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Abstract: Soil archives provide valuable information on the past of the 

environment, in particular vegetation history (Costantini 2018). The aim of this 

thesis is study the feasibility of using the modern method of near-infrared 

spectroscopy to study the vegetation history of chernozems, using previously 

collected databases (Vysloužilová et al. 2015) to extract information from new 

sites along the grassland-woodland boundary in Minnesota, USA.  The results are 

then analyzed and compared to known information and the results of more 

traditional approaches. 

 

Key words: soil archives, NIRS, isotopes, chernozems 

 

 

Abstrakt: Půdní archivy poskytují cenné informace o paleoenvironmentu, 

obzvláště o vegetační historii (Costantini 2018). Cílem této práce je ověřit 

použitelnost moderní metody blízké infračervené spektroskopie ke studiu 

vegetační historie černozemí za účelem získaní informací z nových lokalit podél 

hranice stepi a lesa v Minnesotě, USA s použitím dříve sestavených databází 

spektrálních dat (Vysloužilová et al. 2015). Výsledky jsou analyzovány a srovnány 

se známými skutečnostmi a výsledky tradičnějších metod. 

 

Klíčová slova: půdní archivy, NIRS, izotopy, černozemě 
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1. Introduction 

Soil archives are an important source of information on the past 

environment. With the advance of new methods over the past 20 years, there has 

been a surge of studies focusing on the various components of soil that continues 

to this day. Soil organic matter is particularly important in this regard and is 
extensively studied with a wide variety of methods (Schwartz et al. 2015, 

Costantini et al. 2018) 

Chernozems have traditionally been considered to be typical soils of the 
temperate and hemiboreal continental region, forming on loess under grassland 

vegetation. This traditional view has been challanged as Chernozems and 

Chernozem-like soils are currently also found in environments that do not 

correspond the traditional idea. This is especially true in Central Europe where 

Chernozems can even be found under woodland land cover. Numerous theories 
have been proposed (from grazing by large herbivores to human induced fires) 

that could explain the preservation of Chernozems and Chernozem-like soils in 

this area, some have been largely debunked while others are still considered 

plausible (Lorz and Saile 2011, Vysloužilová et al. 2014). Similarly, numerous 

factors were present along the grassland-woodland boundary in North America 

that had the potential to influence the development of soils. Wildfires and 
herbivores are cited most often (Feggestad et al. 2004). 

The use of traditional methods such as stable isotopes and novel 

approaches like near-infrared spectroscopy to study the soil organic matter of 

Chernozems and Chernozem-like soils in these regions can shed more light on the 

question of vegetation history of these soils and in turn help us understand the 

environmental conditions that were present in these regions throughout the 

Holocene (Ertlen et al. 2015). 

 

2. Soil archives 
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Environmental archives, regionally also referred to as geoarchives, are 

natural structures that can be used for the reconstruction of the past environment. 

Typical examples of environmental archives that have been studied for decades 

(and more) include sedimentary sequences, palynological sequences, and various 

paleozoological and paleobotanical records (Grunewald and Scheitauer 2008). In 

recent years, however, surface soils and in particular Chernozems have been 
suggested as a potentially highly valuable environmental archive (Terhorst et al. 

2015). Integrative studies of the surface and near-surface environment are 

recognized as an important area of focus by the scientific communities, including 

geography, geology, biology, pedology and hydrology (Driese and Nordt 2013). 

Soil archives are the components of soils, the presence or properties of 

which can be used to extract information on the history of vegetation, land use and 

the environment as a whole (Schwartz et al. 2015). They have been referred to as 

the “memory of the landscape” (Vysloužilová 2015). The attributes of soil, coupled 

with climate variables, have traditionally been used in agriculture to predict the 
potential and limitations of land areas to produce food (National Research Council 

2001). Paleopedology is a discipline that focuses on the study of soil archives. 

With the advance of modern research methods, the number of studies focusing on 

environmental history using soils as the archive has increased (Schwartz et al. 

2015, Costantini 2018). 

The main advantage of using soils as environmental archives lies in their 

local nature – i. e. the components are of local origin and the presence of certain 

soils reflects the local conditions. The organic matter generally originates from 
plants that were present at the given locality or not far away. Given the fact that 

soils cover most of the terrestrial surface, it allows for the local paleoenvironment 

to be studied globally (Schwartz et al. 2015). 

The paleoenvironment can also be studied thanks to the knowledge of 

conditions required for particular pedogenic processes. The mere presence of a 

certain (paleo)sol can be an important source of information. Some soils only tend 

to develop under very specific conditions (e. g. Solonetz, Solonchak or even 

Chernozem) (Schwartz et al. 2015, Costantini 2018). 
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Dating has long been an issue for researchers in the field of paleopedology. 

Given the dynamic nature of soils, obtaining reliable radiocarbon dates that can be 

correctly interpreted, is problematic (Schwartz et al. 2015, Costantini 2018). 

 

2.1. Buried soils 

Buried soils are soils that formed in place and were later covered by new 

material and preserved (Galbraith 2011). Buried soils have long been studied as 

environmntal archives in conjunction with loess layers in loess-paleosol sequences 

(Frechen et al. 2003). These have been referred to as some of the most important 

terrestrial archives (Muhs et al. 2014). 

Paleopedology and pedostratigraphy are devoted to the use of buried (and 

relict) soils in interpreting the record of environmental conditions that are different 
from those currently observed (Constatntini 2018). Buried soils (and paleosols in 

general) store information about the environmental conditions present at the time 

of their development and thus reflect the history of the landscape. This particular 

nature of paleosols, referred to as “soil memory” (Targulian and Goryachkin 2004, 

Costantini et al. 2007), makes them particularly valuable (Constatntini 2018). 

 

2.2. Components of soil 

A number of components of soil have been used as soil archives. Studying 

the micromorphological characteristics of soils has been used for decades and has 

the ability to uncover processes that affected the studied soil, including 

anthropogenic factors, such as evidence of past tillage. However, the treatment of 

samples is a time-consuming process and correct interpretation requires 

experience (Schwartz et al. 2015). 

Various chemical analyses can also be used to interpret the environmental 

history. The availability of phosphorus and other nutrients have an effect on the 

composition of vegetation in a given location (Chmelíková and Hejcman 2014). 

 

Pedoanthracology studies charcoals preserved in soil. Pieces of charcoal 

retain the characteristic structure of plant tissue that is used to determine the 
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species the charcoal originated from. Generally, charcoals decay slowly and can 

be preserved in soil for thousands of years. Given the abundance of carbon in 

charcoal, carbon dating is often performed. Dating in conjunction with the 

knowledge of the plant species provides invaluable information on the 

paleoenvironment (Vysloužilová 2015). 

 

2.3. Soil organic matter 

Various methods have been used to study vegetation history and the 

paleoenvironment as a whole using soil organic matter as the main source of 

information as it contains characteristic residues of the vegetation supported over 

several thousand years (Ertlen et al. 2010, Guillet 1979 in Ertlen et al. 2010).  

A popular method of discrimination between different forms of land cover is 
δ13C, that is the ratio of 13C to 12C. This can be matched to the isotopic ratios of 

various plants depending on their photosynthetic cycles (C3 vs. C4). However, this 

method can only be applied in regions where significant numbers of C4 plants can 

be found (Schwartz et al. 1984). 

Other methods have been used less frequently. These include changes in 

distribution of monosaccharides (Trouvé et al. 1996 in Ertlen et al. 2010), the 

composition of lignin and carbohydrates (Guggenberger et al. 1994 in Ertlen et al. 

2010) or 13C nuclear magnetic resonance (NMR) spectroscopy (Nierop et al. 2001 

in Ertlen et al. 2010). However, the use of these methods is a time-consuming and 

high-cost approach (Ertlen et al. 2010). 

A method popular in a number of fields, including soil science, archeology 
and paleontology, is the analysis of phytholiths, microscopic forms of biogenic 

silica in plant tissue (Piperno 2006) that can be found preserved in the fossil 

record and soils (Carter 1999). Based on the shape of these phytoliths, specific 

species or groups of plants can be identified, indicating their past presence at the 

given sites (Bobrova and Bobrov 1998). It has been shown that light intensity can 

influence cell morphology, the size of cells that reconstructed from phytoliths has 
been used as an indicator of canopy cover, making it possible to estimate past 

woodland or grassland cover (Dunn et al. 2015). For example Bobrova and Bobrov 
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(1998) used phytoliths to reconstruct past vegetation on various surface and 

buried soils throughout Russia, including Chernozems. 

In recent years, analyses of leaf wax derived long chain n-alkanes 
preserved in soil have proven the capacity to reconstruct past vegetation. Despite 

this fact, their dynamics and factors affecting their distribution in soils is not fully 

understood yet and research is still ongoing (Schaefer et al. 2016). 

Another modern approach that is used to determine the origin of the soil 

organic matter is the analysis of molecular biomarkers. Low molecular weight 

biomarkers can be used to trace both the origin and the stage of the soil organic 

matter. The method is continuously developed and improved but requires 

advanced chemical procedures to be performed (Otto and Simpson 2007). 

 

2.3.1. Near-infrared spectroscopy (NIRS) 

Near-infrared spectroscopy (NIRS) is a relatively rapid, low-cost, 

reproducible and non-destructive method. While NIRS has been used for various 
industrial and research applications for decades, its use for the reconstruction of 

past vegetation so far has been limited, though numerous authors have used it to 

characterize the composition of living plants as well as plant litter. Near-infrared 

spectroscopy was first applied to soils by Bowers and Hanks (1965), paving the 

way for future research, mostly focused on the estimation of carbon and nitrogen 

content of soils (Chang et al. 2001, Ertlen et al. 2010). 

 

The mechanism behind using NIRS for the reconstruction of past vegetation 

is that the NIR absorbance spectra contain a large quantity of information arising 

from the overtones of vibration, stretching and bending of chemical bonds in the 

soil organic matter from which they are obtained (Ertlen et al. 2015). This results in 

a specific recorded NIR spectrum for the composition of each analyzed sample 

and has been referred to as the concept of fingerprinting (Palmborg and Nordgren 

1996). 
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Near-infrared spectroscopy allows soil organic matter to be studied without 

time-consuming and often costly processes of chemical extraction, even in soils 

with low organic content (Barthes et al. 2008). The relative ease and low cost of 

NIRS make it a useful tool of analyses of large datasets, allowing for large spatial 

resolution (Viscarra Rossel et al. 2011). 

2.3.2. Stable isotopes 

Stable isotopes of two elements – carbon and oxygen – extracted from soil 

organic matter are commonly used to retrieve information on the 

paleoenvironmental conditions on various scales as well as the dynamics of 

pedogenesis (Tabor and Myers 2015). 

 

2.3.2.1. Oxygen 

Isotopes of oxygen can be used reconstruct temperatures and precipitation 

in the past (Busacca and Sweeney 2005). The proportion of the 18O isotope is 

controlled by two factors – temperature and spatial position. A growth in the 
amount of 18O recorded in precipitation or water vapor is observed with increasing 

temperature. Similarly, the proportion of 18O increases with a decreasing distance 

from the ocean which serves as the source of 18O. This effect is observed 

because 18O tends to condensate more easily compared to 16O, thus it deposited 

by precipitation closer to the ocean (Fig. 1). A difference in oxygen isotope ratios 

can also be attributed to changes in precipitation – generally, a higher proportion 

of 16O may denote increased precipitation (Hasinger et al. 2015). 

 

Figure 1: Rainout effect on 18O values (University of Arizona 2018). 
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2.3.2.2. Carbon 

The values of carbon isotopes found in soil organic matter are an important 

source of information related to the paleoenvironment as well as vegetation 
history. Using carbon isotope ratios, the relative proportion of plants with different 

metabolic pathways can be reconstructed (Kaakinen et al. 2006). There are two 

major types of metabolic pathways – C3 and C4 (Fig. 2). These two types differ in 

the discrimination of atmospheric 13CO2 (Šantrůček, Šantrůčková et al. 2014). 

In plants with the C3 metabolic pathway, δ13C values generally fall in the 

range of -32‰ to -22‰ of Vienna Pee Dee Belemnite (VPDB), with a mean value 

of circa -27‰ VPDB, while these values range from approximately -17‰ to -9‰ of 

VPDB, with mean values of around -13‰ VPDB (Boutton et al. 1998). A third type 

of metabolic pathway is called CAM, short for Crassulacean Acid Metabolism. This 
type could be described as a combination of the two major types and the mean 

value falls between the C3 and C4 types. However, this type of metabolism can 

only be found in a very small percentage of plants, a typical representative is the 
genus Crassula (Šantrůček, Šantrůčková et al. 2014). 

Figure 2 13CO2 discrimination among species in plant groups (Šantrůček et al. 2014). 
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It is known that climate has a great effect on the performance of these types 

of metabolism (Schulze et al. 1996 in Pyankov et al. 2010). Thus, each type 

displays a specific pattern of spatial distribution. C4 plants are able to perform well 

when their stomata need to be partially closed to prevent loss of water. The 

distribution of C4 species is correlated with the climate, especially the factors of 

temperature and precipitation (Pyankov et al. 2010). Many C4 species, mostly 
grasses, are believed to originate or have large parts of their geographical range in 

tropical and subtropical regions (Teeri and Stowe 1976). Globally, approximately 

3% of terrestrial plant species use the C4 metabolic pathway (Kellogg 2013). 

2.3.2.2.1. Europe 

Pyankov et al. (2010) summarized the distribution of C4 plants in Europe. 

The results show a very low percentage of C4 species (predominatly grasses) 
among all vascular species throughout Europe (Fig. 3). In addition, the percentage 

of native C4 species among all C4 found in each region was studied. In Central 

Europe, it is shown that up to 38% of current C4 species are non-native. Given 

these facts, it is virtually impossible to relevantly estimate the prevalence of 

grassland in the Holocene using δ13C values retrieved from soil organic matter 

throughout Europe. 
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2.3.2.2.2. North America 

Teeri and Stowe (1976) studied the distribution of C4 grasses (Poaceae) of 

North America.  Their results suggest that high minimum temperatures during the 

growing season have a strong correlation with the relative abundance of C4 grass 

species in the flora of the 32 studied regions within North America. In the state of 

Minnesota, the percentage of C4 species among all grasses range from 22% in 

the north east (Lakela 1965 in Teeri and Stowe 1976) up to 34 to 37% in other 

parts of the state and the region immediately surrounding it (Fig. 4); Fassett 1951 

Figure 3 Geographical distribution in Europe of total C4 species; numbers with % C4 species of total vascular species of the 
respective area in brackets (Pyankov et al. 2010). 
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in Teeri and Stowe 1976, Hartley 1966 in Teeri and Stowe 1976). Using the 

findings of Teeri and Stowe (1976), i.e. the relatively high proportion of C4 species 

among grasses in the region, and considering the land cover in the region, it is 

possible to estimate the prevalence of grassland vegetation in this using δ13C 

values (Feggestad et al. 2004). 

 

 

Figure 4: The percent of C4 species in the grass floras of 32 regions in North America (Teeri and 
Stowe 1976). 
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3. Chernozem 

 

3.1. Definitons 

The World Reference Base for Soil Resources (IUSS Working Group WRB 

2015), a taxonomic classification system, defines Chernozems in detail as soils 
having a chernic horizon (i.e. a relatively thick, well-structured blackish surface 

horizon, with a high base saturation, high biological activity and with moderate to 

high content of organic carbon, see below), this horizon is considered diagnostic. 

In addition, a calcic horizon or a layer with protocalcic properties starting 50 cm or 

less below the lower limit of the mollic (i.e. a structured surface horizon, dark in 

color, with a high base saturation and moderate organic matter content; the 
chernic horizon thus meets the criteria of such horizon) horizon (and if present, 

above a cemented or indurated layer) as well as a base saturation of fifty percent 

or more from the soil surface to the calcic horizon or the layer with protocalcic 

properties, throughout, must be present (IUSS Working Group WRB 2015). 

The chernic horizon is described as a thick, well-structured and dark 

colored surface horizon, with high base saturation, high biological activity and 

moderate to high organic matter content. It has to meet the following criteria: ≥ 

20% (by volume, weighted average) of fine earth; and granular or fine subangular 

blocky soil structure; and ≥ 1% soil organic carbon; and at least one of the 

following: in slightly crushed samples a Munsell colour value of ≤ 3 moist, and ≤ 5 

dry, and a chroma of ≤ 2 moist, or ≥ 40% (by mass) calcium carbonate equivalent 

in the fine earth fraction and/or a texture class of loamy sand or coarser, and in 

slightly crushed samples a Munsell colour value of ≤ 5 and a chroma of ≤ 2, both 

moist, and ≥ 2.5% soil organic carbon; and ≥ 1% (absolute) more soil organic 

carbon than the parent material, if parent material is present, that has a Munsell 

colour value of ≤ 4, moist; and a base saturation of ≥ 50% on a weighted average, 

throughout the entire thickness of the horizon; and a thickness of at least 25 cm 

(IUSS Working Group WRB 2015). 

A calcic horizon is defined as a horizon with secondary calcium carbonate 

accumulation in a diffuse form or as discontinuous concentrations (veins, coatings, 
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nodules). Primary carbonates may be present as well. To be diagnosed as calcic, 

the horizon needs to have a calcium carbonate equivalent in the fine earth fraction 

of ≥ 15%; and either ≥ 5% (by volume) secondary carbonates or a calcium 

carbonate equivalent in the fine earth fraction of ≥ 5% higher (absolute, by mass) 

than that of an underlying layer and no lithic discontinuity between the two layers 

or both; and does not form part of a petrocalcic horizon; and is at least 15 cm thick 
(IUSS Working Group WRB 2015). 

A layer with protocalcic properties is a layer with permanent secondary 

carbonates, i. e. not belonging to the soil parent material or other sources such as 

dust. The carbonate accumulations need to meet the following criteria for a layer 

to have protocalcic properties: disrupt the soil structure or fabric; or occupy ≥ 5% 

of the soil volume with masses, nodules, concretions or spheroidal aggregates 

(white eyes) that are soft and powdery when dry; or cover with soft coatings ≥ 50% 

of structural faces, pore surfaces or undersides of rock or cemented fragments, 

thick enough to be visible when moist; or form permanent filaments 
(pseudomycelia) (IUSS Working Group WRB 2015). 

Chernozems are further described as blackish soils rich in organic matter 

(Fig: 6). The parent material is mostly made up of eolian and reworked eolian 

sediments (principally loess). Generally, Chernozems can be found in regions with 

a continental climate with cold winters and hot summers, which are dry at least in 

late summer; in flat to undulating plains with tall-grass vegetation (hardwood forest 

especially in the northern transitional zone). Chernozems cover an estimated 230 

million ha worldwide, mainly in the mid-latitude steppes of Eurasia and North 
America (Fig. 5) (IUSS Working Group WRB 2015). 
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Figure 5: Global distribution of Chernozems (FAO 1998). 

Deep Chernozems are commonly ranked among the best soils in the world 

for agricultural use. Wind and water erosion are best prevented by preserving the 

favorable soil structure through timely cultivation and careful irrigation at low 

watering rates. Fertilizers are frequently used for high yields. The principal crops 
grown on Chernozems are wheat, barley and maize, alongside other food crops 

and vegetables. Part of the Chernozem area is used for livestock grazing. In the 

northern temperate belt, the possible growing period is limited and the principal 

crops grown are wheat and barley, in places in rotation with vegetables. Maize and 

sunflower are widely grown in the warm temperate belt. Maize production tends to 

stagnate in drier years unless adequate irrigation is provided (IUSS Working 
Group WRB 2015). 

The first recorded use of the term Chernozem (from Russian 
черная/chernaya, black; and земля/zemlya, ground or land) was in 1645 by 

Salmon Gubert (Reintam 2001). Other early uses of the term are attributed to 

Lomonosov in 1765 (Krupenikov et al. 2011) or Akonin in 1771 (Kubiena 1953 in 

Vysloužilová et al. 2016). The term was used by Dokuchaev (e.g. 1883) to 

describe the typical soils of the steppe in continental Russia (IUSS Working Group 

WRB 2015). Dokuchaev's extensive research on these soils led to the creation of 
a new science, now known as pedology or soil science. The original aim of his 
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research was to determine why some soils are more fertile than others for the 

purpose of taxation (Johnson and Schaetzl 2015). 

 

Figure 6: Chernozem near Karcag, Hungary (photo: author). 

 

3.2. Correlation of Terminology 

 

Assigning soils commonly called Chernozems in a number of regions 

(including Central Europe) this name according to the WRB classification can 

prove difficult (Eckmeier et al. 2007). Local soil classification systems often 

emphasize pedogenetic factors rather than a simple description of morphology as 

is the case with the international WRB system. On top of that, the WRB definition 

is based on typical zonal Chernozems, making identification of these soils as 

Chernozems, especially at the extremes of its geographical distribution, 

complicated (Zádorová and Penížek 2011). The term Chernozem-like soils has 

been used to describe soils that share the pedogenic features (including the 

presence of a dark chernic horizon, calcareous parent material, high base 
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saturation or strong biological activity) but cannot be classified as Chernozems in 

the WRB classification (Vysloužilová et al. 2015).  

 

3.2.1. World Reference Base for Soil Resources (WRB) 

The World Reference Base for Soil Resources has its roots in the original 

legend of the FAO-UNESCO World Soil Map (1974). The original aim was to 

evaluate global soil resources and to help correlate national classifications in a 

basic manner and was largely a compilation of historically recognized soil 

archetypes without the ambition to replace the more detailed national systems. It 

has since evolved into a detailed system that can be applied globally at various 

scales (Krasilnikov et al. 2009). 

 

3.2.2. Czech Republic 

Unlike the WRB system, The Soil Taxonomic Classification System of the 

Czech Republic (Němeček et al. 2011) does not put criteria on the position of the 

calcic horizon in Chernozem, neither is there a requirement of the concentration of 

carbonates within 50 cm of the lower limit of the mollic horizon. Still, 91% of soils 

classified as Chernozems in the Czech system were found to fit the criteria of 

Chernozems according to the WRB system (Zádorová and Penížek 2011). 

The newer versions (post-2000) were made with the correlation to the WRB 

system in mind. However, at the highest level of hierarchy, WRB defined 

Chernozems and Chernozem-like soils in general can fall into a number of 
reference classes (Fig. 7) (Krasilnikov et al. 2009). 
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The WRB defined Reference Soil Group of Chernozems corresponds to 

various soils in other European classification systems, for example 

Kalktschernoseme (Germany), Chernosols (France) (IUSS Working Group WRB 

2015).  

 

3.2.3. United States of America 

The USDA Soil Taxonomy is considered by some to be the most precisely 

developed classification currently in use and along with the United States is used 

officially in dozens of countries. Contrary to many other national classification 

systems, the object of classification is the profile (or a small representative 

volume), not the processes and factors of soil formation. The classification is 

based on quantitative diagnostic soil properties. An unusual feature of the USDA 

Soil Taxonomy is the requirement to measure or estimate information on 

temperature and moisture regimes of soils for full classification (Krasilnikov et al. 

2009). 

There are six levels in the USDA Soil Taxonomy (from highest to lowest): 

Orders, Suborders, Great Groups, Subgroups, Families and Series (Fig. 8). The 

Orders divide soils based on properties or conditions resulting from, or reflecting, 

major soil-forming processes that are relatively stable in time. The Suborders are 

soils (within an Order) that have certain properties or conditions that are major 

Figure 7: Correlation of WRB and Czech systems for Chernozem-like soils (Krasilnikov et al. 2009). 
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controls (or reflect such controls) on the current set of soil-forming processes. 

More dynamic features are selected as evidence of influences on pedogenesis at 

this level. The Great Groups are soils (within a Suborder) having additional 

properties that constitute subordinate or additional controls (or reflect such 

controls) on the current set of soil-forming processes. The Subgroups (within a 

Great Group) group together soils having properties resulting from a blending or 
overlapping of sets of processes that cause one kind of soil to develop from, or 

towards, another kind of soil. These Suborders are essentially links to other 

classes in higher levels of the taxonomy. Families can be defined as soils (within a 

Subgroup) having properties that are often indicative of the potential for further 

pedogenic development, i. e. the chemical and physical capacity to change 

(Krasilnikov et al. 2009). 

Soils generally corresponding to WRB Chernozems were formerly called 

Calcareous black soils in the USDA Soil Taxonomy and mostly belong now to 

several Suborders (especially Udolls) of the Mollisols (IUSS Working Group WRB 
2015). However, a more detailed look (Fig. 9) reveals a considerably more 

complex scheme for the correlation of Chernozems and Chernozem-like soils (i. e. 

Phaeozems) and the USDA Soil Taxonomy (Krasilnikov et al. 2009). 

Figure 8: USDA Soil Taxonomy leveles (Krasilnikov et al. 2009) 
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Figure 9: Correlation of the WRB and USDA systems for Chernozem-like 
soils (Krasilnikov et al. 2009) 
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3.3. Evolution 

 

Chernozems and Chernozem-like soils generally develop on loamy 

calcareous materials, usually loess but they can also be found on other parent 

materials, including lake sediments or glacial till. Typically, they occur in temperate 

continental regions and the typical distinguishing mark is the very dark (blackish) A 
horizon (IUSS Working Group WRB 2015). 

Perhaps the most important pedogenetic processes of Chernozems are the 

long maturation of soil organic matter (SOM) and the formation of weathering 

complex (Duchaufor 1977 in Vysloužilová et al. 2016). The origin of most of the 

soil organic matter can be traced to the decomposition process of plants as well as 

the release of organic material from roots. In part it consists of microbial mass 

(Guggenberger 2005). The soil organic matter passes into the soil itself through 

the root system or litter (Vysloužilová et al. 2016). 

Most of the soil organic matter is made up of decomposed roots or the 

organic material released from roots. The above ground parts of plants contribute 

considerably less to the total amount of the soil organic matter. Grassland species 

tend to develop deep root systems leading to high organic matter rates in a thick 

layer. The development of the root system is largely dictated by climate, in this 

case the continental climate causes the plants to exploit large volumes of soil 

(Vysloužilová et al. 2016). 

The seasonal fluctuations in a continental climate result in a distinctive soil 

climate. Humification as well as mineralization are controlled by the climate. The 

most favorable conditions for humification occur in the spring due to a marked 

increase in soil moisture caused by snow melt allowing the intruding water to 

create an aerobic environment for a limited period of time. In this environment, 

water soluble material produced by plant roots (notably grassland species) is 

accumulated. During the winter and summer this process is significantly impaired 

(Bridges 1970). 

The notion of Chernozems as steppe soils has been questioned, particularly 

in Central Europe where the climate does not correspond to that commonly 

associated with Chernozem development, yet large areas covered by these soils 
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can be found in the region (Vysloužilová et al. 2014). While it is widely believed 

that Chernozems in this area formed under climatic conditions different from those 

currently observed, it remains unclear how these soils were preserved until the 

present day (Eckmeier et al. 2007). 

An important aspect of the Chernozem development question is 

undoubtedly its vegetation history. This is particularly highlighted in regions such 

as Central Europe or the tallgrass prairie areas situated to the east of the Great 

Plains region of North America. Rainfall in these regions is sufficient for the 

development of woodland (and has been for much of the Holocene). However, 

soils such as Chernozems that are commonly associated with a more continental 

climate and grassland ecosystems have been preserved in both areas with no 

major changes to their characteristics (Feggestad et al. 2004, Lorz and Saile 

2011). 

In Central Europe, the existing Chernozems are believed to have been 

formed in the early Holocene when the climate was considerably more continental. 

The preservation of steppe conditions was generally thought to have been 

because of the conservation of grassland patches throughout the Holocene in the 

driest areas, later assisted by anthropogenic factors, namely agriculture (Lorz and 

Saile 2011). Recently, other factors have been suggested that include 

(over)grazing by large herbivores (Lorz and Saile 2011) or human induced fires 

(Eckmeier et al. 2007). 

Along the eastern flanks of the tallgrass prairie of North America, grassland 

is believed to have been preserved for much of the Holocene by grazing and fire. 

However, wildfires in this region tend to occur at a far greater frequency than in 

Central Europe. The black carbon content in American Chernozems is also 

substantially higher compared to Europe (Skjemstad et al. 2002). Lorz and Saile 

(2011) do not see fires as an important factor in the formation of European 

Chernozems. In contrast to Europe, ancient agriculture is not believed to have 

played a major role in Chernozem conservation. In both regions, grass dominated 
phytocenoses with a sparse tree cover of mostly various oak (Quercus) species 

were once present on Chernozems but intensified agriculture has led to a large 

scale destruction of these natural or semi-natural ecosystems (NatureServe 2018). 
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However, the tree cover density in the past remains controversial (Lorz and Saile 

2011). 

Vysloužilová et al. (2014) have concluded that Central European 
Chernozems may persist and possibly even develop under woodland. The stability 

of the organo-mineral complex is credited with enabling the preservation of 

Chernozem pattern of development for a considerabconsiderable period of time 

after the establishment of woodland vegetation. 

 

4. Material and methods 

4.1. Geographical setting 

4.1.1. Minnesota, USA 

The studied sites are located in the northern part of the U.S. state of 
Minnesota along the grassland-woodland ecotone as defined in 19th century land 

surveys (fig. 10) (Kasmerchak et al. 2018). Most locations are within the Central 

geologic region of the state as defined by Sansome (1983) while some span the 

boundary of the Central and Northwestern regions. The Northwestern region is 

mostly made up of the lakebed of the glacial Lake Agassiz. In many parts of this 

region, well-developed Mollisols (USDA) providing favorable conditions for 

agriculture can be found on lake deposits that are up to 50 meters deep. Till plains 

and other glacial ladndforms are characteristic of the Central region (Sansome 

1983). 

The studied soils formed on glacial till or sediment displaying similar loamy 

and calcareous characteristics of the Des Moines ice sheet lobe and the St. Louis 

sublobe. The material was deposited during the last glaciation, meaning the soil 

parent material and its age are believed to be relatively constant at all the studied 

sites (Kasmerchak et al. 2018). Modern mean annual precipitation ranges from 

735 mm for the eastern sites, decreasing to 622 mm towards the west. Mean 

annual temperature ranges from 3.9 °C to 4.1 °C (tab. 1; NOAA 1981–2010 

climate normal; Kasmerchak et al. 2018). The climate is humid continental, type 

Dfb (also called hemiboreal; Köppen 1936). 
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Major differences in soil morphology are detected along the roughly north-

south oriented grassland to woodland transition in northern Minnesota. It is known 

that this boundary shifted considerably in the Holocene (Kasmerchak et al. 2018). 

Past research in the area revealed that grassland first expanded to the east in the 

early Holocene before retreating westward over the past 4,000 years. The primary 

force behind this shift is believed to have been climate change (Bradbury et al. 
1993 in Kasmerchak et al. 2018). Soils along the transition formed on similar 

parent material. However, soils that are believed to be of forest morphology (tab. 

2), mostly equivalent to Luvisols under the WRB classification containing clay-

enriched Bt horizons, can be clearly differentiated from soils with transitional or 

grassland morphologies. Soils with grassland morphology (tab. 2) display relatively 

uniform clay content throughout the profile (Kasmerchak et al. 2018). Of particular 
interest for this thesis are the soils classified as Mollisols (tab. 2), equivalent to 

Chernozems and types with related morphology under the WRB classification. 

These soils were identified by Kasmerchak et al. (2018) as soils with transitional or 

grassland morphologies. 

site MAT (°C) MAP (mm) 
E-133 4.8 735 
E-27 4.8 735 
E-73 4.8 735 
E-215 4.1 690 
W-151 4.1 690 
W-44 4.1 690 
W-238 3.9 708 
W-171 3.9 708 
W-39 3.9 708 
W-70 3.9 622 
W-22 3.9 622 
P-26 3.9 622 
P-50 3.9 622 
P-79 3.9 622 
P-67 3.9 622 
P-98 3.9 622 

Table 1: Climatic data for studied sites (data from Kasmerchak et al. 2018) 
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Table 2: Description of studied sites by Kasmerchak et al. (2018). 
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4.2. Reference library (Europe) 

The reference database is a modified version of the database collected by 

Vysloužilová et al. (2015) throughout the Chernozem belt of Europe, mostly 

focused on Central Europe. The aim was to build the database using primarily 
sites with natural or semi-natural vegetation as they may better reflect the natural 

development of soils. The number of sites fulfilling this criteria is rather limited in 

this densely populated region where most Chernozems and Chernozem-like soils 

are exploited as arable land. Most of the soils come from the Czech Republic, 

Slovakia and Hungary. Some sites are located in France, Ukraine and Russia. 

There are 23 sites in total (Fig. 11, Tab. 3) (Vysloužilová et al. 2015, Strouhalová 

et al. 2018). 

All but two of the sites (BRC, POP) are currently non-cultivated. A number 
of sites are under forest vegetation (Tab. 3). The database is mostly made up of 

soils classified as chernozems in the respective national classification systems but 

do not necessarily meet the criteria for Chernozem using the WRB system, the 

soils do however generally share the pedogenic features of Chernozems, including 

the presence of a dark chernic horizon, calcareous parent material, high base 

saturation or strong biological activity. The term Chernozem-like soils is thus better 

Figure 10:Studied sites in Minnesota, USA. 
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suited to avoid confusion with soils meeting the strict WRB definition (Vysloužilová 

et al. 2015, Strouhalová et al. 2018). The climate ranges from temperate oceanic 

(Cfb) for the western sites, transitioning to humid continental (Dfb; also known as 

hemiboreal) in the east (Köppen climate classification, Köppen 1936). 

The sites were also chosen with respect to the stability of land cover. 

Information on land use in the past from the Second Military Survey of the Austrian 

Empire, dating to 1836–1840 in Moravia (eastern Czech Republic), 1842–1852 in 

Bohemia (western Czech Republic) and 1819–1869 in Slovakia and Hungary. The 

maps are available online (mapy.cz, archivportal.arcanum.hu). For the territory of 

France, the Cadaster Survey and the Archives of National Forest Office (1860 to 

present) were used (Ertlen and Schwartz 2010 in Vysloužilová 2015). Literature 

review was used to determine the vegetation history of sites in Russia and Ukraine 

(Jelenska et al. 2008 in Vysloužilová et al. 2015, Khitrov et al. 2013 in Vysloužilová 

et al. 2015; Vysloužilová et al. 2015). 

Figure 11: Sites used for the construction of reference library (6-BRO, 7-BUL, 8-KOC, 9-KOR, 10-SEN, 11-BAB, 12-SEN, 13-
HUB, 14-HUU, 15-HUUD, 16-HUC, 17-HUM, 18-HUS, 20-HUP, 21-HUH, 22-HUR, 23-HUT, 24-CAR, 25-HIR, 26-DID, 27-
MIK, 28-KUR, 29-STR) (Vysloužilová et al. 2015 – modified) 
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site country code vegetation soil 
parent 
material 

Babský les Slovakia BAB woodland Chernozem loess 
Battonya-Gulya Gyep Hungary HUB grassland Chernozem loess 
Brozany Czech Rep. BRO grassland Chernozem loess 
Bugac puszta Hungary HUUD grassland Arenic Chernozem sandy loess 
Bugac puszta -dune Hungary HUU grassland Arenic Chernozem sandy loess 
Bulhary Czech Rep. BUL woodland Chernozem loess 
Csikóspuszta Hungary HUC grassland Chernozem loess 
Gallenhölzchen France DID woodland Calcic Cambisol loess 
Dubník Slovakia DUB woodland Chernozem loess 
Hajdubagos Hungary HUH grassland Chernozem sandy loess 
Breiholtz France HIR woodland Calcic Cambisol loess 
Kopeč - rendzine Czech Rep. KOR grassland Calcic Leptosol loess on basalt 
Kopeč - chernozem Czech Rep. KOC grassland Chernozem loess 
Kursk Russia KUR grassland Chernozem loess 
Mezőföld - B. - valley Hungary HUM grassland Chernozem loess 
Mikhailovska tselina Ukraine MIK grassland Chernozem loess 
Pocsaj Hungary HUP grassland Chernozem loess 
Sáránd Hungary HUS grassland Arenic Chernozem sandy loess 
Senec Slovakia SEN woodland Chernozem loess 
Stoeffelhag France CAR woodland Calcic Cambisol loess 
Streletsk Russia STR grassland Chernozem loess 
Tard Hungary HUR grassland Luvic Chernozem loess 
Tokaj Hungary HUT grassland Calcic Cambisol loess 

Table 3: Sites used in the reference database (data from Vysloužilová et al. 2015) 

 

4.3. Sampling 

 

4.3.1. Minnesota, USA 

The samples were provided by Mason, Kasmerchak et al. (2018). The sites 

were distributed evenly across four zones as defined by Kasmerchak et al. (2018): 

prairie, believed to be covered by grassland vegetation throughout the Holocene; 

transition zone; grassland replaced by forest after 4 ka; forests, with woodland 

cover throughout the Holocene. 

The samples were collected in areas defined by targeted soil mapping units 

on slopes of less than 3.5°. The targeted mapping units were the predominant 

well-drained soil in each unit. Sites in the forest, forest after 4 ka and transitional 

zones were all under forest at the time of sampling and are believed not to have 
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been cultivated. Sites selected for this thesis from these zones are only 

represented by a single sample from the top horizon of each site, with the 

exception of site W-22 in the transitional zone. The reason is that (with the 

exception of site W-22) these soils are classified as Luvisols, thus of limited 

interest for this study (tab. 2). Of the prairie (grassland) zone, 4 sites were under 

perennial non-native grass cover at the time of sampling and all of them share a 
possible history of cultivation of up to several decades. However, none were 

cultivated within the last 20 years before sampling, based on a combination of 

landowner information and aerial photography. A single site in the grassland soil 

was under aspen (Populus tremuloides) forest that likely replaced grassland within 

the past few hundred years (Kasmerchak et al. 2018). A total of 35 samples from 

16 sites (tab. 5) were used for this thesis. 

The sampling sites were selected from wider sets of randomly selected 

points in the targeted mapping units (see above) based on a number of factors – 

ease of access, landowner permission and lack of recent disturbances. The upper 
soil profile was sampled at 25 random points at each site. The sampling pit was 

then placed at the point where morphological properties (e.g. A horizon thickness) 

were the closest to the median of the site. Each pit was then uncovered into the C 

horizon, described and sampled by subhorizon. Four of the grassland (prairie) 

zone sites were sampled with three replicate hydraulic soil probe cores (7.6 cm in 

diameter) each instead of a pit. Material from the full thickness of horizons and two 

or three walls of the pit is combined in each sample (Kasmerchak et al. 2018). 

 

4.3.2. Reference library 

The samples were collected at 24 sites in the temperate region of Europe 

spanning from eastern France to western Russia by Vysloužilová et al. (2014) 

(tab. 3, fig. 11). The sampling protocol devised by Ertlen et al. (2010) was used. 

The sites were selected based on the presence of vegetation documented as 

stable over the past 150 years. At each reference site 15 to 30 samples of 
approximately 50 g were collected from the topsoil (0 to 4 cm) in a steel cylinder at 

2 m intervals on three parallel lines spaced 4 m apart. Given the stable vegetation 

at all sites, the soil organic matter in the topsoil is believed to come nearly 
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exclusively from the observed vegetation. A total of 427 samples were used. The 

reference samples were dried at 40 °C in an oven over 7 days and sieved to pass 

through a 2 mm mesh before NIRS spectra were collected (Ertlen et al. 2010, 

Vysloužilová et al. 2014). 

 

4.4. Near-infrared spectroscopy 

4.4.1. Acquisition and pretreatment of spectra 

35 sieved (to 2 mm) soil samples (tab. 5) of approximately 20 g each from 

16 sites in northern Minnesota (tab. 2) provided by Mason, Kasmerchak et al. 

(2018) were oven dried at 40 °C. Each sample was then placed in a rotating cup 

with a quartz window (90 mm in diameter) and scanned from 10,000 to 4,000 cm-1 

with an 8 cm-1 resolution (in order to obtain a data matrix of a manageable size) 
using an Ft-NIR Frontier spectrometer (PerkinElmer, USA) with a CaF2 

beamsplitter, an integrated sphere an an Ingass detector. Each spectrum was 

measured out of the average of 90 scans performed in a single session from 

different parts of the sample, made possible by the rotating cup technology. The 

measurements were performed at a laboratory of the University of Strasbourg, 

France. Each spectrum was measured as the common logarithm of the inverse of 

reflectance (R), that is  absorbance (A) illustrated by the following formula (Ertlen 

et al. 2010): 

 

A = log10(1/R) 

 

The obtained spectra were then analyzed with a reference library of the 

spectra of 427 samples from 24 sites throughout Europe created by Vysloužilová 

et al. (2015) using the methodology of Ertlen et al. (2010). 

The data matrix with 751 columns was standardized using the Standard 

Normal Variate (SNV) function using The Unscrambler X software (version 10.3) 

with the aim of subtracting the average absorbance of the spectra from all the 

spectra, thus reducing the influence of the quantity of soil organic matter and the 

of the lack of homogeneity of particle size distribution. It has been shown that this 
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transformation has the potential to highlight qualitative information found in the 

spectra. First order derivative transformation with a gap of 9 was then applied with 

the goal of being able to extract the sought after information, that is the origin of 

the soil organic matter – grassland or woodland (Shenk et al. 2001 in Vysloužilová 

et al. 2015). 

 

4.5. Discriminant analysis 

The discriminant analysis established by Ertlen et al. (2010)  was applied on 

the reference database. In order to reduce the size of the matrix, the spectra of 

10,000 to 7,312 cm-1 and 4,032 to 4,000 cm-1 were removed as no relevant 

information can be extracted from these ranges (Vysloužilová et al. 2015), 

resulting in a matrix of 409 columns (wave bands) and 427. Canonical Variate 

Analysis (CVA) was then used on the data, performed using IBM SPSS Statistics 

software (version 25.0). 

CVA is an established procedure (Viscarra Rossel and Webster 2011). The 

data are in a matrix Z (see above) with a total variance-covariance matrix T. This 

matrix is partitioned into two sub-matrices – one for grassland and one for 

woodland. These two sub-matrices have a pooled within-class variance-

covariance matrix W and a between-class variance-covariance matrix B. The 

latent roots (eigenvalues) and vectors of the matrix W-1B are found using the 

following general formula: 

 

 

 

where  λ are roots and I is an identity matrix. As only two classes are used, 

there is a single latent root,  λ. The solution to the equation 
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gives c, the cannonical vector, in this case also necessarily a single one. 

The cannonical scores of the soil samples are acquired using the following 

formula: 

 

 

 

The mean cannonical points can be obtained using the means of spectra by 

computing: 

 

  

 

The Mahalanobis distance (D) between the classes is calculated from: 

 

 

 

where d is the vector of differences between the means of the two classes 

(Ertlen et al. 2010). 

The number of variates plus the number of groups must be less than the 
number of individuals, hence why the size of the data matrix was reduced 

(Vysloužilová et al. 2015) 

The second step involved the application of the discriminant function 

calculated from the reference library on the unknown spectra obtained from the 

Minnesota sites. The comparison of values of these samples enables the 

evaluation of the origin of the soil organic matter (Vysloužilová et al. 2015). 

 

4.5.1. Stable isotopes 
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The samples were pretreated and analyzed in the United States by Mason, 

Kasmerchak et al. (2018) of the Department of Geography at the University of 

Wisconsin–Madison. 10 g of each (untreated) sample were dried at 100 °C, 

pulverized, and treated with 2N hydrochloric acid for at least 16 hours at a 

temperature of 23 °C in order to remove carbonates. After the removal of 

carbonates, the samples were dried at 100 °C and pulverized for a second time. 
Following pretreatment, the samples were analyzed using a dual-inlet mass 

spectrometer with continuous capabilities coupled with an autosampler (Feggestad 

et al. 2004). 

The relative abundance of 13C in soil organic matter is represented as δ13C, 

the difference between the isotopic ratios of the sample and the standard, Vienna 

Pee Dee Belemnite (VPDB; Smith and Epstein 1971) in per mille using the 

following equation: 

 

where RVPDB = 0.0112372 (Ehleringer and Cerling 2002 in Feggestad et al. 

2004). 

5. Results  

5.1. Near-infrared spectroscopy 

 

The discriminant function was applied first applied on the reference 

database of 427 samples with known vegetation history. This way, two groups of 

soils were distinguished: under grassland and under woodland. 135 samples were 

classified as forest soils, the scores of the discriminant function ranging from to 

2.84 to 9.58 (fig. 12). 292 samples were classified as grassland soils, the scores 

ranging from -4.81 to 0.39 (fig. 12). The classification was 100% accurate. For the 

reference library, the discriminant score for soils under grassland averages -2.59 
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while the average score for soils under forest is 5.60. The Mahalanobis distance, 

that is the distance between these two values, is thus 8.19 (fig. 12). 

 

Figure 12 Histogram of cannonical function scores for the reference library. 

 

Out of the 35 obtained samples from Minnesota, it was possible to use only 

34 due to technical difficulties with obtaining spectra from one sample (site W-22). 

The discriminant function was then applied on this set. Of these 34 samples, only 

two (from two different sites) were classified as belonging to the group of soils 

under forest using the discriminant function: W-151 and P-98_4 (tab. 5). The rest 

were classified as grassland. All samples were classified successfully with no 

samples outside of these two defined groups. 

In the set of 34 studied samples, the discriminant function score mean for 

soils classified as grassland is -2.67, with values ranging from -6.16 to 1.05, while 

the mean for forest soils is 6.40 with values of 1.67 and 11.12 (fig. 13). If this set is 

limited to Chernozem-like soils (USDA Mollisols), totaling 24 samples from 6 sites 
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(tab. 14), the mean function score is -3.07 (scores ranging from -6.16 to -0.01) for 

grassland soils while the single Chernozem-like sample classified as woodland in 

this analysis has a score of 11.12 (fig. 14). 

 

Figure 13: Histogram cannonica lfunction scores for the Minnesota sites. 
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5.1.5.2. δ13C 

The δ13C measurements were performed by Kasmerchak, Mason et al. 

(2018). A total of 34 samples, corresponding to those near-infrared spectroscopy 

analyses were successfully performed on (see above). To simplify the division into 

four groups by Kasmerchak et al. (2018) described in previous chapter, the 

threshold of -22‰ (Boutton 1996) was used to divide the samples into two groups: 

forest (with values of -22‰ and less) with SOM originating in the vast majority 
from C3 plants and grassland (more than -22‰) where a marked influence of C4 

plants on the composition of soil organic matter is suspected. Values in the typical 

range of C4 dominated environments cannot be expected in the region, given the 

species composition of grassland ecosystems. 

Figure 14 Histogram of cannonical function scores for Chernozem-like 
soils. 
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Of the 34 total samples, 20 were classified as forest with a mean δ13C value 

of -25.7‰ and a minimum of -28.33‰, while 14 were classified as grassland soils, 

averaging -20.8‰ (fig. 15) and a maximum of -18.58‰. If the set is limited to the 

24 samples from Chernozem-like soils (USDA Mollisols), 10 samples are classified 

as forest soils with an average value of -24.1‰ and a minimum of -26.35‰. 14 

samples are classified as grassland soils and are identical to the 14 samples in the 
larger set, thus averaging -20.8‰ VPDB (fig. 16) with a maximum of -18.58‰. Of 

the two samples labeled as forest using the discriminant function on NIRS data, 

only one (W-151) can be classified as such using δ13C. The other sample, P-98_4, 

shows a below average value of δ13C for grassland soils (tab. 5). 

Due to the low percentage of C4 species found throughout Europe, δ13C 

analysis was not performed on any of the samples used by Vysloužilová et al. 

(2014) to create the reference database. 

 

Figure 15 Histogram of δ13C values for the Minnesota sites 
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5.2.5.3. Statsistical analysis 

Given the nature of the data (non-normal distribution), Spearman's rank 

correlation coefficient was used on various data subsets, based on which t-values 

were calculated. 

Using a two-tailed test, p-values were then used to determine the 

significance of correlations while critical t-values (at 0.05 significance level) were 
also calculated to confirm the significance. 

Figure 16: Histogram of δ13C values for Chernozem-like soils. 
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The correlation of the scores of cannonical function obtained from NIRS 

data and δ13C was first tested on the full dataset of 34 samples (or pairs of data for 

the purpose of testing), as lower scores of cannonical function and higher δ13C 

values were found in grassland soils while lower higher scores of the function and 

lower δ13C values appear to be typical of forest soils. However, no significant 

correlation was found with a p-value of 0.154 (fig. 17, tab. 4). 

 

The same was then tested on subset made up of 10 Luvisol (USDA Alfisol) 

samples. Again, no significant correlation was discovered, the p-value being equal 
to 0.229 (fig. 18, tab. 4). 

 

Figure 18:  Relation of scores of cannonical function and δ13C (ranks); Luvisols. 

Figure 17: Relation of scores of cannonical function and δ13C (ranks). 
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A test of the correlation of the scores of cannonical function obtained from 

NIRS data and δ13C was then performed on a subset of 24 samples collected at 
sites representing Chernozem-like (USDA Mollisol) soils. No significant correlation 

was found, p = 0.774 (fig. 19, tab. 4). The correlation of the scores of the 

discriminant function (NIRS data) and the depth at which the sample was collected 

was then put to test. This was made possible by the fact that the Chernozem-like 

sites were sampled at various depths, unlike the Luvisols of which only topsoils 

samples were available. A p value of 0.010 was calculated in this case, thus the 

null hypothesis of no correlation between depth and scores of cannonical function 

(NIRS) was rejected (fig. 20, 22, tab. 4). The correlation of the δ13C values and 

depth was also tested. In this case, the p value reached 0.001, hinting at a 

significant correlation between these two variables (fig. 21, 23, tab. 4). 

 

Figure 19: Relation of scores of cannonical function and δ13C (ranks); Chernozem-like soils. 
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Figure 20: Relation of scores of cannonical function and depth (ranks); Chernozem-like soils. 

 

Figure 21: Relation of δ13C and depth (ranks); Chernozem-like soils. 
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Figure 23: Relation of δ13C and depth, Chernozem-like soils. 

Figure 22: Relation of scores of cannonical function and depth; Chernozem-like soils. 
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Finally, the correlation between δ13C values and scores of cannonical 

function (obtained from NIRS data) was tested on the Chernozem-like samples 
other than the topsoils, totaling 18 samples. No correlation was detected with a p 

value of more than 0.9 (fig. 24, tab. 4). 

 

 

Figure 24: Relation of δ13C and depth (ranks); Chernozem-like soils without topsoil. 

 

Table 4: Results of the statistical analysis. 
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sample 
score 
NIRS δ13C (‰) 

veg. 
NIRS veg. δ13C 

mean depth 
(cm) 

soil 
(USDA) 

E133 -0.85 -27.61 G W 8.5 A 
E215 -1.31 -27.27 G W 6.5 A 
E27 1.05 -27.14 G W 5.0 A 
E73 -2.70 -28.33 G W 7.5 A 
W151 1.67 -27.73 W W 5.0 A 
W171 -3.68 -26.50 G W 5.0 A 
W238 -2.24 -27.10 G W 6.5 A 
W39 -0.60 -27.59 G W 5.5 A 
W44 -2.44 -26.75 G W 6.0 A 
W70 -1.95 -27.30 G W 6.0 A 
P26_1 -5.79 -21.91 G G 4.5 M 
P26_2 -6.16 -21.24 G G 15.5 M 
P26_3 -4.25 -21.06 G G 29.0 M 
P26_4 -4.66 -21.93 G G 42.5 M 
P26_5 -1.84 -21.62 G G 56.0 M 
P50_1 -4.89 -25.24 G W 7.0 M 
P50_2 -1.42 -22.49 G W 17.5 M 
P50_3 -1.46 -21.40 G G 25.5 M 
P50_4 -3.36 -19.26 G G 33.5 M 
P67_1 -4.11 -23.76 G W 8.5 M 
P67_2 -3.80 -21.52 G G 22.0 M 
P67_3 -3.05 -21.50 G G 33.0 M 
P67_4 -1.78 -19.72 G G 46.0 M 
P67_5 -1.76 -18.89 G G 61.5 M 
P67_6 -0.58 -18.58 G G 79.5 M 
P79_1 -4.88 -21.25 G G 6.0 M 
P79_2 -5.29 -22.08 G W 23.5 M 
P98_1 -2.85 -25.92 G W 6.5 M 
P98_2 -2.71 -25.15 G W 19.0 M 
P98_3 0.00 -22.99 G W 29.5 M 
P98_4 11.12 -21.28 W G 43.5 M 
W22_1 -2.61 -26.35 G W 5.0 M 
W22_2 -3.16 -24.49 G W 14.0 M 
W22_3 -0.29 -22.15 G W 28.0 M 

Table 5: Measured values and properties of studied samples. 
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6. Discussion 

6.1. Near-infrared spectroscopy 

Despite various sources of information to the contrary (Kasmerchak et al. 

2018), only two samples were identified using an analysis of NIRS spectra as 

being from soils under forest. While some discrepancy between various methods 

of determining past vegetation is to be expected, it is fair to say that the use of 

near-infrared spectroscopy in the studied region using a methodology and 

reference library devised on a different continent proved unsuccessful. 

The methodology was previously successfully applied on Chernozem-like 

soils in Europe by Vysloužilová et al. (2015) and on wider variety of soils (using 

different reference databases) by a number of other authors (Ertlen et al. 2010, 
2015; Viscarra Rossel and Webster 2008). The reference database used in this 

thesis was nearly identical to the one used by Vysloužilová et al. (2015). Its extent 

was purposely chosen to be made up of soils on loamy calcareous materials, 

similar in characteristics to the parent material found in the study area. While the 

origin of the material is not necessarily the same, the studied soils themselves are 

of similar morphologies. 

There are two main reasons that may contribute to the stark differences 

between the results of different methods. One of them is climate. The reference 
database covers locations in Central and Eastern Europe where, perhaps with the 

exception of the easternmost sites, the continentality of the climate in Minnesota is 

difficult to replicate. The climate differences have the potential to cause differences 

in the composition (and decomposition) of the soil organic matter (Brady and Weil 

2008). This would result in differing NIRS signatures. 

Another factor is vegetation. In both regions, a large percentage of plants is 

of related or even identical genera (Pyankov et al. 2010, Teeri and Stowe 1976). 

However, it is difficult to estimate any effect this might or might not have on the 

composition of the soil organic matter that would affect NIRS fingerprints. 

Still, the idea of using a NIRS reference database on a more global scale 

without the need of collecting hundreds or thousands of samples over millions of 

square kilometers is worth investigating further. A better match of climatic 
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conditions would seem to be one of the possible ways of overcoming the 

discrepancies. Therefore, investigating the feasibility of using a reference 

database with more focus on Eastern Europe would seem like an effort worth 

pursuing without being prohibitively costly for researchers based in Central 

Europe. 

The observed general trend of the NIRS spectra-derived function scores 

increasing with depth in the Chernozem-like profiles is not entirely inconsistent 

with the vegetation history suggested by Kasmerchak et al. (2018) as the two sites 

with the largest recorded increase in scores are currently observed to be under 

forest, making the existence of soil organic matter of woodland origin in the 

profiles plausible. 

 

6.2. Stable isotopes 

The δ13C values representing abundance of C3 and C4 plant material in the 

soil organic matter (Boutton 1996) are largely consistent with the vegetation 

history of the sites as described by Kasmerchak et al. (2018) using 19th century 

public land surveys and other sources. 

The trend of δ13C values increasing with depth in the Chernozem-like 

profiles has a possible explanation in the current vegetation, known to be non-

native C3 grasses at most sites with the rest currently under forest, also a C3 plant 

dominated environment (Boutton 1996, Kasmerchak et al. 2018). The majority of 

sites are believed to have been under grassland throughout the Holocene until the 

turn of the 20th century (Kasmerchak et al. 2018). The increase in values appears 

to be consistent with a higher percentage of C4 plants contributing to the 

composition of the soil organic matter in the past, making the past presence of 

native grassland cover plausible as a considerable percentage of grass species 

native to the region are known to utilize the C4 metabolic pathway (Teeri and 

Stowe 1976). Thus, the Chernozem-like soils in the region can be characterized as 

grassland or prairie soils. 

 

6.3. General 
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The inability of using δ13C as a reliable method to study past vegetation 

throughout Europe due to the very low percentage of C4 plant species (Pyankov et 

al. 2010) restricts the possibilities of recording the vegetation history of 

Chernozems and Chernozem-like soils in the region on a large scale, which could 

serve as a valuable contribution to the ongoing discussion on the origin of 

Chernozems and their vegetation history (Eckmeier et al. 2007, Lorz and Saile 
2011, Suchodoletz et al. 2017, Vysloužilová et al. 2014; and others). Numerous 

authors have rejected the idea of Chernozems as purely grassland or steppe soils 

in many parts of Europe (Eckmeier et al. 2007, Lorz and Saile 2011, Vysloužilová 

et al. 2014; and others). The emergence of modern and relatively low-cost 

methods such as near-infrared spectroscopy has the potential to at least partially 

compensate for the lack of information on vegetation history available in other 
regions using more traditional methods such as stable isotopes (Ertlen et al. 

2015). 

 
7. Conclusion 

The attempt at using a reference library from a geographically distant location 

to extract data using near-infrared spectroscopy at new Chernozem-like sites in 

Minnesota, USA was not succesful. The use of a NIRS database outside of its 

immediate geographical setting seems to remain limited for now. The findings 

do however provide data and information that can be used to build on in the 

future to try and improve the accuracy of reference databases for their use on a 

more global scale. 
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