působení ţeleza (např. u thalasemických pacientů léčených krevními 

transfúzemi a při prevenci antracyklinové kardiotoxicity). Vzhledem ke zmíněnému zapojení 

ţeleza v patogenezi AIM, mohou být látky s ţeleto chelatační aktivitou uţitečné v prevenci 

infarktového poškození myokardu. Jedinou látkou, která byla testována v této indikaci na 



                                                                              
SOUHRN 

180 

 

oklusivních modelech AIM byl deferoxamin. Publikované výsledky jsou bohuţel značně 

nesourodé. 

Cíl studie a metodologie: Tato studie směřovala ke zjištění účinků látek s ţelezo 

chelatační aktivitou na katecholaminový model AIM. Pro tento účel byl vyuţit syntetický 

katecholamin isoprenalin (ISO) s neselektivním β-agonistickým účinkem v dávce 100 mg.kg
-1

 

s.c.,  který vyvolává patologický stav v mnoha aspektech blízký AIM. Han:Wistar potkani byli 

premedikováni i.v. následujícími látkami: deferoxamin mesylát (50 mg.kg
-1

),  ekvivalentními  

dávkami 2-pyridylkarboxaldehyd-2-thiofenekarboxyl hydrazonu (PCTH, 20.4 mg.kg
-1

),  rutinu   

(46 mg.kg
-1

) a laktoferinem v dávce 50 mg.kg
-1

 vţdy 5 minut před podáním ISO. Pro stanovení 

dávkové závislosti byly podány i niţší dávky PCTH (10.2 mg.kg
-1

) a rutinu (11,5 mg.kg
-1

). Za 24 

hodin po aplikaci léčiv byla zvířata anestezována za pomocí uretanu (1,2 g.kg
-1

 i.p.). Jejich 

srdeční funkce byla stanovena pomocí různých parametrů prostřednictví termodiluční metody za 

pouţití přístroje Cardiosys
®
 (Experimetria Ltd.

®
, Maďarsko). Krev byla odebrána pro stanovení 

biochemických markerů a srdce vyjmuto pro zváţení srdečních komor, analýzu iontů a 

histopatologické vyšetření. 

 

Výsledky: Podání ISO bylo spojeno s 30% mortalitou, sníţením srdečního výdeje, 

tachykardií, zvýšením periferní cévní resistence, masivním uvolněním srdečního troponinu T 

(cTnT) do cirkulace, vzestupem vlhké hmotnosti komor, přesycením myokardu vápníkem a 

zjevnými patologickými abnormalitami v histologickém nálezu za 24 hodin v porovnání 

s kontrolními potkany. Naopak nebyly nalezeny statisticky významné změny v 

plasmatických hladinách malonyldialdehydu (měřeného jako TBARS), koncentracích vitamínu 
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C v plasmě, celkového glutationu v krvi, enzymatické aktivitě antioxidačních enzymů v 

červených krvinek (GPx a SOD) a koncentraci zinku, selénu a ţeleza v srdeční tkáni. 

Podání deferoxaminu nebylo spojeno s ţádným ochranným vlivem na ISO-poškození. 

Naopak PCTH v ekvimolární dávce k deferoxaminu vedl k 100% přeţití takto premedikovaných 

zvířat, významně sníţil uvolnění cTnT a částečně redukoval vzestup vlhké hmotnosti komor po 

podání ISO. Ostatní parametry nebyly příznivě ovlivněny PCTH, je ale nutno zmínit, ţe některé 

jeho účinky mohly být zamaskovány při jeho podání v 20% vodném roztoku propylenglykolu, 

který sám vedl k určitému zhoršení myokardiální funkce (např. pokles srdečního výdeje). 

Jak laktoferin tak rutin zablokoval vzestup periferní rezistence po podání ISO. Přes tento 

pozitivní účinek rutin spíše zhoršoval katecholaminové poškození myokardu. Vyšší dávka rutinu 

zvýšila mortalitu na 53% a současně prokázala tendenci k potenciaci uvolnění cTnT a zesílení 

přesycení myokardu vápníkem. Kromě toho, ze všech testovaných látek s ţelezo chelatační 

aktivnou jen rutin ve vyšší dávce statisticky významně zvýšil myokardiální koncentrace vápníku 

i u kontrolních zvířat, kromě toho vedl k dávkově závislému poklesu hladiny zinku v myokardu. 

Mimo pozitivního účinku laktoferinu na periferní resistenci, laktoferin byl také schopen 

inhibovat pokles srdečního výdeje způsobený ISO a současně částečně omezit přesycení buněk 

vápníkem. 

Diskuze a závěr:  Tato studie je první svého druhu, které poukázala, ţe chelátory ţeleza 

jsou schopny alespoň částečně sníţit poškození způsobená katecholaminy a z tohoto důvodu i 

pravděpodobně ochránit myokard před následky AIM. Neúspěch těchto chelátorů ţeleza úplně 

zabránit projevům katecholaminové kardiotoxicity závisí pravděpodobně na komplexnosti 

patofyziologie tohoto poškození, která není úplně pochopená. Je známo, ţe zahrnuje minimálně 
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dva hlavní mechanismy – nadměrnou stimulaci β-adrenoreceptorů a tvorbu ROS v důsledku jak 

uvolnění ţeleza tak katecholaminů samotných. Lipofilní chelátor PCTH částečně inhiboval toto 

poškození asi v důsledku toho, ţe je schopen sníţit následky zvýšených hladin ţeleza nejen 

intravaskulárně ale také intracelulárně. Naopak hydrofilní, v terapii standardně pouţívaný, 

chelátor deferoxamin neměl ţádný vliv na dané poškození. Tělu vlastní hydrofilní chelátor 

ţelezitých iontů laktoferin měl určitý pozitivní účinek na toto poškození, který byl 

pravděpodobně zprostředkován chelatací extracelulárního ţeleza (periferní rezistence, sníţení 

přesycení vápníkem) a/nebo jiným neznámým mechanismem. Rutin naproti tomu spíše zhoršuje 

ve vyšší dávce toto poškození. Důvody k tomu mohou být: i) jeho navrţené pro-oxidativní 

vlastnosti; ii) vzestup hladin vápníku v myokardu, které mohou zvýšit fyziologicky inotropii, ale 

v případě patologických stavů vést naopak k akutnímu srdečnímu selhání nebo arytmiím. 
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3. Lectures on congresses 

 The 5th International Postgraduate Research Symposium on Pharmaceutics - 

Istanbul (Turkey), September 13- 15, 2007 

 MLADĚNKA P, SEMECKÝ V, BOBROVOVÁ Z, NACHTIGAL P, ŠKRLE 

J, HRDINA R. Iron Chelators in Myocardial Ischemia-Reperfusion – 

Comparison of Endogenous Lactoferrin with Synthetic PCTH. Acta Pharmac 

Turcica, 2007, vol. 49 (suppl.), p. 11.  

 

4. Posters on congresses – active presentation 

 55. Farmakologické Dny  - Hradec Králové, August 31 – September 2, 2005 

 HÜBL M, MLADĚNKA P, HRDINA R, PALIČKA V, VÁVROVÁ J, 

HOLEČKOVÁ M. EFFECT OF DEFEROXAMINE ON ISOPRENALINE 

MODEL OF ACUTE MYOCARDIAL INFARCTION IN RATS. Sborník 

abstraktů 55. Česko-slovenských farmakologických dnů. Hradec Králové, 

Lékařská fakulta Univerzity Karlovy 2005:13 

 56. Farmakologické Dny  - Bratislava, September 6-8, 2006 

 BOBROVOVÁ Z, HÜBL M, MLADĚNKA P, HRDINA R, PALIČKA V, 

VÁVROVÁ J, HOLEČKOVÁ M. Effect of PCTH on isoprenaline model of 

acute myocardial infarction in rats. Zborník prac 56. Farmakologické dni 2006 

v Bratislavě 2006:84. 

 16th International Conference on Chelators (ICOC) - Limassol (Cyprus), October 

25-31, 2006 

 MLADĚNKA P, BOBROVOVÁ Z, HÜBL M, HRDINA R, NACHTIGAL P, 

VYKRUTOVÁ E, SEMECKÝ V. Effect of lactoferrin on a model of acute 

myocardial infarction in rats. Sborník abstrakt 16th ICOC. 2006: 76 
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(Italy), June 22-25, 2007 
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ŠKRLE J, SEMECKÝ V. Interrelationships of functional, biochemical and 
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 HRDINA R, MLADĚNKA P, BOBROVOVÁ Z. Cardiac troponin T: A 

reliable biomarker of acute myocardial injury in rats. Acta Pharmac Turcica, 

2007, vol. 49 (suppl.), p. 79.  

 28th Annual Meeting, European Section of the International Society for Heart 

Reasearch - Athens (Greece), May 28-31, 2008 

 MLADĚNKA P., SEMECKÝ V., BOBROVOVÁ Z., FILIPOVÁ V., 

ZATLOUKALOVÁ L., HRDINA  R. The influence of iron chelators on 

myocardial metal content after catecholamine cardiotoxic insult. J Moll Cell 

Cardiol, 2008, vol. 44:716-7.  

 EPHAR 2008 Congress - Manchester (Great Britain), July 12-17, 2008. 

 MLADĚNKA P, ZATLOUKALOVÁ L, MACÁKOVÁ K., ŘEHÁKOVÁ Z., 

KUMAR PRASAD A, PARMAR PS, SASO  L, HRDINA R. In vitro iron 

chelati-on activity of selected polyphenolic compounds. Fundam Clin 
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 HRDINA R. MLADĚNKA P, ZATLOUKALOVÁ L, BOBROVOVÁ Z. 
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LIST OF PUBLISHED WORKS 

186 

 

5. Posters on congresses – presentation by colleagues 

 57. Farmakologické Dny - Olomouc,  Septembre 12- 14, 2007 

 BOBROVOVÁ Z, HRDINA R, MLADENKA P, HUBL M, VAVROVA J, 

HOLECKOVA M, PALICKA V. Dose-dependence study of a novel iron 

chelator PCTH in a model of catecholamine cardiotoxicity. Biomed Pap, 2007, 

vol. 151 (suppl. 1), p. 13. 

 58. Farmakologické Dny  - Praha,  September 3-5, 2008 

 ZATLOUKALOVÁ L, MLADĚNKA P, BOBROVOVÁ Z, VÁVROVÁ J, 

HOLEČKOVÁ M, PALIČKA V, HRDINA R. Isoprenaline Cardiotoxic Insult 

is Aggravated by Rutin. Prague Med Rep 2008; 109 (suppl.):S131-2 

 7th Joint Meeting of AFERP, ASP, GA, PSE & SIF - Athens (Greece), August 3-

8,2008  

 MACAKOVA M, MLADENKA P, REHAKOVA Z, ZATLOUKALOVA L 

HRDINA R, OPLETAL L, KARLICKOVA J. Ferrous and ferric chelation 

activity of selected natural flavonoids. Planta Med 2008; 74:946 

 20th IFCC Wordlab – Fortaleze (Brazil), September 28 – October 2, 2008 

 HOLEČKOVÁ  M, MLADĚNKA  P, HRDINA  R, PALIČKA  V. Importance 

of myocardial element concentrations after catecholamine cardiotoxic injury. 

Clin Chem Lab Med 2008; 46(Special Suppl): S 530 – 531. 

 

 

 

 

 

 

 

 

 

 


