
CHARLES UNIVERSITY IN PRAGUE  
 FIRST FACULTY OF MEDICINE 

 
 
 
 Study program: Biochemistry and Pathobiochemistry 
 
 
 
 
 
 
 
 
    Ing. Aleš Hnízda 
 

 
 

MOLECULAR MECHANISMS IN HOMOCYSTINURIA: SPATIAL 
ARRANGEMENT OF HUMAN CYSTATHIONINE β-SYNTHASE  

 
MOLEKULOVÉ MECHANISMY HOMOCYSTINURIE: PROSTOROVÉ 

USPOŘÁDÁNÍ LIDSKÉ CYSTATHIONIN β-SYNTHASY 
 
 

Ph.D. Thesis 
 
 
 

Supervisor : doc. MUDr. Viktor Kožich, CSc. 
 
 

Consultant : prof. RNDr. Milan Kodíček, CSc. 
 
 
 

Prague, 2012 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 

Prohlášení: 

Prohlašuji, že jsem závěrečnou práci zpracoval samostatně a že jsem řádně uvedl a 

citoval všechny použité prameny a literaturu. Současně prohlašuji, že práce nebyla 

využita k získání jiného nebo stejného titulu. 

Souhlasím s trvalým uložením elektronické verze mé práce v databázi systému 

meziuniverzitního projektu Theses.cz za účelem soustavné kontroly podobnosti 

kvalifikačních prací. 

V Praze, 2.4. 2012          ALEŠ HNÍZDA 

        Podpis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Identifikační záznam: 

HNÍZDA, Aleš. Molekulové mechanismy homocystinurie: prostorové uspořádání 

cystathionin beta-synthasy. [Molecular mechanisms of homocystinuria: spatial 

arrangement of human cystathionine beta-synthase]. Praha, 2012, 165 s., Disertační 

práce (Ph.D.). Univerzita Karlova v Praze, 1.lékařská fakulta, Ůstav dědičných 

metabolických poruch. Vedoucí práce Kožich, Viktor. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



ABSTRACT 

 

Protein misfolding is considered to be the major pathogenic mechanism in homocystinuria 

due to cystathionine beta-synthase (CBS) deficiency. The aim of this work was to study 

molecular mechanisms underlying protein misfolding of CBS mutants. 

Firstly, we studied spatial arrangement of normal human CBS protein. Using data from 

differential covalent labeling of solvent-exposed aminoacid residues, we identified 

interdomain contact area between the catalytic core and the regulatory domain in human CBS, 

and we subsequently generated the structural model of the full-length CBS. In the next step, 

we studied evolutionary divergence of CBS protein structures. We performed phylogenetic 

analysis that revealed unique spatial arrangement of CBS enzyme in nematodes; the domain 

architecture of CBS in Caenorhabditis elegans was studied experimentally in more detail. 

Finally, we determined conformational properties of a representative set of human CBS 

mutants that exhibited in various extent affected formation of tetramers and decreased 

catalytic activity. Using thermolysin-based proteolytic techniques for analysis of nine mutants 

expressed in E.coli, we found that an unfolded structure is a common intermediate occurring 

in CBS misfolding. The importance of protein unfolding for pathogenesis of CBS deficiency 

was further shown by analysis of additional nine purified mutants that were properly 

assembled into tetramers and possessed normal catalytic activity. These data demonstrated 

that the altered protein unfolding is a reliable marker of pathogenicity of CBS mutants and 

proteolysis with thermolysin under native conditions may be an important tool for 

biochemical assessment of pathogenic variants. 

This study advances our understanding of molecular pathology in CBS deficiency and 

provides knowledge that forms a base for development of chaperone therapy and future 

improvement in patient care. 

 

 

Keywords: cystathionine beta-synthase, protein misfolding, surface mapping, protein 

unfolding, thermolysin, conformational analysis, enzymopathy, homocystinuria 

 

 

 

 

 

 



 

 



ABSTRAKT 

 

Chybné sbalování proteinů je považováno za hlavní patogenetický mechanismus 

homocystinurie z deficitu cystathionin beta-synthasy (CBS). Cílem této práce bylo studium 

molekulových mechanismů, které vedou k chybnému sbalování mutantních forem CBS. 

V první části práce jsme studovali prostorové uspořádání normální lidské CBS. Pomocí 

diferenčního kovalentního značení povrchově dostupných aminokyselinových zbytků jsme 

identifikovali kontaktní plochu mezi katalytickým jádrem a regulační doménou v lidské CBS 

a následně jsme navrhli strukturní model plnodélkového enzymu. V další části práce jsme 

studovali evoluční divergenci proteinových struktur CBS. Provedli jsme fylogenetickou 

analýzu, která odhalila unikátní uspořádání pro CBS z třídy nematod; doménová architektura 

CBS z Caenorhabditis elegans byla podrobně studována experimentálně. Nakonec jsme 

studovali konformační vlastnosti vybraných mutantních forem lidské CBS, které měly do 

různé míry narušenou tvorbu tetrameru a sníženou enzymovou aktivitu. Pomocí 

proteolytických technik s využitím thermolysinu jsme analyzovali devět mutantních forem, 

které byly exprimovány v E.coli. Zjistili jsme, že rozbalení struktury je běžným jevem při 

chybném sbalování mutantních CBS. Důležitost rozbalení proteinů pro patogenesi deficitu 

CBS byla dále prokázána pomocí analýzy dalších devíti purifikovaných mutantních variant, 

které disponovaly nenarušenou tetramerní strukturou a normální enzymovou aktivitou. Tato 

data ukázala, že odlišná míra rozbalení proteinu je spolehlivým ukazatalem patogenity 

mutantních CBS a proteolýza thermolysinem za nativních podmínek může být důležitým 

nástrojem pro biochemické vyhodnocení patogenních variant. 

Tato práce zvyšuje porozumění patogenních mechanismů deficitu CBS a poskytuje 

znalosti, které mohou být využity pro vývoj chaperonové terapie a následně kvalitnější péči o 

pacienty.  

 

 

Klíčová slova: cystathionin beta-synthasa, chybné sbalování proteinů, povrchové 

mapování, rozbalení proteinu, thermolysin, konformační analýza, enzymopatie, 

homocystinurie 
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1. INTRODUCTION 
 

1.1 Metabolism of sulfur amino acids 

 
Sulfur amino acids and related metabolites play an important role in many biological 

processes, such as protein synthesis, methylation reactions, signal transduction and protection 

against oxidative stress. In biological systems, there are two genetically coded amino acids 

containing sulfur, namely methionine and cysteine.  

 

1.1.1 Methionine cycle 

Methionine is an essential amino acid that is converted in three steps to homocysteine 

(Fig.1). In the first step, methionine is activated by condensation with ATP that is catalyzed 

by ATP:L-methionine S-adenosyltransferase to form S-adenosylmethionine (AdoMet) (1).  

AdoMet serves as a donor of methyl group in many transmethylation reactions involving 

AdoMet-dependent methyltransferases to yield methylated products and S-adenosyl-

homocysteine (AdoHCy); AdoHCy is further hydrolyzed by S-adenosylhomocysteine 

hydrolase to form homocysteine and adenosine. Homocysteine represents a branchpoint 

intermediate in the methionine metabolism; this metabolite may be remethylated back to 

methionine or may be converted via the transsulfuration pathway to cysteine.  

The remethylation is mediated by two different mechanisms. The first enzyme system 

employs methionine synthase (2). The donor of methyl group is methylcobalamin which is 

regenerated by 5-methyltetrahydrofolate, formed from 5,10-methylentetrahydrofolate by 

methylentetrahydrofolate reductase. The second remethylation mechanism, catalysed by 

betaine:homocysteine methyltransferase uses another compound, betaine, as a methyl donor 

(3). 

 

1.1.2 Transsulfuration pathway 

Transsulfuration pathway is an irreversible sequence of reactions which leads to formation 

of cysteine from homocysteine. The first step of the transsulfuration pathway, i.e. 

condensation of homocysteine with serine to form cystathionine, is catalysed by cystathionine 

beta-synthase (CBS). Cystathionine is subsequently cleaved by cystathionine gamma-lyase to 

yield cysteine and α-ketobutyrate. Cysteine may be incorporated into proteins or glutathionine 

and may be also converted to taurine or inorganic sulfur.  
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Figure 1 Metabolism of methionine: enzymes catalyzing the reactions are depicted by arrows: MAT – 

ATP:L-methionine S-adenosyltransferase; MT – methyltransferase; SAHH – S-adenosylhomocysteine 

hydrolase; BHMT – betaine:homocysteine methyltransferase; MS – methionine synthase; SHMT – 

serine:hydroxymethyl transferase; MTHFR – methyltetrahydrofolate reductase; CBS – cystathionine 

beta-synthase; CGL – cystathionine gamma-lyase. Metabolites are abbreviated as follows: ATP – 

adenosine-5´-triphosphate; THF – tetrahydrofolate; AdoMet – S-adenosylmethionine; AdoHcy – S-

adenosylhomocysteine. 

 

1.1.1 Regulation of methionine metabolism 

The majority of tissues regulate the level of intermediates of methionine metabolism by 

folate-dependent remethylation and by export of the excess of homocysteine from cells (4). 

The liver represents the main organ for maintaining methionine homeostasis since hepatocytes 

possess the enzymes of the two remethylation systems and of the transsulfuration pathway.  

Methionine metabolism is regulated by the distribution of homocysteine between 

remethylation and transsulfuration (5). Intrinsic properties of the enzymes, such as their 

kinetic parameters and allosteric responses to the effectors, constitute a regulatory mechanism 
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that reacts rapidly to perturbations in methionine metabolism. Based on different Km values of 

the metabolic enzymes, it has been suggested that remethylation pathway is favored under 

lower concentrations of homocysteine while a more intensive flux through the transsulfuration 

pathway is prefered when homocysteine concentration is increased (5). The catalytic activity 

of enzymes involved in methionine metabolism is further modulated by AdoMet. Increased 

concentrations of AdoMet stimulate catalytic activity of CBS and, on the contrary, inhibit 

both remethylation systems (6). 

Methionine metabolism may be also regulated at the level of protein expression of the 

respective enzymes. It was reported that intake of dietary protein increases expression of 

CBS, cystathionine gamma-lyase, S-adenosylhomocysteine hydrolase and 

betaine:homocysteine methyltransferase and decreases the level of methionine synthase (7). 

The amounts of enzymes involved in methionine metabolism may be also modulated by 

endocrine activity, age and other factors. 

 

1.2 CBS deficiency 

 
For each of the above described enzymatic steps deficiencies are known in humans. 

Inherited diseases were reported in the conversion of methionine to homocysteine (deficiency 

of ATP:L-methionine S-adenosyltransferase, glycine N-methyltransferase and S-

adenosylhomocysteine hydrolase), of the remethylation system (methylenetetrahydrofolate 

reductase deficiency or functional deficiency of methionine synthase) and of the 

transsulfuration pathway (CBS or cystathionine gamma-lyase deficiency). The most common 

inborn error of methionine metabolism is homocystinuria due to CBS deficiency, an 

autosomal recessive disease with the worldwide prevalence of 1:344,000 (8). However, the 

true frequency may be underestimated since several molecular epidemiological studies 

suggested that the incidence may be around 1:10,000 (9-11).  

CBS deficiency is a multisystemic disease that manifests by lens dislocation, early 

tromboembolic events, mental retardation and skeletal abnormalities such as osteoporosis and 

marfanoid features (8). Biochemical symptoms in CBS deficient patients include elevated 

concentration of total homocysteine, decreased concentrations of cysteine and cystathionine, 

and varying elevation of methionine (12). Diagnosis may be confirmed by assaying CBS 

activity in patient-derived fibroblast cell lines or by DNA analysis (13).  
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About half of patients respond to administration of pharmacological doses of pyridoxine 

(vitamin B6), with significant biochemical and clinical improvement. Partially B6 responsive 

and unresponsive patients are further treated by methionine restriction and cysteine 

supplementation. Some patients may also need a treatment with high doses of betaine that 

enhances the remethylation of homocysteine (8, 13).  

More than 150 mutant alleles have been described in CBS-deficient patients (annotated in 

CBS Mutation Database; http://cbs.lf1.cuni.cz/cbsdata/cbsmain.htm) many of the mutations 

are private. Nevertheless, several variants are more frequent, often confined to specific ethnic 

groups (14). Missense mutations represent 87 % of all analyzed alleles indicating that 

structural alternations due to aminoacid substitutions in the CBS protein play an important 

role in the pathogenesis of CBS deficiency. 

 

1.3 Properties of CBS protein 

 
CBS is a pyridoxal-5’-phosphate (PLP) - dependent enzyme which catalyses the first step 

in the transsulfuration pathway. Human CBS is a homotetrameric protein (15) that in its 

purified form is prone to formation of higher-order oligomers and aggregates (16, 17). CBS 

performs its function mainly in cytosol while a minor portion of the protein pool may be 

modified by small ubiquitin-like modifier-1 protein and subsequently transported to the 

nucleus (18).  

 

1.3.1 Domain architecture of CBS 

Each subunit of this modular protein consists of 551 amino acids (61 kDa); the sequence 

comprises three regions: the N-terminal heme-binding domain (residues 1-69), an 

evolutionary conserved catalytic core (residues 70-413) and the C-terminal regulatory domain 

(residues 414-551) (19). 

 

1.3.1.1 Heme-binding domain 

The heme moiety is bound to the enzyme via C52 and H65 residues coordinating the iron 

atom (20) and via H67 and R266 residues that form second coordination sphere of the heme-

binding pocket (21). The function of heme in CBS is still unclear. Banerjee´s group proposed 

that heme serves as a redox sensor that modulates catalytic activity of CBS to enhance 

production of glutathione under oxidative conditions (22, 23). This suggestion was recently 
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supported by a study showing that reversible reduction of heme to ferrous state and 

subsequent inhibition of CBS activity may be mediated by physiologically relevant reducing 

partner such as flavin-dependent methionine synthase reductase (24). On the contrary, a study 

by Majtan et al. revealed that heme may play a structural role in CBS protein since the heme 

moiety can be replaced by several metal-substituted porfyrins unresponsive to changes in 

redox potential (25).  

 

1.3.1.2 CBS catalytic core 

The highly conserved catalytic core belongs to the β-family of PLP-dependent enzymes 

such as O-acetylserine sulfhydrylase or tryptofan synthase. PLP, a cofactor that is necessary 

for catalysis, is bound to the enzyme via K119 (26). The mechanism of reaction catalyzed by 

CBS was described in details for the yeast enzyme using stopped-flow kinetics (27, 28). The 

yeast CBS was feasible for this study since it lacks heme that otherwise interferes in spectral 

analyses with the PLP-bound intermediates. The reaction proceeds by ping-pong mechanism. 

Initially, serine is bound to PLP forming an external aldimine that is converted to an 

aminoacrylate intermediate. Subsequently, homocysteine is attached to form an external 

aldimine of cystathionine. The last action, i.e. the release of cystathionine from the enzyme, is 

the slowest process during catalysis and thus the rate-limiting step (Fig.2).  

The catalytic activity of CBS is confined to β-replacement reactions, i.e. the replacement 

of the electronegative substituent at the β-position in α-aminoacids, and the CBS enzyme is 

promiscuous towards various substrates. CBS can catalyse the following reactions: 

 

i, serine with homocysteine to produce cystathionine and water; 

ii, cysteine with homocysteine to form cystathionine and hydrogen sulfide,  

iii, cysteine with water to yield serine and hydrogen sulfide; 

iv, O-acetyl serine with hydrogen sulfide forming cysteine and acetate; 

v, serine with hydrogen sulfide to produce cysteine and water 

 

Enzyme kinetics for these reactions catalysed by human CBS were reported in details 

elsewhere (29, 30). 
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Figure 2 Catalytic mechanism for condensation of serine with homocysteine catalyzed by CBS; the 

figure was adopted from (27). 
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1.3.1.3 C-terminal regulatory domain 

The C-terminal region contains a pair of CBS domains which together form the Bateman 

domain (31). Bateman domains are conserved in many otherwise unrelated proteins (such as 

chloride channel, adenosyl-monophosphate activated protein kinase or inosine-5´-mono-

phosphate dehydrogenase) and act as sensing and regulatory elements in these proteins (32). 

In human CBS, Bateman domain functions as an autoinhibitory module that contains the 

binding site for AdoMet, an allosteric activator of the enzyme (33). In addition, the C-terminal 

domain is also responsible for tetramerization of CBS protein (34). 

 

1.3.1.4 Evolutionary divergence of CBS domain architecture  

The above described domain architecture of CBS is well conserved in mammals but not 

across the phylla. In addition to the human enzyme, CBS proteins from Saccharomyces 

cerevisiae (35), Trypanosoma cruzi (36) and Drosophila melanogaster (37) have been studied 

by biochemical and biophysical approaches. In contrast to its presence in drosophila, the N-

terminal heme-binding module is absent in yeast and protozoa. The catalytic domain is 

conserved in all characterized  CBS enzymes whereas the C-terminal part is highly variable. 

The yeast CBS is not activated by AdoMet; nevertheless, the C-terminal module retains 

autoinhibitory features and its proteolytic removal leads to increase of the CBS activity. 

Furthermore, the yeast C-terminal domain is responsible for formation of tetramers and 

octamers of the CBS protein. The C-terminal region of protozoan CBS is shortened and 

regulatory function is missing but it is still able to form tetramers. On the contrary, the 

drosophila CBS does not bind AdoMet and forms only dimers. The variable domain 

architecture of CBS indicates that modulation of activity of these enzymes has evolved 

differently in evolutionary distant organisms. 

 

1.3.2 Allosteric regulation of  catalytic activity of human CBS  

Results of different studies indicate that cross-talk between the catalytic core and the C-

terminal autoinhibitory domain plays an important role in modulation of human CBS activity. 

The activity may be stimulated in vitro by several processes: by binding of AdoMet to the 

Bateman domain (33), by proteolytic cleavage yielding the C-terminally truncated dimer (34), 

or by partial heat denaturation (16, 33).  

It is suggested that allosteric activation of CBS activity upon AdoMet binding plays an 

important role in maintaining homeostasis of methionine metabolism (6). This notion was 

further supported by studies using cultured cell lines together with mathematical modeling of 
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methionine metabolism (38, 39). In addition, biological relevance of proteolytic activation of 

CBS was supported by observations in rat liver extracts (15) and in HepG cells (40). 

The spatial arrangement of human CBS was determined by X-ray crystalography for the 

45kDa truncated enzyme that lacks the C-terminal regulatory domain (45CBS, amino acids 1-

413) and that forms dimers (20, 23). These studies have revealed important structural features 

of CBS proteins at an atomic resolution, such as the active site containing PLP, the heme- 

binding pocket and dimer interface of the catalytic core. However, the 3-D structure of the 

full-length CBS has not yet been solved and therefore the structural mechanisms of the cross-

talk between the catalytic core and the Bateman domain are still unknown. While extensive 

hydrophobicity of the C-terminal domain and putative flexible interdomain motions prevented 

successful crystalization of the full-length CBS, alternative techniques can provide at least 

partial information about the allostery in the CBS molecule. The Banerjee´s group performed 

conformational study using H/D exchange demonstrating that the region 356-385 may be 

involved in the interdomain communication (41). These data were used for a protein-protein 

docking exercise and the first structural model of the full-length CBS was proposed (Fig. 3). 

However, additional experiments using complementary structural techniques are required to 

support and/or refine the proposed structure. 

 

 
Figure 3 The proposed structural model of the full-length CBS based on data from H/D exchange. A, 

Peptides exhibiting different kinetics of hydrogen exchange upon C-terminal truncation are pointed by 

arrows on the structure of 45CBS. B, The scheme represents possible assembly of the full-length CBS 

into tetramer. Figures are adopted from Sen S. et al. (41). 
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1.4  Location of pathogenic mutations in the CBS molecule 

 
Disease-causing mutations have been observed in each functional domain of human CBS. 

The location of aminoacid substitutions in respect to the known structural arrangement of the 

wild-type CBS enzyme has been reviewed in details previously (42, 43). In the next section, 

knowledge about structure-function relationships of selected mutant proteins will be 

discussed.  

 

1.4.1 Mutations in the heme-binding domain 

Several mutations that directly affect the coordination of the heme moiety in CBS protein 

have been observed in CBS-deficient patients, namely the H65R, R266K and R266G. 

Although mutation H65R directly affects the proximal ligand group coordinating the heme 

moiety (Fig.4A), the mutant exhibited 40 % heme saturation compared to the wild-type 

enzyme. This suggests that other aminoacid residues, such as H67, may partially substitute the 

missing imidazole ring of the H65 (44). Despite the partial heme saturation, the mutant 

enzyme retained only around 20 % of the wild-type activity indicating that the mutation in the 

heme-binding site disrupts proper catalytic function. The effect of mutation R266K - an 

aminoacid substitution located in the secondary coordination sphere of heme (Fig.4A) - was 

also studied in more detail. This mutant exhibited normal (21) or slightly lower (45, 46) 

catalytic activity; mild decrease in enzymatic activity was associated with slightly reduced 

thermal stability of the R266K mutant compared to the wild-type enzyme (46). On the other 

hand, the R266G mutant could not be purified into homogeneity due to substantial 

destabilization of protein structure that is accompanied with a complete loss of  CBS activity 

(21). It suggests that a loss of positive charge in the position 266 affects binding of heme that 

is important for correct folding of the CBS molecule (26). 

 

1.4.2  The most frequent mutations are located in the catalytic core 

The T191M mutation is  prevalent among patients originating from the Iberian Peninsula 

(47). The mutated residue T191 is solvent-exposed and located at the periphery of the 

catalytic core (Fig.4B) (48). The T191M mutant was found to be virtually inactive and to 

form aggregates on native electrophoresis (47). Based on similarity with O-acetylserine 

sulfhydrylase from Salmonella typhyrium, it was suggested that the region 186-222 is 
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involved in conformational changes upon PLP binding and that the mutation T191M impairs 

binding of PLP to the CBS protein (47).  

The most common pathogenic CBS variant is the I278T mutation (14, 49). This aminoacid 

substitution is buried in the catalytic core and located at a distance from the active site or the 

heme-binding pocket (Fig.4B) (42, 48). The I278T mutant forms high molecular weight 

aggregates devoid of heme and exhibits very low residual catalytic activity (50). Interestingly, 

the effect of this mutation has been suppressed by the point mutations in the regulatory 

domain or by complete deletion of the C-terminal region (51, 52). The rescue of the mutant 

protein by C-terminal removal indicates that the residue I278 may be involved in the 

regulatory motions between the active site and the autoinhibitory domain. 

The active site mutation G307S represents another variant frequently found in CBS-

deficient patients being highly prevalent in Northern Europe (53). The residue G307 is located 

at the entry to the catatalytic cleft (Fig.4C). The incorporation of the larger serine residue to 

this position probably causes overpacking since the side-chains of P282, S285 and Y301 are 

located in the proximity of the G307 in the crystal structure of the C-terminally truncated 

human CBS protein (20) (Fig.4C). It has been suggested that homocysteine binds in the 

vicinity of G307 and that the aminoacid substitution would thus decrease binding of 

homocysteine (42).  The mutant protein G307S is catalytically inactive, with residual activity 

lower than 1 % of wild-type CBS enzyme activity (54) despite unimpaired formation of 

tetramers (48). 

 

1.4.3. Mutations in the C-terminal regulatory domain 

Mutations in the C-terminal domain represent an interesting group of disease-causing 

variants. Patients carrying these mutations suffered from mild CBS deficiency (55). 

Interestingly, the purified C-terminal mutants I435T, S466L (33) and D444N (56) exhibited 

increased catalytic activity and failed to be further stimulated by AdoMet since they were 

locked in a superactive conformation (33, 41). It was proposed that the altered response to 

AdoMet is responsible for the pathogenicity of the C-terminal mutations (38, 48). Hovewer, 

the expression of S466L in a transgenic mouse led to lower steady-state protein levels and to 

decreased catalytic efficiency in vivo (57). Decreased amounts of the C-terminal mutants were 

also observed in cell lysates from the patient-derived fibroblast cell lines harboring the 

genotype I435T/del ex8 (55) and D444N/D444N (56). These data indicate that the altered 

conformation of these “superactive mutants“ may lead to more rapid degradation with 

resulting decreased amounts of mutant proteins in vivo. 
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Figure 4 Location of the described mutations in the 3-D structure of the 45CBS (Protein Data Bank 

(PDB) ID 1JBQ). A. The heme binding pocket. The heme moiety is depicted in red, mutated residues 

(H65 and R266) in magenta, and the heme ligands C52 and H67 are shown as blue sticks. 

B. Location of the most frequent mutations in the 45CBS structure (T191M, I278T and G307S). 

The moieties of heme and PLP are depicted in red and yellow, respectively. The mutated residues are 

depicted as colored balls. C. Detail of the active site with PLP and G307 (yellow and magenta 

sticks, respectively). The residues tightly packed against G307 are marked as blue sticks. 
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1.5 Protein misfolding and genetic diseases 
 

In genetic diseases, most aminoacid substitutions do not affect key functional residues in 

respective proteins, but rather result in misfolded proteins with impaired biological function 

(58). This suggestion was strongly supported by in silico analysis of 731 proteins implicated 

in monogenic diseases. This analysis showed that a loss of protein structure stability is the 

major cause of pathogenicity of missense mutations (59). 

Misfolded proteins are recognized by the protein-quality control systems and in many 

cases are rapidly degraded; consequently, the amounts of mutant proteins are decreased 

exemplifying the loss-of-function pathogenesis. The pathogenic mechanisms underlying 

protein misfolding in the field of inborn errors of metabolism have been thoroughly described 

for the most frequent enzymopathy - phenylketonuria due to phenylalanine hydroxylase 

deficiency. Protein misfolding as a major pathogenic mechanism of this metabolic disease 

was demonstrated by meta-analysis of experimental data in connection with computational 

modeling of 318 mutants; it was postulated that the energetics of protein folding is a more 

reliable determinant of the pathogenicity of the mutant proteins than their in vitro residual 

activity (60). Loss-of-function pathogenesis as a consequence of misfolding of phenylalanine 

hydroxylase was shown by observing more rapid degradation of seven pathogenic variants in 

rabbit reticulocyte extracts (61) and human embryonic kidney cell lines (62). 

In another group of diseases, an aberrant protein folding may result in a production of 

biomolecules that are highly resistant against proteolysis and that form aggregates. In these 

cases, pathogenesis of protein misfolding is not only due to loss-of-function but also due to 

gain-of-function (63). This pathogenesis is very common in prion diseases and for 

neurodegenerative diseases such as Alzheimer, Parkinson and Huntington disease (64). 

Clinical manifestation of these disorders is caused by the presence of the neuronal deposits of 

misfolded protein aggregates. 

 

1.5.1 Protein misfolding as the leading pathogenic mechanism of CBS deficiency 

The previous study by Janošík et al. proposed that protein misfolding may be an important 

pathogenic mechanism also in CBS deficiency since the majority of tested CBS mutants, i.e. 

A114V, A155T, E176K and I278T, formed large inactive aggregates devoid of heme (50). 

This proposal was strongly supported by a more extensive study of 27 mutant variants 

representing 70 % of known allelles observed in the CBS-deficient patients (48). Protein 
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misfolding was demonstrated for the majority of the studied mutants by observing abnormal 

migration on native electrophoresis, an increased abundance of mutants in the insoluble 

fraction and by their rescue after the expression at a lower temperature facilitating correct 

folding. It was also shown that buried mutations affect correct folding more severely than 

solvent-exposed aminoacid substitutions. However, both studies have used the bacterial 

expression system that permits evaluation of intrinsic structural propensity of the mutant 

proteins while other consequences such as proteolytic degradation specific to eukaryotic cells 

cannot be determined by this approach (62). Indeed, the functioning of the misfolded CBS 

mutant I278T was also studied in a eukaryotic expression system, namely in Saccharomyces 

cerevisiae. The mutant I278T was rapidly degraded by the proteasome-dependent proteolysis 

and the protein turnover was altered by manipulation with the levels of heat shock proteins 

(65). Taken together, studies using prokaryotic and eukaryotic expression systems have 

shown that CBS deficiency is a conformational disorder with loss-of-function pathogenesis. 

 

1.6 Rescue of misfolded CBS mutants by chaperone treatment 

 
Misfolding of mutants may be corrected by the presence of chaperones during protein 

expression. The rescue of misfolded proteins is accomplished by treating cells with two types 

of compounds, i.e. chemical or pharmacological chaperones (66). Chemical chaperones refer 

to small molecular weight compounds, usually osmolytes such as glycerol and 

trimethylamine-N-oxide, that nonspecifically promote correct folding of proteins. However, 

nonspecific action and high effective doses of chemical chaperones decrease their 

therapeutical potential. On the other hand, pharmacological chaperones are usually derived 

from ligand(s) of a target protein (e.g. cofactor or inhibitor of an enzyme) and act thus highly 

specifically at low concentrations used (66). Generally, a correction of aberrant folding by 

chaperones represents an interesting alternative for successful therapy of conformational 

disorders (67). Clinical relevance of this strategy in the field of inherited metabolic diseases 

was demonstrated by the implementation of therapy for phenylketonuria using sapropterin 

(68) which possibly acts as a pharmacological chaperone (69-71). 

The CBS mutants were successfully rescued by the treatment with chemical chaperones, 

ligands of CBS enzyme and inhibitors of proteasome (72-75) suggesting that this strategy may 

become a novel therapeutical option in CBS deficiency. Nevertheless, chaperones useful for 

therapy of CBS deficiency have not yet been found. The efficacy and the specificity of 
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screening for pharmacological chaperones may be significantly increased when the structural 

mechanisms underlying misfolding are known.  

However, there are two major limitations for more efficient structure-based drug design. 

Firstly, the 3-D structure of normal full-length CBS that is necessary for understanding of 

proper protein folding has not yet been determined (as discussed in Section 1.3.2). Secondly, 

only a few CBS mutants (the C-terminal mutants discussed in Section 1.4.3, a double linked 

mutant P78R/K102N (17) and the R266K mutant (46)) have been purified into homogeneity 

in amounts sufficient for detailed conformational studies to assess molecular mechanisms of 

their pathogenicity. Six additional mutants (P49L, P78R, A114V, R125Q, E176K and P422L) 

were purified when the culture media contained chemical chaperones (74). Since chaperones 

facilitate correct folding, these purified mutants did not exhibit gross abnormalities in heme 

saturation, catalytic activity and tetramer assembly and the structural cause of the 

pathogenicity of these mutations was not found. Taken together, knowledge about the 

mechanisms underlying misfolding of the mutant CBS proteins clearly needs to be expanded 

in order to advance our understanding of CBS deficiency and to improve patient care. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
26



2. AIMS OF THE STUDY 
 

The goal of my Ph.D. project was to study structure-function relationships of various 

normal and mutant CBS enzymes.  

 

The specific aims were as follows: 

 

Spatial arrangement of the wild-type CBS  

Surface mapping of the full-length CBS  

1. To develop a methodology feasible for surface mapping of CBS 

2. To compare the solvent accessibility of aminoacid residues between the 45CBS and 

the full-length CBS, to identify regulatory interface between the catalytic core and the 

regulatory domain, and to build the structural model of the human full-length CBS 

 

Conservation of CBS domain architecture in other species 

1. To study the conservation of CBS structure by in silico analysis 

2. To characterize structural and enzymatic properties of unique CBS from the nematode 

Caenorhabditis elegans  

 

Structural properties of CBS mutant proteins 

Conformational analysis of  mutant CBS proteins 

1. To develop a methodology feasible for conformational study of the mutant CBS 

proteins directly in crude cell extracts without the need for purification 

2. Using this approach, to study structural properties of a set of representative and 

clinically relevant CBS mutants that are not amenable to purification due to their 

instability 

3. To study conformation of another set of purified CBS mutants and to explore the 

molecular mechanisms of their pathogenicity 

 

  Analysis of mutant CBS proteins in plasma 

1. To explore whether CBS enzyme is present in plasma of healthy individuals by the 

available proteomic, immunological and enzymological approaches 

2. To study the properties of CBS enzyme in plasma of CBS deficient patients and to test 

the utility of this analysis for diagnosis of  the CBS deficiency 
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3. RESULTS AND DISCUSSION 
 

3.1 Surface mapping of CBS 

 
Surface mapping is a structural technique that uses specific covalent modification of the 

solvent-exposed aminoacid residues in native proteins. The modified residues are identified 

by peptide mass fingerprint using mass spectrometric detection (Fig.5). 

 

 
Figure 5: The scheme showing the workflow of protein surface mapping used in our study.  

 

3.1.1 Development of the methodology for surface mapping  

We found the appropriate experimental conditions for the modification reactions with nine 

commonly used modifiers using commercially available proteins such as chicken lysozyme, 

horse cytochrome c and human serum albumin. Special emphasis was put on modification of 

proteins with diethylpyrocarbonate (DEP) that is commonly used for modification of histidine 

residues but its possible reactivity towards other aminoacid residues has been neglected in 

previous studies. We found that DEP labeled not only the surface accessible histidine but also 

lysine residues in a set of model proteins. Moreover, our study revealed that the surface 

accessibility of the residues is a necessary, but not sufficient condition for their reactivity. 

Other study by Mendozza et al. (76) showed that DEP can react also with solvent-exposed 

residues of tyrosine, threonine and serine. These data show that DEP does not label only 

histidines and thus the identity of the modified residues should be confirmed by tandem mass 

spectrometry (MS/MS), i.e. by analysing the fragmentation of the modified peptides.  

Feasibility of the modifiers for structural analysis of CBS was tested using the 45CBS. 

Since an excessive modification of protein may disrupt its native structure, we determined the 
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lowest concentration of the modifier that enabled sufficient detection of the labeled residues 

while maintaining the integrity of the modified CBS proteins on native electrophoresis and 

retaining the catalytic activity. Six modification agents were feasible for further study (Tab.1) 

since the modified CBS retained high residual activity and formed dimers on native 

electrophoresis. Three other agents, namely tetranitromethane and iodine (tyrosine modifiers), 

and 2-hydroxy-5-nitrobenzyl bromide (reactive towards tryptophans) could not be applied for 

the structural study of CBS since they caused formation of smears on native electrophoresis 

along with complete inactivation of CBS enzyme indicating severe structural impairment of 

modified CBS. These observations demonstrate that the assessment of the integrity of 

modified proteins is an important procedure for acquisition of structurally relevant data using 

protein surface mapping.  

 

Table 1 Modification agents that were used for surface mapping of CBS.  

The most reactive amino acids are placed in the first position, other reactive amino acids are shown in 

parentheses. 

Modifier Reactive amino acid residues 

Mass shift 

in modified 

peptides 

diethylpyrocarbonate histidine (lysine, cysteine, N-terminal amino acid) +72; +15 

N-bromsuccinimide tryptophan (methionine) +16; +32 

N-ethylmaleinimide cysteine +125 

N-acetylimidazole tyrosine (lysine, N-terminal amino acid) +42 

sulfo-N-hydroxysuccinimido acetate lysine (N-terminal amino acid) +42 

4-hydroxyphenylglyoxal arginine +132 

 

For details see papers 5.1.1 and 5.1.2 in the Supplement 

 

3.1.2 The comparison of reactivity of residues in 45CBS and full-length CBS  

Using the methodology described above, we compared reactivity of residues of the 45CBS 

and of the full-length CBS. In the 45CBS, we found 50 labeled residues of which only four 

sites were not detected in the full-length CBS. Three of these differentially modified residues 

(K172 and/or K177, R336 and K384) are located in the same region of the 45CBS 3-D 

structure (Fig. 6) suggesting that area containing these amino acids may form a regulatory 
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interface between the catalytic core and the C-terminal domain. This notion is also supported 

by the presence of hydrophobic residues in this region (42) and by catalytic properties of 

several disease-causing mutations, namely V173M (77), E176K (74) and E302K (48) which 

are located at this putative interface and which exhibit catalytic activity similar to the wild-

type but fail to be allosterically stimulated by AdoMet.  

Differential reactivity of the four modification sites could be explained by interdomain 

sterical hindrance that is independent of the allosteric motions, or by conformational changes 

which are responsible for regulation of activity. Therefore, we tested whether the labeling of 

differentially reactive residues can be restored by a stimulation of the full-length CBS 

catalytic activity. Since the covalent labeling could not have been performed in the presence 

of AdoMet due to its reactivity towards the modifiers used, we analysed thermally activated 

CBS as a surrogate. The restoration of reactivity was observed only for the residues K172 

and/or K177 indicating their possible involvement in the regulatory motions. Three other 

differentially reactive residues were not labeled in the thermally activated CBS and they 

probably form sterically fixed interdomain interface. 

 

 

Figure 6 The modification sites shown in the 45CBS crystal structure (PDB ID 1JBQ). The identically 

modifed residues, i.e. the residues reactive in both the 45CBS and the full-length CBS, are shown as 

green balls, the differentially modifed sites as red balls. The moieties of heme and PLP are indicated 

as red and yellow sticks, respectively; the active site Lys119 is shown as blue balls. 
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Surface mapping showed that the autoinhibition of CBS by the C-terminal regulatory 

domain is associated with subtle changes at the protein surface. Our observations are 

consistent with the results from the H/D exchange study by Sen et al. (41) suggesting that the 

allostery in the CBS is not driven by conformational motions but rather by changes in 

structural flexibility, and/or by population shifts in the structural ensemble. 

 

For details  see paper 5.1.2 in the Supplement 

 

3.1.3 Generation of 3-D structural model of the full-length CBS and its comparison with  

other models  

The data from covalent labeling were further used for modeling the 3-D structure of the 

full-length CBS. Initially, a homology model of the C-terminal regulatory domain was built 

using recently reported archeal CBS domain binding AdoMet (78) as a template. In the next 

step, the modeled regulatory domain was docked onto the available structure of 45CBS. Our 

experimental data perfectly fitted to the resulting modeled structure, i.e. the differentially 

reactive residues formed an interdomain interface while the identically modified sites were 

located at the surface of the full-length enzyme.  

However, the previously published study employing H/D exchange (41) revealed 

interdomain interface in a different region than our study. Although the changes in the surface 

accessibility of K384 were observed by both H/D exchange and the covalent labeling, other 

differentially solvent-exposed regions were identified using only one technique. We found 

differential surface accessibility of the residues K172/K177, R336 and W408/409/410 but 

they were not reported by Sen et al. On the other hand, the H/D exchange revealed 

differentially accessible residues in the region 359-370 that were not observed by us; in this 

segment we identified three identically reactive sites, namely K359, R369 and C370.  

The discrepancies between results from these two studies are not clear. The differences 

may reflect methodological limitations of each technique or may have arisen from different 

conditions and procedures during preparation of CBS proteins for the structural analyses. It 

should be also noted that the both proposed models were built as dimers and thus do not 

provide structural basis of protein tetramerization. It is tempting to speculate that one 

differentially accessible region may form regulatory interface and the other would be 

responsible for tetramerization of the full-length CBS. 
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The knowledge of the 3-D structure of CBS proteins has been recently expanded as the 

crystal structure of the full-length CBS from Drosophila melanogaster has been solved at an 

atomic resolution (37). Although the fruitfly CBS does not bind AdoMet and forms dimers 

(not tetramers as the human CBS), these data permit inferences on the human ortholog. 

Comparison of our model with the solved structure of the drosophila CBS indicates that the 

interface between the catalytic core and the C-terminal domain is formed by virtually identical 

regions corresponding to residues K172/K177, R336, K384 and W408/W409/W410 in human 

CBS (Fig.7). These findings suggest that the interdomain interface may be conserved in 

Bateman domain-containing CBS orthologs including mammalian enzymes.  

In addition, it is tempting to speculate that the contact area proposed by the H/D exchange 

study is not involved in the interdomain communication but appears to be responsible for 

tetramerization of the full-length human CBS (Fig.7). Nevertheless, these suggestions should 

be confirmed by advanced molecular dynamic study together with relevant experimental 

confinements.  

In conclusion, our work using surface mapping contributed significantly to expanding the 

knowledge on the 3-D structure of human CBS. 

 

 

Figure 7 Comparison of the solved 3-D structure from Drosophila melanogaster (37) (PDB ID 3PC2) 

with the model of dimeric human CBS based on our data from the surface mapping. The catalytic core 

is colored in green, the C-terminal domain in grey. The differentially reactive residues from our study 

are depicted as dark blue balls, the differentially accessible area revealed from the H/D exchange as 

orange balls. The moieties of heme and PLP are shown as red and yellow sticks, respectively. 

 
For details see paper 5.1.2 in the Supplement 
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3.2 Characterization of CBS in Caenorhabditis elegans 
 

Caenorhabditis elegans represents a well established animal model that is used to study 

pathogenetic mechanisms of human diseases. However, metabolism of sulfur amino acids in 

this organism has not yet been elucidated. Thus, we aimed at identification and 

characterization of CBS in C.elegans. 

Using in silico searches in Blastp,Worm Base and Peptide Atlas together with the 

experimental procedures such as reverse transcription PCR and the expression analysis of 

GFP-tagged proteins, we found that the ZC373.1 is the only transcriptionally active gene 

encoding cystathionine beta-synthase in C.elegans (CBS-1). 

 In further study we demonstrated that CBS-1 has a unique domain architecture that had 

not been reported for CBS from other species. In contrast to other described metazoan CBS 

proteins the nematode enzyme lacks both the heme-binding pocket and the Bateman domain, 

and it also does not assemble into oligomers. Moreover, CBS-1 contains two conserved 

tandemly arranged PLP-binding domains in one polypeptide (Fig. 8). Interestingly, only the 

C-terminal catalytic domain binds PLP and catalyses β-replacement reactions as was 

demonstrated by analysis of truncated (Δ377-704) and active site (E62K and K421A) CBS-1 

mutants. Function of the N-terminal noncatalytic conserved domain is unclear; our study 

showed that the N-terminal domain may be important for proper folding and stabilization of 

the full-length protein but additional roles such as allosteric regulation of catalytic activity or 

modulation of protein-protein interactions need to be addressed in future studies. 

Interestingly, the above described differences between CBS-1 and mammalian orthologs 

are also associated with changes in protein stability. Using thermal-based shift assay and 

pulse proteolysis in a urea gradient, we found that CBS-1 is more sensitive towards 

denaturation than the human 45CBS; the melting point of CBS-1 was 10 °C lower than that of 

the human 45CBS, and the resistance towards CBS-1 to urea-induced unfolding was lower by     

~ 2.8 M of denaturant compared to the human 45CBS. On the other hand, analysis of enzyme 

kinetics revealed that the nematode CBS-1 subunit is approximately 4-fold more active - 

expressed by the turnover number - compared to human 45CBS.  

Phylogenetic analysis revealed that the unique structural arrangement is specific only for 

nematodes. As the CBS-1 protein forms a monomer, it is probable that its N-terminal and C-

terminal modules interact to form a structure similar to that of the human 45CBS dimer. 
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Figure 8 Domain architecture of various CBS proteins. Heme-binding site is colored in red, PLP- 

binding site in yellow, PLP-dependent conserved regions in orange, flexible loop in light blue and 

Bateman domain composed of two CBS domains (CBS1 and CBS2) in green. The structure is shown 

for CBS proteins from different species as follows: HsCBS – Homo sapiens; Hs45CBS – C-terminally 

truncated CBS from Homo sapiens; RnCBS – Rattus norvegicus; DmCBS – Drosophila melanogaster; 

TcCBS – Trypanosoma cruzi; ScCBS – Saccharomyces cerevisiae; CeCBS-1 – Caenorhabditis 

elegans. 

 

However, the proposed interdomain interaction cannot be sufficiently supported by the 

computational modeling procedures using previously solved crystal structures of CBS 

proteins, and thus it requires further study to determine spatial arrangement of the CBS-1 at 

an atomic resolution. 

In conclusion, our study provides novel insight into the evolutionary divergence of CBS 

enzymes and demonstrates that the previously described 3-D structure of human and fruitfly 

CBS protein is not canonical in all metazoan species. 

 

For details see paper 5.1.3 in the Supplement 
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3.3 Structural characterization of CBS mutants 
 

3.3.1 Conformational analysis of CBS mutant proteins in crude cell extracts 

Since the majority of CBS mutants could not be purified in sufficient yields due to an 

excessive aggregation, we developed an approach for conformational analysis of the mutant 

variants without the need of purification. This approach is based on two techniques using 

thermolysin, namely on proteolysis under native conditions, and on pulse proteolysis in a urea 

gradient. The rate of proteolysis under native conditions provides a knowledge about the 

extent of unfolding since proteases can cleave only flexible regions and/or unfolded structures 

(79). On the other hand, pulse proteolysis is a technique that monitors  urea-induced unfolding 

of proteins; after a short proteolytic pulse only the unfolded species are digested whereas 

compact proteins remain uncleaved. Using this assumption in samples with varying 

concentration of urea, the cm value as a measure of thermodynamic stability can be 

determined (80). 

Initially, we tested feasibility of thermolysin-based approach for analysis of CBS proteins 

using purified 45CBS and the full-length CBS in the presence and absence of AdoMet. 

Interestingly, the levels of catalytic activity of CBS proteins are directly proportional to the 

conformational stability expressed as cm values. It suggests that autoinhibitory motions in the 

full-length CBS are accompanied by changes in protein stability. These data further support a 

notion that allostery in CBS is driven by changes in protein energetics but not by extensive 

conformational movements. 

In the next step, we used proteolytic techniques directly in cell lysates for the analysis of 

nine pathogenic CBS variants expressed in E.coli. For this study, we selected three most 

common mutants together with representative aminoacid substitutions in each functional 

domain of the CBS protein. We found that proteolysis under native conditions is a robust 

technique being feasible even for highly unstable CBS mutants, whereas pulse proteolysis in a 

urea gradient has limited value for the majority of studied proteins due to their instability and 

rapid cleavage. 

All mutants in the active core (H65R, A114V, T191M, I278T, E302K, G307S, R369C) 

exhibited increased unfolding. These data show that the unfolded structure is a common 

intermediate occurring in CBS misfolding. In contrast, mutants in the C-terminal regulatory 

domain (R439Q and D444N) exhibited decreased proteolytic susceptibility indicating a loss 

of structural flexibility. We speculate that the rigidified conformation of regulatory domain 
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mutants is recognized by the protein-quality control machinery and leads to accelerated 

proteolytic turnover as observed previously in vivo (55-57). 

The extent of unfolding of the studied mutants inversely correlated with the previously 

determined (48) degree of tetrameric assembly (R2 = 0.6646; p = 0.0074) and with the 

catalytic activity (R2 = 0.7566; p = 0.0015). These data may imply that an optimal degree of 

flexibility is a necessary condition for correct formation of tetramers which further determines 

the catalytic activity of CBS proteins. 

Based on data from this study, the mutants may be divided into three subgroups (Fig. 9): 

 

I, The mutants with affected formation of tetramers, low catalytic activity and extensive 

unfolding (H65R, T191M, I278T and R369C) 

II, Correctly assembled variants with slightly increased unfolding (A114V, E302K and the 

inactive G307S possessing aminoacid substitution in the proximity of the active site) 

III, Correctly assembled hyperactive mutants showing higher stability and lower flexibility 

(R439Q and D444N) 

 

 

Figure 9 Schematic representation of misfolding of CBS mutants. Model for folded tetramer - 

unfolded monomers equilibrium was adopted and modified from (81). Lines represent behavior of 

different mutants: group I, the extensively unfolded mutants forming aggregates (H65R, T191M, 

I278T, R369C); group II, the proteins with slightly increased unfolding (A114V, E302K, G307S); 

group III, more tightly folded proteins (R439Q, D444N).

 

For details see papers 5.1.2 and 5.1.4 in the Supplement 
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3.3.2 Conformational study of purified CBS mutants 

In the previous study by Majtan et al. (74), it has been shown that several CBS mutants 

could be purified into homogeneity if the culture media contained chemical chaperones. 

However, these purified mutants exhibited unaltered catalytic activity, heme saturation and 

tetramer assembly making their pathogenicity obscure. In our recent study, we analysed 

conformation of nine purified mutant proteins from the Majtan´s studies (46, 74), namely 

P49L, P78R, A114V, R125Q, E176K, R266K, P422L, I435T and S466L. Using far-UV 

circular dichroism, fluorescence and second-derivative UV spectroscopy, we found that 

global structure of the CBS mutants is similar to the wild-type protein but the conformational 

properties of the studied mutants differ in the microenviroment of chromophores. Proteolysis 

with thermolysin under native conditions revealed that the majority of CBS mutants is 

significantly more susceptible towards cleavage than the wild-type CBS (Fig. 10) indicating 

propensity of mutant proteins to unfolding. Pulse proteolysis in a urea gradient showed 

impaired cooperativity of tertiary structure of extensively unfolded mutants R125Q and 

E176K and, contradictory, unaffected global protein stability of CBS mutants with slightly 

increased or normal degree of unfolding. This study further supports the hypothesis that 

increased protein unfolding has important functional consequences even in otherwise 

unimpaired CBS mutants and proteolysis with thermolysin under native conditions may be a 

useful tool for the assessment of biochemical penalty of the pathogenic variants. 

 

 
Figure 10 Proteolysis with thermolysin under native conditions of purified CBS mutants. A. 

Comparison of wild-type CBS with mutant proteins. Each point represents a mean from two 

independent experiments. B. Representative gels depicting proteolytic cleavage of selected mutants. 

P78R represents the proteolytically resistant mutants, R125Q belongs to the more rapidly cleaved 

proteins. The mutant I435T is rapidly cleaved with the formation of the major fragment of molecular 

weight ≈ 40 kDa. “M“ refers to molecular weight marker, “N“ refers to the uncleaved control sample. 

 
For details see manuscript 5.1.5 in the Supplement 
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3.4 Analysis of CBS protein in human plasma 
 

Confirmation of diagnosis in CBS-deficient patients is usually performed by determining 

the catalytic activity in patient-derived fibroblast cell lines. In this study, we explored whether 

the CBS protein is present in human plasma and we tested a utility of the analyses in plasma 

for improved diagnostic procedure. 

The CBS activity in human plasma was determined using deuterium-labeled substrate 

2,3,3-2H serine together with sensitive detection of labeled product cystathionine by LC-

MS/MS. The median CBS activity in healthy controls was 404 nmol/h/L (range 66-1,066, 

n=57) which, regarding to the activity of the purified enzyme, corresponds to the quantity of 

CBS protein approximately in the range of nanograms per millilitre. However, these amounts 

do not permit successful detection by the available immunological techniques, such as 

Western Blotting or ELISA. The presence of CBS protein in plasma was further evidenced by 

the stimulation of CBS activity by addition of AdoMet and/or PLP to the reaction mixture. 

Moreover, detection of CBS-related peptides was reported in a study using shotgun 

sequencing that was annotated in the Peptide Atlas database (www.peptideatlas.org). 

Therefore, determination of CBS activity using LC-MS/MS is the only available tool for the 

analysis of the CBS protein in human plasma. In the next step, we tested utility of this 

approach for diagnostic purposes. The plasma CBS activity in  pyridoxine-nonresponsive 

CBS-deficient patients was significantly decreased, with the median catalytic activity of 0 

nmol/h/L (range 0-9, n=26), whereas the activity in pyridoxine-responsive patients (median 

16 nmol/h/L; range 0-358, n=28) overlapped with activities of control subjects.  

These data indicate that determination of CBS activity in human plasma represents a new 

technique for diagnosis of pyridoxine-unresponsive patients obviating the need to set up cell 

cultures of skin fibroblasts. 

 

For details see paper 5.1.6 in the Supplement 
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4. CONCLUSIONS 

 
1) Using surface mapping for comparison of the 45CBS with the full-length CBS, we 

identified differentially reactive residues (K172 and/or K177, R336, K384 and W408 and/or 

W409 and/or W410) that form a contact area between the catalytic core and the C-terminal 

regulatory domain. These data were used to generate the structural model of the full-length 

CBS. The modeled structure is consistent with recently solved 3-D spatial arrangement of the 

CBS from Drosophila melanogaster indicating that the regulatory interface in human CBS is 

conserved in Bateman domain-containing orthologs. Our study significantly expanded a 

knowledge about spatial arrangement of human CBS. 

 

2) We identified and characterized the CBS-1 enzyme in Caenorhabditis elegans. We found 

that this CBS protein possesses a unique tandem repeat of conserved catalytic domains in one 

subunit that does not assemble into oligomers. This study provides novel data on evolutionary 

divergence of the CBS structure; it shows that the previously described structural features of 

human and fruitfly CBS proteins are not conserved in all metazoan species. 

 

3A) Using proteolysis with thermolysin under native conditions for analysis of nine CBS 

mutants in bacterial lysates, we found that the unfolded structure is a common intermediate 

occurring in protein misfolding of mutants in the heme-binding domain (H65R) and the 

catalytic core (A114V, T191M, I278T, E302K, G307S, R369C). In contrast, the C-terminal 

mutants (R439Q and D444N) exhibited lower flexibility and higher structural stability 

indicating their rigidification. The extent of unfolding of the studied CBS mutants correlated 

inversely with catalytic activity and with degree of tetrameric assembly. 

 

3B) Furthermore, the majority of purified CBS mutants (A114V, R125Q, E176K, P422L, 

I435T and S466L) were more susceptible to proteolysis despite exhibiting normal catalytic 

activity, heme saturation and tetrameric assembly. Both thermolysin-based studies show that 

the increased proteolytic sensitivity of the CBS mutants may represent an important marker of  

pathogenicity of mutations in the CBS biomolecule. 

  

4) Our study demonstrated that CBS protein is present in human plasma in low amounts, i.e. 

approximately in the range of nanograms per milliliter that are insufficient for detection by 
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immunological techniques. The only feasible approach to detect CBS in the plasma is a 

determination of its catalytic activity by LC-MS/MS; we showed that this technique may be a 

useful tool for diagnosing pyridoxine-unresponsive CBS deficiency. 
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6. ABBREVIATIONS 

 

45CBS  C-terminally truncated cystathionine beta-synthase 

AdoHcy S-adenosylhomocysteine 

AdoMet   S-adenosylmethionine 

ATP     adenosine-5´-triphosphate 

BHMT  betaine:homocysteine methyltranferase  

CBS   cystathionine beta-synthase 

CGL   cystathionine gamma-lyase 

DEP   diethylpyrocarbonate 

GFP   green fluorescent protein 

LC-MS/MS liquid chromatography-tandem mass spectrometry 

MAT   ATP:L-methionine S-adenosyltransferase 

MS   methionine synthase 

MT   methyltransferase 

MTHFR methylenetetrahydrofolate reductase 

PCR   polymerase chain reaction 

PDB   Protein Data Bank 

PLP   pyridoxal-5´-phosphate 

SHMT  serine:hydroxymethyltransferase 

THF   tetrahydrofolate 

 

46



7. REFERENCES 

 
1. Mudd, S. H., and Cantoni, G. L. (1958) Activation of methionine for transmethylation. 

III. The methionine-activating enzyme of Bakers' yeast, J Biol Chem 231, 481-492. 

2. Li, Y. N., Gulati, S., Baker, P. J., Brody, L. C., Banerjee, R., and Kruger, W. D. 

(1996) Cloning, mapping and RNA analysis of the human methionine synthase gene, 

Hum Mol Genet 5, 1851-1858. 

3. McKeever, M. P., Weir, D. G., Molloy, A. and Scott, J. M. (1991) Betaine-

homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular 

distribution in the rat, Clin Sci 81, 551-556. 

4. Blom, H. J., and Smulders, Y. (2011) Overview of homocysteine and folate 

metabolism. With special references to cardiovascular disease and neural tube defects, 

J Inherit Metab Dis 34, 75-81. 

5. Finkelstein, J. D. (1998) The metabolism of homocysteine: pathways and regulation, 

Eur J Pediatr 157 Suppl 2, S40-44. 

6. Finkelstein, J. D. (2007) Metabolic regulatory properties of S-adenosylmethionine and 

S-adenosylhomocysteine, Clin Chem Lab Med 45, 1694-1699. 

7. Finkelstein, J.D. (2001) Regulation of homocysteine metabolism. In: Carmel R. and 

Jacobsen D.W. (eds), Homocysteine in health and disease, Cambridge University 

Press. 92-99. 

8. Mudd, S.H., Levy H.L., and Kraus J.P. (2001) Disorders of transsulfuration. In: 

Scriver, C.R., Beaudet A.L., Sly, W.S. and Valle D. (eds), The metabolic and 

molecular bases of inherited disease, 8th edn. New York: McGraw-Hill. 2007-2056. 

9. Gaustadnes, M., Ingerslev, J., and Rutiger, N. (1999) Prevalence of congenital 

homocystinuria in Denmark, N Engl J Med 340, 1513. 

10. Refsum, H., Fredriksen, A., Meyer, K., Ueland, P. M., and Kase, B. F. (2004) Birth 

prevalence of homocystinuria, J Pediatr 144, 830-832. 

11. Janosik, M., Sokolova, J., Janosikova, B., Krijt, J., Klatovska, V., and Kozich, V. 

(2009) Birth prevalence of homocystinuria in Central Europe: frequency and 

pathogenicity of mutation c.1105C>T (p.R369C) in the cystathionine beta-synthase 

gene, J Pediatr 154, 431-437. 

 
47



12. Stabler, S. P., Lindenbaum, J., Savage, D. G., and Allen, R. H. (1993) Elevation of 

serum cystathionine levels in patients with cobalamin and folate deficiency, Blood 81, 

3404-3413. 

13. Kraus, J.P., and Kozich, V. (2001) Cystathionine-β-synthase and its deficiency. In: 

Carmel R. and Jacobsen D.W. (eds), Homocysteine in health and disease, Cambridge 

University Press. 223-243.  

14. Mudd, S. H. (2011) Hypermethioninemias of genetic and non-genetic origin: A 

review, Am J Med Genet C Semin Med Genet 157, 3-32. 

15. Skovby, F., Kraus, J. P., and Rosenberg, L. E. (1984) Biosynthesis and proteolytic 

activation of cystathionine beta-synthase in rat liver, J Biol Chem 259, 588-593. 

16. Frank, N., Kery, V., Maclean, K. N., and Kraus, J. P. (2006) Solvent-accessible 

cysteines in human cystathionine beta-synthase: crucial role of cysteine 431 in S-

adenosyl-L-methionine binding, Biochemistry 45, 11021-11029. 

17. Sen, S., and Banerjee, R. (2007) A pathogenic linked mutation in the catalytic core of 

human cystathionine beta-synthase disrupts allosteric regulation and allows kinetic 

characterization of a full-length dimer, Biochemistry 46, 4110-4116. 

18. Kabil, O., Zhou, Y., and Banerjee, R. (2006) Human cystathionine beta-synthase is a 

target for sumoylation, Biochemistry 45, 13528-13536. 

19. Oliveriusova, J., Kery, V., Maclean, K. N., and Kraus, J. P. (2002) Deletion 

mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric 

status, and S-adenosylmethionine regulation, J Biol Chem 277, 48386-48394. 

20. Meier, M., Janosik, M., Kery, V., Kraus, J. P., and Burkhard, P. (2001) Structure of 

human cystathionine beta-synthase: a unique pyridoxal 5'-phosphate-dependent heme 

protein, Embo J 20, 3910-3916. 

21. Singh, S., Madzelan, P., Stasser, J., Weeks, C. L., Becker, D., Spiro, T. G., Penner-

Hahn, J., and Banerjee, R. (2009) Modulation of the heme electronic structure and 

cystathionine beta-synthase activity by second coordination sphere ligands: The role of 

heme ligand switching in redox regulation, J Inorg Biochem 103, 689-697. 

22. Taoka, S., Ohja, S., Shan, X., Kruger, W. D., and Banerjee, R. (1998) Evidence for 

heme-mediated redox regulation of human cystathionine beta-synthase activity, J Biol 

Chem 273, 25179-25184. 

23. Taoka, S., Lepore, B. W., Kabil, O., Ojha, S., Ringe, D., and Banerjee, R. (2002) 

Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox 

 
48



sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal 

structure of the truncated enzyme, Biochemistry 41, 10454-10461. 

24. Kabil, O., Weeks, C. L., Carballal, S., Gherasim, C., Alvarez, B., Spiro, T. G., and 

Banerjee, R. (2011) Reversible Heme-Dependent Regulation of Human Cystathionine 

beta-Synthase by a Flavoprotein Oxidoreductase, Biochemistry 50, 8261-8263. 

25. Majtan, T., Singh, L. R., Wang, L., Kruger, W. D., and Kraus, J. P. (2008) Active 

cystathionine beta-synthase can be expressed in heme-free systems in the presence of 

metal-substituted porphyrins or a chemical chaperone, J Biol Chem 283, 34588-34595. 

26. Kery, V., Poneleit, L., Meyer, J. D., Manning, M. C., and Kraus, J. P. (1999) Binding 

of pyridoxal 5'-phosphate to the heme protein human cystathionine beta-synthase, 

Biochemistry 38, 2716-2724. 

27. Jhee, K. H., Niks, D., McPhie, P., Dunn, M. F., and Miles, E. W. (2001) The reaction 

of yeast cystathionine beta-synthase is rate-limited by the conversion of aminoacrylate 

to cystathionine, Biochemistry 40, 10873-10880. 

28. Taoka, S., and Banerjee, R. (2002) Stopped-flow kinetic analysis of the reaction 

catalyzed by the full-length yeast cystathionine beta-synthase, J Biol Chem 277, 

22421-22425. 

29. Frank, N., Kent, J. O., Meier, M., and Kraus, J. P. (2008) Purification and 

characterization of the wild type and truncated human cystathionine beta-synthase 

enzymes expressed in E. coli, Arch Biochem Biophys 470, 64-72. 

30. Singh, S., Padovani, D., Leslie, R. A., Chiku, T., and Banerjee, R. (2009) Relative 

contributions of cystathionine beta-synthase and gamma-cystathionase to H2S 

biogenesis via alternative trans-sulfuration reactions, J Biol Chem 284, 22457-22466. 

31. Bateman, A. (1997) The structure of a domain common to archaebacteria and the 

homocystinuria disease protein, Trends Biochem Sci 22, 12-13. 

32. Baykov, A. A., Tuominen, H. K., and Lahti, R. (2011) The CBS Domain: A Protein 

Module with an Emerging Prominent Role in Regulation, ACS Chem Biol. 6, 1156-

1163. 

33. Janosik, M., Kery, V., Gaustadnes, M., Maclean, K. N., and Kraus, J. P. (2001) 

Regulation of human cystathionine beta-synthase by S-adenosyl-L-methionine: 

evidence for two catalytically active conformations involving an autoinhibitory 

domain in the C-terminal region, Biochemistry 40, 10625-10633. 

 
49



34. Kery, V., Poneleit, L., and Kraus, J. P. (1998) Trypsin cleavage of human 

cystathionine beta-synthase into an evolutionarily conserved active core: structural and 

functional consequences, Arch Biochem Biophys 355, 222-232. 

35. Jhee, K. H., McPhie, P., and Miles, E. W. (2000) Domain architecture of the heme-

independent yeast cystathionine beta-synthase provides insights into mechanisms of 

catalysis and regulation, Biochemistry 39, 10548-10556. 

36. Nozaki, T., Shigeta, Y., Saito-Nakano, Y., Imada, M., and Kruger, W. D. (2001) 

Characterization of transsulfuration and cysteine biosynthetic pathways in the 

protozoan hemoflagellate, Trypanosoma cruzi. Isolation and molecular 

characterization of cystathionine beta-synthase and serine acetyltransferase from 

Trypanosoma, J Biol Chem 276, 6516-6523. 

37. Koutmos, M., Kabil, O., Smith, J. L., and Banerjee, R. (2010) Structural basis for 

substrate activation and regulation by cystathionine beta-synthase (CBS) domains in 

cystathionine {beta}-synthase, Proc Natl Acad Sci U S A 107, 20958-20963. 

38. Prudova, A., Martinov, M. V., Vitvitsky, V. M., Ataullakhanov, F. I., and Banerjee, R. 

(2005) Analysis of pathological defects in methionine metabolism using a simple 

mathematical model, Biochim Biophys Acta 1741, 331-338. 

39. Martinov, M. V., Vitvitsky, V. M., Banerjee, R., and Ataullakhanov, F. I. (2011) The 

logic of the hepatic methionine metabolic cycle, Biochim Biophys Acta 1804, 89-96. 

40. Zou, C. G., and Banerjee, R. (2003) Tumor necrosis factor-alpha-induced targeted 

proteolysis of cystathionine beta-synthase modulates redox homeostasis, J Biol Chem 

278, 16802-16808. 

41. Sen, S., Yu, J., Yamanishi, M., Schellhorn, D., and Banerjee, R. (2005) Mapping 

peptides correlated with transmission of intrasteric inhibition and allosteric activation 

in human cystathionine beta-synthase, Biochemistry 44, 14210-14216. 

42. Meier, M., Oliveriusova, J., Kraus, J. P., and Burkhard, P. (2003) Structural insights 

into mutations of cystathionine beta-synthase, Biochim Biophys Acta 1647, 206-213. 

43. Yamanishi, M., Kabil, O., Sen, S., and Banerjee, R. (2006) Structural insights into 

pathogenic mutations in heme-dependent cystathionine-beta-synthase, J Inorg 

Biochem 100, 1988-1995. 

44. Ojha, S., Wu, J., LoBrutto, R., and Banerjee, R. (2002) Effects of heme ligand 

mutations including a pathogenic variant, H65R, on the properties of human 

cystathionine beta-synthase, Biochemistry 41, 4649-4654. 

 
50



45. Chen, X., Wang, L., Fazlieva, R., and Kruger, W. D. (2006) Contrasting behaviors of 

mutant cystathionine beta-synthase enzymes associated with pyridoxine response, 

Hum Mutat 27, 474-482. 

46. Majtan, T., and Kraus, J. P. (2012) Folding and activity of mutant cystathionine beta-

synthase depends on the position and the nature of the purification tag: 

Characterization of the R266K CBS mutant, Protein Expr Purif 82, 317-324.  

47. Urreizti, R., Balcells, S., Rodes, M., Vilarinho, L., Baldellou, A., Couce, M. L., 

Munoz, C., Campistol, J., Pinto, X., Vilaseca, M. A., and Grinberg, D. (2003) 

Spectrum of CBS mutations in 16 homocystinuric patients from the Iberian Peninsula: 

high prevalence of T191M and absence of I278T or G307S, Hum Mutat 22, 103. 

48. Kozich, V., Sokolova, J., Klatovska, V., Krijt, J., Janosik, M., Jelinek, K., and Kraus, 

J. P. (2010) Cystathionine beta-synthase mutations: effect of mutation topology on 

folding and activity, Hum Mutat 31, 809-819. 

49. Moat, S. J., Bao, L., Fowler, B., Bonham, J. R., Walter, J. H., and Kraus, J. P. (2004) 

The molecular basis of cystathionine beta-synthase (CBS) deficiency in UK and US 

patients with homocystinuria, Hum Mutat 23, 206. 

50. Janosik, M., Oliveriusova, J., Janosikova, B., Sokolova, J., Kraus, E., Kraus, J. P., and 

Kozich, V. (2001) Impaired heme binding and aggregation of mutant cystathionine 

beta-synthase subunits in homocystinuria, Am J Hum Genet 68, 1506-1513. 

51. Shan, X., and Kruger, W. D. (1998) Correction of disease-causing CBS mutations in 

yeast, Nat Genet 19, 91-93. 

52. Shan, X., Dunbrack, R. L., Jr., Christopher, S. A., and Kruger, W. D. (2001) 

Mutations in the regulatory domain of cystathionine beta synthase can functionally 

suppress patient-derived mutations in cis, Hum Mol Genet 10, 635-643. 

53. Gallagher, P. M., Ward, P., Tan, S., Naughten, E., Kraus, J. P., Sellar, G. C., 

McConnell, D. J., Graham, I., and Whitehead, A. S. (1995) High frequency (71%) of 

cystathionine beta-synthase mutation G307S in Irish homocystinuria patients, Hum 

Mutat 6, 177-180. 

54. Hu, F. L., Gu, Z., Kozich, V., Kraus, J. P., Ramesh, V., and Shih, V. E. (1993) 

Molecular basis of cystathionine beta-synthase deficiency in pyridoxine responsive 

and nonresponsive homocystinuria, Hum Mol Genet 2, 1857-1860. 

55. Maclean, K. N., Gaustadnes, M., Oliveriusova, J., Janosik, M., Kraus, E., Kozich, V., 

Kery, V., Skovby, F., Rudiger, N., Ingerslev, J., Stabler, S. P., Allen, R. H., and Kraus, 

J. P. (2002) High homocysteine and thrombosis without connective tissue disorders 

 
51



are associated with a novel class of cystathionine beta-synthase (CBS) mutations, Hum 

Mutat 19, 641-655. 

56. Evande, R., Blom, H., Boers, G. H., and Banerjee, R. (2002) Alleviation of intrasteric 

inhibition by the pathogenic activation domain mutation, D444N, in human 

cystathionine beta-synthase, Biochemistry 41, 11832-11837. 

57. Gupta, S., Wang, L., Hua, X., Krijt, J., Kozich, V., and Kruger, W. D. (2008) 

Cystathionine beta-synthase p.S466L mutation causes hyperhomocysteinemia in mice, 

Hum Mutat 29, 1048-1054. 

58. Bross, P., Corydon, T. J., Andresen, B. S., Jorgensen, M. M., Bolund, L., and 

Gregersen, N. (1999) Protein misfolding and degradation in genetic diseases, Hum 

Mutat 14, 186-198. 

59. Yue, P., Li, Z., and Moult, J. (2005) Loss of protein structure stability as a major 

causative factor in monogenic disease, J Mol Biol 353, 459-473. 

60. Pey, A. L., Stricher, F., Serrano, L., and Martinez, A. (2007) Predicted effects of 

missense mutations on native-state stability account for phenotypic outcome in 

phenylketonuria, a paradigm of misfolding diseases, Am J Hum Genet 81, 1006-1024. 

61. Waters, P. J., Parniak, M. A., Akerman, B. R., Jones, A. O., and Scriver, C. R. (1999) 

Missense mutations in the phenylalanine hydroxylase gene (PAH) can cause 

accelerated proteolytic turnover of PAH enzyme: a mechanism underlying 

phenylketonuria, J Inherit Metab Dis 22, 208-212. 

62. Eiken, H. G., Knappskog, P. M., Apold, J., and Flatmark, T. (1996) PKU mutation 

G46S is associated with increased aggregation and degradation of the phenylalanine 

hydroxylase enzyme, Hum Mutat 7, 228-238. 

63. Gregersen, N. (2006) Protein misfolding disorders: pathogenesis and intervention, J 

Inherit Metab Dis 29, 456-470. 

64. Soto, C., and Estrada, L. D. (2008) Protein misfolding and neurodegeneration, Arch 

Neurol 65, 184-189. 

65. Singh, L. R., and Kruger, W. D. (2009) Functional rescue of mutant human 

cystathionine beta-synthase by manipulation of Hsp26 and Hsp70 levels in 

Saccharomyces cerevisiae, J Biol Chem 284, 4238-4245. 

66. Loo, T.W., and Clarke, D.M. (2007) Chemical and pharmacological chaperones as 

new therapeutic agents, Expert Rev Mol Med 9, 1-18. 

67. Leandro, P., and Gomes, C. M. (2008) Protein misfolding in conformational disorders: 

rescue of folding defects and chemical chaperoning, Mini Rev Med Chem 8, 901-911. 

 
52



68. Muntau, A. C., Roschinger, W., Habich, M., Demmelmair, H., Hoffmann, B., 

Sommerhoff, C. P., and Roscher, A. A. (2002) Tetrahydrobiopterin as an alternative 

treatment for mild phenylketonuria, N Engl J Med 347, 2122-2132. 

69. Erlandsen, H., Pey, A. L., Gamez, A., Perez, B., Desviat, L. R., Aguado, C., Koch, R., 

Surendran, S., Tyring, S., Matalon, R., Scriver, C. R., Ugarte, M., Martinez, A., and 

Stevens, R. C. (2004) Correction of kinetic and stability defects by tetrahydrobiopterin 

in phenylketonuria patients with certain phenylalanine hydroxylase mutations, Proc 

Natl Acad Sci U S A 101, 16903-16908. 

70. Pey, A. L., Perez, B., Desviat, L. R., Martinez, M. A., Aguado, C., Erlandsen, H., 

Gamez, A., Stevens, R. C., Thorolfsson, M., Ugarte, M., and Martinez, A. (2004) 

Mechanisms underlying responsiveness to tetrahydrobiopterin in mild phenylketonuria 

mutations, Hum Mutat 24, 388-399. 

71 Perez, B., Desviat, L. R., Gomez-Puertas, P., Martinez, A., Stevens, R. C., and Ugarte, 

M. (2005) Kinetic and stability analysis of PKU mutations identified in BH4-

responsive patients, Mol Genet Metab 86 Suppl 1, S11-16. 

72. Singh, L. R., Chen, X., Kozich, V., and Kruger, W. D. (2007) Chemical chaperone 

rescue of mutant human cystathionine beta-synthase, Mol Genet Metab 91, 335-342. 

73. Singh, L. R., Gupta, S., Honig, N. H., Kraus, J. P., and Kruger, W. D. (2010) 

Activation of mutant enzyme function in vivo by proteasome inhibitors and treatments 

that induce Hsp70, PLoS Genet 6, e1000807. 

74. Majtan, T., Liu, L., Carpenter, J. F., and Kraus, J. P. (2010) Rescue of cystathionine 

beta-synthase (CBS) mutants with chemical chaperones: purification and 

characterization of eight CBS mutant enzymes, J Biol Chem 285, 15866-15873. 

75. Kopecka, J., Krijt, J., Rakova, K., and Kozich, V. (2011) Restoring assembly and 

activity of cystathionine beta-synthase mutants by ligands and chemical chaperones, J 

Inherit Metab Dis 34, 39-48. 

76. Mendoza, V. L., and Vachet, R. W. (2008) Protein surface mapping using 

diethylpyrocarbonate with mass spectrometric detection, Anal Chem 80, 2895-2904. 

77. Urreizti, R., Asteggiano, C., Cozar, M., Frank, N., Vilaseca, M. A., Grinberg, D., and 

Balcells, S. (2006) Functional assays testing pathogenicity of 14 cystathionine-beta 

synthase mutations, Hum Mutat 27, 211. 

78. Lucas, M., Encinar, J. A., Arribas, E. A., Oyenarte, I., Garcia, I. G., Kortazar, D., 

Fernandez, J. A., Mato, J. M., Martinez-Chantar, M. L., and Martinez-Cruz, L. A. 

(2010) Binding of S-methyl-5'-thioadenosine and S-adenosyl-L-methionine to protein 

 
53



MJ0100 triggers an open-to-closed conformational change in its CBS motif pair, J Mol 

Biol 396, 800-820. 

79. Young, T. A., Skordalakes, E., and Marqusee, S. (2007) Comparison of proteolytic 

susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of 

conformational ensembles without altering structure or stability, J Mol Biol 368, 1438-

1447. 

80. Park, C., and Marqusee, S. (2005) Pulse proteolysis: a simple method for quantitative 

determination of protein stability and ligand binding, Nat Methods 2, 207-212. 

81. Park, C., and Marqusee, S. (2004) Analysis of the stability of multimeric proteins by 

effective DeltaG and effective m-values, Protein Sci 13, 2553-2558. 

 
 

 
54



SUPPLEMENT 
 
 
 
Supplement contains reprints of publications and manuscripts 5.1.1 – 5.1.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
55



 

56



Publication 5.1.1 
 
 
 
 
 
 
 
 
 
 
 
 

A. Hnízda et al. 
 
 
 

Reactivity of histidine and lysine side-chains with diethylpyrocarbonate – 
A method to identify surface exposed residues in proteins 

 
 
 
 
 

Journal of Biochemical and Biophysical Methods, 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
57



Available online at www.sciencedirect.com

J. Biochem. Biophys. Methods 70 (2008) 1091–1097
www.elsevier.com/locate/jbbm
te —

,⁎
Reactivity of histidine and lysine side-chains with diethylpyrocarbona
A method to identify surface exposed residues in proteins

Aleš Hnízda a, Jiří Šantrůček b, Miloslav Šanda c, Martin Strohalm b, Milan Kodíček b

a Institute of Inherited Metabolic Disorders, 1st School of Medicine, Charles University, 128 00 Praha 2, Czech Republic
b Department of Biochemistry and Microbiology, Institute of Chemical Technology in Prague, 166 28 Praha 6, Czech Republic

c Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Praha 6, Czech Republic

Received 7 June 2007; received in revised form 13 July 2007; accepted 15 July 2007
about the
ppropriate
tudied the
min). Our
tivity; the
etection of
Abstract

The chemical modification of amino acid side-chains followed by mass spectrometric detection can reveal at least partial information
3-D structure of proteins. In this work we tested diethylpyrocarbonate, as a common histidyl modification agent, for this purpose. A
conditions for the reaction and detection of modified amino acids were developed using angiotensin II as a model peptide. We s
modification of several model proteins with a known spatial arrangement (insulin, cytochrome c, lysozyme and human serum albu
results revealed that the surface accessibility of residues is a necessary, although in itself insufficient, condition for their reac
microenvironment of side-chains and the dynamics of protein structure also affect the ability of residues to react. However the d
modified residues can be taken as proof of their surface accessibility, and of direct contact with solvent molecules.
© 2007 Elsevier B.V. All rights reserved.
ectrometry; Protein modification; Surface accessibility; Surface mapping
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1. Introduction

Knowledge of the spatial arrangement of proteins
for understanding of their function in biological syste
crystallography and nuclear magnetic resonance (N
considered to be the most powerful techniques for
extended information about the 3-D structure of prote
techniques, however, have limitations. High-qualit
crystals are necessary for successful diffraction analy
can be both laborious and difficult to harvest them. On
hand, NMR spectroscopy enables the measurement of
cases the
ated with
for lysine
for tryp-
bromide
between
ous, e.g.
8,9]. This
unctional

Abbreviations: BSA, bovine serum albumin; DEP, diethylpyroca
DHB, 2,5-dihydroxybenzoic acid; DTT, dithiothreitol; HSA, human
albumin; IAA, iodoacetamide; LC-ESI MS/MS, liquid chromatog
electrospray ionization tandem mass spectrometry; MALDI-TOF MS
assisted laser desorption/ionization time of flight mass spectrometry
nuclear magnetic resonance; PSD, post source decay; Q-TOF, quadrup
of flight; SDS PAGE, sodium dodecylsulfate polyacrylamide gel electrop
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tions,

but it can only be used for smaller soluble pro
Consequently there is a great need for other method
provide at least partial structural information, while a
less labor and time-intensive.

The chemical modification of proteins for microenv
probing has been employed for the past 30 years [
advances in the development of mass spectrometric te
in the last decade have led to greater sophistication in
of this area. The approach of side-chain-specific mod
for example, has been applied to the monitoring of c
tional changes, especially during ligand binding
protein–protein interaction [5]. This method provides
tion about protein surface topology because in some
surface accessibility of residues can be directly correl
their reactivity. This relationship has been established
modification by succinic anhydride [6], as well as
tophan modification by 2-hydroxy-5-nitrobenzyl
(Koshland's reagent) [7]. However the relationship
reactivity and surface accessibility can be ambigu
tyrosine modification by iodine or tetranitromethane [
approach has been further developed by usage of bif

rbonate;
serum
raphy–
, matrix
; NMR,
ole-time
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chnická
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agents that might be used for protein cross-linking,
distance between cross-linked residues being estimate
ing to the length of the spacer [10].

More recently the technique of the chemical oxi
proteins has been developed. Hydrogen peroxide can be
source of hydroxyl radicals, the generation of which is
by chelated iron [11], by UV-radiation [12] or by laser f
Other protein oxidation methods include applying an
discharge (in electrospray ionization mass spectrometr
ments) [14], or the radiolysis of water using synchrotron
surface mapping of proteins using protein oxidation
promising area, in particular because the residues
modified are solvent-accessible. The only exception
spontaneously oxidizing buried methionine side-chains

Themain advantages of thesemethods for the determ
protein 3-D structure are their low material demands, an
that they provide an opportunity to study the desired pro
native conditions, which is especially valuable for m
proteins and lipoprotein particles [9,16]. In addit
collected from the chemical modification of proteins m
be used to predict protein structure using computational
[17,18].

In this work we focused on the reactivity of amino a
diethylpyrocarbonate (DEP), the agent most frequently
histidine modification [2]. In proteins, the ethoxyform
is bound to the nitrogen atom of imidazole (Fig. 1).
DEP concentration levels, other products are formed,
the imidazole ring is disrupted [19].

It should be noted that DEP is a quite non-specific
and that other residues, namely lysine and tyrosine,
[2]. Formerly, absorption spectrophotometry and the h
amine treatment of modified proteins were the o
available for discriminating among the reacting gro
The reaction between DEP and histidine is accompan
Fig. 1. Modification of histidine residue by DEP (CEt-His —
carbethoxyhistidine) [19].
ith the
ccord-

ion of
ed as a
alyzed
h [13].
ctrical
xperi-
]. The
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re the
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tion of
he fact
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s with
ed for
group
higher
which

difier,
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tools
[20].
by an

increase in absorbance in the wavelength range of 230
The extent of histidine modification can be quantifie
molar extinction coefficient, the most frequently us
being ε240 nm= 3200 dm3 mol− 1 cm− 1 [21].
modification causes a decrease in absorbance at the w
of 278 nm. The hydroxylamine treatment of modified
confirms lysine modification, which, in contrast
modifications, is not removed by this procedure [2,20

Modification of proteins by DEP has been studied
papers. Using NMR spectroscopy it has been found
extent of histidine modification in cytochrome b5 is in
by imidazole surface accessibility, pKA and hydroge
involvement [22]. In the study usingmass spectrometry
detection of DEP modification, angiotensin II and ins
used as model compounds, and histidine reactivity was
correlate with the surface accessibility of imidazole
atoms [23]; however this same study neglected tyro
lysine reactivity.

We conducted a detailed analysis of protein mod
including lysine and tyrosine modification. We cho
proteins of different sizes and structural characteristics
cytochrome c, lysozyme and human serum album
systematically studied the reactivity of their side-cha
attempt to find a correlation between modification a
protein surface topology.

2. Materials and methods

Human angiotensin II (hereinafter angiotensin), cy
c from horse heart (cytochrome), lysozyme from hen e
(lysozyme), human serum albumin (HSA), α-chym
(chymotrypsin), endoprotease Glu-C (Glu-C), iodoa
(IAA), dithiothreitol (DTT), trifluoroacetic acid and D
all purchased from SIGMA. Porcine insulin was su
carbethoxyhistidine, FCEt-His-formyl-biscarbethoxyhistidine, UCEt-His — urethane-
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NovoNordisk, trypsin (sequencing grade) by Prom
dihydroxybenzoic acid (DHB) by Bruker Dalton
hydroxylamine hydrochloride by Fluka.

2.1. Protein modification by DEP

Model peptides and proteins (1 mg/ml) were dis
50 mM phosphate buffer (pH 6.8). Insulin, which is
under these conditions, was dissolved in 50 mM NaH
9), with pH then adjusted with concentrated HCl to 6.
prepared DEP solution in methanol was added to the
obtain a protein:DEP molar ratio in the range of 1:1
Incubation took 1 h at room temperature. Excess
removed by gel filtration using a PD-10 column (A
Biosciences) and 50 mM NH4HCO3 as an elutio
[23,24].

2.2. Reaction of modified proteins with hydroxylamin

After protein incubation with DEP, freshly
hydroxylamine solution (2 M; pH value adjusted w
to 6.8) was added, the concentration of hydroxylam
reaction mixture being in the range of 0.1–1 M. Incuba
1 h at room temperature. Hydroxylamine was separ
protein by gel filtration (see above).

2.3. In-solution digestion

Model proteins were reduced by DTT (30 min, 50
concentration 5 mM). Thiol groups were modified
(30 min in dark, room temperature, final concentration
The proteins were digested by trypsin, chymotrypsin
in 50 mMNH4HCO3 (1 h, 37 °C). Cytochrome was di
only 10 min to achieve partial proteolysis. The protei
ratio was always 20:1 (w/w). The protein digest was m
matrix solution, and the mixture directly analyzed by
TOF MS (see below).

2.4. In-gel digestion

Modified cytochrome was used to test the applicat
gel digestion to ethoxyformylation analysis. After SD
the gel was stained with Coomasie Brilliant Blue. G
were excised and washed with distilled water. After d
with a solution of acetonitrile:50 mM NH4HCO3

reduction by 10 mM DTT occurred for 45 min a
Reduced thiols were modified by 55 mM IAA for 30 m
dark at room temperature. Protein was digested b
(12 ng/μl in NH4HCO3) overnight, at 37 °C. After
peptides were extracted from the gel with 0.1% triflu
acid in an ultrasonic bath.

2.5. MALDI-TOF MS

All samplesweremeasured using a Biflex IV (Bruker
equippedwith a nitrogen laser (337 nm) in positive reflec
ADHBmatrix was prepared as a solution of 10mg/ml in
, 2,5-
, and

ved in
oluble
3 (pH
reshly
tein to
1:100.
P was
rsham
buffer

pared
KOH
in the
n took
from

, final
IAA
mM).
Glu-C
ted for
nzyme
d with
LDI-

of in-
AGE,
slices
aining
v/v),
5 °C.
in the
rypsin
avage,
acetic

ltonic)
mode.
ixture

of acetonitril:0.1% trifluoroacetic acid (1:2 v/v). The sa
mixed with DHB in a matrix:sample ratio of 3.5:1, and 1
mixture was deposited on the target plate (dried droplet
The spectrometer was calibrated with a BSA tryptic
mixture before each analysis. Peptide fragmentation was
by MALDI-PSD. Data were collected and compiled usi
XTof and mMass software [25].

2.6. LC-ESI MS/MS

The peptides produced by the protein digestion pro
separated by a 2D CapLC (Waters), using the first
column (Symetry300 with stationary phase C18) wi
phase A (2% acetonitril +0.1% formic acid), and th
separating column (Atlantis with stationary phase dC
mobile phase A and mobile phase B (90% acetoni
formic acid). Initial conditions, maintained for 3 min,
of 90% A. The peptides were eluted (flow rate was 20
using a gradient program (1st min 90% A, 17th min
19th min 20% A, 22nd min 20% A, 23rd min 90% A,
90% A). Mass spectrometric detection was performed
TOF (Waters Micromass). Electrospray voltage was
cone voltage 40 V. The modified peptides were me
positive mode, energy of 35 eV being used to fragmen
charged precursor ions.

2.7. Surface accessibility determination

Surface accessibility values were collected from PD
the analyzed proteins (insulin — 4INS, cytochrome —
lysozyme— 1IO5 and 2CDS, HSA— 1AO6 and 1UO
MBG (free) software, which functions accordin
algorithm designed by B. Lee and F.M. Richards [26

3. Results

3.1. Analysis of angiotensin as a model peptide

Octapeptide angiotensin (Asp-Arg-Val-Tyr-Ile-His
contains three sites that can react with DEP: α-a
hydroxyphenyl, and imidazol groups [2]. The concen
DEP in the reaction mixture was chosen to obtain pep
molar ratios of 1:2 and 1:20 (0.92mMand 9.22mMresp
Mass increases in multiplies of 72 Da were detected ev
lower concentration ofDEP, indicating that several grou
simultaneously (Fig. 2). For the higher concentration
mass shifts of+134 and+162 Da were also detected
cases, indicating histidyl “overmodification” (Fig. 1).

Modified histidine was identified using MALDI-PS
spectra the intensive peak of its immonium ion (182
was detected. The amount of modified histidine and
residues can be estimated using difference spectroph
[21], which, in our study, showed that 22% of histidin
and 8% of tyrosine residues reacted at the peptide:DE
1:2. For the higher concentration of DEP, the molar
coefficient could not be applied because “overmod
caused undefined spectral changes.
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Fig. 2. Spectra of modified angiotensin. Peptide: DEP ratios were 1:2 (left) and 1:20 (right). Mass shift +72 Da corresponds to ethoxyformyl binding, the shifts
+134 Da and +162 Da correspond to histidine “overmodification”.

1094 A. Hnízda et al. / J. Biochem. Biophys. Methods 70 (2008) 1091–1097
The hydroxylamine treatment of modified peptides
as a useful tool for the identification of reacting gro
ethoxyformylated amino group is the only resistant one
groups losing their modifications easily under the proce
In the case of angiotensin, the difference absorbance
markedly after hydroxylamine treatment, indicating his
tyrosine modification. In the mass spectra, only one
amine) modification was found after hydroxylamine t
which is in strong agreement with data obtained fr
trophotometry (Fig. 3).

3.2. Analysis of model proteins

3.2.1. General remarks about the method
Spectrophotometry showed that tyrosine residue

studied proteins are non-reactive with DEP at the conc
used. To differentiate between modified lysine and
Fig. 3. The spectra of DEP modified angiotens
serve
s. The
e other
e [21].
reased
ne and
rimary
tment,
spec-

in the
rations
stidine

residues, we primarily used hydroxylamine treatm
MALDI-PSD MS is not very effective for more co
peptide mixtures, it was necessary to use more sophisti
techniques for peptide sequencing, which in the case
involved LC-ESI MS/MS. However, the low stability o
modification during liquid chromatography in acidic pH
common solution being trifluoroacetic acid) limits the u
ESI MS/MS. This is particularly the case for proteins o
molecular weight because their digests contain several
peptides at relatively lower concentrations. These probl
observed during analysis of HSA, but also of cytochro

3.2.2. Insulin
Insulin modification by DEP was studied for ins

ratios ranging from 1:1 to 1:100 (the DEP concentrat
reaction mixture being in the range of 0.15–15 m
detailed study we chose an insulin:DEP ratio of 1:10
in before and after hydroxylamine treatment (peptide:DEP ratio 1:2).
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Table 1
The outline of modified side-chains in insulin

Protease Peptide Detected mass [Da] Change of MW [Da] Modified residue Confirmed by method

Glu-C FVNQHLCGSHLVE 1611.74 +72 Phe1 MALDI-PSD MS; ESI MS/MS
Glu-C FVNQHLCGSHLVE 1698.67 +(2×72+15) Phe1, His5, His10 ESI MS/MS
Glu-C RGFFYTPKA 1158.56 +72 Lys26 xxx a

Chymotrypsin FVNQHL 829.4 +72 Phe1 MALDI-PSD MS
Chymotrypsin CGSHLVEALY 1220.61 +72 His10 MALDI-PSD MS
a The confirmation of Lys26 modification was not necessary in this case.

Table 3

1095A. Hnízda et al. / J. Biochem. Biophys. Methods 70 (2008) 1091–1097
DEP); the peaks of modified peptides were relatively
and irreversible overmodification of the imidazole rin
being detected.

We discovered that histidine modification disab
cystein acetamidation prior to proteolytic cleavage; we
an increase in peptide mass by just 15 Da, rather
increase by 72 Da, which suggested that acetamidatio
increases peptide mass by 57 Da, didn't occur (i.e.
+15 Da). Use of the MALDI-PSD MS and LC-ES
methods confirmed this hypothesis (Table 1). Havin
stood the problem, we were able to reliably identify
tions of His5, His10 and Lys26, as well as the α-am
Phe1. Our findings show that “+15 Da peaks” s
searched for in every detailed analysis of protein mo
by DEP in the case when acetamidation took place in t
preparation. Indeed, we also found this type of mass s
case of HSA modification.

3.2.3. Cytochrome
Cytochrome was modified by DEP at protein:D

ranging from 1:1 to 1:100 (0.08–8 mMDEP). At the ra
(0.4 mM), modifications of 5 lysine residues and 1
residue were identified (Table 2). In addition, H
determined to be non-reactive because mass shift of +
peptide 14–22 was not observed. It was more comp
analyze the reactivity of His26. By complete trypsin
dipeptide 26–27, which exhibits low molecular w
cannot be detected by MALDI-TOFMS, was formed.
after partial trypsin digestion (10 min), His26 was
peptide 26–38, with one uncleaved site; this pep
contains Lys27 and His33. The modification of His26
ing an accessible nitrogen atom was only observe
Table 2
The outline of modified residues in cytochrome for the ratio protein:DE

Peptide Sequence (trypsin digest) Detected
mass of
modified
peptide
[Da]

Reactive
residue

Surface
accessibily
nitrogen a
[Å2] (PDB
1AKK)

8–13 KIFVQK 834.53 Lys8 48.7
14–25 CAQCHTVEKGGK 1947.85 Lys22 33.8
28–38 TGPNLHGLFGR 1240.70 His33 19.4 (ND

(NE2)
39–53 KTGQAPGFTYTDANK 1670.90 Lys39 41.8
73–79 KYIPGTK 878.52 Lys73 21.4
80–87 MIFAGIKK 979.62 Lys86 11.5

Nomenclature of nitrogen atoms is according to PDB files.
nsive,
as not

entire
tected
an an
which
–57=
S/MS
under-
difica-
group
ld be
cation
ample
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ratios
of 1:5
stidine
8 was
Da of
ted to
estion,
t and
wever,
nd in
e also
ntain-
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highest concentration of DEP (ratio 1:100), resulting i
modified peptide. Using a lower concentration of D
1:10), we were only able to prove the modification
together with at least one of the histidines in this
Because modified His33 was also found in peptide 2
modification of His26 at lower DEP concentration lev
improbable.

Cytochrome was also used as a model for testing th
of in-gel digestion for the identification of modified
We found that ethoxyformyl–histidine cannot be de
this way because of its low stability during the p
However, because modified lysine is stable, it was p
use this method to find all modified lysines also dete
in-solution digestion.

3.2.4. Lysozyme
Using the protein:DEP ratio of 1:10 (0.7 mM

reactive lysine side-chains were identified (Table
modification of His15, the only histidine in this pro
only detected using the highest concentration of D
1:100). However, contrary to our mass spectrometry
absorption spectrophotometry indicated histidine mo
even for the lowest concentration used (ratio 1:1).

3.2.5. Human serum albumin
HSA was chosen to represent a “mid-sized”

Absorption spectrophotometry revealed that histidine
were highly reactive in HSA. Using the highest concen
DEP (ratio 1:100, concentration of DEP 1.5 mM) we o
reaction of up to 10 histidine side-chains per molecule
it should be emphasized here that spectrophoto
P of 1:5

of
toms
—

1); 1.1

Surface accessibilities of reactive atoms in lysozyme

Structure 1IO5 Structure 2CDS

Residue Surface accessibility NZ [Å2] Surface accessibility NZ [Å2]

Lys1-Nα 0.9 6
Lys1-Nε 2.5 10
Lys13 14.5 23.6
Lys33 14 26.6
Lys97 4 16.7
Lys116 24 16.9

Surface
accessibility
ND1 [Å2]

Surface
accessibility
NE2 [Å2]

Surface
accessibility
ND1 [Å2]

Surface
accessibility
NE2 [Å2]

His15 0 0.1 9.6 0.4
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Table 4
Surface accessibilities of reactive atoms in HSA

Stucture 1AO6 Structure 1UOR

Residue Surface accessibility NZ [Å2] Surface accessibility N

Lys137 38; 32.9 4.2
Lys205 42.7; 5.9 6
Lys212 37.5; 23.3 11.4
Lys262 48.4; 19.1 48
Lys351 20.2; 20.6 11.9
Lys414 8.4; 3.1 14.5
Lys525 11.5;17.1 49.2

Surface
accessibility
NE2 [Å2]

Surface
accessibility
NE2 [Å2]

Surface
accessibility
NE2 [Å2]

Surf
acce
NE2

His67 2.5; 3.1 0.3; 0.1 16.9 0
His105 0.5; 5.8 12.6; 1.9 2.9 18
His128 9.3; 7.3 9.1; 12.6 3.4 31.4
His146 5.3; 1.4 18.1; 15.1 0.4 0
His367 9.3; 11.3 1.4; 3.6 4.3 0.5

Structure 1AO6 of HSA in dimer form; first value is for chain a, secon
for chain b.

Table 5
Surface accessibilities of reactive atoms in insulin (PDB file — 4INS)

Position Surface accessibility
of ND1 atoms [Å2]

Surface accessibility
of NE2 atoms [Å2]

His5b 18.6; 0.8 2.3; 24.2
His10b 15; 14.3 29; 29.8

Position Surface accessibility of N atoms [Å2]

Phe1b 39.1; 37.1
Lys29b 14.9; 39.3

Insulin crystalized in dimer form; in the table there are values of accessibilities
for both monomers.
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considered to be only semi-quantitative method in
Using mass spectrometry it was only possible to pr
high reliability the modification of 5 histidine and
residues (Table 4). The other potentially reactive histid
found in the peptides containing lysine as well, but h
amine treatment confirmed lysine modification only
more, the methods of peptide sequencing used to
histidine modification (MALDI-PSD MS, LC-ESI
were inefficient in the case of HSA.

4. Discussion

4.1. Methodological aspects

Reaction of angiotensin with DEP revealed that th
non-specific even for its relatively low concentratio
mixture. Consequently, it was necessary to apply
which allows to discriminate among reactive gro
consider peptide sequencing by mass spectrometry an
hydroxylamine treatment as available and sufficient
this purpose. For higher concentration levels of DE
tensin:DEP ratio of 1:20), disruption of imidazole
observed. That is why the careful choice of DEP conc
for modification experiment is fundamental. Level
should be chosen high enough for successful det
modified peptides, on the other hand, exceedingly h
concentration can significantly affect studied 3-D str
protein.

4.2. Structural interpretation

4.2.1. Insulin
We identified four reactive residues— Phe1, His5, H

Lys26. The ability of these residues to react is in strong a
case.
e with
lysine
s were
roxyl-
urther-
nfirm
S/MS)

gent is
in the
nique
s. We
ainly
ls for
angio-

with the high surface accessibility of reactive atoms
The reaction of DEPwith insulin has already been descr
but we found some discrepancies between the publish
and our results. In the study cited, insulin was dis
ammonium acetate (pH 6.8), but we were unable to r
procedure; we were only able to dissolve insulin in N
pH 9, with the pH then being adjusted to 6.8 by HCl. Th
the authors used an insulin:DEP ratio of 1:50 is also que
At this concentration of DEP we observed irreversible d
of the imidazol ring, which can affect protein spatial arra
Our study of the reaction of DEPwith other proteins also
that such high concentrations of DEP increase the
modifications, thereby making both spectra anal
structural interpretation of the results difficult.

4.2.2. Cytochrom
All reactive residues contained nitrogen atoms with

high surface accessibility (Table 2), although we fou
accessible nitrogen atoms that were non-reactive (i.e
48 Å2). It was also interesting to observe that the reac
chain of Lys86 had the lowest surface accessibility of all
cytochrome. Nevertheless, His18 was identified as no
which is in good agreement with the surface inaccessibi
residue, which stabilizes hem by interaction with ferric i
results imply that surface accessibility is not the only
characteristic in determining the reactivity of amino a
DEP.

4.2.3. Lysozyme
Studying the relationship between reactivity and

accessibility was difficult in this case because we ex
essential discrepancies among the lysozyme PDB files
In spite of this fact out data confirmed that only surface a
residues of protein can react.

4.2.4. Human serum albumin
Again, structural interpretation of our results prov

difficult because in certain cases both PDB files
different characteristics for the same atom. Neverth
modified residues contained surface accessible nitrog
in at least one of the files (Table 4). Furthermore, two
(His39, His464) were found to be inaccessible in both
both of them were non-reactive. Therefore we conc

Z [Å2]

ace
ssibility
[Å2]

d one is
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surface accessibility is a necessary condition for the rea
HSA with DEP.

5. Simplified description of method and its applic

In this paper, we tested whether DEP can be used f
protein mapping. The method is technically relativ
simple. First, the native protein is modified by DEP.
excess of reagent is removed by gel filtration and the
protein is digested by specific protease (usually trypsin
mass spectra of the native and modified proteins are
and typical shifts of molecular masses are detected.
limitations of the method are the non-specificity of DE
and the relative instability of histidyl ethoxyformylati

Only surface-accessible lysyl and histidyl nitrogen
model proteins were found to be able to react w
Consequently, the surface accessibility is a necessary
(although not the only one) for their reactivity. That i
described method enables to determine important
characteristics of proteins with unknown spatial arran
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ABSTRACT: Cystathionine β-synthase (CBS) is a modular enzyme which catalyzes condensation of serine with
homocysteine. Cross-talk between the catalytic core and the C-terminal regulatory domain modulates the
enzyme activity. The regulatory domain imposes an autoinhibition action that is alleviated by S-adenosyl-
L-methionine (AdoMet) binding, by deletion of the C-terminal regulatory module, or by thermal activation.
The atomic mechanisms of the CBS allostery have not yet been sufficiently explained. Using pulse proteolysis
in urea gradient and proteolytic kinetics with thermolysin under native conditions, we demonstrated that
autoinhibition is associated with changes in conformational stability and with sterical hindrance of the catalytic
core. To determine the contact area between the catalytic core and the autoinhibitory module of the CBS
protein, we compared side-chain reactivity of the truncated CBS lacking the regulatory domain (45CBS) and
of the full-length enzyme (wtCBS) using covalent labeling by six different modification agents and subsequent
mass spectrometry. Fifty modification sites were identified in 45CBS, and four of them were not labeled in
wtCBS.One differentially reactive site (clusterW408/W409/W410) is a part of the linker between the domains.
The other three residues (K172 and/or K177, R336, and K384) are located in the same region of the 45CBS
crystal structure; computational modeling showed that these amino acid side chains potentially form a regulatory
interface in CBS protein. Subtle differences at CBS surface indicate that enzyme activity is not regulated by
conformational conversions but more likely by different allosteric mechanisms.

Cystathionine β-synthase (CBS,1 EC 4.2.1.22) is a pyridoxal
50-phosphate (PLP) dependent enzyme which catalyzes the first
step of the transsulfuration pathway, namely, the condensation
of serine with homocysteine to cystathionine (1). Its deficiency
due to missense mutations in the CBS gene is the most common
cause of inherited homocystinuria, a treatablemultisystemic disease
affecting to various extent vasculature, connective tissues, and
central nervous system (http://www.ncbi.nlm.nih.gov/omim/
236200). More than 100 different pathogenic amino acid substitu-
tions in the CBS protein were described, and the missense
mutations represent 86% of all analyzed patient alleles (http://
www.uchs.edu/cbs/cbsdata/cbsmain.htm).

Human CBS is a homotetrameric protein, and each subunit
(61 kDa) consists of 551 amino acids. The protein sequence

comprises three regions: the N-terminal heme-binding domain
(1-69), a highly conserved catalytic core (70-413), and the
C-terminal regulatory domain (414-551) (2), an autoinhibitory
module with binding site for the allosteric activator, AdoMet (3).

CBS activity can be stimulated in vitro by several processes: by
allosteric binding of S-adenosyl-L-methionine (AdoMet) (3), by
proteolytic cleavage yielding the C-terminally truncated dimer con-
taining identical subunits with molecular mass of 45 kDa (4), or by
heat activation (3, 5). Proteolytic activation of CBSwas observed
also in vivo in rat liver extract (6) and in HepG cell lines (7).

The spatial arrangement of CBSmolecule was solved byX-ray
crystalography for the truncated 45 kDa enzyme lacking the
C-terminal regulatory domain (amino acids 1-413, 45CBS)
only (8, 9); the 3-D structure belongs to theβ-family of PLP enzymes
such as O-acetylserine sulfhydrylase or tryptophan synthase.
However, the 3-D structure of the full-length CBS (wtCBS) has
not yet been determined, and therefore the atomic basis of the
enzyme regulation is still unclear. While hydrophobicity of the
C-terminal module and putative interdomain motions prevented
successful crystallization of wtCBS, alternative techniques can
yield at least partial information about the allosteric communication
in the wtCBS protein. Using H/D exchange, Sen et al. showed
that the region 356-385 exhibited significantly slower rate of
deuterium incorporation for wtCBS compared to 45CBS (10).
The data were used for evaluation of a protein-protein docking
exercise, anda structuralmodel of the full-lengthCBSwasproposed.
However, this model has not yet been supported and/or refined
by other structural techniques.
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070255/Z/03/Z) and by grants fromGrantAgency of CharlesUniversity
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Association Grant-in-Aid 09GRNT2110159, and by a grant from the
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CBS; wtCBS, full-lengthCBS;DEP, diethyl pyrocarbonate;NAI,N-acetyl-
imidazole; NEM, N-ethylmaleimide; NHS, sulfo-N-hydroxysuccinimido
acetate; NBS, N-bromosuccinimide; HPG, 4-hydroxyphenylglyoxal.
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In this study, we developed a procedure for covalent labeling
of solvent-accessible amino acid residues (11) in purified CBS.
Using this technique, we compared reactivity of the side chains
in 45CBS and wtCBS with six modifiers. These commonly used
compounds specifically react with histidines (diethyl pyrocarbonate;
DEP), tyrosines (N-acetylimidazole; NAI), cysteines (N-ethyl-
maleimide; NEM), lysines (sulfo-N-hydroxysuccinimido acetate;
NHS), tryptophans (N-bromosuccinimide; NBS), and arginines
(4-hydroxyphenylglyoxal; HPG) (12). Surfacemapping provided
data which faciliated development of the refined model for wtCBS
spatial arrangement and enabled insight into the structural basis
of the enzyme allosteric regulation.

EXPERIMENTAL PROCEDURES

Materials. If not specified otherwise, all chemicals were pur-
chased from Sigma-Aldrich.
Preparation of 45CBS and wtCBS. The 45CBS and the

wtCBS were expressed in Escherichia coli and purified to homo-
genity as previously described (13, 14).
Pulse Proteolysis. Pulse proteolysis was performed as de-

scribed previously (15, 16) with some modifications. Purified
45CBS or wtCBS (0.5 mg/mL) was equilibrated overnight at 4 �C
in 20 mM Tris-HCl (pH 8.0) containing 10 mM CaCl2 and urea
(0-7M) and then digested by thermolysin from Bacillus thermo-
proteolyticus (0.1mg/mL). To carry out pulse proteolysis of wtCBS
in the presence of AdoMet, wtCBS was incubated with 300 μM
AdoMet at room temperature for 10min prior to equilibration in
urea. The proteolytic pulse (1 min) was quenched in 20 mM
EDTA. Protein samples (7.5 μg) were analyzed by SDS-PAGE
using Tris-acetate SDS running buffer with 3-8% gradient
Tris-acetate precast gels (Invitrogen) and visualized byCoomassie
blue solution. Experiments were repeated three times. Band inten-
sities were quantified using GeneTools software (Syngene) and
were fitted into the sigmoidal equation:

ffold ¼ 1

1þ e pðcm - cÞ

using Origin 8.0 (Originlab); ffold represents a fraction of folded
proteins remaining intact after proteolytic pulse, cm urea con-
centration at which ffold is 0.5, and c urea concentration. Value of
p is a slope of curve at cm, and it reflects unfolding cooperativity.
Proteolytic Kinetics under Native Conditions. Purified

proteins (0.5 mg/mL) were diluted in 20 mM Tris-HCl (pH 8.0)
containing 10mMCaCl2 and digested by thermolysin (0.1mg/mL).
At the chosen time point, proteolysis was quenched in 20 mM
EDTA. SDS-PAGE and band quantification were performed
as described for pulse proteolysis. First-order kinetic constant of
proteolysis (kp) for each protein was determined by nonliner
curve fitting (17).
Preparation of Modified Protein Samples. CBS proteins

(1 mg/mL) were diluted in modification buffer and covalently
labeled. Each labeling procedure (18-23) (Table S1 in the Sup-
porting Information) was repeated three times. Reaction was
quenched by buffer exchange using Zeba Desalt spin columns
(ThermoFischer Scientific) with elution by 50 mM NH4HCO3.
Analysis ofModified Proteins. (i)Native Electrophoresis.

Labeled proteins (3 μg) were separated using Laemmli buffer
system without sodium dodecyl sulfate and with 3-8% gradient
Tris-acetate precast gel at 4 �C and visualized by silver staining
kit (Promega) according to manufacturer’s manual.

(ii) CBS Activity Assay. Enzyme activity of the proteins
was determined in the absence or presence of 1 mM AdoMet by

radiometric assay using [14C]-L-serine (Moravek Biochemicals);
the previously described method (24) was slightly modified. The
reactants and products were separated by thin-layer chromatog-
raphy using cellulose-HPTLC sheets (Merck) and subsequently
visualized using PhosphorImager system (Molecular Dynamics);
amount of radioactive cystathionine as the reaction product was
determined by ImageQuant 5.0 software (Molecular Dynamics).

(iii) In-Solution Proteins Digestion and Mass Spectro-
metric Analysis.Labeled proteins were reduced in 5mMdithio-
threitol at 50 �C for 30 min; reduced cysteines were acetamidated
in 25 mM iodoacetamide in the dark at room temperature for
30 min. Subsequently, they were digested by trypsin (Promega),
chymotrypsin, endoprotease Glu-C, and protease double combi-
nations (25) at 37 �C for 1 h. The CBS:protease ratio (w/w) was
20:1. The protein digest was fractionated by ZipTip (Millipore),
and each fraction was mixed with the matrix solution (saturated
solution of R-cyano-4-hydroxycinnamic acid supplied by Bruker
Daltonics, sample:matrix ratio of 1:1 v/v) and measured using
Autoflex II (Bruker Daltonics) mass spectrometer equipped with
a nitrogen laser (337 nm) in reflector positive mode (m/z range
from 500 to 4500). The mass spectrometer was externally cali-
brated by peptide calibration standard II (Bruker Daltonics).
All spectra were processed by Flex Analysis, Biotools 3.0 and
mMass 3.0 (26); mass accuracy tolerance was set at 50 ppm for
MS and (0.5 Da for MS/MS analyses (22).

With the exception of labeling with NBS, all other modification
sites were identified by detection of labeled peptides that were not
detected in unmodified controls (27); expected mass shifts for
each reaction are shown in Supporting Information Table S1.
The labeling with NBS induces tryptophan oxidation (19) which
is also considered to be a common artifact of sample han-
dling (28). Since we observed tryptophan oxidation even in the
unmodified controls, the residues labeled with NBS were deter-
mined by comparing peak intensities of the modified and the
unmodified peptides (29). Tryptophan residues were classified as
labeled if the relative intensity of modified peptide increased at
least 1.5-fold compared to the unmodified control. Identity of the
modified peptides generated from all labeling experiments was
confirmed by MS/MS measurements (method LIFT).

In general, mass spectrometric measurements were satisfacto-
rily reproducible; i.e., modification sites were determined identi-
cally in the repeated experiments.
Thermal Activation of wtCBS. The wtCBS diluted in the

reaction buffer was incubated at 55 �C for 10min and then chilled
on ice (3, 5). Thermally activated proteins were labeled and ana-
lyzed by native electrophoresis, activity assay, and mass spectrom-
etry as described above.
Protein StructureModeling.Model of the C-terminal regu-

latory module was built by homologymodeling packageModeller
9v3 (30) using the structure of CBS-domain containing protein
MJ0100 fromMethanocladococcus jannaschii (PDB ID3KPB) (31)
as a template. The initial sequence-sequence alignment was pro-
cessed by the web services of PHYRE (32) and PSI-BLAST (33)
and further modified manually. The resulting model was evaluated
using Prosa web service (34) and statistical coupling/protein
sector analysis (35). For this purpose, 6983 protein sequences
fromCBS subfamily were taken from the Pfam database (36) and
analyzed using a Python script based on the procedure introduced
by Halabi and co-workers (35).

Model of wtCBS dimer was obtained by docking of a single
C-terminal regulatory domain to 45CBS dimer (PDB ID 1JBQ,
with missing loops reconstructed byModeller package) using the
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program ZDOCK (37). This was followed by addition of the
C-terminal domain to the second subunit that was driven by sym-
metry. Differentially modified residues from the experimental
results were forced to be involved in an interdomain interaction
during the docking process.

Structural models generated by this approach were visually
inspected on the basis of several criteria, namely, involvement of
differentiallymodified resides in the interaction, dimer symmetry,
and protein stereochemistry. The full-length dimer was built by
Modeller using the best-suited structure from docking procedures.

RESULTS

Pulse Proteolysis and Proteolytic Kinetics under Native
Conditions. Using pulse proteolysis we determined the global
conformational stability and unfolding cooperativity of CBS
proteins (Figure 1 andTable 1). ThewtCBS exhibited lower resis-
tance to urea-induced denaturation and lower degree of unfolding
cooperativity compared to 45CBS. Binding ofAdoMet to wtCBS
moderately increased the protein stability toward urea, although
it remained lower than the 45CBS resistance. On the other hand,
unfolding cooperativity of wtCBS did not differ from wtCBS in
the presence of AdoMet. These data show that CBS proteins
adopt variant conformational states characterized by different
degree of the stability.

Proteolytic kinetics by thermolysin under native conditions
(Figure 1B) revealed slower cleavage of wtCBS compared to the

45CBS. AdoMet binding to wtCBS accelerated proteolysis;
however, it was still slower than cleavage of 45CBS.

These results are concordant with previously proposed regula-
tion mechanisms; i.e., catalytic core is sterically hindered in the
full-length protein by the C-terminal regulatory domain, and the
hindrance is partially cleared off upon AdoMet binding (3, 38).
To verify this hypothesis at the atomic level, we compared three-
dimensional structures of 45CBS and wtCBS using protein
surface mapping.
Surface Mapping of CBS. (i) Sequence Coverage. To

reach high degree of protein sequence coverage, 45CBS andwtCBS
were digested by three proteolytic enzymes, namely, chymotrypsin,

FIGURE 1: Pulse proteolysis in urea gradient (A) and proteolytic kinetics by thermolysin under native conditions (B) of CBS proteins. Below the
representative SDS-PAGEgels, the corresponding plots are shown. Points are depicted as ameanwith standard deviations; curveswere fitted by
nonlinear regression. (A) Molar concentration of urea for proteolytic pulse is indicated at the top of each line at the gels. Ffold values which
represent fraction of remaining intact protein after the proteolytic pulse are plotted against urea concentration. (B) Portion of remaining protein is
plotted against the incubation time. Each line of the gels is marked by designed time point of proteolysis in minutes; “N” refers to uncleaved control.

Table 1: Results from Pulse Proteolysis in Urea Gradient and Proteolytic

Kinetics under Native Conditionsa

pulse proteolysis

proteolytic kinetics

under native conditions

protein cm (mol/L) p kp (min-1)

wtCBS 2.70( 0.08 1.51( 0.15 0.026( 0.005

wtCBS þ AdoMet 3.26( 0.08 1.48( 0.13 0.056( 0.005

45CBS 4.08( 0.07 2.20( 0.28 0.075( 0.008

aTheCBSproteins (0.5mg/mL) were digestedwith thermolysin (0.1mg/mL).
Data were evaluated by nonlinear curve fitting. Value of cm reflects conforma-
tional stability, and value of p is informative about unfolding cooperativity;
the constant kp was acquired from the equation of first-rate kinetics.

68



Article Biochemistry, Vol. 49, No. 49, 2010 10529

endoprotease Glu-C, and trypsin and by their double combinations;
we obtained the sequence coverage of unmodified proteins 89%
and 94% for 45CBS and wtCBS, respectively. For each labeling
experiment, we selected the digests that yielded the highest amount
of reliably identified modified amino acid residues (mass spectro-
metric data set available in the Supporting Information).

(ii)ModifierConcentrations. In the next step, we optimalized
conditions of each labeling reaction as the excess of a modifica-
tion agent may disrupt the spatial arrangement of a protein (39).
Therefore, the lowest concentration of the modifier that enabled
efficient mass spectrometric detection of the modified residues
was chosen. The integrity of modified proteins was monitored by
disruption of their structure manifested by smears and lack of
sharp bands on native gels along with complete loss of enzymatic
activity. These effects were observed in the case of labeling with
tyrosinemodifiers tetranitromethane and iodine, and tryptophan
modifier 2-hydroxy-5-nitrobenzyl bromide (data not shown). Six
other modification agents (Supporting Information Table S1)
were feasible for this study since modified CBS proteins migrated
as sharp bands on native gels and retained high levels of enzymatic
activity (Figure S1 and Table S2 in the Supporting Information).
These data showed that most of the modification reactions
did not even partially disturb integrity of CBS proteins, with
the exception of the 45CBS labeled with NBS. In this case,
modification procedure decreased enzyme activity to 43% of the
unmodified control. This observation indicated that the labeling
reaction may partially affect the catalytic activity. Despite this
obstacle, we utilized NBS labeling since it was the only suitable
compound for the detecting of solvent-exposed tryptophans. The
eventual impact of the modification procedure on the protein
integrity should be thus taken into account during structural
interpretation.
Modification Sites in CBS.Modification reactions were ex-

amined by mass spectrometry, and residues labeled by six dif-
ferent agents were determined. The labeling was monitored
qualitatively; i.e., the evaluation was based on the presence/
absence of the modified peptides in 45CBS and wtCBS. This
approach is commonly known as chemical footprinting (40), a
suitable technique for study of protein/protein and protein/DNA
interactions (41).

Mass spectrometric analysis revealed 50 and 70 modification
sites in 45CBS and wtCBS, respectively (Table 2). Identity of the
modified peptides was verified byMS/MS sequencing. However,
several sites could not be confirmed due to insufficient fragmen-
tation of the modified peptides (see Table 2). The majority of the
unconfirmed peptides contain a modified arginine residue since
their tagging may affect the fragmentation process as previously
reported (42). Nevertheless, these peptides were included in the
data set, since their observedmasses were unambiguously assigned
against in silico generated digests.

In wtCBS, 46 labeled residues were identified in the active core
(region 1-413), and 24 sites were located in the regulatory domain
(414-551). Comparing the side-chain reactivity of 45CBS and
wtCBS in the region 1-413, we found four sites that were differ-
entially labeled, i.e.,modified in 45CBS andnotwtCBS (Figure 2;
MS/MS spectra are shown in Figures S2-S4 in the Supporting
Information). Differentially modified amino acid side chains
were found in the peptide 164-181 (residue K172 and/or K177
modified by NHS), in the peptide 326-345 (residue R336 modi-
fied by HPG), in the peptide 380-389 (residue K384modified by
NAI), and in the peptide 406-413 (residue W408 and/or W409
and/or W410 modified by NBS).

Differentially Reactive Peptides in Thermally Activated
CBS.Lack of reactivity of the above four peptides inwtCBS could
be explained by interdomain sterical hindrance that is indepen-
dent of the regulatory motions or by conformational changes
which modulate the enzymatic activity. Thus, we tested whether
the reactivity of the residues can be restored by stimulating activ-
ity of wtCBS. If so, such a result would suggest that the residues
are involved in conformational motions; on the other hand,
persistent unreactivity of these side chains would indicate their
location at the fixed interdomain interface. Since the surface
mapping in the presence of AdoMet could not be performed due
to this ligand’s reactivity towardmost of the modifiers, thermally
activated wtCBS was analyzed as a surrogate. This approach is
feasible since allosteric changes due to AdoMet binding and
partial heat denaturation share a common mechanism (3).

For covalent labeling of the stimulated wtCBSwe applied only
the modifiers and the digestions which provided differentially
reactive peptides. Structural integrity of thermally activated
wtCBS was preserved after the labeling reactions to an extent
similar to the nondenatured wtCBS at the same concentration of
modifier (enzyme activities are shown in Table S3, Supporting
Information). The restoration of the residue reactivity was observed
only for peptide 164-181 labeled by NHS, while the other three
peptides were not labeled in thermally activated wtCBS (Figure 2).
These findings indicate that both sterical hindrance and regulatory
motions are responsible for the differential reactivity of the residues.
Structural Prediction Using Computational Modeling.

Initially, homology model of the C-terminal regulatory domain
was built using archeal CBS domain as a template (31). The amino
acid sequence identity was 16% for the template-model pair.
Nevertheless, CBS domains form a conserved tertiary structure
despite rather low sequence identity of individual proteins (43).

Table 2: Modification Profile of CBS: List of Modified Amino Acidsa

modifier

DEP NBS NEM NAI NHS HPG

G1 W43 C15 G1 G1 R18

C15 W54 C52 K25 K25 R45

H17 W208 C272 K39 K39 R182/R190/

R196b

H22 W408/W409/

W410

C370 K72 K72 R209

H65/H66/

H67

M505b C431 K137 K137 R336b

H203 M529b K172/K177c K172/K177 R369b

K211 K211 K211 R389

K406 K271 K271 R413

H411 Y308 K322 R439

H433 K322 K405 R491b

H501 K359 K406 R498

H507 K384 K441 R527

K398/K405b K472 R548

K406 K481

K441 K485

K472 K488

Y484/K485 K523

K488 K551

K523

K551

aDifferentially reactive residues (modified in 45CBS but not in wtCBS)
are underlined. bIdentity of modified peptide could not have been con-
firmed by MS/MS due to insufficient fragmentation. cReactivity of these
residues could have been confirmed by MS/MS only in the case of 45CBS.
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Since this structural module contains many flexible loops,
additional restraints were applied; namely, residues 466-472 and
537-549 of the CBS were forced to R-helix formation according
to secondary structure prediction, and the distance between CR
atom of L412 and CD2 of L539 was restrained to 4 Å according
to structural data of the template.The resulting structure was
evaluated by Prosa and yielded a value of -6.38 which is com-
parable to values usual for experimental structures of the same
size and similar to the score for the single subunit of the template
(-7.50). Moreover, statistical coupling/protein sector analysis
was used for evaluation of themodel. Protein sectors are coevolv-
ing networks of residues supposed to play a common role (i.e.,
catalytic, stabilizing etc.) and thus showing a spatial proximity.

Two sectors with evolutionary coupled residues were identified in
the autoregulatory domain (Figure 3A), showing a strong coevolu-
tion within each sector but a loose one between each other
(Figure 3B). The residues from the particular sector were found
next to each other in the homology model which indicated a high
plausibility of the resulting structure. In addition, the residue I483
was located at the sector interface and revealed strong coupling
with both sectors (further details on SCA/sectors can be obtained
in the Supporting Information).

In the next step, the modeled C-terminal domain (residues
410-545) was docked onto the available structure of 45CBS. The
initial docking was not successful, indicating that certain con-
formational changes in the catalytic domain may be associated

FIGURE 2: Differentially reactive peptides and their modification sites (A) together with corresponding representative spectra (B). Reactivity of
the peptides is shown in 45CBS, wtCBS, and thermally activated wtCBS.
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with the binding of the regulatory domain. Therefore, the sterically
hindering C-terminal helical region of the catalytic domain
(residues 385-397) was deleted, and the truncated structure
was used as bait with residues K172, K177, and R336 being
forced to interaction. Other differentially reactive residues (K384
andW408/409/410) were not involved in docking as they are located
in the linker between the catalytic and autoregulatory domains;
their topology was used rather for verification of the resulted
models. Thismodifieddockingprocedure resulted in the generation
of 79 structures;model no. 32was selected by visual inspection on
the basis of the location of the differentially modified residues,
protein symmetry, and general stereochemistry. Using the result
from the docking procedures, the structure of the full-length
dimer was built. Plausibility of the structural model is greatly
supported by data from surface mapping experiments: differen-
tially reactive residues are located at the regulatory interface
while residues modified in 45CBS as well as in wtCBS are still
solvent-accessible (see Figure 3D,E; structural model is available
in the Supporting Information). However, the resulting model
represents a possible structural interpretation of our experimental
data and should not be interpreted as an atom-resolved structure
due to limitations of homology modeling and protein-protein
docking procedures.

DISCUSSION

Regulatory Interface in CBS. A cross-talk between the
active core and the regulatory domain in CBS modulates its
enzyme activity. The main aim of the study was to compare
residue reactivity in 45CBS and wtCBS as the differences may
reveal the regulatory network. In 45CBS, we identified 50 labeled
residues in total, and we found only 4 modification sites which
were not detected in wtCBS (Table 2). Using the thermally

activated wtCBS as a surrogate of the AdoMet activated enzyme,
we tested whether the abolished side-chain reactivity could be
restored by the allosteric stimulation. The only differentially
reactive peptide 164-181 was labeled in the thermally activated
wtCBS, suggesting that this region (namely, residues K172 and/
or K177) increases surface accessibility during enzyme stimula-
tion and that it is involved in regulatory motions of CBS. Three
other differentially reactive peptides were not labeled in wtCBS
even upon thermal activation. Therefore, these side chains (R336,
K384, W408 and/or W409 and/or W410) are probably localized
at the fixed domain interface.
Contact Area between the Catalytic Core and the Regu-

latory Domain. Three differentially modified residues (K172
and/or K177, R336, K384) were located in the same region of the
45CBS crystal structure (see Figure 2E), and docking procedure
showed that these residues may form an interface between the
catalytic core and the regulatory domain. The region possessing
differentially reactive sites was also predicted to form inter-
domain contact area due to the presence of hydrophobic residues on
the surface of the 45CBS crystal structure (44). Several CBS patient-
derived mutations, namely, the p.V173M (45), the p.E176K (46),
and the p.E302K (47), which are located at this putative interface,
exhibited enzyme activity similar to wtCBS and failed to be
allostericaly stimulated by AdoMet. These observations indicate
that mutations of these residues affect interdomain interactions
and the CBS allostery.

Another differentially reactive site, the tryptophan clusterW408/
9/10, was not previously assigned by the diffraction analysis of
the 45CBS crystal; thus we propose that it forms a flexible region
in 45CBS and a loop between the active core and the C-terminal
domain which is sterically hindered in the wtCBS. As mentioned
in the Results, findings dealing with the residues W408/9/10

FIGURE 3: Computationalmodeling ofCBS structure. (A)Model ofC-terminal domain generated by homologymodeling. Reliability of the built
structure was assessed by protein sector analysis. Each sector is depicted by its particular color (green and orange, respectively); residue I483,
coupled in both sectors, is indicated in magenta. The dashed line indicates the axis of pseudo-2-fold symmetry of the subunit; arrows show the
potential binding sites for AdoMet. (B) Statistical coupling between sector residues. It illustrates that these positions in the structure of the
autoregulatory domain are strongly coupled within each sector but loosely coupled between the two sectors. Colors of the sectors are consistent
with panel A. (C) Scheme of tetrameric assembly in CBS using available structural data. Dimer-dimer interface is located between the
autoinhibitory domains. Dimers of catalytic core are colored in dark color, autoinhibitory modules are depicted in light colors. (D) Structural
model of dimericwtCBS. Positionof differentially reactive clusterW408/9/10 is indicated in green.Each subunit is depicted in particular color, red
andblue, respectively.Autoinhibitorymodule is colored in light colors; catalytic core is depicteddarkly. (E)Differentially reactive residues located
in crystal structure of 45CBS, indicated in green. Each subunit in dimer is colored in blue and red, respective.
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should be takenwith care asmodification of 45CBSwithNBS led
to apparent decrease in enzymatic activity. On the other hand, the
electromigration of modified 45CBS was undistinguishable from
the unmodified control, indicating that quaternary structure was
preserved after the labeling. We assume that the protein structur-
al integrity was not essentially disrupted and that the enzyme
activity was affected due to the local conformational changes.
Moreover, conclusions about different microenvironment along
the tryptophan cluster are also supported by changes in trypto-
phan flourescence spectra reported previously (3, 4).

However, a previously published study involving H/D exchange
(10) revealed the interdomain contact at a different region of the
CBS structure. Although the changes in microenvironment of
K384 were observed by both the H/D exchange and the covalent
labeling in the present study, other differentially solvent-accessible
regions were found using just single technique. We observed
changes in residues K172/K177, R336, and W408/W409/W410,
but they were not reported by Sen et al. On the contrary, H/D
exchange study revealed differences in the segment of 359-370,
but our covalent labeling experiments did not confirm them; in
this region, threemodification sites (K359, R369, andC370) were
identically observed in the both proteins, 45CBS and wtCBS.
Similarly to our study, results from H/D exchange were further
supported by properties of certain mutant proteins, namely of
double-linked mutant p.P78R/K102N (48). Its amino acid sub-
stitutions are located in the proximity of the differentially solvent-
accessible region 359-370, and this mutant affects the protein
allostery driven by AdoMet binding.

The discrepancies between results of covalent labeling and H/D
exchange are unclear. The inconsistency may reflect the methodo-
logical limitations of each technique. Our experimental setup was
designed for identification of differentially reactive sites rather
than for quantification of small changes in extent of modification.
Mass spectrometry analyses of the reactions were performed quali-
tatively (with exception of labeling with NBS; see Experimental
Procedures) which enabled determination of totally blocked
residues only. On the other hand, wemight have lost information
about subtle conformational motions that would be revealed
by quantitative evaluation. Conformational study using H/D
exchange has its own limitations as well. It determines the rate
of deuterium incorporation to protein backbone from several
seconds to hours, and consequently any differences on a short
time scale of the exchange may be missed. Therefore, each of
these two approaches might locate only particular changes in the
CBS protein. Unfortunately, an attempt to generate amodel con-
sistent with both data sets was not successful (data not shown).
We can speculate that the discrepancies between these studies
might arise from different conditions and procedures during
preparation of CBS proteins. Consequently, each study would
have analyzed only limited set of all possible states from the con-
formational ensemble. Nevertheless, the inconsistency needs to
be examined by additional structural techniques.
Allostery of CBS Is Not Associated with Extensive Con-

formationalChanges.Covalent labeling aswell asH/D exchange
showed that autoinhibition of the active core by the regulatory
domain is associated with only subtle changes at the protein
surface. These observations indicate that the CBS allostery is not
necessarily directed by extensive conformational motions, sug-
gesting that other factorsmay play an important role. Changes in
structural flexibility and “population shift” as determinants for
protein allostery were proposed in the past decade (49-51); it has
been shown that the ligand binding often leads to stabilization

and/or rigidification of certain conformations (52). As the
enzyme activity of CBS proteins (14) is directly proportional to
the conformational stability, as determined by pulse proteolysis
(Table 1; 45CBS, wtCBS in the presence of AdoMet, wtCBS
in the absence of AdoMet, in descending order), it is tempting to
speculate that CBS regulation may be driven by changes in
protein dynamics. However, detailed knowledge of this type of
CBS allostery is limited since the 3-D structure of the protein has
not yet been reliably described in sufficient resolution.
AdoMet Binding Site. Furthermore, the designed model of

wtCBS provides information about the structural features of
several sites with putative regulatory function. Since the spatial
arrangement of archeal CBS-domain pair in complex with
AdoMet was solved recently (31) and we used this structure as
a template for homology modeling of the C-terminal regulatory
domain, the possible AdoMet binding site can be proposed. An
interesting feature of the C-terminal autoinhibitory domain is its
pseudo-2-fold symmetry (the axis indicated in Figure 3A) which
forms the basis for two ligand binding sites in each regulatory
subunit (a and b in Figure 3A). The experimental structures of
the template-ligand complexes showed that the ligands bind to
either one of these sites. Sequence similarity does not provide
enough information to precisely identify the AdoMet binding site
in CBS. However, AdoMet is likely bound in site b (Figure 3A)
including the residueD444 that has been identified to be involved
in the autoinhibitory function (38).
CXXC Oxidoreductase Motif. CBS also contains the

CXXC oxidoreductase motif which spans residues 272-275.
Here we identified the C272 as a solvent-exposed residue both
in the 45CBS and in thewtCBS. This observation disagreeswith a
previous study that used three different cysteinemodifying agents
and anN-terminal sequencing of carboxymethylatedpeptides (5).
However, our findings are in agreement with the crystal structure
of the 45CBS. The solvent accessibility of CXXCmotif observed
in our study may thus support the notion of its possible role in
redox sensing (53), although the biological relevance of this
observation remains to be answered.
Residues Responsible for Aggregation and Allostery.

Other residues, which play important role in CBS function, were
revealed by labeling with NAI; this modification decreased the
tendency of wtCBS to form higher order oligomers and increased
its catalytic activity (Table S2 and Figure S1 in the Supporting
Information). Similar effect was also observed after modification
by NEM as reported previously (5). Frank et al. explained the
stabilizing action of the NEM by covalent blocking of C15, the
residue responsible for aggregation of wtCBS.

Interestingly, wtCBS labeled with NAI failed to be fully
activated upon AdoMet binding while modification of wtCBS
by NHS, which exhibited similar modification pattern as NAI
(Table 2), did not cause such effects. These data indicate that
certain modified residues are responsible for CBS aggregation
and also for allosteric activation, and their function can be re-
pressed by covalent blocking of the reactive groups. Comparing
the results from labeling with NAI and NHS, we can point out
three candidate residues, namely, Y308,K359, andY484, that are
modified by NAI and not by NHS. However, we could not
specify the “aggregation inducing“ and “regulation networking“
side chains in this study.
Quarternary Structure of wtCBS. The relevance of the

structural model proposed in this paper is limited as dimeric full-
length CBS does not explain the atomic basis of the protein tetra-
merization. Our results from surface mapping revealed a single
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contact area between the catalytic core and the C-terminal regu-
latory domain; this is in agreement with the solved structure of
the dimeric protein MJ0100 from M. jannaschii containing CBS
pairs binding AdoMet (31) and suggests that the autoinhibitory
module contains dimer-dimer interface responsible for the CBS
tetramer assembly (scheme in Figure 3C). This proposal is also in
agreement with the previously built structural model of wtCBS
derived from H/D exchange (54).

In summary, we covalently labeled solvent-exposed side chains
in CBS, and we identified the interface between the active core
and the regulatory domain. The data were applied for generation
of the refined full-length CBS structural model. Our results also
indicate that the allostery of CBS is not associated with extensive
conformational conversion but rather with changes in protein
dynamics.
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Table S1: Conditions of modification reactions used in this study. The most reactive amino 

acid is written in the first position, other potentially reactive amino acids are in the brackets. 

 

Modifier Modification buffer 

Reaction 

time [min] Reactive amino acid residuesa

Mass shift in 

modified peptides References 

DEP 50 mM potassium phosphate; pH 6.8 60 H (K, C, N-terminal amino acid) +72; +15 (18) 

NBS 50 mM potassium phosphate; pH 6.5 5 W (M) +16; +32 (19) 

NEM 20 mM Tris-HCl, pH 8.0 30 C +125 (5, 20) 

NAI 10 mM potassium phosphate, pH 7.5 60 Y (K, N-terminal amino acid) +42 (21) 

NHS 100 mM sodium bicarbonate, pH 8.5 30 K (N-terminal amino acid) +42 (22) 

HPG 50 mM sodium bicarbonate, pH 8.0 60 R +132 (23) 
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Table S2: Enzymatic activities of modified CBS for molar ratio of protein:modifier used in 

the study.  Relative activities are refered to  enzymatic activities of unmodifed control in 

absence of AdoMet; values are expressed as a mean of 3 measurements with standard 

deviation. Activation of CBS activity by AdoMet in the unmodified control differed for each 

labelling compound due to variant sample preparation.  

   
Relative activity of 

modified protein  

Activation of CBS activity by 

AdoMet 

Modifier Protein 
CBS:modifier molar 

ratio 
-AdoMet +AdoMet 

unmodified 

control 

modified 

protein 

45CBS 0.77 ± 0.13 N/A N/A N/A 
DEP 

wtCBS 
1-5 

0.90 ± 0.16 2.45 ± 0.47 3.3 2.7 

45CBS 0.43 ± 0.05 N/A N/A N/A 
NBS 

wtCBS 
1-1 

1.04 ± 0.20 1.63 ± 0.35 2.3 1.6 

45CBS 0.98 ± 0.18 N/A N/A N/A 
NEM 

wtCBS 
1-1 

1.36 ± 0.23 3.18 ± 0.33 2.9 2.3 

45CBS 1.09 ± 0.15 N/A N/A N/A 
NAI 

wtCBS 
1-250 

1.18 ± 0.16 1.67 ± 0.36 3.0 1.3 

45CBS 0.77 ± 0.17 N/A N/A N/A 
NHS 

wtCBS 
1-10 

0.73 ± 0.13 2.08 ± 0.38 2.7 2.7 

45CBS 1-250 0.69 ± 0.08 N/A N/A N/A 
HPG 

wtCBS 1-500 0.68 ± 0.10 1.26 ± 0.10 3.1 1.9 
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Table S3: Relative enzymatic activities of modified thermally activated wtCBS.  Relative 

activities are given as ratios of modified enzyme to an  unmodifed control; values are 

expressed as a mean with standard deviation. Heat stimulation shows increase in enzymatic 

activity upon partial thermal denaturation. 

 

Modifier Rel. Activity Heat stimulation 

NAI 0.46 ± 0.12 2.1 

HPG 0.60 ± 0.07   1.5 

NBS 0.56 ± 0.09  1.6 

NHS 0.77 ± 0.19 1.9 
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Figure S1: Analysis of labelled CBS by native electrophoresis. Arrows indicate bands 

corresponding to common oligomeric forms of the unmodified proteins (A – dimeric 45CBS; 

B – higher order oligomers of 45CBS; C – tetramer of wtCBS; D – higher order oligomers of 

wtCBS). Molecular weight markers were not used since migration distance of CBS oligomers 

is not determined by their masses only; the expected migration of oligomers is shown by 

arrows in accordance with previous reports on behaviour of CBS in native electrophoretic gels 

(5, 47).  

Each labelling experiment is placed in separated box with identical numbering: 1 – 

unmodified 45CBS; 2 – labelled 45CBS; 3 – unmodified wtCBS; 4 – labelled wtCBS. 

Proteins shown in this figure were labeled by modifier at the same concentrations used for 

surface mapping (ratio of protein:modifier are shown in Table S2). 
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Figure S2: MS/MS spectrum of differentially reactive peptide 406-413 (KPWWWHLR) that 

contained modified tryptophane cluster W408/409/410. The labelling was perfomed with 

NBS. 
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Figure S3: MS/MS spectrum of differentially reactive peptide 380-389 (NYMTKFLSDR) 

that contained modified K384. The labelling was performed with NAI. 
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Figure S4: MS/MS spectrum of differentially reactive peptide 164-181 

(RCIIVMPEKMSSEKVDVL) that contained modified K172 and/or K177. The labelling was 

performed with NHS. 
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Evaluation of the model of the autoinhibitory domain 

using statistical coupling analysis and protein sector analysis 

 

Statistical coupling analysis (SCA) and protein sector identification was performed using our 

in-house Python script on the basis of procedures introduced by Halabi an co-workers [Halabi 

2009]. Data were visualized using Matplotlib library (matplotlib.sourceforge.net). The 

multiple sequence alignment of CBS domain sequences was obtained from Pfam database 

[Finn, 2010]. Incomplete sequences were manually removed, resulting to 6,983 sequences. 

Positions with a high number of gaps (> 20 %) were excluded from the analysis (Scheme SI). 

The multiple sequence alignment (6,983 x 84) was then converted to a binary form (1 = the 

prevalent amino acid in the position, 0 = otherwise). Figure S5 shows that application of a 

binary alignment does not cause a significant loss of information. Figure S6 shows relative 

entropies (conservation of individual alignment positions, top) and statistical coupling matrix 

(evolutionary correlation between positions, bottom). High coupling values indicate that a 

presence of amino acid residue in one position influences the presence of another amino acid 

residue in another position. Eigenvalues of this matrix are shown as a histogram in Figure S7. 

The first eigenvector correlates with a net contribution of each position (Figure S8) and it is 

therefore not used in further analysis. The second, third and fourth eigenvectors show an 

evolutionary coupling are is illustrated in Figure S9. The weight of the second eigenvector of 

the position corresponding to Ile483 in human CBS is high as this position is strongly 

correlated with others. It was therefore identified as a separate sector (magenta). Other two 

sectors were identified as positions with weights of the third eigenvector lower than –0.12 

(green) or higher than 0.17 (orange). Figure 3A illustrates the model of CBS domain with 

sector residues shown in surface representation. The matrix in Figure 3B was obtained by 

filtering sector position from the matrix in Figure S6. Detailed explanation of statistical 
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coupling analysis and protein sectors can be obtained in the article of Halabi and co-workers 

[Halabi, 2009]. 
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  43     50        60        70        80        90       100 
  |      |         |         |         |         |         | 
  WIRPDAPSRCTWQLGRPASESPHHHTAPAKSPKILPDILKKIGDTPMVRINKIGKKFG 
 
101     110       120       130       140       150       160 
|        |         |         |         |         |         | 
LKCELLAKCEFFNAGGSVKDRISLRMIEDAERDGTLKPGDTIIEPTSGNTGIGLALAAAV 
 
161     170       180       190       200       210       220 
|        |         |         |         |         |         | 
RGYRCIIVMPEKMSSEKVDVLRALGAEIVRTPTNARFDSPESHVGVAWRLKNEIPNSHIL 
 
221     230       240       250       260       270       280 
|        |         |         |         |         |         | 
DQYRNASNPLAHYDTTADEILQQCDGKLDMLVASVGTGGTITGIARKLKEKCPGCRIIGV 
 
281     290       300       310       320       330       340 
|        |         |         |         |         |         | 
DPEGSILAEPEELNQTEQTTYEVEGIGYDFIPTVLDRTVVDKWFKSNDEEAFTFARMLIA 
 
341     350       360       370       380       290       400 
|        |         |         |         |         |         | 
QEGLLCGGSAGSTVAVAVKAAQELQEGQRCVVILPDSVRNYMTKFLSDRWMLQKGFLKEE 
 
401     410       420       430       440       450       460 
|        |         |         |         |         |         | 
DLTEKKPWWWHLRVQELGLSAPLTVLPTITCGHTIEILREKGFDQAPVVDEAGVILGMVT 
                 #                   *         #      #  * * 
               ELGLSAPLTVL-TITCGHTIEILREKGFDQAPVVDEAGVILGMVT 
               |         |          |         |         |    
               0        10         20        30        40    
 
461     470       480       490       500       510       520 
|        |         |         |         |         |         | 
LGNMLSSLLAGKVQPSDQVGKVIYKQFKQIRLTDTLGRLSHILEMDHFALVVHEQIQYHS 
  *                   @               *   *      # # 
LGN-LSSLLA----PSDQVGK-I-K--KQI-LTDTLGRLSHILEMD--ALVV 
       |              |             |           |  | 
      50             60            70          80 83 
 
521     530       540        551 
|        |         |          | 
TGKSSQRQMVFGVVTAIDLLNFVAAQERDQK 
 

 

Scheme SI: Amino acid sequence of human CBS. The autoregulatory domain residues 

analysed by statistical coupling analysis are shown as an alignment with the full sequence (in 

grey, missing positions were removed prior to analysis because they contained a large number 

of gaps in the multiple sequence alignment of the family). Identified sectors are highlighted 

(in green, orange and the residue Ile483 in magenta). 
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Figure S5: Agreement between the entropy of the prevalent amino acid and the overall 

relative entropy. 

 
 

86



 

Figure S6: Conservation of individual positions in the multiple sequence alignment of CBS 

domains, described as relative entropy (top) and SCA matrix (bottom). Alignment positions 

correspond to Scheme SI. 
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Figure S7: Eigenvalue histogram for the SCA matrix. The first, second and third eigenvalues 

are indicated. 
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Figure S8: The first eigenvector of SCA matrix against the net contribution of each position 

to the total correlation. 
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Figure S9: Residue weights along eigenvectors 2, 3 and 4. Sector residues are indicated. 
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Novel structural arrangement of nematode cystathionine β-synthases:
characterization of Caenorhabditis elegans CBS-1
Roman VOZDEK, Aleš HNÍZDA, Jakub KRIJT, Marta KOSTROUCHOVÁ and Viktor KOŽICH1

Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine and General University Hospital, Ke Karlovu 2, 128 08, Praha 2, Czech Republic

CBSs (cystathionine β-synthases) are eukaryotic PLP (pyridoxal
5 *-phosphate)-dependent proteins that maintain cellular
homocysteine homoeostasis and produce cystathionine and
hydrogen sulfide. In the present study, we describe a novel
structural arrangement of the CBS enzyme encoded by the cbs-1
gene of the nematode Caenorhabditis elegans. The CBS-1 protein
contains a unique tandem repeat of two evolutionarily conserved
catalytic regions in a single polypeptide chain. These repeats
include a catalytically active C-terminal module containing a PLP-
binding site and a less conserved N-terminal module that is unable
to bind the PLP cofactor and cannot catalyse CBS reactions, as
demonstrated by analysis of truncated variants and active-site
mutant proteins. In contrast with other metazoan enzymes, CBS-
1 lacks the haem and regulatory Bateman domain essential for

activation by AdoMet (S-adenosylmethionine) and only forms
monomers. We determined the tissue and subcellular distribution
of CBS-1 and showed that cbs-1 knockdown by RNA interference
leads to delayed development and to an approximately 10-fold
elevation of homocysteine concentrations in nematode extracts.
The present study provides the first insight into the metabolism of
sulfur amino acids and hydrogen sulfide in C. elegans and shows
that nematode CBSs possess a structural feature that is unique
among CBS proteins.

Key words: cystathionine β-synthase (CBS), Caenorhabditis
elegans, domain architecture, homocysteine, hydrogen sulfide,
knockdown.

INTRODUCTION

Methionine and cysteine are sulfur amino acids that play
important roles in many biochemical reactions. Methionine,
an essential amino acid, can be irreversibly converted into
cysteine in a series of reactions. Methionine is first converted
into AdoMet (S-adenosylmethionine), which serves as a methyl
donor in various transmethylation reactions. A product of these
transmethylations, S-adenosylhomocysteine, is further converted
into homocysteine, which is a key intermediate in the metabolism
of sulfur amino acids. In animal tissues, homocysteine is
universally remethylated to methionine by methionine synthase
using methyltetrahydrofolate as the methyl donor. In addition, a
number of tissues can convert homocysteine into cystathionine
and further to cysteine via the transsulfuration pathway through
two PLP (pyridoxal 5*-phosphate)-dependent enzymes, CBS
(cystathionine β-synthase) and CGL (cystathionine γ -lyase) [1].

CBS is a cytosolic enzyme that catalyses the formation of
cystathionine with the release of water or hydrogen sulfide,
depending on whether homocysteine is condensed with serine
or cysteine. The human and rodent CBSs that have been
characterized are tetrameric enzymes and each of their ∼63 kDa
polypeptide chains contains three different domains. The N-
terminal domain binds haem, the presence of which has been
suggested to increase CBS activity during the oxidation of the
intracellular environment [1a,2]. Other studies suggest that haem
may play a structural role that is necessary for the correct folding
of the CBS protein [3,4]. The middle portion of the polypeptide
chain forms the catalytic domain and is well conserved among the
fold-type II PLP-dependent proteins [5]. The C-terminal domain
possesses two defined CBS domains, a hydrophobic domain,

CBS1, and a less conserved domain, CBS2, that are together
referred to as the Bateman domain. Together, these two CBS
domains bind AdoMet, an allosteric activator of mammalian
CBS [6]. The C-terminal domain of mammalian CBS is also
thought to be responsible for multimerization of the enzyme into
homotetramers and higher oligomeric forms [6,7]. The C-terminal
autoinhibitory domain of mammalian CBS can be removed by
in vitro or in vivo proteolytic processing, yielding a ∼45 kDa
truncated form (45CBS) that forms dimers and is more active
than the full-length enzyme [6,8,9].

The canonical domain architecture of mammalian CBSs is not
conserved across phyla. The CBS enzymes of Saccharomyces
cerevisiae, Trypanosoma cruzi and Drosophila melanogaster have
been experimentally characterized; the N-terminal haem-binding
domain is absent in yeast and protozoan CBS, in contrast with
its presence in Drosophila [10–12], whereas the catalytic domain
is conserved in the CBS enzymes of all three of these species.
The C-terminal portion exhibits the highest degree of variability.
The yeast and Drosophila CBS proteins contain the Bateman
domain, but lack a response to AdoMet. Interestingly, although
the C-terminal portion of the yeast CBS inhibits the activity
of the enzyme and supports the formation of tetramers and
octamers [13], Drosophila CBS forms only dimers [12]. In
contrast, the protozoan CBS does not contain the Bateman domain
and is not activated by AdoMet. Although its C-terminus is
shortened, the protozoan CBS is still able to form tetramers [11].
The phylogenetic variability in the domain architecture of CBSs
suggests that the activity of these enzymes is regulated differently
in evolutionarily distant organisms.

In the present study, we characterized the structural and
functional properties of the CBS in Caenorhabditis elegans, a

Abbreviations used: AdoMet, S-adenosylmethionine; BN, blue native; BS3, bis(sulfosuccinimidyl) suberate; CBS, cystathionine β-synthase; CGL,
cystathionine γ-lyase; DTT, dithiothreitol; EST, expressed sequence tag; GFP, green fluorescent protein; LC–MS/MS, liquid chromatography–tandem MS;
PLP, pyridoxal 5*-phosphate; RNAi, RNA interference; RT, reverse transcription; SEC, size-exclusion chromatography; UTR, untranslated region; WT,
wild-type.

1 To whom correspondence should be addressed (email Viktor.Kozich@LF1.cuni.cz).
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well-established model organism used to study human diseases.
We first identified a transcriptionally active gene encoding CBS
in C. elegans, we then determined its pattern of expression
and characterized the enzymatic and structural properties of the
encoded protein. Finally, we determined the phenotypic effects
of cbs-1 inhibition using RNA-mediated interference. These data
describe novel structural features that are unique among CBS
enzymes and provide the first insight into the metabolism of sulfur
amino acids and hydrogen sulfide in C. elegans.

EXPERIMENTAL

C. elegans strains

The WT (wild-type) C. elegans Bristol strain N2 was obtained
from the C. elegans Stock Center (University of Minnesota,
Minneapolis, MN, U.S.A.), and the RB839 strain carrying the
F54A3.4 (ok666) allele was provided by the C. elegans Gene
Knockout Consortium (Oklahoma Medical Research Foundation,
Oklahoma City, OK, U.S.A.). Worm cultures were maintained as
described previously [14].

Bioinformatics

BLASTp searches were performed by online BLAST software
using the C. elegans protein database (release WS215). Protein
domain modelling was performed by Swiss-model (automatic
modelling mode) using the crystal structure of human 45CBS
(PDB code 1JBQ, chain A) as a template [15]. PDB structures
were subsequently evaluated in the Prosa program [16] and
visualized in Swiss-PDBViewer 4.0.4 [17]. Phylogenetic trees
were constructed in the online portal system Mobyle [18].
Multiple alignments of amino acid sequences were performed
using ClustalW2 online software with default parameters [19].
Conserved regions were also separated for further analysis
by ClustalW2. For phylogenetic analysis, alignment was
bootstrapped 100 times and analysed by the maximal likelihood
method using the PHYML 3.0 program [20]. Bootstrap output
trees were analysed by the PHYLIP 3.67 CONSENSE program;
the final tree shape was visualized in the Dendroscope program
[21].

PCR amplification and DNA sequencing

Nematode cDNA was prepared by RT (reverse transcription)
using isolated total RNA from mixed stages of N2 worms and
a RT kit with an oligo(dT) primer (Promega). Open reading
frames of ZC373.1 and F54A3.4 were amplified by PCR using
either cDNA prepared by RT–PCR or a C. elegans cDNA
library (Invitrogen) as the template (a list of the primers is
given in Supplementary Table S1 at http://www.BiochemJ.org/
bj/443/bj4430535add.htm). PCR products were cloned into the
pCR4-TOPO vector (Invitrogen), and the authenticity of
the DNA sequence was verified by dideoxy sequencing using
an ABI PRISM 3100-Avant sequencer (Applied Biosystems).

GFP (green fluorescent protein) reporter assay

To determine the expression pattern of cbs-1, we generated
a translational fusion vector using the PCR fusion technique
described previously [22]. The 1.8 kb of 5′ upstream sequence
and the entire coding region of ZC373.1 were amplified by PCR
using primers A and B (Supplementary Table S1), and genomic
C. elegans DNA as a template. The vector pPD95.75 was used

as a template for amplification of the GFP-coding sequence
using primers C and D (Supplementary Table S1). The two PCR
products were mixed and used as a template for PCR fusion
using nested primers E and F (Supplementary Table S1). The
6.8-kb PCR product was injected into C. elegans hermaphrodite
gonads together with the plasmid pRF4 as a phenotypic marker for
injection. Transgenic animals were separated, and the F2 progeny
were screened for the GFP signal. An Olympus BX60 microscope
and a Nikon Eclipse E800 with C1 confocal module and 488 nm
laser and differential interference contrast optics were used for
specimen examination.

Bacterial expression and protein purification

Initially, recombinant CBS-1 was expressed as a fusion protein
with an N-terminal GST tag and further purified by affinity
chromatography to 75 % purity (see Supplementary Figure S4,
lane 6) according to a previously described procedure for human
CBS [23]. The contaminating polypeptide with the highest
abundance, a 40-kDa fragment that represented approximately
20% of the total protein, was identified as the N-terminal portion
of CBS-1 (residues 1–375) by peptide mass fingerprinting using
MS detection (results not shown). This N-terminal fragment was
observed with similar abundance even when the purification
procedure was modified to limit proteolytic cleavage of the
recombinant protein (the modification involved performing
affinity chromatography at 4 ◦C and increasing the concentration
of protease inhibitors in the bacterial crude extract). To overcome
this obstacle that was not previously reported for other CBS
orthologues, we constructed a new vector that produced double-
tagged CBS-1 with a cleavable N-terminal GST tag and a C-
terminal His tag. The open reading frame of the ZC373.1 gene
encoding CBS-1 was amplified by PCR using a C. elegans cDNA
library as the template. PCR was performed with Taq polymerase
using primers P and R (Supplementary Table S1). The 2.1-
kb DNA fragment obtained by digestion of the PCR product
with BamHI and XhoI was cloned into the BamHI- and XhoI-
digested pGEX-6p-1 vector. Express Competent Escherichia
coli cells (New England Biolabs) were transformed with the
plasmid that encodes double-tagged CBS-1 (GST–CBS–1–His6)
and cultured in the presence of 100 μM IPTG (isopropyl β-
D-thiogalactopyranoside) at 18 ◦C for 24 h. The GST–CBS-1
fusion protein was purified according to the purification protocol
for human CBS described previously [24] with the following
modifications: after cleavage by the PreScission protease (GE
Healthcare), recombinant CBS-1 was loaded on to a Ni-Sepharose
column that had been equilibrated with IMAC buffer [20 mM
phosphate (pH 7.5), containing 0.5 M NaCl, 20 mM imidazole
and 1 mM DTT (dithiothreitol)]. The column was washed with
IMAC buffer containing 50 mM imidazole. CBS-1 was then
eluted with IMAC buffer containing 75 mM imidazole. The
protein enrichment procedure yielded approximately 1 mg of
CBS-1 per litre of bacterial culture. The purity of isolated CBS-
1 was analysed by SDS/PAGE [pre-cast 3–8 % gradient gel
(Invitrogen)] with Coomassie Brilliant Blue staining. The protein
concentration was determined using Bradford reagent (Sigma–
Aldrich) with BSA as the standard. The absorption spectrum
of CBS-1 was recorded using a UV–visible spectrophotometer
(Shimadzu UV-2550) at room temperature (25 ◦C).

SEC (size-exclusion chromatography)

SEC was performed on an HPLC platform (Shimadzu LC-10A
system). Recombinant purified CBS-1 was loaded on to a Bio-
Sil SEC HPLC column (catalogue number 125-0060, Bio-Rad

c© The Authors Journal compilation c© 2012 Biochemical Society© 2012 The Author(s)

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. 93

http://www.BiochemJ.org/bj/443/bj4430535add.htm
http://www.BiochemJ.org/bj/443/bj4430535add.htm


Unique domain architecture of CBS in nematodes 537

Laboratories) that had been previously equilibrated with buffer
containing 50 mM Tris/HCl (pH 8.0), 1 mM DTT and 100 mM
NaCl. The analysis was performed at a flow rate of 1.0 ml/min
at 25 ◦C; the elution profile was obtained by measurement of the
absorbance at 280 nm. Calibration was performed using ferritin,
aldolase, conalbumin (GE Healthcare), BSA (Thermo Fisher
Scientific) and human 45CBS produced in E. coli and purified
as described previously [24].

Native PAGE, BN (blue native)-PAGE and chemical cross-linking

Native electrophoresis was performed on 8% polyacrylamide
gels using the Laemmli buffer system without SDS [25]. Per lane,
5 μg of CBS-1 and of the standards (BSA and human 45CBS)
were loaded. BN electrophoresis was performed as described
previously [26] with the High Molecular Weight Calibration kit
for electrophoresis (GE Healthcare) and rabbit aldolase as the
protein marker. Chemical cross-linking was performed using three
different concentrations of BS3 [bis(sulfosuccinimidyl) suberate];
the molar ratios of CBS-1 (0.5 mg/ml) to the cross-linker were
1:10, 1:50 and 1:100. Cross-linked proteins were analysed using
precast 3–8 % gradient polyacrylamide gels. As a positive control
for efficient cross-linking, we used dimeric human 45CBS reacted
with BS3 at a protein/cross-linker molar ratio of 1:10. All of the
proteins analysed by electrophoretic techniques were stained with
EZ Blue Gel reagent (Sigma–Aldrich).

Pulse proteolysis

Pulse proteolysis of CBS-1 in a urea gradient was performed with
thermolysin as described previously for human CBS [27].

Fluorescence-based thermal-shift assay

Protein samples (0.5 mg/ml) were dissolved in 20 mM Tris/HCl
(pH 8.0), and 5×Sypro Orange dye (Bio-Rad Laboratories).
Using the real-time PCR Detection System CFX96 Touch (Bio-
Rad Laboratories), the proteins were incubated in a thermal
gradient from 25 ◦C to 70 ◦C at increments of 0.5 ◦C and
with 1-min-hold intervals. The degree of protein unfolding was
monitored by a FRET (fluorescence resonance energy transfer)
channel that captured the spectral properties of Sypro Orange
unfolded protein complexes (excitation wavelength≈470 nm and
emission wavelength≈570 nm). The data were analysed by CFX
Manager software, and the melting temperatures were determined
using the first derivative spectra.

CD and fluorescence spectroscopy

The CD spectra of CBS-1 protein variants [0.5 mg/ml in 50 mM
phosphate buffer (pH 7.5)] were recorded using a Jasco J-
810 chiroptic spectrometer. The intrinsic fluorescence of CBS
proteins in 50 mM Tris/HCl (pH 8.0), was measured in the same
buffer using a PerkinElmer LS55 fluorescence spectrometer. The
excitation wavelength for tryptophan was 298 nm (slit width of
5 nm) with an emission signal scanned from 300 to 700 nm (slit
width of 5 nm).

Determination of substrate specificity

All enzyme assays were performed at 25 ◦C with an incubation
time of 10 min to ensure a linear increase in cystathionine or
cysteine production. The reaction mixtures (50 μl) contained
1 μg/ml purified recombinant CBS-1, 10 mM tested substrates in
the combinations shown in the Results section, 1 mM PLP, 1 mM
DTT, 1 mg/ml BSA and 150 mM Tris/HCl (pH 7.0). The reactions
were stopped by the addition of 25 μl of 1 M trichloracetic acid,
and the reaction products were determined by HPLC [28] or LC–

MS/MS (liquid chromatography–tandem MS) analysis [29] with
the modifications described below.

Temperature and pH optima and kinetic analysis

We measured cystathionine production using LC–MS/MS
analysis [29] with the following modifications: assays were
performed in 100 mM Bis/Tris buffer with 2 μg/ml purified
recombinant CBS-1 and unlabelled serine as the substrate.
The temperature optimum for CBS-1 activity was determined
in 5 ◦C temperature intervals from 5 ◦C to 80 ◦C at pH 8.0, and
the pH optimum of CBS-1 was determined at 25 ◦C in 0.5 pH
unit intervals using 100 mM Bis/Tris buffer at pH 6–10. Kinetic
analyses at different concentrations of serine or homocysteine
were performed at 25 ◦C and pH 8.0, and the data were evaluated
by non-linear data fitting using software Origin 8 (OriginLab).
All measurements were repeated four times and the results are
shown as means +− S.D.

Site-directed mutagenesis and preparation of CBS-1 protein
variants

We prepared and analysed a series of mutant CBS-1 enzymes
that included two missense variants of full-length CBS-1 (E62K
and K421A) and six truncated CBS-1 variants (CBS-1b, �1–
372, �1–322, �1–299, b/360 and b/375) (Figure 4A). All CBS-1
variants were cloned into the pGEX vector, which produces GST-
tagged proteins. The sequences of primers used for cloning and
site-directed mutagenesis are shown in Supplementary Table S1.
Proteins were expressed and purified according to the procedure
developed for CBS-1. The yields of purified mutant proteins
were slightly lower, typically approximately 0.5 mg per litre of
bacterial culture. The mutant proteins were analysed by UV–
visible spectroscopy, CD and fluorescence spectroscopy and by
BN-PAGE as described above for CBS-1. The catalytic activities
for the reaction of serine with homocysteine were assessed in
100 mM Tris/HCl (pH 8.5) at 25 ◦C.

RNA-mediated interference

The cbs-1-specific sequence (∼350 bp in length) was prepared by
PCR amplification of a C. elegans cDNA library primers G and H
(Supplementary Table S1) and cloned into the pCR4-TOPO vec-
tor. Single-stranded RNAs were prepared from linearized DNA by
in vitro transcription using T3 DNA-dependent RNA polymerase
(construct DNA digested by NotI) and T7 DNA-dependent RNA
polymerase (construct DNA digested by SalI). The sense and
antisense single-stranded RNAs were mixed and incubated at
68 ◦C for 10 min, followed by incubation at 37 ◦C for 30 min. The
double-stranded RNA was further purified by phenol/chloroform
extraction and precipitated by ethanol; the RNA pellet was diluted
in water to an approximate concentration of 2 μg of RNA/μl.
The double-stranded RNA was injected into the gonads of young
adult hermaphrodite worms as described previously [30]. The
embryos of microinjected animals were synchronized in 9–12 h
intervals. Nematodes were grown at 16 ◦C on nematode growth
medium plates and fed with E. coli strain OP50. After RNAi (RNA
interference), the nematodes were seeded in 1× PBS buffer on
2% agarose and screened by their phenotype.

Determination of CBS-1 antigen levels and measurement of
enzymatic activity in C. elegans extracts

Worms were grown at 16 ◦C as described above and collected
7 days after embryo microinjection as a mixed population of all
larval stages. Worm lysates were prepared by sonication of worm
pellets resuspended in 1 vol. of 100 mM PBS containing protease
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inhibitor cocktails for prokaryotic (P8465, Sigma–Aldrich) and
eukaryotic (P8340, Sigma–Aldrich) cells. Crude extracts were
centrifuged for 1 h at 4 ◦C and 20 000 g and the supernatants
were used for the determination of CBS-1 levels and CBS activity.
Western blotting was used to examine CBS-1 antigen levels after
RNAi. The samples were submitted to SDS/PAGE (pre-cast 3–
8% gradient gel), and protein immunodetection was performed
by Western blot analysis using custom-made rabbit polyclonal
anti-CBS-1 antibody prepared against purified recombinant
CBS-1 (Exbio Praha). Actin, which was detected using a rabbit
anti-actin antibody (Abcam), was used for the normalization
of protein loading. The signal levels of CBS-1 and actin were
determined by chemiluminescence (Pierce) by employing
the ChemiGenius station and Gene Tools software for semi-
quantification [31]. The enzyme assay was performed according
to a previously described protocol [29] with the modification that
the reaction mixture was incubated at 16 ◦C for 30 min.

Measurement of metabolites in C. elegans extracts

Worm lysates were prepared by sonication of worm pellets
that had been resuspended in 1 vol. of 100 mM PBS without
protease inhibitors (Cole-Parmer GE130 Ultrasonic processor,
amplitude 20 for 2 min with l s on/off pulses). The crude
extracts were centrifuged at 20000 g for 1 h at 4 ◦C, and the
supernatants were used for HPLC aminothiol determination as
described previously [28]. The cystathionine concentration was
determined by LC–MS/MS using the EZ:faast kit for amino acid
analysis (Phenomenex) [29]. The concentrations of all metabolites
measured were normalized to the amount of protein present in the
sample.

RESULTS

CBS in C. elegans is encoded by ZC373.1

We used a BLASTp search as an in silico approach to
identify genes that encode a CBS in C. elegans. Using the
query sequences of three enzymes of the CBS family (human
CBS, trypanosomal CBS and bacterial cysteine synthases), we
identified ten genes with predicted amino acid sequences that
are homologous with the catalytic domains of the known CBSs;
these genes are annotated in WormBase (http://www.wormbase.
org/) as ‘CBS and related proteins’. Alignment of the predicted
amino acid sequences of the C. elegans genes ZC373.1 and
F54A3.4 revealed the highest homology with human CBS
(UniProt entry P35520). These predicted proteins exhibited 54 %
sequence identity with the human protein, whereas the other
eight predicted proteins showed lower homology, with 21–
44% sequence identity (Supplementary Table S2 at http://www.
BiochemJ.org/bj/443/bj4430535add.htm). The BLASTp searches
using all ten nematode CBS homologues as the query
sequences against the UniProt database, together with
phylogenetic analysis, indicated that only ZC373.1 and F54A3.4
are homologous with CBS, whereas the remaining eight
amino acid sequences are homologous with other proteins
within the family of fold-type II PLP-dependent enzymes
(Supplementary Figure S1 at http://www.BiochemJ.org/bj/443/
bj4430535add.htm).

An annotation in the WormBase database shows that the
ZC373.1 gene is trans-spliced to SL1 and contains ten exons,
including 23 bp of the 5′-UTR (untranslated region) and 149 bp
of the 3′-UTR followed by a polyadenylation sequence. The
F54A3.4 gene is predicted to contain either eight exons
without any 5′- or 3′-UTRs (http://www.wormbase.org/) or
only seven exons terminated by a 77 bp 3′-UTR sequence

(http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/). To de-
termine whether the ZC373.1 and F54A3.4 genes are transcribed
and spliced into the predicted full-length mRNAs, we analysed
their coding regions by RT–PCR and by sequencing of PCR
products. We found two differently spliced variants of the
ZC373.1; one sequence is identical with the WormBase annotation
(cbs-1), and the other is a new ZC373.1 splice variant (cbs-
1b) containing a 5-bp shortening of exon 7 in its 5′-terminus
that leads to a frame-shift with a premature stop codon at
amino acid residue 377 (Figure 1A and Supplementary Figure
S2 at http://www.BiochemJ.org/bj/443/bj4430535add.htm). In
contrast, we were unable to amplify either of the two hypothetical
full-length F54A3.4 mRNAs using several PCR conditions,
various primers and various cDNA templates.

Because we did not succeed in detecting the F54A3.4 mRNA
by RT–PCR, we used additional approaches to examine the
possible role of this gene in C. elegans. In silico analysis of
the GenBank® database revealed three ESTs (expressed sequence
tags) of F54A3.4: CK587466.1, CB389123.1 and FN902238.1;
however, only FN902238.1 has been mapped to the sense strand
of the F54A3.4 region (http://www.ncbi.nlm.nih.gov/nucleotide/).
Furthermore, the proteomic database PeptideAtlas did not contain
any peptide matches to the hypothetical protein F54A3.4
(http://www.peptideatlas.org/) [32]. Moreover, expression ana-
lysis using translational fusion proteins F54A3.4–GFP and
ZC373.1–GFP (cbs-1–GFP) (see below) showed that the GFP
signals reflecting the expression pattern of the appropriate
genes were observed only in worms carrying ZC373.1–GFP, in
contrast with the expression patterns observed in several worms
carrying F54A3.4–GFP. Finally, F54A3.4 does not appear to have
functional significance in C. elegans because the mutant strain
RB839, which carries a deletion of F54A3.4, showed CBS activity
and homocysteine concentrations indistinguishable from those of
the WT strain (results not shown), and did not exhibit abnormal
behavioural or a developmental phenotype (results not shown).

On the basis of the findings listed above, F54A3.4 appears to be
a pseudogene and was not further examined in the present study.
All of the data above strongly indicate that the C. elegans genome
contains only one expressed orthologue of the human CBS gene,
i.e. ZC373.1. In accordance with the recommended nomenclature,
this gene was named cbs-1.

CBS-1 is a cytoplasmic enzyme that is expressed in the hypodermis
and intestine, and in muscle cells

To determine the expression pattern and subcellular localization
of cbs-1, we constructed the translational vector cbs-1–GFP,
which contains the promoter and the entire CBS-1 sequence
tagged at the C-terminus with GFP (Figure 1A). In worms
expressing cbs-1–GFP, the GFP signal was observed in the
hypodermis, intestine, body-wall muscle cells and pharyngeal
muscles pm3, pm4, pm5, pm6, pm7 and pm8 in all larval stages
as well as in adults (Figure 2). Our data using a translational
reporter showed a similar expression pattern, as did previous
transcriptional screens, and a novel expression of cbs-1 in
pharyngeal muscles. We did not observe a GFP signal in embryos,
although previous transcriptional screens and peptide mapping
studies have reported expression of cbs-1 in this developmental
stage [32,33]. The observed GFP signal was distributed diffusely
within cells and spared the nucleus, suggesting that CBS-1 is
localized in the cytoplasm. These data provide the first reported
insight into the tissue and subcellular localization of nematode
CBS-1 at the protein level and indicate which nematode tissues
can metabolize homocysteine to cystathionine and/or cysteine to
hydrogen sulfide.
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Figure 1 Organization of the cbs-1 gene and domain architecture of CBS in various organisms

(A) Gene organization. The top diagram shows the organization of gene ZC373.1 (cbs-1) encoding CBS-1. The numbers indicate the codon position encoding the appropriate amino acid. Exons
are indicated as black boxes, and the 5′- and 3′-UTR sequences are indicated as grey boxes. The middle diagram shows the novel splice ZC373.1 variant cbs-1b. The bottom diagram shows the
translational fusion construct used in the GFP reporter assay. The length of the entire promoter used in the cbs-1–GFP construct is indicated by the number of base pairs of the 5′-upstream sequence.
(B) Domain organization of various CBSs. The published structures of different CBSs were analysed for the presence of a haem-binding site (marked Heme), conserved catalytic regions with a
PLP-binding site (marked PLP) and Bateman domain composed of two CBS domains (CBS1 and CBS2). The primary structures are aligned by the PLP-binding lysine residue; the numbers indicate
the first and the last amino acid residues of conserved domains in the protein sequence. The aligned proteins are HsCBS (Homo sapiens CBS, UniProt entry P35520), Hs45CBS (truncated human
CBS with 1–413 residues), RnCBS (Rattus norvegicus CBS, UniProt entry P32232), DmCBS (D. melanogaster CBS, UniProt entry Q9VRD9), TcCBS (T. cruzi CBS, UniProt entry Q9BH24), ScCBS
(S. cerevisiae CBS, UniProt entry P32582) and CBS-1 (C. elegans CBS, UniProt entry Q23264). (C) Amino acid alignment of haem- and PLP-binding sites in various CBSs with separated N- and
C-terminal conserved regions of CBS-1. The N-terminal region of CBS-1 does not contain the lysine residue that binds PLP. The cysteine and histidine residues that bind haem are indicated by
asterisks, and the PLP-binding lysine residues are indicated by #.

CBS-1 is a haem-independent protein that lacks activation by
AdoMet

To experimentally characterize the structural and enzymatic
properties of CBS-1, cbs-1 cDNA was expressed in E. coli.
Recombinant CBS-1 (704 residues of native CBS-1 with five
additional amino acids at the N-terminus, six additional histidine
residues at the C-terminus and a size of ∼78 kDa) was purified
to greater than 95% purity (Supplementary Figure S4 at
http://www.BiochemJ.org/bj/443/bj4430535add.htm). The UV–
visible absorption spectrophotometry of the purified recombinant
CBS-1 showed a peak at 412 nm, confirming the presence of
covalently bound PLP that forms an internal aldimine, but it
did not reveal a Soret band associated with a haem moiety
(Figure 4F). This analysis confirmed that, in contrast with other
characterized metazoan CBS enzymes, the nematode enzyme is a
haem-independent CBS.

We next tested four reactions that have been described for
previously characterized CBSs: (i) cystathionine-synthesizing
activity that produces cystathionine and water from homocysteine
and serine; (ii) formation of cystathionine and hydrogen sulfide
from homocysteine and cysteine; (iii) cysteine synthase activity
that produces cysteine from O-acetylserine and hydrogen sulfide;
and (iv) serine sulfhydrylase activity in which cysteine is
synthesized from serine and hydrogen sulfide. CBS-1 exhibited
high enzymatic activity for synthesis of cystathionine from
homocysteine utilizing either serine or cysteine and considerably
lower cysteine synthase and serine sulfhydrase activities for
synthesis of cysteine. The specific activities of CBS for the

production of cystathionine from serine and cysteine were
∼1500 μmol · h− 1 · mg− 1 and ∼300 μmol · h− 1 · mg− 1 respect-
ively, and its specific cysteine synthase and serine sulfhydrase
activities were ∼5 μmol · h− 1 · mg− 1 and ∼30 μmol · h− 1 · mg− 1

respectively. None of these activities were stimulated by 1 mM
AdoMet (results not shown), which is consistent with the absence
of a Bateman domain in CBS-1 (see below). These data show that
the nematode CBS-1 enzyme exhibits typical CBS activity and
that it is not activated by AdoMet.

CBS-1 has a unique structural arrangement

Alignment of the predicted amino acid sequence of CBS-
1 with the sequences of previously characterized human, rat,
Drosophila, trypanosome and yeast CBS enzymes revealed that
the C. elegans enzyme possesses unique and novel domain
architecture. In contrast with other CBSs, C. elegans CBS-
1 lacks both the haem-binding N-terminus and the entire C-
terminus found in other species (Figures 1B and 1C). Moreover,
amino acid alignment together with protein modelling revealed
that a single polypeptide chain of CBS-1 contains a unique
tandem arrangement of two conserved CBS cores that belong
to a family of fold-type II PLP-dependent proteins (Figure 1B
and 3). Phylogenetic analysis of these two CBS-1 modules
revealed that, in contrast with the C-terminal module, the
N-terminal module has a lower homology with other CBS
enzymes and does not belong to any of the fold-type II
PLP-dependent protein families tested (Supplementary Fig-
ure S3 at http://www.BiochemJ.org/bj/443/bj4430535add.htm).
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Figure 2 Expression pattern of cbs-1 in worms

The images show transgenic worms that carry the translational fusion vector cbs-1–GFP.
(A) L4 larval stage showing the distribution of the GFP signal in the pharyngeal muscles,
intestine, hypodermis and muscle cells. The middle part of the adult body (inset) shows the GFP
signal in the body wall muscles and hypodermis. (B) Head of the worm showing GFP signal in
pharyngeal muscles and a head muscle cell with its muscle arm; the GFP signal is distributed
in the pharyngeal muscles pm3, pm4, pm6, pm7 and pm8. Some worms also exhibited a GFP
signal in pm5 (inset).

Furthermore, the critical PLP-binding lysine residue in the N-
terminal module is replaced by a glutamic acid residue (Figures 1C
and 3). Analysis of the PLP-binding site using homology
modelling with the structure of 45CBS as the template revealed
that the fully conserved glycine residue (Gly256 in human 45CBS)
in the N-terminal module is replaced by a bulky asparagine residue
(Asn197) that may sterically affect PLP binding (Figure 3). Thus
the in silico data strongly suggest that the N-terminal module of
nematode CBS-1 cannot bind the PLP essential for the catalytic
activity of the enzyme.

The catalytic activity of CBS-1 is mediated only by the C-terminal
module

To confirm the hypothesis that the catalytic function of CBS-
1 is mediated only by its C-terminal module, we generated
individual CBS-1 modules in E. coli. While the CBS-1b variant,
which lacks the C-terminal module of CBS-1, was highly soluble
after expression in E. coli, all of the cloned CBS-1 variants
without the N-terminal module showed substantially decreased
solubility (Figure 4B) that prevented successful purification of
proteins containing only the C-terminal module. However, we
purified and characterized the CBS-1b and used UV–visible and
fluorescence spectrometry to determine that it does not bind PLP;
we also found that CBS-1b had virtually undetectable catalytic
activity (Figures 4D, 4F and 4G and Table 1). These observations
demonstrate that the PLP-binding site essential for catalytic
activity is not located in the N-terminal module of the CBS-1

protein. Although CD spectrometry showed that the CBS-1b has
a helical secondary structure similar to that of the WT CBS-1
protein (Figure 4E), BN-PAGE revealed that purified CBS-1b
precipitates and may form higher-order oligomers (Figure 4C).
These data indicate that the presence of both CBS-1 modules
in one subunit is necessary for the maintenance of the global
structural stability of CBS-1 and/or for proper folding of the
recombinant protein.

Because analysis of the isolated N-terminal module indicated
possible disruption of its native structure, we also generated and
purified the CBS-1 mutants K421A, which abolishes a canonical
PLP-binding site in the C-terminal module, and E62K, which
creates a putative PLP-binding site in the N-terminal module.
We observed altered fluorescence-based tryptophan spectra of
the mutant proteins; their relative fluorescence showed different
quenching of the tryptophan emission, and the existence of a
wavelength maximum shift from ∼340 to ∼350 nm indicates
higher accessibility of the tryptophan residues to the polar solvent
in the K421A mutant (Figure 4G and Table 1). In contrast,
both mutants retained oligomeric status identical with the WT
as determined by BN-PAGE (Figure 4C), and CD measurements
showed that the protein’s secondary structure is not affected by
either the K421A or E62K mutation (Figure 4E). The catalytic
activity, PLP saturation and fluorescent properties of the E62K
mutant were similar to those of WT (Figures 4D, 4F and 4G),
supporting the idea that the structural properties of the N-
terminal module do not permit PLP binding even if the canonical
lysine residue is present. In contrast, the K421A mutant binds
significantly less of the PLP cofactor, as determined by UV–
visible absorption spectroscopy. The mutant enzyme’s residual
affinity for PLP probably results from the formation of an external
aldimine; this affinity is manifested in its UV–visible spectrum by
the presence of two bands with maxima at 403 and 418 nm and
by the lack of the sharp maximum at 412 nm that is typical
for internal aldimines (Figure 4F). The formation of an external
aldimine in K421A was confirmed by fluorescence spectroscopy
and, when excited at 298 nm, the emission spectrum of the
mutant protein revealed a significantly higher extent of delayed
fluorescence of Schiff bases for K421A in comparison with WT,
E62K and CBS-1b (Figure 4G). Enhanced delayed fluorescence
due to formation of external aldimines in the active site of
the mutant enzyme has also been reported for the bacterial O-
acetylsulfhydrylase mutant K42A [34]. Taken together, these
experiments provide additional evidence that the catalytic activity
of C. elegans CBS-1 is mediated only by the C-terminal module
and that its N-terminal module cannot bind PLP cofactor either
as an internal or as an external aldimine.

Analysis of the quaternary structure of nematode CBS-1 suggests
a monomeric status of CBS-1

We analysed the quaternary structure of recombinant nematode
CBS-1 to determine whether CBS-1 exists as a monomer with a
structural arrangement similar to human 45CBS (the C-terminally
truncated human CBS that lacks a Bateman domain and forms
dimers of 90 kDa [15]), or whether CBS-1 forms dimers or higher-
order oligomers. We first performed SEC using the standard
proteins ferritin (440 kDa), aldolase (158 kDa), conalbumin
(75 kDa) and BSA (66 kDa). To control for possible differences
in the Stokes radii of the standard proteins and the CBS-related
proteins that may influence their retention on the column, we
analysed human 45CBS in parallel. Nematode CBS-1 exhibited
a tailing peak with a retention time of 5.776 min (Figure 5A); on
the basis of the calibration curve, the apparent native molecular
mass of the protein was determined to be ∼170 kDa. However,
SEC of human 45CBS indicated a native molecular mass of
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Figure 3 Computationally modelled CBS-1 domains

The images show the fold and PLP-binding site of human 45CBS, C-terminal module of CBS-1 (CBS-1_C) and N-terminal module of CBS-1 (CBS-1_N). The crystal structure of the human enzyme
shows hydrogen bonds between amino acid residues and PLP, as indicated by broken green lines. Computational modelling of the individual CBS-1 modules revealed that both modules belong to
the family of fold-type II PLP-dependent proteins and that the N-terminal module cannot bind PLP due to the absence of lysine and glycine residues in the consensus PLP-binding pocket.

approximately 150 kDa, suggesting that calibration with standard
proteins may result in overestimation of the molecular mass
of CBS proteins. According to the molecular mass markers
used, SEC yielded ambiguous results compatible with both a
monomeric and dimeric structure of CBS-1.

We next used additional techniques including native
electrophoresis, BN electrophoresis and chemical cross-linking
followed by SDS/PAGE to determine the most likely quaternary
structure of CBS-1. These three techniques congruently showed
that the 78 kDa nematode CBS-1 exists predominantly as a
monomer. The evidence, which is shown in Figures 5(B)–5(D),
is as follows: (i) in native PAGE, nematode CBS-1 migrates
similarly to the 90 kDa marker of dimeric human 45CBS and
between fractions containing monomeric and dimeric BSA
respectively (66 kDa and 132 kDa); (ii) on BN electrophoresis,
CBS-1 migrates between molecular mass markers of 66 and
140 kDa; and (ii) chemical cross-linking of CBS-1 did not result
in changes in protein migration, suggesting modification of amino
acid side chains within a single polypeptide chain, whereas human
45CBS readily formed a cross-linked dimeric product with a
molecular mass of ∼100 kDa. On the basis of these results,
we propose that, in contrast with CBS enzymes from other
species, recombinant nematode CBS-1 does not form oligomeric
structures in vitro. Because the conserved catalytic regions of
CBS-1 are homologous with each other, we hypothesize that
they form an internal interface similar to that formed by subunit
dimerization of human 45CBS (Figure 5E).

CBS-1 is more sensitive to denaturation and is more active than
human 45CBS

We hypothesized that the above-described differences in the
oligomeric assembly of nematode CBS-1 and human 45CBS
might result in differences in the energetics of the two proteins.

To explore this hypothesis, we used a fluorescence-based
thermal-shift assay and pulse proteolysis in a urea gradient.
Both approaches revealed significantly lower stability of CBS-
1 compared with the human 45CBS; the melting point of CBS-1
was 10 ◦C lower than that of human 45CBS, and the resistance
of CBS-1 to urea-induced unfolding decreased by ∼2.8 M
(Table 2 and Supplementary Figure S5 at http://www.BiochemJ.
org/bj/443/bj4430535add.htm). These data show that the nemat-
ode CBS-1 is less energetically stable than the human 45CBS; this
finding may be due to a lower energy of the interdomain interface
or a higher structural flexibility of the worm CBS-1.

We considered the possibility that the observed structural and
energetic differences between the nematode CBS-1 and human
45CBS result in different catalytic properties. We determined the
temperature and pH optima and the kinetic parameters for
the major CBS reaction, which produces cystathionine from
serine and homocysteine. The CBS-1 protein exhibited the
highest activity at pH 8.5 and 30 ◦C (Supplementary Figure S6
at http://www.BiochemJ.org/bj/443/bj4430535add.htm). These
conditions are in accordance with the results of the thermal
stability assay (see above). We speculate that the lower
temperature optimum of CBS-1 compared with the human
enzymes (37 ◦C) may reflect the lower body temperature of nema-
todes living in the soil. We also found that the affinity
of CBS-1 for homocysteine is lower than that of 45CBS
(Table 2); however, we observed inhibition of CBS activity at
7.5 and 10 mM homocysteine and this inhibition prevented the
activity from increasing to more than ∼1500 μmol · h− 1 · mg− 1

(Supplementary Figure S6). Inhibition by high concentrations of
homocysteine has been previously reported for yeast and human
CBS enzymes [13,35]. Taken together, these data show that the
nematode CBS-1 subunit is approximately 4-fold more active
compared with the human 45CBS subunit as expressed by the
turnover number (Table 2).
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Figure 4 Structural and enzymatic analysis of recombinant CBS-1 variants

(A) Illustration of the CBS-1 variants expressed in E. coli. (B) Detection of CBS-1 variants in E. coli lysate after expression using soluble and insoluble fractions separated by centrifugation.
(C) BN-PAGE of purified recombinant CBS-1 variants shows the monomeric status of the WT, K421A and E62K proteins. The N-terminal domain exhibits monomeric and oligomeric forms. Molecular
mass markers are shown in kDa on the left-hand side. (D) CBS activity of the purified CBS-1 variants; K421A and CBS-1b have no CBS activity. Results are means +− S.D. (E) CD spectra at far-UV
show a helical secondary structure for all of the purified CBS-1 variants. (F) The UV–visible spectrum of purified recombinant CBS-1 variants of equal concentration shows peaks in the 280 and
412 nm region, indicating light absorption by aromatic amino acids and PLP respectively. Soret peaks typical for haem are not present. (G) Emission spectrum after excitation of the tryptophan
residues at 298 nm of purified recombinant CBS-1 variants of equal concentration.

CBS-1 mediates nematode development and maintains
homocysteine homoeostasis

To explore the functional significance of cbs-1 in C. elegans,
we silenced the cbs-1 gene by RNA-mediated interference and
determined the phenotypic consequences of such silencing.
To confirm the efficacy of cbs-1 RNAi, we measured the
amounts of CBS-1 antigen and CBS activity in worm extracts
of CBS-1-inactivated and WT worms. Western blot analysis
using an anti-CBS-1 antibody showed that after RNAi treatment
worms exhibited a CBS-1 level that was approximately 10%
that of the control strain (Supplementary Figure S7A at

http://www.BiochemJ.org/bj/443/bj4430535add.htm). Although
the mean CBS activity of normal worms was 36.0
nmol · h− 1 · mg− 1, cbs-1 RNAi animals exhibited a mean activity
of only 5.4 nmol · h− 1 · mg− 1, approximately ∼15% of the
control level (Supplementary Figure S7B). The results from both
Western blot analysis and CBS activity measurement consistently
confirmed that the RNAi experiments efficiently reduced the
amount and activity of CBS-1.

RNAi resulted in a developmental delay phenotype in 97%
of the worms (515 out of 530 individuals tested). These animals
reached the egg-laying adult stage no earlier than the 9th day after
embryo hatching, in contrast with control worms, which reached
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Table 1 Enzymatic and structural properties of purified CBS-1 variants

ND, not detected, Trp, tryptophan.

Protein WT K421A E62K CBS-1b

Catalytic activity
(μmol · h− 1 · mg− 1)

1742 +− 259 0.41 +− 0.03 1663 +− 144 0.27 +− 0.05

Absorption ratio 280/412
nm

7.6 16.1 7.9 29.2

PLP absorption maximum
(nm)

412 403 and 418 412 ND

Trp relative fluorescence 233 534 354 505
Trp fluorescence wavelength

maximum (nm)
338 350 339 352

Relative delayed
fluorescence

76 181 48 ND

the same stage on the 5th day of development. The affected larvae
had a shorter body length than the controls (Supplementary Figure
S8 at http://www.BiochemJ.org/bj/443/bj4430535add.htm). After

RNAi of larvae, the most severe abnormalities were observed
in the tissues that express the highest amount of CBS-1 (i.e.
gut and pharynx; see the data above on the translational
cbs-1–GFP vector). The gut cells of these animals showed
reduced pigment granule birefringence under Nomarski optical
microscopy (Supplementary Figure 8), and the anterior bulb of
the pharynx exhibited abnormal morphology, with a balloon-
like appearance and enlarged diameter (Supplementary Figure 8).
These data show that CBS-1 is essential for normal development
in nematodes.

We determined metabolic flux through the trans-sulfuration
pathway by measuring homocysteine, cystathionine and cysteine
concentrations in worm homogenates. To eliminate possible
differences in metabolic fluxes in worms at various stages of
development, the worms were collected at the latest larval devel-
opmental stage (L4). The homocysteine and cystathionine levels
in C. elegans extracts were ∼10× and ∼1.6× higher in the knock-
down strain than in the controls, whereas cysteine concentrations
did not differ between the two strains (Figure 6). The observation
of elevated homocysteine levels in CBS-1-knockdown worms

Figure 5 Determination of the quaternary structure of CBS-1

(A) SEC. The bold solid curve represents the elution profile of purified recombinant CBS-1, which has a retention time of 5.776 min and an estimated molecular mass of 168 kDa. The thin solid curve
represents human 45CBS, which has a retention time of 5.846 min and an estimated molecular mass of 148 kDa. The dashed curve represents BSA with a retention time of 6.028. The grey (dotted)
curve represents molecular standards eluted at the following retention times: ferritin (440 kDa), 5.325 min; aldolase (158 kDa), 5.827 min; and conalbumin (70 kDa), 6.426 min. AU, absorbance unit.
(B) Cross-linking. Purified CBS-1 and human 45CBS were cross-linked with BS3 in appropriate molar ratios of protein/modifier, as indicated in the Figure, and subjected to SDS/PAGE. In contrast
with human 45CBS, which forms dimers, the mobility of CBS-1 does not change after cross-linking. (C) BN-PAGE. CBS-1, with a molecular mass of 78 kDa (four different amounts of loaded protein),
migrates between molecular mass markers of 66 kDa and 140 kDa. The molecular protein mass markers include thyroglobulin (669 kDa), ferritin (440 kDa), catalase (232 kDa), lactate dehydrogenase
(140 kDa), BSA (66 kDa) and aldolase (158 kDa). (D) Native PAGE. CBS-1, with a molecular mass of 78 kDa, migrates between molecular mass markers of 66 kDa and 132 kDa, similar to a ∼90 kDa
dimer of human 45CBS. In (B–D) the molecular mass is given in kDa on the left-hand side. M, marker. (E) Schematic diagram of the hypothetical quaternary structure of CBS-1 and comparison of
its structure with that of human 45CBS.
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Table 2 Stability and enzymatic properties of CBS-1 compared with human
45CBS

cm, concentration of urea at which a fraction of folded proteins comprises 50 % of the entire
protein population.

Protein Nematode CBS-1 Human 45CBS

Oligomeric status Monomer Dimer
Michaelis constant K m (mM)

Serine 5.57 +− 0.68 2.20 +− 0.46†
Homocysteine 4.29 +− 0.97 0.33 +− 0.07†

Turnover number k cat (s− 1)
Serine 48.12 +− 2.95 13.81 +− 0.88†
Homocysteine 43.31 +− 4.33 10.88 +− 0.72†

Catalytic efficiency k cat/K m (mM− 1 · s− 1)
Serine ∼8.5 ∼6
Homocysteine ∼10 26.97 +− 5.87†

Characteristics of protein denaturation
Midpoint of urea concentration cm (M) 1.21 +− 0.02 4.08 +− 0.07*
Melting point T m (◦C) 41 51

*Value from Hnizda et al. [27].
†Value from Frank et al. [23].

Figure 6 Metabolite levels in crude extracts of CBS-1-knockdown animals

The concentration of metabolites (in nanomoles per mg of protein) from RNAi and control
experiments respectively. Homocysteine and cystathionine concentrations in CBS-1-deficient
worms are significantly higher (10.1 and 107.1 nmol/mg of protein respectively) than in
control worms (1.0 and 65.6 nmol/mg of protein respectively). Results are means +− S.D. from
three independent experiments. *P < 0.05, as determined by Student’s t test.

strongly supports an important role of this enzyme in maintaining
homocysteine homoeostasis in C. elegans.

DISCUSSION

Evidence that CBS in C. elegans is encoded by cbs-1

In the present paper, we identified the cbs-1 gene in C. elegans,
which encodes an enzyme with cystathionine-synthesizing
activity and is important for normal development of the nematode.
Using a BLASTp search against a C. elegans protein database,
we identified two nematode genes, ZC373.1 and F54A3.4,
that are highly homologous with CBS genes in other species.
However, several lines of evidence demonstrate that only ZC373.1
encodes a CBS, whereas F54A3.4 is probably a pseudogene.
The gene denoted F54A3.4 has not been detected by RT–
PCR, was not found by in silico searches in the appropriate
EST and proteomic databases, and its partial deletion did not
elicit biochemical or morphological phenotypic abnormalities.
In contrast, ZC373.1 mRNA has been detected by RT–PCR, its
ESTs and peptides were annotated in appropriate databases, the
enzyme was shown to be expressed endogenously in its entire
length, and its knockdown resulted in severe biochemical and
phenotypic consequences. Most importantly, the purified CBS-1
enzyme exhibited enzymatic properties consistent with previously
characterized CBS enzymes from other species.

The unique domain architecture of nematode CBS enzymes

In silico analysis of the CBS-1 protein sequence showed that the
CBS-1 of C. elegans possesses a unique multi-domain architecture
that has not been reported previously for any other CBS. The
unusual structure of CBS-1 includes the lack of a haem-binding
region, the lack of a Bateman domain and the tandem arrangement
of two conserved catalytic regions of which only the C-terminal
region is catalytically active. Such a domain arrangement of
predicted CBS enzymes in fully sequenced organisms has been
found only in organisms from the nematode phylum, showing
an evolutionarily divergent arrangement of the CBS protein in
this phylum. Interestingly, the nematode Loa loa possesses a
PLP-binding site in both CBS modules (Supplementary Figure
S9 at http://www.BiochemJ.org/bj/443/bj4430535add.htm), sug-
gesting that the unusual and unique structure of CBS enzymes
in nematodes probably originates from a duplication of the
conserved catalytic region in a common ancestor followed by
mutations abolishing PLP binding in the N-terminal module.

To our knowledge there is no evidence, except of nematode CBS
proteins, regarding fold-type II PLP-dependent proteins lacking a
PLP-binding site. Thus the function, if any, of the N-terminal mod-
ule in the nematode CBS-1 protein remains unclear. Several pieces
of experimental evidence obtained in the present study clearly
show that this module does not have canonical catalytic function.
We speculate that mutations in this portion of the nematode CBS
enzyme may have permitted the acquisition of novel structural
and functional properties, such as changes in protein stability and
folding, protein–protein interactions, or regulation of enzyme
activity. Studies of truncated variants suggest that the N-terminal
module may be important for proper folding and subsequent
stability of CBS-1 (see above). Because CBS-1 forms a monomer,
it is probable that its N-terminal and C-terminal modules
interact to form a structure similar to that of the human 45CBS
dimer. However, the proposed interdomain interaction cannot be
sufficiently supported by the computational modelling procedures
using previously solved crystal structures of CBS proteins, and
thus it requires further study of the three-dimensional spatial
arrangement of CBS-1 at atomic resolution. The N-terminal
module of CBS-1 may also have a regulatory role. The existence
of tandem duplicated conserved modules of which only one is
catalytically active in a single polypeptide is similar to the well-
known case of tyrosine protein kinases [JAKs (Janus kinases)]. In
tandem with a catalytically active kinase domain, these kinases
have a catalytically inactive pseudo-kinase domain that has been
implicated in the regulation of their activity [36]. Alternatively,
the N-terminal module of CBS-1 may also play a role in
protein–protein interactions, such as the interactions with the
SUMOylation enzyme apparatus or huntingtin that have been
described for human and rodent CBS-1 orthologues respectively
[37,38].

More intriguingly, expression of the spliced variant cbs-1b
shows that the N-terminal module of CBS-1 can be produced
in vivo without the catalytic C-terminal module. This finding
suggests that the non-catalytic module may play a role in
additional biological processes independent of the catalytic
module. However, it should be noted that misspliced variants
with premature stop codons are commonly targeted by a cellular
RNA nonsense-mediated decay mechanism [39]; therefore, the
existence of a separate nematode N-terminal domain in vivo
should be investigated in future studies.

Possible biological roles of CBS-1 enzymatic activity in C. elegans

Because cbs-1 is expressed in a limited number of tissues, it is
tempting to speculate on the role of this enzyme in the organs
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in which it is expressed. High expression of cbs-1 was observed
throughout post-embryonic development in the intestine, which
is characterized by secretion of digestive enzymes and high
metabolic activity in C. elegans, such as the synthesis and storage
of macromolecules and detoxification of xenobiotics [40]. Thus
the expression of cbs-1 in C. elegans intestine may mirror the high
expression of CBS in the mammalian liver, pancreas and small
intestine, in which CBS plays an important role in homocysteine
homoeostasis and/or in the provision of cysteine for glutathione
production [41]. We hypothesize that the intestinal expression of
cbs-1 in worms may serve similar purposes, namely removal
of homocysteine or cysteine biosynthesis.

Expression of cbs-1 has also been observed in pharyngeal
muscles and hypodermis. Because neither of these tissues shows
high metabolic activity compared with the intestine, there are
other possible explanations for CBS-1 activity in these tissues. Be-
cause both hypodermal cells and pharyngeal muscle cells secrete
cuticle (http://www.wormatlas.org/), we propose that CBS-1 may
provide cysteine, which is important for cuticle formation and
its stabilization by disulfide bonds [42]. Another possible role
for CBS-1 in muscle and hypodermis is the production of the
neuromodulator and smooth muscle relaxant hydrogen sulfide
[43]. The endogenous biosynthesis of H2S via CBS might
serve for smooth muscle relaxation in the strongly innervated
nematode pharynx or in regulating the expression of HIF-1
(hypoxia-inducible factor 1) target genes in the hypodermis [44].
Interestingly, although CBS is thought to be the main enzyme that
produces hydrogen sulfide in the mammalian brain [45], we did
not observe a GFP signal in neurons. This finding suggests that the
endogenous production of hydrogen sulfide in C. elegans neurons
is mediated by different enzymes than in other species or that the
role of hydrogen sulfide in C. elegans neurons is negligible.

C. elegans as a model of CBS deficiency

Because many genes implicated in human diseases are well-
conserved across phyla [46], C. elegans is considered by many
investigators to be a suitable model for studying cellular and meta-
bolic mechanisms in selected genetic disorders [47–49]. In addi-
tion to its low cost of maintenance and short generation time, other
advantages of the C. elegans model include the possibility of ob-
serving cellular processes in vivo and of easily screening for the ef-
fects of novel therapies [50,51]. In the present study, we examined
the morphological and biochemical effects of nematode CBS-1
deficiency. These effects may in part recapitulate the human dis-
ease homocystinuria, which results from CBS deficiency. Homo-
cystinuria is characterized by increased tissue, plasma and urinary
concentrations of homocysteine, and by decreased concentrations
of cystathionine and cysteine [52,53]. Its clinical features include
liver steatosis, connective tissue disorder, thromboembolism and
various degrees of central nervous system involvement [53]. In
our CBS-1–GFP localization study, CBS-1-knockdown worms
exhibited abnormal morphology of several tissues that express the
cbs-1 gene. Using light microscopy, we observed a reduced bi-
refringent signal from pigment gut granules, which are considered
to be lysosome-related organelles [54]. Although the function and
composition of these granules has not been fully elucidated, the
abnormal pattern of gut granules in CBS-1-knockdown animals
may in part correspond to the liver steatosis observed in murine
and human CBS deficiency. Furthermore, the observed abnormal
pharyngeal morphology of CBS-1-deficient worms may possibly
correspond to some of the neurological sequelae of human
CBS deficiency. It appears that the CBS-knockdown nematodes
produced in the present study may in part recapitulate some of the
features of human homocystinuria due to CBS deficiency.

In the CBS-1-deficient nematodes produced in the present
study, the amounts of CBS-1 antigen and enzyme activity
decreased to ∼10–15 % those of WT worms. This degree of
enzyme deficiency resulted in an approximately 10-fold increase
in homocysteine concentrations in worm extracts compared with
the WT strain, demonstrating an essential role for CBS-1 in
maintaining homocysteine homoeostasis in C. elegans. Because
exposure of worms to homocysteine in medium [55] leads to
a similar developmental delay as the cbs-1 RNAi in the present
study, it is conceivable that high tissue levels of homocysteine may
be directly responsible for the developmental delay phenotype that
we observed. Surprisingly, and in contrast with human patients
with CBS deficiency [53], cystathionine levels in CBS-1-deficient
worms were only slightly increased. However, a similar elevation
in plasma cystathionine was reported for one murine model of
CBS deficiency [56]. We hypothesize that elevated cystathionine
in CBS-1-deficient worms may be caused by three possible
mechanisms: (i) elevated homocysteine may inactivate CGL, as
proposed previously for a murine model of CBS deficiency [56];
(ii) elevated homocysteine may lead to formation of cystathionine
via condensation of cysteine and homocysteine by CGL [57];
and (iii) cystathionine may be synthesized by a hypothetical
cystathionine γ -synthase in the reverse trans-sulfuration pathway
using cysteine and O-succinylhomoserine. Moreover, the CBS-
1-deficient worms observed in the present study did not exhibit
cysteine depletion, which is a common feature of human CBS
deficiency. We hypothesize that cysteine levels in deficient worms
are maintained by sufficient cysteine intake from E. coli or by
biosynthesis of cysteine via a hypothetical sulfur assimilation
pathway because C. elegans possesses several bacterial and plant
cysteine synthase homologues (see above, [58]).
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Novel structural arrangement of nematode cystathionine β-synthases:
characterization of Caenorhabditis elegans CBS-1
Roman VOZDEK, Aleš HNÍZDA, Jakub KRIJT, Marta KOSTROUCHOVÁ and Viktor KOŽICH1

Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine and General University Hospital, Ke Karlovu 2, 128 08, Praha 2, Czech Republic

Figure S1 Unrooted tree of fold-type II PLP-dependent proteins with ten
CBS homologues in C. elegans

For phylogenetic analysis, we used various proteins from the family of fold-type II
PLP-dependent proteins: CBS_Human (UniProt entry P35520), CBS_Rat (UniProt entry
P32232), CBS_Drosophila (UniProt entry Q9VRD9), CBS_Trypanosoma (UniProt
entry Q9BH24), CBS_Saccharomyces (UniProt entry P32582), CYSK_Saccharomyces (UniProt
entry P53206) CYSK_Arabidopsis (UniProt entry P47998), CYSM_E. coli (UniProt entry
P16703), CYSK_E. coli (UniProt entry P0ABK5), SDSL_Human (UniProt entry Q96GA7),
THDH_Saccharomyces (UniProt entry P00927), THD1_E. coli (UniProt entry P04968) and
THD1_Arabidopsis (UniProt entry Q9ZSS6). Ten CBS homologues (bold font) are presented in
Table S1. The numbers at the internal nodes represent bootstrapped values (maximum 100).
The upper left-hand edge in red denotes the CBS branch. The tree topology demonstrates three
separated groups for ten CBS homologues in C. elegans: ZC373.1 and F54A3.4 belong to
the CBS branch, C17G1.7, R08E5.2, F59A7.9 and K10H10.2 belong to the cysteine synthase
A branch, and the remaining homologues belong to other fold-type II PLP-dependent protein
families. CYSK, cysteine synthase A; CYSM, cysteine synthase B; SDSL/THD, serine/threonine
dehydratase family.

1 To whom correspondence should be addressed (email Viktor.Kozich@LF1.cuni.cz).
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Figure S2 Sequences of cbs-1 RT–PCR products covering the exon 6 and 7 junction

Two splice variants of cbs-1 were found. The novel cbs-1b transcript leads to a frameshift and a subsequent stop codon that allows for translation of the separated N-terminal module of CBS-1.

Figure S3 Unrooted tree of separated conserved regions from CBS-1 with
various fold-type II PLP-dependent proteins

This tree is taken from the same phylogenetic study as that presented in Figure S1, with
the exception that the two conserved regions from CBS orthologues ZC373.1 and F54A3.4,
were separated for the analysis. The topology of the unrooted tree demonstrates that the
N-terminal regions of CBS homologues (ZC373.1_N and F54A3.4_N) do not belong to any
branch containing the analysed proteins, whereas the C-terminal regions (ZC373.1_C and
F54A3.4_C) belong to the CBS branch. Alignment of the N-terminal module of C. elegans
CBS-1 (the first of the two tandemly arranged regions, i.e. residues 14–322) revealed 29 %
identity and an e-value of 5e − 27 compared with the catalytic core of human CBS (residues
72–397), whereas the C-terminal module (i.e. residues 374–702 of CBS-1) revealed much
higher 54 % identity and an e-value of 2e − 99.

Figure S4 CBS-1 purification procedure

The purification procedure for CBS-1 is illustrated by a 3–8 % SDS-containing polyacrylamide
gel stained with Coomassie EZ Blue. Lane 1, molecular mass markers; lane 2, bacterial extract
after centrifugation; lane 3, flow-through fraction from glutathione–Sepharose column; 4, wash
fraction of glutathione–Sepharose column; lane 5, fusion protein that was cleaved by PreScission
protease; lane 6, elution of CBS-1 after on-column cleavage; lane 7, flow-through fraction from
the Ni-Sepharose column; lanes 8 and 9, wash fractions of the Ni-Sepharose column by IMAC
buffer containing 20 mM and 50 mM imidazole respectively; lane 10, elution of CBS-1 by
IMAC buffer containing 75 mM imidazole. The molecular mass is given in kDa on the left-hand
side.
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Figure S5 Pulse proteolysis and fluorescence-based thermal-shift assay

Pulse proteolysis in a urea gradient employing thermolysin and thermal-based assays were used to determine possible differences in enzyme stability between CBS-1 and human 45CBS.
(A) Representative SDS/PAGE gel. The molar concentration of urea for the proteolytic pulse is indicated at the top of each lane and the molecular mass is given in kDa on the right-hand side. (B)
F-fold values, which represent the fraction of the remaining intact protein after the proteolytic pulse, are plotted against the urea concentration. Results are means +− S.D. from three measurements
and the curves were fitted by non-linear regression. (C and D) Melting curves in fluorescence-based thermal shift assays reveal melting points (T m) of 51◦C and 41◦C for human 45CBS and CBS-1
respectively.

Figure S6 Enzymatic properties of recombinant CBS-1

(A and B) The dependence of CBS activity on pH and temperature respectively. The kinetic
properties of CBS-1 for 1–10 mM homocysteine in a mixture with 10 mM serine are shown
in (C), whereas the properties for 1–10 mM serine in a mixture with 10 mM homocysteine are
shown in (D). Results are means +− S.D. from four measurements.

Figure S7 Western blot analysis and CBS assay of crude nematode extracts

(A) Western blot analysis showing a decreased level of CBS-1 protein in nematodes after RNAi.
Actin was used as a reference protein. (B) CBS activity is significantly decreased in nematodes
after RNAi. Results are means +− S.D. from two independent measurements.
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Figure S8 Inhibition of cbs-1 by RNAi

Images show the body morphologies of worms in Nomarski optics. (A) L4 stage of cbs-1 RNAi
and WT worms. The affected worms exhibit decreased body mass and partial lack of pigment
granules in the intestine. Scale bars, 50 μm. (B) Higher magnification of an affected adult
nematode pharynx. The pharynx shows abnormal morphogenesis of the metacorpus with a
balloon-like appearance indicated by an arrow. Scale bar, 25 μm.

Figure S9 Domain architecture of CBS enzymes in nematodes

(A) Domain organization of nematode CBSs. The predicted amino acid sequences of hypothetical nematode CBSs were aligned with the sequence of C. elegans CBS-1, and the domain architecture of
the proteins was inferred from the degree of homology. Primary structures are aligned by the PLP-binding lysine residue. The numbers indicate the first and the last amino acid residues in each of the
conserved domains. Hypothetical proteins included in the alignment are as follows: C. elegans_ZC373.1 (CBS-1, UniProt entry Q23264); C. brenneri (WormBase accession number CN28558); C.
briggsae (UniProt entry A8WRM3); C. remanei (UniProt entry E3MMP8); C. japonica (WormBase accession number JA15528); C. elegans F54A3.4 (UniProt entry Q9N4K2); Pristionchus pacificus
(WormBase accession number PP12619); Loa loa (UniProt entry E1FTU4). (B) Amino acid alignment of hypothetical PLP-binding site of separated N-terminal and C-terminal conserved regions of
various nematode CBSs. #, site of the putative PLP-binding lysine residues. ∗, conserved residue. Only Loa loa CBS contains a lysine residue in both PLP-binding sites.
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Table S1 Primer sequences

Primers A–F were used to generate the cbs-1–GFP vector (see the GFP reporter assay section of the main text), G and H were used for the amplification of the shortened cbs-1 coding sequence
(see the RNA-mediated interference section of the main text), I–K (sense) and L–O (antisense) were used in combination to amplify the F54A3.4 open reading frame (see the PCR amplification and
sequencing section of the main text), P–U (sense) and V (antisense) were used for the amplification of the cbs-1 coding sequence with specific cloning overhangs (see the Bacterial expression and
purification section of the main text). Primers W–Z were used for site-directed mutagenesis.

Primer Sequence

A, cbs-1_S 5′-ACTTGACGGAAAAGCTGGCAGA-3′

B, cbs-1_A 5′-AGTCGACCTGCAGGCATGCAAGCTGGCGTCTAGGAAATGACGCTCATTC-3′

C, GFP_S 5′-AGCTTGCATGCCTGCAGGTCG-3′

D, GFP_AS 5′-AAGGGCCCGTACGGCCGACTA-3′

E, cbs-1_S* 5′-GAGGAATGACCATCAATTTGA-3′

F, GFP_AS* 5′-GGAAACAGTTATGTTTGGTATA-3′

G , RNAi_S 5′-GACCCTCATGGATCTATTC-3′

H, RNAi_AS 5′-GACGCTCATTCATCCAATC-3′

I, F54_S1 5′-GACGAATTCATGTGCCTGCCTACCATTAAA-3′

J, F54_S2 5′-GGCAAGACGCCACTGGTGAA-3′

K, F54_S3 5′-AGAAGACAACAGTGGTCGGAGTGAGAT-3′

L, F54_AS1 5′-CAAGCGGCCGCTCAATAGAAAATGCGAGAGCG-3′

M, F54_AS2 5′-AGAGATTCCGGTGATGGTAC-3′

N, F54_AS3 5′-CAACGGCACCAGTTGAGTTG-3′

O, F54_AS4 5′-TGGCTTCCAGCACTGCCGC-3′

P, CBS-1_S 5′-CCTGGGATCCATGATCCAAAACGAAGTTTCC-3′

Q, �1–372 5′-CCTGGGATCCCCAGAAAGGCCACTGGTTCTT-3′

R, �1–322 5′-CCTGGGATCCGTGGTGACCAGAAAAGATGGA-3′

S, �1–299 5′-CCTGGGATCCATGGAATTAGAAATTATC-3′

T, b/375 5′-CCTGGGATCCATGGACCACAACCAAACAGCA-3′

U, b/360 5′-CCTGGGATCCATGATCCAACTAAACTTGCTG-3′

V, CBS-1_AS 5′-GCCGCTCGAGTTAGTGGTGATGGTGATGATGGGCGTCTAGGAAATGACG-3′

W, K421A_S 5′-TGAACGCTGGGGGATCAACAGCGGATCGTATTG-3′

X, K421A_AS 5′-CATTCTTTTGGCAATACGATCCGCTGTTGATCCC-3′

Y, E62K_S 5′-TCAATATTGCGGGATCTTTGAAAGACCGTACCG-3′

Z, E62K_AS 5′-GCTTTGTCAGCGGTACGGTCTTTCAAAGATCCC-3′

Table S2 Homologous level of CBS-related proteins in C. elegans

C. elegans genes are arranged by the level of homology with human CBS. The query sequences are as follows: human CBS (UniProt entry P35520), trypanosomal CBS (UniProt entry Q9BH24) and
bacterial CS (UniProt entry P0ABK5). In each group of comparisons, the left-hand column lists the e-value, and the middle and right-hand column list identical and positive matches in percentages
respectively. The Table shows three groups of ten CBS homologues in C. elegans: ZC373.1 and F54A3.4 have the highest homology with CBS; C17G1.7, R08E5.2, F59A7.9 and K10H10.2 are the
most homologous with cysteine synthase; and the remaining homologues belong to other unspecified fold-type II PLP-dependent protein families. AA, number of amino acids in the hypothetical
protein; COG, clusters of orthologous groups of proteins; CBS RE, CBS and related enzymes; NA, not assigned; SR, serine racemase.

Homology [e-value, identities (%), positives (%)]

Name AA COG human CBS (551 AA) T. cruzi CBS (384 AA) E. coli CS (323 AA)

ZC373.1 704 CBS RE 8e − 94 54 71 2e − 84 50 66 2e − 30 30 44
F54A3.4 755 CBS RE 4e − 92 54 68 8e − 87 51 66 6e − 27 32 46
C17G1.7 341 NA 2e − 54 44 60 4e − 41 36 51 5e − 62 44 59
K10H10.2 337 CBS RE 4e − 54 38 60 9e − 43 35 56 1e − 60 45 58
R08E5.2 337 CBS RE 1e − 51 37 58 2e − 42 36 55 1e − 57 41 57
F59A7.9 337 CBS RE 7e − 42 36 58 3e − 38 35 54 4e − 56 41 55
F01D4.8 430 CBS RE 2e − 10 24 43 0.012 25 49 0.043 26 46
T25D3.3 427 CBS RE 2e − 09 25 40 0.003 24 44 0.001 28 56
T01H8.2 317 SR 1e − 07 28 43 2e − 04 23 39 0.015 29 48
F13B12.4 435 CBS mRE 5e − 07 21 40 0.037 23 47 5e-04 26 45
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Abstract Protein misfolding has been proposed to be a
common pathogenic mechanism in many inborn errors of
metabolism including cystathionine β-synthase (CBS) defi-
ciency. In this work, we describe the structural properties of
nine CBS mutants that represent a common molecular
pathology in the CBS gene. Using thermolysin in two
proteolytic techniques, we examined conformation of these
mutants directly in crude cell extracts after expression in E.
coli. Proteolysis with thermolysin under native conditions
appeared to be a useful technique even for very unstable
mutant proteins, whereas pulse proteolysis in a urea gradient
had limited values for the study of the majority of CBS
mutants due to their instability. Mutants in the active core
had either slightly increased unfolding (p.A114V, p.E302K
and p.G307S) or extensive unfolding with decreased stability
(p.H65R, p.T191M, p.I278T and p.R369C). The extent of
the unfolding inversely correlated with the previously
determined degree of tetrameric assembly and with the

catalytic activity. In contrast, mutants bearing aminoacid
substitutions in the C-terminal regulatory domain (p.R439Q
and p.D444N) had increased global stability with decreased
flexibility. This study shows that proteolytic techniques can
reveal conformational abnormalities even for CBS mutants
that have activity and/or a degree of assembly similar to the
wild-type enzyme. We present here a methodological
strategy that may be used in cell lysates to evaluate
properties of proteins that tend to misfold and aggregate
and that may be important for conformational studies of
disease-causing mutations in the field of inborn errors of
metabolism.

Introduction

Protein misfolding plays a role in the pathogenesis of many
diseases, including inborn errors of metabolism, such as
phenylketonuria due to phenylalanine hydroxylase defi-
ciency, lysosomal storage disorders and various acyl-CoA
deficiencies (Muntau and Gersting 2010). Aberrant folding
of mutant proteins may be repaired by treatment of patients
with chaperones, and the possible rescue of the mutants
represents an interesting option for successful therapy of
conformational disorders (Leandro and Gomes 2008). The
efficacy and specificity of the search for novel compounds
with chaperone activity may be significantly increased if
detailed knowledge of the structural mechanisms underly-
ing the misfolding of the mutants is available. This has
been demonstrated by the implementation of a novel
therapy for phenylketonuria using sapropterin (Muntau et
al. 2002), which possibly acts a pharmacological chaperone
(Erlandsen et al. 2004; Pey et al. 2004; Perez et al. 2005).

Homocystinuria due to cystathionine beta-synthase
(CBS) deficiency is a common enzymopathy that affects
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the metabolism of sulfur amino acids and manifests
clinically as a multisystemic disease (Mudd et al. 2001;
Skovby et al. 2010). It has been proposed that many
missense mutations in the CBS gene disrupt correct protein
folding. This notion was supported by several lines of
evidence, including the abnormal migration of mutant
proteins in native electrophoresis (Janosik et al. 2001b;
Kozich et al. 2010), the decreased solubility of mutants in
SDS (Kozich et al. 2010) and the increased rate of
proteasome-dependent proteolysis (Singh and Kruger
2009). The misfolding of CBS mutants was also inferred
from the rescue of mutant enzymes by chemical chaperones
(Singh et al. 2007; Majtan et al. 2010; Kopecka et al. 2011),
CBS ligands (Kopecka et al. 2011), proteasome inhibitors
(Singh et al. 2010), or by expression under temperature
permissive to folding (Kozich et al. 2010). Taken together,
all these experiments strongly indicate that misfolding plays
an important role in CBS deficiency; however, the
conformational changes underlying the abnormal folding
have not been studied in detail.

Biophysical techniques used for conformational studies
require relatively large amounts of purified proteins.
However, only a few CBS mutants have been successfully
produced as recombinant proteins in E. coli, purified to
homogeneity in sufficient yields and structurally character-
ized, including the C-terminal mutants p.I435T, p.S466L
(Janosik et al. 2001a) and p.D444N (Evande et al. 2002;
Sen et al. 2005) and a double-linked mutant p.P78R/K102N
(Sen and Banerjee 2007). Six additional CBS mutants (p.
P49L, p.P78R, p.A114V, p.R125Q, p.E176K, p.P422L)
were successfully purified in the presence of chemical
chaperones in the culture media (Majtan et al. 2010).
Because chaperones facilitate correct folding, it is not
surprising that the chaperoned mutants did not exhibit gross
structural abnormalities. It should be also noted that during
the purification procedure, an unknown portion of mis-
folded and aggregated proteins may be lost and, conse-
quently, the structural information about this fraction may
not be obtained from studying purified proteins.

To study mutants that are not amenable to purification,
proteolytic techniques in crude cell extracts may be used. It
has been demonstrated that protein folding may be studied
quantitatively by employing thermolysin, even in crude cell
extracts (Chang and Park 2009; Kim et al. 2009). The
methodology comprises two techniques: proteolysis under
native conditions and pulse proteolysis in a urea gradient.
The rate of proteolysis under native conditions reveals the
extent of unfolding in the conformational ensemble of
studied proteins because proteases can only cleave flexible
regions and partially or globally unfolded structures (Young
et al. 2007). Pulse proteolysis is a technique that uses
thermolysin to monitore urea-induced unfolding. After a
short proteolytic pulse, the fraction of folded proteins

remains uncleaved and the unfolded species are digested.
Using this premise, the cm value, a measure of protein
thermodynamic stability in the urea gradient, may be
determined (Park and Marqusee 2005).

In the present work, we applied these recently developed
techniques, whose feasibility for the conformational study
of CBS was shown using purified wild-type proteins
(Prudova et al. 2006; Hnizda et al. 2010), to study CBS
mutants expressed in E. coli. For these analyses, we
selected the three most prevalent mutants and six additional
mutants at different locations within the CBS molecule, and
we examined if the conformation of the CBS mutant differs
from the wild-type enzyme.

Results

Selection of CBS mutants The mutations selected for this
study are located in different domains of the CBS molecule
(Meier et al. 2003; Yamanishi et al. 2006; Hnizda et al.
2010) (see Table 1). Advanced molecular modelling of the
impact of mutations on enzyme structure could not be
performed with sufficient reliability because the 3-D
structure of human full-length wild-type CBS has not been
experimentally solved at atomic resolution. As reported
previously, these mutants vary in the degree of correct
assembly and subsequent tetramer formation as well as in
the levels of their catalytic activity (Kozich et al. 2010).

Determination of proteolytic kinetics under native
conditions We optimized the previously described proce-
dure (Chang and Park 2009) and final experimental
conditions designed to evaluate the proteolytic cleavage of
wild-type CBS in crude extracts over a time course of 20
min (for details, see Methods). The analysis of proteolytic
cleavage using SDS-PAGE (Fig. 1) and native electropho-
resis (Fig. S1 available in Supplementary_Info.pdf) did not
reveal the presence of any partially cleaved fragments or
unfolded intermediates, respectively. Therefore, the
assumption for a model to describe protein unfolding
and consequent proteolysis of CBS by thermolysin in
which there is an equilibrium between folded tetramers
and unfolded monomers (Park and Marqusee 2004a) was
satisfied. Because the opening of the folded structure is
necessary for sufficient proteolysis (Park and Marqusee
2004b; Chang and Park 2009), the determination of
proteolytic kinetics provides data on the extent of the
unfolding of the conformational ensemble.

The quantitative analysis of proteolysis under native
conditions revealed that the CBS protein in crude cell
extract comprises two different fractions. The major
fraction of wild type CBS (≈80%) was cleaved via the
first-order kinetics while the minor portion (≈20%)
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remained uncleaved at the end of proteolytic experiment.
The data from the proteolytic kinetics of wild-type CBS
were consistent with Eq. 1 (see Methods; r2=0.9066; see

Fig. S2A available in Supplementary_Info.pdf) and they
show that the proteolysis with thermolysin under native
conditions provides two parameters about the CBS pro-
teins: the proteolytic rate of the major fraction and the
relative abundance of the fraction that resists proteolysis
during experiments.

Analysis of CBS mutants by native proteolysis The kinetics
of proteolysis under native conditions was successfully
determined for all mutants. We show here that this method
is robust and that it can be used for the analysis of even
extremely unstable proteins.

All mutant proteins possessing an aminoacid substitution
in the active core were cleaved too rapidly using the same
default conditions for the capture of their proteolytic
courses (Fig. 1). Therefore, the unstable mutants were
exposed to lower and varying concentrations of thermoly-
sin, which enabled the observation of the proteolytic time
course and subsequent determination of its kinetics
(Fig. S3, available in Supporting_Info.pdf). Because the
dependence of the kinetic constant kobs on the thermolysin
concentration appeared to be linear (as shown for wild-type
CBS in Fig. S2B, available in Supplementary_Info.pdf), the
proteolytic susceptibility of CBS mutants was assessed by
comparing the kp values expressed in M−1 min−1; that is,
kobs divided by the molar concentration of thermolysin in
the proteolytic reaction (Park and Marqusee 2004b).

A significant increase in the proteolytic rates was
observed for all mutants located in the active core, Fig. 1
illustrates the proteolysis of the mutants under the same
conditions, and Table 2 provides the quantitative compar-
isons of the kinetic constant kp for the analyzed proteins.
Unfortunately, faster cleavage of the active core mutant p.
I278T could not be reliably quantified due to poor
reproducibility of the proteolytic cleavage of this mutant

Fig. 1 Proteolytic kinetics under native conditions for wild-type and
mutant CBS proteins. Cell lysates (1 mg/ml protein) were cleaved by
thermolysin (0.2 mg/ml). The amount of uncleaved protein was
determined by Western blot followed by immunodetection with CBS
antibody. Time points are depicted in minutes

Table 1 List of CBS mutants analyzed in this study.

Protein Location of the
mutated residue

The number of tetramers
(% of wild-type)

Relative enzyme activity
(% of wild-type activity)

Reference for the
location of the mutation

p.H65R heme-binding pocket 23.1 3.9 (Meier et al. 2003)

p.A114V dimer interface of the
active core

73.7 76.9 (Meier et al. 2003)

p.T191M solvent-exposed at the
periphery of the active core

1.7 0.3 (Kozich et al. 2010)

p.I278T buried in the active core 1.0 0.3 (Meier et al. 2003)

p.E302K regulatory interface 90.7 95.4 (Meier et al. 2003; Hnizda et al. 2010)

p.G307S catalytic site 111.7 0.2 (Meier et al. 2003)

p.R369C regulatory interface 7.8 1.8 (Yamanishi et al. 2006)

p.R439Q regulatory domain 117.6 117.2 (Kozich et al. 2010)

p.D444N regulatory domain -
AdoMet binding site

120.2 163.8 (Hnizda et al. 2010; Kozich et al. 2010)

Relative enzyme activities and the number of tetramers are expressed as a mean value from data published elsewhere (Kozich et al. 2010).
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at lower thermolysin concentration. In contrast, a decreased
value of kp was observed for mutations located in the
regulatory domain, suggesting a rigidification of their
conformation.

In the next step, we compared the B values, which give
the relative abundance of proteolytically resistant fractions
of CBS proteins revealed from the determination of
proteolytic kinetics. It should be noted that cleavage with
lower concentrations of thermolysin might lead to an
overestimation of the uncleaved protein fraction, as shown
for wild-type CBS in Fig. S2C (available in the Supple-
mentary_Info.pdf). However, an increased B value was not
observed for any of the mutants analyzed in this study
(Table 2). In contrast to wild-type CBS, several mutants
(p.H65R, p.I278T, p.E302K and p.G307S) exhibited a
decreased B value an increased kp. These results indicate
that the conformer distribution in the structural ensemble of
these mutants may possibly be shifted towards the unfolded
intermediates.

In summary, proteolysis under native conditions revealed
that all mutants had a different degree of structural
flexibility. Mutations in the active core had an increased
extent of protein unfolding, whereas mutations in the
regulatory domain tended to form more rigid protein
structures.

Pulse proteolysis A previously developed procedure for
pulse proteolysis of purified CBS (Hnizda et al. 2010) was
successfully adopted for crude cell extracts and the data for
wild-type CBS followed the two-state unfolding model
(r2=0.9562; Fig. S2D available in Supplementary_Info.
pdf). Pulse proteolysis therefore describes an equilibrium
between folded tetramers and unfolded monomers in a
urea gradient; the validity of this model is further
supported by a previous study (Kery et al. 1998) reporting
that higher concentrations of urea lead to the dissociation
of CBS tetramers.

Because a proportion of folded wild-type CBS was
cleaved during the proteolytic pulse even in the absence of
urea (see proteolysis under native conditions), a possible
systematic error in the determination of cm was assessed
according to a previously described procedure (Park and
Marqusee 2005, 2006). The kinetic constant for proteolysis
in 2.5 M urea was determined to be 0.13±0.01 min−1 (see
Fig. S4, available in Supplementary_Info.pdf), indicating
negligible cleavage of folded protein during the proteolytic
pulse at the beginning of the transition zone and,
consequently, the absence of a systematic error (Park and
Marqusee 2006).

It should also be noted that the cm calculated from the
pulse proteolysis of multimeric protein does not simply
represent global protein stability (ΔGunf°) and that the
structural stability of the protein is dependent on its
concentration (Park and Marqusee 2004a). However, the
amount of CBS mutants in cell extracts was similar to or
slightly less than the wild-type protein (Fig. S5, available in
Supplementary_Info.pdf). A significant decrease in protein
level to ~20% of wild-type enzyme was observed only for
p.I278T. Although the decreased amount of p.I278T might
lead to an underestimation of its stability, the experiments
with a decreased amount of wild-type CBS (described in
Materials and methods) did not reveal any changes in the
apparent cm values. It was also proposed that, in spite of
some limitations, cm values are still valuable for comparing
protein stability under the same conditions (Schlebach et al.
2010). Consequently, we employed pulse proteolysis in a
urea gradient for conformational studies of CBS mutants in
crude cell extracts.

Analysis of CBS mutants using pulse proteolysis in a urea
gradient Pulse proteolysis in a urea gradient was used for
six mutant proteins, whereas three mutants (p.H65R, p.
E302K and p.G307S) were cleaved rapidly during the
proteolytic pulse in the absence of urea, and less than 10%
of the CBS protein remained uncleaved. It has been shown
that pulse proteolysis in a urea gradient cannot be used for
rapidly cleaved proteins (Chang and Park 2009).

Analysis of the mutantions in the regulatory-domain
revealed higher cm values as a measure of increased protein

Table 2 Proteolytic kinetics of the CBS mutants under native
conditions and pulse proteolysis in a urea gradient

Proteolysis under native conditions Pulse proteolysis

Protein kp (10
6. M−1.min−1) B (%) Cm [M]

Wild-type 0.30±0.04 24.4±1.7 3.05±0.03

p.H65R 38.4±5.1 8.2±2.1 N.D

p.A114V 2.2±0.4 24.1±2.5 2.84±0.04*

p.T191M 44.3±8.8 22.9±3.0 2.4**

p.I278T <2, 64.5>*** 19.5±1.2 2.42±0.01

p.E302K 5.0±0.6 0±3.3 N.D

p.G307S 4.6±0.4 0±0.1 N.D

p.R369C 24.0±3.5 23.4±1.9 2.59±0.09

p.R439Q 0.02±0.01 25.7±9.6 3.49±0.04

p.D444N 0.03±0.01 28.4±6.2 3.32±0.04

kp, B and cm values were determined by nonlinear data fitting from
four different measurements. Representative gels with corresponding
plots are shown in the Supplementary materials.

*The determination of cm for p.A114V neglected the cleavage of
partially folded forms.

**Values were determined by visual inspection because these data
could not be evaluated by nonlinear data fitting.

***kp could not be exactly determined due to low reproducibility at
lower concentrations of thermolysin.

N.D. not determined due to the rapid proteolysis in the absence of
urea.
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stability (Table 2, Figs. S4 and S6, available in Supple-
mentary_Info.pdf). However, we experienced several diffi-
culties during the evaluation of mutants with an increased
rate of proteolysis observed under native conditions
(p.A114V, p.T191M, p.I278T and p.R369C). In the case
of the slightly unfolded mutant p.A114V, we observed a
significant proteolytic susceptibility at the beginning of the
apparent transition zone (Fig. S4 in Supplemetary_Info.
pdf), and the requirement for the kinetic constant to be less
than 0.2 min−1 for an accurate determination of cm was
therefore not satisfied. Despite this, pulse proteolysis can
yield at least partial knowledge about the urea-induced
transition between the partially and globally unfolded
fractions. An analysis accounting for a systematic error
(see Fig. S7, available in Supplementary_Info.pdf) showed
that the correct value of cm could in fact be lower that the
apparent value. Taken together, both the corrected and
uncorrected value of cm indicated that the protein stability
of the mutant p.A114V was at least slightly decreased
compared to wild-type CBS.

Another type of obstacle arose during the pulse
proteolysis of severely unfolded proteins, p.T191M, p.
I278T and p.R369C. The amount of CBS mutants in cell
lysates decreased after the overnight incubation even in the
absence of urea in the uncleaved control samples, perhaps
due to the formation of precipitates that did not enter into
the electrophoretic gel (a representative gel together with a
quantitative comparison of the amount of soluble CBS
antigen before and after overnight incubation is shown in
Fig. S8, available in Supplementary_Info.pdf).Therefore,
pulse proteolysis could only be assessed for the soluble
fraction of these mutants. Interestingly, the proteins were
not significantly cleaved at the beginning of their apparent
transition zone, indicating the reliable determination of
these values (Fig. S4 in Supplementary_Info.pdf). The
analyses showed a significant decrease in the stability of

these mutant proteins, which is consistent with the higher
extent of unfolding revealed by native proteolysis. However,
these results should be interpreted with great care because we
analyzed only the limited fraction of the conformational
ensemble that did not precipitate.

It should be noted here that the reported difficulties in
pulse proteolysis are most likely caused by the instability of
the mutants. Various modifications of experimental proce-
dures, such as a lower amount of thermolysin in the assay
or a shorter equilibration time of cell lysates in urea, did not
improve the outcome of the experiments (data not shown).
This suggests that pulse proteolysis in a urea gradient for
the conformational analysis of highly unstable mutant
proteins may be of limited value. In spite of these
limitations, pulse proteolysis showed that the different
extent of the unfolding of CBS mutants is associated with
corresponding changes in protein stability: unfolded mutant
proteins had lower stability, whereas rigidified mutants
were more stable than wild-type CBS.

Correlation of protein unfolding with the degree of tetramer
assembly and with enzyme activity of CBS mutants The
data from proteolysis under native conditions were corre-
lated with the number of correctly assembled tetramers and
their catalytic activity, which was reported in a previous
study (Kozich et al. 2010). The relative positions of the
mutations are similar in both plots, with the exception of
the catalytic site mutant p.G307S (compare Fig. 2a and b).
The plots show that hypoactive and incorrectly assembled
mutants had a higher extent of protein unfolding, whereas
hyperactive and properly assembled mutants were more
rigidified that wild-type CBS. This analysis indicates a
trend between the proteolytic resistance, kp, and the number
of tetramers (R2=0.6646; p=0.0074) and enzyme activity
(R2=0.7566; p=0.0015) (Fig. 2). These data may imply that
an optimal degree of conformational flexibility is a

Fig. 2 Conformational properties of CBS mutants: proteolytic data
correlated with enzyme activity and with the degree of tetrametric
assembly. The dependence of the proteolytic kinetics with thermolysin
under native conditions (ln (kp)) on the enzyme activity of the CBS
mutants (A) and on the number of assembled tetramers (B) – the

correlation analysis indicates a possible trend between the proteolytic
resistance and the number of tetramers (R2=0.6646; p=0.0074) and
enzyme activity (R2=0.7566; p=0.0015). All values for the mutants
are normalized to the number of tetramers or activity of the wild-type
as appropriate
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necessary condition for correct tetrameric assembly which
further determines the catalytic efficiency of CBS mutants.

Discussion

In this study, we describe conformational properties of nine
disease-causing CBS mutants that previously resisted
purification and further characterization. By using proteol-
ysis of mutants in crude cell extracts under native
conditions and pulse proteolysis in a urea gradient, we
demonstrated that the conformational properties of all
analyzed mutants differ from the wild-type protein. Based
on these data, we propose a possible molecular mechanism
for the misfolding and misassembly of CBS mutants. Using
a modified mathematical model for the folded tetramers-
unfolded monomers equilibrium (Park and Marqusee
2004a), mutants may be divided into three major groups:

i) Severely misassembled mutants with low residual activity
and extensive unfolding (p.H65R, p.T191M, p.I278T and
p.R369C). These mutants predominantly form aggregates
that are likely composed of weakly interacting subunits
with unfolded regions of high sensitivity to proteolytic
cleavage.

ii) Correctly assembled mutants that are only slightly
unfolded (catalytically active p.A114V and p.E302K
and the inactive p.G307S located in the active site).
These proteins are characterized by increased unfolding
through kinetically and/or thermodynamically more
favourable formation of unfolded intermediates.

iii) Correctly assembled hyperactive mutants that are
more stable and more tightly folded (p.R439Q and
p.D444N) due to a decreased formation of unfolded
species.

Altered conformational properties of CBS mutants may
affect protein turnover in vivo The higher proteolytic
susceptibility of the majority of CBS mutants in this study
indicates their inclination to unfolding. This observation is
consistent with previous work by Singh and Kruger
demonstrating that the most common mutant, p.I278T,
exhibited accelerated ubiquitin-dependent proteolysis in S.
cerevisiae and that turnover of the mutated protein could
have been altered by a manipulation of the levels of heat
shock proteins (Singh and Kruger 2009). Furthermore,
several mutants were rescued by treatment with the
proteasome inhibitor bortezomib in yeast or by MG132 in
patient-derived fibroblasts (Singh et al. 2010), indicating
that more rapid degradation plays an important role in the
pathophysiology of CBS deficiency.

All these data are consistent with a hypothesis that the
unfolded intermediates of CBS mutants may be rapidly

degraded by proteasome-dependent proteolysis. Increased
protein unfolding was reported for oligomeric enzymes that
are deficient in other inherited metabolic diseases such as
S-adenosylhomocysteine hydrolase (Beluzic et al. 2006),
medium chain acyl-CoA dehydrogenase (Maier et al. 2009)
and electron transfer flavoprotein (Schiff et al. 2006).
Furthermore, the relationship between increased proteolytic
susceptibility in vitro and accelerated proteasome-dependent
turnover in vivo was also demonstrated for misfolded mutants
of alanine:glyoxylate aminotransferase (Coulter-Mackie and
Lian 2006, 2008) and phenylalanine hydroxylase (Waters et
al. 1999; Gersting et al. 2008).

Conversely, mutations in the regulatory domain of CBS
led to an increase in proteolytic stability. This indicates that
the conformation of these mutants is less flexible than of
the wild-type protein. It remains to be addressed how the
increased conformational rigidity and hyperactivity of the
C-terminal mutants could result in their pathogenicity in
vivo. In previous studies, the representative C-terminal
mutants, p.I435T, p.D444N and p.S466L, had higher
activity than the wild-type enzyme together and a lower
affinity towards an allosteric activator of CBS, S-adenosyl-
methionine (AdoMet), and they failed to change conforma-
tion upon AdoMet binding (Janosik et al. 2001a; Evande et
al. 2002; Sen et al. 2005). Based on these observations, it
was proposed that the altered response to AdoMet may play
a role in the pathogenicity of these C-terminal mutations
(Yamanishi et al. 2006; Kozich et al. 2010). Interestingly,
other work showed that the expression of the C-terminal
mutant p.S466L in a transgenic mouse led to a lower
steady-state protein level and to decreased catalytic effi-
ciency in vivo (Gupta et al. 2008). Decreased amounts of
hyperactive mutants were also observed in crude cell
extracts for two patient-derived fibroblast cell lines carrying
the mutations p.I435T/del ex8 (Maclean et al. 2002) or p.
D444N/p.D444N (Evande et al. 2002). Based on these
observations, we speculate that the more tightly folded
mutants may be recognized by the cellular quality control
machinery, thereby leading to their accelerated degradation.

It should be noted that our study revealed several
limitations of proteolytic experiments for conformational
studies in crude cell extracts. Pulse proteolysis could not be
applied for three of the nine mutant proteins (p.H65R, p.
E302K and p.G307S) because these mutants were substan-
tially cleaved during the proteolytic pulse, even in the
absence of urea. In addition, we experienced difficulties
with the evaluation of the other unfolded mutants (p.
A114V, p.T191M, p.I278T and p.R369C) due to significant
cleavage at the beginning of the apparent transition zone or
precipitation events during the overnight equilibration in
the urea gradient. In this case, the determination of cm
values and subsequent data interpretation must be per-
formed carefully and pulse proteolysis in the urea gradient
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may indicate changes in thermodynamic stability of
unfolded mutant proteins.

On the other hand, the determination of the rate of
proteolysis with thermolysin under native conditions
appeared to be robust and provided conformational data
about all mutants studied. Despite this, there were some
obstacles while performing this technique: a) the relatively
demanding optimalization of the procedure in order to find
an appropriate ratio of the total protein in lysates to the
thermolysin concentration (w/w) to accurately determine
proteolysis kinetics; b) the presence of a small protein
fraction that was not cleaved according to first-order
kinetics and that remained intact and catalytically active at
the end of experiments (data not shown). Because the small
uncleaved fraction was also observed in mammalian HepG
and HeK cell-lines with endogenous CBS expression (our
unpublished data) but not with purified CBS proteins
(Hnizda et al. 2010), it is possible that the minor fraction
of CBS in cell lysates may result from intermolecular
interactions with small ligands or high molecular weight
molecules such as other proteins or nucleic acids. This
uncleaved fraction is most likely not caused by binding of a
small compound because the dialysis of the bacterial lysate
containing wild-type CBS prior to the assay did not
significantly change the proteolytic time-course (data not
shown). In spite of these limitations, the proteolytic
techniques used in crude cell extracts enabled the expansion
of our knowledge about the conformational properties of
the CBS mutants that are not amenable for purification and
consequently not available for detailed studies by more
conventional methods.

We present here a general methodological strategy that may
be used directly in crude cell extracts to evaluate properties of
proteins that tend to misfold and aggregate and that may be
important for conformational studies of disease-causing
mutations in the field of inborn errors of metabolism. This
approach may benefit the conformational analysis of mutants
after expression without affinity tags or after endogenous
expression in patient-derived fibroblasts, other available cell
lines or tissues. Proteolytic techniques are able to reveal
conformational abnormalities even in mutant enzymes with
normal catalytic activity and may be applied to the mutational
analysis of non-enzymatic proteins whose functional assays
are lacking or are difficult to employ.

Materials and methods

Materials If not specified otherwise, all chemicals were
purchased from Sigma-Aldrich.

Expression of CBS enzymes and preparation of crude cell
extract The CBS proteins were expressed at 37°C in E. coli

transformed with pHCS3 plasmids that express untagged
full-length wild-type or mutant CBS proteins (Kozich and
Kraus 1992). Crude cell-extracts were prepared as described
previously (Kozich et al. 2010). The protein concentration
was determined using Bradford reagent with bovine serum
albumin as a standard.

Proteolysis with thermolysin under native conditions Crude
cell extracts (final protein concentration 1 mg/ml; total
volume 25 μl) were diluted in 20 mM Tris-HCl (pH 8.0)
containing 10 mM CaCl2, equilibrated at 25°C for
10 minutes and then digested with thermolysin. The
concentration of thermolysin ranged from 0.4 to 200 μg/
ml as described in the Results. At the selected time points,
proteolysis was quenched in 20 mM EDTA.

Pulse proteolysis Pulse proteolysis was performed accord-
ing to a previously reported procedure (Hnizda et al. 2010)
with some modifications. Cell lysates (final protein con-
centration 1 mg/ml; total volume 25 μl) were incubated
overnight at 4°C in 20 mM Tris-HCl (pH 8.0) containing
10 mM CaCl2 and urea (0–7 M). After subsequent
equilibration at 25°C for 10 minutes, the samples were
digested by thermolysin from Bacillus thermoproteolyticus
(0.2 mg/ml) at 25°C. The proteolytic pulse (60 s) was
quenched in 20 mM EDTA.

Because the thermodynamic stability of multimers may be
dependent on protein concentration, we assessed the effect of
different amounts of wild-type CBS in the assay on the
determined cm values. Pulse proteolysis of the wild-type CBS
was performed for lower concentration of total protein (0.5
or 0.25 mg/ml) that was digested by the corresponding
amount of thermolysin (100 or 50 μg/ml). The lower protein
concentration in pulse proteolysis did not change the
apparent cm values (data not shown). These experiments
showed that lower amounts of CBS proteins in the assay did
not have an effect on the accurate determination of their
thermodynamic stability implying that this approach is also
useful for mutant proteins with decreased steady-state levels.

Western blotting and data fitting The amount of uncleaved
CBS was analyzed under denaturing or native conditions by
the Western blot procedure described previously (Kopecka
et al. 2011). The CBS antigen was detected using purified
chicken anti-hCBS serum H19 (HenA, Czech Republic)
diluted 1:500 in 3% non-fat dry milk in 10 mM Tris-HCl
(pH 7.4) containing 150 mM NaCl. Secondary rabbit anti-
chicken horseradish-peroxidase-cojugated antibody (Ther-
moFischer Scientific) was diluted 1:15,000 in PBS con-
taining 3% non-fat dry milk. The signal was quantified, and
the data were fitted to non-linear curves as reported
previously (Hnizda et al. 2010; Kozich et al. 2010). Each
experiment was carried out twice, each in duplicate; data
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shown in figures and tables are therefore the means and
standard deviations of four determinations.

Proteolysis under native conditions was evaluated using
the first-order kinetics (Park and Marqusee 2004b). Data
were fitted into the equation as follows:

N ¼ N0 � e �kobs�tð Þ þ B; ð1Þ
where N and N0 are the amounts of intact protein, kobs is the
first-rate kinetics constant, t is time and B is the fraction of
protein that was not cleaved via the first-order kinetics and
that remained uncleaved at the end of proteolytic experi-
ment. Data from the pulse proteolysis were fitted into the
sigmoidal equation as follows:

ffold ¼ 1

1þ e p� cm�cð Þ ; ð2Þ

where ffold is a fraction of folded proteins remaining intact
after the proteolytic pulse and is related to the amount of
uncleaved protein after the pulse in absence of urea, cm is
the urea concentration at which ffold is 0.5 and c is the urea
concentration. p is a slope of the curve at cm and reflects
unfolding cooperativity.
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SUPPLEMENTARY INFORMATION 

Figure S1: Proteolysis of wtCBS under native conditions: analysis by native 

electrophoresis. 

“N” refers to the uncleaved control, and the time points are depicted in minutes. The expected 

migraton of oligomers is shown by arrows in accordance with the previous report on the 

behavior of CBS in native electrophoretic gels (Kozich et al. 2010). Shifts in the migration of 

CBS during the proteolytic time course exhibit a dose-response pattern that was reported 

previously (Kopecka et al. 2011). The analysis shows the absence any detectable monomeric 

or dimeric intermediate during the proteolytic time course.
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Figure S2: Nonlinear data fitting for wild-type CBS in bacterial crude extract. Points are the 

mean with standard deviations from four measurements. A. Proteolytic kinetics under native 

conditions; proteins in cell lysate (1 mg/ml) were cleaved by thermolysin (0.2 mg/ml). B and 

C. Dependence of kobs (B) and the fraction of uncleaved protein B (C) on the concentration of 

thermolysin during proteolysis of wild-type CBS. D. Pulse proteolysis of wild-type CBS in 

bacterial crude extract. Proteins in cell lysate (1 mg/ml protein) were cleaved by thermolysin 

(0.2 mg/ml) for 60 seconds. The concentration of urea is plotted against ffold, the fraction of 

folded proteins that remained uncleaved after the proteolytic pulse. The ffold values at each 

point were calculated as a ratio of the remaining protein to the amount of uncleaved protein in 

the absence of urea.
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Figure S3: Proteolytic kinetics under native conditions of the wild-type and mutant CBS 

proteins at the thermolysin concentration that enabled the observation of the proteolytic 

time-course. Points are the mean with standard deviations from four measurements. Below 

each plot, the corresponding representative gels are shown. The values of kp depicted in Table 

2 were determined from these experiments. For cleavage of p.E302K and p.G307S, partially 

cleaved fragments were observed; this limited proteolysis was caused by the extremely low 

amounts of thermolysin in these experiments. 
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Figure S4: Proteolytic cleavage of wild-type and mutant CBS in the concentration of urea that correspond 

to the beginning of the unfolding transition zone for each protein - plots with corresponding representative 

gels. This experiment assessed the possible systematic error in the determination of the cm value. Systematic 

error in determination of cm value is negligible if kinetic constant of the cleavage is lower than 0.2 min-1 (Park 

and Marqusee 2006). 

A. The kinetic constant of wild-type CBS in 2.5M urea was determined to be 0.13 ± 0.01 min-1.Points are the 

mean with standard deviations from four measurements. B. The kinetic constant of p.A114V in 2.5M urea was 

determined to be 1.14 ± 0.30 min-1. Points are the mean with standard deviations from four measurements. Rapid 

cleavage indicates that cm value for p.A114V may be determined with systematic error. 

The cleavage of the unfolded mutants p.T191M, p.I278T and p.R369C (C) and the rigidified mutant and 

p.D444N (D) was negligible during the time intervals chosen. The mutant p.R439Q (D) was cleaved too slowly 

for reliable nonlinear data fitting during time interval chosen.

For wild-type CBS, p.R439Q and p.D444N, proteolytic fragments were observed; limited proteolysis was likely 

caused a by low catalytic activity of thermolysin in higher concentrations of urea.

125



Figure S5: The amount of CBS proteins in crude cell extracts after expression in E. coli 

at 37 °C. 

Bacterial cell lysates (20 μg total protein) were loaded to each lane after expression of CBS 

proteins using corresponding pHCS3 plasmids.
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Figure S6: Pulse proteolysis of wild-type and mutant CBS proteins – plots with 

corresponding representative gels. The concentration of urea is plotted against ffold, the 

fraction of folded proteins that remained uncleaved after the proteolytic pulse. The ffold values 

at each point were calculated as a ratio of remaining protein to the amount of uncleaved 

protein in the absence of urea. Points are the mean with standard deviations from four 

measurements. Dashed lines in the plot of each mutant represent the curve determined for 

wild-type CBS. The presence of proteolytic fragments was observed only in several 

concentrations of urea for mutants p.A114V and p.R439Q; limited proteolysis was likely 

caused by a low catalytic activity of thermolysin in higher concentrations of urea.
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Figure S7: Evaluation of the pulse proteolysis of p.A114V , which calculates the correction on cleavage of 

partially unfolded proteins. 

Table. For each concentration of urea, the following values were calculated: i, “estimated kobs” is a kinetic 

constant for the proteolysis of p.A114V in urea concentrations if urea-induced unfolding did not occur. The 

values are calculated according to observed kobs in the absence of urea together with theoretical decrease in kcat of 

thermolysin in the urea gradient that was previously published (Park and Marqusee 2004b). ii, “estimated 

amount of uncleaved protein in the absence of urea-induced unfolding” represents the amount of p.A114V that 

will be uncleaved after the pulse if urea-induced unfolding did not occur. It is calculated according to values of 

“estimated kobs.” iii, “fraction of globally unfolded protein” was calculated as the difference between the 

estimated and observed amount of uncleaved protein. iv, the fraction of partially unfolded protein is 100 

-fraction of globally unfolded protein.  Using this estimation, we assessed the degree of urea-induced unfolding 

of the protein.

In the plots below the table, dashed lines represent the curve of wild-type CBS. Points are the mean with 

standard deviation from four measurements. Left. the default analysis neglects the cleavage of the partially 

folded mutant at the beginning of the apparent transition zone. Right. the plot shows the corrections due to the 

rapid cleavage of the partially unfolded mutant protein based on the data from the table. 

Urea 

(M)

estimated 

kobs

(min-1)

estimated amount 

of uncleaved 

protein in absence 

of urea-induced 

unfolding (%)

observed 

amount of 

uncleaved 

protein 

(%)

fraction of 

globally 

unfolded 

proteins 

(%)

fraction of 

partially 

unfolded 

proteins (%)

0 0.80 44.9 44.9 0 100
1 0.38 68.1 52.4 15.7 84.3
2 0.18 83.2 44.6 38.6 61.4

2.5 0.13 88.0 40.0 48.0 52.0
3 0.09 91.6 16.2 75.4 24.6

3.5 0.06 93.8 7.7 86.1 13.9
4 0.03 97.2 2.5 94.7 5.3
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Figure S8: Differences in CBS signal after overnight incubation in the absence of urea at 

4 °C. Bacterial lysates containing CBS proteins (20 µg total protein per lane) are shown with 

identical numbering: 1 – freshly thawed sample; 2 – freshly thawed sample after overnight 

incubation at 4 °C. Extensively unfolded mutants (p. T191M, p.I278T and p.R369C) showed 

a significant decrease in the amount of CBS antigen after the overnight incubation, indicating 

the formation of aggregates.

Table. The residual amount of the CBS antigen was determined using densitometry. The 

values are related to the amount of freshly thawed samples containing the corresponding CBS 

protein.

Protein

Residual amount of the CBS antigen 

after overnight incubation [%]
Wild-type 94
p.A114V 120
p.T191M 10
p.I278T 66
p.R369C 20
p.R439Q 118
p.D444N 113
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ABSTRACT 

Protein misfolding due to missense mutations is a common pathogenic mechanism in cystathionine 

beta-synthase (CBS) deficiency. In our previous studies, we have successfully expressed, purified and 

characterized nine CBS mutant enzymes containing the following patient mutations: P49L, P78R, 

A114V, R125Q, E176K, R266K, P422L, I435T and S466L. These purified mutants exhibited full heme 

saturation, normal tetrameric assembly and high catalytic activity. In this work, we used several 

spectroscopic and proteolytic techniques to provide a more thorough insight into the conformation of 

these mutant enzymes. Far-UV circular dichroism, fluorescence and second derivative-UV spectroscopy 

revealed that the spatial arrangement of these CBS mutants is similar to the wild-type although the 

microenvironment of the chromophores may be slightly altered. Using proteolysis with thermolysin 

under native conditions, we found that the majority of the studied mutants is more susceptible towards 

cleavage suggesting their  increased local flexibility or propensity to local unfolding. Interestingly, the 

presence of the CBS allosteric activator, S-adenosylmethionine (AdoMet), increased the cleavage rate 

of wild-type and the AdoMet-responsive mutants, while the proteolytic rate of the AdoMet-

unresponsive mutants was not significantly changed. Pulse proteolysis analysis suggested that the 

protein structure of the R125Q and E176K mutants is significantly less stable than that of wild-type and 

the other mutants. Taken together, the proteolytic data show that the conformation of pathogenic 

mutants is altered despite retained catalytic activity and normal tetrameric assembly. This study 

demonstrates that the proteolytic techniques are a useful tool for the assessment of the biochemical 

penalty of missense mutations in CBS. 
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INTRODUCTION 

 

Cystathionine beta-synthase (CBS) deficient homocystinuria (CBSDH; OMIM# 236200) is the most 

common inherited defect in sulfur amino acids metabolism characterized by severely elevated levels of 

plasma homocysteine, methionine and S-adenosyl-L-homocysteine (1). The worldwide frequency is 

estimated to be around 1:330,000 (1), thus classifying CBSDH as a rare disease. Interestingly, this 

number may be underestimated as several molecular epidemiological studies revealed the prevalence of 

homozygosity or compound heterozygosity for pathogenic mutations to be around 1:10,000 (2-5). If 

untreated, CBSDH manifests clinically with connective tissue symptoms such as dislocated lenses and 

skeletal abnormalities, mental retardation and vascular complications, particularly thromboembolic 

episodes (1). About half of CBS deficient patients respond to a treatment with pharmacological doses of 

pyridoxine (vitamin B6) with a significant lowering of plasma homocysteine levels and an alleviation of 

the clinical phenotype. The treatment of pyridoxine non-responsive patients involves a low methionine 

diet and supplementation with betaine which lowers homocysteine by promoting its remethylation to 

methionine via betaine:homocysteine S-methyltransferase. 

Cystathionine beta-synthase (EC# 4.2.1.22) is a pyridoxal-5’-phosphate (PLP) dependent hemeprotein 

which catalyzes condensation of serine and homocysteine to form cystathionine as the first committed 

step in transsulfuration and subsequent biosynthesis of cysteine, glutathione and taurine. Human 

enzyme has a modular structure and a complex regulatory behavior (reviewed in (6,7)). More than 160 

mutant alleles have been described in CBSDH patients so far 

(http://cbs.lf1.cuni.cz/cbsdata/cbsmain.htm) with missense mutations as the most common variants in 

the CBS gene accounting for 87% of analyzed patients alleles. Our previous study proposed that 

misfolding of CBS mutants may be responsible for pathogenicity in CBS deficiency as majority of 

tested CBS mutants formed large inactive aggregates devoid of heme (8). This proposed mechanism 

was later supported by several studies exploring the beneficial effect of chemical chaperones on the 

recovery, activity and assembly of various CBS mutant proteins (9-11). The presence of chemical 

chaperones such as ethanol or dimethylsulfoxide during expression in bacteria permitted the purification 

of several CBS mutants which exhibit normal heme saturation, native tetrameric assembly and the same 

or higher specific activities than the wild type CBS (12). Although the recovery of fully active CBS 

mutants suggests an improved folding, the final conformation of the purified mutants most likely differs 

from that of wild-type protein as the purified fully active CBS mutants varied in their response to 

exogenous addition of PLP cofactor as well as in their response to S-adenosyl-L-methionine (AdoMet) 

stimulation (12). In addition to studying spatial arrangement of proteins by spectroscopic monitoring of 

their conformation, proteolytic techniques such as proteolysis under native conditions and pulse 

proteolysis proved to be useful and effective to examine some aspects of protein structure (13,14); this 
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approach uses thermolysin, an endoprotease that preferentially cleaves peptide bonds in regions 

containing hydrophobic amino acids. The rate of proteolysis with thermolysin under native conditions 

reveals the extent of unfolding of the studied proteins because this endoprotease can only cleave flexible 

regions and partially or globally unfolded structures (15). Further, pulse proteolysis is a technique that 

uses thermolysin to monitor urea-induced unfolding. After a short proteolytic pulse, the fraction of 

folded proteins remains intact whereas the locally and/or globally unfolded species are digested. Using 

this premise, the protein is analyzed in varying concentrations of urea and the cm value, a measure of 

protein thermodynamic stability in the urea gradient, may be determined (14). The recent study of 

several CBS mutants in crude extracts showed that such techniques can reveal conformational 

abnormalities even in CBS mutants with normal activity and/or the degree of assembly similar to the 

wild-type enzyme (16). 

In this study we applied several spectroscopic and proteolytic techniques to get an insight into the 

changes in CBS protein conformation induced by disease-causing missense mutations. We studied nine 

purified mutants P49L, P78R, A114V, R125Q, E176K, R266K, P422L, I435T and S466L. The 

purification and biochemical characterization of these mutants was reported elsewhere (12,17); the 

determination of their conformational properties adds additional new information thus permitting an 

understanding of pathogenicity of missense mutations in CBS. 

 

 

EXPERIMENTAL PROCEDURES 

 

Purification of CBS proteins. The wild-type and mutant CBS enzymes except for the R266K CBS 

were expressed as fusion proteins with the N-terminal GST in E. coli Rosetta2 (DE3) cells and purified 

essentially as described previously (12). The R266K mutant enzyme was expressed in E. coli Rosetta2 

(DE3) cells with a C-terminal 6xHis tag and isolated following the previously reported procedure (17). 

Circular dichroism (CD) and fluorescence spectroscopy. The CD spectra of CBS proteins (0.5 mg/ml; 

50 mM phosphate buffer, pH 7.5) were recorded by chiroptic spectrometer Jasco J-810. The intrinsic 

fluorescence of CBS proteins was measured in the same buffer using Perkin Elmer LS55 fluorescence 

spectrometer. The excitation wavelength was 295 nm (slit width 5 nm) for tryptophans and 420 nm  (slit 

width 10 nm) for internal aldimines with an emission signal scanned from 300 to 450 nm (slit width 5 

nm) and from 430 to 700 nm (slit width 10 nm), respectively. 

Second-derivative UV spectroscopy. The UV spectra were recorded between 10 and 90°C with 2.5°C 

increments and a 3 min equilibrium time at each temperature. Measurements were made on an Agilent 

diode array model 8453 UV-visible spectrophotometer equipped with a Peltier temperature controller. 

Two ml of protein samples (0.2 mg/ml) were prepared by diluting the stock protein with the appropriate 
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amount of buffer (20 mM HEPES pH 7.4, 1 mM Tris-(2-carboxyethyl)-phosphine, 0.01% Tween 20) 

and then placed in a quartz cuvette with a 1 cm path length. A micro stir bar (100 rpm) was put into the 

cuvette improve the heat-exchange in the sample. The second derivative UV spectra at each temperature 

were used to compare the changes of tertiary structure of proteins. The peak positions for aromatic 

amino acids tryptophan, tyrosine and phenylalanine were plotted as a function of temperature. 

Proteolysis with thermolysin under native conditions and pulse proteolysis. Proteolytic techniques 

were performed and evaluated according to the previously published procedures (18). Each experiment 

was repeated at least twice. 

The rate of proteolysis under native conditions was expressed as kp, the  constant  in a  single 

exponential equation. 

Pulse proteolysis revealed the cm value, i.e. concentration of urea at which fraction of folded proteins 

comprises 50 % of the entire protein population. To assess accuracy of the determined cm values, we 

observed proteolytic cleavage of the CBS proteins in 2M urea solution. The kinetic constant for 

proteolysis of all proteins with determined cm was lower than 0.2 min-1 indicating negligible cleavage of 

the protein during the proteolytic pulse at the beginning of the transition zone and thus the absence of a 

systematic error (19). 

 

RESULTS 

 

Mutants analyzed in this study. All studied mutants were purified into homogeneity. They retained 

catalytic activity and their saturation with heme and tetrameric assembly were similar to wild-type CBS 

as previously reported (12). These mutations are located a) in the proximity of the heme-binding pocket 

(P49L, R125Q and R266K), b) at the dimer interface (P78R, A114V and E176K), and c) in the 

regulatory domain (P422L, I435T and S466L) (Fig.1).  

Far UV-CD spectroscopy. To assess the impact of mutations on the formation of the secondary 

structure of the protein, we analyzed CBS mutants by far UV-CD spectroscopy. Far-UV CD spectra 

(Fig. S1 in the Supporting Information) showed maxima at ~208 and ~222 nm indicating a large content 

of helical structures. No noticeable differences in the content of secondary structure were observed 

among the studied CBS mutants compared to wild-type enzyme with the single exception of the E176K 

mutant. This mutant exhibited a different shape of the CD spectrum indicating a partial decrease in 

proportion of helical structures together with formation of a different type of secondary structure; 

nevertheless, these changes are subtle and the overall helical content is retained. Far-UV CD spectra 

obtained in the presence of AdoMet did not show any change in the overall secondary structure 

compared to the CD spectra in the absence of AdoMet (data not shown). Taken together, the CD results 
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suggest that the majority of CBS mutants possessed unaltered secondary structure compared to that of 

wild-type enzyme and the presence of AdoMet does not alter the secondary structure in CBS enzymes. 

Fluorescence spectroscopy. Using fluorescence spectroscopy, we studied conformation of the CBS 

mutants by analyzing the microenvironment of the tryptophans. Tryptrophan fluorescence spectra for all 

CBS enzymes exhibited broad maxima resulting from the fluorescence of eight tryptophan residues in 

each CBS subunit (Fig.2). These spectra did not show any major differences in the position of emission 

maxima indicating an unaltered polarity in the tryptophan environment. However, significant changes 

were observed for relative intensities of the emission, namely, increased intensity for P49L, R125Q and 

S466L and, on the contrary, decreased intensity for R266K in comparison to the wild-type. The altered 

intensity of emission may be caused by a different microenvironment of tryptophans. The altered 

relative orientation of one or more tryptophans towards possible quenching groups, such as polar amino 

acid residues, and/or mutual position of tryptophan and tyrosine residues, affecting resonance energy 

transfer from hydroxyphenyl to indolyl groups, could have caused the intensity changes observed (20).  

Fluorescence spectroscopy was further used for analyses of PLP that is covalently bound in the active 

site of CBS in the form of aldimine. These measurements revealed that the majority of the mutants 

exhibited decreased intensity of emission (Fig.2). These changes may be caused by increased extent of 

quenching by surrounding amino acid residues or by the heme moiety (21). Alternatively, lower 

intensity of fluorescence may be attributed to a decreased saturation of CBS proteins with PLP that was 

previously observed for R125Q, E176K and partially also for the C-terminal mutants P422L, I435T and 

S466L (12). In summary, both fluorescence-based measurements showed that the majority of the 

studied mutants are similar to wild-type CBS with minor differences in the microenvironment of the 

fluorophores. 

Second-derivative UV spectroscopy. To determine possible changes in the microenvironment of 

chromophores, we also performed a second-derivative UV spectroscopy that may reveal information 

about the microenvironments of tryptophan, tyrosine and phenylalanine residues (22). Positions of the 

maxima were unaltered for the majority of the studied mutants (see P49L as an example for the 

unaltered mutant CBS spectrum in Fig.3). A decrease in the wavelength of the maximum for tryptophan 

and tyrosine were recorded for A114V, R125Q and E176K (Fig.3; spectral traces are shown at Fig.S2 in 

the Supporting Information) suggesting possible differences in the microenvironment of these 

chromophores. It should be noted that these changes were subtle, typically around 0.1 nm. Nevertheless, 

the altered positions of maxima were consistently observed for all temperatures below the melting point, 

i.e. from 10 °C to 55 °C (Fig.3). These data further suggest that some of the studied mutants may differ 

from the wild-type in the local spatial arrangement of the CBS protein and/or in a mutual position of the 

catalytic core and the C-terminal AdoMet-binding regulatory domain. 
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Proteolysis with thermolysin under native conditions. To determine the structural flexibility and 

tendency towards unfolding of the CBS mutants, we assessed their proteolytic susceptibility towards 

thermolysin under native conditions. 

Three mutants, namely P49L, P78R and R266K, were resistant towards proteolysis to an extent 

similar or even higher than the wild-type. The remaining six CBS mutants showed higher susceptibility 

to proteolysis and extremely rapid cleavage was observed for R125Q and E176K (Tab.1 and Fig.4). In 

case of the mutant I435T we were not able to determine proteolytic kinetics since this mutant was 

almost instantly, within several seconds, cleaved to a fragment having molecular weight of ≈ 40 kDa 

(Fig.4B). Thus one of the requirements for this technique, i.e. the cleavage without formation of major 

fragments, has not been met. 

We also studied the effect of AdoMet on the proteolytic kinetics (Tab.1). We have demonstrated 

previously that allosteric activation of CBS is associated with opening of the protein conformation and 

that the wild-type CBS is cleaved in the presence of AdoMet more rapidly with doubling of the kinetic 

constant (18). The similar increase in cleavage rate was also observed in this study for all AdoMet-

responsive CBS mutants, namely the P49L, P78R, A114V and R266K. In case of the A114V mutant, 

the presence of the AdoMet in the proteolytic assay promoted an extensive opening of conformation 

accompanied with a dramatic 9-fold increase in the rate of cleavage compared to the rate in the absence 

of the ligand. In contrast, virtually no change in the cleavage rate in the presence of AdoMet was 

observed for the mutants with the highest cleavage rates (R125Q and E176K) and for the C-terminal 

mutants (P422L and S466L). Interestingly, the same mutants did not show any response to AdoMet 

allosteric stimulation of catalytic activity in our previous study (12). 

Data from proteolysis with thermolysin under native conditions suggest that the majority of the 

studied CBS mutants has higher structural flexibility and is more susceptible to proteolytic cleavage 

than the wild-type enzyme despite only subtle changes in protein conformation observed by 

spectroscopic techniques. Additionally, increased proteolytic rates of the wild-type and AdoMet-

responsive mutant enzymes in the presence of AdoMet are indicative of conformational rearrangement 

upon AdoMet binding. On the contrary, the cleavage rates of AdoMet-unresponsive mutants were not 

altered suggesting their inability to change conformation upon AdoMet binding and thus explaining 

their inability to be allosterically stimulated by AdoMet. 

Pulse proteolysis. Using pulse proteolysis, we have complemented the proteolytic data under native 

conditions by determining the resistance of wild-type and mutant CBS proteins against urea-induced 

denaturation. Interestingly, the majority of the mutants were found to be more resistant towards urea-

induced denaturation than the wild-type (Tab.2; a representative gel with corresponding curve of the 

P49L mutant is shown at Fig.3 in the Supporting Information). On the other hand, mutants R125Q and 

E176K - sensitive to rapid proteolytic cleavage - exhibited abnormal behavior in pulse proteolysis 
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which resulted in the non-sigmoidal curves of the urea-induced unfolding (Fig.S4 in the Supplementary 

Information); this finding indicates very low cooperativity of the proteins tertiary structure. 

The presence of AdoMet increased the stability of wild-type CBS as reported previously (18,23) 

whereas the cm values for the majority of mutants were not changed (Tab.2). Taken together, the 

stability of the CBS mutants in the absence of AdoMet did not change after addition of AdoMet and was 

comparable to the stability of wild-type CBS incubated with AdoMet. Different behavior was observed 

only for the R266K mutant which, unlike the remaining wild-type and mutant CBS enzymes, exhibited 

a significantly lowered protein stability upon AdoMet binding with concomitantly decreased cm value. 

 

DISCUSSION 

 

In this study, we analyzed the conformational properties of nine disease-causing CBS mutant enzymes 

that have normal catalytic activity and for which the structural causes of their pathogenicity were not 

apparent from the previous work (12). We compared their conformational properties with the wild-type 

enzyme using far-UV CD, fluorescence and second-derivative UV spectroscopy. In the next step, we 

determined their structural flexibility by proteolysis with thermolysin under native conditions as well as 

their sensitivity towards urea-induced denaturation by pulse proteolysis. Only subtle conformational 

differences between the wild-type and the mutants studied were detected by the spectroscopic methods 

used. These findings are consistent with our previous work showing that the studied mutants did not 

exhibit dramatic abnormalities in the specific activities, heme saturation or native tetramer formation 

(12). 

The major differences in the properties of CBS mutants were observed when tested for their 

proteolytic susceptibility under native conditions. These data suggest that the mutant proteins adopted 

conformation, which differs from the wild-type CBS, being more flexible and exposing more 

hydrophobic residues for the thermolysin to attack. Moreover, the less compact structure of the mutants 

A114V, R125Q and E176K can also be assumed from their spectra of the second-derivative UV 

spectroscopy which revealed subtle decrease in the wavelength for the maxima assigned for tryptophan 

and tyrosine residues; similar blue shift was observed in unfolding of several model proteins (24). 

Interestingly, the increased structural mobility of the mutants is accompanied by impaired protein 

stability in urea solution only for the extensively flexible CBS mutants, R125Q and E176K, while the 

other CBS mutants exhibit unaffected global protein stability as was demonstrated by pulse proteolysis. 

The same or even higher resistance against urea-induced unfolding compared to the wild-type is also 

consistent with the thermostability of these mutants previously determined by absorption 

spectrophotometry (12). Analogous increased proteolytic susceptibility associated with subtle 

conformational changes and with unaltered thermodynamic stability was reported for the yeast 

 140
Page 9



phosphoglycerate kinase compared to its ortholog from E. coli (15). It was proposed that the 

discrepancies in the phosphoglycerate kinase orthologs were caused by a divergent interdomain 

cooperativity and consequently different mechanisms of unfolding in these modular proteins. It is 

tempting to speculate that the increased structural mobility of majority of the CBS mutants is not caused 

by their low thermodynamic stability but more likely by the lower kinetic barrier of the protein 

unfolding; the altered interdomain communication, despite only minor conformational changes in each 

particular domain, may be responsible for the increased unfolding rates of these mutants. 

The findings of increased proteolytic susceptibility of CBS mutants towards thermolysin are 

consistent with our previous study conducted directly in bacterial lysates for a different set of CBS 

mutants (16). However, higher proteolytic susceptibility of all studied mutants in the previous study was 

associated with their  increased sensitivity toward urea-induced denaturation. This discrepancy may be 

due to a different panel of studied CBS mutations and different degree of purity of CBS proteins in each 

study. In the present study, we analyzed CBS mutants that were successfully purified to homogeneity 

after expression in E. coli whereas the previous work was carried out mainly on mutants that were not 

amenable to purification due to an excessive aggregation. It indicates that decreased global protein 

stability may be observed only for the severely affected CBS mutants but not for the mutants exhibiting 

subtle conformational changes. This notion is also supported by the present study showing that only the 

R125Q and E176K CBS mutants exhibited impaired protein stability in a urea gradient. 

Since the altered response to AdoMet was proposed as one of the possible pathogenic mechanisms in 

CBS deficiency, particularly for the C-terminal missense CBS mutations, we compared the kinetics of 

proteolytic cleavage of wild-type and mutant CBS enzymes in the presence of this allosteric activator. 

The most rapidly cleaved CBS mutants, namely R125Q and E176K, exhibited unaltered kp in the 

presence of AdoMet compared to that obtained in the absence of AdoMet. This indicates that these 

mutants cannot bind AdoMet and/or are locked in a specific conformation that prevents allosteric 

change upon AdoMet binding. This suggestion is also supported by the previously reported lack of 

stimulation of the catalytic activity by AdoMet and by heating of mutants (12). More surprisingly, 

extremely increased proteolytic susceptibility of the A114V mutant in the presence of AdoMet suggests 

that its allosteric activation is likely associated with an extensive opening of the folded structure 

exposing naturally buried hydrophobic residues on the protein surface. Interestingly, the effect of 

AdoMet on native proteolysis of the R266K mutant was similar to wild type CBS but different behavior 

of this mutant was observed using pulse proteolysis. The presence of AdoMet led to a lower cm value 

indicating that this CBS ligand decreases thermodynamic stability of the R266K mutant. This result 

correlates well with the previously observed decreased thermal stability and AdoMet activation of this 

mutant compared to wild-type CBS (17). The impaired response to AdoMet activation was also 

observed for the C-terminal mutants. The proteolytic cleavage of the P422L mutant was not 
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significantly increased and, moreover, the S466L mutant was cleaved even less rapidly in the presence 

of AdoMet. These findings further support the previous notion that the C-terminal mutants are locked in 

a specific conformation, which results in a permanently activated mutant CBS enzymes lacking proper 

response to AdoMet stimulation (25,26). Interestingly, our results indicate that these mutant proteins 

may be more flexible in the absence of AdoMet than the wild-type. Even though the S466L mutant does 

not respond to AdoMet, it is still capable of binding it as reported previously (25). As CBS domains in 

the C-terminal region very likely fold independently of the catalytic core (27), these mutants may still 

bind AdoMet, but are apparently unable to rearrange their conformation. It is tempting to speculate that 

this locked conformation is in vivo recognized as a misfolded structure by the cellular control machinery 

and are consequently targeted for degradation (28). 

It should be noted that the mutants P49L and P78R did not exhibit structural abnormalities by the 

approaches used in this study, which correlates well with their biochemical properties very similar to 

that of wild type enzyme (12). The P49L exhibited high catalytic activity when expressed in the pKK 

expression vector without any additional tags or fusion partners (29). On the contrary, the P78R 

possessed a decreased enzyme activity in the same study using the pKK construct which is consistent 

with a study analyzing the purified mutant reported by the Banerjee group (30). Data on P78R indicate 

that pathogenicity of these mutants may be revealed by employing different expression system or using 

specific conditions. Nevertheless, the P49L mutation is often associated with very mild clinical 

manifestions (CBS Mutation Database;http://cbs.lf1.cuni.cz/cbsdata/cbsmain.htm and Sally Stabler, oral 

communication at the 8th Conference on Homocysteine Metabolism, Lisboa 2011). 

It should be noted that the application of a bacterial expression systems that produce the target protein 

with an affinity tag may have an artificial effect on quality of the purified proteins. For instance, the 

GST-tag that was used for the majority of the mutants may increase protein stability during the 

expression and subsequent purification (31). The dramatic effect of the type and position of the 

employed purification affinity tag (i.e. bulky fusion partner, such as GST versus short flexible tag, such 

as 6xHis) and its position on the proper folding was recently demonstrated in the expression studies of 

the R266K mutant (17). Nevertheless, using of affinity tags is necessary for production of target 

proteins in sufficient yields for their conformational analysis. 

In this study, we demonstrated that protein structures of the studied CBS mutants are more locally 

flexible than that of the wild-type despite their normal catalytic activity and unaffected sensitivity 

towards urea-induced denaturation. In conclusion, the conformational analysis of the mutants using 

spectroscopic and proteolytic approach proved to be a useful tool for the assessment of the biochemical 

penalty of the CBS mutations. 
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TABLES  

 

Table 1. Rate constants of proteolytic kinetics under native conditions. 

Protein kp (min-1) 

kp in presence of 

AdoMet (min-1) 

Adomet + / AdoMet - 

ratio of kp

wtCBS 0.026 ± 0.005 0.056 ± 0.005 2.15 

P49L 0.025 ± 0.001 0.057 ± 0.005 2.28 

P78R 0.0097 ± 0.001 0.031 ± 0.002 3.20 

A114V 0.054 ± 0.011 0.5 ± 0.08 9.26 

R125Q 0.87 ± 0.18 1.105 ± 0.008 1.27 

E176K 0.97 ± 0.18 1.19 ± 0.18 1.22 

R266K 0.014 ± 0.001 0.041 ± 0.02 2.93 

P422L 0.036 ± 0.003 0.041 ± 0.001 1.14 

I435T N.D. N.D. N.D. 

S466L 0.109 ± 0.008 0.063 ± 0.007 0.58 

 

The values were determined using non-linear data fitting into  a single exponential equation. 
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Table 2. The midpoint values of urea-induced unfolding (cm) for CBS mutants in the absence and in the 

presence of AdoMet. 

Protein 

cm in the absence 

of AdoMet (M) 

cm in the presence of 

AdoMet (M) 

wtCBS 2.7 ± 0.08 3.26 ± 0.08 

P49L 3.31 ± 0.13 3.40 ± 0.15 

P78R 3.39 ± 0.06 3.42 ± 0.05 

A114V 2.94 ± 0.20 3.46 ± 0.13 

R125Q N.D. N.D. 

E176K N.D. N.D. 

R266K 3.08 ± 0.10 2.62 ± 0.11 

P422L 3.85 ± 0.12 4.00 ± 0.09 

I435T N.A. N.A. 

S466L 3.39 ± 0.18 3.18 ± 0.12 

 

The values were determined using pulse proteolysis followed by nonlinear data fitting into a sigmoidal 

equation. N.D. - not determined due to non-sigmoidal behavior of the mutant proteins (see Fig.S3 in the 

Supplementary Information). N.A. - not applicable; pulse proteolysis could not have been used due to a 

rapid cleavage in the absence of urea 
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FIGURE CAPTIONS 

Figure 1. Model of hCBS. Model of the full-length human CBS based on the crystal structure of the 

dimeric Drosophila melanogaster CBS (PDB: 3PC2). The CBS cofactors (heme and PLP) are displayed 

as sticks. The arrows are pointing to the mutated residues (displayed as scaled balls and sticks) in one of 

the subunit of WT CBS. The analyzed pathogenic mutations are located in the proximity of the heme-

binding pocket (P49L, R125Q and R266K), at the dimer interface (P78R, A114V and E176K) and in the 

regulatory AdoMet-binding domain (P422L, I435T and S466L). 

Figure 2. Fluorescence spectroscopy of CBS proteins. A-C Emission spectra of tryptophan residues 

(excitation at λ = 295 nm); D-F Emission spectra of internal aldimines (excitation at λ = 420 nm).  

Figure 3. Second-derivative UV spectroscopy: peak position for aromatic amino acids (Phe, Tyr and 

Trp) as a function of temperature. The exact peaks for a particular aromatic amino acid were determined 

by using 2nd derivative UV spectra recorded every 2.5°C for temperatures from 10°C to 90°C (see 

Supplementary Information for raw spectra) and subsequently plotted as a function of temperature. The 

wild type enzyme (WT, open squares) is separately compared with P49L, A114V, R125Q and E176K 

CBS mutants (filled circles). The P49L represent the CBS mutants that were similar to wild-type 

enzyme. On the contrary, A114V, R125Q and E176K exhibited blue shifts for tyrosines and 

tryptophans. 

Figure 4. Proteolysis of CBS mutants with thermolysin under native conditions. A.Comparison of wild- 

type CBS with mutant proteins. Each point represents a mean from at least two independent 

experiments. B. Representative gels depicting proteolytic cleavage of selected mutants. P78R represents 

the proteolytically resistant mutants, while R125Q belongs to the more rapidly cleaved proteins. The 

mutant I435T is rapidly cleaved with the formation of the major fragment of molecular weight ≈ 40 

kDa. “M“ refers to molecular weight marker, “N“ refers to the uncleaved control sample. 
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SUPPORTING INFORMATION 

 

 

 

Figure S1: CD spectroscopy of CBS proteins. A-C CD spectra reveal that mutant proteins retain helical 

structure. D. Spectrum of E176D indicates partial decrease in the amount of helices together with the 

formation of a different secondary structure. 
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Figure S2: Second-derivative UV spectroscopy: spectral traces of wild-type CBS and representative 

mutant proteins for temperature gradient from 10 to 90 °C. The crosses along with wavelength values 

indicate the assigned maxima at spectra of proteins recorded at 90 °C. 
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Figure S3. Representative data for pulse proteolysis in a urea gradient shows behaviour of the P49L 

mutant. All the mutants, similarly to P49L , exhibited higher cm than the wild-type. Below the 

representative gel for P49L, corresponding plot is shown. Solid and dashed line represents curve for 

P49L and wild-type enzyme, respectively. Ffold is a fraction of folded protein that remained uncleaved 

after the proteolytic pulse. Points in the plot show means from at least two independent experiments. 
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Figure S4: Pulse proteolysis of R125Q and E176K. In the plot, solid line represents the curve for wild-

type CBS, circles and triangles refers to R125Q and E176K, respectively. Data points of the mutants 

could not be fitted to the sigmoidal equation. 
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Abstract Cystathionine β-synthase (CBS) deficiency is usu-
ally confirmed by assaying the enzyme activity in cultured skin
fibroblasts. We investigated whether CBS is present in human
plasma and whether determination of its activity in plasma

could be used for diagnostic purposes. We developed an assay
to measure CBS activity in 20 μL of plasma using a stable
isotope substrate - 2,3,3-2H serine. The activity was deter-
mined by measurement of the product of enzyme reaction,
3,3-2H-cystathionine, using LC-MS/MS. The median enzyme
activity in control plasma samples was 404 nmol/h/L (range
66–1,066; n=57). In pyridoxine nonresponsive CBS deficient
patients, the median plasma activity was 0 nmol/ho/L (range
0–9; n=26), while in pyridoxine responsive patients the
median activity was 16 nmol/hour/L (range 0–358; n=28);
this overlapped with the enzyme activity from control subject.
The presence of CBS in human plasma was confirmed by an
in silico search of the proteome database, and was further
evidenced by the activation of CBS by S-adenosyl-L-
methionine and pyridoxal 5′-phosphate, and by configuration
of the detected reaction product, 3,3-2H-cystathionine, which
was in agreement with the previously observed CBS reaction
mechanism. We hypothesize that the CBS enzyme in plasma
originates from liver cells, as the plasma CBS activities in
patients with elevated liver aminotransferase activities were
more than 30-fold increased. In this study, we have
demonstrated that CBS is present in human plasma and that
its catalytic activity is detectable by LC-MS/MS. CBS assay
in human plasma brings new possibilities in the diagnosis of
pyridoxine nonresponsive CBS deficiency.

Abbreviations
ALT Alanine aminotransferase
p-AMS Pancreatic amylase
AST Aspartate aminotransferase
CBS Cystathionine β-synthase
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GGT γ-glutamyl transferase
PLP Pyridoxal 5′-phosphate
SAM S-adenosyl-L-methionine

Communicated by: Cornelis Jakobs

References to electronic databases:
http://www.chem.qmul.ac.uk/iubmb/enzyme/EC4/2/1/22.html;
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=236200;
http://www.proteinatlas.org

Competing interest: None declared.

Presented at the 7th International Conference on Homocysteine
Metabolism, Prague, 21-25 June 2009

Electronic supplementary material The online version of this article
(doi:10.1007/s10545-010-9178-3) contains supplementary material,
which is available to authorized users.

J. Krijt : J. Kopecká :A. Hnízda :V. Kožich (*)
Institute of Inherited Metabolic Disorders—1st Faculty
of Medicine, Charles University in Prague,
Ke Karlovu 2, 128 08,
Praha 2, Czech Republic
e-mail: Viktor.Kozich@LF1.cuni.cz

S. Moat
Department of Medical Biochemistry and Immunology,
University Hospital of Wales,
Cardiff CF14 4XW, UK

L. A. J. Kluijtmans
Department of Laboratory Medicine, Laboratory of Genetic,
Endocrine and Metabolic Diseases,
Radboud University Nijmegen Medical Centre,
Nijmegen, the Netherlands

P. Mayne
National Newborn Screening Laboratory,
Children’s University Hospital,
Temple St,
Dublin 1, Ireland

J Inherit Metab Dis (2011) 34:49–55
DOI 10.1007/s10545-010-9178-3

158

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC4/2/1/22.html
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=236200
http://www.proteinatlas.org
http://dx.doi.org/10.1007/s10545-010-9178-3


Introduction

Cystathionine β-synthase (CBS; EC 4.2.1.22) (http://www.
chem.qmul.ac.uk/iubmb/enzyme/EC4/2/1/22.html) defi-
ciency (http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?
id=236200) is a well-known genetic disease affecting the
first step in the conversion of homocysteine to cysteine and
ultimately to inorganic sulfur. Although this disorder was
originally considered a severe multisystem disease that
affected connective tissue and central nervous and vascular
systems (Mudd et al. 1985), recent reports suggest that an
unknown proportion of patients with CBS deficiency may
suffer from only a mild vascular form of the disease or may
be asymptomatic (Gaustadnes et al. 2000; Skovby et al.
2010). Diagnostic hallmarks of this disease are grossly
elevated concentrations of plasma total homocysteine
combined with decreased plasma concentrations of cysteine
and cystathionine (Stabler et al. 1993) with varying
elevations of plasma methionine levels. The DNA analysis
may be used to confirm the diagnosis only if mutations with
known pathogenicity are found at both patient CBS alleles;
its utility is limited in other situations.

Demonstration of decreased enzyme activity is a
common diagnostic approach in patients suffering from
inborn errors of metabolism (IEM) including CBS defi-
ciency. Since the majority of enzymes relevant for IEMs are
located intracellularly, the determination of enzymatic
activity requires in most cases sampling of patient tissue
ranging from simple venepuncture to biopsies of skin or
organs, such as the liver. In addition, laborious, time-
consuming and technically demanding culturing of tissue
such as skin may be required to produce sufficient amounts
of cells to express the enzyme of interest. However, these
intracellular enzymes can be released in small amounts
into plasma reflecting turnover of the respective tissue(s).
The amounts of these non-plasma-specific enzymes in
body fluids may increase if cell integrity is impaired;
clinical chemistry laboratories utilize this phenomenon
and routinely analyze activities of liver-, pancreatic-,
muscle-, myocardial-, prostatic- and other organ-specific
enzymes as biomarkers of diseases (Bhagavan 2001).
Determination of enzymes in extracellular fluids is only
rarely used for routine diagnostic purposes in IEMs (e.g.,
biotinidase or total hexosaminidase).

In our study, we hypothesized that CBS may be released
into plasma from organs expressing this enzyme and that its
activity may be measurable by a sensitive LC-MS/MS
assay employing deuterium-labeled substrates. To explore
this hypothesis, we studied the CBS catalytic activity of
plasma and stimulatory effect of CBS ligands, the presence
of the CBS protein by immunological and by an in silico
search, and its possible release to plasma from liver and
other organs. Finally, we assessed plasma CBS activity in

samples from patients with confirmed CBS deficiency to
assess the diagnostic utility of this assay.

Materials and methods

Chemicals

All chemicals, if not stated otherwise, were obtained from
Sigma–Aldrich (Prague)

Plasma samples

Archived anonymized plasma samples from controls and
patients with CBS deficiency were obtained from the
authors’ repositories in the Netherlands, UK, Ireland and
the Czech Republic. With the exception of 2 individuals, all
patients were treated with pyridoxine at the time of
sampling, regardless of their pyridoxine responsiveness
(for details see Supplementary Table).

Anonymized samples from individuals with presumed
liver, pancreatic and kidney disease (i.e., with elevated
plasma levels of alanine aminotransferase, α-amylase and
creatinine) were obtained as remnant samples after routine
biochemical investigations from the Institute of Clinical
Biochemistry and Laboratory Diagnostics of the General
Faculty Hospital and The First Medical Faculty of Charles
University. All experiments performed using human plasma
samples were approved by the Ethics Committee of the
General University Hospital, Prague.

Apparatus

The LC-MS/MS system consisted of an Agilent 1100 Series
LC System (Agilent Technologies, Palo Alto, CA, USA)
coupled with API 3200 triple quadrupole mass spectrom-
eter with electron ion source and operated with Analyst
software, Vision 1.4 (Applied Biosystems, Foster City, CA,
USA).

Sample preparation

To 25 μL of solution containing 200 mmol/L Tris-HCl (pH
8.6), 1 mmol/L pyridoxal 5′-phosphate and 40 mmol/L
2,3,3-2H-labeled serine (Cambridge Isotope Laboratories,
USA), 20 μL of plasma or serum was added. The assay was
initiated by addition of 5 μL starting solution containing
280 mmol/L homocysteine thiolactone in 100 mmol/L Tris-
HCl (pH 8.6), 10 mmol/L DTT, 1 mol/L HCl and
1.225 mol/L NaOH. This starting solution was prepared
freshly before sample processing and was preincubated for
5 min at 37°C after alkalinization with NaOH to allow
cleavage of the thiolactone ring. For the measurement of
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the activation of CBS by S-adenosyl-L-methionine, the
final assay mixture contained 0.5 mmol/L SAM. The final
assay mixture (total volume 50 μL) was incubated at 37°C
for 4 h or was stopped immediately if a blank was
processed. The reaction was stopped by acidification of
the reaction mixture to pH 1-2 with 100 μL of Internal
Standard Solution (EZ:faast; Phenomenex, Torrance, USA)
containing 3.3 μmol/L of internal standard 3,3,4,4-2H-
labeled cystathionine (CDN Isotopes,Quebec, Canada).

LC-MS/MS analysis

The CBS activity was determined by the LC-MS/MS measure-
ment of the product of enzyme reaction, 3,3-2H-cystathionine,
using a commercially available kit for amino acid analysis (EZ:
faast; Phenomenex). Sample preparation according to the
manufacturer’s instruction involved a solid phase extraction
step, derivatization with propyl chloroformate, and an extrac-
tion into an organic solvent prior to LC-MS/MS analysis.

The LC-MS/MS analysis was performed on proprietary
EZ:faast AAA-MS column (250×2.0 mm) using LC and
MS settings described in EZ:faast user manual.

The retention time of cystathionine isotopes was 15.5 min;
total analysis time including regeneration of the column was
25 min. Detection of the analytes was carried out using
positive electrospray ionization technique and selected mul-
tiple reactionmonitoring. The precursor→ product transitions
for 3,3-2H-cystathionine (enzyme reaction product; m/z
481.3→230.3), cystathionine (calibration standards; m/z
479.3→230.3) and 3,3,4,4-2H-labeled cystathionine (inter-
nal standard; m/z 483.3→234.3) were monitored.

Standards, calibration curves and activity calculation

Quantitation of the product of enzyme reaction 3,3-2H-
cystathionine, which is not commercially available, was
performed using cystathionine standard samples in the
concentration range 0–5 μmol/L; the individual calibration
points were 0, 0.25, 1 and 5 μmol/L. The calibration curve
was obtained by linear regression; the peak area ratio
(analyte/internal standard) was plotted against the analyte
concentration. For the activity calculations, the measurable
concentration of 3,3-2H-cystathionine in the blank sample
(t=0) was subtracted from the concentration produced by
the enzyme reaction after incubation for 4 h.

Results

Human plasma exhibits CBS activity

With the employment of LC-MS/MS technology, we
introduced a modification of an enzyme assay previously

published (Janosik et al. 2009). We observed that
incubation of control plasma samples according to the
protocol described in “Materials and methods” resulted in
the formation of 3,3-2H-cystathionine. The signals of the
product of the enzyme reaction, 3,3-2H-cystathionine,
determined in the assay mixture after incubation of control
plasma and plasma from a CBS-deficient patient for 4 h
are shown in Fig. 1a, b, respectively. The signals of
3,3-2H-cystathionine in the blank sample (control plasma,
incubation time = 0 h) and internal standard are shown in
Fig. 1c, d, respectively. The figures show a clearly higher
signal of 3,3-2H-cystathionine determined in the assay
using control plasma sample compared to the signals
obtained by analysis of assay mixture with plasma from
the CBS-deficient patient. The appearance of the signal of
3,3-2H-cystathionine in the blank sample could be partial-
ly explained by isotope contribution of unlabelled cys-
tathionine presented in the analyzed sample to the signal
of 3,3-2H-cystathionine. Nevertheless, despite the occur-
rence of the product signal in the blank sample, the assay
performance allowed sufficient discrimination between
plasma samples with normal and low or undetectable
activities.

In order to confirm that the 3,3-2H-cystathionine
formation was due to the presence of CBS in plasma, to
elucidate the source of the enzyme in circulation and to
validate the enzyme assay we performed experiments
described in the following section.

Demonstration of CBS protein in human plasma
by immunodetection and in silico searches

To demonstrate the presence of CBS antigen in plasma, we
first performed western blotting after immunoprecipitation
preceded by low abundant plasma protein enrichment.
Multiple fractions including bands of approximately 60
and 45 kDa which were consistent with the presence of full-
length and truncated forms of CBS were observed (data not
shown). To confirm the identity of these fractions, we used
gel digestion followed by peptide mass fingerprinting with
MALDI-TOF MS detection; only abundant serum proteins
such as albumin were identified with no peptide related to
CBS being detected (data not shown). These data suggested
that the fractions observed on western blots were due to the
presence of cross-reactive highly abundant plasma proteins.
In addition, we were unable to detect the CBS antigen by
ELISA as this in-house assay had poor sensitivity (see
Discussion).

As an alternative approach to demonstrate the presence
of CBS in human plasma, we searched the available
proteomic database Peptide Atlas (www.peptideatlas.org).
As of February 1, 2010, the search only identified the
presence of CBS peptides 2–18 and 414–439 in an
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experiment that employed cysteinyl-peptides enrichment
(Liu et al. 2004), demonstrating that CBS is indeed present
in normal human plasma but in only very low quantities.

Responsiveness of plasma CBS activity
to S-adenosyl-L-methionine and pyridoxal 5′-phosphate

Since S-adenosyl-L-methionine (SAM) is an allosteric
activator and pyridoxal 5′-phosphate (PLP) is a cofactor
of human CBS, we tested whether the addition of these
compounds into the assay mixture would increase the
production of 3,3-2H-cystathionine.

We performed the assays in plasma samples (n=6)
according to the protocol described in “Materials and
methods” with and without the addition of SAM (final
concentration in the assay was 0.5 mmol/L) to the assay
mixture. We observed that the addition of SAM to the
assay mixture increased the production of 3,3-2H-cysta-
thionine by a factor of 2.2 ± 0.2. Similarly, the assay was
performed using control plasma samples (n=6) with and
without PLP added to the assay mixture. The production
of 3,3-2H-cystathionine in the assay with PLP was 1.6 ±
0.1 times higher than without the cofactor added to the
assay. The stimulatory effect of both compounds on the
production of 3,3-2H-cystathionine in the assay gives
further support to the hypothesis that human plasma
contains CBS activity.

Origin of CBS in human plasma

To explore the hypothesis that CBS is released into plasma
from organs with a high content of the enzyme, we
determined the enzyme activity in plasma samples obtained
from individuals with elevated biomarkers for liver (alanine
aminotransferase, ALT and aspartate aminotransferase,
AST), pancreatic (pancreatic amylase, p-AMS) and kidney
(creatinine) disease. The results, shown in the Supplemen-
tary Table, clearly demonstrated an extremely elevated CBS
activity (22463-231179 nmol/h/L) in plasma from individ-
uals with increased ALT (2.4-15 μkat /L) and AST (2.1-14
μkat/L). Elevation of CBS activity was present also in the
majority of plasma samples from individuals with elevated
creatinine and p-AMS, respectively, although the plasma
CBS activity increase was less striking than in patients with
elevated plasma aminotransferase activities. These data are
congruent with the hypothesis that CBS may be released
into plasma from organs with a high content of this
enzyme, mainly from liver.

Method validation

Assay linearity To determine the linearity of the assay we
incubated the assay mixture for different time intervals (1,
2, 4 and 6 h). In addition, three experiments assays were
performed with the addition of different plasma volumes to

Fig. 1 The LC-MS/MS chromatograms. Signal of 3,3-2H-cystathio-
nine (retention time 15.4–15.5 min) was determined after incubation
of the assay mixture with control plasma (a incubation time 4 h, c
incubation time 0 h, sample blank), and a plasma from a CBS-

deficient patient (b incubation time 4 h). d The signal of the internal
standard 3,3,4,4-2H-labeled cystathionine. The peak with retention
time 14.5 min belongs to an unknown compound, which is not a
product of the CBS-catalyzed reaction
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the assay mixture (5, 10 and 20 μL, respectively) and with
an incubation time 4 h. Product formation was measured
and plotted against different time points or varying plasma
volumes, respectively. In both experiments, we observed
linear relationships with correlation coefficients r2=0.997
and r2=0.999, respectively. The linearity of the time and
dose relationships supports the presumption that the moni-
tored compound, 3,3-2H-cystathionine, is a product of the
enzyme reaction.

Intra- and Inter-day variation of the assay The assay
reproducibility was assessed by determination of intra-
and inter-day coefficients of variation of the assay. For
determination of the intra-day variation, the assay was
performed with 5 identical control plasma samples in 1 day.
For determination of the inter-day variation, the assays
were performed using the control plasma on six separate
days over an 11-month period. The mean of the activities
were determined and coefficients of variation (in parenthe-
ses) for intra- and inter-day experiments were 354 nmol/h/L
(1.4%) and 309 nmol/h/L (17 %), respectively. These data
show that reproducibility of this assay was satisfactory and
was consistent with the usually observed performance of
enzyme assays.

Sample stability Sample stability was assessed by assaying
control plasma immediately following venepuncture and
plasma separation, and after one and ten cycles of freezing
and thawing. In addition, samples were also tested
following incubation of plasma samples stored at 25°C for
6 h. No change in activity was seen after one freeze and
thaw cycle. However, after ten cycles, a decrease of 13% in
activity was observed. A similar decrease in activity (i.e.,
11%) was also observed after incubation of the plasma for
6 h at room temperature. The activity changes resulting
from freezing and thawing or sample storage at 25°C may
have contributed to the significantly higher inter-day
coefficient of variation.

Sample matrix effects The validation experiments described
were carried out on plasma with EDTA used as anticoagulant
because the majority of archived samples from CBS-deficient
patients available for this study were prepared with EDTA.
However, to explore the influence of other sample matrices on
CBS activity, we performed the assay using plasma (from one
person) following blood being collected into EDTA- and
heparin-containing tubes and serum collection tubes. The
results showed similar activities in heparinized plasma
samples and serum, whereas the activity in EDTA-treated
plasma was substantially lower (∼22%) compared to the
activity determined in the other two matrices. In addition, we
evaluated the effect of haemolysis on CBS activity in plasma
samples from a control subject and from two CBS-deficient

patients with low (10 nmol/h/L) and undetectable enzyme
activity, respectively. Haemolysis in one aliquot of EDTA
blood was induced by a single cycle of freezing and thawing
before centrifugation. Haemolysis had no measurable effect
on plasma CBS activity.

CBS activities in plasma obtained from controls and CBS
deficient patients

To assess the clinical utility of the plasma CBS assay in
diagnosing patients with CBS deficiency, we measured
activities in plasma samples obtained from control subjects,
CBS-deficient patients and their parents. These samples
were obtained from four European countries (see Supple-
mentary Table and Fig. 2). The median plasma CBS
enzyme activity from control subjects (n=57) was
404 nmol/hour/L, the median plasma enzyme activity from
pyridoxine nonresponsive CBS deficient patients (n=26)
was 0 nmol/hour/L. The median plasma enzyme activity
from pyridoxine responsive patients (n=28) was 16 nmol/h/
L, higher than in the pyridoxine nonresponsive patients, but
compared to the median of control subjects, it represented
just 4% of the activity The median enzyme activities in the
heterozygote parents (n=9) was 547 nmol/h/L, showing no
utility of the assay to recognize heterozygotes.

Because of the elevation of plasma CBS activity
observed in samples from individuals with presumed liver
disease (see “Origin of CBS in human plasma”) the most
stable biomarker for the liver disease, γ-glutamyl transfer-
ase (GGT), was determined in archived samples analyzed in
this study. The samples with elevated levels of GGT (higher
than 0.8 μkat/L) showed increased CBS activity, i.e. higher
than 1,300 nmol/h/L, and were therefore excluded from the
control dataset. One pyridoxine responsive CBS deficient
patient had an elevated plasma GGT (1.5 μkat/L) and CBS
activity (770 nmol/h/L) and was also excluded from the
presented dataset.

Discussion

Utilization of mass spectrometry for determination of CBS
activity

The introduction of novel analytical techniques into routine
diagnostic laboratories in the last decade has opened up the
field for new approaches in enzyme assay methodology.
Tandem mass-spectrometry in enzymology allows the use
of substrates that are labeled with stable isotopes instead of
radioisotopes; its utility has been discussed elsewhere (Gelb
et al. 2006). In this study, we employed LC-MS/MS to
design a novel CBS assay, utilizing isotopically labeled
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standard, 2,3,3-2H- serine. This method has excellent
sensitivity and can detect nanomolar concentrations of the
reaction product, 3,3-2H-cystathionine.

Compared to the previously described radiometric assay
using 14C serine with a detection limit in the low
micromolar range (Kopecka et al. 2010), the LC-MS/MS
method is at least 2 orders of magnitude more sensitive and
enables the determination of very low catalytic activities of
CBS in human plasma, which would be undetectable by the
established radiometric method. Using the radiometric
method, we were able to detect product of the CBS activity,
radioactive cystathionine, only in the sample from a patient
with the most severe liver disease (data not shown).

Is there any measurable CBS activity present in human
plasma?

Although CBS is an intracellular cytosolic enzyme, the
breakdown of tissue containing high amounts of this enzyme
may result in leakage of CBS protein into plasma, a
phenomenon commonly observed in the case of other liver
enzymes that are routinely measured in human plasma or
serum (e.g., ALT, AST, GGT and others). Our study has
shown that control human plasma is able to catalyze the
formation of cystathionine with a median activity (404 nmol/
h/L, i.e. 125 pkat/L) which is three to five orders of magnitude
lower than activities of serum enzymes routinely used in
clinical chemistry. Several lines of evidence demonstrate that
this activity can be attributed to the presence of CBS in human
plasma: (1) the absence of activities in plasma samples from

pyridoxine nonresponsive CBS deficient patients and its
presence in controls; (2) activation of plasma CBS by SAM
and PLP by a factor of 2.2 and 1.6, respectively; (3)
configuration of the detected reaction product, 3,3-2H-
cystathionine, is in agreement with the previously observed
CBS reaction mechanism (Banerjee and Zou 2005; Borcsok
and Abeles 1982; Miles and Kraus 2004); this mechanism
involves the formation of aminoacrylate intermediate with
release of water containing one deuterium atom bound
originally on the alpha-carbon of serine; and (4) the presence
of CBS protein in normal human plasma was demonstrated
by in silico search of a proteome database. Considering the
specific activity of purified CBS protein (150 units/mg
protein) and the plasma CBS activity in controls, we
estimated that the quantity of CBS in human plasma is
approximately in the range of nanograms per millilitre which
does not allow the confirmation of the CBS presence in
human plasma by western blotting.

Plasma CBS activity in CBS-deficient patients – utilization
of the assay in diagnosis and study of CBS deficiency

In our study, we measured CBS activities in plasma from
54 patients with CBS deficiency and 57 control subjects.
The range of activities in the plasma from pyridoxine
nonresponsive CBS-deficient patients was clearly separated
from the range obtained in plasma samples from control
subjects. In contrast, the range of activities in plasma from
pyridoxine responsive CBS-deficient patients overlaps with
those from the control subjects.

Fig. 2 CBS activities in plasma
samples. The graph shows
distribution of CBS activities
determined in plasma samples
obtained from pyridoxine
nonresponsive CBS deficient
patients (n=26), pyridoxine
responsive CBS deficient
patients (n=28), heterozygotes
for CBS deficiency (n=9) and
controls (n=57)
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To evaluate the use of the CBS assay in plasma for the
diagnosis of CBS deficiency, we calculated the specificity and
sensitivity of the assay. Since the lowest CBS activity in
samples from control subjects was 67 nmol/h/L, this value
was used as a threshold value for differentiating patients from
controls. The sensitivity and specificity of the assay was
excellent for pyridoxine nonresponders (i.e., sensitivity =
100% and specificity = 100%), while it was suboptimal for
pyridoxine responders (i.e., sensitivity = 70% and
specificity = 100%). These data suggest that the plasma
CBS assay may be useful in detecting pyridoxine non-
responders, while its use for diagnosing responders may be
limited.

The reason for the wide range of plasma CBS activities
observed in pyridoxine responders (0-358 nmol/h/L) is
unknown. This variability is caused not only by the
underlying genetic defect but may result from a contribution
of additional and yet unknown factors (as demonstrated by a
wide range of plasma CBS activities in patients homozygous
for the c.833T>Cmutation; see Supplementary Table). It is at
present unknown whether the CBS assay in plasma will be
useful for predicting the phenotypic severity in pyridoxine
responsive patients. The measurement of plasma CBS
activity may be useful to evaluate or monitor the effective-
ness of pyridoxine therapy. The latter hypothesis is
supported by an experiment in which it was observed that
plasma CBS activity in one patient increased from 4.5 to
55.9 nmol/h/L after the patient started pyridoxine therapy.
However, in two other samples from patients responding to
pyridoxine therapy, the activity was undetectable before as
well as after the start of pyridoxine treatment (data not
shown). Evaluation of the effects of pyridoxine therapy on
plasma CBS activity would require further studies on
patients before and on therapy.

To our knowledge, this is the first report demonstrating
the presence of CBS activity in human plasma. This proof-
of-principle study shows that very low catalytic activities of
enzymes originating from liver can be measured in cell-free
extracellular fluids. In summary, this paper highlights the
possibility of measuring intracellular enzymes in plasma or
serum using isotopically labeled substrates and LC-MS/MS
instrumentation, and opens new possibilities for diagnosing
other inborn errors of metabolism.
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Phenotype Patient
CBS activity 

(nmol/hour/L of 
plasma)

Sample 
origin Genotype/Comment Pyridoxine 

treatment 

1 0.0 UK c.[430G>A]+[919G>A]  +
2 0.0 UK N.A.  +
3 0.0 CZ c.[833T>C]+[430G>A, 463G>A]  +
4 0.0 UK c.[430G>A]+[919G>A]  +
5 1.8 UK c.[833T>C]+?  +
6 2,3 NL c.[833T>C]+[373C>T]  +
7 5.0 CZ c.[833T>C]+[430G>A, 463G>A]  +
8 5.1 NL c.[833T>C]+[833T>C] N.A.
9 7.4 NL c.[833T>C]+[833T>C]  +
10 10.0 CZ c.[833T>C]+[1126G>A]  +
11 11.4 UK c.[833T>C]+[833T>C]  +
12 12.0 NL c.[833T>C]+[833T>C]  +
13 13.2 NL c.[833T>C]+[833T>C]  -
14 15.6 NL c.[833T>C]+[833T>C]  +
15 15.6 CZ c.[833T>C]+[430G>A, 463G>A]  +
16 17.3 NL c.[833T>C]+[833T>C]  +
17 24.6 NL c.[833T>C]+[833T>C]  +
18 28.0 CZ c.[833T>C]+[IVS 11-2A>C]  +
19 34.4 NL c.[833T>C]+[833T>C]  +
20 46.0 CZ c.[833T>C]+[833T>C]  +
21 62.6 CZ c.[833T>C]+[833T>C]  +
22 70.6 NL c.[833T>C]+[833T>C]  +
23 75.8 NL c.[833T>C]+[833T>C]  -
24 103.6 NL c.[833T>C]+[833T>C]  +
25 131.2 NL c.[833T>C]+[833T>C]  +
26 136.0 NL c.[833T>C]+[833T>C]  +
27 358.0 CZ c.[341C>T]+[1226A>G]  +
28 206.0 CZ c.[833T>C]+[?]  +

Median 15.6
Mean 49,8
Range 0-358
S.D. 79

1 0.0 CZ c.[494G>A]+[494G>A]  +
2 0.0 CZ c.[IVS 11-2A>C]+[IVS 7+1G>A]  +
3 0.0 CZ c.[IVS 11-2A>C]+[430G>A, 463G>A]  +
4 0.0 CZ c.[IVS 11-2A>C]+[1226A>G]  +
5 0.0 IRE c.[919G>A]+?  +
6 0.0 IRE ?+?  +
7 0.0 UK ?+? N.A.
8 0.0 UK ?+? N.A.
9 0.0 UK ?+?  +
10 0.0 UK ?+?  +
11 0.0 IRE c.[919G>A]+[919G>A]  +
12 0.0 IRE c.[919G>A]+?  +
13 0.0 IRE c.[919G>A]+?  +
14 0.0 IRE ?+?  +
15 0.0 IRE ?+?  +
16 0.0 IRE c.[919G>A]+[919G>A]  +
17 0.0 IRE c.[919G>A]+?  +
18 0.0 IRE ?+?  +
19 0.0 IRE c.[919G>A]+[919G>A]  +
20 0.9 IRE c.[919G>A]+[919G>A]  +
21 2.8 IRE c.[919G>A]+[919G>A]  +
22 3.5 CZ c.[IVS 1-1G>C]+[28delG]  +
23 6.8 CZ ?+ c.[430G>A, 463G>A]  +
24 8.0 CZ c.[IVS 1-1G>C]+[28delG]  +
25 9.0 CZ c.[IVS 11-2A>C]+[IVS 11-2A>C]  +
26 9.2 IRE c.[919G>A]+[302T>C]  +

Median 0
Mean 1,6
Range 0-9.3
S.D. 3.1

Median 403,8 CZ (n=30)
Mean 433,5 NL (n=18)
Range 65.6-1065.6 IRE (n=5)
S.D. 256,7 UK (n=4)

Median 547,4
Mean 671,8 CZ (n=6)
Range 163.6-1836.9 UK (n=3)
S.D. 512,4

1 231178.8 CZ ALT=15.0 μkat/L; AST=14.0 μkat/L
2 30531.2 CZ ALT=2.6 μkat/L; AST=5.3 μkat/L
3 27350.0 CZ ALT=2.4 μkat/L; AST=2.7 μkat/L
4 22462.5 CZ ALT=2.5 μkat/L; AST=2.1 μkat/L

1 33787.5 CZ creatinine=278 μmol/L
2 9195.0 CZ creatinine=292 μmol/L
3 570.6 CZ creatinine=221 μmol/L
4 67.6 CZ creatinine=665 μmol/L
5 493.1 CZ creatinine=326 μmol/L
1 17769.8 CZ p-AMS=4.14  μkat/L
2 3106.3 CZ p-AMS=13.9 μkat/L
3 18062.5 CZ p-AMS=3.5 μkat/L
4 336.9 CZ AMS=4.4 μkat/L
5 3425.0 CZ p-AMS=2.7 μkat/L
6 1750.0 CZ p-AMS=8.9 μkat/L
7 893.8 CZ p-AMS=26.1 μkat/L

Supplementary Table: Overview of analyzed patients

Pyridoxine responsive patients with CBS 
deficiency

Pyridoxine non-responsive patients with 
CBS deficiency

Controls

Individuals with elevated serum 
pancreatic amylase

Heterozygotes for CBS deficiency

Individuals with elevated serum 
aminotransferases

Individuals with elevated serum 
creatinine

165


	3.4 Analysis of CBS protein in human plasma 
	5.2.3 Vliet L.K., Wilkinson T.G. 2nd, Duval N., Vacano G., Graham C., Zikánová M, Škopová V., Baresova V., Hnízda A. , Kmoch S., Patterson D.: Molecular characterization of the AdeI mutant of Chinese hamster ovary cells: a cellular model of adenylosuccinate lyase deficiency. Mol. Genet. Metab. 102(1), 61-8 (2011). IF 3.539  
	JBBM_2008.pdf
	Reactivity of histidine and lysine side-chains with diethylpyrocarbonate — A method to identify.....
	Introduction
	Materials and methods
	Protein modification by DEP
	Reaction of modified proteins with hydroxylamine
	In-solution digestion
	In-gel digestion
	MALDI-TOF MS
	LC-ESI MS/MS
	Surface accessibility determination

	Results
	Analysis of angiotensin as a model peptide
	Analysis of model proteins
	General remarks about the method
	Insulin
	Cytochrome
	Lysozyme
	Human serum albumin


	Discussion
	Methodological aspects
	Structural interpretation
	Insulin
	Cytochrom
	Lysozyme
	Human serum albumin


	Simplified description of method and its applications
	Acknowledgement
	References


	JIMD_2011.pdf
	Cystathionine...
	Abstract
	Introduction
	Results
	Discussion
	Materials and methods
	References


	33.pdf
	3.2 Characterization of CBS in Caenorhabditis elegans 

	JIMD_2011_plasma.pdf
	Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency
	Abstract
	Introduction
	Materials and methods
	Chemicals
	Plasma samples
	Apparatus
	Sample preparation
	LC-MS/MS analysis
	Standards, calibration curves and activity calculation

	Results
	Human plasma exhibits CBS activity
	Demonstration of CBS protein in human plasma by immunodetection and in silico searches
	Responsiveness of plasma CBS activity to S-adenosyl-L-methionine and pyridoxal 5′-phosphate
	Origin of CBS in human plasma
	Method validation
	CBS activities in plasma obtained from controls and CBS deficient patients

	Discussion
	Utilization of mass spectrometry for determination of CBS activity
	Is there any measurable CBS activity present in human plasma?
	Plasma CBS activity in CBS-deficient patients – utilization of the assay in diagnosis and study of CBS deficiency

	References





