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Abstrakt 

 

Rytmický pohyb, pravidelný nebo nepravidelný, je nedílnou součástí motorického chování a 

to jak ve zdraví, tak v průběhu nemoci. Hlubší pochopení geneze rytmického pohybu je 

důležité pro porozumění patofyziologii onemocnění, mezi jejichž projevy rytmický pohyb 

patří. V disertační práci jsem studovala dva konkrétní aspekty rytmického pohybu: 

bilaterální koordinaci a modulární řízení. První z nich jsem analyzovala na  třesu lidských 

rukou, druhý na pohybu křídel u modelového organismu Drosophila melanogaster 

(octomilka obecná). 

Mnoho typů třesu, včetně fyziologického třesu (PT) a esenciálního tremoru (ET), se 

vyskytuje v končetinách po obou stranách těla, s podobnou základní frekvencí kmitání. To 

naznačuje, že kontralaterální třesy mohou mít společný zdroj nebo jsou jinak spojené. Ve 

své studii jsem prozkoumala vazbu mezi třesem levé a pravé ruky. Pomocí 3D-

akcelerometrů jsem změřila časový průběh třesu, a použila stacionární i nestacionární 

(waveletové) výpočetní metody k vyhodnocení bilaterální koherence. Měření na všech třech 

prostorových osách umožnilo prozkoumat ucelenější sadu kinematických proměnných, než 

ve většině předešlých studií. Nestacionární analýza usnadnila identifikaci časově transientní 

koherence, což je scénář, který se v analýze třesu dříve nebral v úvahu. U většiny subjektů s 

PT a ET byla nalezena statisticky významná bilaterální koherence v kmitočtovém pásmu 1-

10 Hz. U obou typů třesu se krátké několika vteřinové úseky se silnou koherencí střídaly s 

intervaly statisticky nevýznamné koherence. K prozkoumání vlivu balistokardiackého 

impulsu společného pro obě ruce jsem měřila zrychlení hrudní stěny současně se 

zrychlením obou rukou a odhadovala částečnou koherenci nezávislou na pohybu hrudníku. 

Výsledky této analýzy ukazují, že bilaterální koherence u PT na hlavní frekvenci třesu (tj. v 

rozsahu 6-12 Hz) vyplývá ze spojení oscilace rukou s balistokardiackým silovým 

působením. Toto zjištění se neomezovalo pouze na klidový třes, ale platilo i pro posturální 

třes v obou zkoumaných polohách rukou. 

Ve druhé části své práce jsem studovala modulární řízení pohybu křídel octomilky obecné 

Drosophila melanogaster. Modulární ovládání pohybu předpokládá, že komplexního 
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motorického chování lze dosáhnout kombinací malého počtu jednodušších motorických 

vzorců. Cílem bylo zjistit, zda lze pohyb křídla při různých letových manévrech rozložit do 

malého počtu navzájem nezávislých kinematických vzorců. Měřila jsem pohyb křídel 

upoutaných octomilek během delších intervalů nepřerušovaného letu (~ 60 sekund) 

pomocí vysokorychlostního počítačového kamerového systému. Za použití nové varianty 

analýzy nezávislých komponent (ICA), jsem rozložila složený pohyb obou křídel na složky, 

které mají minimální vzájemnou informaci (což je míra statistické závislosti). Za použití této 

metody jsem identifikovala čtyři typy kinematických vzorců, které mohou být aktivovány 

nezávisle na sobě, a vyskytují se jak v izolaci, tak v lineární superpozici. Tři z těchto 

nalezených základních vzorců lze asociovat s řízením vybočení, náklonu těla, a letového 

výkonu. Čtvrtý kinematický vzorec se skládá ze změny amplitudy kmitu s periodou 2 cyklů 

mávnutí křídel, přičemž tento vzorec trvá až několik desítek cyklů. Tento vzorec pohybu je 

nově identifikován a značí velmi rychlé řízení, na časové škále jediného mávnutí křídel (5 

ms); proto jsem tento pohybový vzorec zkoumala podrobněji. U octomilky reagují v rámci 

jediného mávnutí křídel pouze tzv. kyvadélka (gyroskopický mechanosenzorický orgán). K 

prozkoumání role kyvadélek při aktivaci tohoto rytmického vzorce pohybu jsem studovala 

mouchy, u nichž byla obě kyvadélka ablatována.. V souladu s očekáváním měla chybějící 

zpětná vazba kyvadélek významný vliv: i. periodicita se zvýšila z 2 cyklů na 3-4 cykly, ii. 

vytvořila se slabá korelace mezi maximálním ventrálním zdvihem křídel a jeho 

načasováním v daném cyklu mávnutí. 

Na závěr bych ráda shrnula, že moje práce předkládá dva základní nálezy týkající se neuro-

svalového řízení rytmických pohybů: 1) třes levé a pravé ruky u PT a ET jsou přerušovaně 

synchronizované. Tato přechodná ale opakovaná synchronicita ukazuje slabé propojení 

třesu na obou rukách. I když koherence na hlavní třesové frekvenci PT může býž vysvětlena 

simultánním balistokardiackým působením na obě paže, bilaterální koherence pozorována 

u ET, podobně jako nízkofrekvenční koherence u PT, můžou být spíše založené na přímém 

propojení mezi neuronálními generátory třesu levé a pravé ruky. Pro stanovení těchto 

mechanismů je ale zapotřebí provést další studie založené na kombinaci kinematických a 

elektrofyziologických nahrávek. 2) Komplexní kinematické vzorce pohybu křídel během 

hmyzího letu jsou generovány jako lineární kombinace několika základních kinematických 

vzorců, které jsou řízeny nezávisle na sobě. Tento nález přináší silnou podporu pro 

přítomnost modulárního řízení rytmických pohybů u bezobratlých. 
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Abstract 

 

Rhythmic motions, regular or irregular, are an integral part of motor behavior both in 

health and in disease. Better understanding of its neural control mechanisms helps in 

developing methods for controlling the progression of diseases manifesting as rhythmic 

motions. I studied two specific aspects of rhythmic motions: bilateral coordination of hand 

tremors in human subjects and modular control of locomotion in invertebrates.  

Many types of tremors, including the physiological tremor (PT) and the essential tremor 

(ET) occur in limbs on both the sides of the body, with similar fundamental frequency of the 

oscillation. This raises the possibility that the contralateral tremors may have a common 

source or are otherwise coupled. However, while significant contralateral interaction is 

seen in these two types of tremors, only limited evidence of bilateral coherence has been 

shown in the previous literature. Therefore, in my study I explored the existence of a weak 

coupling between the left and right oscillators the may lead to intermittent bilateral 

coherence. I measured triaxial acceleration of the two hands and systematically assessed 

their bilateral coherence, using both stationary and non-stationary (wavelet-based) 

analyses methods. Measuring all three axes allowed examination of a more complete set of 

kinematic variables than in most previous studies. The majority of both PT and ET subjects 

displayed significant bilateral coherence in the frequency range 1-10 Hz. In both the cases 

short epochs of several seconds with strong coherence were separated by intervals of 

insignificant coherence. To probe the contribution of the cardiac impulse that is common to 

both the hands, I measured the acceleration of the chest wall simultaneously with that of the 

two hands and estimated their partial coherence subject to the chest motion.  Results 

indicate that in PT, bilateral coherence at the main tremor frequency (i.e. in the range 6-12 

Hz) arises from a joint coupling of the hand oscillations to ballistocardiac forcing. 

In the second part of my work I studied modular control of locomotion in the invertebrate 

model organisms for neuromotor control, the fruit fly Drosophila melanogaster. Modular 

motor control implies that a particular group of muscles is simultaneously activated to 

generate a specific motor pattern. The aim was to investigate if the various flight maneuvers 
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arise from the activation of a small number of independent neuromuscular control modes. I 

measured the wing motion of tethered flying fruit flies for long uninterrupted flight 

durations (~60 seconds) with a high-speed computer vision system. With a novel method 

based on the least-dependent component analysis I decomposed the joint motion pattern of 

both wings into components that have the minimal mutual information (a measure of 

statistical dependence). Using this method I identified four types of kinematic patterns that 

can be activated mutually independently, and occur both in isolation and in linear 

superposition. Three of the identified elementary patterns can be associated with body yaw 

control, body pitch control, and control of flight power. The fourth kinematic pattern 

consists of an alteration of stroke amplitude with a period of 2 wingbeat cycles, extending 

for dozens of cycles. This kinematic pattern is novel and interesting, as its features indicate 

the activity of a control system that operates at the times scale of a single cycle; Hence, I 

studied it in some details.  

In conclusion, my study has put forth two major findings regarding the neuromuscular 

control of rhythmic motor activities: i. The hand tremor in PT and ET are intermittently 

synchronized. Such transient but recurring synchrony indicate a weak coupling between the 

tremors of the two hands. Although the coherence at the main tremor frequency can be 

explained by the simultaneous cardioballistic forcing, the origin of the low frequency 

bilateral coherence (i.e. 1-6Hz) needs to be explored. ii. Complex kinematic patterns during 

insect flight can be generated from linear combinations of elementary kinematic patterns 

that are controlled mutually independently. This provides strong evidence for the presence 

of modular motor control of rhythmic motion in invertebrates.   
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CHAPTER 1 

Literature review: Rhythmic activities 

and motor control 
 
 

1.1 Overview 

 

Motor control is traditionally classified into discrete movements and rhythmic movements 

(Schaal et al. 2004; Hogan and Sternad 2007; Degallier and Ijspeert 2010). Discrete 

movements, such as reaching, grasping etc., are preceded and succeeded by posture1 and 

occupy a non-negligible duration containing no posture (Hogan and Sternad 2007). On the 

other hand, rhythmic movements as a class comprise of a wide variety of actions, ranging 

from the ongoing periodic ones like the heartbeat to episodic repetitive movements like 

drumming (Marder and Calabrese 1996; Hogan and Sternad 2007). The primary condition 

for any movement to be classified as rhythmic is that some aspect of it is repeated (Hogan 

and Sternad 2007).  

 

Rhythmic motions are particularly interesting as their inherent repetition make it easy to 

quantify the motion as well as variability under different perturbed conditions. It is the 

most common mode of locomotion in the animal kingdom and has developed some of the 

fastest yet precise sensorimotor systems. Being phylogenetically the older motor behavior, 

it is found ubiquitously in the animal kingdom; providing the opportunity to study the 

evolution of a given motor pattern with increasing structural complexities (Katz 2016). 

Hence, understanding the genesis and the underlying dynamics of these rhythmic motor 

patterns leads to a better understanding of the neural control mechanisms crucial in health 

and in disease. 

 

                                                           
1
 A bodily configuration defined by a period of no movement (Hogan and Sternad, 2007) 
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This chapter provides an overview of the existing literature on motor control of rhythmic 

movements. In the second section I summarize the various types of neural mechanisms that 

are known to be involved in the generation and modulation of rhythmic motion in animals. 

In the third and the fourth sections I discuss the genesis of the involuntary and the 

voluntary types of rhythmic motor behaviors with reference to the specific systems that I 

have studied viz. the human hand tremor and the drosophila flight apparatus. In the last 

section of this chapter I discuss the significance of kinematic data analysis.  
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1.2 Genesis and modulation of rhythmic  

     motor patterns 

 
Oscillations in motor activity arise from a combination of central and peripheral 

mechanisms (Marder and Calabrese 1996; Marder and Bucher 2001). The motor control of 

rhythmic movements usually constitute of generating a stable central oscillation that is then 

modulated by the activity of peripheral sensory feedback loops (Kiehn 2016) and by 

fluctuations due to inherent noise in the neuromuscular system (Faisal et al. 2008). Steady 

central oscillations in motor activities can be generated by a number of mechanisms, 

discussed in subsection 1.2.1. Generic peripheral mechanisms that transform these steady 

oscillations into adaptive motor control are discussed in the second subsection.  

 

1.2.1 Generation of steady central oscillations  
 

Central pattern generators 

Central pattern generators (CPG) are neural networks that are capable of generating 

rhythmic outputs even when stimulated with a non-periodic input. The concept of such 

neural networks was first put forth in the beginning of the 20th century by T. Graham Brown 

(Brown 1911) to explain the alternate flexion and extension of the leg muscles during 

vertebrate walking. This came as an alternative to the then prevalent hypothesis of 

rhythmic motion generation by chain of reflex actions. But, to identify a part of the nervous 

system that can on its own generate periodic signal it is necessary to isolate the prospective 

neural circuit from all feedback loops; something that is extremely difficult to achieve in 

vivo in higher animals. Such neural circuits were finally identified in invertebrate model 

organisms, the Arthropods (Mulloney and Smarandache 2010) decades after its 

proposition. Two independent research groups working on crayfish (Hughes and Wiersma 

1960) and the desert locust (Wilson 1961, 1966; Wilson and Wyman 1965) identified 

neural circuits those could intrinsically generate the rhythmic activity necessary for the 
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coordinated movement of the locomotor organs (swimmerets and wings respectively). In 

vertebrates such CPGs are mostly located in the spinal cord. Descending neural pathways 

control the pace of such circuits by modulating the concentration of certain 

neuromodulators that are essential for the CPGs to sustain their rhythmic activity (Grillner 

et al. 1991; Cazalets et al. 1992; Ryckebusch and Laurent 1993).  

 

Functioning principles of CPGs have been studied for decades in both vertebrate and 

invertebrate systems; albeit the latter played a pivotal role due to their less complex 

construct. In both systems, neural CPGs mostly constitute of a network of interneurons that 

centrally orchestrate the motor neurons. A number of cellular organization models, 

especially underlying vertebrate locomotion, have been proposed over the years (Guertin 

2009). The simplest one called the “half center model” claims that the cyclic contraction-

relaxation pattern of each pair of flexor and extensor muscles of a limb is achieved by 

reciprocally inhibited electrical activity of two distinct modules of the spinal CPGs, with one 

module („half-center“) controlling the flexor muscle and the other the extensors. This claim 

has recently received experimental support, wherein trans-synaptic labeling of flexor and 

extensor motor neurons has revealed medio-lateral spatial segregation of the premotor 

neurons (Tripodi et al. 2011). However, patterns of locomotor activities, such as backwards 

walking, climbing etc., are often much more complex and cannot be explained by simple 

alterations of the flexor-extensor activity. Hence, many other models that incorporate these 

complexities have been proposed (Guertin 2009). The detailed neural organization of the 

CPGs and their activation patterns however differ in each species and as per the 

requirement of the concerned rhythmic motion (Katz 2016).   

  

Although motor neurons are often not involved in the intermuscular coordinating rhythm 

generation, their conditional intrinsic membrane properties never the less shape the final 

rhythmic output (Dicaprio 1997; Kiehn and Eken 1997; Kiehn et al. 2000). In neonatal rats 

the NMDA induced rhythmic activity of individual spinal motor neurons synchronize via gap 

junctions into a coordinated output of the motor neuron pool without any spike activity in 

the CPG (Tresch and Kiehn 2000). This synchronization was local, i.e. limited to the motor 

pools of each ventral root. The coordination between the motor pools of different ventral 

roots along the spine still required the activity of the CPG networks. However, Tresch and 

his colleagues showed that the frequencies of these rhythmic patterns decrease from the 
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rostral to the caudal segments in the lumbar region of the spine. Hence, they proposed that 

the ubiquitous rostrocaudal gradient of rhythmicity seen in spinal CPGs might have resulted 

in part from properties of motor neuron pools, rather than exclusively from the properties 

of CPGs.  Yet, in some other cases the motor neurons directly participate in the rhythm 

generating mechanisms of the connected CPG (Staras et al. 1998).  

 
Myogenic rhythm generators 

A second mechanism of rhythmic motor pattern generation involves intrinsic periodic 

contractions of the muscles in the absence of any periodic neural stimulation. In vertebrates 

such spontaneous rhythmic contractions are found to occur mostly in the smooth muscles, 

although such phenomena are also seen in skeletal muscle to some extent (Okamura and 

Ishiwata 1988). An example, seen in all vertebrates, is the contraction of the heart muscles. 

In this process specialized cardiac muscle cells called the pacemaker cells periodically 

generate spontaneous electrical impulses (Schuessler et al. 1996); these impulses then 

propagate through other cardiac muscles making the atria and the ventricles contract 

rhythmically. The mechanism of spontaneous impulse generation in these kinds of 

myogenic pacemaker cells is attributed to their unstable resting membrane potentials. 

Dynamics of the sodium, potassium and calcium ion channels are such that the membrane 

potentials oscillate between depolarization and repolarization, reaching the depolarization 

threshold in every cycle. Each time the depolarization threshold is reached the myocytes 

contract, hence resulting in rhythmic muscle activation. Another essential rhythmic 

movement with similar generation mechanism is the  uterine contractions in mammals 

(Maul et al. 2003). However, spontaneous oscillations of the skeletal muscles originate from 

the properties of the contractile proteins, and hence the mechanism is very different from 

that discussed above. They are stretch activated and do not possess any pacemaker cells.  

This mechanism is discussed in some details in the next paragraph, for further details at the 

molecular level refer to (Ishiwata et al. 2011).   

 

 Although myogenic heart beat and intestinal pulsation have also been shown to exist in 

insects (Sláma and Lukáš 2011; Sláma 2012), but unlike vertebrates myogenically 

generated rhythmic movements are very often an integral part of locomotion in 

invertebrates.  In many flying insects the basic oscillatory motion of the wing is brought 

about by the contraction of large flight muscles in the thorax that is transmitted to the 
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surrounding exoskeleton and to the base of the insect wings (Dudley 2002). These flight 

muscles have been shown to perform oscillatory contractions that are uncoupled from the 

activation rate of their motor neurons (Dickinson and Tu 1997). The basis of these 

spontaneous oscillations lies in the properties of the contractile protein system that incurs a 

delayed change in muscle tension in response to changes in muscle length (Ruegg et al. 

1970; Abbott and Cage 1984). Similar fundamental mechanisms are thought to underlie the 

spontaneous oscillations of the vertebrate skeletal muscles under certain activity regimes 

(Ruegg et al. 1970).  

 

Other mechanisms of rhythmic motor pattern generation 

In addition to the two generic rhythmic pattern generators i.e., the CPGs and the myogenic 

pacemakers, oscillatory motor patterns may also arise from different specific mechanisms. 

The simplest ones are where the oscillatory motions arise from just the mechanical forces 

acting on the limb at the joint. While in more complicated cases, like that of the seemingly 

simple rhythmic motor act of spontaneous eye blink, only two muscles2 are thought to be 

controlled by multiple premotor structures in the brainstem (Bour et al. 2000). Many a 

times the source of rhythmic movements may not be a single anatomical structure, but a 

system constituting of body parts, their inter-connections and various sensorimotor loops. 

Examples of such rhythmic motions are the voluntarily generated ones, like the hand 

movements of a skilled musician while playing a musical instrument. The geneses of such 

rhythmic motions are pretty complex, requiring precise timing of several hierarchically 

organized actions depending on the specific instrument (Zatorre et al. 2007).  

 

All the mechanisms of rhythmic motor pattern generation discussed above, although found 

in healthy motor systems are also shared by the spontaneous oscillatory motions 

accompanying movement disorders. While abnormal oscillatory activities in the central 

nervous system have been associated with some kinds of tremors in the periphery(Elble 

1996) e.g. Parkinson’s disease tremor and essential tremor, it is not the case for most kinds 

of tremors. Infact a large group of tremors are thought to originate due to the  

synchronization of motor units by reflex activation or unstable sensorimotor loops (Deuschl 

et al. 2001). Genesis and other characterizing properties of the two types of tremors that I 

                                                           
2
 orbicularis oculi and levator palpebrae superioris  
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have studied, i.e. physiological tremor and essential tremor are discussed in subsections 

1.3.1 and 1.3.2 respectively.  

 

 

1.2.2 Modulations of central oscillations by peripheral feedbacks 
 

The hypothesis of chain of reflex actions generating rhythmic motion prevailed for decades 

in the literature essentially because it was well recognized that the loss of normal 

peripheral feedback disrupts rhythmic behavior. Although now this hypothesis has given 

way to the intrinsic rhythmic pattern generators, the importance of peripheral feedback in 

orchestrating rhythmic motions remains unchallenged across species. Infact, periodic 

forcing of the peripheral feedback systems is often seen to entrain the rhythmic pattern 

generators in invertebrates (Bartussek et al. 2013) as well as in vertebrates (2003). It is 

seen that in the absence of the mechanosensory feedback from their hind wings the 

dipteran flies cannot sustain free flight and swirl down to the ground within a few wing 

beats (Derham 1720). Similar reports of losing balance while trying to walk is reported by 

patients with sensory peripheral neuropathy, a neurodegenerative disease in which the 

sensory nerves are damaged (Mold et al. 2004).  

 

This instigates an important question: given the rhythmic pattern generator’s intrinsic 

ability to generate the rhythmic motion, what prevents an organism from sustaining it 

without sensory feedback? The answer lies in the factors that perturb the state of the 

system in rhythmic motion. Stable continuous movement in any environment heavily relies 

on how efficiently the moving system reacts to various perturbations (Dickinson et al. 2000; 

Hausdorff et al. 2001). A suite of sensorimotor loops measure the magnitudes and dynamics 

of force and length changes in the musculoskeletal system and actuate specific adaptations 

for undesired changes (Haridas et al. 2005; Mazzaro et al. 2005; Ristroph et al. 2010, 2013). 

In case of locomotion, perturbations range from various internal factors like the cardiac 

activities, sensory feedback delay etc. to environmental factors like varying resistance of the 

medium or obstacles in the path. Maintaining postural equilibrium in the face of all these 

perturbations as well as during self-initiated movements involves coordination of 

sensorimotor strategies to stabilize the body’s center of mass (Horak 2006). From walking 

bipeds to flying insects, at least as many types of stabilizing sensorimotor systems exist in 

the animal world as the fascinating forms of locomotion (Dickinson et al. 2000).  
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In all the sensorimotor systems the once responsible for dynamic stabilization heavily rely 

on mechanosensors. Mechanosensors are cellular structures innervated by sensory neurons 

that respond to mechanical stress or strain of the concerned structure. The significance of 

mechanosensory feedback is increased many folds because of their rapid phasic nature that 

enables them to control a rhythmic motor pattern on a cycle-by-cycle basis (Dickinson et al. 

2000). While acting within a single cycle is advantageous for any motor behavior, it is of 

supreme value in maintaining postural stability at the face of perturbations. Hence, not 

surprising that in most vertebrates the major contribution towards the sense of balance and 

spatial orientation is provided by mechanosensory feedback from the somatosensory and 

the vestibular systems (Peterka 2002). Even in the simpler invertebrate model organisms 

for neuromotor control, mechanosensory feedbacks play a crucial role in actuating stable 

locomotion.  In fact in C. elegans the sinusoidal crawling motion is actuated by passing a 

chain of myotatic reflex along the body axis; i.e. the stretch receptors of one bending 

segment activates the motor neurons of the immediately posterior segment (Wen et al. 

2012; Schafer 2015).  However, in all the other studied organisms the mechanosensory 

feedback modulates the motor output  of rhythm generators  (Berger et al. 1984; Dietz et al. 

1987; Fayyazuddin and Dickinson 1999; Elson and Berkowitz 2016)by either influencing 

the rhythm generator itself or by directly modifying the activation patterns of the actuator 

muscles. As in the case of the dipteran flies, wingbeat synchronous feedback from the 

mechanosensors on the wing and the modified hind wings act directly on the muscles 

actuating the wing motion by fine tuning its firing phase (Fayyazuddin and Dickinson 1999). 

However when these mechanosensors are stimulated by mechanically vibrating the fly 

body, periodic activation of  the same actuator muscles entrains the core rhythm generator 

of the wing beat by mechanical forcing and modifies the wingbeat frequency (Bartussek et 

al. 2013).  This feedback system is further elaborated in the context of my own study in 

section 1.4.2.  
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1.3 Involuntary rhythmic motion: Tremors 

 
Rhythmic motions of the locomotory organs enable the animals to successfully move 

through its environment, yet when it occurs spontaneously may interfere with the basic 

functionality of the organ.  In humans the most common adult movement disorder is the 

involuntary shaking of the limbs and other body parts, called the tremors (Louis et al., 

1998). Although more evident during diseased states, tremors are also present in 

neurologically healthy subjects, known as physiological tremor. Tremors are an 

unavoidable byproduct of the central to peripheral cascade of motor control. Many factors 

like motor pathways modulated by the upstream oscillatory activities in the motor cortex, 

synchronized firing of motor units etc., are also characteristics of a healthy neuromuscular 

system. Physiological tremor as a motor activity is interesting in itself, as it involves certain 

parts of the central nervous system and pathways that are also found to be active during 

pathological forms of tremors. Hence, it provides a window to study the healthy state of 

certain parts of the neuromuscular system that also play a role in the pathological 

tremorogenesis. This is particularly valuable for human investigations because of the 

limited direct experimental access to various parts of the central nervous system.  

 

 Pathological tremors almost always appear as a symptom of one of the several neurological 

disorders. Tremulous motions, more often than not, have a multifactorial genesis. The 

complexity of tremorogenesis is such that even after decades of research, anatomical origins 

and pathophysiologic mechanisms underlying even the most common types of tremors are 

still unknown (Elble, 2013b). While some kinds of tremors are thought to arise from a 

distorted form of the same mechanism that underlies physiological tremor, most of the 

others such as Parkinsonian tremor, orthostatic tremor etc., are believed to arise from a 

newly developed diseased state of the motor control system. The present state of tremor 

pharmacology has been nicely summarized in the recent review by Elble  (Elble, 2013b), 

where one of his key points reads  “There is no form of pathologic tremor for which the 

anatomic origin and pathophysiology of tremorogenic oscillation are understood enough to 



11 

 

accurately guide the development of a successful pharmacotherapeutic treatment”. Hence, 

studies of different forms of tremors that shed light on the possible mechanisms of tremor 

genesis have vital roles to play in the future development of tremor pharmacology.   

 

1.3.1 Brief overview of the vertebrate neuromotor system 

 

 

Figure 1.1: Cartoon diagram of the human brain showing the key parts of the motor pathway. 

Diagrams prepared using free version of the zygotebody web application and are based on the 
available information in literature (e.g. Jacobson and Marcus, 2008; Pierrot-Desseilligny and Burke, 

2005; Rosenbaum, 2010).  
 

In vertebrates the generation of any movement, be it voluntary or involuntary, involves 

several hierarchical levels of neuromuscular control. The primary motor cortex in the 

frontal lobe is the prime site involved in the production of movements, while other areas 

such as the basal ganglia, the cerebellum, etc. are responsible for higher order control of 

motor function.  Figure 1.1 shows the parts of the central nervous system which are known 

to play key roles in motor pattern generation and control. Involuntary motions such as 

reflex actions on the other hand can be generated locally, completely controlled by the 

spinal cord (Fig. 1.2).  Reflex actions are the simplest form of motor behavior generated in 

response to a stimulus. Any kind of voluntary movement or external stimulus elicits 

mechanical feedbacks from the muscles as well as the skin; which shows up as a series of 

electromyographic (EMG) bursts of the concerned muscles.  In humans the short-latency 

stretch reflex occurring 20-50 ms after the muscle stretch (Pruszynski et al., 2011) is widely 

agreed to originate from the monosynaptic activation of the alpha motor neurons by the Ia-

group of afferents at the spinal cord (Fig. 1.2). These sensory fibers from the muscle 
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spindles can detect even very small amplitude oscillations (Hagbarth and Young, 1979). 

However polysynaptic reflex loops are more common, i.e. in most other cases the afferent-

to-efferent connections are via one or more interneurons (as seen in case of Ib afferent in 

Fig. 1.2). EMG response due to the sensory feedbacks from the skin and/or subcutaneous 

tissues have longer latencies of 50-105 ms (Corden et al., 2000; Darton et al., 1985; 

Pruszynski et al., 2011). Unlike the short-latency stretch reflex, these are thought to have 

more complicated neural pathways (Pruszynski et al., 2011) with possible supraspinal 

interventions (Kimura et al., 2006; Shemmell et al., 2009). Finally, the ultimate unit of the 

motor control pathway is the “motor unit”. A motor unit comprises of a motor neuron and 

skeletal muscle fibers innervated by its axon terminals. In vertebrates the strength of a 

muscle contraction depends on the number of motor units activated3. Anatomical details 

and the functionality of these different components of the motor pathway can be found in 

neuroscience text books (such as: Jacobson and Marcus, 2008; Pierrot-Desseilligny and 

Burke, 2005; Rosenbaum, 2010). As my PhD research concerns only tremors, in this thesis I 

would discuss only those centers of the motor pathway that are known (or thought) to be 

involved in tremorogenesis.  

 

Figure 1.2: Basic circuitry 

of muscle proprioception 

in human. Afferent 
neurons (blue) sense 

changes of muscle length 
(Ia) or tension (Ib) and 

form direct (not via brain) 
connections with the motor 
neurons (red) that initiate 
muscle contraction (α). 

Supraspinal signals change 
the loop gain via γ-motor 

neurons.  Diagram modified 
and redrawn from (Fig. 3.6, 
Rosenbaum, 2010) 

 

Our understanding of the tremor neurophysiologies, even for the most common and widely 

studied ones, is far from complete (Elble, 1996; Elble, 2013b; Hallett, 2014). However, 

decades of scientific research have led to our understanding of specific parts of the 

                                                           
3
 In invertebrates the extent of muscle contraction is regulated by the balance between the excitatory 

and the inhibitory signals of the innervating motor neurons. 
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neuromotor system that are involved in tremorogenesis. In the next two subsections I 

discuss the neurophysiologies of such components in the cases of the two types of tremors 

that I have studied viz. the physiological and the essential tremor.  

 

1.3.2 Neurophysiology of the physiological tremor 

 

Physiological tremor is believed to have a multifactorial origin with central as well as 

peripheral sources. (McAuley and Marsden 2000)  list a number of early experiments and 

their proposed mechanisms of oscillatory muscle activities. These proposed mechanisms 

were broadly classified under the following headings (reordered): i. mechanical resonance, 

ii. motor unit firing properties, iii. synchronization by reflex loops, iv. synchronization by 

CNS oscillators, v. intrinsic muscle property (e.g. resonance of contractile system, 

actomyosin cross-bridge cycling). The present consensus is that the physiological tremor 

arises from a concoction of all these five mechanisms, with differential contribution of each 

under different conditions (McAuley and Marsden 2000; Deuschl et al. 2001; Lakie et al. 

2012). In the rest of this subsection I will discuss how each of these proposed mechanisms 

aid to muscle oscillations and may therefore contribute to tremulous motions in 

neurologically healthy subjects.  

 

Mechanical resonance 

The simplest and so far the most widely accepted of all the proposed sources of 

physiological tremor, is the mechanical resonance of the oscillating limbs. This phenomenon 

is a result of the basic physics governing the motion of an object about its pivot. For 

example, in the most simplistic model a hand outstretched from the wrist joint can be 

considered to act as a torsional pendulum. Such systems tend to oscillate with a natural 

frequency that in this case varies directly with the muscle tone and inversely with the 

inertia of the oscillating limb (Lakie et al. 1986). The limb in any posture is supported by 

tonically active effector muscles; the broadband EMG activities of these muscles always 

have a component at the natural frequency of the limb that sets it in a resonant oscillation. 

Understandably this resonance frequency is different for different parts of the body 

(Deuschl et al. 2001): finger about the metacarpophalangeal joint ~25 HZ, hand about the 

wrist joint 6-8 Hz, lower arm and hand about the elbow joint 3-4 Hz and the whole arm 

about the shoulder joint 0.5-2 Hz. As physiological tremor has about the same frequency 
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range in all the body parts (Morrison and Newell 1999; McAuley and Marsden 2000), it 

seems that only for the hand-wrist system mechanical resonance can contribute to 

physiological tremor. For the mechanical resonance of the more proximal body parts to 

contribute to the physiological tremor the muscle tone has to increase.   

 

In addition to the muscle activities a factor that has been long recognized to impart 

oscillations via mechanical resonance is the ballistocardiac impulse. Each cycle of ejection of 

blood into the aorta is associated with a reaction force that acts on the body – the central 

ballistocardiac impulse. This impulsive force instigates mechanical oscillations in the 

extremities at their respective natural frequencies (mentioned in previous paragraph) and 

the effect is seen more strongly when the limb is in rest. Additional peripheral 

ballistocardiac impulses are also known to arise from blood pressure oscillations in the 

limbs. In terrestrial conditions measuring the ballistocardiac force is limited to a 

unidirectional recording of the recoil force of the body along the head-to-toe direction. 

However, under microgravity conditions (i.e. close to zero gravity) as the subject is 

decoupled from the environment, measurements using impedance plethysmography4 reveal 

that the cardiac impulse generate about 0.04ms-2 of acceleration along the dorso-ventral 

axis in addition to about 0.07ms-2 along the expected vertical axis (i.e. head-to-toe direction) 

(Prisk et al. 2001).  The role of ballistocardiac force in tremor genesis has long been 

recognized, and a number of older studies (Brumlik 1962; Van Buskirk and Fink 1962; 

Wachs 1964; Yap and Boshes 1967) even proposed it to be the principal origin of 

physiological tremor. It has been shown that the vibration of relaxed hands is indeed due 

mainly to ballistocardiac forces (Yap and Boshes 1967), and that the peripheral blood 

pressure oscillations have a significant effect on the amplitude of postural PT (Morrison et 

al. 2013). 

 

Motor unit firing properties 

Any movement of the limb is always associated with the activation of the motor units, i.e. 

the activation of a motor neuron that in turn activates the innervated muscles. Most motor 

neurons receive input from several sources at the spinal cord (Fig. 1.2) and exhibit a wide 

range of firing activities with a lower bound in the 6-10 Hz frequency range when active 

                                                           
4
 A non-invasive medical test that reflects blood volume changes by measuring small changes in electrical 

resistance of the chest, calf or other regions of the body.  
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(McAuley and Marsden 2000; Farina et al. 2014). However, each muscle is innervated by a 

pool of motor neurons and the overall activity of this pool (neural drive) controls muscle 

activation. Hence, to decipher the mechanism of muscle force generation from motor unit 

firings properties it is necessary to understand the neural drive. In this regard two slightly 

different schools of thoughts exist (Farina and Negro 2015).    

 

i. Motor unit synchronization: This is the older school of thought based on the 

observations that discharges of pairs of motor units are not independent but show a 

degree of correlation. The range of correlations seen between pairs of motor 

neurons are explained in terms of different possible kinds of synchronization in 

(McAuley and Marsden 2000). The hypothesis is that the common synaptic input 

delivered to the motor neuron at the spinal cord instigates correlated discharges of 

action potentials by the motor neuron pool (McAuley and Marsden 2000; Deuschl et 

al. 2001; Semmler 2002).  Studies have shown that the physiological tremor and the 

EMG of the effector muscle activities are coherent in the frequency range of 8-12 Hz; 

even if the firing rates of the individual motor units have completely different 

fundamental frequencies (Elble and Randall 1976).  

 

ii. Motor neuron pool as a filter tuned on common input: This school of thought is 

based on the hypothesis that above a certain frequency threshold the motor neuron 

pool transfers the common synaptic input to the output with high accuracy and 

cancels all other input components (Farina et al. 2014); The lower bound 

corresponds to the minimum discharge rate of the motor neurons, which is usually 

in the 6-10 Hz range (McAuley and Marsden 2000; Farina et al. 2014). As the neural 

drive to the muscles primarily comprise of the common input signal to the motor 

neuron pool, high coherence between the activities of pairs of motor units is 

implied.  

  

(Farina and Negro 2015) provide a comprehensive review on the differences between the 

two proposed mechanisms by which the motor unit firing properties may encode the 

common drive.   
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Motor unit firing properties have always received special attention in studies aimed to 

understand the neurophysiology of physiological tremor (McAuley and Marsden 2000; 

Deuschl et al. 2001). However, in the light of recent studies one may have to reevaluate the 

proposed modes of force generation by the high frequency components of the neural drive. 

(Negro et al. 2009) showed that during isometric contraction the contractile system of the 

muscles act as a low-pass filter of the neural drive in a bandwidth mainly below 5–6 Hz. 

This would imply that the muscle activities needed to generate sufficient forces for 

physiological tremor [6-12 Hz (Morrison and Newell 2000; Raethjen et al. 2000b)] would be 

significantly attenuated.  However, there are clear evidences of high EEG-EMG coherences 

during pathologic tremors at frequencies greater than 6 Hz (Grosse et al. 2002; 

Muthuraman et al. 2013), indicating that the CNS neural activities in this frequency range 

are reliably transformed into motor unit activities. Negro and colleagues propose that low-

frequency oscillatory inputs necessary for force control may be transmitted by a higher-

frequency carrier (Farina et al. 2014). 

 

Synchronization by reflex loops 

Although the negative feedback functionality of these reflexes aims to dampen unwanted 

muscle activity, but due to their inherent latency (i.e. time gap between the muscle stretch 

and the feedback EMG response) a phenomenon called the ‘feedback resonance’ reinforces 

rhythmic activities at certain frequencies. For example, the loop time of spinal stretch 

reflexes at the finger is estimated to be about 50 ms (1978; McAuley and Marsden 2000). If 

the fingers are subjected to a 10-Hz stretch release cycle, by the time the reflex action tries 

to contract the stretching muscle it is already in the release phase of the contraction cycle. 

Hence, a delay of 50 ms would reinforce the tremor rather than oppose it. It is important to 

note that under normal circumstances (i.e. neurologically healthy individuals) even though 

the reflexes can support an ongoing tremor oscillation, it does not seem to be strong enough 

to produce substantial reflex compensation so as to cause tremor on its own (Prochazka 

and Trend 1988; Rothwell 1998). However, Prochazka and Trend showed that if the loop 

gain increases by even a small amount (10% for the elbow joint), the stretch reflex alone 

can give rise to periodic contractions of the effector muscles at frequencies of pathological 

tremors (i.e. 3-8 Hz) (Prochazka and Trend 1988). 

 

Synchronization by CNS oscillators  
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Most controversial of all the proposed sources for physiological tremor till date is the 

presence of a central oscillator for the 8-12 Hz component of the oscillation. Oscillatory 

neural activities appear at various levels of the central nervous system and at least some of 

these are believed to propagate on to the kinematics of the extremities (Baker et al. 1999; 

Raethjen et al. 2002; Jerbi et al. 2007). As clearly demonstrated by human EEG and more 

detailed electrophysiological measurements on monkeys, the neural activities in the brain 

are strongly rhythmic in nature (Sanes and Donoghue 1993; Murthy and Fetz 1996; Arce-

McShane et al. 2016). Soon after the discovery of the alpha rhythm of the cortical neural 

activities by Hans Berger, it was proposed to be a source of the physiological tremor based 

mainly on their frequency overlap (e.g. Schwab and Cobb, 1939). However, shortly followed 

studies showing that the tremor frequency and intensity remained unaffected by 

considerable changes in the alpha rhythm of the cortex, hence jeopardizing the proposition 

(e.g. Lindqvist, 1941). Surprisingly, even after decades of research this controversy still 

persists, as is demonstrated by these two recent studies (Vernooij et al. 2013; Mehta et al. 

2014). The former clearly shows evidences to support that the central oscillators play a 

prime role in two of the major manifestations of physiological tremor, while the latter 

advocates for a dominant role of mechanical resonance in physiological tremor. A major 

factor that has till date aired this controversy of central versus peripheral dominance in 

physiological tremor genesis is the lack of a definitive central source, while evidences 

clearly demonstrate a crucial role played by a central drive to the motor units.  One of the 

early evidences in stark support of central oscillators came from Marsden and colleagues 

who presented the case of a patient showing a clear 9.5 Hz tremor in his both arms, even 

though his right arm was totally deafferented surgically (Marsden et al. 1967). This 

indicates that physiological tremor not only exists, but also retains its characteristic 

frequency in complete absence of sensory feedback from the oscillating limbs. Further 

evidences come from studies that demonstrate that the synchronized activity of the motor 

units in the 10Hz frequency range is unaffected by factors that alter the mechanical 

properties of the limb, such as loading, changes in muscle stiffness or anesthesia (McAuley 

et al. 1997; Halliday et al. 1999).  Some of the most direct evidences to the involvement of 

brain in physiological tremor genesis come from studies that report changes in tremor 

parameters in response to perturbations of different motor areas of the brain. Holmes and 

his colleagues in a series of studies on humans with accidental cerebellar lesions (Holmes 

1917) showed that at least in some cases with severe damage the physiological tremor 
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seemed to be replaced by jerky movements. In a more recent study (Mehta et al. 2014) have 

shown that transcranial stimulation of the primary motor cortex and the cerebellum have 

modulating effects on physiological tremor and the effect is dependent on the type of 

tremor as well as the site of stimulation.  

 

Intrinsic muscle properties 

The contractile system of the striated muscles consists of thick filaments (with attached 

myosin motor proteins) and actin rich thin filaments, which are the key players in muscle 

force generation. According to the sliding filament theory, muscle contraction (and hence 

muscle force generation) is brought about by myosin forming a crossbridge with actin and 

in the process sliding the thick filament in-between two layers of the thin filaments. Hence, 

the maximum force developed in a skeletal muscle fiber is proportional to the overlap 

between the thick and the thin filaments (Gordon et al. 1966a, 1966b). This contractile 

system that enables stable contraction and extension of the skeletal muscle fibers (i.e. 

myofibrils), under specific conditions results in stretch activated spontaneous length 

oscillations (Ruegg et al. 1970), as in the case of the flight power muscles in dipteran flies 

discussed in section 1.4.3.  Whether or not such spontaneous muscle oscillations have any 

significant contribution towards physiological tremor is unknown.  

 

1.3.3 Neurophysiology of Essential tremor      

 

Essential tremor is the most common movement disorder with a worldwide prevalence of 

4.6% in the age group above 65 years (Louis and Ferreira, 2010). But despite dedicated 

efforts we are only beginning to understand its neurophysiology (Louis, 2005) and its very 

definition is still evolving (Elble, 2013a). Until recently essential tremor was considered to 

be a benign, familial, monosymptomatic disorder. Recent studies have unleashed a barrage 

of clinically heterogeneous symptoms related to essential tremor (ET), gradually leading to 

the belief that the clinical syndrome of essential tremor may actually represent a family of 

diseases (Elble, 2013a; Hallett, 2014; Louis, 2005). Although traditionally considered to be 

familial, recent studies reveal that only about 50% of ET patients have a family history of 

this disease (Whaley et al., 2007). On the other hand, some epidemiological studies have 

identified putative environmental factors (toxins such as β-carbonyl alkaloids and lead) that 

increase the risk of developing ET (Louis et al., 2002; Louis et al., 2003).  
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Essential tremor is characterized by a 4-12 Hz tremor predominantly seen in the upper 

limbs during postures maintained against gravity (postural tremor; see table 1.3, section 

1.5.1) or during motion (action tremor). It is also sometimes seen in upper limbs while at 

rest (rest tremor). However, ET is also seen in other body parts such as the head (i.e. neck 

motion), voice, facial musculature, trunk and the lower limbs. Details of its diagnostic 

criteria can be found in (Louis, 2005). While until recently it was considered benign, it does 

interfere with daily activities such as writing, pouring, eating, driving etc. (Louis, 2005). As 

the tremor in ET is usually progressive, it results in increasing severity and interference in 

day-to-day activities with time. In more advanced cases, the disability is so severe that the 

patients are no longer able to feed or dress themselves. In an extensive study of community-

dwelling ET patients, a large fraction (73%) reported disabilities in various functional 

domains (Louis et al., 2001). Further details of the clinical presentations and epidemiology 

of essential tremor can be found in the comprehensive reviews on this topic, such as (Louis, 

2005; Louis and Ferreira, 2010).  

 

Like all other types of tremors, the pathophysiology of ET is not well understood. In this 

case what makes the study of the neural pathways more complicated is its progressive 

nature. The gradual development of neurological symptoms such as mild gait ataxia and 

spreading of the tremors from hands to other body parts indicate that the underlying 

neuropathology spreads to more and more parts of the motor pathway with time. The onset 

of rest tremor in severe cases may also indicate involvement of basal ganglia in the 

pathogenesis. There are evidences that suggest that this disease could be 

neurodegenerative (Louis, 2009). In all, there is a general consensus in the field of 

movement disorder studies that ET is of central origin (Raethjen and Deuschl, 2012).  In the 

rest of this subsection I will go into some details of the components of the central motor 

circuit that are believed to be associated with tremorogenesis in ET. For further details 

please refer to (Elble, 2013a; Hallett, 2014; Hellwig et al., 2001; Louis, 2005; Pinto et al., 

2003; Raethjen and Deuschl, 2012).  

 

Cerebellum 

Although the cause of oscillation that manifests as the 4-12Hz essential tremor at the 

periphery is still unknown, the prime involvement of the cerebellum is unequivocally 
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agreed upon (Pinto et al. 2003; Louis 2005; Elble 2013b; Hallett 2014).  At the first look, the 

fact that cerebellum is involved in the pathogenesis underlying ET is suggested by the 

symptom of gait ataxia, which is a classic signature of cerebellar dysfunction (Fasano et al. 

2010).  More direct indications for a critical involvement of the cerebellum in ET come from 

the fact that cerebellar lesions (Dupuis et al. 1989) or  deep brain stimulation of the ventral 

intermediate (VIM) nucleus abolish tremor. VIM is the cerebellar recipient of the thalamic 

nucleus. In addition a study of the blood flow PET (positron emission tomography) showed 

cerebellar hyperactivity (as compared to neurologically healthy subjects) in ET patients 

even during rest position when the tremor was not visible; this hyperactivity further 

aggravated and was also seen in the red nucleus region during postural ET (Wills et al. 

1994). Recent post mortem studies indicate significant structural changes in the cerebellar 

region of the ET brain as compared to that of age-matched control subjects (Louis et al. 

2007; Louis 2010). The most prominent effect being an approximate 30–40% loss of 

Purkinje cells.  However, it is important to note that all the studied ET patients died at ages 

older than 70 years, hence it is necessary  to account for other aging effects in adding to the  

pathology of Purkinje cell loss (Elble 2013b).   

 

Thalamus 

Like the cerebellum, involvement of the thalamus in generating ET too has ample 

neurophysiological and clinical evidence. Hua and colleagues identified a group of bursting 

cells in the VIM nucleus of the thalamus that is active only when there is a visible tremor at 

the periphery. The neural activities of these cells have a clear dominance at the tremor 

frequency and are also significantly correlated with the muscle activities of the forearm 

during postural tremor (Hua 2004). Moreover, lesioning or high-frequency stimulation of 

the thalamic nuclei (VIM and Vop, i.e. ventral oralis posterior) are till date the most effective 

treatment provided to arrest the peripheral tremor manifestations in ET patients.  

 

Inferior olive 

The involvement of the inferior olive in ET tremorogenesis was originally proposed based 

on the results of rodent experiments with harmaline-induced tremor. Animals treated with 

harmaline (fluorescent psychoactive alkaloid of beta-carboline group) are seen to develop 

an action tremor in the frequency range between 7 and 12 Hz, similar to human essential 

tremor in many respects (Raethjen and Deuschl 2012). Harmaline is known to act by 
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increasing the strength of synchronization in the already spontaneously oscillating neural 

populations of the inferior olivary nucleus (Placantonakis et al. 2004; Raethjen and Deuschl 

2012). However, there is no clear evidence to support that the mechanism of harmaline 

induced tremor in rodents is similar to that underlying human ET; other than the indirect 

evidence of slightly high beta-carboline level in the blood samples of ET patients as 

compared to age-matched neurologically healthy subjects (Louis et al. 2002).  

 

The involvement of inferior olive dysfunction in pathophysiology of ET (olivocerebellar 

model of ET) is debatable.  While an early PET study (Hallett and Dubinsky 1993) showed 

high glucose metabolism rate in the medulla (that harbors inferior olive) of ET patients, 

contrary results were obtained in a subsequent study (Wills et al. 1994).   A detailed 

postmortem study of the microscopic changes in the inferior olivary nucleus of ET patients 

compared to age matched control subjects failed to detect any difference (Louis et al. 2013). 

Hence, the status of the olivocerebellar model of ET can be summarized as in (Louis et al. 

2013): “if the olive is involved in essential tremor, then there is no clearly identifiable 

structural or metabolic correlate”.    

 

Motor cortex 

A number of studies have reported activities in the motor cortex that are correlated with 

the effector muscles activities during essential tremor (Hellwig et al. 2001; Raethjen et al. 

2007; Schnitzler et al. 2009).  It is however important to note that both the cerebellum and 

thalamus that have reciprocal connections with the cortex are known to be involved in the 

pathophysiology of ET; cortical activities measured using EEG and MEG may therefore also 

imply tremor correlated changes in deeper brain areas. Till date there has been no direct 

evidence of the motor cortex generating the 4-12 Hz essential tremor rhythm.   
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1.4 Voluntary rhythmic motion: Wing beat of  

 tethered flying fruit flies  
 

Body dynamics that enable any animal to efficiently move through its environment are 

extremely complex. In animals with even the modest neuromuscular systems a number of 

control mechanisms provide the necessary drive, maneuverability, stability and adaptation 

to the environment. Although the control mechanisms are markedly different among 

different species and types of locomotion such as walking, flying and swimming; many 

dynamic features of the locomotor appendages are surprisingly similar (Dickinson et al. 

2000).  To begin with, in all animals the basic motion of the locomotor appendage or the 

body itself that leads to the forward propulsion is rhythmic in nature. This commonality 

seems to be intuitive, as one would expect that the simplest way to transport any physical 

being (in the absence of any perturbation) is to device a motor activity for efficient 

propulsion through the environment and then repeat the same.  But interestingly, cross 

species similarities between the locomotor kinematic patterns extend way beyond just the 

rhythmicity. For example, the act of switching gaits5 in order to move most efficiently at 

different speeds and under different behavioral conditions is a well-recognized trait of 

terrestrial locomotion, biped and quadruped alike (Goslow et al. 1981; Hong and 

Brueggemann 2000; Cham and Redfern 2002). Changes in body dynamics that can be 

considered equivalent to gait changes in terrestrial locomotion are seen also in aquatic 

animals under similar behavioral conditions; and with slightly loose analogy in flying 

animals (Dickinson et al. 2000). Similar or scalable kinematic features of the locomotor 

appendages across species allow specific aspects to be studied in organisms where the 

concerned feature may be exaggerated due to adaptation. Hence, like in many other fields, 

studying limb kinematics of model organisms plays a vital role in advancing our knowledge 

of the neuro-muscular control of locomotion in general.  

 

                                                           
5
 patterns of movement of the limbs  
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In my study I analyzed the wing motion of tethered, flying fruit flies. During tethered flight, 

the motion of the wings is unconstrained, while the body of the fly is fixated. The observed 

changes in wing kinematics are interpreted as attempted flight maneuvers or responses.  

This experimental paradigm is especially well suited to study the wing motion under 

perturbed conditions that hinder free flight, such as when the halteres (a critical flight 

appendage) are ablated. 

 

1.4.1 Motor primitives and modularity of motor control 

 

The hypothesis that complex motor behaviors can be generated by a small number of 

relatively simpler movements, called the motor primitives (a.k.a. motor schema, prototypes, 

control modulus), has grabbed much attention in the last few decades (Ghahramani 2000; 

Thoroughman and Shadmehr 2000; Hogan and Sternad 2012). Major interest in exploring 

motor primitives of different kinds of movements lies in the fact that it indicates reduction 

in the output dimensionality of the motor control system. While this information 

undoubtedly bears important implications for the neuromotor system concerned, it 

enormously simplifies the designing principles of the bio-inspired autonomous robots 

(Schaal 2006).   

The term “motor primitives” describe a class of movement units at the behavioral level with 

no committed hypothesis for its neurophysiological genesis (Flash and Hochner 2005). 

Motor primitives can be expressed in terms of the kinematic or the dynamic variables of the 

motion or both. The idea is to understand the organizational principles of animal behavior 

without going into the nitty-gritty of complicated cascades of neuromuscular activities. For 

example, Fentress and Stilwell (Fentress and Stilwell 1973) identified 7 movement 

components, like flurry of forelimbs below face, wetting forepaws with tongue etc., that 

occur sequentially during the face grooming behavior in mice. In another study on 

hoverflies Geurten et al. (Geurten et al. 2010) classified 9 prototypical movements of the 

hoverfly body, such that any segment of free flight consists of a sequence of these typical 

movements. 8 out of the 9 prototypical movements involve body rotation and/or 

translation with respect to multiple body axes. In both these studies complex motor 

activities were perceived to be generated by stitching the motor primitives serially in time. 

Another way of articulating motor primitives into motor activities is to allow partial or 
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complete overlap in their time of occurrences.  Mataric and colleagues (Mataric et al. 1999; 

Fod et al. 2002) as well as others (Sanger 2000) working on human hand movements 

identified motor primitives that could be used as the “basis set” for complicated hand 

movements. That is, any segment of the hand trajectory during a movement task can be 

derived from linear combinations of different subsets of the identified set of motor 

primitives.  Similar conclusions have also been drawn from studies with more complicated 

tasks involving locomotion in humans (Ivanenko 2005). 

It is important to keep in mind though, that individual motor primitives may be task or 

behavior specific i.e. they are not necessarily meant to be used for all behaviors or tasks by 

the organism. What is important is that these elementary movements can be combined in a 

well-defined manner to form a more complex movement.  

In my study I explored the existence of elementary kinematic patterns in the wing motion of 

unstimulated tethered (section 3.3.1) flying flies. Although such kinematic patterns also fall 

under the broad definition of motor primitives, but a different terminology was used to 

emphasize two aspects: i. each component is not only a particular type of wing stroke 

deformation, but also its time course of activation. ii. time course of activation of each type 

of deformation is independent from the others in the identified set.  

  

1.4.2 Insect flight: a model system for motor control  

Insect flight provides a powerful model system for neuromotor control (Wilson 1961; Frye 

and Dickinson 2001; Taylor 2001). Flight puts extreme physiological demands on the 

organism, which are met by specialized adaptations with sharply defined structure-function 

relations (Dickinson et al. 2000). This is particularly apparent in flies, in which the 

generation of power for wing motion and the control of fast modulations of the wing stroke 

are mediated by two distinct types of muscles (Dickinson and Tu 1997; Bartussek et al. 

2013). This ingeneous compartmentalization of the flight muscles allows to separately 

study the two major aspects of flight control. In one of the fastest motor acts in animal 

kingdom, flies take just about 70 ms to initiate an escape response at the sight of a looming 

threat (Bender and Dickinson 2006; Card and Dickinson 2008; Muijres et al. 2014), in which 

they attain a turning speed of 3800 - 9000˚s-1 and rapidly move away from the threat within 

7 ms (Muijres et al. 2014). This whole behavior relies on a number of extremely 
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sophisticated sensory modalities; the fastest visual system with minimum visual-motor 

delay, gyroscopic mechanosensory organs for active stability control, fastest sensory-motor 

loop wherein the sensory feedback directly acts on the actuator muscles. Such exceptionally 

performing sensory systems make structure-function relationships more obvious and flies 

alone embody a number of such sensory systems.    

Flies are a very different organism than even the simplest of the mammals, needless to say 

humans. It is therefore amazing that about 60% of human genes have functional orthologs 

in Drosophila and that the processes utilizing these orthologs to organogenesis and neuron 

development (among others) are conserved to a very high degree (Nichols 2006). More 

importantly for the motor control studies, flies exhibit a number of complex motor 

behaviors such as courtship, flight navigation etc.,  that are of relevance to humans 

(Greenspan and Dierick 2004). In addition, Drosophila melanogaster being a versatile 

model organism in bio-medical studies has a strong base of well-studied genetics and state-

of-the-art genetic approaches of controlling motor behavior.  

In the end, a major technical advantage that makes flies favorite model organisms across 

fields of studies (Jennings 2011) is that they are easy and inexpensive to rear in the 

laboratory. They are ubiquitous, have a shorter life cycle and multiply faster, making the 

studies easily repeatable.  

  

1.4.3 Neuromuscular  basis of wing motion 

 

Body structure of the fruit flies, like that of any other insect, is compartmentalized into 

three interconnected distinct anatomical sections: the head, the thorax and the abdomen 

(Fig. 1.3A). In the dipteran flies, as Drosophila melanogaster, the head is the major cite for 

sensory systems, information processing and feeding. It comprises of a pair of sensory 

antennae, compound eyes, ocelli and mouth parts. The thorax mainly houses the 

appendages that actuate locomotion i.e. 6 pairs of legs, a pair of wings and a pair of modified 

hind wings. The abdomen contains the other life sustaining systems such as the digestive 

tract, reproductive organs, osmoregulatory organ, main parts of the circulatory system 

(conical chamber, heart) etc. The distinctness of dipteran flies is their specialized hind 

wings. Unlike other flying insects, in dipteran flies the hind wings do not play aerodynamic 
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roles in flight actuation. Instead they have been modified into club shaped small appendages 

called halteres that oscillate with the same frequency as the wings but in complete anti-

phase. Due to their structure and the oscillatory motion they are subject to the Coriolis force 

when the fly body rotates, and hence are used as mechanosensory organs to sense the 

angular velocity of body rotations. 

Groups of muscles that control the wing motion and the halteres are all situated in the 

thorax region of the fly body (Fig. 1.3).  In flight fruit flies beat their wings approximately 

200 times in one second and the wing kinematics is precisely controlled throughout each 

stroke. Such a demanding motor task pushes the neuromuscular system to its performance 

limits, making dedicated structural adjustments for functional benefits. An extreme 

functional dichotomy is seen within the flight musculature of flies, wherein a group of larger 

muscles filling the thorax are especially designed to generate higher power per contraction; 

while about a dozen small muscles at each wing base are designed to be activated with 

minimum delay at neural commands (Dickinson and Tu 1997; Walker et al. 2014). The 

former sets of muscles are called the power muscles and are responsible for generating the 

main oscillatory wing motion. The latter group called the steering muscles, constitute less 

than 3% of the total mass of the flight muscles (Walker et al. 2014) but are responsible for 

the most vital part of flight control, i.e. changes in wing kinematics that result in maneuvers. 

Steering muscles achieve this seemingly difficult task of instantaneously modifying the 

output of the much larger power muscles by changing the pattern in which the exoskeletons 

move; which shifts the wing hinge movements between different modes of oscillations 

(Walker et al. 2014).  

The knowledge we have today about the dipteran flight musculature and its functionality 

comes from studies on different dipteran flies; but the difference in most cases is small 

enough that the information can be considered general. In this subsection the two distinct 

groups of flight muscles and their functioning principles are discussed shortly. 

Power muscles: anatomy, activation and functionality 

Power muscles (Fig. 1.3B, color codes: red, yellow) constitute of two antagonistic sets of 

muscles. One set comprises of a pair of thick muscles running medially in the rostro-caudal 

direction along the full length of the thorax, called the dorsal-longitudinal muscles (dlm). 

The second set comprises of three muscles aligned perpendicular to the long axis of the fly 

body, on each side of the pair of dlms, called the dorso-ventral muscles (dvm) (Dickinson 



27 

 

and Tu 1997; Schlurmann and Hausen 2007). Each dlm muscle comprises of six muscle 

fibers stacked on top of one another; the anterior-most dvm muscle contains three muscle 

fibers and the two posterior ones contain two muscle fibers each. Each power muscle is 

innervated by characteristic, structurally homogeneous group of motor neurons those share 

a common bilateral dendritic area in the dorsal part of the wing neuropil (Schlurmann and 

Hausen 2007). The mesothoracic wing neuropil is the motor center of the flight muscles in 

the thoracic ganglion (equivalent of the vertebrate spinal cord in insects). 

 

 

Figure 1.3: Flight apparatus of Drosophila melanogaster. A) Fly body showing the main body 
segments, the locomotor organs and the sensory organs, antennae, compound eyes and the halteres. 

B) Visualization of the flight power muscles (dorsal-longitudinal and dorso-ventral) contained in the 
thorax. C) Visualization of the steering muscles. B-C are redrawn from figure 2A of (Dickinson 2005). 

D) Microscopic structure of the halteres highlighting two major fields of mechanosensors. 

 

The contractions of the power muscles however are myogenic (section 1.2.1), and the main 

function of their innervating motor neurons is to maintain the cytosolic calcium at certain 

levels (Dickinson et al. 1998a). Studies have shown that the muscles contract a number of 

times for each action potential in their motor neuron. Evolutionarily these muscles have 

developed to have much higher proportion of contractile filaments and mitochondria as 

compared to the sarcoplasmic reticulum (SR) (Smith 1984). The volume of the contractile 
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apparatus within a muscle is an indicator of its power generating capacity and that of the SR 

determines the degree to which a presynaptic motor neuron may control its contractions. 

Hence, the anatomical characteristic of the power muscles are understandably shifted 

towards generating higher energy per unit time while compromising direct neural 

controllability. The muscle contractions are stretch activated and during flight the 

contraction of each of the antagonistic muscle provides the requisite stretch to activate the 

other. Contractions of the dlms increase the length of the thorax also generating the 

mechanical strain that activates the dvm muscles. In the next cycle the dvms contract to 

increase the width of the thorax, in the process activating the dlms again. This cycle 

continues as long as the motor neurons activities keep the muscles in an active state. 

Therefore the frequency of the wingbeat oscillation is governed by the mechanical 

properties of the thorax such as the muscle stiffness, wing loading etc., and not the rate of 

motor neuron activity. As these muscles act on the thorax and do not insert at the base of 

the wings whose motion they actuate, they are called indirect muscles.  

 

The main functionality of the power muscles is to generate necessary mechanical power for 

sustaining flight. Flies in flight use muscle power for the following tasks (Dickinson and Tu, 

1997; Chapter 19, Vigoreaux, 2006): i. to accelerate the wings back and forth during 

flapping motion, ii. to overcome the drag force of the air on the wings and on the body 

(separately), iii. to generate the requisite lift force to offset its own weight. Generating 

enough energy per unit time that can meet the requirements of all the three tasks is 

extremely demanding and the requirement is greater than that for any other mode of 

locomotion. To meet this high power demand, these muscles are anatomically designed to 

generate higher mechanical work for a given muscle volume per unit time. In addition the 

musculoskeletal system also adapts a number of energetically beneficial mechanisms to 

minimize the energy cost of flapping flight, such as increasing the efficiency of converting 

chemical energy into aerodynamic flight forces and so on (Dickinson and Tu, 1997; Chapter 

19, Vigoreaux, 2006). Although the rate of motor neuron activities does not directly control 

the rhythmic contractions of the muscles, it has been shown to play a vital role in tonically 

controlling the overall power generated per contraction (Dickinson et al. 1998b).    
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Steering muscles: anatomy, activation and functionality 

There are about 22 pairs of steering muscles (Hedenström 2014). Out of these only about a 

dozen insert directly on the cuticular elements called sclerites at the base of the wing, rest 

influence the wing motion by altering the resonant properties of the thorax (Dickinson and 

Tu 1997). The characteristic feature that distinguishes steering from the power muscles is 

their anatomical design for neural activation with minimum delay. Depolarized motor 

neurons stimulate the release of calcium ions from the SR to the cytosol by a fast diffusion 

process. These released calcium ions then lead the chain of bio-molecular interactions that 

finally end in muscle contraction (Szent-Györgyi 1975). Hence, the steering muscles having 

a higher cellular content of SR, have shorter action potential to contraction delay.  

 

Almost all the steering muscles are innervated by individual distinct motor neurons. High 

wingbeat frequency puts a constraint that each motor neuron fires only once during a 

wingbeat cycle. More than one spike per stroke cycle is rare and occurs only when the flies 

are faced with extreme flight force requirements, such as during flight initiation (Lehmann 

and Götz 1996). The activation processes are made more challenging by the requirement of 

a precise phase of activation in most cases; as studies on drosophila (Heide and Götz 1996) 

and other dipteran flies (Tu and Dickinson 1996) have shown that muscle activation phase 

influence their efficacy on the wing kinematics. Unlike the power muscles, steering muscles 

(other than the first basalare muscle M. b1) are not active throughout the flight. They are 

activated during specific flight maneuvers or during flight initiation or termination 

(Dickinson and Tu 1997).  

 

Table 1.1: Overview of the Drosophila flight 

steering musculature. Main sclerites and their 
associated flight muscles. For diagram refer to 

figure 1.1.  

 
 
 
 
 
 

 
Acting at the junction of the wings and the animal body, these steering muscles regulate 

how the mechanical energy of the power muscles is transformed into wing motion by 

Sclerites Flight muscles 
(abbreviations) 

Basalar 
M. b1, M. b2, M.b3 

1st Axillary 
M. I1, M. I2 

3rd Axillary 
M. III1-4 

Posterior notal 
wing process 
 

M. hg1-4 
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altering the mechanics of the wing hinge (Dickinson 2005; Walker et al. 2014). To 

understand the organization of the steering muscles and their functionality it is important 

to have some knowledge of the complex exoskeleton at the wing base. The wing hinge 

comprises of a complex lever like structure formed by four axillary sclerites, as shown in 

figure 1.1D. Out of these the first, third and the fourth have attached steering muscles and 

are actively controlled. In addition the wing hinge is connected via tendons to the basalar 

plate which projects into the thorax.  In flies the fourth axillary sclerite is commonly called 

the posterior notal wing process and is fused into the thorax (Walker et al. 2014). The 

steering muscles controlling each sclerite of the wing hinge is summarized in table 1.1. For 

further anatomical details of the muscles and their connections to the sclerites please refer 

to the comprehensive review and report (Miyan and Ewing 1985; Dickinson and Tu 1997).  

 

Recent studies have revealed much about the mechanisms by which these steering muscles 

move the wing articulation (Walker et al. 2014), yet the understanding is not complete. 

Here, I briefly mention how some of the main steering muscles of Drosophila (Fig.1.3) act on 

the wing articulation; their effects on the wing kinematics will be mentioned in the last 

section of this chapter (section 1.5). I focus on only those steering muscles that are relevant 

in explaining the significance of some of my own results. For corresponding details of other 

steering muscles please refer to (Dickinson and Tu 1997) or for a more recent and advanced 

study (but on limited steering muscles) to (Walker et al. 2014).  

 

i. First muscle of the basalare sclerite (M.b1): M.b1 is the only known steering muscle 

that is activated even during a straight flight. It is typically activated every wingbeat 

cycle close to when the wing reaches the dorsal extreme of its swing and starts to 

move towards the ventral direction. When tonically active this muscle is thought to 

keep away a protruding part of the wing hinge so as to prevent it from abruptly 

stopping the wing motion near the ventral portion of the stroke. However, during 

visually induced steering responses the activation of this muscle shifts by 1-2ms 

within the wing stroke, which changes its dynamic stiffness.   

 

ii. Second muscle of the basalare sclerite (M.b2): This is the largest steering muscle 

attached to the largest sclerite at the wing base. This muscle is activated only during 

visually induced turning maneuvers in the wing at the outer side of the turn. The 
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activation occurs every other wingbeat cycle, close to the end of the ventral-to-

dorsal swing of the wing motion (Heide and Götz 1996; Lehmann and Götz 1996). 

This muscle when active is thought to change the orientation of the basalare sclerite, 

so as to increase the ventral extent of the wing motion (Walker et al. 2014).   

 

iii. First muscle of the first axillary sclerite (M.I1): This muscle is also active only during 

visually induced responses, but in the wing at the inner side of the turn. It is 

activated close to the dorsal-to-ventral swing of the wing motion and is known to 

pull the first axillary sclerite forward and downward (Heide and Götz 1996; 

Dickinson and Tu 1997), which has an effect of reducing the ventral extent of the 

wing motion.  

 

1.4.4 Stroke-by-stroke wingbeat control and the role of halteres 

 

To move through any environment flies not only need to generate sustained power and 

steer but also constantly correct for the inherent instabilities in flapping wing flight. Studies 

that couple aerodynamic forces to the rigid-body (passive) dynamics of a flying insect (Sun 

and Xiong 2005; Zhang and Sun 2009; Faruque and Sean Humbert 2010a, 2010b; Cheng and 

Deng 2011) show that wing flapping introduces certain diverging oscillating instabilities in 

the body motion. The oscillating instability in the longitudinal dynamics destabilizes the 

pitch attitude (Sun and Xiong 2005; Cheng and Deng 2011; Ristroph et al. 2013), while that 

in the lateral dynamics destabilizes the roll balance (Cheng and Deng 2011). In the absence 

of any active control mediated by the sensory feedback, in fruit flies these disturbances can 

grow up to 67% of the initial value in merely 75 ms (i.e. 15 wingbeats, as estimated from 

table IV of (Cheng and Deng 2011)). Hence to avoid tumbling from the air, flies need to have 

corrective measures that act at a rate faster than the growth rate of the disturbances. In 

addition to these intrinsic instabilities, there are also umpteen external factors that the flies 

need to respond to within a few wingbeat cycles so as to maintain a stable flight or to escape 

a predator. Ristroph and colleagues have shown that the fruit flies can sense rotational 

deflections (yaw and pitch) and revert to their original flight attitude and direction in 

merely 50-60ms (i.e. ~10-15 wingbeat cycles) (Ristroph et al. 2010, 2013). While such 

corrective maneuvers showcase the agility of insect flight, the precision of wing movement 

is also crucial; especially because even slight alteration of the wing motion results in large 
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fluctuations of the aerodynamic forces (Fry et al. 2003, 2005). Hence, it is clear that the flies 

heavily rely on fast sensorimotor control of the wing motion.  

The flight behaviors of flies provide enough indication that control strategies with very fast 

reaction time play a key role in flight stabilization. All sensory systems of the flies are 

anatomically and neurologically better optimized than other animals to have reduced 

latency and increased temporal resolution. But the mechanosensory feedback from the 

modified hind wings of the dipteran flies, i.e. the halteres are the most efficient of them all. 

Halteres beat in anti-phase to the wingbeat and are known to detect any rotation of the fly 

body by sensing the Coriolis force and other inertial forces. While the visual to motor delay 

is typically 6-8 wingbeat cycles (30ms in Musca (Land and Collett 1974), 40ms in Drosophila 

(Heisenberg and Wolf 1988; Hardie and Raghu 2001)), the haltere mechanosensor to wing 

steering muscle stimulation delay is less than one wingbeat cycle (approximately 3ms in 

Calliphora (Fayyazuddin and Dickinson 1996)). Halteres achieve this response expediency 

by virtue of low latency spike responses to mechanoreceptors (Fox and Daniel 2008) and 

direct (monosynaptic) electrical synaptic input to steering motor neurons from haltere 

afferents (Chan and Dickinson 1996; Fayyazuddin and Dickinson 1996). These allow the 

halteres to provide wingbeat related feedback to the steering muscles at the time scales of a 

single stroke cycle (Fayyazuddin and Dickinson 1996), making it the fastest sensorimotor 

loop.  

Since, the 18th century work of Derham (Derham 1720) a number of studies (Dickinson, 

1999; Fraenkel and Pringle, 1938; Nalbach, 1993; Pringle, 1948, to name only a few) have 

explored the pivotal role of halteres in maintaining stability during flight. However, most of 

these works studied the sensory contribution of the halteres in generating robust response 

to inflight perturbations. These studies provide a close to complete understanding of the 

gyroscope like functionality of the halteres; wherein the mechanosensors at the base of the 

haltere (Gnatzy et al., 1987) detect any torque acting on the fly body and stimulate 

appropriate motor action to generate precise counter torque. However, out of the 5 

identified fields of the campaniform sensilla at the haltere base some fields (like dF1, dF3, 

and vF1) ( Gnatzy et al., 1987) are oriented parallel to its longitudinal axis and monitor the 

large forces resulting from just the oscillation of the haltere in its stroke plane (Pringle 

1948; Nalbach 1993). In dipteran insects this feedback is known to structure the activity of 

the first basalar muscle (b1) (Chan and Dickinson 1996; Fayyazuddin and Dickinson 1996) 
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activated in every stroke cycle, throughout the flight (Heide and Götz 1996).  Recent 

simulation studies of insect flight (Chang and Wang 2014) indicate that this fastest 

sensorimotor loop may play a crucial role in keeping the fly aloft. Ristroph and colleagues 

(Ristroph et al. 2013) show that a modification of gluing dandelion seed fibers to the fly’s 

lower body to increase the pitch damping restores body pitch stability in haltere 

immobilized flies. This finding clearly shows that at least one functionality of the haltere 

sensory system is to actively stabilize the pitch attitude during flight.  
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1.5 Kinematic data analysis  

 

The ultimate output of all motor control systems is the movement of the concerned organ or 

the limb; any change in control mechanism therefore manifests as a modification of the limb 

kinematics. Two possible approaches of studying the organization of the motor control 

system are: i. at the physiological level by measuring the activity patterns of each muscle or 

muscle groups and their corresponding effects on the behavior, and ii. at the functional level 

by studying the kinematic output of the motor control system and the relationship between 

different behavioral features.  

Muscle activities measured simultaneously with limb kinematics allow identification of 

muscles that bring about specific changes in the motor output. Such studies have led to the 

conception of modularity of neuromuscular systems where in a group of muscles, called 

muscle synergies, are always simultaneously activated in connection to specific kinematic 

changes. Till date many such muscle synergies have been identified and characterized in 

vertebrates as well as in invertebrate model organisms. For example in bullfrogs specific 

groups of muscles with extensor action on the hip, knee and the ankle joints of the hind 

limbs are simultaneously activated (d’Avella and Bizzi 2005) during walking, jumping as 

well as swimming. It is known that during all the modes of locomotion the hind limbs play a 

crucial role in generating the forward thrust and hence, the above finding indicates that at 

least some part of the hind-limb kinematics is shared between the three modes of 

locomotion. Similarly, biomechanical movement analyses of human gait with the knowledge 

of underlying electrophysiological activities have also helped in understanding the 

corresponding neuromuscular control mechanisms (Simonsen 2014).  

On the other hand the functional relationship between the limb kinematics and the resulting 

changes in the behavioral output can be studied by bypassing the anatomical details. This is 

made possible by the fact that the ultimate interaction of the motor system and the outside 

world depends on the dynamics of the limb and the corresponding reactions from its 

environment; which has nothing to do with the neuromuscular origin of the limb motion at 
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the first place. Such analyses are useful when the goal is to understand the general 

organization of the control system in terms of its output; for example to address questions 

like: why is it necessary to change gaits while transitioning from walking to running, how 

does a fly efficiently steer through the air while quickly changing its direction, and so on. 

Biomechanical studies of the motor systems are often based on theoretical or 

phenomenological models of the interactions within the motor system and those with the 

external surrounding (For example: Bartussek et al., 2013; Bergou et al., 2010; Hogan and 

Sternad, 2012; West and Scafetta, 2003). Suitably designed dynamically scaled robots have 

also contributed significantly to our understanding of the biomechanics of various complex 

motor systems (For example: Dickinson et al., 1999; Wolpert and Flanagan, 2010).  

The difference between the two approaches of studying the organization of the neuromotor 

control lies mainly in the domains in which the results can be justifiably interpreted.  To 

interpret motor behavior from the analyses of muscle activities often becomes too complex 

even for smaller systems with fewer in-between steps. The prime factors that lead to this 

increasing complexity are the inherent nonlinearity and the redundancy of the 

musculoskeletal system. Even in model organisms like the fruit fly, a pattern of muscle 

activity leads to muscle twitches, which then move the associated sclerite, this movement 

then finally modifies the wing motion. There is prospective non-linearity at each step, 

starting from the muscle mechanics to the transfer of the wing hinge motion to the wing 

motion. On top of it different muscles can have very similar effects on the motor output; for 

example in the dipteran flight musculature the first and the second basalar muscles (M.b1 

and M.b2) both have an effect of increasing the wingbeat amplitude. All these complexities 

increase manifold with increasing diversity of muscle types and increasing complexity of 

the musculoskeletal system in higher animals. For these similar reasons it is almost 

impossible to infer about the underlying muscle activity patterns purely based on the 

results of the kinematic analysis of the motor behavior.  
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1.5.1 Important kinematic parameters of hand motion and their 

significance in characterizing tremors  

Amplitude, frequency (table 1.2) and the condition under which the tremor is activated 

(tables 1.2 and 1.3) are the key features in the clinical diagnosis of the tremor types 

(Deuschl et al., 2001; Hess and Pullman, 2012). Hence, assessment of the motion of different 

body parts such as head, trunk, hands, arms, etc is a part of the general as well as disease 

specific tremor rating scales (see review (Elble et al., 2013)). However, as tremors are 

broadband oscillations and often corrupted with slow drifts and other artifacts the tremor 

amplitude is not obtained directly from the peak-to-peak distance of the acceleration data. 

Instead the more common practice is to obtain the amplitude from the power spectral 

density estimate (see section 4.2.3) within a frequency band about the main tremor 

frequency (Timmer et al., 1996). This provides a more meaningful estimate of the extent of 

hand motion that can be attributed to a specific type of tremor.  

Table 1.2: Tremor etiology and occurrences of the most common types of tremor.  

Etiology 
Rest 

Tremor 

Action tremor 
Frequency 

Postural tremor Kinetic tremor 

Parkinsonism1 

often 
present 

sometimes noted rarely noted 3-6 Hz 

Essential tremor1 

sometimes 
noted 

always present always present 4-12 Hz 

Enhanced 
physiological tremor 

- always present often present 6-12 Hz 

Orthostatic tremor 
- always present - >13 Hz 

Dystonic tremor 
rarely 
noted 

usually noted usually noted < 7 Hz 

1(Hess and Pullman, 2012),  

 

All the tremor rating scales are to a large extent subjective to the examiner and difficult to 

standardize across subjects. For example in the Fahn-Tolosa-Marin tremor rating scale, 

tremor severity is judged partly based on visible assessment of the tremor amplitude. In 

this 5-point scale a score from 0-4 is assigned to the tremor arising in each body part as: 

none (0), slight (1), moderate (2), marked (3), and severe (4); severe being defined as a 

tremor with amplitude > 4cm.  Also, even the best clinical scale is not sensitive enough to 
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allow detection of minimal abnormality or subtle changes in the progression of the disease 

(Hess and Pullman, 2012).  Hence, the present state of tremor evaluation can benefit largely 

from an objective and accurate measure of tremor. 

 

Table 1.3:  Tremor categorizations based on its condition of occurrences. For further sub and super 
categories see (Hess and Pullman, 2012). 

 

Kinematic analyses provide the simplest extensions of the existing tremor assessment tests 

that can make these tests more precise and objective.  A good example is the analysis of the 

spiral drawing (Pullman, 1998), a standard clinical test for detecting movement disorders. 

In this extended assessment the hand drawn Archimedean spiral aquired in a virtual triaxial 

setup (X,Y, pressure) on a digitized tablet is characterized by mathematically estimating the 

parameters such as  smoothness of the lines, tightness etc. Using these parameter values 

together with the kinematic measures such as the peak frequency and power along the 

three axes, the computer was trained to rate spirals in the same manner as expert 

Clinicians.   

Tremor coherence 

A very important characteristic of the tremors arising in different body parts is the extent of 

their mutual synchronization; both in the case of patients as well as healthy subjects. In 

principle, finding of coherence between kinematics of the tremors implies that at least one 

of the following mechanisms participates in the genesis of the respective tremors: 

 

Category Definition 

Rest  
Tremor arising in a body part that is not in voluntary motion and is supported 
against gravity. 

Action 

Tremor arising in a body part with voluntary muscle contraction. 

Postural 
It is subtype of action tremor in which the tremor arises in a body part that is 

maintained in a posture against gravity. 

Kinetic 

It is a subtype of action tremor in which the tremor arises in a body part that is 
in motion.  

Intension 

Tremor with increased severity during the initial and and/or pre-terminal 
phase of a targeted movement. It is a variant of kinetic tremor.  

Task-specific 

Tremors arising during specific tasks such as writing, speaking. Also a variant 

of kinetic tremor.  
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i. A common neural generator (be it one central generator or two coupled unilateral 

generators, as shown in (Muthuraman et al., 2013) for the orthostatic tremor). 

 

ii. A common pathway of motor control; i.e. neural signals originating at two distinct 

sources interfere in the pathways leading to the effector muscles. For example, the 

synchronization of the psychogenic tremors is known to actuate via the common 

pathways that underlie bimanual interference during voluntary movements 

(Hallett, 2010; Klapp, 1979).  

 

iii. A common mechanical forcing, such as the common ballistocardiac drive that leads 

to coherent oscillations of the  limb extremities in the resting posture (Marsden et 

al., 1969a). 

 

There are several lines of evidence suggesting that a coupling on the neural level (i.e., 

mechanisms i or ii) may play a role in physiological tremor of the two hands. (Morrison and 

Newell, 1999) showed that the splinting of joints in one upper limb significantly changes the 

frequency profile and the pattern of intra-limb coupling of PT in both the limbs. As no 

significant correlation between the hand tremor and the torso motion is evident during the 

specific postural task, as shown in (Morrison and Newell 1996), simple mechanical linkage 

does not seem to be the primary pathway of bilateral interaction (Morrison and Newell, 

1999). It was proposed that a large proportion of the bilateral tremor comes from a 

common central mechanism. The lack of bilateral coherence was explained by distinct 

modifications of this common input in the left and the right side before reaching the effector 

muscles. Recent studies based on the muscle EMG (Boonstra et al., 2008; Kavanagh et al., 

2013) also suggest a role of the motor control system in the bilateral interaction of PT.  

(Kavanagh et al., 2013) showed that fatigue inducing contractions in the extensor muscles 

of one hand increased the muscle activity and tremor in the contralateral limb.  

 

Other than important implications regarding the genesis of the specific tremor, the extent of 

synchronization can also play a significant role in differential diagnosis of tremors. 

Differential diagnosis of tremors, while of prime importance for therapeutic measures, can 

sometimes become a challenging task for clinicians (Louis, 2005). While tremor frequency 

plays some role, the tremor amplitude usually does not help much in differentiating 

tremors; mainly because it varies widely even in the same kind of tremor. For example in 
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cases of mild essential tremor (ET) the tremor amplitude is comparable to that of enhanced 

physiological tremor (EPT) (Louis, 2005). In this case the differential diagnosis is made 

even more complicated by the fact that in some young patients the usual 4-6 Hz frequency 

range of ET shifts to 10-12 Hz, which coincides with that of enhanced PT (Louis, 2005). 

Hence often additional tests are required to identify the type of pathological tremor.  

Of all the tremor types that may occur bilaterally, orthostatic tremor (Lauk et al., 1999) and 

psychogenic tremor (McAuley and Rothwell, 2004) have been shown to have high bilateral 

coherence. A standard test used to differentiate psychogenic tremor from other organic 

tremors, such as Parkisonian tremor, essential tremor, dystonic tremor etc., is the 

coherence entrainment test (McAuley and Rothwell, 2004). This test is based on the 

inherent tendency of the voluntary periodic motion on one side of the body to synchronize 

with that on the other side. While it is extremely difficult for subjects with unilateral 

psychogenic tremor to maintain a different tapping frequency in the opposite hand, patients 

with organic tremors can easily perform finger tapping while maintaining a different tremor 

frequency in the other hand. However, for other tremor types, only limited evidence of 

bilateral coherence has been shown in the previous literature. In Parkinson disease tremor, 

(Moore et al., 2000) reported brief intervals of bilaterally coherent oscillation in hand 

kinematics, while studies assessing muscle activity (Lauk et al., 1999; Raethjen et al., 2000a) 

did not find any bilateral coherence. In essential tremor (ET), (Hellwig et al., 2003) found 

transiently occurring bilateral coherence of the wrist extensor muscle activities, while 

(McAuley and Rothwell, 2004) reported occasional kinematic bilateral coherence that was 

not accompanied by EMG coherence. In postural physiological tremor (PT), no bilateral 

coherence has been reported in either kinematic or EMG studies (Marsden et al., 1969b; 

Morrison and Newell, 2000; Timmer et al., 2000). However, highly prevalent bilateral 

coherence of finger motion was found in the resting tremor of healthy subjects (Marsden et 

al., 1969a), and was attributed to the mechanical effects of ballistocardiac forcing.  

 
1.5.2 Important kinematic parameters of the wingbeat and  

their aerodynamic significance   
 

Active control of flight is all about modulation of wing tip trajectory to modify aerodynamic 

forces. A wingbeat cycle of insects with flapping wing flight is commonly divided into four 

phases (Zanker 1990a):  
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i. Upstroke: during this phase the wings are pulled at a very high speed from ventral 

towards the dorsal part of the body (Fig.1.4A). The wing’s leading edge (black dot on 

the wing chord, Fig. 1.4A, B) surges firmly in the direction of the abdomen, while the 

trailing edge is dragged along. In a straight flight the wing angle (α(t) in Fig. 1.4B) 

remains relatively constant during this excursion (Balint and Dickinson 2004; 

Bergou et al. 2010).  

 

ii. Dorsal reversal: during this phase the wing reverses the direction of its translation 

from upstroke to downstroke (Fig. 1.4A). In fruit flies the leading edge of the wings 

(costal veins) approach towards each other, make a contact with an increasing area 

of overlap until they start peeling off and moving away from each other. This is 

called the clap-and-fling maneuver of the wings due to the similarity of the acts and 

is accompanied by a rotation of the wing about its longitudinal axis. This maneuver 

plays a pivotal aerodynamic role in generating the necessary life force to keep the 

fly aloft. The relative phase of the wing flip to the wing reversal also has significant 

effects on this aerodynamics (Dickinson et al. 1999).  

 

iii. Downstroke: In this phase the wing sweeps from the posterior dorsal position to the 

anterior ventral position with a velocity slower than that of the upstroke. Again in 

this phase the wing angle remains relatively constant, but the magnitude may differ 

from that of the upstroke (Bergou et al. 2010). The changes in the stroke deviation 

(θ(t) Fig. 1.4B) and the wing tip velocity (i.e. rate of change of ϕ(t), Fig. 1.4B) during 

this phase are found to be correlated with the changes in the magnitude as well as 

the inclination of the total flight force (Balint and Dickinson 2004).   

 

iv. Ventral reversal: At the end of the downstroke the wing changes the direction of its 

translation and starts moving towards the posterior dorsal position. This phase is 

accompanied with an extremely fast flipping of the wing from pronation to 

supination (angular velocity upwards of 105 degrees/s (Zanker 1990a)). The 

relative phase of the rapid wing supination w.r.t. the ventral reversal plays a very 

important role in determining the lift force generated by each wing (Dickinson et al. 

1993, 1999).  
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Figure 1.4: Wing stroke and related kinematic parameters. A) Typical wing tip trajectory (red 
curve) during a flapping stroke of the fruit fly Drosophila melanogaster, superimposed on a side view 

(sagittal section) cartoon of the fly body. Black dot marks the position of the wing base (wing not 
shown). Circle with cross marks the center of mass of the fly body (Redrawn and modified from 
figure 1 of Lehmann and Pick, 2007). B) Commonly measured angular parameters of the wing stroke, 

ϕ(t): stroke angle, θ(t): stroke deviation from the mean stroke plane and α(t): wing (pitch) angle. C) 
Nomenclature of the possible motions along the three principal axes of the fly body. Rotations about 
the longitudinal, transverse and the vertical axes of the fly body: roll, pitch and yaw respectively. 

Translations along the same respective axes: thrust, side slip and lift.  

  

The full repertoire of flight maneuvers are generated by suitably modifying these four 

phases of the wing stroke. For example flies modify stroke amplitude, i.e. the planar angle of 

the arc in the stroke plane described by the wing leading edge, to control the overall flight 

power (Lehmann and Dickinson 1998; Taylor 2001). Yaw torque is known to be generated 

by bilaterally asymmetric changes in stroke plane angle (Fig. 1.4) and the mid-stroke angle 

of attack (Fig. 1.4) (Fry et al. 2003; Bergou et al. 2010), while a symmetric change in the 

mean wing translational velocity or in the timing of wing rotation alters the lift force 

(Lehmann and Dickinson 1998; Dickinson et al. 1999). A change in pitch torque can be 

achieved by a bilaterally symmetric change in mean stroke position (Zanker 1990b; Truong 

et al. 2014) or in the ratio of down- and upstroke duration (Fry et al. 2005). For a more 

comprehensive review of the correspondences between the wing kinematics of flies and 

their aerodynamic consequences, please refer to (Taylor 2001). 
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In recent years, flight control in flies has been extensively investigated using integrative 

approaches. In particular, the quantitative correspondence between the kinematic patterns 

of wing motion and the resulting aerodynamic forces has been clearly established using 

dynamically scaled robotic models (Dickinson et al. 1999; Sane and Dickinson 2001; Fry et 

al. 2005). This knowledge provides a functional interpretation of observed variations in the 

fly’s wing kinematics. Detailed measurement and analysis of wing kinematics therefore has 

the potential to reveal the functional organization of the flight control apparatus.  
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CHAPTER 2 

Research hypotheses and objectives 
 

 

2.1 Topics and motivation 
 
2.1.1 Extent of bilateral coupling in physiological and essential tremor  

 

Physiological and essential tremors mostly occur in limbs on both the sides of the body, 

with similar fundamental frequency of the oscillations. This raises the possibility that the 

contralateral tremors may have a common source or are otherwise coupled. To confirm 

such coupling, however, it is necessary to systematically assess the dependence of the two 

tremor oscillations. A finding of significant coherence between the tremors in opposite 

limbs points towards a common mechanism of tremor genesis (see section 1.5.1). In 

addition, the understanding of bilateral tremor coherence is also important for differential 

diagnosis of tremor diseases. A recent review by Elble (Elble 2013a) points out towards the 

cardinal need of improving our understanding of tremor genesis in order to make the 

therapeutic measures more accurate and definitively effective.  

 

2.1.2 Modular control of complex wing stroke variations in fruit flies  

 

Motor primitives (ref: section 1.4.1) that can be linearly combined to obtain complex motor 

activities have been reported in vertebrates. However, as the control system underlying 

voluntary motion is very complicated in humans, most of the studies were done on animals 

like frogs, cats, dogs etc. Even in these simpler vertebrates, motor primitives that occur in 

series (i.e. their occurrences do not coincide in time, for example walking, running, hopping) 

were mainly studied.  In the first part of my study I aimed to find if this mode of motor 

control is also present in the fruit flies, Drosophila melanogaster.  If present, this would 

provide a simpler system to understand the basic organization principles of motor 

primitives occurring in parallel (i.e. their occurrences can coincide in time) and can 

motivate studies in higher organisms. 
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2.2 Hypotheses 
 

Hypothesis I: Couplings between the left and the right hand oscillations 
in PT and ET are weak and posture dependent  
 

Till date bilateral coherence has been studied for almost all the tremors that appear 

bilaterally. While highly prevalent bilateral coherence was found in orthostatic tremor 

(Lauk et al. 1999) and psychogenic tremor (McAuley and Rothwell 2004; Raethjen et al. 

2004), only limited evidence of bilateral coherence has been reported for the other types of 

tremor (see section 1.5.1). However, as discussed in section 1.5.1, bilateral interaction of 

tremor has been reported for both physiological and essential tremor. But, the exact nature 

and source of this coupling is not yet clear. Motivated by previous findings in literature, it 

was hypothesized that a weak coupling between the left and right oscillators in ET and in PT 

may lead to bilateral coherence that is transient or intermittent, and could sensitively 

depend on the posture and the evaluated kinematic parameters.  

 

Hypothesis II: Fly wing motion is composed of mutually independent 
elementary kinematic patterns  
 

Complex changes in the wing kinematics are observed in flies when confronted with stimuli 

that simultaneously activate multiple sensory modalities. In case of simultaneous visual and 

olfactory stimuli, changes in wing kinematics are instantaneous combinations of their 

individual motor outputs, i.e. increases in flight power and a simultaneous yaw turn. This 

provides evidence for the involvement of independent sensorimotor pathways in these two 

modalities. Instantaneous superposition of motor output has also been shown to occur for 

simultaneous presentation of visual and haltere stimuli. Motivated by these existing 

experimental evidences it was hypothesized that if the flight maneuvers of the fruit flies 

arise from the activation of a small number of independent neuromuscular control modes it 

should be apparent from the kinematics of the wing motion. Assuming that each control 

mode when active manifests into a specific kinematic pattern, the wing motion must be a 

combination of these independently controlled kinematic patterns. 
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2.3 Objectives  
 

  

2.3.1 Analysis of human hand tremor 

 
The objectives of the first part of my research in which I analyze the triaxial hand 

accelerations during rest and postural tasks in healthy subjects and essential tremor 

patients are the following:  

• Estimate magnitude squared coherence (MSC) between the left and the right hand 

tremors.  

• Use non-stationary analysis to find the changes (if any) in bilateral coherence 

between the tremors during the measured duration.  

• Judge the extent to which the cardiac impulse (sec. 1.3.2) plays a role in 

synchronizing the tremors of the two hands.  

 

2.3.2 Analysis of Drosophila wing motion 

 
The objectives of the second part of my research in which I analyze the wing kinematics of 

tethered flying fruit flies during unstimulated flight are the following: 

• Measure wing motion of tethered fruit flies in the flight arena, uninterrupted for 

long durations (i.e. ~10 000 wingbeat cycles) with a sampling frequency high 

enough to record the subtle changes in the stroke angle of the wing.  

• Develop a suitable computational method to obtain the kinematic patterns that 

occur mutually independently in the measured wing kinematics. 

• Interpret the significance and possible aerodynamic consequences of such 

kinematic patterns.  
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II. Materials and methods 



47 

 

CHAPTER 3 

Experimental Methods 

 
 
3.1 Overview 

 

Experiments were performed to measure kinematic data that quantify the studied rhythmic 

motions, viz.  Drosophila wingbeat and the human hand tremor.  

 

Section 3.2 describes the subject demography of the studied groups of healthy subjects and 

essential tremor patients, experimental paradigm used to measure the hand motions and 

the data preprocessing. The hand motion data for 30 healthy subjects and 35 patients 

diagnosed with essential tremor, analyzed in this thesis, were provided to us by our 

collaborators in Dept. of Neurology and Centre of Clinical Neuroscience, First Faculty of 

Medicine, Prague. For a later part of my study discussed in section 5.2.4 new measurements 

were done on another group of 12 healthy subjects in the same lab. 

 

Section 3.3 describes the details of the flies used, the rearing procedures followed, pre-

experiment preparations, the experimental paradigm used to measure the fly wingbeat and 

the data preprocessing. The wingbeat data analyzed in this thesis (10 fruit flies) were taken 

from the database created by our collaborators in Fry Lab, Institute of Neuroinformatics, 

ETH Zurich and University of Zurich, Switzerland. The wingbeat data analyzed in section 6.3 

were measured by me and a colleague Dr. Jan Bartussek in Kodrík Lab, Biology Centre of the 

ASČR, Institute of Entomology, České Budějovice.  
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3.2 Measuring hand tremor 
 

 

In the first part of my study I analyzed 3D hand acceleration measurements of healthy 

subjects and essential tremor patients. The first subsection contains information about both 

the groups of subjects and in the second subsection I explain the experimental paradigm 

and the details of data acquisition.    

 

3.2.1 Subjects 

 

The tremor time series analyzed in this study were obtained from three groups of subjects. 

The first two groups, of 30 healthy subjects and of 34 patients diagnosed with essential 

tremor, were recorded as part of the study of (Šprdlík et al. 2011) (in which coherence was 

not assessed). The 34 ET patients in the first group were diagnosed according to the 

criterion stated in (Deuschl et al. 1998). This group had, age range: 19–81 yr (mean±std: 

56.7±17.4 yr), disease duration: 24.3±16 yr, Fahn-Tolosa-Marín tremor rating scale score 

(Jankovic and Tolosa 2007): 27.0±13.4, score range 9–67. The second group consisted of 30 

healthy subjects, age 53.8±17.4 yr (range 19–81 yr).  

 

A third group of 12 healthy subjects (age 34±8 yr, range 26-51 yr, 8 females and 4 males) 

were measured to perform control analyses and to study the effect of balistocardiac forcing 

on bilateral coherence.  

 

Healthy subjects in both the second and the third groups did not have any previous record 

or family history of movement disorders. The study was approved by the research ethics 

committee at First Faculty of Medicine, Charles University in Prague, and all participants 

provided signed, informed consent before entering the study. 
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3.2.2 Experimental procedure and data preprocessing 

 

 

Positions studied   

To measure the hand motion of the third group of subjects I used the same measurement 

procedure as was used for the first two groups in (Šprdlík et al. 2011).  The hand tremor 

was recorded in three positions (Fig.3.1).  The first, in which the hands hung freely from the 

wrist, was used to measure the rest tremor. The other two positions - with hands extended, 

and with the arms extended towards a horizontal target - were used to study postural 

tremor (Šprdlík et al. 2011, or Fig.3.1). In all the positions the subjects were seated 

comfortably in a sturdy armchair, and were instructed to lean their back into the backrest. 

 

Figure 3.1: Cartoons of 
positions in which the 

hand acceleration was 
measured. A) Position 1: 
forearms leaned on the 

armrests and hands 
hanging freely down. B) 
Position 2: forearms 

leaned on the armrests 
and hands extended 

forward horizontally. C) Position 3: arms held forward horizontally towards a horizontal target 
placed in front of the subject at the height of shoulders, hands pronated. X, Y and Z indicate the 
orientation of the acceleration components measured by the triaxial accelerometers placed on the 

hand dorsa. 
 

In control experiments designed to assess any role of direct mechanical coupling between 

the two hands via the wooden armchair, two left hands (or two right hands) belonging to 

distinct subjects were recorded. The first subject sat in the armchair and placed one hand 

on the armrest, while the second subject sat in an adjacent chair and placed one hand on the 

second armrest of the first armchair. 

Measurement units and their placements 

Integrated inertial measurement units MTx by Xsens were used to measure the acceleration 

of both the hands in the studied subjects. These units comprise of an accelerometer that 

measures 3D linear acceleration in 2m s− , a rate gyroscope that measures 3D rate of turn in 

1rad s− and a magnetometer that measures the 3D magnetic field (a.u., normalized to earth 
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magnetic field). All these parameters are measured in the sensor fixed coordinate system. 

For my studies I analyzed only the linear acceleration. The first row of table 3.1 gives the 

specifications of the accelerometers in these measurement units. The hand acceleration 

measurements were transmitted by cables to a personal computer via USB-RS232 and 

acquired using custom built software. The time axes of the MTx sensors of the two hands 

were synchronized using a custom-built hardware device.  To confirm that no artifact was 

introduced by this device, for the third group the Xbus kit by Xsens was thus used. The Xbus 

kit allowed synchronous sampling from all 3 measurement units (one on each hand and one 

on chest). The Xbus output was transmitted wirelessly to the personal computer and 

acquired using the MT manager software. The specifications of the accelerometers in these 

units are given in the second row of table 3.1.  

The measurement units were placed on subjects’ hand dorsa over third and fourth 

metacarpal bones using neoprene bands with hook-and-loop fasteners. In addition, one unit 

was firmly attached to the chest (5cm to the left of the sternum) and used to record the 

chest wall acceleration. Two sets of 20s measurements were performed in each hand 

position, separated by a 10s interval of rest to avoid muscle fatigue. In all cases the 

recording of each test was started by manually pressing keys on the PC keyboard.   

Table 3.1: Specifications of the accelerometers in the measurements units  

Measurement 

units 

Full scale Sampling 

frequency 

Weight Dimension 
(W x L x H) 

MTx -28A##G## ±17 2m s−  100 Hz 30g 38 x 53 x 21 mm 

MTx - 49A##G## ±50 2m s−  100 Hz 30g 38 x 53 x 21 mm 

 

Data preprocessing 

Minor data preprocessing was done before performing the coherence analysis. First, any 

slow drift present in the measured hand acceleration was removed by subtracting the best 

linear fit from all the three components. Then the two sets of measurements, each 20s, were 

combined to produce one 40s long time series.  By increasing the data length in this way I 

increased the significance level of all the estimates while avoiding the effects of muscle 

fatigue. 
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3.3 Measuring wing kinematics of tethered flying 

fruit flies  
 
 

For the second part of my study the wing angular positions of flying fruit flies (thorax held 

at a position by a tether) were measured using a high speed camera. In the first subsection I 

go through the details of the flies and their preparation for the experiment. In the second 

subsection I explain the experimental procedure, data acquisition and preprocessing.    

 

3.3.1 Fly rearing and preparations 

   

Fly type and rearing  

The fruit flies (Drosophila melanogaster Meigen) measured for the studies discussed in 

chapter 6 were obtained from the laboratory stock of Prof. Steven N. Fry, Institute of 

Neuroinformatics, ETH Zurich and University of Zurich, Switzerland. These flies descended 

from a wild-caught population of 200 mated females. Flies for the studies mentioned in 

section 6.3 were kindly provided by Prof. Dalibor Kodrík , Biology Centre of the ASČR, 

Institute of Entomology, České Budějovice, from their laboratory stock of canton-S flies. In 

both the batch of flies a standard breeding procedure was applied (25 females and 10 

males, 12:12 hour light/dark cycle, standard nutritive medium). The experiments were 

performed during the first 6 hours of subjective day with 5-10 days old female flies. 

 
Haltere ablation 

In the batch of flies provided by Kodrík lab two sub-groups were maintained separately, one 

untreated and the other with both their halteres (section 1.4.3) ablated. To generate the 

group of haltere ablated flies, I selected 5 to 10 days old healthy (i.e. readily flying inside the 

rearing jar) female fruit flies and anesthetized them using CO2. Each fly was then placed 

under a microscope with 10X magnification and both its halteres were surgically removed 

using a pair of pointed tweezers. Special care was taken not to injure the abdomen or the 

wings in this process. These treated flies were then given at least 12 Hrs to recover before 
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they were measured in the digital wingbeat analyzer and only flies flying uninterrupted for 

several minutes were measured.  

 
Tethering 

Each fly (both untreated and haltere ablated) was first immobilized in a refrigerator (4˚C) 

and transferred onto a custom built thermo-electrically cooled manipulation stage. The 

stage was kept as dry as possible and maintained at a temperature close to 4˚C by 

controlling the flow of water under it. The immobilized fly was then placed on a semi-

spherical joint that allowed a precise adjustment of the fly body orientation. With a small 

drop of UV glue the fly's thorax was glued to the tether, using a UV light gun (ELC305, 

Electro-Lite Corp., Bethel, CT, U.S.A.). No fly was cooled for more than 10 minutes and every 

fly was allowed to recover for at least 30 minutes before measurements were conducted. 

 
3.3.2 Experimental procedure and data preprocessing 

 

Placing the fly in the digital wingbeat analyzer   

The fly was then positioned in the digital wingbeat analyzer such that the wing stroke plane 

agreed with the camera plane as best as possible. However, unlike the wild type flies reared 

in Steven Lab INI Zurich, Canton S flies were slightly smaller in size and their stroke plane 

was such that  the projection of the wings were often occluded by the projection of the 

tether during the dorsal reversal. These missing data points during the dorsal reversal 

phase of the wingbeat were later interpolated from the data points of the rest of the stroke. 

Before starting the measurements, the flies were allowed to rest on a piece of wet tissue for 

at least 30 minutes. The flight was then initiated by applying a puff of air on the fly. For each 

fly, several measurements of 1 minute length was performed, alternating with pauses of 1 

minute. The number of recordings per fly varied from 3 to 5. 

Measuring Drosophila wing motion in the digital wingbeat analyzer 

For details of the data recording and its preprocessing please see section 2.1. Briefly, to 

measure the wing kinematics of tethered flying flies, a computer vision system with real-

time analysis functionality (digital wingbeat analyzer—DWBA, SciTracks, Switzerland) was 

used. The system is based on a high-speed camera (Photonfocus, Switzerland) connected to 

a frame grabber card in a personal computer. The angular positions of the leading and 

trailing wing edges were tracked to obtain a robust estimate of the wing stroke position (i.e. 
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stroke angle). Using the DWBA, a sampling frequency of 3125 Hz was achieved for each 

wing, which at a wingbeat frequency of around 200 Hz corresponds to about 15 stroke 

position data points per wing stroke (spatial resolution 1°). 

 
Figure 3.2: Wing tracking and data post-processing. A) Visualization of digital wingbeat analyzer 
(DWBA) functionality. Two consecutive frames of the dynamically updated region of interest (ROI, 

left and right wing), are shown overlaid on the mean image of the fly body and the tether. The DWBA 
detects and records (Graetzel et al. 2006) the leading (green squares) and trailing (blue dots) wing 
edge positions on a predefined tracking path (red circular lines). B) Data preprocessing. Recorded 

positions of the leading and trailing wing edge (green/blue dots) of a single wing are interpolated 
using B-splines (green/blue trace). The wing chord position (black trace) is obtained as the low-pass 
filtered mean of the interpolated positions of the two edges. For details see main text.  

 

Data preprocessing  

A suitable smoothing B-spline interpolation algorithm (Craven and Wahba 1978), (Matlab 

mex implementation by W. Dickson, parameter noise variance set to 3) was used to up-

sample the leading and trailing wing edge data to a new sampling frequency of 50,000Hz. 

The center wing position was then calculated as the low-passed mean of leading and trailing 

wing edge positions (Matlab zero-phase digital filtering, 3rd order Butterworth filter with 

cut off frequency 1500Hz). For an example, refer to Fig.3.2. 

 

Defining time series for analysis of the wing stroke 

Most of the flight maneuvers are brought about by subtle changes in the wing motion (Fry 

et al., 2003; Muijres et al., 2014). To separately study the stoke modifications at individual 

phases of the stroke cycle I isolated the stroke angle at each given phase in a separate time 

series. I divided each stroke cycle from each wing into 8 temporally equidistant phase 
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points (Fig.3.3A) and the stroke angle at each of these phase points from consecutive stroke 

cycles constitute a time series. Hence, the time courses of the wing angular position at the 

selected 8 phase points were separated in 8 distinct time series (Fig.3.3B). A set of 16 time 

series (8 from each wing) thus, contain phase dependent information of the simultaneous 

cycle-by-cycle stroke deformations of the two wings.  I considered only 8 phase points per 

wing as further increasing this number (within the limit of experimental sampling rate of 

~15 per cycle) did not yield any new feature in the results, but considerably increased the 

computation time. 

 

 

Figure 3.3: Definition of phase points and an example of their time course. A) One cycle of the 

stroke trajectory of left wing (blue) and right wing (red). The cycle is divided into 8 phase points 
sampled at equal time intervals; the angular positions of the two wings at these 8 phase points of the 

two wings define 16 time series. B) Time course of the 16 phase points during a flight segment of 
2500 wing stroke cycles.  

 
It is important to note that the procedure for constructing the 8 signals �� results in the loss 

of information about the duration of each cycle. The signals �� therefore reflect only 

variations in the waveform (shape) of the wing stroke, but not changes in the stroke 

duration / wingbeat frequency. In this analysis, I assess separately if the obtained least-

dependent components of the stroke waveform are correlated (or uncorrelated) with the 

stroke period. 
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CHAPTER 4 

Computational Methods 

 

 

4.1 Overview 

 

All the computational methods used during my research fall under the general category of 

time series analysis. A time series is a set of measured values xt of any parameter x at time 

points t. Most of the time series that I have studied have periodic variations, as they 

represent rhythmic motion.  Periodic signals are frequently characterized by the frequency 

domain parameters, like the spectral density, cross-spectral density and the coherence. The 

analyses methods discussed in the first and second subsections, namely the spectral density 

estimate and the coherence analysis, belong to the general category of stationary time series 

analysis. A stationary time series is the realization of a process whose statistical properties 

do not change with time, i.e. it can be described by the same probability distribution at each 

point of time. The processes which do not satisfy this property are called non-stationary 

processes and so are the corresponding time series. The analyses methods discussed in the 

third and fourth subsections, namely the wavelet spectral density and the wavelet 

coherence analysis, are methods used to study non-stationarity in time series. Other than 

these, an advanced statistical method for blind source separation was also used, namely 

independent component analysis. This method is discussed in the last subsection. 
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4.2 Spectral density 

 

 

Spectral density function provides the fraction of the total variance of a signal in each 

frequency band. Transforming the representation of a variable from a time function (i.e. a 

time series) to a frequency function (i.e. spectral density) facilitates the identification of the 

dominant temporal structures in the time course of the variable. In any analysis involving 

periodic signals, like those representing rhythmic motion, it is essential to know its 

frequency spread. While, this is essential for periodic signals, even for non-periodic signals 

the frequency distribution provides information about the different time scales in the 

dynamics of the system generating those signals. 

 

4.2.1 Statistical estimators and significance of the estimate 

 

The periodogram is the simplest estimator of the spectral density. For a time series {Xt} it is 

given by, 
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Where N is the number of time points measured, Δt is the sampling period and ωk is the 

discrete frequency value. However, the spectral density estimated by the periodogram is 

not a good estimation of the true spectral density, especially for continuous spectra 

(Priestley, 2001, chapter 6). The inherent inconsistencies of the periodogram estimator are 

circumvented by estimating the spectral density using weighted integral of the 

periodograms as,  
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where, P() is the standard periodogram (Eq. 4.1) and ( ) ( )
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weight function obtained from the Fourier transform of the window function λ(s).  

 

Over decades a number of window functions with different properties have been defined 

(Brockwell and Davis 1991; Priestley 2001). In my study I used hamming window that is 
given by: 
�(�) = �0.54 + 0.46 cos (#�/%), |�| ≤ M

0,                                                   |�| > M                                                                   (4.3) 
The window function starts at 0.08, smoothly rises to 1 in the middle of the segment, and 

again smoothly goes down to 0.08 at the end. For details of the hamming window and other 

window functions used for spectral density estimates see (Brockwell and Davis 1991; 

Priestley 2001). A specific method of spectral density estimation that uses modified 

periodogram estimate is the Welch’s method. In this method the entire time series is split 

into overlapping segments and their modified periodogram estimates are averaged to 

obtain the overall spectral density of the whole time series.  

 
Even though using the window functions make the periodogram a consistent estimator of 

the spectral density function, the “goodness” of the estimator has to be judged by its 

asymptotic bias and variance. Bias of a statistical estimator is the difference between its 

expectation value and the true value of the parameter being estimated; while the variance is 

the spread of the estimated value of the parameter about the expectation value of the 

estimator.  Although, the weighted averaged periodogram is an asymptotically unbiased 

estimator (i.e. when N→∞), estimates for finite length data have significant biases 

(Priestley 2001). Such biases can be avoided to a large extent by using a window function 

λ(s) that does not have sharp edges, for example the hamming window. In cases where the 

window function has discontinuities, for example in truncated periodogram, the bias error 

due to the periodogram estimation increases and needs to be corrected for. A well-studied 

method of bias correction in such cases is the “tapering” method. In this method the 

observed set of data {Xt} is multiplied by an appropriate function ht called a “taper” to 
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modify the data in a way so as to smooth out the discontinuities. An example of a taper 

function that was used in my study is the cosine taper, given by: 

ℎ< =  =
> {1 − cos (2#@ A)⁄ },       @ = 1, ⋯ , A.                                                                         (4.4)  

This function is also called the Hanning taper as it is closely related to the Tukey-Hanning 

window function (Priestley 2001). In fact any window function can be used as a tapper 

function by extending the window length to `the full length of the data set and shifting the 

function so that it attains its maximum midway through the data set.  

 

It is however important to mention that the reliability and resolvability of the spectral 

estimate cannot be improved simultaneously (Grenander 1951). I.e. reducing the bias 

(increased resolvability) of the spectral estimate at a given frequency will invariably 

increase its variance (reduce reliability) at that frequency and vice-versa. The periodogram 

estimator is asymptotically unbiased, but its variance is the maximum at each frequency. 

While the weighted average periodogram reduces the variance at each frequency as 

compared to the periodogram, nevertheless it increases the bias. The asymptotic bias and 

variance values for different window functions have been tabulated in table 6.1 of (Priestley 

2001). High bandwidth window functions constitute low variance estimators of spectral 

density (Grenander 1951). When data tapering is used in addition to windowing, the 

variance of the estimator is seen to increase as compared to when only untapered data is 

used. This is because tapering in a way reduces the effective total length of the data. 

 

Below are the applications of spectral density estimate in the context of my studies of the 

rhythmic wing motion of fruit flies and the periodic hand motion of tremor.  

   

4.2.2 Time scales of variations in stroke parameters and  
Wiener entropy 

 

To study the timescales of variations at specific phases of the drosophila wingbeat, defined 

in section 3.3.2, during flight segments and its corresponding set of linearly transformed 

components (see section 4.6.2 and also chapter 6) I estimated Welch spectra using the 

MATLAB library function “pwelch” (version:7.11.0.584 (R2010b)) with 1024 window 

length and 50% segment overlap. Figure 4.1 shows the welch spectra of the 8 phase point 

signals shown in figure 3.2 (numbers designating each phase point is shown again in Fig. 4.1 
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for ease of referencing). Simple visual inspection of these time series (Fig. 3.2) reveals that 

the cycle-to-cycle changes in wing angles near the stroke reversals (i.e. phase points 1, 2, 5 

and 6) have prominent features in the time scales of 10-100 wingbeat cycles; while those 

close to the mid-strokes (especially 3 and 7) are essentially featureless. A quantitative 

assessment of these features can be obtained from their spectral distributions (Fig. 4.1). 

Welch spectral density of phase points 1 and 6 (in case of this specific example) have a 

distinct characteristic, flat for high frequencies and gradually increasing at lower 

frequencies starting around 0.25 cycle-1. This indicates that signals 1 and 6 are dominated 

by variations that last for 4 wingbeat cycles or longer. The spectral densities of the mid-

stroke phase points 3 and 7 have distinctly different characteristics; signal 3 is mostly flat 

for frequencies higher than 0.3 cycle-1 and increase very little for lower frequencies; while 

the spectral density of signal 7 has even flatter topology. This indicates that the signals are 

essentially devoid of any features, other than the ones lasting for hundreds of wingbeat 

cycles. In terms of insect flight, such long lasting wing stroke variations may represent some 

gradual drifts during free flight, but not behaviorally interesting flight maneuver.  

 

 

Figure 4.1: Frequency distributions of wing angle variations at specific phase points over the 

course of a flight segment.  A) Stroke trajectory depicting the 8 phase points. B) Welch spectral 
densities of the wing angle variations over 2500 wingbeat cycles at specific phase points. Inset shows 
the respective WE values.   
 

An important aspect in the analyses of Drosophila wing kinematics, for that matter in any 

signal processing, was to distinguish noise from the signal. For the reason stated above, a 
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time series devoid of any sustained temporal feature was considered to be noise. 

Distinguishing such time series from the ones with events of temporal variations is easier 

using frequency domain estimates, as the former is expected to have a flatter spectral 

distribution. Hence I used an estimate of the flatness of the spectral density function, called 

the Wiener entropy, to quantify the extent of temporal structure in a given time series. 

Wiener entropy (WE) is defined as the ratio of the geometric mean to the arithmetic mean 

of the spectral density. It ranges from 0 for sinusoidal waveforms to 1 for white noise. For 

the time series shown in Fig.3.2B, WE vary between 0.26 for phase point 1 and 0.75 for 

phase point 7. The welch spectral density plots of these signals are shown in Fig. 4.1 with 

their respective WE values. Low values of WE imply the presence of temporal features, as is 

also visually evident in Fig3.2B. For WE higher than 0.9, the spectrum is visually 

indistinguishable from a flat one. Examples of such noise like time series and their 

respective spectral density functions have been shown in Fig. 4.9, where this estimate has 

been used to classify time series as “noise like”.  

 

4.2.3 Frequency spread of hand tremor and estimation of  

tremor amplitude 

 

A key feature that characterizes different types of tremor is the tremor frequency (section 

1.5, table 1.2). Hence, the first step in any tremor analysis is to estimate the frequency 

content of the measured kinematic data. I used weighted periodogram method to estimate 

the spectral density of each component (ax, ay, az) of the linear hand acceleration measured 

in specific static postures (see section 3.2.2). Preprocessed time series (as mentioned in 

section 3.2.2) of each component of hand acceleration was divided into nd disjoint segments 

of 1.28 sec (128 data points). The periodograms of these individual segments were then 

averaged to obtain the spectral distribution of the acceleration component for each subject 

in a given posture.  Bias error introduced due to this splitting was corrected using the 

cosine tapper.  The type 0 analysis of the freely available tool box NeuroSpec, version 2.0 

downloaded from www.neurospec.com was used to estimate the weighted periodograms. 

Details of the estimation procedure can be found in (Halliday et al. 1995).  

Estimation of tremor amplitude 

The average hand displacements along individual axes were computed from the 

corresponding acceleration measurements. The spectral power of hand displacement at 
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each frequency was obtained by dividing the acceleration spectral power at that frequency 

by the fourth power of the frequency in radians. Average hand displacement was then 

calculated as the square root of the total spectral power of the hand displacement in the 2-

15 Hz frequency range. 

When evaluating the tremor amplitude directly from the measured acceleration, the 

gravitational artifact (Elble 2005) may lead to an error of order 10%. This error may be 

eliminated as in (Šprdlík et al. 2011) by decomposing the measured hand acceleration into 

gravitational artifact and inertial acceleration, based on an explicit reconstruction of the 

hand orientation.  In the present study, I did not carry out this decomposition, and used the 

original recorded acceleration as the basis of all calculations. In addition to having a 

relatively low magnitude, the gravitational artifact is expected to have the same bilateral 

coherence (or lack of) as the inertial acceleration, as the time course of the oscillatory 

gravitational artifact follows the wrist motion (Elble 2005). 

 

 

Figure 4.2: Average power spectra of hand accelerations. A-C) Spectra of x (blue), y (red) and z 

(black) components of hand acceleration measured in  position 1 (A),  2 (B) and  3 (C) from 30 
healthy subjects. D-F) Corresponding plots (as in A-C) for measurements from 34 ET patients.  
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4.3 Coherence 
 

 

Coherence is the most commonly used statistic that quantifies the linear dependence 

between two time series as a function of frequency. For example, if two time series have 

multiple frequency components and only one of these components are linearly related (due 

to a common source or a common influence), then their extent of interdependence is best 

identified by coherence analysis.  

 

4.3.1 Statistical estimators and significance of  the estimate 

 

An estimator that provides a measure of the relationship between two time series as a 

function of frequency is their cross-spectral density. Similar to the periodogram estimation 

of the auto-spectral density (Eq. 4.1), the cross-spectral density of two time series X(t) and 

Y(t) can be obtained as: 

( )( )1 1

0 0

1 2
( ) exp( ) exp( ) , 0,1, 1 ;    =                N N

XY k k t k t k
t t

k
P i t X i t Y k N

N N t

πω ω ω ω
− −

= =
= = −∑ ∑

∆
⋯

  (4.5) 

 

Where the bar represents complex conjugate operation, N is the number of time points 

measured, Δt is the sampling period and ωk is the discrete frequency value. Like the 

periodogram, the cross-spectral density also needs to be smoothed (Eq. 4.2) to obtain a 

reliable estimate of the joint spectral distribution of two time series. This estimate is, 

however, sensitive to the spectral power of the individual signals at each frequency. I.e. 

Even if linear relationships of equal strength exist between the two signals at their principal 

frequency and a frequency where both the signals have low variance, the former will appear 

to be much stronger than the latter. Figure 4.3 shows two surrogate time series obtained by 

adding a common 30 Hz (middle row of Fig. 4.3A) time series to two sample hand 

acceleration time series (top and bottom row of Fig. 4.3A). The common signal was chosen 

to be of 30Hz as this frequency is far outside the main frequency band of the chosen hand 

acceleration time series (Fig. 4.3B). The cross-spectral density of the two surrogate time 



63 

 

series (estimated using hamming window with a time spread of 128 data points) shows 

three peaks (Fig. 4.3C), at 2Hz, 6Hz and 30Hz, indicating some level of mutual dependence 

at these frequencies. Even though the coupling between the surrogates at 30 Hz is by design 

at least as strong as the inherent ones at 2 and 6Hz, the cross-spectral density is much 

smaller at the former frequency. Hence, to obtain an unbiased estimate of the linear 

dependence, the cross-spectral density is normalized by the individual auto-spectral 

densities. The corresponding statistic called the magnitude squared coherence is thus 

estimated as (Bendat and Piersol 1986; Halliday et al. 1995):  
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Figure 4.3: Auto-spectral density, cross-spectral density and coherence. A) Time courses of two 

sample time series (top and bottom sub-panels) and a surrogate time series constituting of a 30Hz 
sine wave and additive gaussian noise (middle sub-panel). B) Power spectral density of the 
corresponding time series shown in A. C) Cross-spectrum of the two sample time series (top and 

bottom sub-panels of A) with the surrogate time series (middle sub-panel) added to both. D) 
Coherence spectrum of the two sample time series (top and bottom sub-panels of A) with the 

surrogate time series (middle sub-panel) added to both. 
 

Where, SFG(. ) denotes smoothed cross-spectrum of the two time series andSFF(. ), SGG(. ) 

their smoothed auto-spectra. It is important to note that if the spectral densities are not 

smoothed, the coherence function is unity at all frequencies irrespective of the actual linear 

dependence between the two time series (Chapter 9, Priestley, 2001). From figure 4.3, it can 
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be seen that unlike the cross-spectrum (Fig. 4.3C) the coherence spectrum (Fig. 4.3D) 

convincingly brings out the strong linear dependence between the surrogates at 30Hz.  

Estimation of confidence interval using surrogate data analysis 

 

Figure 4.4: Confidence intervals and bias error. A) The solid black lines show the upper and lower 
limit of the 0.95 confidence interval of true coherence, given the estimated coherence value shown on 
the x-axis. Computed as in (Wang et al. 2004) for N=26. Dashed black line shows the coherence 

threshold EI given by Eq. 4.7. B) Power spectral density of two sample time series (left (blue) and 
right (red) hand acceleration component measured from an ET patient) superposed on the power 
spectral densities of the 500 corresponding surrogate time series are plotted in faded blue and faded 

red.  C) The black line shows the coherence spectrum of the measured acceleration (in B); gray lines 
show the coherence spectra of the 500 pairs of surrogate time series. The red line shows the 0.95 
confidence threshold estimated from the surrogate coherence spectra. The green line shows the 

coherence threshold EI from Eq. 4.7 (N=26). 

To judge the significance of the estimated coherence value, it is customary to test it against 

the null hypothesis of zero coherence. I.e. given the parameters of coherence estimation 

(such as the number of disjoint segments etc.) what is the probability of obtaining a 

coherence value as high as that estimated, if the true coherence is zero?  There are different 

methods of theoretically obtaining this probability, taking varied levels of details into 

account (Bendat and Piersol 1986; Halliday et al. 1995; Brillinger 2001; Priestley 2001). 

However, none of these methods take into account the frequency specific bias effects arising 

due to the finite length of the time series. Hence, to evaluate the bias in coherence 

estimation that can arise from sharp spectral peaks (for ET in my case) (Fig. 4.4B), I used 

surrogate data generated from the measured acceleration time series. The surrogate time 



65 

 

series have randomized Fourier phases, but preserve the power spectrum and the 

distribution of data values.  

To obtain the surrogate data, I used the IAAFT algorithm introduced in (Schreiber and 

Schmitz, 1996). To begin, the original time series with N data points is randomly permuted 

to obtain a “seed” surrogate series that preserves the distribution of sample values but 

flattens the power spectrum. Two iterative steps are then repeated until the power 

spectrum of the starting time series is matched with the desired accuracy. In the first 

iterative step, the Fourier transform is computed, the magnitude of the Fourier coefficients 

is replaced by the magnitude of Fourier coefficients in the original time series, and the 

resulting Fourier series is back transformed. The time series so obtained has the same 

power spectrum as the original time series, but the phases are randomized. The second 

iterative step restores the original distribution of sample values. To do so, the time series 

produced by the first iterative step is rank ordered, and each sample value is replaced by 

the corresponding sample value in the rank-ordered original series. The resulting time 

series thus has the same set of sample values as the original time series. The power 

spectrum is perturbed by this operation, but the discrepancy can be reduced by repeating 

the two iterative steps. After the i-th iteration, the discrepancy in power spectrum is 

evaluated as 
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where ˆ
kS and ( )ˆ i

kS denote the smoothed power spectrum of the original and iterated time 

series, respectively. In our implementation, the algorithm was iterated until ∆  smaller than 

10-4 was reached, with smoothing window size of 21 points. 

Fig. 4.4B,C shows an example of how the significance of a coherence peak is assessed using 

the surrogate data. In this example, the power spectra (solid lines in Fig. 4.4B) of the 

recorded acceleration time series from both hands have a sharp peak near 4 Hz. The 

coherence spectrum of the recorded series (black line in Fig. 4.4C) shows a pronounced 

peak near 4 Hz. To assess its statistical significance, I generated 500 pairs of surrogate time 

series and computed their coherence spectra. Each surrogate pair was generated starting 

from the measured left and right hand accelerations by the IAAFT algorithm as described 

above, with different random permutations in the initial step. The power spectra of all the 
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surrogates are plotted as faded lines in Fig. 4.4B, confirming their closeness to the original 

power spectra. The coherence spectra computed from the 500 surrogate pairs are shown as 

gray lines in Fig. 4.4C. The red line corresponds to the 95% percentile of these coherence 

values; this gives the coherence threshold for rejecting the null hypothesis of zero 

coherence at the 0.05 significance level.  The magnitude of the peak in the coherence 

spectrum of the recorded series (0.9) exceeds the surrogate-derived threshold (0.25), and 

the coherence at 4 Hz in this example is thus statistically significant.  

 

4.3.2 Bilateral coherence of left and right hand acceleration  

 

To assess the linear dependence between the accelerations of the two hands I studied their 

coherence spectrum. The statistical significance of the estimated coherence value (Eq. 4.6) 

was assessed by comparing it to a threshold value, which was obtained using the following 

criteria. The most commonly used (Lauk et al. 1999; Timmer et al. 2000b) coherence 

threshold to reject the null hypothesis of zero coherence is given by (Halliday et al. 1995): 

( ) ( )
I . NE −= − −

1
11 1 0 95 ,                                                                                                                            (4.8)  

and corresponds to the value below which 95% of the distribution of coherence estimates 

will lie when the true coherence is zero. In our case EI varies from 0.09 (for N=32) to 0.11 

(for N=26). Instead of EI, however, I used a more stringent threshold, corresponding to the 

criterion defined in (Wang et al. 2004). It is based on evaluating the 95% confidence range 

of the expected true coherence values, given the estimated coherence value
2
LRγ . Fig. 4.4A 

shows the upper limits ( )2
LRR γ+  and the lower limits ( )2

LRR γ−  of this range, calculated for 

N = 2 6  as in (Wang et al. 2004). For example, a coherence value of 0.2 obtained using Eq. 4.6 

would imply a true coherence magnitude in the range 0.03-0.4 with 95% confidence (Fig. 

4.4A). If only 
2
LRγ  but not ( )2

LRR γ−  is above the threshold IE , then according to (Wang et al. 

2004) the two signals are not statistically independent, but their linear dependence is not 

sufficiently confirmed. Only the estimated coherence values that are above 0.3 satisfy the 

condition of ( )2
LR IR Eγ− >  for N = 2 6  (hence will also satisfy this condition for N > 2 6 , see 

Fig. 3 in (Wang et al. 2004)).  The threshold IE  was therefore by the higher threshold of 0.3. 
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When the two time series have sharp spectral peaks at overlapping frequencies (which is 

typically the case in ET), the errors in the estimation of spectral densities in Eq. 4.6 may 

additionally bias the distribution of coherence estimates (Bendat and Piersol 1986; Faes et 

al. 2004). I used the method of surrogate data analysis to evaluate this bias. For each pair of 

recorded acceleration time series, a set of 500 pairs of mutually independent surrogate time 

series were constructed that preserved the power spectrum of the recorded series (see 

previous subsection). The distribution of coherence values in this set was computed and the 

95% percentile level extracted. For surrogate data sets constructed from ET recordings, this 

coherence level reached as high as 0.39 near the main tremor frequency, while for the PT-

based surrogate data it generally remained consistent with Eq. 4.8. 

 

Based on these considerations, I chose the following thresholds that must be exceeded to 

declare statistically significant coherence: 0.3 for the physiological tremor recordings and 

0.4 for the ET recordings. These thresholds are stricter than the most commonly used 

threshold for rejecting zero coherence, given by Eq. 4.8. The higher thresholds used in this 

study minimize the chance of false positives, but may underestimate the prevalence of 

coherence at frequencies outside the main tremor frequency band.  

 

4.3.3 Partial coherence between left and right hand acceleration 

 

The partial coherence (Bendat and Piersol 1986; Halliday et al. 1995) is a statistic used to 

assess how much of a linear dependence between two signals can be explained by their 

shared dependence with a third signal. Low values of partial coherence imply that the 

coherent component between the first two signals can be predicted based on the knowledge 

of the third signal.  

 

To assess the linear relationship between the left and right hand tremors in absence of any 

contributions of the balistocardiac oscillations and torso movements, I estimated their 

partial coherence under the imposed condition of no chest motion as (Bendat and Piersol 

1986; Halliday et al. 1995): 
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The indices X, Y and Z indicate the left hand, right hand, and chest wall acceleration, 

respectively. The index after the dot (“.”) denotes the time series whose influence on the 

other two time series has been subtracted. It can be seen that the expressions for the 

ordinary coherence (Eq. 4.6) and the partial coherence (Eq. 4.8) are same except that the 

auto and cross-power spectrum (i.e. SXX(f) and SXY(f) respectively) in the former are 

replaced by the corresponding conditioned (or partial) spectral density functions (SXX.Z(f)  

and SXY.Z(f))  in the later. The conditioned spectral density functions are estimated from the 

ordinary spectral density functions as (Bendat and Piersol 1986), 
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                                                                                         (4.9) 

 

Using the expression of equation 4.9 in equation 4.8 one obtains, 
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(Bendat and Piersol 1986; Albo et al. 2004). Eq. 4.10 was used to estimate the partial 

coherence between each component of the left and right hand acceleration subtracting the 

influence of the chest motion. The spectral density functions were estimated using the type 

0 analysis of the NeuroSpec 2.0 toolbox. Like the ordinary coherence estimate, partial 

coherence values also range from 0 to 1. Zero partial coherence at a particular frequency 

implies that either there is no linear relationship between the two hands at that frequency 

or the existing relation can be completely attributed to the chest motion.  

 

The coherence threshold of Eq. 4.8 can be generalized to the case of partial coherence by 

replacing N by N r− , where r is the number of predictors under consideration (Halliday et 

al. 1995). As in our case, N=26-32 and r=1, these two thresholds are practically identical 

(and equal to 0.09-0.11). A more stringent threshold of 0.3 (see previous subsection) was 

used to reject the null hypothesis of zero partial coherence in PT recordings.  
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4.4 Wavelet spectral density 
 
 

The spectral density estimation, as discussed in section 4.2, provides information only 

about the time averaged frequency content of a time series while the time evolution of the 

frequency components remains obscured. This is because in Fourier transform the time 

series is convolved with an infinite sinusoidal wave H = IJ�KL< that is not localized in time. 

Windowed Fourier transform overcomes this limitation by using a modified kernel, H =
M(@ − N)IJ�KL< where M(@ − N) is an envelope function that localizes the sinusoidal wave 

around the time point. However, this transform too suffers the limitation of having a 

constant time and frequency resolution throughout the time-frequency space. Hence a 

window function that better resolves temporally transient events performs poorly in 

separating time-overlapped frequency components, and vice-versa. To this end, a method 

that has been successfully used to identify both the time of occurrence and the magnitude of 

transiently appearing frequency components is the wavelet transform. In this transform the 

time-frequency resolution is varied in such a way that the frequency resolution is higher in 

the low frequency range and the time resolution is higher in the high frequency range 

(Daubechies 1992; Torrence and Compo 1998a; Mallat 1999). There are two classes of 

wavelet transforms; the continuous wavelet transform (CWT) and the discrete wavelet 

transform (DWT). The DWT is used commonly for generating a compact representation of 

data as it is particularly useful for noise reduction and data compression. I chose to work 

with CWT as it is better for feature extraction. In the rest of this section I will first mention 

the statistical estimator of the continuous wavelet spectral density and the estimation 

errors that it entails, followed by the numerical method I used to determine the significance 

of the estimate. In the end I discuss how this method was used to identify transiently 

occurring frequency components in the ventral amplitude time series of the fly wing 

motion. Throughout this thesis wavelet transform always implies CWT. 
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4.4.1 Statistical estimator and significance of the estimate  

 

In wavelet analysis the time series is convolved with a set of functions known as daughter 

wavelets OP,Q , obtained by scaling and translating in time a temporally localized kernel 

called the mother wavelet  OR. Hence the daughter wavelets are defined as, 

, 1/2
0

a b b
a

a

ηψ ψ − =  
 

, Where a=dimensionless scaling factor, b=translation in time.     (4.11) 

One of the simplest and widely used wavelet is the complex Morlet wavelet. The complex 

Morlet wavelet is a plane wave modulated by a gaussian envelope:  
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                                                                                                              (4.12)  

 

 
Figure 4.5: Morlet wavelet transform. Real (blue) and imaginary (red) parts of complex Morlet 
wavelet with pseudo frequency of 100 Hz (A), 66Hz (C) and 50Hz (E) superposed on a periodic time 

series of 200Hz. All three wavelets are centered at the same time point marked by a cyan arrow on 
the x-axis.   

 

Where Fc is the central frequency of the mother wavelet and Fb is the band width parameter. 

It can be seen that scaling (Eq. 4.11) the mother wavelet (Eq. 4.12) dilates the central 

frequency Fc; hence each daughter wavelet with a separate scaling factor ‘a’ has a different 

central-frequency. This frequency is denoted as the pseudo-frequency of the daughter 

wavelet. Figure 4.5 shows the real (blue) and imaginary (red) parts of three daughter-

Morlet wavelets with different scaling factors superposed on a periodic signal. The scaling 

factors of the daughter-wavelets shown in subplots A, B and C are such that their pseudo-

frequencies are 1/2, 1/3 and 1/4th of the natural frequency of the periodic signal, 

respectively. All the three daughter wavelets shown are localized at the same time point, 

marked by the cyan arrow on the x-axis in each case. Convolution of the daughter wavelet in 

equation 4.12 with the wingbeat time series gives the wavelet coefficient at the time point b 

for the respective scale a, i.e.  
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Estimation of the confidence interval by surrogate data analysis 

 
To determine the significance of the wavelet coefficients, first it is necessary to choose an 

expected background spectrum. In my case I used wavelet spectra to obtain transiently 

occurring periodic variations in the ventral amplitude time series of the fly wing motion. 

For a fly flying on tether, there is no predisposed temporal structure of the ventral 

amplitude variations and hence I chose the expected background time series to be a white 

noise, i.e. without any temporal structure. For each segment of the time series analyzed, the 

background white noise was obtained by randomly reshuffling the time axis. Depending on 

the length of the analyzed time series, as many white noise time series were generated as 

required to get a total length of 106 time points. The background time series of 106 time 

points was analyzed using the same daughter wavelets as the original time series. These 106 

wavelet coefficients for each daughter wavelet provide a complete distribution of the 

coefficient values for random variations at that scaling factor. From this distribution, the 

magnitude corresponding to (1- α) percentile is selected as the threshold for hypothesis 

testing of no periodic variation, at α significance level. Hence, if the magnitude of the 

wavelet coefficient at a given time point is higher than this threshold, it can be inferred with 

(1- α) % confidence that the periodic variation encompassing that time point has not 

occurred by chance. The theoretical basis underlying this numerical method of determining 

the significance level of the estimated wavelet coefficients can be found in (Torrence and 

Compo 1998a).     

 

4.4.2 Identification of intervals of Drosophila wing motion with 

subharmonic ventral amplitude variations   

 
Power spectra of the ventral amplitude time course in many flight tests show a broad but 

distinct peak in the frequency range 0.25 to 0.35 cycle-1, while in some other cases there is 

considerable increase in power from 0.4 to 0.5 cycle-1. The former indicates the presence of 

transient 3-4 cycle periodic variations and the later the presence of transient 2 cycle 

periodic variations in the time course. To study the pattern of occurrences of these sub-

harmonic variations in the ventral amplitude time series of the two wings, I used complex 
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Morlet wavelet transform to identify transiently occurring episodes of 0.5, 0.33 and 0.25 

pseudo-frequencies (corresponding to 2, 3 and 4 wingbeat cycles respectively). For this 

estimation I used the standard library function for continuous wavelet transform (i.e. cwt) 

available in MATLAB 7.11, R2010b, with parameter values Fb=3 and Fc=1 for the mother 

wavelet (Eq. 4.12). Also, since only the high frequency variations are of interest, the ventral 

amplitude time series was high pass filtered with a lower cutoff frequency of 0.02 cycle-1 

(filter: idealfilter from MATLAB 7.11, R2010b). The Morlet wavelet coefficients of a segment 

of ventral amplitude time series for each of these three scaling factors are shown in figure 

4.6 A, C and E. High values of the coefficients at any time point imply variations with the 

pseudo frequency of the corresponding daughter wavelet at that time point. The 

significance of the coefficient values was judged using surrogate data analysis, as described 

in the last part of the previous subsection. For the first two scaling factors (i.e. the ones 

corresponding to pseudo-frequencies 0.5 and 0.33) the threshold coefficient value was 

obtained for 0.01 significance level (i.e. α value). Hence, if the magnitude of the wavelet 

coefficients for these two scaling factors at a given time point is higher than the threshold, it 

can be inferred with 99% confidence that the 2 or the 3 cycle periodic variation has not 

occurred by chance. In case of the third daughter wavelet (i.e. the ones with pseudo-

frequency 0.25), the threshold had to be increased in order to circumvent the broader peaks 

(result of decreasing time resolution) occurring due to abrupt changes in the time series. In 

this case the threshold coefficient value was obtained for 0.001 significance level. The red 

dashed lines in Fig. 4.6 A, C and E mark the threshold for each scaling factor obtained for the 

analyzed segment of the ventral amplitude. To further ensure that we extract intervals with 

persistent periodic variation and not random fluctuations, we considered only those 

intervals as events that last longer than 3 times the characteristic periodicity. I.e. the 2 cycle 

periodic events must last for at least 7 strokes, 3 cycle periodic events at least for 10 strokes 

and 4 cycle periodic events for at least 13 strokes. Green and red arrows in Fig. 4.6 A, C and 

E indicate the beginning and the end of the events which are finally extracted using the 

above algorithm and saved in the database for further analyses. The corresponding 

segments of the ventral amplitude time course are shown in Fig. 4.6 B, D and F. Red circles 

marking the ventral amplitude of the individual strokes are joined by black dashed line so 

as to enhance the visualization of the intermittent periodic variations in each case. The 

intervals of ventral amplitude time course selected as events by the algorithm (bound by 

the green and red arrows in subplots A, B and C) are highlighted using gray background.  
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Figure 4.6: Morlet wavelet transform of ventral amplitude time series and extraction of 

intervals with transiently occurring periodic variations.  (A, C, E) Magnitude of the complex 

Morlet wavelet coefficient of ventral amplitude time series, at scale values with pseudo-frequency of 

0.5 cycle-1 (A), 0.36 cycle-1 (C) and 0.25 cycle-1 (D) (black solid line). Red dashed line shows the 
threshold coefficient value above which the periodic variation can be considered to have not 
occurred by chance (see main text for details). Green arrow marks the beginning and red arrow the 

end of an event of the periodic variation. (B, D, F) Ventral amplitude time courses during the specific 
intervals shown in the left panels. Red dots indicate individual strokes. The events marked by the 
green and red arrows in the left set of panels (i.e. A, C and E) are highlighted by a grey background in 

the corresponding right panels (i.e. B, D and F).   
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4.5 Wavelet coherence 
 
 

Wavelet coherence estimate is the non-stationary analogue of the Fourier transform based 

coherence estimate. The basic method of time-frequency binning underlying wavelet 

transform enables wavelet coherence analysis to identify intermittent linear couplings 

between two time series. In this subsection I will first discuss the estimation of wavelet 

coherence 

 

4.5.1 Statistical estimator and significance of the estimate 

 

Like its Fourier transform analogue, wavelet coherence is also estimated from the wavelet 

cross-spectra of the two time series in concern. Like the Fourier cross spectrum the 

magnitude of the wavelet cross spectrum gives an estimate of the joint power of the two 

time series at a particular frequency, and in addition it also provides the distribution of this 

power in time.  While the phase of the wavelet cross-spectrum quantifies the relative phase 

of a given frequency component (corresponding to the wavelet scales) of the two time 

series at each time point (b).  Magnitude of the cross wavelet spectrum normalized by the 

wavelet spectrum of the two time series gives the wavelet coherence. Again like its Fourier 

counterpart (Eq. 4.6) wavelet coherence gives a measure of the linear dependence between 

the two time series at each scale and each time point.  

For the wavelet cross-spectral and coherence analyses I used the Wavelet coherence 

MATLAB package from www.glaciology.net/wavelet-coherence, with a complex Morlet 

wavelet (Grinsted et al. 2004). The wavelet coherence in this toolbox is estimated as, 

( )
( )( )

( )( ) ( )( )
W ,

,
W , . W ,

ij
ij

i j

S a a b
a b

S a a b S a a b
γ

−

− −
=

21
2

2 21 1                                                                    (4.14)
 

Here, S is a smoothing operator acting both along the scale (a) and the time (b) variable 

(Torrence and Compo 1998b). Along the time axis the smoothing was done using a scale 
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dependent low pass filter and that along the scale axis was done using a box car function of 

width 0.6. Further details regarding the smoothing operator can be found in the original 

article related to this package (Grinsted et al. 2004). Figure 4.7 B,D show the magnitude of 

the wavelet cross-spectrum and the wavelet coherence of two time series. Note that the 

wavelet cross-spectrum has highest magnitudes in the frequency range 4-10 Hz, indicating 

this frequency range is dominant in both the analyzed time series; as is also shown by their 

individual spectral density plots (Fig.4.7A). Interesting information regarding the two time 

series brought out only by this non-stationary analysis is: while the frequency components 

close to 8Hz are a consistent component of the two time series, the ones close to 4Hz appear 

only transiently. Interestingly the interaction between the two time series seems to be 

restricted only in the latter (2-4Hz) frequency range, as seen from the wavelet coherence 

spectrum (Fig.4.7D). While the extent of mutual interaction between the time series is also 

implied by the significant coherence peak at 3.1Hz (Fig.4.7C), but only the wavelet 

coherence spectrum reveals that this interaction appears only transiently.  

 

Figure 4.7: Correspondence of Fourier transform and wavelet transform based cross-spectral 

density and coherence estimations of two sample time series. A) Welch power spectra of the two 
time series. B) Wavelet cross-spectrum. C) Coherence spectrum. D) Wavelet coherence. Black arrows 

in both B and D panels show the relative phases of the two time series at the respective scale factors 
and time points. Right arrow indicates an in-phase interaction while left arrow indicates a phase lag 
of 180˚ of the second signal w.r.t the first. Other arrow directions are calibrated accordingly with the 

intermediate phase angles.  
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Estimation of the confidence interval by surrogate data analysis 

The statistical significance of both the wavelet cross spectra and the wavelet coherence 

estimates was assessed using the method of surrogate data, as in the case of their stationary 

counterparts discussed above in section 4.3.1. Pairs of mutually independent time series 

with the same power spectral densities as the analyzed pair of time series was used to 

provide the expected background of the estimates.  For this part I had to modify the package 

designed for wavelet coherence estimate by (Grinsted et al. 2004), so that when evaluating 

the zero coherence for the null hypothesis mutually independent surrogate time series of 

the two hands were used, instead of the red noise used by default in this package. This 

modification was necessary because the wavelet coherence package was developed for 

studying the linear relationship between non-periodic geological time series (like Arctic 

oscillation index and the Baltic maximum sea ice extent). But the time series that I studied 

are periodic oscillations, far from red noise in their spectral properties. Also the studied 

pair of time series almost always have largely overlapping frequency ranges, hence at the 

scales corresponding to these common frequencies it is more probable to find phase locked 

intervals purely by chance.  This makes it important to use a scale dependent coherence 

threshold. 

 

I generated 300 mutually independent pairs of surrogate time series (typically 4000 to 

5000 time points) having the same amplitude distribution and power spectral density as the 

hand acceleration components (IAAFT algorithm, as described in Sec. 4.3.1). Wavelet 

coherence spectra of these surrogates were then calculated to obtain a distribution of the 

coherence estimates for zero true coherence at each scale. The 0.05 significance level of the 

statistical test was then set at the 95 percentile of the coherence distribution at each scale. 

In both the panels in Fig.4.7 the black contours mark the regions with values above 0.05 

significance level, and the arrows show the relative phase between the two signals at the 

designated scale and time point.  

 
4.5.2 Identification of transiently occurring coupling between hand 

acceleration 

 
For all recordings with significant magnitude squared coherence (MSC) (Eq. 4.6) between 

the left and right hand acceleration components, wavelet coherence was analyzed. To 
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extract the time intervals of significant coherence, the following procedure (illustrated with 

the help of an example in Fig.4.8) was used:  

i. For each significant coherence peak (as defined in section 4.3.2) in the MSC spectrum, 

the corresponding wavelet scale and its time-frequency spread was estimated. For the 

daughter Morlet wavelets used for coherence estimation in this study the time 

frequency widths at scale factor “a” are 1.11 SJ= and 0.74 S respectively (Addison 

2002). Figure 4.8A shows the MSC function of the z-components of the left and right 

hand accelerations of an ET patient. In this example, the significant coherence peak is at 

4Hz. The frequency band highlighted in grey marks the 2.3-5Hz frequency spread of the 

daughter wavelet with pseudo-frequency of 4Hz.     

 

 

Figure 4.8: Extracting intermittent events of bilateral coupling of hand acceleration. A) 

Magnitude squared coherence plot of the left and right hand accelerations (z-component) of an ET 
patient. B) Upper panel: Graph of the number of scales (within the frequency band marked by 

dashed lines in the lower panel) with significant wavelet coherence at each time point. Lower panel: 
Wavelet coherence plot of the left and the right hand acceleration components. Black contours mark 
the regions of 95% confidence interval for the rejection of the null hypothesis of zero wavelet 

coherence, and the arrows indicate the relative phase between the two signals at the designated 
time-frequency point. Black dashed lines mark the frequency width of the daughter Morlet wavelet 
with pseudo-frequency same as the coherent frequency of the two signals.  

 
 

ii. The wavelet scales corresponding to the frequency spread of the daughter wavelet 

(marked by black dashed lines in the bottom panel of Fig.4.8B) were scanned for 

intervals of significant (see previous section) wavelet coherence. The graph in the 

upper panel of Fig.4.8B shows the number of scales in this band with significant 
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wavelet coherence at each time point. The beginning and the end (green arrows and 

red dots, Fig 4.8B upper panel) of these intervals were extracted.   

 

iii. If the duration of the interval exceeded the time width of the daughter wavelet (~0.2s 

in this example) and the coherence extended over a scale range exceeding 50% of the 

frequency width of the wavelet, the interval was counted as a coherence event. 

However, it is important to note that short coherence events may arise as false positives: as 

the significance level for rejecting null coherence at each time-frequency point is finite, 

there is a finite probability of finding coherence events in a pair of non-coherent signals. To 

characterize the durations of such “false events”, I used the algorithm described above to 

extract the intervals of significant coherence in pairs of statistically independent surrogate 

signals. For each measured pair of hand acceleration time series, 50 surrogate pairs were 

generated, and the scales corresponding to the coherent frequencies of the original signal 

pair were scanned for the false events. The median durations of these events ranged from 

0.4 sec (for surrogates corresponding to position P3 in ET subjects) to 1.1 sec (for 

surrogates corresponding to position P2 in PT subjects). The 95th percentile durations (i.e., 

durations reached by only 5% of false events) ranged from 2.2 sec to 3.1 sec. 
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4.6 Independent component analysis  
 
 

Independent component analysis (ICA) is a computational tool that transforms a set of 

interrelated signals into a set of their component signals that are mutually statistically 

independent (Hyvarinen et al. 2001). Before going into further details of the mathematical 

model and the algorithms used to implement it, it is important to understand the concept of 

statistical independence and its difference from uncorrelatedness. Two random variables 

(or signals) �= and �> are said to be statistically independent if the knowledge of �= does not 

provide any information about �> and vice-versa. In statistical terms, the probability of 

occurrence of a given value of �= remains the same irrespective of whether the value of �> is 

known or is unknown. I.e. the conditional probability U(�=|�>) is same as the marginal 

probability U(�=). Hence, the joint probability density of these two signals:   

U(�=, �>) = U(�=|�>)P(�>) = U(�=)P(�>)                                                                                       (4.15) 

Therefore, one can define independent variables (or signals) as the set of variables whose 

joint probability density is factorizable into their marginal probability density functions, i.e.: 

U(�=, �> ⋯ �V) = U(�=)U(�>) ⋯ U(�V)                                                                                             (4.16) 

 
On the other hand, two random variables are said to be uncorrelated when their covariance 

is zero. i.e., W{(�= − W{�=})(�> − W{�>})} = 0; 

 ⇒ W{�=�>} − W{�=}W{�>} = 0,                                                                                                            (4.17) 

Where W{. } is the expectation operator. It can be shown easily that while condition 

presented in Eq. 4.15 automatically implies Eq. 4.17, the converse is not true.  

 

4.6.1 The ICA Model and the MILCA algorithm 

 

The classical, linear ICA model formulates n observed signals �=,�> ⋯ �V in terms of n 

statistically independent component signals �=,�> ⋯ �V as,  

�� = S�=�= + S�>�> + ⋯ S�V�V;    i. e. Y = A[                                                                                     (4.18) 
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Where, Y = \�=, �> ⋯ �V] is a multidimensional variable with each element being an 

observed signal; [ = \�=, �> ⋯ �V] is another multidimensional variable whose elements are 

mutually statistically independent and A is an n x n matrix of real coefficients called the 

mixing matrix. ICA utilizes higher-order statistical methods to find the appropriate mixing 

matrix A, because with second-order methods (i.e. the ones involving covariance matrix) 

one can at the most obtain linear independence i.e. uncorrelatedness. Higher –order 

methods are the ones which use information on the distribution of �� s’ contained in their 

higher moments like skewness (3rd moment), kurtosis (4th moment) etc. Use of higher 

order statistics for the analysis implicates that ICA would be blind in distinguishing 

independent components (i.e. �̂  s’) if they have gaussian probability density. This is because 

variables with gaussian probability density combine to generate yet another gaussian 

variable and since all gaussian variables have same higher-order moments, the estimation 

function remains invariant under this summation.  

Methods of independent component estimation can be coarsely described as a two-step 

process: a) formulation of an objective function, whose maximization or minimization 

enables the estimation of the independent components and b) devising a suitable algorithm 

to optimize the objective function. Statistical properties of the ICA method depends on the 

objective function while algorithmic properties like convergence speed, memory 

requirements etc. depends on the optimization algorithm. A large number of objective 

functions and optimization algorithms have been developed, almost all of which have been 

discussed in details in (Hyvarinen et al. 2001). Some of the most commonly used methods of 

implementing ICA are: FastICA (Hyvarinen 1999; Hyvärinen and Oja 2000), Infomax (Bell 

and Sejnowski 1995) and JADE.   

However, For the ICA-model to be successfully implemented the following identifiability 

conditions need to be satisfied (Hyvarinen et al. 2001). 

i. Analyzed multidimensional variable X must be realizable as a linear combination of 

signals from statistically independent sources. 

ii. Signals from all the statistically independent sources, with possible exception of one, 

must be non-Gaussian. 

iii. Number of observed linear mixtures must be at least as large as the expected 

number of mutually independent source signals.  
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For many systems, however, it is difficult to ascertain that all the above conditions are 

satisfied; as in the case of the transformation of neuromuscular activities into the wing 

kinematics in fruit flies. While none of the above conditions could be guaranteed, in this 

case the first condition was the most difficult to ascertain a priori. Given the physiology of 

the flight apparatus, even if the neuromuscular control units are activated mutually 

independently they may get nonlinearly coupled while acting via sclerites. Hence, I chose to 

work with a variant of the ICA model that does not rely on the conditions listed above.  

Least-dependent component analysis (LCA) is one such method. In this model the idea is to 

search for the linear transformation of the input signals �� s’ such that the transformed 

signals _�  s’ are mutually independent to the largest possible degree. I.e.   

_� = `�=�= + `�>�> + ⋯ `�V�V;   a = bY                                                                                        (4.19)                  

These _�  s’ are called the least dependent components (LDC). While it is always possible to 

find a linear transformation resulting in uncorrelated transformed signals (e.g., the 

Karhunen-Loeve transform in principal component analysis), the LCA model goes further 

and attempts to achieve full statistical independence. The coefficients of the optimal linear 

transformation define the separating matrix W. For each component _� , the coefficients 

\`�=`�> ⋯ `�V] define the corresponding separating vector. In the special case when the 

input signals are a linear combination of fully statistically independent sources, LCA and ICA 

give identical results, i.e., the least dependent components are then equivalent to 

independent components.  

Mutual information as cost function and the MILCA algorithm 

In least-dependent component analysis a reliable estimator of mutual dependence of 

variables is crucial, because it is needed as a cost function for optimization. Mutual 

information is the most direct statistic that quantifies the dependence between two random 

variables. It is defined as the reduction in the uncertainty of one due to the knowledge of the 

other. It is a more complete measure of independence than the Pearson correlation 

coefficient because it quantifies the entire dependence structure, both its linear and non-

linear parts. Two random variables are fully statistically independent if and only if their 

mutual information is zero. The mutual information of two random variables  c and d can 

be calculated as  

 I(c, d) = H(c) + H(d) − H(c, d)                                                                                                   (4.20) 
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Where H(c) and H(d) are the marginal entropies and H(c, d) is the joint entropy6. For a 

multivariate signal one can extend this definition, to define the joint mutual information as:  

I(_=, _> ⋯ _V) = ∑ H(_�)V�h= − H(_=, _> ⋯ _V)                                                                                   (4.21)  

Reliable estimation of entropy from a finite number of samples of the random variables is a 

non-trivial task (Victor 2002). When calculating combinations of entropies (such as in Eq. 

4.20, 4.21) that can have a total value close to zero, it is particularly important to eliminate 

any biases in entropy estimation. Kraskov et al. developed a reliable mutual information 

estimator (Kraskov et al. 2004) based on a previously known binless strategy for entropy 

estimation.  

Mutual information estimator is the basis for the MILCA algorithm (mutual information 

based least dependent component analysis (Stögbauer et al. 2004)) which I used in my 

study. In searching for the least dependent components, the MILCA algorithm iteratively 

remixes the input signals, converging to linear combinations with minimal joint mutual 

information (Eq. 4.21). MILCA starts by transforming the set of input signals Y =
 \�=�> ⋯ �V] to a set of mutually uncorrelated signals i =  jk1k2 ⋯ klm:  

i = bnY  such that opqrk� , k̂ s = �0     if t = u
1     if t ≠ u                                                                              (4.22) 

This transformation is achieved by suitable rescaling of the principal components of X, and 

is called whitening. W0 is the whitening matrix. Thus, the first step extracts linearly 

independent (i.e., uncorrelated) components of X.  

The second step minimizes non-linear dependencies pairwise within the whitened 

multivariate signal Y. The whitened signals are remixed by rotating each pair rk� , k̂ s in its 

own plane and finding the angle w�,^ at which the mutual information (Eq. 4.20) of the 

rotated signals is minimized.  

The result is  

rk= ⋯ k′� ⋯ k′^ ⋯ kVs = y�^rw�,^s rk= ⋯ k� ⋯ k̂ ⋯ kVs                                                                 (4.23)  

                                                           
6
 The (differential) entropy of a variable c with probability density P(c) is defined 

as: z(c) = − { P(c) logQP(c)|c}
J} . The probability density has to be estimated from the available samples of 

the variable. To define the joint entropy H(c, d)  of two variables, the joint probability density P(c, d) is used.  
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where y�^rw�,^s is a l × l rotation vector acting only in the 2 × 2 subspace rk� , k̂ s. The 

product of such pairwise rotations for all pairs generates the l × l rotation matrix: 

y = ∏ y�^rw�,^s�,^ .   

The transformation a = yi defines a candidate set of components. The joint mutual 

information (Eq.4.21) of the components _�  s’ is then evaluated, and pairwise remixing of 

the components is repeated until the joint mutual information converges to a minimum 

value.  

The overall transformation from the set Y of signals to the set a of least-dependent 

components is given by 

a = y�i = y�bnY = bY,                                                                                                                       (4.24) 

where y� is the total rotation matrix after the iterative remixing, and b = y�bn is the 

separating matrix. I used the Matlab implementation of MILCA downloaded from  

www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA.  

Parameters were set as follows: distance to the 12th neighbor and rectangular 2D 

neighborhood for entropy estimation; first two Fourier components in the fitting of mutual 

information vs. rotation angle curve. 

 

4.6.2 Least-dependent kinematic pattern of  Drosophila wing motion 

 

To extract the least-dependent component variations of wing stroke trajectory I used least-

dependent component analysis (LCA). For the purpose of this analysis I first extract a new 

set of signals from the measured wing stroke data, as described in section 3.3.2. Briefly, a 

wing stroke defined from one dorsal reversal to the other was subdivided into 8 temporally 

equidistant phase points. Stroke positions at each of these phases in consecutive wing beat 

cycles defined a time series, 16 such time series (8 from each wing) were obtained from 

each flight test (figure 3.2). These set of 16 time series were then divided into segments of 

2500 wingbeat cycles and each such segment defined a 16 × 2500 dimensional input signal  

Y for LCA analysis. When choosing the segment length, the following two aspects were 

considered. Long-duration segments are more likely to contain multiple occurrences of 

distinct kinematic changes, which is a requirement for successful statistical analysis. On the 

other hand, for long segments the signal may violate conditions of wide-sense stationarity, a 
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pre-requisite of LCA analysis. Considering this tradeoff, I found the duration of 2500 

wingbeat cycles to be approximately optimal and used this segment length throughout the 

analysis. Figure 3.2 shows an example of the 16 time series analyzed using LCA. 

Using this input signal in equation 4.19 the least-dependent components _�  s’ obtained are 

each a series of 2500 sample points, with one sample per stroke cycle. Figure 4.9 shows the 

least-dependent components obtained from MILCA analysis of the set of 16 signals shown in 

Fig.3.2. The value of _�    in a given cycle gives the weight of a particular stroke deformation 

mode in the overall wing stroke trajectory. For example, the ramp like increase in the value 

of the 9th least-dependent component between 0 to 500 wingbeat cycles in Fig.4.9A 

indicates an increased fraction of the stroke deformation mode represented by this LDC.  

 

Figure 4.9: Least-dependent components and their temporal features. A) Least-dependent 

components estimated from the 16 signals shown in Fig.3.2B. Components with noise-like flat power 
spectra (Wiener entropy > 0.9) are plotted in gray. B) Welch power spectra and the Wiener entropy 
(WE) values of selected components shown in A. 

The stroke deformation modes are defined by the coefficients of their corresponding 

separating vector (i.e. individual rows of the separating matrix W). For some components 

direct examination of the separating vector is sufficient to understand the corresponding 

stroke deformation mode. For example, components of type IV (see section 6.2.4) are 

obtained as the difference of the wing position signals �= and �� ; the corresponding stroke 

deformation mode therefore consists of an antisymmetric change of the wing position at 

dorsal stroke reversal for the two wings. In general, however, it is more convenient to 
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construct a graphical representation of the stroke deformation mode defined by the 

separating vector of a given component.  

To do so, consider the inverse of Eq. 4.19, 

Y = bJ�a                                                                                                                                                 (4.25) 

The mixing matrix bJ� defines the transformation from least-dependent components to 

original signals. When the full set of components a = \_= _> ⋯ _=�]�
 is used in Eq. 4.25, the 

16 signals X are faithfully reconstructed. Equation 4.25 can be expanded as 

( ) �1 1 1 ,− − −= + − = +X W Z W Z Z X W Z                                                                             (4.26) 

where .  denotes the average over all wing strokes. The vector � = −Z Z Z  contains the 

deviations of the weights from their respective mean values. The wing stroke is thus 

represented as the sum of the baseline wing stroke X  (i.e., the mean stroke, averaged over 

the entire flight segment) and the wing stroke deformation bJ�a� . To construct the stroke 

deformation mode corresponding purely to the i-th component, the stroke deformations 

due to other components were suppressed– i.e., in the second term of Eq.4.26, I replaced all 

coefficients in 1−W , except in its ith column, by zeros. From such partial reconstruction I 

obtained an array of phase points called the reconstructed stroke cycle, which when plotted 

together with the baseline wing stroke gives a visualization of the stroke deformation. In 

Fig. 4.10, I show an example of three reconstructed stroke cycles, with only one stroke 

deformation mode included. Comparing this to the baseline wing stroke shown in gray, it is 

seen that in this example, the stroke deformation mode is mainly an anti-symmetric change 

in ventral amplitudes (i.e., wing positions at ventral stroke reversal).  

Each stroke deformation mode is thus a specific form of deviation from the baseline wing 

stroke. Deviation of any element of _̂� from 0 implies that the stroke deformation mode 

represented by the ith LDC is active at that stroke cycle. Thus each LDC specifies the time 

course of activation of the stroke deformation mode it encodes. Together, the activation 

time course and the stroke deformation mode constitute a least-dependent kinematic 

pattern. 
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Figure 4.10: Reconstructed wing stroke, with deviation from baseline stroke due to a selected 

kinematic pattern. (Upper panel: left wing, lower panel: right wing). The green dots and the 
interpolated gray lines show the baseline stroke trajectory. The black dots (interpolated with blue 

and red line) are phase points reconstructed from only one selected component (see main text). The 
8 reconstructed phase points for each wing are converted to time points, based on the recorded wing 
stroke duration. This stroke deformation mode is seen to consist of an increase in left ventral 

amplitude with simultaneous decrease in right ventral amplitude. 
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III. Results and discussion 
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CHAPTER 5 

Intermittent bilateral coherence in 

physiological and essential tremor 

 
 

5.1 Overview 
 

 

This study was designed to explore the first topic of my thesis, i.e. the extent of bilateral 

coupling of the physiological and essential tremor. I evaluated the bilateral coherence of 

hand kinematics in the two most commonly occurring tremor types - physiological and 

essential tremor (Louis et al. 1998). I systematically assessed the time averaged bilateral 

coherence as well as its detailed temporal structure. I found frequently occurring 

bilateral coherence in the resting hand position as well as in two active postures for 

both PT and ET, contrary to some previous reports (e.g. Marsden et al. 1969a; Morrison 

and Newell 1999).  

 

I first computed the coherence spectra of the 3D accelerometer signals that were 

recorded from healthy and from ET patients for a previously published study (Šprdlík et 

al. 2011). To confirm these findings, I repeated the analyses on a fresh set of hand 

motion data measured using a modified recording device from an additional group of 

healthy subjects (for details see section 3.3). Control experiments were also designed to 

exclude the role of direct mechanical coupling between the hands and to access the role 

of the common cardiac impulse to the two hands on their bilateral coherence.  The 

results of this study are presented in 4 subsections of section 5.2. In section 5.3 I discuss 

these results.  
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5.2 Results 

 

 

5.2.1 Tremor amplitude and spectral content 

 

The power spectral density of the acceleration and the tremor displacement amplitude 

were evaluated for each recorded time series. In the healthy subjects group, typically a 

pronounced peak located within the range 6-12 Hz was found in the power spectrum for 

all the three hand positions. In addition, in the case of position 3 (Fig. 3.1) a considerable 

increase in low frequency vibrations (<5 Hz) was evident for all three acceleration 

components. The precise location of the main spectral peak varied among the subjects; 

hence the power spectrum averaged over all 30 healthy subjects (Fig. 4.2 A) shows a 

broad and relatively flat peak. In contrast, for ET subject the power spectrum typically 

showed a sharp peak located at 4 to 6 Hz, and in addition one or more peaks 

corresponding to higher harmonics. Consequently, the power spectrum averaged over 

all 34 ET patients showed a pronounced multiple peak structure, for all three studied 

hand positions (Fig. 4.2 D-F).  

Table 5.1: Average amplitudes and the 90% range of hand displacements in PT and ET, 
evaluated separately for each hand position and each spatial axis.   

Component of 
hand 

displacement 

Position 1 Position 2 Position 3 

Healthy subjects:  mean amplitude (90% range) in mm 

X 0.052 (0.022–0.116) 0.069 (0.044-0.118) 0.198 (0.121-0.326) 

Y 0.058 (0.026–0.111) 0.101 (0.057-0.157) 0.342 (0.221-0.488) 

Z 0.038 (0.021-0.065) 0.074 (0.045-0.130) 0.437 (0.305-0.600) 

 ET patients:  mean amplitude (90% range) in mm 

X 0.270 (0.025-1.035) 0.406 (0.047-1.958) 0.550 (0.126-1.936) 

Y 0.238 (0.026-0.950) 0.545 (0.065-2.262) 0.757 (0.221-2.730) 

Z 0.307 (0.021-1.267) 0.567 (0.046-3.065) 0.745 (0.305-2.199) 
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Table 5.1 gives the mean tremor amplitudes (computed as described in Sec. 4.2.3), as 

well as the range of amplitudes that covers 90% of the subjects. It is seen that in a given 

hand position, the amplitude of motion is usually comparable for all three spatial axes. 

The average tremor amplitude in ET patients was found to be 4- to 8-fold higher than in 

healthy subjects for the resting position as well as for the first posture (Table 5.1, first 

two data columns). In the second posture, the amplitude was approximately 2-fold 

higher for ET patients (Table 5.1, third data column). 

 
5.2.2 Bilateral coherence of wrist kinematics 

 

 

Figure 5.1: Examples of significant bilateral coherence of hand motion in physiological and 

essential tremor. A) Upper subpanels: Power spectra for the z-component of acceleration of the 
left (magenta) and right (green) hand in a healthy subject and their respective 100 surrogate 
time series (left: blue; right: red). Magnified snippet (rectangle) shown in the inset for better 
visualization (upper subpanel, column 1). Columns correspond to the measurements from the 
three hand positions.  Lower subpanels: Coherence function between the left and right hand 
acceleration (black) and their surrogates (gray). Red line shows the coherence threshold for 
rejecting the null hypothesis of no coherence (for details refer to the text). B) Similar plots as in 
A, but for an ET patient. C) An interval of the left (blue) and right (red) acceleration 
demonstrating an event of synchronization (rectangle) contributing to the coherence peak in the 
left subpanel of A. D) An interval of the left (blue) and right (red) acceleration demonstrating an 

event of synchronization (rectangle) contributing to the coherence peak in the right subpanel of 
B.  
 

The simultaneous accelerometric recording from both hands allowed us to evaluate the 

bilateral coherence of wrist motion. For each subject and each measured hand position, I 

computed the spectral coherence between the acceleration signals from the left and 
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right hand, separately for each spatial axis (see section 4.3.2). I then determined if the 

coherence magnitude exceeded the threshold value 0.3 in case of healthy subjects and 

0.4 in case of ET patients. In the examples below, the plot shows, for each coherence 

spectrum of the recorded accelerations, also the coherence spectra of 100 pairs of the 

corresponding surrogate time series. The surrogates are constructed to have a power 

spectrum matching the recorded time series, but to be mutually statistically 

independent. As seen in the example figures, the peaks in the coherence spectra of the 

surrogates do not exceed the chosen thresholds of statistical significance, thus 

confirming that the thresholds are adequate. 

Fig.5.1A (lower subpanels) shows an example of the coherence spectra for motion along 

the Z axis (perpendicular to the palm of the hand) in a healthy subject. In this case, 

statistically significant coherence peaks are obtained in the resting hand position 

(Fig.5.1A, left column) as well as in the postural position 3 (Fig.5.1A, right column). 

Fig.5.1B shows an analogous example from a subject diagnosed with ET. As seen from 

comparison to the power spectral densities (shown in upper subpanels), high coherence 

peaks are obtained at frequency matching the main tremor frequency in position 2 and 

3, while coherence in position 1 occurs at a lower frequency. Figure 5.1C,D shows the 

time course (within a selected interval) of the left and right hand acceleration in position 

1 for the healthy subject and in position 3 for the ET patient. In both these examples, the 

bilateral coherence can be readily discerned by eye in the acceleration time series (black 

rectangle).   

To summarize such evaluations across all subjects in a given group, we extracted the 

amplitude (i.e., the coherence value) and the position (i.e., the frequency) of each 

statistically significant peak in the coherence spectrum. For each position and spatial 

axis, the coherence peaks from all subjects are then plotted as points in one summary 

graph - Fig.5.2A-C summarizes the coherence peaks obtained in the group of 30 healthy 

subjects, while Fig.5.2D-F was obtained from the group of 34 subjects with diagnosed 

ET. The rows correspond to the 3 studied positions and the columns correspond to the 3 

spatial axes. The number of subjects with at least one peak of height above the 

respective coherence thresholds (i.e. 0.3 for healthy subjects and 0.4 for ET patients) is 

listed in the legend of each panel.  

In the resting position, significant bilateral coherence was obtained in nearly all subjects 

from both groups. As seen in Fig.5.2A, D, coherence was most commonly found for 

motion in the X direction (i.e., the proximal-distal axis of the hand), but 50-60% of 
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subjects also showed coherence of motion in the Y (transversal) and Z (dorsal-ventral) 

directions. 90%, resp. 92% of subjects in each group showed significant coherence in the 

resting position for at least one axis of motion (Table 5.2). Both for healthy subjects and 

for ET patients, the coherence peaks are predominantly located within the frequency 

range 1 Hz to 10 Hz.  

Compared to the resting tremor, a much lower prevalence of bilateral coherence was 

found in position 2 (hands extended) for healthy subjects. As seen in Fig.5.2B, only 4 

(i.e.,13%), resp. 7 (i.e., 23%) among 30 healthy subjects showed significant coherence of 

motion in the Z, and Y direction respectively. For motion along the X axis, however, the 

majority (19, i.e. 61%) of subjects showed significant coherence peaks. For position 3 

(arms extended) (Fig.5.2C), about half of the healthy subjects showed significant 

coherence of motion along each of the three spatial axes. The coherence peaks were 

located in the broad range 1 Hz – 12 Hz. and their peak coherence value rarely exceeded 

0.5. 

Figure 5.2: Summary of significant peaks in the bilateral coherence spectrum. For each 
frequency and coherence magnitude bin, the number of peaks obtained in the corresponding 
subject group is given (see color scale shown at right).  A-C) show peaks from 30 healthy 
subjects, with hands in position 1 (panel A), 2 (panel B) and 3 (panel C). The left, middle, and 
right subpanels correspond to x, y, and z components of acceleration.  D-F) show peaks from 34 
ET patients.  

High coherence values were reached more often in ET patients.  Thus in the 3rd hand 

position, 25% of ET patients showed  a coherence value exceeding 0.7, while none of the 

healthy subjects reached such high coherence1 (Fig.5.2 C,F). In both postures, and for all 

three motion axes, the peaks of particularly high coherence (above 0.7) were restricted 

to the frequency range 3 to 5 Hz, which coincides (see Fig.4.2 D-F) with the main 
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frequency band of the ET. In such cases the coherent component carries a major part of 

the total tremor power, and consequently the bilateral coherence is readily apparent 

upon examination of the acceleration recordings (example in Fig.5.1D). We verified 

using surrogate data (see section 4.3) that all coherence peaks exceeding the threshold 

0.4 are statistically significant, even when they occur at the frequency matching the 

main tremor frequency. 

For both healthy subjects and ET patients, I quantified how strongly the bilaterally 

coherent content contributes to the total motion of the hands, as follows. For a given 

coherence peak, we first evaluated the power of the coherent part of motion by 

integrating the spectral cross-power within the half-width of the peak. We then 

computed its ratio to the power of total motion (evaluated as the geometric mean of the 

spectral powers, integrated within the range 2 Hz to 15 Hz, of the two motion series). 

For the coherence peaks that have overlap with the principal peak in the power spectral 

density, we typically found ratios between 51% and 87% (e.g., 51% for the example in 

the right panel of Fig.5.1B), showing that the coherent component makes a major 

contribution. For the coherence peaks at lower frequencies, we found values in the 

range 4-24% (e.g., 24% for the example shown in figure 5.1A), indicating a minor but 

still significant contribution to the total hand motion.   

Table 5.2. 

Numbers of 

subjects with 

significant 

bilateral 

coherence of the 

indicated 

components of 

hand 

acceleration. 

 

 

 

To assess if bilateral coherence was primarily associated with lower or higher 

amplitudes of tremor, we examined the relation between the coherence peak 

magnitudes (Fig.5.2; only the highest peak from each subject was retained) and the 

tremor displacement amplitudes (obtained as in section 4.2.3), A positive correlation 

was identified for ET patients in the resting hand position: the Pearson correlation 

Hand 
positio

n 

Healthy subjects 
(Total: 30) 

Essential tremor patients 
(Total: 35) 

Number of  subjects 
with bilateral 

coherence >0.3 

Number of subjects with 

bilateral coherence >0.4 

 Z-component 

1 19 13 

2 4 4 

3 12 9 

 At least one spatial component 

1 29 19 

2 22 17 

3 24 20 
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coefficient was 0.53 (with t-test based p-value of 0.03) for motion in x-direction, and 

0.69 (p-value 0.009) for motion in y-direction. No statistically significant relation 

between coherence magnitude and tremor amplitude was found for other position / 

motion axis combinations in either ET patients or healthy subjects. 

 

5.2.3 Intermittent character of bilateral coherence 

 

To examine the temporal distribution of bilateral coherence within the recorded 20 sec 

intervals, we used wavelet-based computational methods, which allow a systematic non-

stationary analysis. The wavelet coherence function (see section 4.5.2) was evaluated 

for recordings that showed significant peaks in the coherence spectrum.  

For both healthy subjects and ET patients, I found that the bilateral coherence is 

distributed highly non-uniformly in time. Typically, patches of high coherence lasting for 

several seconds are separated by time intervals with low coherence. Examples from a 

healthy subject and an ET patient are shown in Fig.5.3. In the wavelet coherence plots 

(panels A, C), the coherence value is color-coded, while the y-axis corresponds to the 

wavelet scale converted to frequency. The black contours mark the regions in which the 

coherence values exceed the 95% confidence level for rejecting null coherence. The 

arrows indicate the relative phase of the two signals at particular time points: right 

arrow means 0˚ phase shift, left arrow 180˚, and downwards arrow a 90˚ phase lead of 

the left hand w.r.t the right.  In the PT example (Fig.5.3A), isolated patches of significant 

coherence at frequencies 4-6 Hz appear at time 4 to 6 sec and 8 to 10 sec. These short 

intervals of very high coherence generate the significant peak near 5 Hz in the 

coherence spectrum (Fig.5.3B). In the ET example (Fig.5.3C), the patches of high 

coherence at 3-5 Hz are frequent, while only short intervals of very low coherence occur 

(7-8 sec). Correspondingly, the peak near 4 Hz in the coherence spectrum (Fig.5.3D) has 

very high amplitude (0.9).  
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Figure 5.3: Transiently occurring bilateral coherence of hand acceleration. A-B: Rest 
tremor in a healthy subject in hand position 1 (z-component). A) Wavelet coherence of the left 
and right hand acceleration components. Coherence (color axis) and the corresponding 

frequencies are plotted in log scale of base 2. Regions enclosed in black contours mark the peaks 
for which the null hypothesis of no coherence can be rejected with confidence level of 0.95 and 
the black arrows show the instantaneous relative phase between the particular frequency 
components (right arrow: in phase, left arrow: anti-phase, down arrow: left hand leading right 
hand by 90˚). B) Coherence spectra of the left and the right hand acceleration components (black 
line) and the corresponding 100 surrogate time series (gray lines). Red line shows the coherence 
threshold for rejecting the null hypothesis. C-D: As in A-B, but from ET subject in hand position 2 
(z-component).  

Based on the wavelet coherence plots, I identified numerous intervals of transient 

coherence typically lasting several seconds, for both PT and ET subjects, in all three 

studied positions. Examples of these events of significant coherence are given in Fig.5.4; 

the lower subpanels show the acceleration time courses from both hands, and the upper 

subpanels plot the wavelet coherence within the relevant frequency band. While the left 

and right hand oscillations are in-phase in most cases, anti-phase coherence (Fig.5.4G) 

and an approximately 90˚ phase shift (Fig.5.4E) are seen in examples shown from ET 

patients in non-resting hand positions. It is also seen that while in some examples 

(panels A, D), high coherence coincided with intervals of increased tremor amplitude, 

this was not the case in general (panels C, F). 
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Figure 5.4: Examples of intermittent synchronization of hand acceleration and the 

corresponding wavelet coherence plots. A-C) Lower subpanels: Time course of left (blue) 
and right (red) hand acceleration (z-component) of healthy subjects with hands in position 1 
(panel A), position 2 (panel B) and position 3 (panel C). Upper subpanels:  Wavelet coherence 
spectra for a selected range of pseudo-frequencies at the time interval shown in the 
corresponding lower panels. The color scale is the same as in Fig.5.3A and C.  D-F) Similar plots 
as in A-C with examples from ET patients. 

 
Table 5.3: Prevalence of coherence events (in recorded data) that are longer than the 95th 

percentile duration of events in surrogate data.  

Group of 
subjects 

% of the number of coherence 
events 

% of total event duration 

P1 P2 P3 P1 P2 P3 

PT 28 19 13 67 47 39 
ET 30 37 24 77 71 70 

 

I systematically extracted the transient bilateral coherence events in all subjects, as 

described in section 4.5.2.  In Table 5.3, I report the prevalence of coherence events of 

significant length. As short intervals of statistically significant coherence can arise even 

in non-coherent signals, I first determined the 95th percentile of the duration of such 

“false events”, by analyzing surrogate signal pairs (Sec. 4.5.2). This 95th percentile 

duration was found to range between 2.2 and 3.1 sec (depending on hand position and 

subject group). The coherence events that are found in the original recorded signals and 

that exceed this duration (“long events”) have a smaller than 5% probability to arise as 

false positives. These “long events” were prominent in both PT and ET recordings: they 

make up to 37% of all detected coherence events, as opposed to the 5% expected by 

chance. When expressed in terms of total duration, these long events account for up to 

77% of the total duration of all detected events (Table 5.3). Remarkably, these 
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percentages do not differ between PT and ET for the resting hand position, but are much 

larger (1.8×) in ET than in PT for the positions P2 and P3. Thus for postural tremor, long 

episodes of intermittent coherence are more dominant in ET than in PT. 

 

5.2.4 Dependence of bilateral coherence on the ballistocardiac 

forcing in healthy subjects 

 

To evaluate the possibility that the observed bilateral coherence originates from 

ballistocardiac forcing, I analyzed joint accelerometric recordings of hand motion and of 

chest wall motion, measured in 12 healthy subjects (Ref. section 3.2.2). While some 

instances of bilateral coherence (see example in Fig.5.5A, peak near 7 Hz) were 

associated with significant chest vs. left hand and chest vs. right hand coherence, other 

bilateral coherence peaks (Fig.5.5A, near 4 Hz) were not. To analyze this coupling 

systematically we computed the partial coherence (section 4.3.3) between the hand 

signals, conditioned on the chest signal. Bilateral coherence that is not accompanied by 

significant partial coherence (Fig.5.5A at 7 Hz) may be fully attributed to the 

dependence of the hand signals with the chest signal. Conversely, the bilaterally 

coherent part of hand motion has no linear relation to the chest signal when partial 

coherence matches the bilateral coherence (Fig.5.5A at 3 Hz).  

I evaluated the partial coherence for all cases of significant bilateral coherence found in 

the group of 12 healthy subjects. The results are summarized in Fig.5.5B. The histogram 

shows, for each frequency bin, the number of occurrences of significant bilateral 

coherence and of significant partial coherence, combined from all three hand positions 

and all three spatial components. It is seen that at frequencies above 8 Hz, significant 

bilateral coherence is typically not accompanied by significant partial coherence (the 

ratio of the number of occurrences of partial vs. bilateral coherence is 6/47 = 12%). In 

contrast, at the frequency range 1-8 Hz, partial coherence frequently persists (51%). A 

similar conclusion is reached when the resting hand position is excluded from the 

dataset (the ratio becomes 13% above 8 Hz and 69% at 1-8 Hz). This indicates that in 

the lower frequency range, bilateral coherence is typically independent of 

ballistocardiac forcing. At frequencies above 8 Hz, including the range 8-12 Hz 

corresponding to the main frequency band of PT, bilaterally coherent hand motion is 

usually coupled to cardiac activity. 
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Figure 5.5: Bilateral coherence conditioned on the chest acceleration signal. A) Partial 
coherence spectrum (green line) between the y-components of the left and the right hand 
accelerations in position 2 while the contribution from the chest motion is subtracted.  Other 
plots (black solid line, blue and red dashed lines) show the pairwise coherence spectra of the 
acceleration components of the hands and the chest. B) Summary histogram of all the 
occurrences of higher than 0.3 coherence and partial coherence values (pooled in from all three 
acceleration components measured in all the three positions) in the group of 12 healthy subjects. 
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5.3 Discussion 
 

 

In summary, I found frequently occurring bilateral coherence of hand tremor kinematics 

in both healthy subjects and ET patients.  While the prevalence of bilateral coherence 

depended on the studied hand position and on the measured spatial component of 

acceleration, at least 48% of subjects showed significant coherence along at least one 

spatial direction in all three studied hand positions (section 5.2.2). The healthy subjects 

and ET patients differed mainly in the magnitude of coherence (with nearly complete 

bilateral coherence detected in several ET patients) and in the oscillation frequencies at 

which the coherent motion was observed in the non-resting postures (a narrow range of 

4-6 Hz for ET patients vs. the broad frequency range 1-12 Hz in healthy subjects). In 

both subject groups, the bilateral coherence of hand kinematics was found to be highly 

intermittent.  Epochs of several seconds during which the motion of the hands is highly 

coherent are separated by intervals with insignificant coherence (section 5.2.3). Partial 

coherence analysis (section 5.2.4) indicated that in healthy subjects, the bilateral 

kinematic coherence observed at 8-12 Hz arises from a coupling to the ballistocardiac 

rhythm. In the following subsections, we compare our findings with those of previous 

literature, and discuss implications for the possible mechanisms of bilateral coherence 

in physiological and essential tremor. 

 

5.3.1 Bilaterally coherent tremor is not limited to the  

resting hand position 
 

We found that in healthy subjects, kinematic bilateral coherence was highly prevalent 

for tremor in the resting hand position. 97% of healthy subjects showed significant 

coherence for at least one of three spatial axes, with coherence peaks located in the 

range 2-12 Hz (Table 5.2 and Fig.5.2A). This finding is consistent with previous 

literature. In (Marsden et al. 1969c), finger tremor was recorded and its bilateral 

coherence evaluated for 4 healthy subjects, in a position with relaxed effector muscles. 

The peak coherence values reported in (Marsden et al. 1969c) ranged from 0.4 to 0.9 

and occurred at frequencies 3 to 12 Hz.  
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Although resting tremor is considered not characteristic of ET, it is known to occur in 

some cases (Cohen et al. 2003). In our group of 34 ET patients, 21 had a clear spectral 

peak at 5±1 Hz in the resting hand position, indicating the presence of resting tremor. 

Correspondingly, the tremor amplitude range (Table 5.1) in the ET patients group 

extended to 10-fold higher amplitudes than in the healthy subjects group.  Highly 

prevalent bilateral coherence in the resting hand position was found in the ET patients 

group (Fig.5.2D, Table 5.2). A similar prevalence and distribution of coherence was 

obtained when evaluated separately for the subgroup of 21 patients with clinical and 

sub-clinical resting ET tremor (not shown). In addition, for ET patients a positive 

correlation was found between the coherence magnitude and the tremor displacement 

amplitude (end of section 5.2.2). This suggests that the ET resting tremor has a 

fundamentally bilateral origin. We are not aware of any previous assessment of bilateral 

kinematic coherence for ET in resting position.  

 

Unlike some previous reports, we found that kinematic bilateral coherence was frequent 

in postural tremor. In both studied postures, at least 73% of healthy subjects and 48% of 

ET patients showed significant coherence for at least one acceleration component (Table 

5.2). Among previous studies, (Marsden et al. 1969a; Morrison and Newell 1999) did not 

find significant coherence in non-resting upper limb tremor; however, their recordings 

were restricted to one spatial component of acceleration, and only a standing posture 

was studied in (Morrison and Newell 1999). The study of (McAuley and Rothwell 2004) 

reported occasional bilateral coherence of the hand accelerations in ET patients, but in 

the absence of bilateral EMG coherence considered this finding to be an artifact.  

To minimize the possibility that the finding of frequent bilateral coherence was a 

statistical artifact, I used stringent statistical significance criteria, described in detail in 

section 4.3.2. While choosing the coherence threshold for rejecting the null hypothesis of 

no coherence, two aspects were taken into consideration, i. the minimum coherence 

value that would sufficiently confirm (Wang et al. 2004) the existence of a linear 

dependence, and ii. the bias error due to the overlapping spectral peaks of the two 

signals. To take into account the latter I used the method of surrogate data, obtaining the 

zero-coherence estimates from pairs of mutually independent time series that preserved 

the spectral content of the measured hand acceleration time series. The coherence 

thresholds so obtained (0.3 for healthy subjects and 0.4 for essential tremor patients) 
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are stricter than the threshold (Eq. 2 and Halliday et al. 1995) most commonly used in 

the previous tremor literature.  

In addition to using a conservative criterion for declaring statistically significant 

coherence, I carried out control experiments to make sure that the bilateral coherence 

was not an experimental artifact. I repeated the measurements on a smaller group of 

healthy subjects using a similar, but newer recording device (section 3.2.2, results in 

section 5.2.4). The findings on bilateral coherence were consistent in the two groups of 

healthy subjects.  

Thus my results indicate that both PT and ET are frequently bilaterally coherent. One 

reason why some previous studies under-reported this kinematic coherence may lie in 

its intermittent time structure. The wavelet-based analysis (section 5.2.3) showed that 

typically, short epochs (several sec) of high coherence are interspersed with intervals of 

insignificant or low coherence. The coherence magnitude obtained from stationary 

analysis (as performed in previous studies) reflects the total length of the high 

coherence vs. low coherence intervals. Limited duration recordings (e.g., 20 sec) may 

sometime miss the sparse high-coherence intervals, resulting in no detected coherence.  

A second possible reason is the highly uneven prevalence of bilateral coherence along 

the different directions of hand motion (discussed in detail in the next subsection). In 

(Marsden et al. 1969a, 1969c), bilateral coherence was evaluated for motion in the 

dorsal-volar direction in a posture equivalent to our position 2. In the 18 subjects 

studied in (Marsden et al. 1969a), only insignificant coherence (0.008 to 0.108) was 

found. This finding can be viewed as consistent with the results presented in this thesis 

for motion in the dorso-palmar (i.e., z) direction in position 2 (Fig.5.2B). The motion in 

proximo-distal (x) and frontal (y) directions, for which I found significant coherence in 

position 2, was not recorded in (Marsden et al. 1969a). Similarly, the report of no 

statistically significant coherence between the hand tremors of healthy subjects in 

(Morrison and Newell 1999) was based on the analysis of only a single component of the 

hand acceleration.    

 

5.3.2 Strong dependence of bilateral coherence on the axis of 

motion 

 

Tremor kinematics is most commonly assessed by measuring the hand acceleration 

along the dorso-palmar axis (e.g.,(Morrison and Newell 1999)). Our triaxial 
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accelerometer recordings showed, however, that the tremor displacement amplitude 

was comparable along the three measured axes (Table 5.1). I therefore analyzed and 

compared the bilateral coherence of motion for all three directions, i.e., the proximo-

distal, the frontal (left-right), and the dorso-palmar axis.  

In PT, I found that bilateral coherence occurred most frequently between the proximo-

distal components of acceleration. For all three studied hand positions (Fig.5.2 A-C), the 

number of subjects with significant bilateral coherence in this direction was at least 

30% higher than in the other two directions. For position 2 (hands extended) and 

position 3 (arms and hands extended), this pattern matches a bilaterally coherent rigid 

motion of the hands/arms along the sagittal body axis. For position 1 (relaxed hands), 

the dominant coherence along the accelerometer x-axis would naturally arise from a 

coherent rotation of the two hands about the frontal axis of the wrist (see Fig.3.1A). Such 

rotation generates a centripetal acceleration pointing along the radial direction of the 

circular motion, i.e., along the proximo-distal axis of the relaxed hand. Both of these 

types of motion (i.e., bilaterally coherent rigid motion in hand positions 2, 3 and 

rotational motion in hand position 1) might be generated by a mechanical force acting 

along the sagittal body axis. A torso swing was unlikely in our experiments as the 

subjects were instructed to lean their back against the chair backrest. An alternative 

mechanical source consists of the forces generated in the arms by the blood flow (see 

next section).  

In ET, a weaker predominance of bilateral coherence in proximo-distal direction was 

seen for hand positions 1 and 2 (Fig.5.2 D, E); while in position 3 the coherence was 

comparable along all three directions (Fig.5.2F). Unlike the case of PT, we therefore 

found no evidence that the source of bilateral synchronization in ET acts predominantly 

in the proximo-distal direction. 

 

5.3.3 Ballistocardiac forcing contributes to the bilateral 

coherence of physiological tremor 

 
The effect of ballistocardiac forcing (details in section 1.3.2) is expected to be 

synchronous in both hands, and could therefore contribute to the observed bilateral 

coherence of tremor kinematics. In my study I explicitly evaluated the extent of this 

contribution for healthy subjects, by computing the partial coherence (section 4.3.3) 

between the left and right hand kinematics, conditioned on the motion of the chest wall 

(measured using a third accelerometer). Results show (Fig.5.5B) that when bilateral 
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coherence occurred in the frequency range 8 to 12 Hz, it was usually not accompanied 

by significant partial coherence – i.e., the chest wall motion and the bilaterally coherent 

component of hand motion had a correlated time course. This suggests that the 

ballistocardiac forcing is responsible for the observed bilateral coherence. This 

conclusion agrees with the interpretation made by (Marsden et al. 1969c) for bilateral 

coherence in resting hand position. For bilateral coherence found at lower frequencies 

(1 to 8 Hz), however, we found that it was often accompanied by significant partial 

coherence, indicating an origin independent of ballistocardiac forcing. 

While the data supports a relation between the bilateral coherence in the main 

frequency band of postural PT and the ballistocardiac forcing, it is unlikely that the 

coherent motion of the hands arises directly and solely by the mechanical action of this 

force. Two lines of evidence speak against such direct mechanism: 1) The magnitude of 

the ballistocardiac impulses does not vary in an intermittent way, in contrast to the 

observed intermittent character of bilateral coherence. 2) The recorded magnitudes of 

bilateral coherence at 8-12 Hz (Fig.5.2A-C) are comparable in all three hand positions, 

despites large differences in tremor amplitudes. Also, when the coherence peaks found 

in a specific hand posture are examined, no significant correlation between the 

coherence magnitude and the tremor amplitude is found for PT (end of section 5.2.2). 

This implies (see Eq.4.6) that the power of the coherent component scales with the total 

tremor power. Such scaling, however, is not expected if the coherent component always 

arises from the same external force (i.e., ballistocardiac forcing) that is independent of 

the bilaterally incoherent muscle activity (i.e., the dominant source of postural tremor of 

varying amplitude).  

 

5.3.4 Possible mechanisms of the observed bilateral 

coherence 
 

In this section I discuss, on the basis of my kinematic analysis and the previous 

literature, the likely mechanisms of the observed bilateral coherence.  

For PT, I argued above that the bilaterally coherent motion near the main tremor 

frequency is related to ballistocardiac forcing, but is not directly generated by it. Rather, 

we propose that the tremors in both upper limbs are simultaneously entrained (Elble et 

al. 1992; Cathers et al. 2005) by the afferent signal modulation arising from 

ballistocardiac impulses. In this scenario, the ballistocardiac impulses act as a weak 
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rhythmic input that influences the nonlinear tremor oscillation. It is a hallmark of noisy 

nonlinear oscillators that a weak rhythmic input may entrain the oscillator to the 

external rhythm, but such entrainment is interrupted by intervals during which the 

synchrony is lost (Pikovsky et al. 2003). In (Elble 1992), tremor entrainment to 

rhythmic torque stimuli was found to occur intermittently, in epochs lasting 6 to 20 sec. 

In the mechanism I propose, the left and right tremor oscillators become mutually 

coherent during the epochs when both are entrained to the common input rhythm. The 

pattern of overlap of the left and right entrained intervals generates the highly 

intermittent character of bilateral coherence. The proposed mechanism is also capable 

of explaining the large amplitudes of bilaterally coherent motion: due to the nonlinear 

interaction, a weak input is capable of entraining a nonlinear oscillation of large 

amplitude (Pikovsky et al. 2003). In (Cathers et al. 2005), 0.3° wrist rotations (the 

lowest stimulus amplitude investigated) were sufficient to fully entrain PT when the 

stimulus frequency was within 2 Hz of the intrinsic tremor frequency. While 

ballistocardiac forcing has a much lower principal frequency (~1 Hz), it can generate 

hand movement perturbations at the mechanical resonance frequency of about 10 Hz 

(McAuley and Marsden 2000), which may in turn act as an efficient entraining stimulus. 

As ET patients were not included in the evaluation of partial coherence conditioned on 

the chest signal (section 5.2.4), one cannot exclude that ballistocardiac forcing played a 

role in the observed ET bilateral coherence. However, in this case it would be even more 

unlikely, compared to the case of postural PT, that the ballistocardiac forces directly 

generated the coherent motion of the hand. For each of the studied hand positions, the 

ET tremor amplitudes were several times higher than in PT (Table 5.1), and achieving 

comparable coherence in ET and PT would therefore require the ballistocardiac forces 

to be significantly larger in ET patients than in healthy subjects. In fact, even higher 

magnitudes of bilateral coherence were reached in the ET group, with some cases of 

nearly full coherence (magnitude 0.9) at the main tremor frequency 3-5 Hz (Fig.5.2D-E). 

This, together with the finding of significant positive correlation between the coherence 

magnitude and the tremor amplitude in the resting position (see end of section 5.2.2), 

indicates that the bilateral coherence in ET does not arise from an external additive 

influence. Similarly to that proposed for PT, ballistocardiac forcing might nonlinearly 

entrain the ET in both hands, and thus generate the observed bilateral coherence (which 

was intermittent but usually more sustained in ET – see section 5.2.3). Achieving the 

more sustained coherence would, however, require that the ET muscle activity is more 

prone to entrainment than PT muscle activity. ET entrainment by rhythmic wrist forcing 
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has been demonstrated in the literature (Elble 1992), however the efficiency of 

entrainment appeared weaker than in the case of PT (Cathers et al. 2005). 

 

It is therefore more likely that the intermittent bilateral coherence observed in ET arose 

due to a mutual neural coupling between the left and right tremor oscillators. Such 

mutual coupling may occur at the level of the brain generators (e.g., as shown by 

(Muthuraman et al. 2013) for the orthostatic tremor), or at the level of motor control 

pathway (e.g., as in the synchronization of psychogenic tremors via the pathways that 

underlie bimanual interference during voluntary movements (Klapp 1979; Hallett 

2010)). In ET, a weak interaction between the central tremor generators in the right and 

left brain has been proposed. (Hellwig et al. 2003) found significant contra- as well as 

ipsi-lateral corticomuscular coherence during postural hand tremor. While the former 

was present consistently, the latter appeared in only some of the evaluated 60 sec 

intervals, indicating a dynamic cross-hemispherical interaction between the central 

oscillators of ET. These epochs of bilateral corticomuscular coherence were associated 

with bilateral coherence of muscle activity; kinematic bilateral coherence was not 

evaluated in (Hellwig et al. 2003). In PT, indications of interaction between the left and 

right tremor have been recently shown (Morrison and Newell 1996) (Boonstra et al. 

2008; Kavanagh et al. 2013); the underlying coupling may potentially generate the cases 

of bilateral coherence at 1-8 Hz that we found to be unrelated to ballistocardiac forcing 

(Sec. 5.2.4).  
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CHAPTER 6 

Modular control of wing kinematics of 

the fruit fly Drosophila melanogaster 

 

 

6.1 Overview 
 
 

This study was conceived to address the second topic of my study, i.e. the modular control 

of complex wing stroke variations in fruit flies. For this purpose I analyzed wing motion 

sampled at a rate of 6250 Hz for long flight durations (up to 12 000 wingbeat cycles) of 

tethered flying fruit flies (Ref. section 3.3). With such extensive recordings I could apply, for 

the first time, an advanced statistical analysis designed to identify the full repertoire of 

independently controlled kinematic patterns (Ref. section 4.6). Results of this part of the 

study (Chakraborty et al. 2015) are presented in section 6.2.  

In the second part of this study I focused on a specific kinematic pattern with recurring 

single cycle stroke variations. Although this kinematic pattern is not expected to have any 

crucial functional role, but it has the potential to provide a unique window into the fast time 

scale neuromotor control of wing kinematics. Among all the sensorimotor control systems 

of the fly, only the haltere mechanosensors have a sensorimotor delay that is shorter than 

the wing stroke period and most likely contribute to a stroke-by-stroke wingbeat control. 

Hence, I studied the effect of haltere ablation on the characteristic properties of these 

special kinematic patterns. Results of this second part of the study are presented in section 

6.3. In section 6.4, I present the discussion related to both the parts of this study.   
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6.2 Results I: Independently controlled  

wing stroke patterns  
 

 

In the first three subsections, I mention the important general features of the wing motion 

decomposition into least-dependent kinematic patterns, illustrated with specific examples. 

The fourth subsection provides a classification of the kinematic patterns obtained 

frequently across 100 test flights from 10 flies, and discusses the correspondence of some of 

these patterns to known flight maneuvers.  

 

6.2.1 Events with distinct time courses are separated into  

distinct least-dependent components 

A least-dependent component is a specific linear combination of the input signals7, obtained 

from LCA analysis (Ref. section 4.6.2). It defines the time course of activation of a particular 

“stroke deformation mode”. The 16 signals (as described in the last part of section 3.2.2) 

contain events with a variety of durations and forms. As an example, Fig.6.1A shows the 16 

signals over 1500 wingbeat cycles from a typical recording. Each event typically appears in 

multiple input signals. For example, events occurring symmetrically in left and right wings 

dominate the signals 1, 9, 2, 10, 5, 13, 6 and 14. In addition to these events, sharply peaked 

events antisymmetric in the two wings are present in signals 5, 13, 6 and 14 (see 

highlighted regions in Fig.6.1A). In signal 4 the latter are the dominant feature. 

The least-dependent component analysis (described in section 4.6) separates events of 

distinct types into distinct components. Fig.6.1B shows the least-dependent components 

(LDCs) of the signals shown in Fig.6.1A. In this example, the separation of activation events 

is as follows: 

i. Events symmetric in the two wings are separated in component 13. 

                                                           
7
 The term “input signal” or only “signal” refer to stroke position at a specific phase of the wingbeat cycle, 

over 2500 cycles (see Fig.6.1A). 16 such signals (8 from each wing) constitute the full set of input signals 

that are linearly transformed to least-dependent components (LDCs). For details see section 3.3.2.  
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ii. Events anti-symmetric in left and right wing (the two sharply peaked events highlighted 

in yellow and green in Fig.6.1A) are isolated in component 1. 

 

 

Figure 6.1: Least-dependent components separate distinct temporal features. A) 16 signals 
extracted from a flight segment of 2500 wingbeat cycles (the signals are numbered according to 
Fig.3.2A). Red: signals from left wing; Blue: signals from right wing. Yellow and green highlighted 

regions mark two events with pronounced variations asymmetric in the two wings. B) Least-
dependent components of signals shown in A.  

 
iii. Gradual drifts occurring at a timescale of many hundreds of wingbeat cycles are 

separated in 3rd and 14th components. 

iv. Several components (8, 12, 15, and 16) consist of isolated short pulses with a duration 1-

2 cycles. Such pulses arise mainly in the signals 3, 4 and 11, 12 (phases corresponding to 

mid-stroke) and are due predominantly to mistracking of the wing (tracking the wing vein 

or leg instead of wing edges – for an example see (Chakraborty et al. 2015)). 

Another example is seen in Fig.4.9A. The triangular-shaped event seen early in component 9 

is apparent in most of the 16 input signals (Fig.3.3B), but is isolated in only one component 

(Fig.4.9A). The two brief events in component 11(Fig.4.9A) do not stand out in the input 

signals; least-dependent analysis, however, isolates these as events of a particular type. 

Notice that these two events are similar in time course to the events in component 1 of 

Fig.6.1B (obtained from a flight recording of a different fly). This is an example of repeated 

occurrence of components; such components will be analyzed in detail in the last 

subsection. 
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The separation of temporal features into distinct components, illustrated in the examples 

given above, is a typical outcome of the LCA analysis. In rare cases, the separation fails, and 

several components will contain the same event. In general, however, LCA provides a 

powerful tool for extracting and sorting the various temporal features of the input signals, 

as well as for isolating experimental artifacts (Chakraborty et al. 2015). 

 

6.2.2 The least-dependent components are statistically nearly 

independent 

 

Figure 6.2: Mutual information of least-dependent components. A) Dependency matrix of the 
components shown in Fig.6.1. The color scale indicates the value of mutual information in nats. 
Values below 0.026 nats imply statistical independence. B) Solid black curve shows the distribution 

of pairwise mutual information, for pairs of components in a flight segment, over a total of 100 flight 
segments. Dashed red curve gives the null estimate of this distribution, obtained after randomly 
reshuffling the activation time course of each component. Dashed black line marks α=0.01 confidence 

limit for rejecting the null hypothesis of zero mutual information. 

 

The main goal of our study was to identify kinematic patterns that are controlled 

independently of each other (for example, through parallel neural pathways that activate 

different steering muscles). If two types of kinematic patterns cannot be controlled 

independently, then the time courses of their activation will necessarily have some degree 

of statistical dependence – even during spontaneous, unstimulated flight behavior. 

Consequently, if the components obtained from LCA are fully statistically independent, they 

define candidates for elementary kinematic patterns. 
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The least-dependent component analysis produces the most independent linear 

combinations of the input signals. To evaluate if the resulting LDCs are fully statistically 

independent or not, it is necessary to examine their mutual information. Figure 6.2A shows 

the matrix of estimated pairwise mutual information for the least-dependent components in 

Fig.6.1B. Mutual information was calculated using Eq.4.21 and the entropies using the 

algorithm presented in (Kraskov et al. 2004). To determine the significance of mutual 

information values obtained from the estimator, the statistics of null estimates of mutual 

information was obtained. To do so, the time series of each of the 16 LDCs from a given 

flight segment was randomly reshuffled to destroy any residual dependence with other 

components and then the pairwise mutual information was estimated. The distribution of 

this null estimate calculated from 100 flight segments (12000 pairs of LDCs) is shown in 

figure 6.2B (red dashed line). Based on this distribution (fitted to a Gaussian distribution 

with zero mean), only values above 0.026 nats8 were considered as significant (α value of 

0.01). In the example in figure 6.2A, all but 10 of the 120 pairs of components have mutual 

information less than 0.026 nats and hence are pairwise statistically independent. 9 out of 

the remaining 10 pairs (1-3, 1-13, 5-16, 7-11, 8- 9, 8-12, 9-12, 11-13 and 13-14) have 

mutual information less than 0.04 nats, which is only nominal statistical dependence. Only 

one pair (i.e. 1-12) has significant mutual information of 0.06 nats. To obtain a similar 

statistics for the entire set of 100 flight segments, pairwise mutual information of LDCs from 

individual segments were estimated (12000 pairs of LDCs). The solid black line in Fig.6.2B 

shows their distribution. 95.5% of pairs were statistically independent and only 0.5% 

shared mutual information greater than 0.1 nats, testifying that components with large 

statistical dependence are rare. 

 

6.2.3 Statistical analysis allows to decompose complex stroke 

trajectories into elementary kinematic patterns 
 

As discussed above, events with distinct time courses are typically separated into distinct 

components. These distinct types of events occasionally overlap in time. An example seen in 

components 1 and 13 from Fig.6.1B is shown again in Fig.6.3A for clarity. 

                                                           
8
 Depending on the base of the logarithm in the definition of entropy (see section 4.6.1, footnote 6), 

entropy is expressed either in bits (base 2) or nats (base e). The conversion factor is: 1 nat = (1 / ln 2) bits 

= 1.44 bits. 
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Figure 6.3: Complex changes in stroke trajectory resolved into elementary kinematic patterns. 

A) Activation time course of two kinematic patterns (components 1 and 13 from Fig.6.1B). B) Left 

panel: 10 consecutive cycles (marked with brackets and asterisk symbol in A) of wing stroke 
deformation reconstructed from only component 1. The reconstructed phase points (not shown for 
clarity) were interpolated with cubic splines. Blue: left wing, red: right wing. The black line shows the 

baseline wing stroke. Middle panel: 10 consecutive cycles (marked with brackets and asterisk symbol 
in A) of wing stroke deformation reconstructed from only component 13. Right panel: Wing stroke 
trajectories during these 10 cycles. The trajectory deformation in the right panel is resolved into a 

linear combination of laterally symmetric and antisymmetric deformations. 

 
Events in these two components have distinct time scales; moreover, events in component 1 

are accompanied by correlated changes in wingbeat period, whereas those in component 13 

are not (correlation coefficients 0.68 and 0.08, respectively). The time courses of these two 

components are statistically nearly independent (the mutual information evaluated over 

the whole flight segment of 2500 wingbeat cycles is 0.04 nats). Some activation events, 

however, occur simultaneously: the first major event in component 1 overlaps in time with 

a major event in component 13. The stroke deformation modes encoded by components 1 

and 13 are shown in the left and middle panels of Fig.6.3B. Component 1 encodes for a 

change in ventral amplitude that occurs antisymmetrically in the left and right wing, while 

component 13 encodes a decrease in stroke amplitude occurring symmetrically in both 

wings. The right panel of Fig.6.3B shows the recorded wing stroke trajectories of 10 

wingbeat cycles (marked with blue bracket and asterisk in Fig.6.3A), compared to the 

baseline trajectory (black). The recorded strokes deviate from the baseline stroke by 

asymmetric changes in ventral and dorsal amplitudes combined with an increase in stroke 

duration. 
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Figure 6.4: Simultaneously active stroke deformation modes of type I and type III kinematic 

patterns. A) Activation time course of a type I kinematic pattern, with typical spiky activation events. 
B) Activation time course of the type III kinematic pattern in the same flight segment, with a long-

duration activation event lasting from cycle 1100 to cycle 2000. Note that some activation events in A 
occur simultaneously with the long-duration event in B. C) Time course of the wingbeat period, 
which is not correlated with the activation time courses in A and B. D) 10 consecutive reconstructed 

stroke cycles (from the time window marked with blue bracket and asterisk sign in A) with only the 
type I stroke deformation mode included (blue: left wing; red: right wing). Black lines show the 
baseline wing stroke. E) 10 consecutive reconstructed stroke cycles (from the time window marked 

with blue bracket and asterisk sign in B) with only the type III stroke deformation mode included. 

 

Based only on this information, it would not be possible to deduce that such a complex 

deviation is generated by a specific linear combination of more fundamental, independently 

controlled stroke deformation modes. Based on our statistical analysis, however, we can 

conclude that the deformation of the stroke trajectory shown in the right panel of Fig.6.3B is 

a composite of the elementary stroke deformation modes shown in the left and middle 

panels of Fig.6.3B. This conclusion is possible only after examining (using LCA) the entire 

segment of 2500 cycles, in which the elementary stroke deformations are seen to occur 

independently of each other. Similar cases of composite kinematic changes that arise as a 

superposition of several elementary kinematic patterns are encountered also in other 

examined flight segments. A second example is shown in figure 6.4. 
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6.2.4 Classification of frequently obtained least-dependent 

kinematic patterns 
 

In total, 100 flight segments from 10 flies were analyzed. LCA was carried out in each of 

these segments, generating a set of 16 × 100 = 1600 least-dependent components, each 

corresponding to a separating vector. Kinematic patterns with certain features were found 

repeatedly within this set. These kinematic patterns represent stroke deformation modes 

exercised frequently by different flies, and can thus be presumed to be important for flight 

control. To characterize such kinematic patterns I classified them into well-defined types. I 

first divided the kinematic patterns into those showing distinct temporal features and those 

resembling broad-band noise. As an example, consider the set of components shown in 

Fig.4.9A. The activation time course of component 14 appears featureless, while for 

component 15 it is dominated by randomly occurring single cycle jumps. As seen in 

Fig.4.9B, the Welch power spectra for both these components are flat. Such components 

were viewed as not relevant for flight control, and were dropped from further analysis. To 

quantify the spectral flatness, I estimated the Wiener entropy (WE), defined as the ratio of 

the geometric mean to the arithmetic mean of the spectral density. WE ranges from 0 for 

sinusoidal waveforms to 1 for white noise. For the components shown in Fig.4.9A, WE vary 

between 0.19 and 0.93 (see values given in Fig.4.9B). For WE higher than 0.9, the spectrum 

is visually indistinguishable from a flat one. I chose 0.9 as the threshold value to declare a 

component to be broadband noise. On average only 12 components per segment were 

found to have temporal structure, while the remaining 4 had WE greater than 0.9. Among 

the kinematic patterns with temporal structure, the ones occurring repeatedly in distinct 

flight tests of the same fly and in different flies were classified. A kinematic pattern was 

classified as frequently occurring if it was observed in at least 3 out of the 10 analyzed flies. 

Three supersets of these components can be defined based on the type of their 

characteristic features: 

A. Kinematic patterns characterized by prominent activation events in their time 

course. 

B. Kinematic patterns characterized by dominance of specific signals in their 

separating vector. 

C. Kinematic patterns characterized by spectral density peaks at particular 

frequencies. 
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These supersets are not mutually exclusive – a minority of the kinematic patterns belongs 

to more than one category. The kinematic patterns in each of these supersets can be further 

divided into several classes. Below I first state (for each type of kinematic pattern) its 

defining feature. Following this, I discuss additional properties of these kinematic patterns, 

and list functional interpretations of the stroke deformation modes that they encode. The 

precise algorithmic criteria for assigning a given component to one of the 7 types is 

available as supplementary material with (Chakraborty et al. 2015). 

 

A. Kinematic patterns characterized by typical events in the activation time 

course 

 

Type I: For these kinematic patterns, the time course is dominated by characteristic 

events of activation with a time scale of 40 to 100 wingbeat cycles. A typical example is 

shown in Fig.6.5A. Component 1 in Fig.6.1 and component 11 in Fig.4.9 also belong to 

this type (the 3 examples were obtained from 3 individual flies). This type of component 

has a very low correlation with the wingbeat period (Pearson coeff. <0.2). 

 

The corresponding stroke deformation modes consist of an increase in ventral 

amplitude for one wing and a simultaneous decrease for the other wing. 10 successive 

reconstructed stroke cycles during a typical activation event are shown in Fig.6.5B. Such 

a stroke deformation mode is expected to generate yaw torque (see Discussion, section 

6.4.2). The duration (300-500ms) and the form of these events (Fig.6.5A) match the 

time course of yaw torque measured for spontaneous saccades during tethered flight 

(Heisenberg and Wolf 1979; Tammero and Dickinson 2002). 
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Figure 6.5: Least-dependent kinematic patterns of types I, II and III. A) Activation time course of 
a type I kinematic pattern (black trace). A typical activation event is marked as Event 1. The lower 
subpanel shows the wingbeat period (gray trace) during this flight segment. B) 10 superposed cycles 

of wing stroke deformation reconstructed from only the kinematic pattern shown in A (blue: left 
wing; red: right wing; time window marked with blue bracket and asterisk sign). Black lines show the 
baseline wing stroke. C) Activation time course of a type II kinematic pattern (black trace). A typical 

activation event is marked as Event 2. The lower subpanel shows the wingbeat period during this 
flight segment (gray trace). D) 20 superposed cycles of wing stroke deformation reconstructed from 
only the kinematic pattern shown in C (markers as in B). E) Activation time course of a type III 

kinematic pattern (black trace). A typical event is marked as Event 3. The lower subpanel shows the 
wingbeat period during this flight segment (gray trace). F) 10 superposed cycles of wing stroke 
deformation reconstructed from only the kinematic pattern shown in E (markers as in B). 

 

Type II: The time course in this type of kinematic patterns is correlated (Pearson coeff. 

>0.45) with changes in wingbeat period. Figure 6.5C shows such a component, with three 

sharply defined activation events. During these events only the overall stroke duration 

changes, while the ratio of downstroke to upstroke duration remains unaltered. 

The corresponding stroke deformation modes involve a symmetric change in stroke 

amplitude of both wings. 20 successive reconstructed stroke cycles during one activation 

event are shown in Fig.6.5D. Such a stroke deformation is expected to alter the total flight 

force (lift and/or thrust) – see Discussion section 6.4.2. 

 

 Type III: These kinematic patterns are dominated by activation events with a time scale of 

40 to a few hundred wingbeat cycles, during which the ratio of downstroke to upstroke 

duration is significantly altered. A typical activation time course is shown in Fig.6.5E. 

In these kinematic patterns, the stroke deformation may also involve a change in stroke 

amplitudes. The change in downstroke-to-upstroke ratio and in the amplitude can be 



116 

 

bilaterally symmetric or asymmetric. In some cases, this stroke deformation is coupled with 

a change in wingbeat frequency. 10 successive reconstructed stroke cycles during an 

activation event are shown in Fig.6.5F. Such a stroke deformation, if symmetric in both 

wings, is expected to result in altered pitch torque (see Discussion, section 6.4.2). 

 

B. Kinematic patterns characterized by the dominance of specific 

contributing signals 

 

 

Figure 6.6: Least-dependent kinematic patterns characterized by specific separating vectors. 

A–C) Activation time course in type IV kinematic patterns. D–F) Activation time course in type V 
kinematic patterns. Examples from 3 different flies are shown for each type. The corresponding 

separating vectors are printed in two rows for ease of visualization. The vectors are scaled to operate 
on signals with unit variance (see the main text).  

 

Most of the recurring components are linear combinations that include the majority of the 

16 phase points. However, two unusually simple linear combinations were seen to occur 

repeatedly: 

 

Type IV: These LDCs are dominated by the difference of wing stroke positions at dorsal 

stroke reversal. Time courses of type IV kinematic patterns from 3 flies are shown in figure 

6.6A, B and C together with their separating vectors (coefficients of the linear combination). 

 

Type V: These LDCs are dominated by the difference of wing stroke positions at mid-

upstroke. See figure 6.6D, E, F for examples. The separating vectors shown in Fig.6.6 are 
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scaled to operate on signals of unit variance so that they directly show the relative 

contribution of the variability of each phase point in constructing the given LDC. The 

temporal features appearing in components of type IV and V do not have a consistent 

pattern. The activation time courses in some of these kinematic patterns are nearly 

spectrally flat (WE> 0.7). These properties suggest that the kinematic patterns 

corresponding to these two components might not be involved in flight control (see also 

Discussion). 

 

C. Kinematic patterns characterized by spectral density peaks at particular 

frequencies  

To characterize the time scales that dominate the activation time course of a given 

kinematic pattern, it is useful to examine its power spectrum. For most of the frequently 

recurring kinematic patterns, the Welch spectral density (section 4.2.1) of the time course 

has high power at low frequencies (<0.05/cycle) and is relatively flat at high frequencies 

(>0.1/cycle), as in the top three panels in Fig.4.9B. Two specific types of deviations from this 

usual pattern were seen to occur repeatedly and the corresponding kinematic patterns are 

classified as type VI and VII. 

 

Type VI: For these kinematic patterns, the power spectrum of the activation time course is 

dominated by the highest frequencies. The power density increases by about an order of 

magnitude between frequency 0.35/cycle and 0.5/cycle (the Nyquist frequency). The 

activation time course contains intermittent intervals during which a period-2 pattern 

develops: the magnitude increases and decreases in successive cycles. In contrast to other 

types of kinematic patterns, multiple type VI components frequently co-occurred in a flight 

segment. As an example, Fig.6.7A shows 3 components obtained from a single flight 

segment. The period-2 patterns do not occur in all three components simultaneously. Figure 

6.7B shows the power spectra. 

 

The stroke deformation mode of this type encodes significant symmetric changes in ventral 

amplitude and varying amounts of changes in the rest of the wing stroke. The exact 

waveform of the wing stroke varies between components. The stroke deformation modes 

corresponding to the 3 components in Fig.6.7A (in the highlighted intervals) are shown in 
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figure 6.7C, D. Their superposition results in somewhat different wing strokes during the 

two intervals. 

 

 

Figure 6.7: Least-dependent kinematic patterns with 2 cycle periodicity in the activation time 

course (Type VI). A) Activation time course in 3 kinematic patterns of type VI (only 200 wingbeat 
cycles shown for clarity). B) Welch power spectra of the time courses shown in panel A. C) 10 
consecutive cycles of wing stroke deformation reconstructed from each of the 3 kinematic patterns in 

A, during the left highlighted interval (upper row: left wing; lower row: right wing). D) 10 
consecutive cycles of wing stroke deformation during the right highlighted interval in A. Odd-
numbered and even-numbered cycles are plotted in different colors. The regular alternation of 

ventral amplitude between higher and lower values in successive cycles is best visible in C, right 
column and D, middle column.  

 

Type VII: For these kinematic patters, the power spectrum of the activation time course has 

a dominant peak at the frequency of 0.02/cycle. The time course is periodically modulated, 

with a period of 40-50 wingbeat cycles – see figure 6.8A, B. In the flight segments that 

contained these components, typically only one or at most two type VII components 

occurred. 

For these kinematic patterns, the stroke deformation modes did not show any commonality. 

For example, component 4 in Fig.6.8A encodes changes in dorsal amplitude whereas 

component 13 encodes changes in ventral amplitude of the opposite wing (Fig.6.8C and D, 

respectively). Note also that the periodic modulations in these two components are not fully 

synchronized. 
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Figure 6.8: Least-dependent kinematic patterns with 40 to 50 cycle periodicity in the 

activation time course (Type VII). A) Activation time course in two kinematic patterns of type VII, 
obtained from the same flight segment (black dashed line: low-pass-filtered time course as visual 

guide). B) Welch power spectra of the time courses presented in A. C) 10 superposed cycles of wing 
stroke deformations reconstructed from kinematic pattern 4 (blue: left wing; red: right wing). 
Interval 1 and interval 2 refer to the time windows marked in the upper subpanel of A. The dorsal 

amplitude of the reconstructed right wing stroke decreases from the baseline value by about 5° in the 
1st interval and increases by a similar amount in the 2nd. The reconstructed left wing stroke does 
not show any deviation from the baseline wing stroke. D) 10 superposed cycles of wing stroke 

deformations reconstructed from kinematic pattern 13 (otherwise as in C). In this kinematic pattern, 
the ventral amplitude of the reconstructed left wing stroke increases (in the 1st interval) and 
decreases (in the 2nd interval) from the baseline value by about 5°.  

 

Figure 6.9A shows a summary of the classification, and gives the number of flies and flight 

segments in which the kinematic patterns of a particular type were found. Kinematic 

patterns of types I, II and V are the most commonly occurring ones. Kinematic patterns of 

type VI, with the striking period-2 pattern of activation, were found in 6 of the 10 examined 

flies. Fig.6.9B gives the full distribution of occurrences of the classified patterns in the 100 

analyzed flight segments. 

 

To evaluate the sensitivity of our results to the number of flies analyzed, we examined how 

many of the patterns in Fig.6.9B would be classified as frequently occurring within batches 

of fewer flies. We obtained batches of 5, 6,7,8,9 or 10 flies by subsampling from the 

measured set of 10 flies (with repetition allowed). A kinematic pattern was declared 

frequent if it appeared in at least 25% of the flies in a given batch (e.g., in 2 out of 8 flies or 

in 3 out of 10 flies). In Fig.6.9C, we show the distribution of the number of such frequent 

patterns in all batches of a given size. It is seen that even in batches of 7 flies, the most 
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frequently found number of classified types of patterns is 7 (identical to the number we 

obtained from the full set of flies). For batches of 5 flies, however, the most frequently found 

number of patterns is 6 – i.e., had we worked with only 5 flies, we would have likely missed 

one of our 7 classified types of patterns. (For batches of 6 flies, finding 6 patterns or 7 

patterns is approximately equally likely). We cannot exclude that additional types of 

classified patterns would have been found had we worked with more than 10 flies. The 

repeatability of the classified patterns in recordings from an individual fly can be judged 

from Fig.6.9B. To summarize this repeatability, we defined a simple measure as follows. For 

each pair of flight segments from a given fly, we counted the number of classified types of 

patterns that occurred in both flight segments. The average of these counts over all pairs of 

segments from a given fly gives a number between 0 and 7, with 0 indicating no 

repeatability and 7 perfect repeatability of the classified patterns. These averages, as well as 

the minimal and maximal counts, are shown individually for all 10 flies in Fig.6.9D. It is seen 

that typically, only 1 or 2 classified types of kinematic patterns are shared by a randomly 

chosen pair of flight segments. At most 4 types of patterns were found to co-occur in a pair 

of segments. 

 

Figure 6.9: Classification summary and repeatability of kinematic patterns. A) 1600 kinematic 

patterns from 100 flight segments (measured in 10 flies) were first divided into kinematic patterns 
with and without temporal features in the activation time course. Among kinematic patterns with 
temporal features, the ones occurring frequently were further classified into 7 types (for 

classification criteria see (Chakraborty et al. 2015)). B) Distribution of the 7 classified types of 
kinematic patterns (filled boxes) among the 100 flight segments. Horizontal lines separate individual 

flies. C) Given the distribution of kinematic patterns in B, the probability of finding a given number of 
frequently occurring kinematic patterns when a randomly selected sub-sample of the flies is 
analyzed. Legend indicates the number of flies in the sub-sample. D) The number of types of 

classified kinematic patterns that co-occur in a pair of flight segments from a given fly. Filled circle: 
the number of co-occurring types averaged over all pairs of flight segments; bar: the range of the 
number of co-occurring types. For details see text. 
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6.3 Results II: Kinematic pattern controlled  

at the time scales of a single wing stroke   
 

 

This section starts (6.3.1) with a general comparison of the wing stroke parameters 

between the group of flies with intact halteres and that with both their halteres ablated. 

Section 6.3.2 characterizes the special kinematic pattern on which I focused this part of my 

study and in section 6.3.3 I describe the effect of haltere ablation on these specific kinematic 

patterns. In section 6.3.4 I discuss the results obtained in this part of the study.  

 

6.3.1 Overall kinematic parameters  

 

Table 6.1: Basic average wing stroke parameters in each fly of the two groups. 

 

Fly 

Halteres Amplitude (deg.) 

(Mean ± std) 

Frequency (Hz) 

(Mean ± std) 

Downstroke-to-upstroke 

ratio (Mean ± std) 

1 Untreated 107±22 191±10 1.26±0.1 

2 Untreated 153±9 172±5 1.36±0.1 

3 Untreated 152±8 187±6 1.43±0.1 

4 Untreated 151±10 203±9 1.43±0.1 

5 Untreated 165±8 146±3 1.54±0.2 

Overall 142±22 182±20 1.4±0.15 

6 Ablated 85±6 240±20 1.17±0.1 

7 Ablated 106±8 243±7 1.29±0.1 

8 Ablated 116±16 248±15 1.24±0.1 

9 Ablated 108±11 247±10 1.45±0.1 

10 Ablated 113±16 232±12 1.35±0.1 

Overall 110±15 241±13 1.31±0.12 
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I first compared the most frequently studied parameters of the wing strokes i.e., stroke 

amplitude, stroke duration and the downstroke-to-upstroke ratio, between the two groups 

of flies. Table 6.1 lists the average value of these parameters for measured test flights from 

individual flies. The group with both their halteres ablated have significantly different 

wingbeat frequency (241±13 Hz) as compared to the untreated flies (182±20 Hz) (KS test, 

p<0.05). The average wingbeat frequency of the haltere ablated flies is 32% higher than that 

of untreated flies, similar to that reported previously in Drosophila (Dickinson 1999; 

Bartussek and Lehmann 2016). In addition to the change in baseline frequency I also noted 

about 26% (Table 6.1) decrease in average wingbeat amplitude in haltere ablated flies (KS 

test, p<0.05). It is not to say that the haltere ablated flies cannot beat their wings at stroke 

amplitudes comparable to that of untreated flies; amplitudes around 160 degrees are also 

attained by haltere ablated flies, but only for few cycles (for example of such an interval see 

Fig.6.11B).  

 

Figure 6.10: Average stroke 

trajectory of untreated and 

haltere ablated flies. Average 
trajectory of ~5x105 strokes 

measured from 5 untreated flies 
(blue) and ~2.5x105 strokes 
measured from 5 haltere ablated 

flies (pink). Error bars on both the 
traces show the standard deviation 
at the marked phases of the stroke. 

Time axis normalized to unit stroke 
duration.  

 

 

 

Other than the above mentioned changes in the stroke parameters the overall shape of the 

stroke trajectory remained largely unaltered. This result was partially drawn from the fact 

that the average downstroke-to-upstroke ratio (Table 6.1) is statistically similar in the two 

groups of flies (KS test p<0.05). In addition, the average9 shape of the stroke trajectories 

measured in haltere ablated flies when compared with that of untreated flies showed no 

                                                           
9
 each stroke cycle was first normalized to unit stroke duration and then the stroke angle at each phase 

point was averaged over all measured stroke cycles from the flies in the respective group. 
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obvious distortion (for example, the kind of distortion shown in figure 4A of (Fry et al. 

2005)). Mean and the standard deviation of the stroke position at each phase point are 

shown in Fig.6.10. However, the variance near the ventral reversal phase of the stroke 

trajectories in case of haltere ablated flies is about twice as that of untreated flies.  

 

6.3.2 Characterizing the recurring single cycle stroke deformations 

  

 

Figure 6.11: Kinematic patterns with recurring characteristic single cycle stroke modification. 

A- D) Time course of stroke position (right wing) showing the recurrence of a characteristic 
trajectory modification in every 2 strokes (A, B), 3 strokes (C) and 4 strokes (D). A: untreated fly; B, C 
D: haltere ablated flies. Recurring special strokes are marked with red circles in each case. E-H) 

Superposed stroke cycles from the intervals shown in A-D respectively. Strokes with the 
characteristic trajectory modifications (marked with red circles in A-D) are plotted in red and rest of 
the strokes are in black.  I-L) Average shape of the stroke trajectory with ventral amplitude jump 

(red) and the immediate preceding stroke (black), pooled from all the data-based prototypical events 
of a given periodicity. Time axis of each stroke is normalized to unit stroke duration. Error bars show 
the standard deviation at the marked phase of the trajectory.    

 

As discussed in section 6.2.4 (Type VI), the kinematic patterns with sub-harmonic 

variations comprise of single cycle stroke deformations that recur periodically for a stretch 

of a few dozens of wingbeat cycles. In my data set from the two groups of flies (i.e. normal 

and haltere ablated flies) I found episodes with recurrence periods of 2, 3 and 4 wing 

strokes. To study the properties of the recurring stroke trajectories I isolated the episodes 

of their occurrences in the measured flight segments.  Details of the screening procedure 

are discussed in section 4.4.2; here I briefly mention the main steps. As these stroke 
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deformations always involve changes near the ventral reversal, I used the ventral amplitude 

time series to identify the intervals with sub-harmonic variations.  The ventral amplitude 

time series of each flight segment was analyzed using a non-stationary frequency analyses 

method, called wavelet analysis (Morlet wavelet transform at pseudo frequencies of 0.5, 

0.33 and 0.25 cycle-1). This transform is such that the coefficients have high magnitudes at 

the specific intervals where 2, 3 or 4 cycle periodic variations exist. Intervals where the 

coefficient values exceeded the estimated thresholds for each periodicity were extracted. 

The ventral amplitude variations during these isolated intervals were further checked 

against a set of criterion defining prototypical events for each sub-harmonic variation. The 

prototypical events so isolated were then saved in a database.   

 

Figure 6.11 shows examples of stroke trajectories during the prototypical events of the sub-

harmonic variations. The stroke cycles with abrupt increase in ventral amplitude are 

marked by red circles at the ventral reversal phase in the stroke trajectory (Fig.6.11A-D). To 

look closely into the change in trajectory shape during these special stroke cycles and its 

variability within the selected interval, I superposed all the stroke cycles during the event 

(Fig.6.11E-H). The stroke trajectories marked by red circles in (Fig.6.11A-D) are plotted in 

red in (Fig.6.11E-H). The shape of these special stroke trajectories are seen to be highly 

similar. The deviation of the trajectories in red from that in black always comprises of a 

sudden increase in ventral amplitude. This change is accompanied by a variable degree of 

change in stroke duration. Details of the correlation between the changes in ventral 

amplitude and that of the stroke duration are discussed in a later subsection. However, for 

most of the recurring characteristic stroke cycles, the stroke duration as estimated from one 

dorsal reversal to the next and the ventral amplitude are seen to increase simultaneously. 

The downstroke-to-upstroke ratios for the two types of trajectories (black and red) do not 

show any statistically significant difference. The third column of figure 6.11 (i.e. I-L) shows 

the mean traces of these special stroke trajectories (red) and that of the immediate 

preceding stroke (black) from all the databased prototypical events of each type. As 

different flies have different wingbeat frequencies, to make sure that the stroke angles are 

averaged at the same phase of stroke cycle I normalized the time axis to unit stroke 

duration to make sure that the stroke cycles are averaged at the same phases. The error 

bars show the standard deviation at the marked phase of the trajectory. It is seen that the 

kind of trajectory change during these special cycles is not only consistent within a single 
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event (as seen in Fig.6.11E-H), but across all the events selected from the individual flies of 

a given group (as seen in Fig.6.11I-L). This shows that all the prototypical events 

characterized by the same periodic variation of the ventral amplitude and extracted from 

either of the two groups of flies belong to a single type of kinematic pattern. Further if the 

kinematic patterns with different sub-harmonic variations (Fig.6.11 I-L) are mutually 

compared the trajectory deviations from the black to the red trace comprise of the same 

basic changes. 

 

However, a major drawback of the wavelet analysis based algorithm is that the coefficients 

at all the scales increase considerably at instances of large abrupt changes in the time series. 

At low frequencies, due to decrease in temporal resolution,  high coefficient values at such 

jumps persist over broader time intervals and are occasionally mistaken for events of sub-

harmonic variations. Cases of such erroneously selected events are rare for the period 2 

variations and less than 5% for the period 3 variations. However, for the 4 cycle periodic 

variations the number of such erroneous events was found to be comparable to the number 

of real events. Hence, for all further statistical characterization of the sub-harmonic events, 

the ones with 4 cycle periodic variations have not been used.  

 

Ventral amplitude jumps of the characteristic stroke deformations have a well-

defined range of magnitude 

An important characteristic feature of this kinematic pattern is the consistency of the 

ventral amplitude jump magnitudes across all the events of a given fly. To compare the 

ventral amplitude changes I estimated the magnitude of jump from one cycle to the next for 

all the prototypical events of each type.  Figure 6.12 shows the scatter plots of pairs of 

consecutive ventral amplitude (VA) jumps. Such scatter plots of system variables are called 

Poincare plots and are widely used to study the short time scale dynamics of the system. In 

this case, the Poincare plots of VA jumps have been used to study the cycle-by-cycle 

dynamics of the wings, during the short intervals of the events. Subplots A, B show the 

Poincare plots for the 2 cycle periodic events obtained from the left (A) and the right (B) 

wings of fly 2. Both the plots show two distinct clusters in the second and the fourth 

quadrant. For the left wing (Fig.6.12A) the clusters are centered at (-5˚, 5˚) and (5˚, -5˚). This 

implies that during these events, whenever the ventral amplitude increases by about 5˚ w.r.t 

its previous stroke cycle, in the next stroke cycle it decreases by almost the same amount. 
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An example of the pairs of VA jumps that populate these two clusters is shown in Fig.6.12D. 

Similarly for the right wing (Fig.6.12B) the ventral amplitudes increase and decrease by a 

value close to 10˚ in alternate stroke cycles. This difference between the absolute values of 

the VA jumps of the two wings is because for fly 2 in general (i.e. even outside the selected 

events of interest) the left wing spanned a smaller angular range (-49˚ to 99˚) than the right 

wing (-52˚ to 99˚). Fig.6.12C shows the Poincare plot for VA jumps in 2 cycle periodic events 

from all the 5 untreated flies. The two distinct clusters in the second and the third quadrant 

indicate the presence of similar discrete VA jumps for all the untreated flies. The spread 

along the main axis of the distribution is because different flies (or even two wings of the 

same fly) have slightly different absolute values of the jumps.  

 

 

Figure 6.12:  Poincare plots of high-pass filtered ventral amplitudes during databased events 

of subharmonic variations. A-B) Events with 2 cycle periodic variations from left wing (A) and 

right wing (B) of fly 2. Color axis shows the number of stroke cycles (log scale, base 10) at each 
position of the Poincare plot. C) Prototypical events with 2 cycle periodic variations from all 5 
untreated flies (events from both the wings pooled together). D) An example of ventral amplitude 

jumps during a period 2 event, demonstrating the type of jumps that populate the two clusters in A-C.  
E-F) Prototypical events with 3 cycle periodic variations from left wing (E) and right wing (F) of fly 7. 
G) Prototypical events with 3 cycle periodic variations from all 5 haltere ablated flies (events from 

both the wings pooled together). H) An example of ventral amplitude jumps during a period 3 event, 
demonstrating the type of jumps that populate the three clusters in E-G.  

 

6.3.3 Effect of haltere ablation on the chosen kinematic pattern  
 

Shift in the recurrence period of the characteristic stroke deformations 

Figure 6.13A shows one example each of the three types of sub-harmonic variations in 

ventral amplitude. During these special kinematic patterns the ventral amplitude changes 
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abruptly over a single stroke (as discussed and shown in section 6.3.2), and this change 

recurs periodically for dozens of wing beats.  Figure 6.13B shows the frequency of 

occurrence of the 2 cycle periodic events in the measured test flights of the untreated (blue 

bar) and the haltere ablated flies (red bar). It is seen that the 2 cycle periodic variations are 

much more frequent in flies with intact halters as compared to those with both their 

halteres ablated; whereas the 3 cycle periodic variations (also 4 cycle ones, result not 

shown) are more frequent in haltere ablated flies. The ordinate scales of the supper panels 

in Fig.6.13B, C also indicate that the incidences of such sub-harmonic periodic variations 

decrease considerably in the flies without halteres. 

 

 

Figure 6.13: Sub-harmonic variations of ventral amplitude and the frequency of their 

occurrences in the two groups of flies. A) Intervals of mean subtracted ventral amplitude time 
series of the left (blue circles) and the right (red circles) wing, featuring one event from each type of 
the sub-harmonic variations. Top panel: 2 cycle periodic variations, middle panel: 3 cycle periodic 

variations and bottom panel: 4 cycle periodic variations. B) Upper panel: Percentage of the total 
number of stroke cycles (from all measured flies) showing 2 cycle periodic variations. Lower panel: 
Percentage of 2 cycle periodic variations that occur, a) only in one wing, b) simultaneously in both 

the wings and c) simultaneously with a three cycle periodic variation in the other wing. The plots 
show the quartile range of values (blue boxes: untreated flies; red boxes: haltere ablated flies), the 
full range of values (vertical thin lines) and the median values (horizontal thin lines) for the two 

groups of flies. C) Similar plots as B, for 3 cycle periodic variations 

 

 
Figure 6.13 provides the overview (from all the measured flies) of the fraction of wingbeats 

showing sub-harmonic variations and the correspondence between the two wings. Looking 

at the bilateral coordination between the two wings during these fast sub-harmonic 

variations it is seen that most of these events occur dominantly in one wing (Fig.6.13D, E). 
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This one sided occurrences of the sub-harmonic variations become even more pronounced 

in haltere ablated flies. 

 

Weak coupling between ventral amplitude and ventral-to-ventral stroke durations 

Another feature of the wing kinematics that is distinctly affected by the haltere ablation is 

the short time scale variations of the stroke duration between two consecutive ventral 

reversals. As discussed in section 6.2 of this chapter and reported in (Chakraborty et al. 

2015), the fruit fly can modify the ratio of the upstroke and the downstroke duration 

independently from the overall stroke duration. This would allow the fly to independently 

change the duration between two consecutive dorsal reversals and two consecutive ventral 

reversals. It is particularly important to take into account this difference between the two 

durations for variations occurring at time scales of a couple of stroke cycles. So, I estimated 

the dorsal-to-dorsal and the ventral-to-ventral stroke durations separately for the stroke 

cycles in the subharmonic events. These parameters are defined in the glossary at the end of 

the thesis and demonstrated pictorially in figure 6.15A. Figure 6.14 shows the scatter plots 

of these two stroke durations against the ventral amplitude for the stroke cycles with 2 

cycle variations for the untreated flies and the 3 cycle periodic variations for the haltere 

ablated flies. These specific types of events were selected for presentation as they provide 

the best statistics for the two groups of flies. However, similar results were obtained from 

the other types of subharmonic events in both the groups.  

 

The dorsal-to-dorsal stroke duration, which is the commonly used estimation of stroke 

duration, is seen to have a high correlation with the ventral amplitude during these 

subharmonic events from both the group of flies. For the untreated flies the R2 value is 0.47 

and the slope is 0.4, while that for the haltere ablated flies the numbers are 0.55 and 0.52 

respectively. For both the groups the stroke cycles with higher than average ventral 

amplitudes more often have higher than average stroke duration, as can be seen in the 

examples shown in figure 6.4. Such a correlation between the two stroke parameters 

implies that in the stroke cycles with larger than average ventral amplitudes the wing 

velocity is not increased.  

 

For the untreated flies although the dorsal-to-dorsal stroke durations change in correlation 

with the ventral amplitudes, the ventral-to-ventral stroke durations remain essentially 
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constant (Fig.6.14A, B). This difference is prominent also in the data from only a single fly 

negating the possibility that the apparent lack of correlation is due to the pooling of data 

from 5 different flies.  However, in case of the haltere ablated flies both the dorsal-to-dorsal 

and the ventral-to-ventral stroke durations are seen to have high correlation with the 

ventral amplitudes, albeit the changes in the later are much smaller. This indicates that the 

halteres play a key role in stabilizing the time course of subsequent ventral reversals in the 

face of changing ventral amplitudes of the stroke cycles. 

 

 
Figure 6.14: Correlation of the ventral amplitude and the stroke durations. A) Scatter plot of 

dorsal-to-dorsal stroke duration vs. ventral amplitude for the 2 cycle periodic events. Data from the 
untreated fly 2 is shown in left panel and that from all the 5 untreated flies is shown in the right 
panel. The numbers of points in each bin of size 0.5deg x 0.02ms is color coded in log scale of base 10 

for better visualization of the density. B) Similar scatter plots as in A for the ventral-to-ventral stroke 
duration. 3 cycle periodic events from the haltere ablated fly 7 (left panel) and those from all the 5 
haltere ablated flies (right panel). C) Stroke duration as estimated from one ventral reversal to the 

next for the 2 cycle periodic events from the untreated fly 2 (left panel) and those from all the 5 
untreated flies (right panel). D) Similar scatter plots as in C for the 3 cycle periodic events from the 
haltere ablated fly 7 (left panel) and those from all the 5 haltere ablated flies (right panel). 

 

To have some understanding of the underlying phenomenon by which the untreated flies 

maintain such constant ventral-to-ventral stroke duration while the haltere ablated flies 

cannot, I looked into the variations of the half stroke durations. I chose to work with the 2 

cycle periodic events for both the untreated and the haltere ablated flies, as these events are 

the simplest of the three patterns. Figure 6.15 shows the scatter plots of the VA of a stroke 

cycle against its upstroke duration (US) and against the downstroke duration (DS) of the 

next stroke cycle. For the untreated flies, in a stroke cycle where the VA increases the 

upstroke duration also increases, but the downstroke duration in the next cycle decreases 

by almost the same amount. Hence, the overall interval between two consecutive ventral 
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stroke reversals is conserved. The upstroke durations and downstroke durations estimated 

for the 2 cycle periodic events from the 5 untreated flies have an average correlation value 

of 0.55 (range:). Such a balance is not maintained in case of the 2 cycle periodic events from 

the 5 haltere ablated flies. As seen in Fig.6.15 D, E the downstroke duration is more strongly 

coupled to the changes in the ventral amplitude, whereas the upstroke duration is 

uncorrelated to the ventral amplitude. As a result after a stroke cycle with higher than 

average ventral amplitude, not only is the next ventral amplitude smaller than average but 

it also comes sooner. The cartoon shown in figure 6.15A illustrates stroke cycles with 

exaggerated variations in a 2 cycle periodic event, as in untreated flies. 

 

 
Figure 6.15: Correlation of the ventral amplitude and the half stroke durations. (A) Cartoon 

diagram of 3 stroke trajectories (bold black line) to illustrate the various stroke parameters, DDn: 
duration between the dorsal reversals of the nth and the (n+1)th stroke. VVn: duration between the 
ventral reversals of the (n-1)th and the nth stroke. DSn: Down stroke duration of the  nth stroke. USn: 

Up stroke duration of the  nth stroke. Vn: Ventral amplitude of the nth stroke. Horizontal dashed line 
shows the reference line for measuring the stroke angles. (B) Scatter plot of upstroke duration vs. the 
ventral amplitude of the same stroke for untreated flies. For better visualization of the density of 

points, the numbers of points in each bin of 0.5 deg x 0.02 s is color coded in log10 scale. C) Scatter 
plot of downstroke duration vs. the ventral amplitude of the previous stroke for untreated flies. (D-E) 

Corresponding figures (as B and C respectively) for the haltere ablated flies.  
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6.4 Discussion 
 

 

6.4.1 Least-dependent component analysis as a tool for 
identifying independently controlled kinematic patterns 

 
The goal of this study was to identify kinematic patterns of the wing motion that are 

controlled independently of each other. Physiologically, these independent kinematic 

patterns can arise, for instance, from the activity of parallel anatomical pathways. The 

complete set of such elementary kinematic patterns can be viewed as a basis from which the 

fly composes its various maneuvers. Our method was designed to identify elementary 

patterns that are repeatedly activated in the available kinematic dataset, but cannot judge 

the completeness of the obtained set of patterns.  

 

Independent control of some aerodynamic and kinematic parameters has already been 

proposed in previous insect flight studies (David 1985; Zanker 1988; Balint and Dickinson 

2004); for a review refer to (Taylor 2001). Typically, the independence was assessed by 

estimating the correlation of these parameters during a flight recording. For example, in the 

study of Balint and Dickinson for blowflies (Balint and Dickinson 2004), the downstroke 

deviation was shown to have no significant correlation with either the dorsal amplitude of 

the same wing or the wingbeat period. Uncorrelatedness is a necessary, but not sufficient 

condition for statistical independence; non-linear statistical dependencies can persist even 

if the correlation coefficient is zero. Examining a scatter plot of two variables (as in (Balint 

and Dickinson 2004)) can help in excluding such non-linear dependencies. For an 

automatized computational approach, however, a quantitative evaluation is necessary. In 

our study, we assessed statistical independence using mutual information. This measure 

captures both linear and non-linear statistical dependencies: two variables are statistically 

independent if and only if their mutual information is zero. In contrast to previous studies, 

we attempted to systematically identify all independently controlled kinematic patterns 
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that occurred in the measured flies. Rather than examining a pre-determined set of 

kinematic features, we started off from the full wing stroke trajectory and used least-

dependent component analysis (LCA) to compute a set of kinematic patterns that have 

minimal mutual information. Each kinematic pattern was associated with a specific 

deformation mode of the wing stroke. While for some patterns this deformation can be 

expressed in terms of a single standard kinematic parameter (such as stroke amplitude), for 

others the stroke deformation was more complex, involving e.g. example a change in both 

stroke amplitude and downstroke-to-upstroke ratio. In blowflies, Balint and Dickinson 

(Balint and Dickinson 2004) identified the downstroke deviation and the dorsal amplitude 

as two mutually independently controlled kinematic features, and pointed out that a change 

in either of these features was closely coupled with changes in other aspects of the wing 

stroke. Our method directly searches for independently activated deformations of the entire 

wing stroke. Another significant difference compared to (Balint and Dickinson 2004) is that 

our analysis takes into account the motion of both wings, and the degree of bilateral (anti)-

symmetry is a defining feature of the kinematic patterns we identify. 

 

Our computational method is based on least-dependent component analysis with explicit 

evaluation of mutual information. To successfully apply this advanced statistical tool, a 

sufficiently large sample size is necessary, typically thousands of wingbeat cycles. Long-

duration flight recording increases the probability of the fly exerting multiple types of 

kinematic patterns during the recording, as well as the probability of repeated occurrence 

of activation events in each kinematic pattern. The former is crucial for identification of 

patterns that occur mutually independently and the latter enhances the reliability of their 

separation. Fig.6.16 shows the result of applying LCA to a flight segment of insufficient 

length (500 cycles). This leads to a failure in separating some of the kinematic patterns that 

were successfully separated when the analysis was applied instead to a 2500 cycle segment. 

It is likewise important for the analysis to start from a sufficient number of input signals to 

LCA. Each signal corresponds to a specific phase point in the wing stroke cycle; a higher 

number of phase points capture the stroke deformations more precisely. We used 16 phase 

points (8 for each wing), as we found that working with more points did not yield additional 

deformation modes with structured time course of activation (but considerably increased 

the computation time).  
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Fig 6.16: Data length and success of LCA analysis. A) Least-dependent components obtained by 
analyzing a flight segment of 2500 wingbeat cycles (input signals as in Fig.6.1A). A segment of 500 
wingbeat cycles is shown (cycles 1300 to 1800 in Fig.6.1B). Component 9 and component 11 

correspond to kinematic patterns of Type II and I, respectively. B) Least-dependent components 
obtained by analyzing the input signals from only this restricted segment of 500 WBCs. LCA failed to 
separate the type II kinematic pattern from other kinematic variations (there is no analogue of 

component 9 in A). Component 4 isolates the type I kinematic pattern, but not as cleanly as the 
analogous component 11 in A. C) Scatter plot of component 9 vs. component 11 in the full flight 
segment (2500 WBCs). The points belonging to the restricted segment (cycles 1300 to 1800) are 

highlighted in black. It is seen that the short segment does not sufficiently capture the full 
distribution of the data (the full distribution is more elongated in the x-direction). 

 

Our computational analysis assumed that the elementary kinematic patterns (i.e., the stroke 

deformations generated by independent neuromotor controls) superpose linearly. This 

assumption is expected to be satisfied only approximately. On one hand, as the direct 

steering muscles all attach to the wing hinge, a linear summation of their effects on the wing 

stroke may be expected. On the other hand, the muscles insert at different sclerites that can 

to some extent move with respect to each other; this likely leads to nonlinear summation in 

blowflies ((Balint and Dickinson 2001) and references there in). A linear superposition of 

the effects of indirect muscles and direct steering muscles was inferred for Drosophila in 

(Frye and Dickinson 2004). The elementary kinematic patterns identified in our analysis 

adequately represented the wing kinematics both when active one-by-one and when active 

simultaneously (Fig.6.3). This provides a consistency check for the assumption of linear 

superposition (which was used in identifying the elementary kinematic patterns). A direct 

test of this assumption would be possible in a stimulated-flight setup, using stimuli that 

activate the individual kinematic patterns. 
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6.4.2 Classification of the least-dependent kinematic patterns 
and implications for flight control  

 
 

In most of the flight segments analyzed, LCA decomposed the wing motion into a set of 

linear components with insignificant or only marginally significant mutual dependence. 

Each such component is associated with a specific deformation mode of the wing stroke 

(terminology defined at the end of the thesis). The deformation mode together with the 

time course of its activation specifies a kinematic pattern of the wing motion. The kinematic 

patterns defined by components that are statistically independent could, in principle, result 

from independent neuromotor controls. 

  

Alternatively, some of the obtained statistically independent kinematic patterns may reflect 

other sources, such as noise in neuromuscular activity, experimental artifacts, or variability 

unrelated to flight control. To narrow down the set of candidates for elementary kinematic 

patterns (i.e., patterns that are generated by independent neuromotor flight controls), I 

restricted further analysis to components that (i) had temporal structure significantly 

distinct from white noise, and (ii) occurred repeatedly in multiple flight segments and in 

different flies. The first criterion was motivated by our expectation that the activation 

course of the elementary patterns will contain time scales similar to those seen in various 

flight maneuvers (i.e., between several wing stroke cycles and hundreds of cycles). 

Components with a flat power spectrum, on the other hand, are more likely to result from 

physiological noise or from measurement artifacts. The second criterion required the 

pattern coded by the component to occur in at least 3 of the 10 analyzed flies. We cannot 

exclude that some of the infrequently obtained independent components do represent 

elementary patterns. The rarely obtained components can, however, also arise e.g. from 

transient nonlinear couplings between elementary patterns, or from statistical limitations 

(limited duration of the recorded flight segment). In our search for the elementary 

kinematic patterns, I therefore chose not to classify the rarely occurring components. The 

described elimination may be viewed as a dimensional reduction; its goal, however, was to 

construct a lower-dimensional space that still contains the frequently activated 

independent kinematic patterns, rather than best approximating the time course of the 

original signal. 
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The resulting classification of kinematic patterns is summarized in Fig.6.9. I identified 7 

types of frequently recurring patterns. For five of these types, the kinematic pattern was 

found in at least 6 of the 10 examined flies. As our analysis was based on recordings of 

unstimulated flight of limited duration, I do not view as surprising that some kinematic 

patterns were not observed in all flies. To help in deciding which of the 7 frequently 

recurring types of patterns should be viewed as elementary kinematic patterns, I evaluated 

their possible functional roles. 

 

To functionally interpret a given kinematic pattern, we first examined the stroke 

deformation mode associated with it. Previous studies (Sane and Dickinson 2001; Fry et al. 

2005) used dynamically scaled robotic models to establish the correspondence between 

changes in wing stroke kinematics and changes in aerodynamic forces. The full 3-

dimensional kinematics of each wing is specified by the time course of three angles: the 

stroke position, the morphological angle of attack, and the deviation. In this study, only the 

stroke position was measured. I therefore could not directly evaluate the aerodynamic 

forces and their moments, as was done in (Sane and Dickinson 2001; Balint and Dickinson 

2004). However, previous studies with optically stimulated tethered fruit flies (Gotz 1983) 

established a linear relation between the difference of stroke amplitudes in the two wings 

and the yaw torque generated by the fly; likewise, the difference of stroke amplitudes is 

correlated with yaw torque during a free flight saccade (Fry et al. 2003). We therefore 

concluded that the wing stroke deformation typical for type I kinematic patterns (i.e., a 

bilaterally antisymmetric change in stroke amplitude and no change in wing period) is 

associated primarily with a change in yaw torque. For the type II kinematic patterns, the 

stroke deformation mode involves a bilaterally symmetric change in stroke amplitude 

coupled with a change in wingbeat period. A similar stroke deformation can be evoked by 

optical stimulation (vertical movement of the background pattern) and results in a change 

of total flight power (Lehmann and Dickinson 1998). For the type III kinematic pattern, the 

stroke deformation involves a change in the ratio of downstroke duration to upstroke 

duration. When symmetric in both wings, this change in stroke trajectory is expected to 

alter primarily the pitch torque acting on the body. In Ref. (Fry et al. 2005), the aerodynamic 

output was evaluated for wing strokes recorded in hovering free flight and in tethered 

flight; these wing strokes differed primarily by the downstroke-to-upstroke ratio (1.16 in 
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free flight vs.1.53 in tethered flight). It was shown that in the tethered case, the wing stroke 

generates a strong pitch torque (that would cause an untethered fly to pitch nosedown by 

20° after a single stroke cycle) (Fry et al. 2005). In our flight tests, the downstroke-to-

upstroke ratio was in the range 1.45–1.55 for the baseline wing stroke, but decreased to 

values as low as 1.1 when a type III kinematic pattern was activated. We therefore associate 

the type III kinematic patterns with a strong change in pitch torque.  

 

The inferences given above were based on the similarity of stroke position trajectory in the 

stroke deformations identified by us and in the kinematic changes analyzed in previous 

literature. We cannot exclude that there are differences in the morphological angle of attack 

or in stroke deviation that would modify the torques or forces acting on the body. In Ref. 

(Balint and Dickinson 2004) kinematic changes in the three rotational degrees of freedom 

were found to be mutually strongly coupled, resulting in concerted modifications of the 

entire wing stroke. It is, however, possible that the deformation of the stroke position 

trajectory (even when sampled at a high rate) is not fully indicative of the full 3-dimensional 

wing kinematics. 

 

To further judge the functional relevance of the kinematic pattern of a specific type, we next 

compared the typical features in its activation time course to the typical time courses of 

known flight maneuvers. For the type I kinematic pattern, the time course of the activation 

events matches the time course reported for fictive saccades induced by visual expansion 

stimulus in tethered flight (Heisenberg and Wolf 1979; Tammero and Dickinson 2002). The 

type I kinematic pattern can therefore be identified with activations of the saccade motor 

program (see (Bender and Dickinson 2006) for a discussion of the relation between 

tethered and free flight saccades).The activation events for the kinematic patterns of type II 

and III are typically of longer duration, consistent with the time scales on which Drosophila 

is known to control flight power and pitch. 

 

In type VI kinematic patterns, the ventral amplitude for both wings in turn increases and 

decreases in successive wing strokes; such regular switching persists for dozens of cycles. It 

is plausible that this kinematic pattern is caused by some steering muscle(s) becoming 

active in every other wingbeat cycle. Due to the novelty and the unique temporal 

characteristics of this kinematic pattern I studied it in details (see section 6.3). It appears 
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unlikely that this pattern has a direct functional role in flight control, yet the pattern 

occurred frequently and was observed in the majority of the examined flies.  

 

Kinematic patterns of types IV and V involve a bilaterally antisymmetric change in the 

dorsal reversal positions (type IV) or in the stroke angles at the mid-upstroke phase of the 

stroke cycle (type V). The activation time courses in these kinematic patterns do not have 

prominent temporal features, and we have not been able to relate these patterns to any 

known flight maneuver. It is possible that these two types of kinematic pattern simply 

reflect particular sources of noise in neuromuscular activity. In this case, the fly would 

control the bilaterally symmetric variations in dorsal amplitudes (which are prominent in 

type II kinematic patterns), but not the antisymmetric variations (which are usually of 

lower magnitude). In blowflies (Balint and Dickinson 2004), dorsal amplitude was found to 

vary independently of downstroke deviation. Because the 3D kinematics of an individual 

wing was studied in (Balint and Dickinson 2004), a direct comparison to our findings on 

stroke deformations evaluated jointly for both wings is difficult. 

 

The type VII kinematic pattern, which was obtained as a separate component in 8 flight 

segments, is characterized by a slow periodic modulation of the wing stroke (with a period 

of 40–50 wingbeat cycles). In other flight segments, however, such periodic modulation was 

not isolated by LCA into a separate component, but rather remained mixed with other 

kinematic patterns (predominantly of type I). This indicates that the type VII kinematic 

pattern may be nonlinearly coupled with other pattern types. Consequently this kinematic 

pattern was not included among the elementary kinematic patterns that form a linear basis 

for the construction of the total wing stroke. The type VII kinematic pattern may be related 

to the yaw torque fluctuations with similar periodicity that were reported by Heisenberg 

and Wolf (Heisenberg and Wolf 1988). 

 

Based on the properties described above, it was proposed that the kinematic patterns of 

types I, II, III and VI are elementary kinematic patterns. I view these 4 elementary patterns 

as part of the basis, from which the total deviation of the wing kinematics from the baseline 

stroke is composed by linear superposition. For each of these 4 kinematic patterns, the 

corresponding stroke deformation modes are typically activated intermittently, with well-

delineated activation events separated by intervals of relative inactivity. The activation 



139 

 

events of the 4 elementary patterns occurred both one-at-a-time (demonstrating that the 4 

corresponding neuromotor controls are not coupled by strong mutual excitation) as well as 

simultaneously (demonstrating that they are not coupled by strong mutual inhibition). 

 

One cannot exclude that there are additional elementary kinematic patterns, which were 

not activated frequently during our measurements, or which are not activated at all during 

tethered, unstimulated flight. It is also possible that some of the elementary kinematic 

patterns that I identified result from the simultaneous activation of several neuromotor 

controls that may act mutually independently in other behavioral settings. Our finding of 4 

elementary kinematic patterns therefore gives only a lower bound for the number of 

independent neuromotor controls. 

 

Our results have a partial correspondence to the control system implemented in the 

simulations of Dickson et al. (Dickson et al. 2008). In their integrative model of Drosophila 

flight, the navigation through a virtual environment was achieved by the appropriate 

activation of four “deformation modes”: the pitch mode, the yaw mode, the roll mode, and 

the throttle mode. Each mode consists of a suitable deformation of the wing stroke that 

achieves the required change in flight torque or force. The activation of each of these modes 

is achieved by a separate controller. The yaw mode and the throttle mode defined in Ref. 

(Dickson et al. 2008) are in direct correspondence to the kinematic patterns of type I and II I 

found in my study. The pitch mode in Ref. (Dickson et al. 2008)  is functionally similar to the 

kinematic pattern of type III, but consists of a different deformation of the wing stroke. The 

deformation modes in Ref. (Dickson et al. 2008) were designed a priori, based on previous 

conceptions of Drosophila flight control. In contrast, in this study the independently 

controlled deformation modes of type I, II and III were extracted from an automatized 

computational analysis of unstimulated flight recordings. The results of this study thus 

provide support to the control framework of Dickson et al.  
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6.4.3 Physiological explanation for the periodic single cycle 

ventral amplitude jumps  

 

 

Figure 6.16: Box plots of magnitudes of the ventral amplitude jumps during databased events 

of subharmonic variations. A) Period 2 events from untreated flies (blue: left wing; red: right 
wing). Filled boxes mark the quartile range of the VA jump magnitudes and the vertical lines show 
the full range. Black dot in the hollow circle mark the median value. Outliers are shown in black dots.  

Serial number of the corresponding fly is mentioned along the x-axis. B-C) Period 2 (B) and period 3 

(C) events from haltere ablated flies. Other specifications are same as that for A. 

 

A strikingly robust feature of the subharmonic stroke variations is the narrow range of VA 

jump magnitudes in each wing.  Figure 6.16 shows the box plots of these jumps during the 2 

cycle periodic events from each untreated fly (Fig.6.16A) and 2, 3 cycle periodic events from 

each haltere ablated fly (Fig.6.16B, C). In all 5 untreated flies the interquartile range is less 

than 5 degrees; except in case of the right wing of fly 1, where the range spans 6.3 degrees.  

This spread in the magnitude of the jumps is pretty small considering that in each case the 

count of jumps is in thousands and is distributed over a recording period of 60 secs. For 

example, the interquartile range of 11835 jumps from the left wing and 23805 jumps from 

the right wing of fly 4 are 3.5 degrees and 3.6 degrees respectively. The interquartile range 

of the VA jumps from the haltere ablated flies are also less than 6 degrees, except in the case 

of fly 10, right wing, where the range is 7 degrees. However, in this group of flies the 

number of stroke cycles in such events count only in hundreds (data not shown), and hence 

the statistics is weaker. The interquartile ranges of the VA jumps in 2cycle periodic events 

from the untreated and the haltere ablated flies are statistically similar (KS test p<0.01). In 

case of the 3 cycle periodic events the range of jump magnitudes are expected to be higher, 
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as each recurring unit constitutes of two large jumps and an intermediate smaller jump 

(Fig.6.12). Even for these events the interquartile range for jump magnitudes (Fig.6.17C) 

are less than 8 degrees in all but one case (fly 10, right wing). Such sharply maintained VA 

jump magnitudes indicate that a single or a particular group of muscles is primarily 

responsible for causing these single stroke increases in VA.  

 

One group of muscles whose activities have clearly been seen to be associated with sudden 

increase in wingbeat amplitude is the one inserting in the basalare sclerite (M.b1, M.b2, 

M.b3). For anatomical details of these muscles see section 1.4.3.  In their study Heide and 

Gotz  (Heide and Götz 1996) showed that, as the flies increase their stroke amplitudes while 

trying to stabilize a moving pattern on the screen (optomotor response), the second 

basalare muscle M.b2 shows bursts of activity; and the first basalare muscle M.b1 is 

activated at a slightly earlier phase during each stroke. In a more direct study Lehmann and 

Gotz (Lehmann and Götz 1996) showed that the increase of VA of the ipsilateral wing is the 

principal effect of M.b2 activation. They showed that an increase of 8-12 degrees in the VA 

can be achieved by stimulating M.b2 with an average of one electrical pulse (>1.2V) in every 

wingbeat cycle. Stimulating at a lower rate, i.e. once in every two cycle, results in a slightly 

smaller increase in VA; on the other hand stimulating with a long lasting pulse burst result 

in an average increase of 14 degrees in the VA of the ipsilateral wing (Lehmann and Götz 

1996). These numbers match very closely with the range of jump magnitudes seen during 

the subharmonic variations across the studied group of flies. In addition, it was also shown 

that the electrical stimulation of M.b2 does not introduce any change in wingbeat frequency 

(or in stroke duration). They measured the stroke durations as the interval between two 

consecutive ventral to dorsal reversals. This again agrees with our finding of the constancy 

of the ventral-to-ventral stroke duration during the events. Together both these features of 

the subharmonic events strongly indicate a principal role of the M.b2 muscle in their 

generation, both in the untreated and the haltere ablated flies. The different median values 

of the VA jumps in different flies and sometimes even in two wings of the same fly may thus 

be due to differences in the extent or the relative phase of stimulation of M.b2. Another 

possible cause of this discrepancy may be the transient activity of other muscles that alter 

the mode of oscillation of the wing articulation, as discussed in (Walker et al. 2014) for 

Calliphora (blow fly). 
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However, it should be noted that the activity of the second basalare muscle has mostly been 

recorded during the optomotor response behavior (Heide and Götz, 1996; Balint and 

Dickinson, 2001) where the muscle is impinged with bursts of neuromuscular spikes. Under 

such activation regime the muscle elicits a rapid increase in VA almost within the next 

stroke cycle. This increased VA then persists for another few dozen wingbeats. It is often 

seen in the examples shown, and also explicitly reported in (Lehmann and Götz 1996) that 

after the last muscle activation pulse of a long enough activation period, it takes about a 

dozen or more wingbeats for the VA to come back to its pre-activation value. Hence, it is not 

clear what kind of muscle activation regime of M.b2 may lead to such single cycle increase 

in VA. Nevertheless, to confirm the role and mode of activation of M.b2 in the generation of 

these periodic VA jumps electrophysiological studies or better still, time-resolved 

microtomographic imaging of the thorax is needed (Walker et al. 2014).  

 

6.4.4 Change in recurrence rate of the ventral amplitude jumps 

in absence of haltere feedback 
 

Given the strong similarity of the stroke deviations in all these prototypical events from 

both the group of flies, it was concluded that they are not distinct kinematic patterns but the 

same kinematic pattern with the characteristic stroke deviation recurring after different 

intervals. The slight difference between the two traces in subplots K-L compared to I-J of 

figure 6.11 during the upstroke is because a large number of prototypical events coming 

from fly 5 have an associated decrease in dorsal amplitude in addition to the increase in 

ventral amplitude. However, this periodic change in the dorsal amplitude is not always 

present for all the events of even the same fly and hence cannot be considered to be a 

defining feature of the concerned kinematic pattern.  

In this studied kinematic pattern it appears that in the presence of simultaneous wing and 

haltere feedback, the concerned muscle (or the synergy) is activated once in every 2 cycles; 

whereas if the haltere feedback is rendered weak, the same muscle synergy is activated 

after one or two extra cycles. The most plausible mechanism that can explain such a long 

and consistent increase in latency is the temporal summation of the excitatory postsynaptic 

potentials (EPSP). Wingbeat synchronous feedbacks to the steering muscles are known to 

come from two distinct sources, the mechanosensors on the wing blade and those at the 

base of the halteres (Fayyazuddin and Dickinson 1999; Mureli and Fox 2015; Bartussek and 
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Lehmann 2016). The temporal summation hypothesis would mean that the summed EPSP 

generated by the haltere and the wing is strong enough to activate the muscle synergy every 

other cycle. But the wing-driven EPSP alone would more often require the cumulative effect 

over at least two cycles to activate the post synaptic neuromuscular junction. Hence, the 

very regular 2 cycle periodic kinematic pattern in untreated flies disperses into 2, 3 and 4 

cycle periodic events in haltere ablated flies. Such cases of sub-threshold EPSP summation 

to generate post synaptic action potentials have been shown to exist in the neck muscles of 

the blowfly Calliphora vicina. (Huston and Krapp 2009) showed that the neck motor 

neurons receive small, sustained sub-threshold EPSPs from the visual afferents which by 

themselves are incapable of activating the neck muscles. However, when combined with the 

afferent signals due to an out-of-plane haltere movement, result in an action potential in the 

neck motor neurons, and thus instigating a head turn.  

 

A second possibility is that in absence of haltere feedback, the wing afferents stimulate the 

concerned steering muscles with increased temporal delays, hence resulting in prolonged 

recurrence period of the single cycle VA jumps.  The EPSPs of both the haltere and the wing 

sensory nerves (as studied for the first basalar muscle in Fayyazuddin and Dickinson, 1999) 

constitute of a low latency sharp peak and a long latency broad peak. The low latency 

component comes from a monosynaptic electrical synapse, while the high latency 

component comes from a possibly polysynaptic Ca2+ dependent  chemical synapse 

(Fayyazuddin and Dickinson 1996). In case of the haltere afferents the former peak 

dominates, resulting in a fast and temporally precise sensorimotor feedback; whereas in the 

case of the wing afferents the later peak dominates, resulting in a stronger but slow and 

temporally less precise feedback. The latencies of the Ca2+ dependent EPSP peaks (w.r.t 

mechanosensory stimulation) are highly variable, and can be as high as 8 ms in the fruit fly 

drosophila (as studied in genetically modified flies by Trimarchi and Murphey, 1997). 

Hence, although the wing mechanosensors can drive the wingbeat synchronous activation 

of the basalar muscles in the absence of halteres, the phase of activation is expected to be 

highly variable.   
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Conclusion 

 

The findings of my PhD research regarding the neuromuscular control of rhythmic motor 

activities can broadly be summarized in two points:  

i. Bilateral coherence in physiological and essential tremor expressed in the two hands is 

more common than has previously been reported. In both the cases the oscillations of 

the two hands are intermittently synchronized. It was proposed that in postural 

physiological tremor, bilateral coherence at the main tremor frequency arises from 

transient simultaneous entrainment of the left and right hand oscillations to 

ballistocardiac forcing; the hand acceleration data from essential tremor patients that I 

analyzed did not enable us to clarify the mechanisms for essential tremor, additional 

studies are needed in this front. 

 

ii. Complicated wing movements during insect flight, such as that during a banked turn, 

can be generated from linear superposition of elementary kinematic patterns that are 

controlled mutually independently. This provides strong evidence for the presence of 

modular motor control of rhythmic motion in invertebrates.   
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Summary 

 

My PhD research in broad sense is kinematic study of rhythmic motions arising in specific 

parts of the neuromuscular system. Rhythmic motor activities are particularly interesting as 

it is the ubiquitous mode of locomotion in the animal kingdom and has evolutionarily 

developed some of the fastest yet precise sensorimotor systems. At the same time, 

involuntary rhythmic motions of the limbs are the most prevalent form of motion disorder 

viz. tremors. Understanding the genesis and the underlying dynamics of these rhythmic 

motor patterns leads to a better understanding of the neural control mechanisms and also 

helps to develop methods for controlling the progression of related diseases. 

I worked on two specific aspects of rhythmic motion control, i) bilateral coordination of 

spontaneous rhythmic motions, viz. tremors, and ii) modular control of locomotor patterns. 

For the former I studied the cases of the two most common types of hand tremors in human, 

the physiological tremor (PT) and the essential tremor (ET). The locomotor patterns are a 

more complicated form of rhythmic motion; owing to the necessities of providing the 

necessary drive, maneuverability, stability and adaptation to the environment. As a result, 

for ages studies on model organisms, which provide a simpler basis both for experimental 

and theoretical analyses, have aided in understanding the functionality of analogous 

structures and motivated studies in higher organisms. Insect flight provides a powerful 

model system for neuromotor control. Hence, for the second part of my study I analyzed 

wing kinematics of fruit flies, Drosophila melanogaster. 

In the first part of my study I explored the prevalence and the temporal structure of 

bilateral coherence in PT and ET, in human subjects. Bilateral coherence of hand kinematics 

provides a sensitive measure of synchronizing influences on the left and right tremor 

oscillations, which in turn points towards a common mechanism of bilateral tremor genesis. 
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In addition, the understanding of bilateral tremor coherence in healthy subjects is 

important in the context of bilateral entrainment tests for differential diagnosis of tremor 

diseases. I analyzed triaxial accelerometric recordings from both hands in 30 healthy 

subjects and 34 ET patients using spectral coherence and wavelet coherence methods. The 

majority of both healthy and ET subjects displayed significant bilateral coherence. While in 

healthy subjects, bilateral coherence was most frequently found in resting hand position 

(97% of subjects); in ET the prevalence was comparable for resting (54%) and postural 

(49%-57%) positions. In both PT and ET, short epochs of several seconds with strong 

coherence were separated by intervals of insignificant coherence. To estimate the 

contribution of the mechanical forcing due to the cardioballistic impulse in the bilateral 

coherence, I measured the chest acceleration simultaneously with the hand acceleration in 

12 additional healthy subjects. In PT, bilateral coherence at the main tremor frequency (8-

12 Hz) was coupled with the ballistocardiac rhythm.  

In the second part of my study I aimed to find elementary components of wing motion 

control in the fruit flies, Drosophila melanogaster, that could be thought of as the building 

blocks for more complicated wing movements.  If present, this will provide a much simpler 

system (as compared to vertebrate systems) to study the working principles of modular 

motor control.  Using a high-speed computer vision system, the wing motion of tethered 

flying fruit flies were recorded for up to 12000 consecutive wing strokes at a sampling rate 

of 6250 Hz. I then decomposed the joint motion pattern of both wings into components that 

had the minimal mutual information (a measure of statistical dependence). I classified such 

kinematic patterns, i.e. a specific deformation of the wing stroke and the sequence of its 

activation from cycle to cycle, obtained from recordings of 10 flies. Out of the 7 classified 

types of kinematic patterns, four showed strong evidence for being considered elementary 

kinematic patterns. They can be activated mutually independently, and occur both in 

isolation and in linear superposition. This indicates existence of modular motor control in 

flies and provides a lower bound for the number of independent neuromotor controls of 

wing motion. Three of the identified elementary patterns can be associated with yaw 

control during body saccades, pitch control, and control of flight power. A fourth kinematic 

pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, 

extending for dozens of cycles.  
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Due to the novelty of the fourth elementary kinematic pattern I studied it in some details. 

This kinematic pattern involves a characteristic modification of the stroke trajectory lasting 

for only one stroke cycle, and recurring periodically; implying a control system that has 

effects at the time scale of a single stroke cycle. Neurophysiology of the fly sensorimotor 

system suggests a potential role of the mechanosensory feedback from the modified hind 

wings called the halteres, in the control mechanism of this special kinematic pattern. To 

check this plausibility I analyzed wing kinematics of tethered flying flies with both their 

halteres ablated. As expected, missing haltere signaling considerably modified this special 

kinematic pattern; of special mention is the development of a weak coupling between the 

cycle-to-cycle changes in ventral stroke amplitudes and the timings of the ventral reversal.  

In conclusion my PhD research has put forth two major findings regarding the 

neuromuscular control of rhythmic motor activities: i. bilateral coherence in PT and ET 

expressed in the two hands is much more common than has previously been reported. In 

both the cases the oscillations of the two hands are intermittently synchronized. We 

propose that in postural PT, bilateral coherence at the main tremor frequency arises from 

transient simultaneous entrainment of the left and right hand oscillations to ballistocardiac 

forcing. ii. Overall wing kinematics during insect flight can be generated from linear 

superposition of elementary kinematic patterns that are controlled mutually independently. 

This provides strong evidence for the presence of modular motor control of rhythmic 

motion in invertebrates.   
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List of abbreviations 

ET: Essential tremor 

MILCA: Mutual information based least-dependent component analysis 

LDC: Least-dependent component 

PT: Physiological tremor 

VA: Ventral amplitude 

 

Glossary of selected terms used in chapter 6 

 
baseline wing stroke: Set of 16 stroke 
positions obtained by averaging each of 
the 16 input signals over the 2500 
wingbeat cycles in a given flight segment. 

dorsal amplitude: maximum stroke 
position closer to the head, at the point 
where the wing reverses its course. 

elementary kinematic pattern: Least-
dependent kinematic pattern that is 
claimed to be controlled independently. 

input signal: Stroke position at a specific 
phase of the wingbeat cycle, over 2500 
cycles (see Fig.3.3). 16 such signals (8 
from each wing) constitute the full set of 
input signals to LCA. 

kinematic pattern: a specific 
deformation of the wing stroke and the 
sequence of its activation from cycle to 
cycle.  

least-dependent component analysis: 
Linear transformation of a set of signals 
into another set of signals that have 
minimum mutual dependence. 
 
least-dependent component: A specific 
linear combination of the input signals, 
obtained from LCA. It defines the time 
course of activation of a particular “stroke 
deformation mode”. 

 

 

 
least-dependent kinematic pattern: 
Stroke deformation mode and its time 
course of activation. (Refers jointly to a 
specific LDC and its separating vector) 

reconstructed wing stroke: Array of 
phase points computed by back-
transforming a subset of least-dependent 
components. Used for visualization of 
“stroke deformation modes”. 

stroke angle: It is defined as the angle 
between the stroke plane and the   

stroke deformation mode: Specific form 
of deviation of the wing stroke from the 
baseline wing stroke. Defined by the 
separating vector of a specific LDC.  

stroke position: Angular position of the 
fly wing on the stroke plane with respect 
to the lateral axis of the fly body. 

stroke trajectory: Time course of stroke 
positions of the wing, as recorded with 
our apparatus. 

ventral amplitude: maximum stroke 
position closer to the abdomen, at the 
point where the wing reverses its course.
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