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1. ABSTRACT
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Xenobiotika jsou chemické sloučeniny tělu cizí, které se obvykle tvoří 

syntetickými nebo abiotickými procesy. Syntetická xenobiotika mají často obrovský 

význam pro lidskou společnost a představují většinu chemických sloučenin z tak 

významných skupin, jako jsou petrochemikálie, pesticidy, plasty a léky, u kterých se 

obvykle ve vztahu ke xenobiotikům používá termín léčivo.

Biotransformace je hlavním mechanismem eliminace léčiv, protože ta se 

biotransformaci podrobí ihned po vstupu do organismu.  Biotransformace, která téměř 

vždy poskytuje metabolity polárnější, než je výchozí látka, obvykle ukončuje 

farmakologický účinek parentního léčiva a prostřednictvím exkrece zvyšuje 

odstraňování léčiva z těla. Nicméně může mít i další důsledky včetně podobného nebo 

odlišného farmakologického účinku nebo toxikologického působení.

Je mnoho odlišných drah, kterými může být léčivo biotransformováno, a ty 

zahrnují mimo jiné oxidační, redukční, hydrolytické a konjugační reakce. Je důležité 

těmto drahám porozumět, protože cesta metabolismu léčiva může určovat jeho konečný 

farmakologický nebo toxikologický účinek.

Biotransformace léčiv se rozděluje do dvou fází: Fáze I neboli přípravné reakce 

a Fáze II čili konjugační reakce.

Kromě fyzikálně-chemických činitelů ovlivňujících metabolismus xenobiotik, 

hrají důležitou úlohu v biotransformaci léčiv také stereochemické faktory. Jejich účast 

se dá očekávat, protože enzymy metabolizující xenobiotika jsou ty samé enzymy, které 

metabolizují některé endogenní substráty, což jsou většinou chirální molekuly. 

Biotransformace racemických léčiv může být stereoselektivní, protože se 

jednotlivé enantiomery mohou přeměňovat prostřednictvím odlišných metabolických 

drah. Tato stereoselektivita byla pozorována jak pro reakce I. fáze tak II. fáze.
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Nesteroidní protizánětlivá léčiva/nesteroidní antiflogistika (NSAIDs) jsou 

skupinou analgeticky, protizánětlivě a antipyreticky působících léčiv, která jsou hojně 

používána v revmatologii. Ačkoliv nejsou všechna NSAIDs chirální, všechna léčiva 

patřící do největší chemické třídy derivátů 2-arylpropionové kyseliny mají chirální 

centrum. Chirální NSAIDs jsou pravděpodobně jednou z nejvíce studovaných skupin 

léčiv z hlediska enantioselektivity ve farmakokinetice.

Téma této dizertační práce je zaměřeno na II. fázi biotransformace potenciálního 

NSAID Flobufenu, který je odvozen od struktury 2-arylpropionové kyseliny. V této 

práci jsem zkoumala schopnost Flobufenu, jako chirálního léčiva, a/nebo jeho 

metabolitů podstoupit enantioselektivní konjugaci s využitím metod jako je LC-MS 

k separaci a identifikaci vznikajících metabolitů.
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Xenobiotic chemicals are chemicals foreign to life that are usually derived 

synthetically or from an abiotic process. The synthetic xenobiotic chemicals are often of 

enormous value to human society and are usually the majority of the chemicals in such 

important groups of substances as petrochemicals, pesticides, plastics and 

pharmaceuticals, where the term drug is usually applied when referring to xenobiotics.

Biotransformation is a major mechanism for drug elimination, as they undergo 

biotransformation after they enter the body. Biotransformation, which almost always 

produces metabolites that are more polar than the parent compound, usually terminates 

the pharmacologic action of the parent drug and, via excretion, increases removal of the 

drug from the body. However, other consequences are possible, including similar or 

different pharmacologic activity, or toxicological activity.

The routes by which drugs may be biotransformed are many and varied and 

include oxidation, reduction, hydrolysis and conjugation reactions, among others. It is 

important that these pathways are understood, as the route of metabolism of a drug can 

determine its ultimate pharmacological or toxicological activity. 

Drug biotransformation is divided into two phases: Phase I, or functionalisation 

reactions and Phase II, or conjugative reactions. 

In addition to the physicochemical factors that affect xenobiotic metabolism, 

stereochemical factors play an important role in the biotransformation of drugs. This 

involvement is not unexpected because the xenobiotic-metabolizing enzymes are also 

the same enzymes that metabolize certain endogenous substrates, which for the most 

part are chiral molecules. Biotransformation of racemic drugs can be stereoselective, as 

the individual enantiomers undergo metabolism via different metabolic pathways. This 

stereoselectivity has been observed for both phase I and phase II reactions. 
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Non-steroidal anti-inflammatory drugs, NSAID, are a group of analgesic, anti-

inflammatory and anti-pyretic drugs that are extensively used in rheumatology. 

Although not all NSAIDs are chiral, all of the drugs in its major chemical class, the     

2-arypropionic acid, possess a chiral centre. As a collective group, the chiral NSAIDs 

are perhaps one of the most studied classes for enantioselectivity in pharmacokinetics. 

This PhD project focused the study of Phase II Biotransformation of the 

potential NSAID Flobufen, structurally related to 2-arypropionic acids. As a chiral drug, 

this work investigated the ability of Flobufen and/or its metabolites to undergo 

enantioselective conjugation, employing techniques such as LC-MS to separate and 

identify the metabolites formed. 



6

LIST OF ABBREVIATIONS

The following abbreviations were used throughout this dissertation:

2-APA 2-arylpropionic acid

Acetyl CoA Acetyl-coenzyme A 

ACN Acetonitrile

AKR Aldo-keto reductases

AR Aldose reductase

ATP Adenosine 5'-triphosphate

BCA Bicinchoninic acid

CID Collision-induced dissociation

COMT Catechol-O-methyltransferase

COX Cyclooxygenase

CYP Cytochrome P450

DHF 4-dihydroflobufen,

4-(2´,4´-difluorobiphenyl-4-yl)-2-methyl-4-

hydroxybutanoic acid

DMSO Dimethylsulphoxide

EA Ethylacetate

ECD Electrochemical Detector

ER Endoplasmic reticulum

ESI Electrospray ionization

FAD Flavin adenine dinucleotide

FLO Flobufen,                                                                            

4-(2´,4´-difluorobiphenyl-4-yl)-2-methyl-4-oxobutanoic 

acid

FLO-GLUC Flobufen glucuronide
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FMO Flavin monooxygenase 

GSH Glutathione

GST Glutathione S-transferase

HPLC High-performance liquid chromatography

HSD Hydroxysteroid dehydrogenase

IR Refractive index

LC-MS Liquid chromatography-mass spectrometry

M/Z Mass-to-charge ratio

M17203 2-(2´,4´-difluorobiphenyl-4-yl)-acetic acid 

M17203-GLUC M17203 glucuronide

M17203-TAU Conjugate of M17203 with taurine

MFO Microsomal mixed-function oxidase

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide

NADP+ Nicotinamide adenine dinucleotide phosphate

NADPH Reduced nicotinamide adenine dinucleotide phosphate

NSAID Non-steroidal anti-inflammatory drugs 

ODS Octadecylsilane

ORF Open reading frames

PAPS 3’-phosphoadenosine-5’-phosphosulfate

PDA Photo-diode array

POMT Phenol-O-methyltransferase

ROS Reactive oxygen species

RP Reverse phase

SAM S-adenosylmethionine

SDR Short-chain dehydrogenase/reductase
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SMZ Sulfamethazine

SPE Solid phase extraction

ST Sulfotransferase

UDPGA Uridine diphosphate glucuronic acid, UDP-glucuronic acid

UGT Uridine 5'-diphospho-glucuronosyltransferase,  

UDP-glucuronosyltransferase

UM Unknown metabolite

UV Ultra-violet



9

2. INTRODUCTION
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2.1 Biotransformation

During their lives, humans take a wide, almost infinite variety of substances into 

their bodies, some of which are necessary for their well-being and provide the raw 

materials essential for the process of intermediary metabolism. However, other 

substances the body does not require are also ingested, inhaled, or absorbed. These 

substances have been described as exogenous compounds, foreign compounds or 

xenobiotics (from the Greek xenos = foreign), and include both manufactured and 

natural chemicals such as drugs, industrial chemicals, pesticides, pollutants, pyrolysis 

products in cooked food, alkaloids, secondary plant metabolites and toxins produced by 

moulds, plants and animals.

The physical property that enables many xenobiotics to be absorbed through the 

skin, lungs or gastrointestinal tract – the lipophilicity – is an obstacle to their 

elimination, because lipophilic compounds can be readily reabsorbed. Consequently, the 

elimination of xenobiotics often depends on their conversion to water-soluble chemicals 

by a process known as biotransformation, which is catalyzed by enzymes in the liver 

and other tissues.

An important consequence of biotransformation is that the physical properties of

a xenobiotic are generally changed from those favouring absorption (lipophilicity) to 

those favouring excretion (hydrophilicity). Without biotransformation, lipophilic 

xenobiotics would be excreted from the body so slowly that they would eventually 

overwhelm and kill an organism.

A change in pharmacokinetic behaviour is not the only consequence of 

xenobiotic biotransformation nor, in some cases, is it the most important outcome. 

Xenobiotics exert a variety of effects on biological systems. These may be beneficial, in 

the case of drugs, or harmful, in the case of poisons. These effects are dependent on the 
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physicochemical properties of the xenobiotic. In many instances, chemical modification 

of a xenobiotic by biotransformation alters its biological effects. The importance of this 

principle to pharmacology is that some drugs must undergo biotransformation to exert 

their pharmacodynamic effect (i.e., it is the metabolite of the drug, and not the drug 

itself, that exerts the pharmacological effect). The importance of this principle to 

toxicology is that many xenobiotics must undergo biotransformation to exert their 

characteristic toxic or tumorigenic effect (i.e., many chemicals would be considerably 

less toxic or tumorigenic if they were not converted to reactive metabolites by 

xenobiotic-biotransforming enzymes). For this reason, the term detoxification which 

was used to refer biotransformation has been largely discarded. However, in most cases, 

biotransformation terminates the pharmacologic effects of a drug and lessens the 

toxicity of the xenobiotics (Testa 1995).
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2.2 Xenobiotic biotransforming enzymes

Xenobiotic biotransformation is the principal mechanism for maintaining 

homeostasis during exposure of organisms to small foreign molecules, such as drugs. 

The chemical alterations of drugs, like the chemical changes taking place in normal 

metabolism, are not spontaneous reactions; they are catalyzed reactions. They take 

place in the presence of enzymes, protein catalysts which accelerate the reaction but 

remain essentially unchanged in the process. 

The word enzyme occasionally denotes more than just a catalytic protein. Many 

enzymes require non-protein organic compounds called cofactors, which can be named 

as prosthetic groups or coenzymes, which play an intimate and frequently essential 

role in catalysis. Ordinarily, the term prosthetic group is reserved for groups which are 

bound firmly to the protein and cannot be readily removed without destroying the 

enzyme, whereas coenzymes refer to dissociable entities necessary for the reaction. 

Some enzymes also require small ions, such as Mg2+ for full catalytic activity. 

In general, xenobiotic biotransformation is accomplished by a limited number of 

enzymes with broad substrate specificities. The synthesis of some of these enzymes is 

triggered by the xenobiotics (by the process of enzyme induction), but in most cases the 

enzymes are expressed constitutively (i.e., they are synthesized in the absence of a 

discernible external stimulus). The specificity of xenobiotic biotransforming enzymes is 

so broad that they metabolize a large variety of endogenous chemicals, such as steroid 

hormones, vitamins A and D, bilirubin, bile acids, fatty acids and eicosanoids. Indeed, 

xenobiotic biotransforming enzymes, or enzymes that are closely related, play an 

important role in the synthesis of many of these same molecules. 

Xenobiotic biotransforming enzymes are widely distributed throughout the 

human body and are present in several subcellular compartments. In vertebrates, the 
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liver is the richest source of enzymes catalyzing biotransformation reactions, followed 

by lung, kidney, intestine, intestinal flora, skin and endocrine organs, such as gonads, 

placenta and adrenal (Krishna & Klotz 1994).

Within the liver, and most other organs, the enzymes catalyzing xenobiotics 

biotransformation reactions are located primarily in the endoplasmic reticulum 

(microsomes) or in the soluble fraction of the cytoplasm (cytosol) but also can be found 

in mitochondria, nuclei and lysosomes. Their presence in the endoplasmic reticulum can 

be rationalized on the basis that those xenobiotics requiring biotransformation for 

urinary or biliary excretion will likely be lipophilic, thus soluble in the lipid bilayer of 

the endoplasmic reticulum (Meeks & Harrison 1991).

By extracting and biotransforming xenobiotics absorbed by the gastrointestinal 

tract, the liver limits the systemic bioavailability of orally ingested xenobiotics, a 

process known as first-pass elimination. In some cases, xenobiotic biotransformation 

in the intestine contributes significantly to the first-pass elimination of foreign 

chemicals. Some extrahepatic sites contain high levels of xenobiotic biotransforming 

enzymes as, for instance, in the nasal epithelium. Although these enzymes are present in 

levels that rival those found in the liver, the role of the nasal epithelium is limited to the 

biotransformation of inhaled xenobiotic, whereas is quantitatively unimportant in the 

biotransformation of orally ingested xenobiotics (Brittebo 1993).

   2.2.1 Enzyme kinetics

The term enzyme kinetics implies a study of the speed, rate or velocity of an 

enzyme catalyzed reaction, and of the various factors which may affect this.

In an enzymatic reaction, initially free enzyme E and free substrate S in their

respective ground states combine reversibly to an enzyme-substrate complex – ES. The 
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ES complex passes through a transition state on its way to the enzyme-product complex 

– EP – and then on to the ground state of free enzyme E and free product P (Figure 1).

Figure 1 – Schematic representation of an enzymatic reaction.

From the formulation of the reaction sequence, a rate law can be derived. The 

first rate law was written in 1913 by Michaelis and Menten and therefore the 

corresponding kinetics is named the Michaelis-Menten equation. 

2.2.1.1 Michaelis-Menten equation

The Michaelis-Menten equation is a quantitative description of the relationship 

among the rate of an enzyme-catalyzed reaction v, the concentration of substrate [S] and 

two constants, Vmax and Km (which are set by the particular equation – Figure 2). The 

symbols used in the Michaelis-Menten equation refer to the reaction rate v, maximum 

reaction rate (Vmax), substrate concentration [S] and the Michaelis-Menten constant 

(Km).

Figure 2 – Michaelis-Menten equation.

The Michaelis-Menten equation can be used to demonstrate that at substrate 

concentration that produces exactly half the maximum reaction rate, i.e., 1/2 Vmax, the 

substrate concentration is numerically equal to Km.  In this derivation, the units of Km

are those used to specify the concentration of S, usually Molarity. This fact provides a 

E + S ES EP E + P
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simple, yet powerful bioanalytical tool that has been used to characterize both normal 

and altered enzymes, such as those that produce the symptoms of genetic diseases.

The Michaelis-Menten equation has the same form as the equation for a 

rectangular hyperbola; graphical analysis of reaction rate (v) versus substrate 

concentration [S] produces a hyperbolic rate plot (Figure 3).

Figure 3 – Graphical scheme of Michaelis-Menten equation.

2.2.1.2 Deviations from Michaelis-Menten relationship

One of the assumptions of the Michaelis-Menten model implicit in applying the 

above scaling strategy is the premise that substrate enzyme interactions occur at only 

one site per enzyme and that each site operates independently from the others. There are 

evidences that for a number of xenobiotic catalyzing enzymes this is not the case (Izumi 

at al. 1997, Jong-Shik & Byung-Gee 2001, Uchapichat et al. 2004).

Two characteristic types of curves have been reported in the majority of the 

cases: 

 Sigmoidal, when the enzyme has cooperative subunits: at very low substrate 

concentrations very few enzyme active sites will have substrate bound to them 
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and they will have a poor affinity for the enzyme. Therefore, the addition of 

more substrate causes only a small increase in reaction rate as the substrates bind 

very poorly. However, as more and more substrate molecules manage to bind, 

the positive cooperativity effect increases the ability of the enzyme to bind 

substrate and the graph starts to show this by sweeping upwards more sharply. 

Ultimately, just like a hyperbolic enzyme the enzyme will get close to saturation 

and the line will flatten out as it gets closer to the maximal velocity (Figure 4).

Figure 4 – Graphical scheme of sigmoidal kinetics.

 Convex, resulting from substrate inhibition where a hyperbolic-type curve is 

apparent at low concentrations, but there is no clearly defined plateau at high 

substrate concentrations and rates decrease as substrate concentrations are 

further increased. Substrate inhibition happens when two substrate molecules 

bind to the active site at the same time. They can only do this by approaching the 

active site in a fashion which prevents either of them from positioning itself in 

such a way that the enzyme can attack it. As long as both substrate molecules 

are attached to the active site the enzyme is effectively inactive, and therefore 

inhibited. For this process to occur, the second substrate must approach the 

active site very rapidly after the first, otherwise the first substrate would quickly 
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attain the correct catalytic placement. As collisions between enzyme and 

substrate are completely random, this is only likely to occur at high substrate 

concentrations when the frequency of random collisions is greatly increased, so 

inhibition is only seen in the presence of excess substrate (Figure 5).

Figure 5 – Graphical scheme of substrate inhibition kinetics.

It is important not to underestimate these deviations as they may be possible 

constrains on the extrapolation of in vitro data on drug biotransformation to predict      

in vivo pharmacokinetic characteristics, such as metabolic stability and inhibitory drug 

interaction potential.   
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2.3 Pathways of Biotransformation

Pathways of biotransformation have been classified under the headings of 

Phase I and Phase II reactions. Phase I reactions involve oxidation, reduction and 

hydrolysis, and result in the exposure or introduction of a functional group (-OH, -NH2, 

-SH or -COOH) and usually result in only a small increase in the hydrophilicity. Many 

of the metabolites formed are then able to participate in a subsequent biotransformation 

process, Phase II biotransformation, in which a polar hydrophilic moiety, such as 

glucuronic acid, sulfonate or amino acid is covalently linked – or conjugated – to the 

functional group introduced in phase I reaction. The usual overall result of these 

processes is the production of metabolites with progressively greater water-solubility, 

which facilitates their removal from the body. 

Many drugs undergo a series of biotransformation and the combination of 

consecutive phase I and phase II reactions can produce a complex array of metabolites. 

Drugs already containing appropriate functional groups can undergo phase II reactions 

without the need of phase I biotransformation. For example, morphine is converted to 

morphine-3-glucuronide by directly conjugating with glucuronic acid. 

In some cases, phase I metabolites may not be detected, owing to their instability 

or high chemical reactivity. The latter type are often electrophilic substances, or reactive 

intermediates, which frequently react non-enzymatically as well as enzymatically with 

conjugating nucleophiles to produce a phase II metabolite. A common example of this 

type is the oxidative biotransformation of an aromatic ring and conjugation of the 

resulting arene oxide (epoxide) with the tripeptide glutathione. Detection of metabolites 

from this pathway often points to the formation of precursor reactive electrophilic  

phase I metabolites, whose existence is nonetheless only inferred. 
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   2.3.1 Phase I biotransformation reactions

2.3.1.1 Oxidation

 Cytochrome P450 – the microsomal mixed-function oxidase (MFO)

Among phase I biotransforming enzymes, the cytochrome P450 ranks first in terms 

of catalytic versatility and the sheer number of xenobiotics it detoxifies or activates to 

reactive intermediates. The MFO system is found at the highest concentrations in the 

liver endoplasmic reticulum (microsomes) but cytochrome P450 enzymes are present in 

virtually all tissues, except striated muscle and erythrocytes. 

Microsomal cytochrome P450 is a two-enzyme complex of NADPH-cytochrome P450 

reductase and cytochrome P450. During the MFO reaction, reducing equivalents 

derived from NADPH H+ are consumed and one atom of molecular oxygen is 

incorporated in the metabolite and the other atom of oxygen is reduced to the level of 

water (Figure 6 and 7).

     NADPH H+ + O2 + RH NADP+ + H2O + ROH

Figure 6 – Scheme of oxidation catalyzed by cytochrome P450. RH represents an oxidisable drug and 

ROH is the hydroxylated metabolite.

Figure 7 - Catalytic cycle of cytochrome P450. Taken from Gibson and Skett, 2001. 

Cytochrome P450
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Cytochrome P450 is classified as a heme-containing enzyme (a hemoprotein) 

with iron protoporphyrin IX as the prosthetic group. This prosthetic group is common to 

other hemoproteins, but with substantially different biological functions, such as 

hemoglobin and myoglobin (oxygen transport proteins).  Spectrally, it is a b-type 

cytochrome, but an unusual one in that it readily reacts with small molecular weight 

ligands and the spectral absorbance maximum of the ferrous-carbon monoxide adduct is 

450 nm, as compared to around 420 nm for the majority of other hemoproteins. 

The heme of the cytochrome is non-covalently bound to the apoprotein and the 

name cytochrome P450 is derived from the fact that the cytochrome (or pigment) 

exhibits the above mentioned spectral absorbance maximum at 450 nm when reduced 

(Fe2+-heme) and complexed with carbon monoxide. The hemoprotein serves at the locus 

for oxygen binding/activation – and the binding site for some, but not all, drugs – and in 

conjunction with its associated flavoprotein reductase – NADPH-cytochrome 

P450reductase – undergoes cyclic reduction/oxidation if the heme iron that is 

mandatory for its catalytic activity.

Cytochrome P450 is not a single enzyme, but rather consists of a family of 

closely related isoforms embedded in the membrane of the endoplasmic reticulum and 

exists as multiple forms of monomeric molecular weight of approximately 45-55 kDa. 

They are denoted as CYP (cytochrome P450) and classified in the basis of their amino 

acid sequences and divided into gene families and gene sub-families. For example, 

CYP3A4 uniquely describes only one particular gene encoding a specific protein, and it 

is the fourth gene to have been completely sequenced in the 3A sub-family (Gibson & 

Skett 2001).

Cytochromes P450 play a key role in the biotransformation of a great range of drugs 

and other xenobiotics and it has been demonstrated its participation in endogenous 
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metabolism, especially in the metabolism of lipophilic compounds such as the 

conversion of cholesterol to bile acids, fatty acids to eicosanoids and others (Lewis 

2001).

 Flavin Monooxygenases (FMO)

Flavin-containing monooxygenases – FMO – constitute a multi-gene family of 

xenobiotic-biotransforming enzymes. The FMOs are polymeric proteins exhibiting a 

monomeric molecular weight of approximately 65 kDa and contain one mole of FAD 

per mole of protein monomer, hence the name FAD-containing monooxygenase. Like 

cytochrome P450, FMO are microsomal enzymes that require NADH or NADPH as 

source of reducing equivalents (being the latest the preferred cofactor) and molecular 

oxygen O2, to catalyse the oxygenation of nucleophilic nitrogen, sulfur, phosphorous 

and selenium atoms in a range of structurally diverse compounds. FMO have been 

implicated in the biotransformation of a number of drugs, pesticides and toxicants 

(Lawton et al. 1994, Gibson & Skett 2001).

NAD(P)H H+ + O2 + RN NAD(P)+ + H2O + RN-O

Figure 8 – Scheme of oxidation catalyzed by FMO. RN is an oxidisable, amine-containing substrate and 

RN-O is the N-oxidised metabolite.

Five mammalian forms of FMOs are now known and have been designated 

FMO1-FMO5, being FMO3 the major flavin monooxygenase in human liver 

microsomes (Cashman et al. 1999).

FMOs also play a major role in hepatic N- and S-oxidation of various 

endogenous compounds. FMOs are responsible in large part for the oxidation of the 

volatile odorous sulfur and nitrogen metabolites produced during the metabolism of 

FMO
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dietary methionine and choline by intestinal microflora, to non-volatile hydrophilic 

metabolites, which are excreted predominantly in urine without any aroma. When the 

liver fails to oxidise the absorbed volatile substances and allows them to escape via 

breath, sweat and urine, foetor hepaticus, fish-odour syndrome or trimethylaminuria

may occur (Morgan et al. 2001). 

Figure 9 - Catalytic cycle of flavin monooxygenase. Taken from Williams and Lemke, 2002.

 Other oxidation enzymes

A number of enzymes in the body not related to cytochrome P450 can oxidise 

drugs. Most of these enzymes are primarily involved in endogenous compounds 

metabolism although some of them are more intimately involved in drug 

biotransformation. These enzymes can be found in cytosol, mitochondria and 

microsomes and may require NADPH and/or NADH as source of reducing equivalents 

(Testa 1995). 

 Alcohol and aldehyde dehydrogenase: oxidation of alcohols, aldehydes and 

ketones (Agarwal & Goedde 1992);
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 Monoamine, diamine and polyamine oxidase (MAO, DAO, PAO): oxidative 

deamination of primary, secondary and tertiary amines (Benedetti & Dostert 

1994);

 Cyclooxygenase and peroxidase: peroxidase-dependent cooxidation (Eling at al.

1990);

 Xanthine oxidase, aldehyde oxidase, superoxide dismutase and others.

2.3.1.2 Reduction

Reduction plays an important role in xenobiotic biotransformation and the 

enzymes catalyzing reduction are located mainly in the membrane of the smooth 

endoplasmic reticulum and cytosol. The intestinal microflora also possesses an 

important reduction potential.

These reactions require NADH or NADPH as cofactors, but are generally 

inhibited by oxygen, unlike the MFO system reactions, which require oxygen.

Certain metals (e.g. pentavalent arsenic) and xenobiotics containing aldehyde, ketone, 

disulfide, sulfoxide, quinone, N-oxide, alkene, azo, or nitro group are often reduced     

in vivo.

The most important enzymatic systems responsible for reduction of the carbonyl 

group xenobiotics include SDR and AKR.

SDR or short-chain dehydrogenases/reductases are one-domain NADPH-

dependent enzymes of typically 250 amino acid residues. SDRs are defined by distinct, 

common sequence motifs but constitute a functionally heterogeneous superfamily of 

enzymes with about 3000 known forms, including species variants. They display a wide 

substrate spectrum, ranging from steroids, alcohols, sugars and aromatic compounds to 

xenobiotics.
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Using the defined sequence motifs as queries, 37 distinct human members of the 

SDR family can be retrieved. The functional assignments of these forms fall minimally 

into three main groups, enzymes involved in intermediary metabolism, enzymes 

participating in lipid hormone and mediator metabolism, and open reading frames 

(ORF) of yet undeciphered function (Oppermann 2001, Karlberg 2002).

AKR or aldo-keto reductases are a superfamily of cytosolic, monomeric 

proteins that catalyze mainly the NADPH dependent reduction. Within the range of 

substrates of AKRs are different steroids that are metabolized by hydroxysteroid 

dehydrogenases and some stereospecific double bond reductases.

Among the AKR superfamily, several groups of enzymes with related structure 

and function have been established. To date, more than 150 AKR proteins from 

bacteria, yeast, plants, invertebrates and vertebrates have been identified and form 15 

families. Mammalian AKRs (13 enzymes) are distributed between three major families, 

AKR1, AKR6 and AKR7. Among the different AKR superfamily groups, the aldose 

reductase (AR), aldehyde reductase, and hydroxysteroid dehydrogenase (HSD) families 

have been profoundly characterized in mammals. The AR family has been suggested to 

be involved in the development of secondary diabetic complications because of its 

ability to reduce glucose to sorbitol, a hyperosmotic compound. Other roles in aldehyde 

detoxification, osmotic homeostasis, steroid conversion, and catecholamine metabolism 

have been also proposed for ARs (Crosas 2001, Gravidia 2002, Spite 2007).

2.3.1.3 Hydrolysis 

Mammals contain a variety of hydrolytic enzymes that hydrolyze xenobiotics 

containing such functional groups as carboxylic acid ester, amide, thioester, phosphoric 

acid ester and acid anhydride. 
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Hydrolytic enzymes are present in blood plasma, erythrocytes and various 

tissues. As examples of hydrolytic enzymes, it is possible to name carboxyesterases, 

cholinesterases and organophosphatases (Casarett & Doull 2001).

   2.3.2 Phase II biotransformation reactions

Phase II biotransformation reactions include glucuronidation, sulfonation (more 

commonly called sulfation), acetylation, methylation, conjugation with glutathione and 

conjugation with amino acids. 

The cofactors for these reactions react with functional groups that are either 

present on the xenobiotic or are introduced/exposed during phase I biotransformation. 

With the exception of methylation and acetylation, phase II biotransformation 

reactions result in a large increase in xenobiotic hydrophilicity, so they greatly promote 

the excretion of foreign chemicals. 

Glucuronidation, sulfation, acetylation and methylation involve reactions with 

activated or “high-energy” cofactors, whereas conjugation with amino acids or 

glutathione involves reactions with activated xenobiotics. 

Most of phase II biotransforming enzymes are located in the cytosol, except for 

the enzymes catalysing the conjugation with glucuronic acid, which are microsomal 

enzymes.

Phase II reactions generally proceed much faster than phase I reactions, such as 

those catalyzed by cytochrome P450. Therefore, the rate of elimination of xenobiotics 

whose excretion depends on biotransformation by cytochrome P450 followed by    

phase II conjugation is generally determined by the first reaction. 
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2.3.2.1 Glucuronidation

Glucuronidation is a major pathway for the inactivation and excretion of both 

endogenous compounds such as bilirubin and steroids as well as a multitude of 

xenobiotic compounds including drugs, carcinogens and others environmental 

pollutants.

The readily available supply of the required cofactor uridine diphosphate 

glucuronic acid (UDPGA) and the ubiquitous nature of the enzyme, UDP-

glucuronosyltransferase (UGT) contribute to the importance of glucuronidation as a 

main biotransformation reaction.

Figure 10 – Chemical structure of UDPGA.

UGTs are a family of membrane-bound enzymes of the endoplasmic reticulum. 

Many different genes and pseudogenes have been identified in the UGT superfamily 

and are subdivided into the UGT1A and UGT2B families based on sequence identity 

(Kuehl 2005).

Glucuronide formation is quantitatively the most important conjugation for 

drugs and endogenous compounds (e.g. bilirubin, some steroid hormones) containing an 

electron-rich nucleophilic heteroatom as O, N or S. Therefore, substrates for 

glucuronidation contain such functional groups as aliphatic, alcohols and phenols 
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(which form O-glucuronide ethers), carboxylic acids (which form O-glucuronide 

esters), primary and secondary aromatic and aliphatic amines (which form                   

N-glucuronides) and free sulfhydryl groups (which form S-glucuronides). 

Glucuronide conjugates of xenobiotics and endogenous compounds are polar, 

water-soluble conjugates that are eliminated from the body in urine or bile, depending 

on the size of the aglycone. 

The cofactor for glucuronidation is synthesized from glucose-1-phosphate, and 

the linkage between glucuronic acid and UDP has an α-configuration. This 

configuration protects the cofactor from hydrolysis by β-glucuronidase. However, 

glucuronides of xenobiotics have a β-configuration. This inversion of configuration 

occurs because glucuronides are formed by nucleophilic attack by an electron-rich atom 

(O, N or S) on UDP-glucuronic acid, and this attack occurs on the opposite site of the 

linkage between glucuronic acid and UDP. For this reason, conjugates of xenobiotics 

with glucuronic acid are substrates for β-glucuronidase (mainly in the intestinal 

microflora), releasing the aglycone, which can be reabsorbed and enter enterohepatic 

circulation, which delays the elimination of the xenobiotic (Sahidan et al. 1994, Casarett 

& Doull 2001, Williams & Lemke 2002, Kuehl et al. 2005).

2.3.2.2 Sulfation

Conjugation of many xenobiotics, drugs and endogenous compounds with a 

sulfonate moiety is an important reaction in their biotransformation.

The major physiologic consequences of the conjugation of a drug or xenobiotic 

with a charged sulfonate moiety are increased aqueous solubility and excretion. 

Although the major role of sulfation is in decreasing the biological activity of a 

compound, in some instances sulfate conjugation results in the bioactivation of a 



28

compound to a reactive electrophilic species that is capable of covalently binding DNA 

and causing a mutagenic, teratogenic or carcinogenic response.

The reaction is catalyzed by sulfotransferase – ST - a large multigene family 

enzymes found primarily in the liver, kidney and intestinal tract. The cofactor for the 

reaction is 3’-phosphoadenosine-5’-phosphosulfate (PAPS), which provides the 

“active sulfate”.

Figure 11 – Chemical structure of PAPS.

Sulfation involves the transfer of sulfonate, not sulfate, i.e., SO3
- not SO4

- , from 

PAPS to the xenobiotic. The conjugation reaction involves nucleophilic attack of 

oxygen or nitrogen on the electrophilic sulfur atom in PAPS with cleavage of the 

phosphosulfate bond. 

Two distinct families of STs have been identified and characterized in human 

and animal tissues. These two families are the cytosolic STs, which are generally 

associated with drug and xenobiotic metabolism, and the membrane-bound STs 

localized in the Golgi apparatus of most cells. Several forms of membrane-bound STs 

are responsible for the sulfation of glycosaminoglycans, glycoproteins, and tyrosines in 

proteins and peptides in the Golgi apparatus of most cells.
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Sulfation has long been recognized as an important reaction in the synthesis, 

transport, and metabolism of steroids in human tissues. Sulfate conjugation has an 

important role in decreasing the biological activity of steroids because steroid sulfates 

are not capable of binding and activating the appropriate steroid receptors.

Bile acid sulfation in the liver is an important mechanism for decreasing the 

toxicity and increasing the solubility of secondary bile acids such as lithocholic acid and 

chenodeoxycholic acid, especially during cholestasis when bile acid concentrations 

increase. Secondary bile acids are formed by bacteria in the intestine from primary bile 

acids secreted by the liver into the bile. Secondary bile acids are absorbed from the 

intestines into the portal circulation, and unless conjugated with amino acids, sulfated or 

glucuronidated, they have a detergent-like effect on hepatocytes (Falany 1997, Glatt 

1997, Klassen & Boles 1997).
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2.3.2.3 Glutathione Conjugation

Glutathione conjugation inactivates xenobiotic metabolites that are toxic to cells 

such as liver and kidney cells.

It is a non-specific reaction involving the combination of an electrophilic 

compound with the tripeptide glutathione – GSH, which is comprised of glycine, 

cysteine and glutamic acid - found in almost all tissues. 

Figure 12 – Chemical structure of Glutathione.

Substrates for glutathione conjugation include an enormous array of electrophilic 

xenobiotics or xenobiotics that can be biotransformed to electrophiles.

Glutathione conjugates are thioethers, formed by nucleophilic attack of 

glutathione thiolate anion – GS- - with an electrophilic carbon atom in the xenobiotic. 

Glutathione can also conjugate xenobiotics containing electrophilic heteroatoms – O, N, 

and S.

The conjugation of xenobiotics with glutathione is catalyzed by a family of 

glutathione S-transferases – GST – which represent a major group of detoxification 

enzymes. These enzymes are present in most tissues with high concentrations in the 

liver, intestine, kidney where they are located in the cytoplasm (> 95%) and 

endoplasmic reticulum (< 5%). All eukaryotic species possess multiple cytosolic and 
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membrane-bound GST isoenzymes, each of which displaying distinct catalytic as well 

as noncatalytic binding properties: the cytosolic enzymes are encoded by at least five 

distantly related gene families, whereas the membrane-bound enzymes, microsomal 

GST and leukotriene C4 synthetase, are encoded by single genes and both have arisen 

separately from the soluble GST. Evidence suggests that the level of expression of GST 

is a crucial factor in determining the sensitivity of cells to a broad spectrum of toxic 

chemicals and the individual isoenzymes contribute to resistance to carcinogens, 

antitumor drugs, environmental pollutants and products of oxidative stress. The most 

abundant mammalian GSTs are the class alpha, mu, and pi enzymes and their 

regulation has been studied in detail. The biological control of these families is complex 

as they exhibit sex-, age-, tissue-, species-, and tumour-specific patterns of expression. 

In addition, GSTs are regulated by a structurally diverse range of xenobiotics 

and, to date, at least 100 chemicals that induce GSTs have been identified; a significant 

number of these chemical inducers occur naturally and, as they are found as non-

nutrient components in vegetables and citrus fruits, it is apparent that humans are likely 

to be exposed regularly to such compounds. It also appears probable that GSTs are 

regulated in vivo by reactive oxygen species (ROS), because not only are some of the 

most potent inducers capable of generating free radicals by redox-cycling, but H2O2 has 

been shown to induce GST in plant and mammalian cells: induction of GST by ROS 

would appear to represent an adaptive response as these enzymes detoxify some of the 

toxic carbonyl-, peroxide-, and epoxide-containing metabolites produced within the cell 

by oxidative stress.

Glutathione conjugates formed in the liver can be excreted intact in bile or they 

can be converted to mercapturic acids in the kidney and excreted in urine. The 

conversion of glutathione conjugates to mercapturic acids involves the sequential 
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cleavage of glutamic acid and glycine from the glutathione moiety, followed by          

N-acetylation of the resulting cysteine conjugate (Hayes & Pulford 1995, Pandit 2007). 

2.3.2.4 Methylation

Methyl conjugation of endogenous substrates such as histamine, amino acids, 

proteins, carbohydrates and polyamine is an important process in the regulation of 

normal cellular metabolism and accounts for the presence of this activity in mammalian 

cells. 

However, it is generally a minor pathway of xenobiotic biotransformation. Only 

when a xenobiotic fits the requirements for the enzymes involved in these normal 

reactions does methylation become important in the biotransformation of foreign 

compounds.

The most important route by which xenobiotics can be methylated involves 

methyltransferase-catalyzed methylation that requires S-adenosylmethionine – SAM

– as cofactor. Most biological methylations require SAM as the methyl donor. SAM is 

produced from L-methionine and ATP.

Figure 13 – Chemical structure of SAM.
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The methyl group bound to the sulfonium ion in SAM has the characteristics of 

a carbonium ion and is transferred to xenobiotics and endogenous substrates by 

nucleophilic attack from an electron-rich heteroatom (O, N or S). During methylation 

reactions, SAM is converted to S-adenosylhomocysteine. 

The non-specific N-methyltransferase is a soluble enzyme, playing an 

important role at lungs level and it is responsible for the methylation of xenobiotics as 

most of the methyltranseferases are specific for endogenous compounds.

The O-methylation of phenols is catalyzed by two different enzymes known as      

phenol-O-methyltransferase – POMT – and catechol-O-methyltransferase –

COMT. POMT is a microsomal enzyme that methylates phenols but not catechols and 

COMT is both a cytosolic and microsomal enzyme with the converse substrate 

specificity. Substrates for COMT include several catecholamine neurotransmitters, such 

as epinephrine, noreepinephrine and dopamine and catechol drugs, such as L-dopa and 

methyldopa.

Methylation reactions can be stereoselective. For example, the (+)-R-enantiomer 

of nicotine is preferentially methylated over the (-)-S-enantiomer. 

Methylation differs from conjugation processes as the products formed by methyl 

conjugation have the same or greater pharmacologic activity than the parent compound 

(Weinshilboum 1984, 1992).
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2.3.2.5 Acetylation

Acetylation reactions are common for aromatic amines and sulfonamides. Like 

methylation, N-acetylation masks an amide with a nonionizable group, so that many   

N-acetylated metabolites are less water soluble than the parent compound. Nevertheless, 

N-acetylation of certain xenobiotics such as isoniazide, facilitates their urinary 

excretion. 

The reaction involves the transfer of an acetyl group from the cofactor                  

acetyl-coenzyme A – acetyl CoA – and it is catalyzed by N-acetyltransferases. It 

occurs in two sequential steps: in the first step, the acetyl group from acetyl-CoA is 

transferred to an active site cysteine residue within an N-acetyltransferase with release 

of coenzyme A; in the second step, the acetyl group is transferred from the acetylated 

enzyme to the amino group of the substrate with regeneration of the enzyme. 

Figure 14 – Chemical structure of Acetyl CoA.

N-acetyltransferases are cytosolic enzymes found in the liver and many other 

tissues. In contrast to other xenobiotic-transforming enzymes, the number of                

N-acetyltransferases is limited. Some species, including humans, express only two      

N-acetyltransferases, known as NAT1 and NAT2.
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Genetic polymorphisms for N-acetylation have been documented in several 

species. It has been established the existence of slow and fast acetylators.

The acetylation polymorphism is one of the most common inherited variations in 

the biotransformation of drugs and chemicals. Its association with drug toxicity and an 

increased risk to develop certain cancers has made it one of the oldest and best-studied 

examples of a pharmacogenetic condition. Forty to 70% of Caucasians in Europe and 

North America are of the "slow acetylator" phenotype and are less efficient than "rapid 

acetylators" in the metabolism of numerous drugs and chemicals containing primary 

aromatic amine or hydrazine groups. These include agents such as isoniazid, 

sulfamethazine (SMZ) and other sulfonamides, procainamide, hydralazine, dapsone, and 

caffeine, as well as several chemicals with carcinogenic potential such as benzidine,    

2-aminofluorene, and f-naphthylamine, present in dyes, antioxidants, pesticides, and 

explosives. Highly mutagenic and carcinogenic arylamines also are generated during 

cooking of food. Slow acetylators are at higher risk to develop bladder cancer, whereas 

rapid acetylators are at higher risk for colorectal cancer (Blum et al. 1991, Casarett and 

Doull 2001).
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2.3.2.6 Amino Acid Conjugation

Xenobiotics containing a carboxylic acid group can be conjugated with the 

amino group of amino acids such as glycine, glutamine and taurine, as well as 

ornithine, arginine, histidine, among others. The specific amino acid involved in the 

conjugation is both species and xenobiotic-dependent.

Figure 15 – Chemical structures of amino acids: A-taurine; B-glycine; C-glutamine.

The mechanism of amino acid conjugation involves three steps. The carboxylic 

acid is first activated by ATP to the AMP ester, which is converted to the corresponding 

coenzyme A thioester with CoASH; these first two steps are catalyzed by                  

acyl CoA synthetases (long-chain fatty acid-CoA ligases). The appropriate        

amino acid:N-acyltransferase then catalyzes the condensation of the amino acid and 

coenzyme A thioester to give the amino acid conjugate. The conjugation does not take 

place with the AMP ester directly because the AMP ester hydrolyzes readily.

The ability of xenobiotics to undergo amino acid conjugation depends on steric 

hindrance around the carboxylic acid group and by substituents on the aromatic ring or 

aliphatic side chain. In some species, such as rats, the major pathway of phenylacetic 

acid biotransformation is amino acid conjugation. 

Bile acids are endogenous substrates for glycine and taurine conjugation. 

However, the activation of bile acids to an acyl-CoA thioester is catalyzed by a 
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microsomal enzyme, cholyl-CoA synthetase and conjugation with glycine or taurine is 

catalyzed by a single cytosolic enzyme, bile acid-CoA:amino acid N-acyltransferase.

In contrast, the activation of xenobiotics occurs mainly in mitochondria, which appear 

to contain multiple acyl-CoA synthetases. The formation of the amino acid conjugate is 

catalyzed by cytosolic and/or mitochondrial forms of N-acyltransferase. 

Another important difference between the amino acid conjugates of xenobiotics 

and bile acids is their route of elimination: bile acids are secreted into bile whereas 

amino acid conjugates of xenobiotics are eliminated primarily in urine (Casarett & 

Doull 2001).
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2.4 Stereochemical aspects of Biotransformation

   2.4.1 Chirality

The concept of chirality has been known in chemistry since the 1870’s although 

it would be nearly a hundred years before chemists began using this term. 

In extremely simple terms, chirality is handedness – that is, the existence of 

left/right opposition. For example, the left hand and the right hand are mirror images 

and therefore chiral. The term chiral is derived from the Greek kheir meaning hand and 

apparently was coined by Lord Kelvin in his Baltimore Lectures on Molecular 

Dynamics and the Wave Theory of Light in which he stated: …” I call any geometrical 

figure, or group of points, chiral, and say it has chirality, if its image in a plane mirror, 

ideally realized, cannot be bought to coincide to itself.”

Chiral molecules must not have an internal plane of symmetry and they must 

have a stereocenter. The two non-superimposable, mirror-images forms of chiral 

molecules are referred to as enantiomers. Chiral compounds exhibit optical activity, so 

enantiomers are also sometimes called optical isomers. The ability to rotate plane 

polarized light by equal amounts, but in opposite directions differentiates the pair of 

enantiomers, which have identical physical and physical-chemical properties - one 

isomer rotates this light “x” number of degrees to the right while the other isomer of the 

pair rotates this light to the left for the same number of degrees. A 50/50 mixture of the 

two enantiomers of a chiral compound is called racemic mixture and does not exhibit 

optical activity.

The majority of bioorganic molecules are chiral; living organisms, for example, 

are built of chiral compounds such as amino acids, sugars, proteins and nucleic acids. In 

nature, these biomolecules exist in only one of the two possible enantiomeric forms: 

sugars, like glucose, occur in the D-form, while amino acids are found in the L-form. 
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   2.4.2 Chirality and Bioactivity

Many xenobiotics, especially drugs, are chiral compounds and the pure 

enantiomers often show different pharmacodynamic and pharmacokinetic behaviour.

 Pharmacological activity and biotransformation usually require interaction of 

the drug with specific receptors or enzymes, which can be extremely chiral selective, or 

stereoselective, according to the steric configuration at the site of interaction. In this 

way, the enzymes will interact with each racemic drug differently and metabolize each 

enantiomer by a separate pathway to produce different pharmacological activity. Thus, 

and very often, one isomer may possess the desired therapeutic property whilst the other 

isomer may be inert, completely different in its pharmacological activity or even toxic 

(Mitchell 1998). As an example, report to the tragic case of the 1960’s, when the 

sedative Thalidomide was marketed as a racemate. Its therapeutic activity resided 

exclusively in the (+)-(R)-enantiomer. Only after the birth of thousands of malformed 

babies, it was discovered that the (-)-(S)-enantiomer was teratogenic. In fact, neglect of 

stereochemistry in drug development was widespread until the middle of the 1980’s, 

when E. J. Ariens wrote his review and stereochemistry achieved a prominent place in 

drug design. 
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2.5 Analytical assessment

   2.5.1 High-Performance Liquid Chromatography

High-Performance Liquid Chromatography – HPLC – is now firmly 

established as the premier technique for the analysis and purification of a wide range of 

molecules. 

The enormous success of HPLC can be attributed to a number of inherent 

features associated with reproducibility, ease of selectivity manipulation and generally 

high recoveries. The most significant feature is the excellent resolution that can be 

achieved under a wide range of conditions for very closely related molecules, as well as 

structurally quite distinct molecules. This aspect arises from the fact that all interactive 

modes of chromatography are based on recognition forces that can be subtly 

manipulated through changes in the elution conditions that are specific for the particular 

mode of chromatography (Aguilar 2004).

In HPLC, the analyst has a wide choice of chromatographic separation 

methodologies, ranging from normal to reverse phase, affinity ion exchange and a 

whole range of mobile phases using isocratic or gradient elution techniques. Various 

detectors are also available for HPLC, including electrochemical (ECD), refractive 

index (IR), fluorescence, radiochemical and mass-sensitive detectors, although by far, 

the most popular remains the UV detector. This diversity of modes of separation and 

detection makes HPLC suitable for the analysis of a wide range of compounds in the 

pharmaceutical and biochemical industries. 

Essentially, HPLC is a technique that enables the separation of the components 

of a mixture by virtue of their differential distribution between the mobile (liquid) phase 

and the stationary (solid) phase. Migration of a solute component can only occur while 

it is dissolved in the mobile phase. Thus, solutes that have a high distribution into the 
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stationary phase will elute more slowly that those that distribute more readily into the 

mobile phase and the two will therefore undergo chromatographic separation.

In HPLC, the sample is injected by means of an injection port into the mobile 

phase stream delivered by the high-pressure pump and transported through the column 

where the separation takes place. The separation is monitored with a flow through the 

detector (Niessen 2006).

Separation of the different components can be achieved by a variety of modes, 

namely normal phase chromatography, reverse phase chromatography and ion exchange 

chromatography, which will be briefly explained.

2.5.1.1 Normal Phase 

It is carried out on polar stationary phases. The traditional stationary phases are 

silica and alumina, in which hydroxyl groups are involved in the interactions with 

solvent and solute molecules. Cyano, diol and amino bonded phases are preferable due 

to their greater stability. The mobile phase consists of a non-polar solvent, usually 

hexane or heptane and a polar modifier such as a short-chain alcohol or 

dichloromethane. There are two possible interactions by which the solute can be 

retained: displacement of solvent molecules or sorption of solute molecules, although in 

practice may occur the combination of both these processes. The retention of solutes on 

normal phase columns decreases with polarity.
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2.5.1.2 Reverse Phase (RP)  

In this type of chromatography, the conditions applied are, as the name implies, 

the reverse of that of a normal phase chromatography. The stationary phase is non-polar 

and is prepared by chemically bonding a relatively non-polar group onto the silica. The 

most frequent non-polar group bonded to the stationary support is octadecylsilane –

ODS or C18 – which gives a highly lipophilic stationary phase. In RP-chromatography 

the components are separated according to their relative partition coefficients between 

the mobile and the stationary phases. Highly lipophilic non-polar solutes will be better 

retained by the stationary phase and hence have longer retention times. In contrast, polar 

molecules will be less retained. The mobile phase is polar, generally consisting of water 

and a water miscible organic solvent, such as methanol or acetonitrile.

2.5.1.3 Ion exchange

The stationary phase for ion exchange chromatography is generally silica 

chemically bonded with anionic or cationic groups, usually aminopropyl, tetra-

alkylammonium or sulfonic acid groups. The molecules are separated on the basis of 

their molecular charge on the principle of opposite charges attracting each other, i.e. 

cations would be retained on a negatively charged phase and vice versa. Resolution is 

influenced by pH and by the ionic strength of the buffer (Venn 2000).
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Figure 16 - Example of a HPLC system.

   2.5.2 LC-MS – Liquid Chromatography-Mass Spectrometry

One of the areas of interest in recent years has been in the use of coupled 

detectors, where the output of the column is connected directly to a detector, which can 

provide additional structure or identification information on the analyte. These detectors 

are usually well established and wisely used as stand-alone analytical instruments. In 

recent years, an increasing interest has been seen in these information-rich detection 

methods, especially LC-MS. 

Mass spectrometry – MS – is a very sensitive detection method which can 

provide mass and structural information (Heftmann 2004).

2.5.2.1 Ionization

Perhaps the most widely accepted technique is electrospray ionization or ESI, 

where a solution of the sample is sprayed through a metal capillary held at high 

potential, assisted by a gas (typically nitrogen). This produces a spray of charged 

droplets, from which the solvent is evaporated, leaving gas-phase ions that will be 

subsequently analysed. The key advantages of ESI are that volatility of the sample is not 
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required, as it only needs to be soluble in a solvent to the extent of a few ppm, and it 

allows the investigation of positive and negative ions equally well (MacKay et al.

2002).

2.6 Solid Phase Extraction

Solid phase extraction – SPE - is a technique designed for rapid and selective 

sample preparation and purification prior to chromatographic analysis.  

It is used to isolate and concentrate selected analytes from a liquid, fluid or gas 

by their interaction and transfer to a solid phase. After physical separation of the sorbent 

and sample medium, the analytes are recovered by liquid or fluid elution, or by thermal 

desorption. In addition, sorbent immobilization provides a mechanism for matrix 

simplification using selective desorption to remove co-extracted matrix components 

without displacing the analytes of interest. SPE provides the sample clean-up, recovery, 

and concentration necessary for accurate quantitative analysis. 

SPE uses the same type of stationary phases as are used in liquid 

chromatography columns which is contained in a glass or plastic column above a frit or 

glass wool. The column might have a frit on top of the stationary phase and might also 

have a stopcock to control the flow of solvent through the column. 

Commercially available SPE cartridges have 1-10 ml capacities and are discarded after 

use.
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Figure 17 – Examples of SPE cartridges.

The picture below shows 1 ml cartridges on a vacuum manifold, which increases 

the solvent flow rate through the cartridge. Collection tubes are placed beneath the SPE 

cartridges (inside the vacuum manifold for the example in the picture) to collect the 

liquid that passes through the column.

Figure 18 – Example of SPE manifold.
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Similarly to liquid chromatography, we can distinguish three main types of SPE:

 Reverse phase – this type of separation involves a polar or moderately polar 

sample matrix (mobile phase) and a nonpolar stationary phase, such as alkyl- or 

aryl- bonded silicas. The analyte of interest is typically mid- to nonpolar;

 Normal phase – it typically involves a polar analyte, a mid- to nonpolar matrix 

and a polar stationary phase, which include polar functionalized bonded silicas;

 Ion exchange – it can be used for compounds that are charged when in a 

solution, usually aqueous, but sometimes organic. Anionic compounds can be 

isolated on aminopropyl bonded silicas or quaternary amine bonded silicas with 

Cl- counterion. Cations can be isolated on sulfonic acid bonded silicas or 

carboxylic acid bonded silicas with Na+ counterion.

Shortly, the general procedure consists of loading a solution onto the SPE cartridge, 

washing away the undesired and interfering components with an appropriate washing 

solution, and then elution of the desired analytes with a proper solvent into a collection 

tube. The washing solution and the elution solvent must be chosen in accordance to the 

nature of the analyte and the type of SPE applied. 

Figure 19 – SPE elution steps.
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2.7 Non-Steroidal Anti-inflammatory Drugs

Non-steroidal anti-inflammatory drugs – NSAID - are among the most widely 

used pharmaceutical drugs. Although being a heterogeneous group of compounds, all of 

them have in common, to a certain extent, the therapeutic properties as well as the side 

effects. Their mechanism of action consists predominantly of the inhibition of 

cyclooxygenase – COX. 

COX is the enzyme that catalyzes the synthesis of prostaglandins, prime 

mediators of inflammation. COX is comprised of two isoenzymes: 

 COX-1, constitutive – it plays an important role in the synthesis of 

prostaglandines, which have physiological activity, for instance, at the level of 

the gastric mucosa;

 COX-2, induced form – its synthesis is activated during inflammation 

processes.

The mechanism of action of NSAIDs consists predominantly of the inhibition of 

both forms of cyclooxygenase and therefore they inhibit the synthesis of prostaglandins 

and tromboxanes (Vane & Botting 1998).

Selective inhibitors of COX-2 decrease the inflammation reaction without influence on 

COX-1.

NSAIDs are comprised of molecules with different structures, as depicted in 

Figure 20:
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Figure 20 – The diverse chemical groups of NSAIDs.
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The great majority of NSAIDs belong to the class of 2-arylpropionic acids     

(2-APA) or profens. 2-APAs are chiral compounds and their racemic forms can be 

resolved into R- and S-enantiomers with different pharmacokinetic and pharmacological 

behaviour (Mueller et al. 1990). A particular characteristic of the metabolism of this 

class of compounds is the ability to undergo unidirectional inversion of the R- to the    

S-enantiomer, via the formation of an acyl-coenzyme A thioester, a reaction which is 

both species and drug dependent (Caldwell et al. 1998, Hall & Xiaotao 1994, Brugger et 

al. 2001). This can be associated with an important pharmacological implication: it is 

suggested that the S-enantiomer is responsible for the anti-inflammatory activity, whilst 

the R-enantiomer has a minor (if any) contribution (Rhys-Williams et al. 1998). 

Nevertheless, the clinically used 2-APAs are marketed as racemates, being naproxen the 

exception and, more recently, ibuprofen and ketoprofen, which have been marketed as 

S-enantiomer formulations (Glowka & Karazniewicz 2004). 

Flobufen, the non-steroidal anti-inflammatory drug on which this project was 

focused, belongs to the group of aryloxobutyric acids, which are structurally related to 

the arylpropionic acids or profens.
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2.8 Flobufen

   2.8.1 Characteristics

Flobufen, 4-(2´,4´-difluorobiphenyl-4-yl)-2-methyl-4-oxobutanoic acid, 

FLO, is a derivative from -bifenyl--oxoalkanoic acid, together with fenbufen 

(Sunshine 1975), metbufen and itanoxon (Chanal et al. 1988) and belongs to the group 

of non-steroidal anti-inflammatory drugs. FLO arose on the 1980’s as a result of 

structure and effect optimization of arylacetic acid (Kuchař et al. 1980, 1988). The 

molecular formula is C17H16F2O3 of molecular weight Mr=304 and it is presented as a 

white crystal. Its structure is depicted in Figure 21. 

Figure 21 – Chemical structure of Flobufen. The * denotes the stereogenic centre.

FLO is a chiral molecule displaying one chiral centre and consequently exists in 

the form of two optical isomers: (+)-(R)-FLO and (-)-(S)-FLO. The fluorinated aromatic 

ring prevents undesired hydroxylation and, moreover, increases the lipophilicity of the 

drug (Kuchař et al. 1988).

FLO exhibits anti-inflammatory and anti-rheumatic activity, which results from 

the inhibition of enzymes necessary for the synthesis of the inflammation mediators, as 

are the prostaglandins, tromboxanes or leukotrienes. FLO can be characterized as a drug 

with combined inhibitory effect on 5-lipoxygenase and both forms of COX, although 

antagonist effects on LTB4 receptors can also be observed (Kuchař et al. 1995).
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FLO has demonstrated anti-inflammatory activity in standard models of 

inflammation in the rat. In the carrageenan paw edema assay, flobufen (10mg/kg p.o.) 

reduced the edema by 37% 1 h after carrageenan injection. Flobufen has a longer 

duration of action than fenbufen, reducing edema at 48 h after induction of 

inflammation (Fujitmoto 1999).

In addition to the anti-inflammatory activity, FLO also displays 

immunomodulatory properties, giving it a potential advantage over other NSAIDs. It 

has a profound anti-arthritic effect in the rat adjuvant arthritis, which seems the result of 

its anti-inflammatory and immunomodulatory characteristics: COX and 5-lipoxygenase 

inhibition, decrease of pro-inflammatory cytokine production and suppression of 

cellular immunity (Anonymous 2002).

Compared with other NSAIDs, FLO displays very good gastric tolerance. The 

low gastrotoxicity may be accounted to the combined inhibitory effect of prostaglandin 

and leukotriene production which retain the balance between protective prostaglandin 

and pro-ulcerous leukotriene effects (Anonymous 2002). 

   2.8.2 Biotransformation of Flobufen

Phase I biotransformation studies of FLO have been carried out. In vitro

experiments concerning different species – mouse, rat, guinea pig, rabbit, mini-pig and 

dog – found 4-dihydroflobufen, 4-(2´,4´-difluorobiphenyl-4-yl)-2-methyl-4-

hydroxybutanoic acid, DHF to be its major metabolite (Kvasničková et al. 1999, Wsól 

et al. 2001). DHF is further metabolized to a higher or lesser extent in hepatocytes 

(Wsól et al. 2001, Král et al. 2003, Skálová et al. 2003) and in vivo (Wsól et al. 2001, 

Král et al. 2004) into the final metabolite 2-(2´,4´-difluorobiphenyl-4-yl)-acetic acid, 

M17203, by a process similar to the -oxidation of fatty acids (Král et al. 2003), being 

this metabolite much more potent than FLO itself (Kuchař et al. 1998).
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Studies concerning the chiral aspects of phase I biotransformation of FLO have 

also been carried out, namely the stereochemical reduction of FLO into DHF in 

different species.

 In rat, the metabolism of (+)-(R)-FLO was found to be more extensive than the 

metabolism of (-)-(S)-FLO. The main metabolites present at microsomal level 

were determined to be (2R;4S)-DHF, arising exclusively from (+)-(R)-FLO and 

(2S;4S)-DHF, originating solely from (-)-(S)-FLO. In cytosol, the reduction of 

FLO into DHF was not detected. Assays on primary culture of hepatocytes 

showed that (2R;4S)-DHF was the main metabolite formed after incubation with 

rac-, (-)-(S)- and (+)-(R)-FLO, together with another metabolite, M17203 (Wsól 

et al. 2001).

 In vitro studies in guinea pig showed that, in opposite to rat, reduction of FLO 

into DHF occurred in microsomes as well as in cytosol, although to a more extent 

in the microsomes. The major metabolite in both sub-cellular fractions was found 

to be (2R;4S)-DHF and (2S;4S)-DHF, with the same substrate preference as 

observed in the rat. The main metabolite detected in primary culture of 

hepatocytes was, in similarity to rat, (2R;4S)-DHF. Moreover, it was also detected 

conversion of DHF stereoisomers (Král et al. 2004).

 Primary culture of human hepatocytes were incubated with rac-, (-)-(S)- and    

(+)-(R)-FLO and the main metabolite was found to be (2R;4S)-DHF. Inversion of 

(+)-(R)-FLO into (-)-(S)-FLO was observed. Moreover, (2S;4S)-DHF and 

(2S;4R)-DHF reoxidated into (-)-(S)-FLO. Among the formed DHF stereoisomers, 

two characteristic inversions occurred: (2R;4R)-DHF into (2S;4R)-DHF and 

(2S;4S)-DHF into (2R;4S)-DHF (Skálová et al. 2003).     
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The metabolism of FLO in man is distinct from that observed in other animal 

species, as the final metabolite is DHF, which does not undergo the transformation into 

M17203 (Skálová at al. 2003). From this point of view, the complex metabolic study of 

FLO concerning human use differs from the studies in rat. While the use of FLO in 

human medicine is still open, its unique properties are being applied in veterinary 

medicine for several years, since the Virbac Company from Carros, France, obtained the 

license for commercialisation of FLO.
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3. AIM OF THE PROJECT
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The aim of this project was to elucidate the Phase II Biotransformation of the NSAID 

Flobufen and/or its phase I metabolites.

Rat was chosen as the target animal species because both phase I metabolites of 

Flobufen, DHF and M17203, arise in this species. 

Hence, the main goals of this work were:

1. To determine which phase II biotransformation reactions could undergo the 

NSAID Flobufen, in vitro (incubations with microsomes, cytosol, mitochondria, 

isolated hepatocytes) and in vivo (urine and faeces);

2. To characterize the enantioselectivity of the conjugation reactions of Flobufen, 

in vitro, namely its glucuronidation;

3. To ascertain the phase II biotransformation of Flobufen metabolites, DHF and 

M17203, in vitro (microsomes, cytosol, mitochondria, isolated hepatocytes) and 

in vivo (urine and faeces);

4. To establish the full biotransformation pathway of Flobufen.
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4. EXPERIMENTAL
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In order to elucidate Phase II biotransformation of Flobufen and its metabolites 

in rat, several preliminary assays were performed, which led to a particular focus on two 

types of reactions:

 Glucuronidation of Flobufen and M17203 in vitro;

 Taurine Conjugation of M17203 in vivo and in vitro.
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4.1 Materials and Methods

In this section, the different experimental methods applied in this project are 

detailed. Firstly, the materials and methods which were common for both sets of 

experiments will be described, followed by a more specific characterization of the 

techniques involved in each conjugation reaction.

 Substrates 

The substrates standards, namely rac-FLO (R/S 50/50), (+)-(R)-FLO and (-)-(S)-FLO 

(optical purity > 99%), rac-DHF and M17203 were obtained from the Research Institute 

for Pharmacy and Biochemistry (Prague, Czech Republic), gently provided by            

Dr. Miroslav Kuchař. 

 Chemicals

Sigma-Aldrich (Prague, Czech Republic): UDPGA, acetyl-CoA, Ham F12 medium, 

William’s E medium, foetal calf serum, collagen;

ICN (USA): Glycine, glutamine, taurine and ATP; 

Riedel-deHaen (Germany): Dimethylsulfoxide (DMSO);

Merck (Prague, Czech Republic): Methanol and Acetonitrile (ACN) HPLC grade;

Lachema (Brno, Czech Republic): Ethylacetate (EA);

Sevapharma (Prague, Czech Republic): Collagenase 

Millipore (Prague, Czech Republic): Water from the Milli-Q-RG Ultra-Pure Water 

System.

All the other chemicals were of the highest purity commercially available. 
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 Animals

This work focused on the metabolism of Flobufen in male Wistar rats (Rattus 

norvegicus var. Alba, 12-14 weeks, BioTest, Konárovice, Czech Republic). The animals 

were housed under a 12 h light/dark cycle, on a standard rat chow with free access to tap 

water. 

All the experiments with the animals were carried out according to the Guide for the 

care and use of laboratory animals (Protection of Animals against Cruelty Act. No. 

246/92 Coll., Czech Republic).

 Solid phase extraction (SPE)

The SPE cartridges (Discovery DSC-18 LT 1.0 ml tube, 100 mg, Supelco, USA) were 

conditioned with 1.0 ml of methanol and 1.0 ml of monopotassium phosphate buffer 

(KH2PO4; pH 3.0; 25 mM). After loading the samples, the cartridges were rinsed with 

1 ml of KH2PO4 (pH 3.0; 25 mM) and the retained compounds were eluted with 1 ml of 

methanol. The samples were then evaporated to dryness (Concentrator 5103 from 

Eppendorf, Medesa, Policka, Czech Republic) and reconstituted in 10% ACN and 

90% water in a total volume of 150 l.

 Analytical Assessment

The analytical assessments were conducted on a Surveyor LC system equipped with a 

quaternary gradient pump, an autosampler, a PDA detector and a LCQ Advantage ion 

trap mass spectrometer (ThermoFinnigan, San Jose, CA, USA). 

For the purpose of semi-quantification analysis, the PDA detector was used whereas the 

LCQ Advantage ion trap mass spectrometer was used for identification of the 

conjugates. 
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Mass spectrometry experiments were performed using ESI operated in negative ion 

mode as positive ionization showed weak or no corresponding ion. The electrospray 

voltage was set at -4.5 kV. The capillary voltage was set at -10 V and the temperature 

was maintained at 200 °C. The LC column effluent was nebulized using N2 as sheath 

gas at the flow rate of 50 arbitrary units. The product ion spectra were produced by 

collision-induced dissociation (CID) of the selected precursor ions with He with the 

relative collision energy set at 25%. 

Reversed phase chromatography was run, where a Discovery C18 1502.1 mm I.D., 

5 m achiral column (Supelco, USA) coupled with a guard column Discovery C18 

202.1 mm I.D., 5 m (Supelco, USA) was the stationary phase and the mobile phase 

consisted of 10 mM HCOOH (pH 5.0 ; NH4OH) and ACN. Elution was accomplished 

with a gradient method: the mobile phase comprised of 30% ACN in the first 2 min 

followed by a linear increment to 90% until 4 min; the flow rate was changed from 

300 l/min to 200 l/min at 4 min; an isocratic elution continued under these conditions 

(90% ACN and flow rate 200 l/min) from the 4th to the 9th min. The temperature of the 

column compartment was set to 25 °C and the wavelength set at 275 nm for Flobufen 

and its possible conjugates or 240 nm for DHF/M17203 and its possible conjugates. 

Data acquisition and evaluation were carried out using the software Xcalibur, version 

1.2. (Vienna, VA, USA). The LC conditions are summarized in Table 1.
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Table 1 - LC conditions for the analysis of conjugates of flobufen and/or its metabolites.

Stereoselective HPLC analysis was employed to establish if there was no conversion of 

(-)-(S)-FLO to (+)-(R)-FLO, and vice versa, at all conditions tested. 

The measurements were performed using a non-commercially available 1504.6 mm 

I.D. 1-allyl-(5R,8S,10R)-terguride column (Institute of Microbiology, Academy of 

Sciences of Czech Republic, Prague, Czech Republic). A mixture of potassium acetate 

(10 mM) adjusted to pH 3.0 with acetic acid (1 M and 0.1 M, respectively) and ACN in 

a ratio 60:40 (v/v) was used as mobile phase. Retention times were 8.57 min for            

(-)-(S)-FLO, 9.71 min for (+)-(R)-FLO and 13.45 min for the internal standard which 

consisted of a methanolic solution of S-naproxen (c = 0.1 mg/mL). The calibration 

curve was linear up to 0.8 mg/mL for both (-)-(S)-FLO and (+)-(R)-FLO (Trejtnar et al.

1999).

Column C18 150  2.1 mm  5 μm

Flow rate (μL/min)
     0 min 300
     4 min 200
     10 min 200

Wavelenght (nm) 275 for FLO and its conjugates
240 for M17203 and its conjugates

Column temperature (ºC) 25

Injection volume (μL) 10

Gradient ª
     0 min 70% A and 30% B
     2 min 70% A and 30% B
     4 min 10% A and 90% B
     10 min 10% A and 90% B

Total run time (min) 10.0

ª Mobile phase A: 10 mM formic acid (pH 5.0 ; NH4OH); mobile phase B: ACN
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4.2 Glucuronidation of Flobufen and M17203 in vitro

 Isolation of microsomes

Liver was homogenized with cold Na-phosphate buffer (pH 7.4 ; 0.1 M) in a 1:6 (w/v) 

ratio. The sub-cellular fractions were obtained by fractional ultra-centrifugation of the 

homogenates (Gillet 1971). A re-washing step (followed by a second 

ultra-centrifugation) was added at the end of the microsomes preparation procedure. 

Microsomes were finally resuspended in the homogenising buffer containing 

20% glycerol (v/v) and were stored at –80 °C.

Protein contents were determined by bicinchoninic acid (BCA) method (Smith et al.

1985).

 Microsomal incubations

The microsomes were pre-incubated with alamethicin, 50 μg/mg of microsomal protein, 

at 4 ºC for 20 min.

Standard incubation mixtures (total volume 300 l) consisted of rac-FLO, (+)-(R)-FLO, 

(–)-(S)-FLO or M17203, 10 mM UDPGA, 1.0 mM MgCl2 and Na-phosphate buffer  

(pH 7.4; 0.1 M). After pre-incubation of the medium at 37 °C for 2 min, the reaction 

started with the addition of the activated microsomal proteins, 1.0 mg/ml of reaction 

mixture. The assays were performed in triplicate. Total incubation time was 60 min and 

after this time the reaction was stopped with 0.1 ml H3PO4 (pH 2; 1 M) and cooling to  

0 °C. All the samples were centrifuged for 10 min at 3500 g. The resulting supernatant 

was subjected to cleanup by solid phase extraction (SPE). Control reactions were also 

run and consisted of assays without UDPGA. 
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 Kinetic Parameters Estimation

The kinetic parameters were estimated using a non-linear least-square regression fit to 

the Michaelis-Menten equation or to the modified hill-substrate inhibition equation and 

the best model for each substrate was found on the basis of F test comparison               

(P  0.05), by GraphPad Prism 4.00 for Windows, GraphPad Software (San Diego, 

California, USA, www.graphpad.com).
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4.3 Taurine conjugation of M17203 in vivo and in vitro

 In vivo studies

The animals were kept in a glass chamber, which allowed the separation of faeces from 

urine. They were fasted for 12 h prior to the experiments, with free access to water. 

A single oral dose of rac-FLO dissolved in 20% ethanol and 80% water was 

administered and the urine was collected after 24, 48 and 72 h and kept at –20°C.  

Prior to LC-MS analysis, aliquots of urine were centrifuged (3500 g; 5 min) and the 

supernatant submitted to SPE procedure. 

Faeces were treated as described by Král et al. (2004); briefly, the faeces were ground 

with water and acidified with 1 M H3PO4 to pH 1-2 and then extracted three times with 

EA. This extract was dried and dissolved in methanol, centrifuged (7000 g; 3 min) and 

the supernatant was separated. After its evaporation, it was prepared for LC-MS 

analysis. The aqueous phase of the extraction was centrifuged (7000 g; 3 min) and the 

supernatant subjected to SPE procedure.

 Primary culture of hepatocytes

The hepatocytes were obtained by a two-step collagenase method (Berry et al. 1991): 

 in the first step, the whole liver was washed with 150-200 ml of a solution without 

calcium, with the purpose of removing the rest of blood and to allow the cell-cell 

junction to become weaker; 

 in the second step, the hepatocytes were released by the action of collagenase    

(30 mg/100 ml) in the perfusion solution. The second perfusion lasted 4-6 min 

(re-circulation system). The isolated hepatocytes were rewashed three times and 

mixed together with the culture medium. 

The culture medium consisted of a 1:1 mixture of Ham F12 and Williams’ E, 

supplemented as described by Isom  Georgoff (1984). The viability of the cells, 
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measured by Trypan blue staining according to the Sigma protocol, was 75-90%. Three 

million viable cells in 3 ml of culture medium were placed into 60 mm plastic dishes 

pre-coated with collagen. The foetal calf serum was added to the culture medium (5%) 

to promote the cells attachment during the first four hours after plating. The medium 

was then exchanged with a fresh one without serum. The cultures were maintained at 

37°C in a humid atmosphere of air and 5% CO2. 

 MTT Test – Cytotoxicity Test

MTT assay is a quantitative colorimetric assay for mammalian cell survival and cell 

proliferation. It has been widely used as a rapid and sensitive method for screening 

anticancer drugs as well as for the assessment of cytotoxicity of several substances.

MTT, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, is a yellow salt 

which is metabolized by the mitochondria of living cells. Once metabolized, MTT is 

converted into blue formazan and the absorbance is measured; the amount of formazan 

produced is proportional to the number of living cells present in culture.

In order to evaluate the cytotoxicity of Flobufen and its metabolites, MTT test was 

performed on primary culture of hepatocytes. 

 Incubation of primary culture of hepatocytes

The primary culture of hepatocytes was incubated with 50 and 100 μM rac-FLO,      

(+)-(R)-FLO and (-)-(S)-FLO. Aliquots of medium (0.5 ml) were collected at different 

times - 2, 4, 8 and 24 h - and submitted to SPE procedure prior to LC analysis.
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 Isolation of intact mitochondria

The isolated liver was homogenized with 6 volumes of cold 0.25 M sucrose/10 mM 

Tris-HCl buffer pH 7.4. The homogenates were centrifuged at 700 g for 15 min and the 

supernatant subsequently centrifuged at 9700 g for 20 min. 

The obtained mitochondrial pellet was resuspended in 0.2 M Tris-HCl buffer pH 8.5 

and immediately used. 

Protein contents were determined by the bicinchoninic acid (BCA) method (Smith et al. 

1985).

 Incubation of intact mitochondria

The incubation mixture (total volume 350 l) consisted of substrate in a concentration 

range 0.02-0.45 mM, 6 mM ATP, 1 mM acetyl-CoA, 20 mM amino acid (taurine, 

glycine or glutamine) and of 1 mM MgCl2. After pre-incubation of the medium at 37 °C 

for 2 min, the reaction was started with the addition of the mitochondria, 1.2-1.4 mg 

protein/assay. Total incubation time was 45 min and after this time the reaction was 

stopped with 1 M H3PO4 (0.1 ml) and cooling to 0 °C. The precipitated proteins were 

removed by centrifugation for 5 min at 3500 g. The resulting supernatant was subjected 

to cleanup by SPE prior to LC analysis. Control reactions were also run and consisted of 

assays without substrate or assays without biological matrix.
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5. RESULTS
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5.1 Glucuronidation of Flobufen and M17203 in vitro

   5.1.1 Optimization of incubation conditions - UGT activity

Incubation conditions for glucuronidation by microsomes usually include a 

detergent to disrupt the membrane barrier, and a divalent metal ion.

In order to determine the activity of UGT, preliminary spectrophotometric 

measurements of glucuronidation of p-nitrophenol was carried out. Substrate was 

incubated with native microsomes, SLOVASOL activated microsomes and alamethicin 

activated microsomes. Results show that UGT activity was 14 times higher with 

microsomes activated by alamethicin and 9 times higher with SLOVASOL activated 

microsomes, when compared with native microsomes.     

UGT activity is also known to increase when Mg2+ is present in the incubation 

medium (Fisher et al. 2000) and it has been reported that the concentration of this ion 

inside the endoplasmic reticulum (ER) is approximately 1mM (Berg et al. 1995). 

Based on these results, pre-treatment of microsomes with alamethicin,              

50 μg per mg of protein – was chosen as standard incubation procedure. In addition,         

1.0 mM Mg2+ was also included in all incubation mixtures.

   5.1.2 HPLC Analysis

It is known that for the great majority of 2-APAs unidirectional chiral inversion

of the (+)-(R)-enantiomer to the (-)-(S)-enantiomer occurs. This reaction involves the 

participation of CoA, where it plays a major role and it is thought to be catalyzed by 

long chains acyl-CoA synthetases (Caldwell et al. 1988, Hall & Xiaotao 1994, Brugger 

et al. 2001).

In preliminary studies using stereoselective conditions of HPLC analysis of Flobufen 

glucuronidation, it was shown that no chiral inversion occurs between its enantiomers 
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under the incubation conditions above mentioned. For this reason, it was chosen to 

perform all measurements under the achiral conditions referred in Materials and 

Methods section.

   5.1.3 Identification of Glucuronides by LC-MS/MS

The glucuronides were eluted within 5 to 6 min (Figures 24 and 25). Due to a 

lack of reference material, relative glucuronidation rates were determined as LC-UV 

peak areas. Rac-FLO, (+)-(R)-FLO, (–)-(S)-FLO and M17203 as substrates were used in 

the microsomal incubations in a concentration range of 0.01 – 0.50 mM. All the four 

substrates were found to be glucuronidated. The chemical structures of the glucuronides 

are depicted in Figures 22 and 23.

Figure 22 – Chemical structure of FLO-glucuronide.

Figure 23 – Chemical structure of M17203-glucuronide.
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Figure 24 - a) Chromatographic record of microsomal incubation of FLO with UDPGA – peak A         

(RT 5.34 min): FLO-glucuronide ; peak B (RT 7.08 min): FLO and b) MS record of extracted ion m/z

479, corresponding to FLO-glucuronide.
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Figure 25 - a) Chromatographic record of microsomal incubation of M17203 with UDPGA - peak A  

(RT 5.28 min): M17203-glucuronide and b) MS record of extracted ion m/z 423, corresponding to 

M17203-glucuronide.

The ESI mass spectra of the peak typically formed after incubation of flobufen 

or M17203 with UDP-glucuronic acid in rat liver microsomes (Figures 26 and 27) 

showed a deprotonated molecule at m/z 479 and m/z 423 ([M-H]-), respectively, 

indicating the molecular weight of the metabolites as 480 and 424, respectively, 

corresponding to flobufen and M17203 glucuronides. The product ion spectrum of     

m/z 479 showed ions at m/z 303 and m/z 193 corresponding to deprotonated flobufen 

and deprotonated glucuronic acid, respectively. The single product ion at m/z 193 
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corresponding to deprotonated glucuronic acid was observed in the product ion 

spectrum of m/z 423.

Figure 26 - Product ion spectra and proposed fragmentation scheme of the [M-H]- ion at m/z 479 of   

FLO-glucuronide; (a) ESI-MS spectrum and (b) ESI-MS/MS spectrum.
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Figure 27 - Product ion spectra and proposed fragmentation scheme of the [M-H]- ion at m/z 423 of 

M17203-glucuronide; (a) ESI-MS spectrum and (b) ESI-MS/MS spectrum.
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Glucuronidation of all four diastereoisomers of DHF was also studied at 

different incubation conditions, but no glucuronide formation for any diastereoisomer 

was detected under the analytical conditions used.

5.1.4 Glucuronidation of FLO Enantiomers: Empirical Kinetic   

      Model

Glucuronidation of (–)-(S)-FLO and rac-FLO followed a Michaelis-Menten 

model (Figure 28) and the kinetic parameters were calculated using equation 1

(1)

where v is the rate of the reaction, Vmax is the maximum velocity, Km is the Michaelis 

constant (substrate concentration at Vmax/2) and [S] is the substrate concentration. 

On the other hand, glucuronidation of (+)-(R)-FLO exhibited atypical kinetics 

(Figure 28), namely substrate inhibition kinetics. In this type of inhibition, high 

concentrations of substrate lead to a decrease in the rate of product formation. The 

model of substrate inhibition kinetics is described by equation 2 (Gangloff et al. 2001)

(2)

where Ks is the constant describing the substrate inhibition interaction. At low 

concentrations of substrate, i.e. when [S] << Ks, the [S]/ Ks term becomes negligible and 

this equation changes into equation (1), and therefore Michaelis-Menten kinetics is 

observed for the first part of the plot.
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However, using this model, it was not possible to obtain a good fit of the data (based on 

95% confidence intervals, r2), yielding physically unrealistic values for all kinetic 

parameters. 

For this reason, it was necessary to explore other models and find a suitable equation 

which could give a good fit to the experimental data for this type of substrate inhibition. 

The Hill equation (Cornish-Bowden 1995)

(3)

where S50 is the substrate concentration resulting in 50% of Vmax (analogous to Km in the 

previous equations) and nH is the Hill coefficient, describes sigmoidal kinetics, typical 

for allosteric enzymes.

Evaluating the experimental data and truncating the data to the lower substrate 

concentrations, it was possible to verify that the Hill equation displayed the best fit, 

with a value of nH=3.2.

Based on this assumption and relating to the inter-conversion of equation 1 into 

equation 2, a combined Hill-substrate inhibition equation was generated, which 

ultimately obtained the best fit for the experimental data:

(4)

The fitted parameters for this model closely match the values that would be derived by 

visual inspection. Km = 16.5 ± 0.5 μM and Ks = 192.0 ± 30.3 μM are comparable to the 

[S]/2 values for the ascending and descending arms of the curve, respectively. The fitted 
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Hill coefficient (nH=4.0) also agrees with the one obtained from the Hill plot. All 

calculated kinetic parameters are resumed in Table 2. 
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Figure 28 - Kinetic profiles of FLO-glucuronide formation from rac-FLO, (+)-(R)-FLO and (–)-(S)-FLO 

catalyzed by rat liver microsomes. Values are given as mean  S.D. of triplicates.
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Table 2 - Apparent kinetic parameters for O-glucuronidation of rac-FLO, (+)-(R)-FLO, (–)-(S)-FLO and 

M17203 in rat liver microsomes. Values of Vmax are given in peak area/min per mg of protein; Km, Ks and 

S50 in μM.  (a) Fits to the Hill equation for (+)-(R)-FLO using truncated data.

  

Michaelis-Menten 

Hill equation (a)

Empirical model

−

− −

r ² − − 0.999

−

K s − − 192.0 ± 30.4 −
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5.1.5 Glucuronidation of M17203

Glucuronidation of M17203 also displayed atypical kinetics (Figure 29) and best 

fitted to the Hill model – equation 3 - with a value of nH=1.6. The calculated kinetic 

parameters are summarized in Table 2. 

Figure 29 - Kinetic profile of M17203 glucuronide formation catalyzed by rat liver microsomes. Values 

are given as mean  S.D. of triplicates.
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5.2 Taurine conjugation of M17203 in vivo and in vitro

   5.2.1 In vivo experiments

After administration of a single oral dose of 50 mg/kg of rac-FLO to rats, urine 

was collected at 24, 48, 72 h and only one conjugate was found to be excreted in rat 

urine (Figures 30 and 31). Regarding to faeces, no phase II metabolite of FLO was 

detected.

Figure 30 – Chemical structure of M17203-TAU.
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Figure 31 - Chromatographic record of sample of rat urine 24h-collection. a) non-spiked sample;            

b) sample spiked with standards (M17203, rac-FLO, rac-DHF). A: M17203-TAU; B: M17203;              

C: rac-FLO; D: rac-DHF.
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   5.2.2 Incubation with primary culture of rat hepatocytes

In incubations with primary culture of hepatocytes, rac-FLO, (+)-(R)-FLO and             

(-)-(S)-FLO were chosen as substrates and two concentrations of each substrate were 

used: 50 and 100 μM. A typical chromatogram of medium sample after 24h-incubation 

is demonstrated in Figure 32. 

FLO was almost completely metabolized to its phase I metabolites, especially 

into M17203 and, to a less extent, into DHF. Furthermore, a new metabolite was 

identified, which corresponded to a conjugate of M17203 with taurine.

No significant difference was found in the formation of the conjugate after

incubation with rac-FLO, (+)-(R)-FLO, (-)-(S)-FLO (Figure 33).
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Figure 32 - Chromatographic record of incubation of rac-FLO with taurine in primary culture of 

hepatocytes, 24h-collection.  

Figure 33 - Evaluation of the formation of M17203-TAU in primary culture of hepatocytes.
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   5.2.3 Incubation with intact rat mitochondria

Fresh intact mitochondria were incubated with the substrates tested, acetyl-CoA 

and amino acid (taurine, glycine or glutamine). The conjugate was found only in 

incubates of M17203 with taurine (Figure 34). Other possible conjugates, with different 

amino acids (glycine and glutamine) as well as with the other possible substrates (FLO 

and DHF) were not detected under the used analytical conditions.

Figure 34 - Chromatographic record of mitochondrial incubation of M17203 with taurine. A: M17203-

TAU; B: M17203.
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   5.2.4 Kinetics of M17203 conjugation with taurine

Seven concentrations of M17203 as substrate were used in the mitochondrial 

incubations: 0.020, 0.035, 0.050, 0.100, 0.200, 0.300 and 0.450 mM. It was determined 

that M17203 is conjugated with taurine. M17203-TAU was eluted within 4 to 5 min. 

Due to a lack of reference material, relative conjugation rates were determined as      

LC-UV peak areas. The best kinetic model of conjugation, a Michaelis-Menten plot, 

was found on the basis of F test comparison (P < 0.05) (Figure 35), and the kinetic 

parameters were Vmax = 10.66 ± 0.43 AUC/min/mg protein; Km = 71.0 ± 8.8 μM.

Figure 35 - Kinetic profile of TAU-M17203 formation in mitochondrial incubations. Vmax = 10.66 ± 0.43 

AUC/min/mg protein; Km = 71.0 ± 8.8 μM; Values are given as mean  S.D. from n = 4 to 6 experiments.
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   5.2.5 Identification of M17203-TAU by LC-MS/MS 

The ESI mass spectra of the peak typically formed after incubation of M17203 

with taurine in rat liver mitochondria, after incubation of primary culture of rat 

hepatocytes with rac-FLO, (+)-(R)-FLO and (-)-(S)-FLO, and SPE treated urine

collected after administration of rac-FLO, showed a deprotonated molecule at m/z 354 

indicating the molecular weight of the metabolite as 355 corresponding to M17203 

conjugate with taurine. The single product ion at m/z 124 corresponding to deprotonated 

taurine was observed in the product ion spectrum of m/z 354 (Figure 36).
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Figure 36 - Product ion spectra and proposed fragmentation scheme of the [M-H]- ion at m/z 354 of 

M17203-TAU; a) ESI-MS spectrum and b) ESI-MS/MS spectrum.
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6. DISCUSSION
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6.1 Glucuronidation of Flobufen and M17203 in vitro

The stereoselectivity of glucuronidation in vitro of 2-arylpropionic acids has 

been previously studied and concluded that the enantioselectivity was both substrate and 

species dependent. For instance, considering naproxen, the S-enantiomer is 

preferentially glucuronidated in rabbits, opposite to rat and monkey, where the             

R-enantiomer was selectively conjugated. In humans, the ratio of S/R-naproxen 

glucuronidation was close to 1 (El Mouelhi et al. 1987, 1993). Other authors have 

reported that the formation of S-glucuronide of different profens in vivo (benoxaprofen, 

carprofen, flunixaprofen) was more than two times higher than the formation of the 

R-glucuronide (Spahn et al. 1989, Iwakawa et al. 1991).

The assays performed in this study determined that, with the exception of DHF, 

all the other substrates are conjugated in vitro with glucuronic acid. However, but 

interestingly, the conjugation of the different substrates followed different kinetics, 

determining not only stereoselective glucuronidation of the different enantiomers, but 

suggesting also a possible implication of different UGT isoforms catalyzing the 

glucuronidation of the different substrates. 

(–)-(S)-FLO displayed a typical Michaelis-Menten kinetics, whereas               

(+)-(R)-FLO exhibited substrate inhibition kinetics. This type of deviation is not so 

uncommon, although its mechanism is still unclear. Several models of substrate 

inhibition have been proposed, which include allosteric mechanisms (LiCata & Allewell 

1997), enzymatic chemical oscillations (Shen & Larter 1994) and the Recovery Model 

(Kuhl 1994). Nevertheless, the experimental data obtained did not fit to any of the 

known models and it was necessary to derive an equation that could interpret the data. 

The generated equation (equation 4) combines a Hill equation with substrate 

inhibition model. 
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When truncating the data for (+)-(R)-FLO to the lower concentrations, it was 

possible to verify that this part of the plot assumed a sigmoidal shape, i.e., followed the 

Hill equation. This equation is a useful mathematical tool to describe the degree of 

sigmoidicity of the substrate concentration/enzyme activity relationship. It was 

originally proposed to provide an indication of the number of subunits in a multimeric 

enzyme that bound successive ligands in a cooperative manner (Williams et al. 2002). 

The Hill coefficient value for the UGT isoform responsible for glucuronidation of     

(+)-(R)-FLO in the current set of experiments was around 4.0. Some authors have 

demonstrated that some isoforms of UGT exist as tetramers (Peters & Jansen 1986) and 

as dimers (Meech & Mackenzie 1997). Moreover, other studies suggest that some 

isoforms possess more than one active site (Rios & Tephly 2002). Based on these 

studies, it can be assumed that the UGT isoform implicated in (+)-(R)-FLO 

glucuronidation behaves as a cooperative ligand-binding multisubunit enzyme. When 

analysing the set of data as a whole, in opposition to a cooperative behaviour for lower 

substrate concentrations, substrate inhibition was observed for higher concentrations of 

substrate. 

As it was not in the scope of this work, the empirical model here exposed needs 

further investigations in order to better explain the mechanisms of this particular type of 

substrate inhibition. 

Analysing the kinetic parameters values for both enantiomers of flobufen, and 

considering only the truncated fitted values for (+)-(R)-FLO, it should be said that the 

R-enantiomer is the preferential substrate for glucuronidation, at lower concentrations, 

as its S50 (analogous to Km) is about 9-fold higher than the Km for the S-enantiomer. 

However, the overall view clearly suggests (–)-(S)-FLO as the elected substrate for 

glucuronidation, as for higher concentrations, the R-enantiomer exhibits substrate 
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inhibition, as already referred. The fitted kinetic values for rac-FLO are, in fact, about 

the average of the kinetic values of both enantiomers. 

Glucuronidation of M17203 occurs to a lesser extent when compared to the 

other substrates studied, nevertheless it can be assumed that another UGT isoform 

different from the ones catalyzing the enantiomers of flobufen is implicated in this 

reaction, as it follows the Hill model with nH=1.6. The same explanation earlier given 

for the kinetics at lower concentration of (+)-(R)-FLO can be extended to the kinetics of 

M17203. 
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6.2 Taurine conjugation of M17203 in vivo and in vitro

A conjugate of M17203 with taurine was identified as the sole conjugate 

excreted after oral administration of rac-FLO. Moreover, in vitro incubations showed 

that M17203 is readily conjugated with taurine in intact mitochondria and in the 

primary culture of rat hepatocytes. The formation of this conjugate was not 

stereoselective as no significant difference was found after incubations with rac-FLO, 

(+)-(R)-FLO or (-)-(S)-FLO. 

The kinetics of M17203-TAU formation was also studied: mitochondrial 

incubations with different concentrations of substrate were performed and fitted a 

Michaelis-Menten plot.

Conjugation of M17203, a biphenylacetic acid derivative, with an amino acid 

was not presumed as the major outcome in Flobufen Phase II biotransformation. 

Taurine conjugation is an important metabolic route for xenobiotic carboxylic acids; 

however, it usually represents only a small amount of the total metabolism in rats 

(Kanazu & Yamaguchi 1997). It has also been considered that bulky substituents close 

to the carboxy groups of aromatic and arylacetic acids cause steric hindrance of the 

attack on the carboxyl group by ATP or acetyl-CoA and consequently, to a failure of 

undergoing amino acid conjugation (Dixon et al. 1977). The same is referred to 

biphenylacetic acids, which in literature are said to unlikely be conjugated with amino 

acids, being glucuronidation the major pathway of biotransformation (Idle et al. 1978, 

Casarett & Doull 2001). In light of what was mentioned earlier, it had been supposed 

that a glucuronide should be the major way for excreting FLO, but the results show us 

that the taurine conjugate is the main metabolite. 

The pathway of amino acid conjugation involves 2 steps: in the first step, the 

substrate is activated to an acyl-CoA thioester. This reaction requires ATP and is 



92

catalyzed by acyl-CoA synthetase. In the past years, medium chain acyl-CoA 

synthetases have been isolated and characterized, which are thought to be implicated in 

amino acid conjugation (Vessey & Hu 1995, Kasuya et al. 1996, Kasuya et al. 1999). 

The second step is catalyzed by acyl-CoA:amino acid N-acetyltransferases, which 

transfers the acyl moiety of the xenobiotic to the amino group of the acceptor amino 

acid. The enzyme acyl-CoA:glycine N-acetyltransferase is known to occur in two 

distinct forms that have been purified to homogeneity and characterized extensively 

(Webster et al. 1976, Nandi et al. 1979, Kelley & Vessey 1992, Kelley & Vessey 1993).

Few reports concerning conjugation of profens with amino acids have been 

published. The majority of them are related with taurine, and these conjugates have 

been found as a metabolite for suprofen (Sakai et al. 1984, Mori et al. 1985), and for 

trans-hydroxyloxoprofen (Tanaka et al. 1983) in dog urine. Shirley et al. (1994) 

reported a taurine conjugate with ibuprofen in human urine. Egger at al. (1982) is 

among the few authors that reported a taurine conjugate in rat and mouse urine, in this 

case, a conjugate of pirprofen pyrrole. 
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7. CONCLUSIONS
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The outcome of the experiments carried out in this project can be summarized as 

follows:

1. Flobufen is conjugated with glucuronic acid, in vitro, in rat microsomes, which 

structure was resolved by LC-MS. The other possible phase II reactions were 

shown not to occur with Flobufen. Urine and faeces samples did not reveal the 

excretion of any conjugate of flobufen;

2. It was demonstrated that flobufen, like many other known NSAIDs, is 

selectively glucuronidated in rat in vitro. The study was performed with pure 

individual enantiomers employing achiral chromatographic conditions because 

no chiral inversion was observed when using chiral chromatography. 

Furthermore, a unique feature was found as the individual enantiomers of 

flobufen followed different kinetic profiles; while (–)-(S)-FLO displayed 

Michaelis-Menten type of kinetics, (+)-(R)-FLO followed a particular type of 

substrate inhibition model. The fitted kinetic values suggest that, for lower 

concentrations, (+)-(R)-FLO is the primary substrate for glucuronidation and 

following the increase of its concentration, where inhibition is exhibited,           

(–)-(S)-FLO is taken as substrate;

3. M17203 was proved to be conjugated with glucuronic acid, in vitro, in rat 

microsomes. Moreover, in vitro experiments performed on mitochondria and 

primary culture of hepatocytes revealed yet another phase II metabolite, a 

conjugate with the amino acid taurine. Also, we have identified the conjugate of 

M17203 with taurine as the prime phase II metabolite of Flobufen in rat in vivo

as it was the sole metabolite excreted in urine after p.o. administration of 
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flobufen. Both phase II metabolites of M17203 were isolated and identified by 

LC-MS.  No phase II metabolites of DHF were detected. 

4. The complete pathway of Flobufen biotransformation is depicted in Figure 37.
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pig hepatocytes.
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Schröterová, Yogeeta N. Babú and Vladimír Wsól. BMC Pharmacology 3:5 (2003) 

(http://www.biomedcentral.com/1471-2210/3/5, open access).

Studies of the metabolism of FLO in rat determined DHF as its main metabolite, 

which is further metabolised into M17203, an acetic acid derivative. However, 

preliminary in vivo experiments conducted in Man revealed differences in FLO 

metabolites excreted by rat and Man, as in Man FLO metabolism ended with the 

formation of DHF. 

Further inter-species investigation showed that guinea pig was the species more 

closely related to Man in terms of FLO metabolism, as in vitro studies on cytosol and 

microsomes of guinea pig determined DHF stereoisomers as the sole metabolites of 

FLO in these sub-cellular fractions. 

The aim of this work was to describe the metabolism of FLO and its pure 

enantiomers in vitro in primary culture of guinea pig hepatocytes.

The biotransformation of FLO in primary culture of guinea pig hepatocytes 

differed qualitatively from the one in microsomes and cytosol. In addition to DHF 

stereoisomers, three other metabolites were found: M17203, UM-1 and UM-2. The 

exact structure of UM-1 and UM-2 is not well defined, but their UV-spectral properties 

confirm a relationship to structures close to M17203 and DHF. It is thought that these 

metabolites could be products of phase II biotransformation (conjugates) or compounds 

M17203-like or DHF-like but with the side carbon chain substituted in a distinctive 

manner. The metabolism of the structurally related compound ibuprofen adverts to 

hydroxylation of the side chain. On the other hand, the structures could also be derived 
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from fenbufen metabolites found in Man, as fenbufen is structurally the most related 

compound to FLO.

Rac-FLO, its pure individual enantiomers and all four individual DHF 

stereoisomers were used as substrates for incubations with primary culture of 

hepatocytes.

Results concerning incubations with rac-FLO determined (2R;4S)-DHF and       

(2S;4S)-DHF as the main DHF stereoisomers, originated from (+)-(R)-FLO and            

(-)-(S)-FLO, respectively. The amounts of the two other stereoisomers were negligible. 

Based in these data, it can be said that reducing enzymes form stereospecificaly DHF 

stereoisomers with S configuration at carbon 4. 

(+)-(R)-FLO as substrate gave rise to (2R;4S)-DHF and to a higher extent when 

compared to incubations with rac-FLO, but also a considerable amount of (2S;4S)-DHF 

was formed. Due to these results, it can be assumed that may have occurred inversion of 

(+)-(R)-FLO to (-)-(S)-FLO or inversion of (2R;4S)-DHF to (2S;4S)-DHF, or both cases 

together. 

Interestingly, when (-)-(S)-FLO was used as substrate, (2R;4S)-DHF remained 

the most produced DHF stereoisomer. Inversion of (-)-(S)-FLO to (+)-(R)-FLO or 

inversion of (2S;4S)-DHF to (2R;4S)-DHF or a combination of both should be taken 

into account. 

Inversions between DHF stereoisomers became clear when incubations with the 

individual DHF stereoisomers were performed. 

(2R;4S)-DHF as substrate was inverted predominantly to (2S;4S)-DHF and when 

(2S;4S)-DHF was used as substrate, an inversion to (2R;4S)-DHF was observed. In this 

way, an equilibrium between these two stereoisomers is established, although shifted in 
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the direction of (2R;4S)-DHF formation, thus explaining why this stereoisomer is the 

main metabolite arising after incubation with (-)-(S)-FLO. 

(2S;4R)-DHF was converted into (2S;4S)-DHF and (2R;4R)-DHF was readily 

transformed into (2R;4S)-DHF. For this reason, the amounts of these stereoisomers were 

negligible in the incubations with the other substrates above mentioned. 

Regarding to the formation of M17203, this metabolite was selectively formed 

from (-)-(S)-FLO. This result was confirmed by incubations of the individual 

stereoisomers, where it was observed that DHF stereoisomers formed from (-)-(S)-FLO 

were stereoselectively chosen for M17203 formation. In a similar fashion, UM-1 and 

UM-2 were produced mainly from (-)-(S)-FLO. 

Liver homogenate was also used as a biological matrix in this work. Incubations 

of fresh liver homogenate with rac-FLO and rac-DHF did not lead to production of 

M17203 nor UM-1/UM-2, the same result after incubations with microsomes and 

cytosol. It can be concluded that the integrity of the hepatocytes is essential for the 

formation of M17203, UM-1 and UM-2.
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Stereospecificity of Flobufen Metabolism in Guinea Pigs In 

Vitro and In Vivo: Phase I of Biotransformation.

Radim Král, Lenka Skálová, Barbora Szotáková, Yogeeta N. Babú and Vladimír 

Wsól. Chirality 16: 1-9 (2004).

Preliminary studies in Man and other animal species determined that guinea pig 

was the most related species to Man in regard to FLO metabolism.

This work aimed the investigation of phase I biotransformation of FLO in vitro and in 

vivo in guinea pigs.

In vitro studies concerned experiments with microsomes and cytosol. These sub-

cellular fractions were incubated with rac-FLO, and its pure individual enantiomers,                 

(-)-(S)-FLO and (+)-(R)-FLO. 

For both sub-cellular fractions, it was possible to determine that after incubation 

with (+)-(R)-FLO, the only metabolites formed were (2R;4S)-DHF and (2R;4R)-DHF, 

and when (-)-(S)-FLO was the substrate, it gave rise solely to (2S;4S)-DHF and         

(2S;4R)-DHF. On the other hand, incubations with rac-FLO in microsomes formed 

mainly (2R;4S)-DHF and (2R;4R)-DHF, while in cytosol the principal metabolites were 

(2R;4S)-DHF and (2R;4S)-DHF. However, due to the different ratios of the 

stereoisomers formed in each case, it is possible to say that the microsomal reductases 

differ from the cytosolic reductases in their activity as well as in their stereospecificity. 

(2R;4S)-DHF was the main metabolite in the microsomes, whilst in the cytosolic 

fraction (2S;4S)-DHF predominated.

In vivo experiments consisted in administration of rac-FLO or its individual 

enantiomers. In urine samples, together with the two known metabolites, DHF and 

M17203, an unknown metabolite was also detected, UM-2. The accurate chemical 

structure is not well defined although its UV-spectral properties resembles to the 
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structures of M17203 and DHF. This compound can be supposed to be a product of 

phase II biotransformation (conjugate) or a compound like M17203 or DHF, but with a 

different substituted side carbon chain. If the order of all determined compounds is 

considered, UM-2 should be the most lipophilic substance. The biotranformation of 

M17203 or DHF by some transferases (e.g., methyltransferases or acetyltransferases) 

could result in a compound with those properties. However, accordingly to a different 

theory, UM-2 could be deduced from the metabolism of structurally related compounds, 

such as ibuprofen, which can undergo a side chain hydroxylation. On the other hand, the 

structure of UM-2 can also be derived from fenbufen metabolites arising in Man, as this 

compound is structurally the most closely related to FLO. It is clear that UM-2 is the 

major metabolite in urine, exceeding the amount of excreted M17203 and DHF 

stereoisomers and it is produced to the highest extent after administration of                  

(-)-(S)-FLO. Regarding to the excretion of DHF stereoisomers, (2R;4S)-DHF was the 

most prominent DHF stereoisomer detected after administration of rac-FLO and       

(+)-(R)-FLO. When (-)-(S)-FLO was administered, (2S;4S)-DHF was the major DHF 

stereoisomer excreted. 

Faeces were also analysed and the metabolites excreted in faeces were 

qualitatively distinct from the urine samples. UM-2 and DHF were the sole metabolites 

detected, showing no trace of M17203. UM-2 was the predominant metabolite and in 

the same amount as in urine. Similarly to urine samples, excretion of UM-2 was higher 

after administration of (-)-(S)-FLO. In respect to DHF stereoisomers excretion, faeces 

samples also differed qualitatively from urine samples: (2R;4S)-DHF and (2S;4S)-DHF 

were the absolute majority of all stereoisomers detected in faeces and were excreted in 

the highest amounts after administration of rac-FLO. (2R;4S)-DHF was selectively 
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excreted after administration of (+)-(R)-FLO, while (2S;4S)-DHF was the prevailing 

metabolite after administration of (-)-(S)-FLO.
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Chiral aspects of Metabolism of Antiinflammatory Drug 

Flobufen in Human Hepatocytes.

Lenka Skálová, Radim Král, Barbora Szotáková, Yogeeta N. Babú, Lydiane 

Pichard-Garcia and Vladimír Wsól. Chirality 15: 433-440 (2003).

Metabolism of FLO was preciously studied in different animal species. 

However, extrapolation of data obtained in these species is limited, and for this reason, 

the study of FLO biotransformation in human liver samples was initiated. Among the   

in vitro models used in drug metabolism studies, primary cultures of hepatocytes play a 

prominent role. 

This work aimed the evaluation of the stereospecificity and stereoselectivity of 

FLO reduction and the chiral inversion of FLO enantiomers in primary culture of 

human hepatocytes. 

Hepatocytes were obtained from livers of 4 donors, within the Cadaver Donor 

Programme of Transplant Centre of Faculty of Medicine of Charles University, Hradec 

Králové.

In human hepatocytes, FLO underwent only two types of metabolic 

transformations: reduction and chiral inversion. The reduction of FLO produced four 

stereoisomers of DHF. Due to the stereoselectivety and stereospecificity of the 

reductases, the amounts of the individual stereoisomers were different and their ratio 

changed depending on the incubation time. The application of pure enantiomers as 

substrates provided further information about the reduction and the reductases 

implicated in FLO biotransformation. Although comparison of the results obtained in 

hepatocytes from various donors showed some inter-individual variability, the principal 

routes of FLO reduction were maintained in all donors tested. Based on the results, it 

was assumed that at least three enzyme systems are involved in the reduction of FLO: 



124

the first one selectively chose (+)-(R)-FLO as a substrate and directed the reduction into 

the S position on C4. The second enzyme, which reduces (-)-(S)-FLO to (2S;4S)-DHF 

showed a lower activity. The behaviour of both enzymes was comparable in all four 

cultures of hepatocytes. In hepatocytes of donor 4 and also partly of donor 3, it was 

possible to observe the higher activity of the third enzyme system, which reduced the 

substrate (+)-(R)-FLO to the R configuration at position C4. Interestingly, the use of the 

pure enantiomers instead of the racemate led only to a slight shift in the proportion of 

the DHF stereoisomers formed. 

Chiral inversion was the second type of reaction observed in FLO metabolism. 

The chiral analysis of the residual substrate in the cultivation medium showed that           

(+)-(R)-FLO is converted into its respective antipode in hepatocytes. As a small amount 

of (+)-(R)-FLO was detected in hepatocytes from donor 4 incubated with (-)-(S)-FLO, 

chiral inversion of this enantiomer cannot be excluded. Together with the chiral 

inversion of FLO enantiomers, focused also on whether DHF could undergo chiral 

inversion or not. Therefore, human hepatocytes 2 and 4 were incubated with pure DHF 

stereoisomers. In both cultures, it was found a significant inversion of (2S;4S)-DHF to 

(2R;4S)-DHF and (2R;4R)-DHF to (2S;4R)-DHF. These inversions were practically 

unidirectional. The enzyme system catalyzing the chiral inversion of DHF used as 

substrates only those stereoisomers with identical configuration at the second and the 

fourth carbon atoms. The possibility of chemical (instead of enzymatic) inversion was 

excluded by the stability of DHF stereoisomers over 24 h in medium without 

hepatocytes. 

Besides chiral inversion, it was also possible to observe partial oxidation of DHF 

stereoisomers to FLO in human hepatocytes. Chiral discrimination was also seen in the 

case of these oxidases. (2S;4R)-DHF was the selective substrate for formation of           



125

(-)-(S)-FLO and (+)-(R)-FLO was preferably formed from (2R;4S)-DHF, although this 

reaction proceeded at a markedly lower rate than the formation of the S-enantiomer. The 

remaining stereoisomers were only slightly oxidized. (2R;4S)-DHF can be classified as 

the most metabolically stable substance, since it does not undergo any chiral inversion 

and is only negligibly oxidized to FLO.  
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