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List of abbreviations:

ACE inhibitor – inhibitor of the angiotensin-converting enzyme

AV – atrioventricular

BFP – bifocal pacing of the right ventricle

BVP – biventricular pacing

CHF – chronic heart failure

CRT – cardiac resynchronization therapy

ICD – implantable automatic cardioverter-defibrillator

IVCD – nonspecified intraventricular conduction delay

IVS – interventricular septum

LBBB – left bundle branch block

LV – left-ventricular

LVEDD – left ventricular end-diastolic diemeter

LVEF – left ventricular ejection fraction

LVP – single-site left-ventricular pacing

NYHA class – functional class

RV – right-ventricular

RVA – right ventricular apex
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INTRODUCTION

Chronic heart failure (CHF) represents a very common condition that is currently one 

of the leading causes of the morbidity and mortality in industralized countries. A deeper 

understanding of the pathophysiology of CHF and the associated compensatory mechanisms 

has allowed the implementation of newer treatment regimens including ACE inhibitors, beta-

blockers and spironolactone. These drugs are able to slow progression and improve prognosis 

of the disease. However, inspite of substantial improvements in pharmacological treatment 

that have been made over last decades, 5 to 15% of the CHF population continues to suffer 

from persistent severe symptoms. The rest of CHF population could be divided in two groups 

of similar size: one with mild and one with moderately severe symptoms1. Unfortunately, only 

some patients with advanced CHF are appropriate candidates for the heart transplant              

as an ultimate treatment modality in CHF. 

The finding that cardiac pacing is able to improve the hemodynamic status in some 

patients with advanced CHF has ushered a new era in management of this condition – era      

of so called cardiac resynchronization therapy (CRT). The widespread use of CRT was 

predominantly based on the recognition that the dyssynchronous activation of the heart, 

especially of the ventricles, can be a factor associated with further progression of CHF and 

worse prognosis2.  Furthermore, CRT was documented to slow or even stop this process, 

induce reverse remodeling3-5 and reduce mortality6,7. 

However, despite growing knowledge about the mechanism of how CRT works, there 

are still unanswered questions, especially regarding 1) the usefulness of various pacing 

strategies in the treatment of the CHF and 2) the identification of different factors that can 

modify the magnitude of improvement during CRT or predict non-responderity to this 

therapy. Therefore, the aim of this dissertation was to focus on these issues.  

1. DEFINITION AND EPIDEMIOLOGY OF CHRONIC HEART FAILURE

CHF is pathophysiologically defined as the affliction of the heart that is associated 

with reduced cardiac output despite sufficient ventricular filling. As a result, the heart is not 

able to meet the metabolic demands of the tissues (delivery of the oxygen, CO2 and              

the metabolic byproducts). Heart failure without the decrease of cardiac output may occur 

during excessive increase of the ventricular filling pressure8. 



7

In the routine clinical practice, the diagnosis and the treatment have focused on CHF 

as a clinical syndrome that is characterized by ventricular dysfunction and one or more signs 

of back- and/or forward failure (dyspnea, fatique, edemas). A precise estimate                        

of the incidence and prevalence of CHF is difficult to obtain because it depends                     

on the definition of CHF and early recognition of the disease. Using the above definition, 

CHF affects 1 to 5% of the population or 10 to 50 million people in Western countries8,9,10. 

The prevalence rapidly increases with age >65years9-11. Despite all advances                           

in pharmacotherapy, the amount of people suffering from CHF is increasing every year      

with an annual incidence about 2-3‰ 10,12. The reasons for the growing incidence                

and prevalence of CHF are mainly related to ageing of the population and to the advances 

made in hypertensive and coronary heart disease therapy that leads to longer life-expectancy 

in these patients13. 

Although new pharmacological interventions improved the survival of CHF, it still 

remains a condition with a high mortality rate13. Some studies indicate that the annual 

mortality of stable CHF reaches 10-20% and that only 30-45% of the CHF population is still 

alive 5 years after initial diagnosis of CHF13,14. The mortality rate is approximately six           

or seven times greater in a CHF population as compared to the general population of the same 

age15. The mortality of patients with a new-onset HF is even higher than in those with stable 

CHF and reaches 30% in the first 6months after the diagnosis16,17.

The predominant causes of death 

in CHF population are progressive heart 

failure and sudden death. A conservative 

estimate is that about 50% of CHF 

patients die due to further progression of 

CHF and about 50% die suddenly18. 

Interestingly, it seems that mode of death 

is dependent on the severity of CHF. 

While patients in functional class NYHA II die predominantly on a sudden, unexpected death, 

further progression of CHF is the leading cause of death in patients in functional class NYHA 

IV19 (Figure 1). The knowledge about what causes the progression of the CHF is limited.       

It may be a result of recurrent and undersensed or unrecognized myocardial ischemia, 

arrhythmias, remodeling of the left ventricle (LV) or its combination20. Also sudden death 

does not represent a homogenous entity. As ICDs reduce the risk of sudden death by about 

50%, it seems that almost 50% of sudden deaths may not be primarily arrhythmic21. 
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2. IMPORTANT ELECTROMECHANICAL FEATURES OF CHRONIC 

HEART FAILURE WITH REGARD TO CARDIAC RESYNCHRONIZATION 

THERAPY - PATHOPHYSIOLOGICAL NOTES

A complex pathophysiologic process altering both electrical and mechanical events 

during the cardiac cycle is often present in patients with advanced CHF. The changes result 

from a modified microstructure of the myocardium and from the fully expressed 

compensatory mechanisms22,23. They may affect both the working myocardium, thus leading 

to the deterioration of ventricular function and size, and/or specialized myocytes                     

of the conduction system, thus harming one or more of its functions. It is: 1/ a sufficient heart 

rate reflecting actual metabolic demand, 2/ an optimal timing of the atrial contraction         

with regard to the ventricular systole, and 3/ a synchronous activation and contraction            

of the ventricles.

CHF is often associated with an alteration of some of these functions. It can result       

in sinus node dysfunction manifesting as the chronotropic incompetence. In combination     

with the pharmacological adrenergic blocade, it can cause worsening of the exercise tolerance       

in CHF patients24. 

The prolonged atrioventricular (AV) conduction shifts the atrial contraction             

with regard to the ventricular systole, thus producing AV dyssynchrony. In such case,           

the atrial contraction may fuse with the early passive filling phase and limit atrial contribution 

to the ventricular filling. In addition, AV conduction >250ms is associated with a shortening 

of the diastolic philling phase. Moreover, optimal timing of atrial systole is important           

for a proper function of mitral valve. Prolonged AV conduction may cause its insufficient 

closing and presystolic mitral regurgitation25,26. 

However, among all above mentioned variables, the changed activation sequence        

of the ventricles seems to be the most crucial for the hemodynamic performance of the failing 

heart. Different ventricular conduction abnormalities, reflected in the widening and changed 

morphology of the QRS complex on the surface ECG, may occur in CHF as will be discussed 

later. They change electrical and mechanical interactions between the right and left ventricle 

(interventricular dyssynchrony) and/or between the opposite walls of the LV during              

the cardiac cycle (intraventricular dyssynchrony). 

On an individual basis, total ventricular asynchrony may result from either 

interventricular or intraventricular dyssynchrony or from combination of them. In addition, 
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AV asynchrony may participate on the hemodynamic worsening and progression of CHF       

in some patients. It was estimated that ventricular dyssynchrony is present in approximately 

20-30% of patients with CHF27. More importantly, there is a growing evidence that               

the presence of LV dyssynchrony (mainly on the intraventricular level) is related                    

to the prognosis in CHF patients28,29. 

In addition, there is a close relationship        

and interdependence of ventricular dysfunction, 

dilatation of the ventricle(s) and conduction 

disturbances (on both the atrioventricular (AV)      

and ventricular level)30-32. Both the degree of left-

ventricular (LV) dysfunction and the duration            

of QRS complex were identified as the independent 

predictors of death in CHF population33-36. Moreover, 

higher mortality was found in patients with LV 

systolic dysfunction, depending on the severity          

of conduction disturbances as reflected in QRS duration27,37 (Figure 2).

2.1. ELECTRICAL ACTIVATION OF THE VENTRICLES PHYSIOLOGICALLY 

AND DURING LBBB

In the normal hearts, electrical activation of both ventricles is preceded                       

by depolarization of the His-Purkinje system. It results in a rapid and almost simultaneous 

activation of both ventricles spreading from few separate regions reflecting the bundle 

branching. The rest of the heart is than activated quickly with total ventricular activation time 

80-100ms38-40. The activation wavefront of the RV started at the free wall and spreads to the 

interventricular septum (IVS) with the latest RV activation located usually posterobasally or 

anterobasally39. Independently to the QRS axis, the latest LV activation is located mostly in 

the basal posterolateral region38,39. 

Although different ventricular conduction delays can be found in patients with CHF, 

conduction disturbances with left bundle branch block (LBBB) morphology predominate. 

Prevalence of LBBB is about 30% in CHF population >65years, while it reaches only 1-3%   

in the general population of the same age33,34. In addition, the presence of LBBB, but neither 

right bundle-branch block nor nonspecific intraventricular conduction delay, seems to be 

associated with a higher morbidity and mortality in asymptomatic and apparently healthy 
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patients41 and their risk increases in the presence of concomitant heart disease and/or 

CHF34,35.

The presence of typical LBBB significantly modifies the ventricular activation 

sequence. RV usually precedes LV activation42,43. Although prolonged in some cases, RV 

activation pattern is usually similar to that observed during normal sinus beat39. On the 

contrary, LV exhibits mostly different activation sequence with right-to-left transseptal 

conduction39,42-44. The patterns of LV activation are variable, but the posterolateral basal LV 

region frequently represents an area with the latest activation39,40,42,45,46. Due to the changed 

activation pattern and significant reduction of the conduction velocities39, the total LV 

activation time is prolonged in most patients with LBBB39,40,42,44,45. 

Prolonged and changed ventricular activation pattern (as reflected in the morphology, 

axis and duration of the QRS complex) may result from either prolonging between RV and 

LV activation onset (interventricular delay), between activation of opposing walls of the LV 

(intraventricular delay) or from combination of them47,48. In this context, QRS duration can 

serve as a marker of total ventricular electrical asynchrony. However, it similarly reflects LV 

intraventricular and interventricular dyssynchrony29. 

Despite similar QRS duration and morphology fullfilling WHO criteria of LBBB 

(Table 1), the activation sequence may vary significantly based on both underlying heart 

disease and case to case. Some studies indicate differences in ventricular activation pattern 

between coronary artery disease (CAD) and idiopathic dilated cardiomyopathy (DCM) with 

more frequent intraventricular 

dyssynchrony in CAD and 

predominant interventricular 

dyssynchrony in DCM40,42.          

In accordance with that, CAD 

patients exhibit rather nonspecified 

conduction delay or LBBB-like 

pattern on the surface ECG, 

whereas true complete LBBB 

tends to be present more often in 

DCM40. 

The interindividual variability of ventricular activation sequence is expressed 

especially in patients with CAD, depending on the extent and location of the postinfarction 

scar. Conduction velocity varies between regions and is mostly reduced close to the scar site. 
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In contrast to CAD, patients with DCM more often exhibit homogenous right to left activation 

with globally reduced conduction velocity39,40. These heterogeneities in the character and 

duration of ventricular activation may be explained by different histopathology in DCM         

as compared to CAD as the conduction delay strongly depends on architecture of interstitial 

fibrosis and on the direction of wavefront propagation with respect to the fiber direction49. 

2.2. MECHANICAL VENTRICULAR ACTIVATION UNDER PHYSIOLOGIC 

CONDITIONS AND DURING LBBB

Normally, mechanical activation starts with fiber shortening in the isovolumic 

contraction phase and onset of both systolic and diastolic events of the LV slightly preceeds 

or coincides with that of RV47,50-52.  Mechanical activation usually starts near the 

interventricular septum, concordantly with the electrical one. The opposing walls of the LV 

and free wall of the RV are mechanically activated in a homogenous way with the base 

activated last. Simultaneous inward motion of IVS and LV lateral wall and similar extent and 

time course of contraction between various LV regions ensure effective pump function of the 

heart52,53. 

There is a solid evidence that LBBB itself leads to dyssynchrony and could promote 

LV remodelling in already dysfunctional ventricle. LBBB prolongs and/or delays mechanical 

activation of the ventricles, especially of the LV, on inter- and/or intraventricular level51,53,54. 

The dearrangement of the ventricular contraction sequence is associated with a deterioration 

of LV systolic and diastolic function as reflected by a decrease in the maximal rate of rise of 

LV pressure (dP/dt max) and aortic pulse pressure, by an increase of LV end-diastolic 

pressure, worsening of the LV relaxation etc.47,50,51,53. 

From prognostic point of view, the presence of LV intraventricular electromechanical 

dyssynchrony, QRS duration >140ms and LV ejection fraction <25% were identified            

as the independent predictors of CHF decompensation during long-term28. On the contrary, 

presence of the interventricular dyssynchrony does not seem to be associated with a worse 

prognosis29. 

INTERVENTRICULAR DYSSYNCHRONY

The presence of LBBB reverses physiological sequence of cardiac cycle events: the 

RV systole and diastole onset markedly precedes onset of systole and diastole of the LV, thus 

causing interventricular dyssynchrony (Figure 3). Premature RV electrical and mechanical 

activation leads to an early increase in RV pressure as compared to LV pressure, thus 
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reversing the transseptal pressure gradient during RV isovolumic phase and displacing IVS 

into the cavity of LV47,50,51,55. The opposite movement of the IVS is seen in the late systole.

Besides increased preejection time of the LV due to the delayed initiation of LV 

activation, LV systole is often also 

prolonged in the presence of 

LBBB. In addition, delayed aortic 

closure and mitral valve opening 

cause prolongation of the 

isovolumic relaxation time, thus 

causing shortening of the LV 

filling time relatively to RV and limiting the stroke volume51,56. 

Abnormal or paradoxical septal motion present in patients with CHF and LBBB is, 

therefore, a result of either reversal of transseptal pressure gradient (RV contracts during end-

diastolic phase of the LV) or relative increase in RV volume (RV filling time is relatively 

longer than the LV filling time). The abnormal septal movement reduces global LV ejection 

fraction in LBBB patients51. The greater the interventricular dyssynchrony, the greater the 

depression of LVEF and the greater related LV dilatation could be expected53,57. Interestingly, 

correlation between QRS duration and interventricular asynchrony was demonstrated in some 

studies47,58.

INTRAVENTRICULAR DYSSYNCHRONY

In the presence of LBBB, various contraction patterns over the LV can be found as      

a result of delayed activation. Typically, the inward motion of the IVS induced by both its 

earlier activation and reversed transseptal gradient is present in the early systole. Later on, 

IVS moves away from the posterior wall of the LV at the time when the more delayed LV 

walls start to contract. The opposite is true for the LV free wall. The pre-stretch of this region, 

caused by the absence of activation in the early systole, is followed by the contraction that 

appears as the IVS begin to relax50,59,60. Hemodynamically, the opposite movement of the IVS 

and LV posterolateral wall during the systole is associated with a decrease in septal 

contribution to stroke volume50,51. In this context, the presence of significant delay between 

contraction of the IVS and the lateral wall of the LV >60ms was shown to be a prerequisite 

for the LV ejection fraction improvement during CRT61. All the above mentioned changes 

may also cause or deteriorate functional mitral regurgitation62,63.
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It seems that the regional differences in the contraction sequence are related to local 

variability of the myofibre length during asynchronous activation (as produced by either 

LBBB or RV apical pacing)59. In the early-activated sites, rapid and intensive shortening       

of the myocardium is present as an afterload of this region is still very low. This leads            

to a significant prestretching of the opposite walls that are not activated at that time yet. As        

a result of the LV pressure increase, regions with late activation present with longer myofibres 

at the time when all LV walls are already activated. Based on the local “Frank-Starling” 

relation, the later activated regions contract more vigorously and exhibit enhanced shortening 

during the ejection period59,60,64. Contraction of these segments may cause rebound stretch   

and a second phase of shortening in the early-activated sites during their relaxation period. 

Transient ventricular contraction patterns can be seen in other LV regions depending             

on the distance from the early and late activated site59,65. Interestingly, regional differences    

in the contraction sequence during asynchronous activation may be less pronounced during 

higher LV filling pressure66.  

It seems that these variations of the contraction pattern may also explain                    

the inhomogeneous distribution of perfusion and metabolic demand in the presence                

of asynchronous LV contraction67-69. Mechanical work of the early-activated regions could be 

reduced up to 50% during asynchronous activation59. Regional work is a good predictor         

of regional myocardial oxygen consumption69. Thus, reduced glucose uptake and perfusion   

of the IVS in the presence of asynchronous actvation may be explained by abnormal 

contraction pattern with the decreased mechanical work in this region70. The opposite is true 

for the LV free wall where the enhanced regional work is accompanied by an increased blood 

flow and metabolic demand. In addition, the extent of wall motion abnormalities and            

the perfusion defects induced by asynchronous activation increase with time and are 

associated with gradual LV pump function deterioration67. Moreover, asymmetric 

hypertrophy of the LV with microstructural desarrangement develops over long-term period 

in the presence of LBBB or during RV apical pacing71,72. Interestingly, the most pronounced 

hypertrophy is present usually in the late activated regions (higher workload)72. 

The above process, called cardiac remodeling, is characterized by changed genome 

expression and modifications on the molecular, cellular, and interstitial level that occur after 

cardiac injury. It finally results in an altered shape, size and function of the heart. In addition, 

other factors such as hemodynamic load or neurohormonal activation may contribute              

to progression of cardiac remodeling73. The surrogate measures for ventricular remodeling 
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such as LV ejection fraction (LVEF), LV end-diastolic and end-systolic volumes and/or 

diameters are often used. 

2.3. COUPLING OF ELECTRICAL AND MECHANICAL EVENTS 

Insight into the physiology and pathophysiology of electrical and mechanical 

activation suggests that there are differences in coupling of electrical and mechanical events 

throughout the myocardium. In the normal heart, a gradient of electromechanical interval   

was demonstrated between endo- and epicardium with relatively faster coupling                     

in the epicardium74. 

Some studies indicate that this electromechanical delay becomes even more 

pronounced during asynchronous activation52,75, being dependent on both: 1) the type             

of conduction delay75 and 2) the pacing site52. Along these lines, electromechanical delay       

is greater during LBBB as compared with right bundle-branch block and during single-site 

right ventricular (RV) pacing as compared with single-site LV pacing. In addition, it seems 

that the later regional activation of the LV occurs in the presence of asynchronous activation, 

the greater the time interval between regional electrical activation and the onset of local fibre 

shortening. These observations suggest that mechanical asynchrony may be larger than         

the electrical dyssynchrony, at least in some patients with conduction disturbances. 

3. CARDIAC RESYNCHRONIZATION THERAPY (CRT)

3.1. INTRODUCTION

In medicine, the term “cardiac pacing” indicates iatrogenic manipulation of the cardiac 

rhythm. In contrast to conventional cardiac pacing that corrects bradyarrhythmias, CRT is not 

primarily indicated for rhythm correction but rather for a restoration of synchronous 

ventricular activation, i.e. for correction of all types of dyssynchrony.  

The strategy of pacing for the treatment of CHF is not new. Dual-chamber pacing   

was already used in the 80´s to improve hemodynamics in selected CHF patients76,77.          

The pilot studies using short AV delay and ventricular lead placed in the RV apex          

(DDD-RVA) demonstrated significant clinical improvement (decreased NYHA class, 

reduction of pulmonary edema, heart size and the degree of mitral regurgitation).                 

The underlying mechanism of this beneficial effect of DDD-RVA pacing seemed to be         

the augmentation of stroke volume due to LV diastolic filling time prolongation and reduction 

of mitral regurgitation. Both these effects were primarily caused by appropriate shortening      
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of the AV delay78,79. However, significant hemodynamic improvement during DDD-RVA 

pacing was not reproduced in the subsequent trials80,81. 

The detail analysis of different studies implies that DDD-RVA pacing with short      

AV delay may lead to hemodynamic and clinical improvement only in a carefully selected 

population of symptomatic CHF patients with rather long spontaneous AV conduction, 

prolonged functional mitral regurgitation (450ms) and significant shortening of the LV 

filling-time (200ms at rest)82. Positive impact of the AV delay optimization in others is very 

probably counterbalanced by deleterious effect of a single-site RVA pacing that itself causes 

significant ventricular asynchrony and hemodynamic deterioration similar to that during 

LBBB83-85. 

The important turn in the treatment of CHF by ventricular pacing occurred when       

the so called biventricular pacing (BVP) was introduced, i.e. pacing from more sites in both 

ventricles. Although the effect of simultaneous pacing from two ventricular sites                     

in the structurally intact heart was studied in the experimental model years ago55, the first 

human study describing positive acute effect of BVP after cardiac surgery was published      

as late as in 199586. Later on, the impact of varying ventricular pacing sites started to be 

evaluate also among patients with advanced CHF87-89. It was clearly shown that stimulation   

of LV, either solely or in combination with simultaneous RV pacing, is superior to stimulation 

of RV alone in terms of the hemodynamic performance. Interestingly, some other studies 

indicated superiority of one pacing mode only (BVP or single-site LV pacing (LVP))            

in approximately 80% of the CHF patients90. On the other hand, improvement during BVP    

or LVP does not occur in all patients with advanced CHF as these pacing modes are only 

effective in patients with manifest dyssynchrony91. In the absence of ventricular 

dyssynchrony, not only the LV pump function does not improve, but may even 

deteriorate65,92,93. 

Proposed mechanism underlying response to different pacing strategies in patients 

with CHF and ventricular dyssynchrony seems to be the restoration of more coordinated 

activation and contraction sequence of the heart. The fact that the response is present also      

in patients with chronic atrial fibrillation with slow or no conduction through the AV node 

(i.e. in the absence of atrial contribution to the ventricular filling) confirms that                     

the hemodynamic improvement during LVP or BVP is not achieved only through restoration 

of AV synchrony94-97. 

All pacing strategies that are able to reduce antioventricular and ventricular 

dyssynchrony and thus enhance hemodynamic in CHF have been grouped under a unifying 
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term of CRT. In this context, it has been estimated that approximately 10% of patients        

with CHF might be candidates for this therapy98.

3.2. INTRA- AND INTERVENTRICULAR MECHANICAL RESYNCHRONIZATION 

DURING CRT

It was shown earlier that the maximal improvement of the LV function is present when 

the intraventricular dyssynchrony is corrected, relatively independent of the degree                

of interventricular dyssynchrony. Thus, for successful CRT, pacing strategy and/or LV pacing 

site that provide maximum of intraventricular resynchronization should be selected44,91,93. 

Resynchronization of ventricular contraction can be achieved when two activation wavefronts 

from the opposing walls merge together somewhere in the middle of the LV during the late 

systole. It results in a ventricular contraction pattern that is similar to that observed during 

normal sinus beat, including equivalent orientation of the mean vector of ventricular 

contraction65. Despite that, however, the total duration of the mechanical activation during 

CRT was shown to be longer as compared with normal sinus rhythm65. 

During BVP, resynchronization is ensured by pacing of the LV free wall and RV.       

In LVP, on the contrary, it is produced by a merge of pacing-induced wavefront originating   

at the LV free wall with spontaneous activation via the right bundle44,90,91,99. An underlying 

mechanism responsible for intraventricular resynchronization in both BVP and LVP is less 

early and late stretch and rebound contractions of the opposing walls as compared               

with baseline asynchronous activation59,65,99. 

However, hemodynamic improvement by LVP in patients with CHF could also          

be demonstrated in the setting of very short AV delay or in the presence of atrial fibrillation 

with limited AV conduction94. Therefore, it is conceivable that other mechanisms may 

contribute to the benefit of LVP. In this context, some investigators suggest that the so-called 

diastolic ventricular interaction may play a role during LVP100. The theory presumes that      

in the presence of high central venous pressure, RV occupies much of the pericardial space 

and limits filling of the LV. In such situation, LV preexcitation enables the LV to fill before 

the RV and due to elevated LV preload increases the Frank-Starling effect. On the other hand, 

it can not be excluded that the elevated LV preload during LVP, in contrast to BVP,                

is responsible for lower degree of LV reverse remodeling that was observed during long-term 

LVP101.

Other studies also indicate significant differences between BVP and LVP with regard 

to modification of ventricular dyssynchrony102,103: 
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It seems that the intraventricular resynchronization in BVP is complex. On one side, 

BVP prolongs the electromechanical delay (as measured by the mechanical response          

with respect to the QRS onset) in the regions close to IVS. LV free wall contraction remains 

the same or is advanced to less extent. As a result, different regions of the LV contract 

approximately simultaneously and synchronously during BVP3,102. Because of concomitant 

prolongation of electromechanical coupling even in RV with respect to LV, BVP reduces also 

interventricular dyssynchrony3,102,104. 

Timing of the increase in LV 

pressure then coincides with that     

of RV and normal transseptal 

pressure gradient is restored.            

In addition and in contrast to LVP, 

BVP shortens the systolic phase due 

to the reduction of LV preejection 

time, thus prolonging the diastolic 

filling time3,97 (Figure 4). 

On the other hand, LVP decreases intraventricular dyssynchrony by simultaneous 

delaying of all segments of the LV102. As a result, contraction is more homogeneous, but         

it occurs later with regard to the electrical activation. This can lead to prolongation                 

of the isovolumic contraction phase, shortening of the LV diastolic filling and worsening       

of the interventricular dyssynchrony as compared to BVP102,103. On the other site, ejection 

time is similar in both BVP and LVP97.

3.3. IMPACT OF CRT ON THE HEMODYNAMIC PERFORMANCE

Various studies have demonstrated significant improvement of parameters reflecting 

LV systolic function such as LV dP/dt max, pulse pressure, cardiac output and ejection 

fraction during CRT50,87,89,101,105,106. Some other studies have shown that the greater              

the baseline mechanical asynchrony, the more pronounced resynchronization and LVEF 

increase during CRT could be expected57,91. Furthermore, the extent of acute systolic 

improvement is proportional to the decrease in biventricular asynchrony57. Importantly, this 

positive change in systolic function during CRT occurs without change of the filling pressure 

(in fact, the filling pressure can even decrease). Therefore, restoration of more coordinated 

ventricular contraction sequence during CRT reflects rather improved contractility87.              

In addition, resynchronized ventricular contraction and more coordinated function                  
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of the papillary muscles are also often responsible for reduction of mitral regurgitation that,    

in turn, may further improve hemodynamic status107. Acute hemodynamic improvement 

occurs immediately after the onset of pacing and is frequently sensed by the patient                

as the sudden clinical improvement.  

More interestingly, CRT has also impact on cardiac oxygen consumption108.               

In contrast to positive inotropic agents (such as dobutamine) that increase myocardial oxygen 

consumption for a given rise of contractility, BVP is able to induce comparable increase         

in contractility without increased energetic demand108. Some studies have also shown          

that hemodynamic improvement during CRT is associated with restoration of more 

homogenous glucose metabolism and perfusion in the ventricles109. In addition, CRT seems   

to modify the neurohormonal activity as it is associated with reduced sympathetic nervous 

activity and lowering of the plasma brain natriuretic peptid (BNP) level110,111.

3.4. CLINICAL IMPROVEMENT

Studies of acute hemodynamic changes may not necessarily predict long-term effect   

of CRT. In this respect, clinical efficacy of CRT has been studied in multiple randomized 

and/or non-randomized clinical trials. An overview of the most important clinical trials           

is given in a review article “Is right ventricular outflow tract pacing an alternative to left 

ventricular/ biventricular pacing?” that is part of this dissertation. Briefly, besides 

enhancement of the LV systolic function and reverse remodeling of the LV (discussed later), 

BVP is able to improve quality of life, NYHA class and exercise tolerance in patients         

with advanced CHF. 

Metaanalysis of large clinical CRT trials revealed 8-point improvement                      

on the Minnesota Living with Heart Failure Questionnaire that represents standardized 

questionaire for the assessment of the quality of life among patients with CHF112. This 

improvement was shown to be greater than that defined in the placebo-controlled trials113     

and also greater than the improvement of quality of life demontrated in recent heart failure 

trials targeted on CHF pharmacotherapy114. 

Regaring NYHA class, around 60% of BVP recipients were shown to improve by      

at least 1 NYHA class as compared with 37% of controls112. On the other hand, higher 

prevalence of the improvement in NYHA class than the echocardiographically detected 

reverse remodeling indicates possible participation of placebo effect among                    

NYHA responders. 
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CRT is also associated with an improved exercise tolerance. Metaanalysis has shown 

improvement in 6-minute walk test distance with a mean difference 30m in patients            

with NYHA class III and IV before CRT. In addition, BVP is associated with an increase in 

peak oxygen consumption of about 0,7ml/kg/min as assessed by cardiopulmonary stress 

testing112. 

Long-term effect of LVP was assessed in some studies and compared with that 

observed during BVP. Results of these studies imply that LVP is associated with comparable 

long-term improvement of NYHA class, QOL and exercise tolerance as BVP115-118. Such 

encouraging results led finally to approval of the concept of CRT for hemodynamic support  

in patients with advance CHF by the U.S.Food and Drug Administration in 2001.

3.5. CRT AND REVERSE REMODELING OF THE HEART

Reduced wall stress, enhanced LV pump function and increased efficiency at a lower 

preload levels during long-term BVP are associated with reverse remodeling, i.e. with            

a decrease in the end-diastolic and the end-systolic volumes3,99,119,120. The time-dependent 

improvement of LV function and size during CRT were demonstrated in both, non-controlled 

studies3,101 as well as in multicentric clinical trials7,120-122. From the clinical point of view, 

reverse remodeling appears to be one of the most important achievments as it can be 

considered an ultimate goal of any treatment for CHF. 

Importantly, the interruption of BVP is associated with a new deterioration                  

of the cardiac function during the off-pacing period3. As the hemodynamic worsening does 

not occur immediately after CRT termination, non-decreasing LV ejection fraction               

and cardiac output found during transient stop of CRT is likely to reflect real persistent effect 

or functional reverse remodeling. However, long-term BiV is associated also with reduction 

of LV end-diastolic and end-systolic volumes and diameters that reflect rather structural 

reverse remodeling3. 

Observations of some studies imply that the degree of LV end-diastolic volume 

reduction and LVEF increase during CRT depends on the size and function before pacing 

onset as CRT nonresponders tend to have more elevated baseline LV end-diastolic volume 

and lower LVEF121. 

The impact of LVP on the reverse remodeling seems to be different from that during 

BVP. It was shown that LVP is associated with a significant increase in LVEF. However, 

LVP does not seem to produce such changes in LV volumes as BVP, at least not 

constantly101. The reason for these differences between both pacing strategies are not fully 
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understood yet, but it may be caused by a different mechanical activation                              

and electromechanical coupling, especially in the early systole, that cause prolongation          

of isovolumic contraction phase, shortening of the LV filling time and higher LV preload       

as compared with BiV. 

3.6. IMPACT OF CRT ON HOSPITALIZATION FOR HEART FAILURE AND 

MORTALITY

Nowadays, there is a strong evidence that CRT, in addition to above mentioned acute 

and long-term effects, reduces the rate of hospitalizations for heart failure and that this 

therapy is also associated with a decreased mortality. 

Until recently, only data from meta-analyses of large clinical trials on CRT aspired to 

address this issue112,123. They suggested that BiV is able to reduce both all-cause mortality and 

hospitalizations for heart failure in appropriately selected population of patients with 

symptomatic CHF, low LVEF and prolonged QRS duration. Those meta-analyses shown that 

CRT is associated with a 25% relative reduction in all cause mortality, caused mainly by the 

40% reduction in deaths due to progression of CHF, and a 29-35% reduction of 

hospitalizations for heart failure. Conclusions of these meta-analyses were recently supported 

by the results of the mortality trials COMPANION6 and CARE-HF7. The first trial has shown 

a significant reduction of the combined end-point of all-cause mortality and all-cause 

hospitalization by approximately 20%. The CRT-associated reduction of mortality in 

COMPANION6 was similar to that reported in the mentioned metaanalysis123, 24% and 23%, 

respectively. In addition, it was reported comparable reduction of the hospitalization for heart 

failure (34% reduction in death plus heart failure hospitalizations in COMPANION trial and 

29% reduction in heart failure hospitalization in the metaanalysis6,123, respectively). 

The later study, CARE-HF7, assessed the impact of CRT on the risk of cardiovascular 

complications and death as compared with standard medical treatment and demonstrated clear 

reduction by 37% of both during CRT. The all-cause mortality was reduced by 36% and heart 

failure hospitalization by 52% in the CRT arm as compared to optimal medical therapy alone. 

Using hazard ratios, it was calculated that one death and three hospitalizations for severe 

cardiovascular events are prevented for every nine CRT device.

This effect of CRT is comparable with that found in beta-blockers124, ACE 

inhibitors125 and aldosterone antagonists126. Importantly, the efect of CRT on mortality 

becomes apparent by 3months after the implantation as it reflects rather impact of LV reverse 
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remodeling than the acute neurohormonal changes112. Better survival during CRT was shown 

to be predominantly due to the reduction in deaths for terminal progression of CHF112. 

The results of COMPANION trial6 indicate, in addition, further reduction of mortality 

when combining CRT with implantable cardioverter-defibrillator (ICD) as a tool for 

preventing sudden cardiac death. It was shown that CRT pacemakers reduced combined end-

point of all-cause mortality and all-cause hospitalization by 20%, whereas CRT defibrillators 

by 36%. 

Such results suggest that the positive impact of CRT on morbidity and mortality may 

be caused by an improvement of cardiac performance and that combination of CRT with ICD 

may additionally reduce the risk of sudden cardiac death.

3.7. CRT NONRESPONDERS

Currently accepted criteria for selection of suitable CRT recipients (practical 

guidelines of ACC/AHA, ESC and Czech Society of Cardiology127-129) are based on the results 

of large multicenter studies and consist from:

- CHF with persistent moderate to severe symptoms (NYHA III-IV) despite optimized 

pharmacotherapy

- LV dysfunction (LVEF ≤ 35%)

- Presence of ventricular dyssynchrony (until now defined by QRS duration  120ms, 

usefulness of different echocardiographic parameters of mechanical dyssynchrony      

is still assessed)

In addition, concomitant dilatation of LV is ussualy present (LV end-diastolic diameter 

(LVEDD) ≥ 55mm) in CRT recipients.

In appropriate candidates, combined device (CRT+ ICD) is indicated.

However, despite extensive research in this field, some limitations and unresolved 

issues in CRT still exist. The crucial one is the identification of nonresponders to CRT           

as approximately 30% of CRT recipients do not respond to this therapy appropriately130-132. 

On the other hand and surprisingly, there is still not a uniform definition of CRT                 

non-responder. In fact, different studies used different definition: 

In acute hemodynamic studies, the response to CRT was qualified by the increase       

of pulse pressure ≥5%133 or change of dP/dt134. However, as the goal of this therapy is mainly 

to improve the long-term outcome, most of the clinical studies have evaluated changes          

of some other variables. The nonresponder rate is generally lower (11-25%) in the studies 
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using subjective capacity (NYHA class ≥1135,136, quality of life136) or exercise tolerance (peak 

VO2max ≥10%135, 6-minute walk test improvement ≥10%137) as a definition of response. 

Using “harder” end-points such as LV reverse remodeling (LV end-systolic volume reduction 

≥15%, relative increase of LVEF ≥25%107,121,138,139) or “hard” end-points (hospitalization    

for heart failure, mortality6,7), the rate of non-responders is significantly higher (up to           

40-46%) suggesting presence of certain degree of placebo response to device implantation. 

On the other hand, the later rate may be overestimated as the duration of the follow-up may be 

too short for some CRT recipients to reach the target improvement in the selected parameter. 

Despite that, however, as the rate of CRT non-responders represents a substantial 

proportion of CRT recipients, there is an effort to identify factors that can help to predict 

better the response to CRT. Until now, some parameters have been shown to be useful,         

but single, easily obtainable marker is still missing. 

PREDICTORS OF RESPONDERITY TO CRT

The findings of some studies indicated that the larger the baseline mechanical 

asynchrony, the more significant hemodynamic benefit during CRT could be 

expected91,139,140. In addition, certain association between mechanical dyssynchrony,           

QRS duration and baseline contractility was suggested91. First acute hemodynamic studies 

concluded that the QRS duration ≥150ms (especially in combination with baseline LV dP/dt 

max <600-700mmHg/s) is able to distinguish patients exhibiting acute improvement          

from those who do not improve most likely during both BVP and LVP87,89,116,134. However, 

extensive research in last years demonstrated that the usefulness of QRS duration                

and morphology as the only parameters for identification of significant mechanical 

asynchrony is limited141. There are two main reasons for that: 

1) QRS duration reflects the total ventricular activation time. Although some differences may 

exist between various conduction disturbances, generally, the type of bundle branch block    

and QRS width do not carry accurate information about the presence and the degree               

of mechanical inter- or intraventricular asynchrony28,141. 

2) Echocardiographic studies demonstrated that dyssynchronous LV contraction is present 

also in 33-58% of heart failure patients with narrow QRS complex (<120ms)28,141-144 and that 

CRT is able to improve mechanical ventricular synchrony also in these patients145-147. Such 

findings suggest that the measurement of mechanical, rather than electrical dyssynchrony is 

more important for estimating the effect of CRT99. 
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Therefore, various 

imaging techniques were 

advocated to define reliable 

parameters of mechanical 

dyssynchrony. Among them, 

echocardiography seems to 

be the most useful. Until 

now, many different markers 

of mechanical dyssynchrony 

were described using either 

standard 2D and Doppler 

echocardiography or tissue-Doppler-derived imaging (Table 2). However, usefulness of all 

these ECHO parameters in prediction of CRT responderity is still not completely known     

and has to be further evaluated in prospective multicenter trials148. 

Mechanical ventricular dyssynchrony seems to be the most crucial prerequisite          

for hemodynamic improvement during CRT. However, there are some other variables 

modifying the final outcome of CRT such as the underlying heart disease. Specifically, 

patients with ischemic etiology and the presence of scar are more likely to not 

respond136,149,150. Moreover, it seems that a greater basal LV dilatation and lower LV ejection 

fraction are more often associated with a lack of response to CRT121. Besides the selection     

of appropriate candidates of CRT, the final effect of this therapy seems to be modified           

by some periimplant variables like 1/ the type of pacing strategy (BVP, LVP), 2/ selection     

of the optimal pacing site(s) or 3/ optimization of atrioventricular or interventricular delay. 
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THE AIM OF THE WORK

The aim of this PhD was, therefore: 

1/ to compare the effect of different pacing strategies that were proposed as alternatives of 

CRT (biventricular (BVP), single-site left-ventricular (LVP) and bifocal pacing of the right 

ventricle (BFP)) on the activation sequence, hemodynamic and clinical outcome of patients 

with advanced CHF, 

2/ to identify factors modifying the degree of CRT-related improvement.

Specifically, this PhD study addressed these issues:

1/ Description of electrical activation sequence during different pacing modes (BVP, 

LVP, BFP).

Until recently, there was only little known about the activation sequence of the heart               

in the presence of different conduction disturbances. In addition, most of these observations 

were based on the experimental models44,99,151. Introduction of new technologies, such as      

the electroanatomical mapping system, enables to study the activation pattern directly           

in the target population of patients with advanced CHF. Such studies contribute to our 

understanding of the pathophysiological and pacing-induced changes of electrical inter-       

and intraventricular dyssynchrony that are tightly related to the changes of the contraction 

pattern and hemodynamics. 

2/ Comparison of the acute effect of BVP and LVP during exercise

Studies reporting similar effect of LVP and BVP in patients with advanced CHF and manifest 

dyssynchrony reflect mostly hemodynamic status at rest. However, only limited data are still 

available on the effect of both pacing modalities during the exercise. In fact, such studies     

are highly important as the aim of CRT is not only to reduce symptoms at rest, but mainly     

to increase the exercise tolerance of CRT recipients. Therefore, we evaluated the impact        

of both pacing strategies on the acute changes of cardiac output (assessed noninvasively using 

stress echocardiography) during symptoms-limited exercise. 
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3/ Importance of RV pacing site optimization in CRT 

It seems that the crucial prerequisite for LV function enhancement during CRT                        

is preexcitation of the most delayed wall by LV pacing. Therefore, the optimal pacing site 

within the LV was predominantly studied in the past. Most studies reported the greatest 

improvement during pacing from the lateral/ posterolateral LV wall152-158. However, optimal 

pacing site may vary interindividually based on the type of conduction disturbance, scar 

location etc. It was shown that the correspondence of the site of late electromechanical 

activation and site of pacing provides the greatest benefit in terms of LV reverse remodeling, 

whereas no effect or worsening can be present when paced from remote sites158. 

Surprisingly, there are still only limited data about the importance of RV pacing site 

optimization in CRT. Therefore, we assessed the impact of RV pacing site on the long-term 

clinical outcome of CRT recipients in our third study. We hypothesized that 1/ the selection   

of suitable RV pacing site may, at least partially, affect the final effect of CRT and 2/ RV lead 

should be rather placed in region ensuring rapid ventricular activation resembling                 

the physiological activation pattern. We further presumed that RV midseptal (RVS) location 

could fulfill such criteria. 

4/ Impact of different atrio-ventricular and interventricular delay setting in BVP and 

LVP on acute changes of cardiac output.

The importance of atrioventricular and interventricular delay (AVD and VVD resp.) 

optimization emerges from the physiology of the cardiac cycle: 1/ Atrial contraction 

contributes to the stroke volume by approximately 20-40% in the heart with either normal      

or depressed systolic function159-161. Both atrioventricular (AV) block and/or presence            

of LBBB (despite normal electrical AV conduction)162,163 may cause prolongation                  

of mechanical AVD with shortening of the LV filling time due to fusion of the early passive 

filling phase with the atrial systole-dependent flow25,161,164. As the performance of the failing 

heart is dependent on an elevated preload, this summation may lead to a decrease of the stroke 

volume. 2/ In addition, appropriate AVD setting seems to reduce LV asynchrony (both intra-

and interventricular)44,93 due to the phenomenon of fusion. 3/ Finally, AVD and VVD 

optimization may contribute to the improved hemodynamics due to a reduction of mitral 

regurgitation165-167.

As the mechanical AVD may be longer than the corresponding electrical AVD            

in LBBB patients, we presumed 1/ that the shorter electrical AVD may be optimal                 

for a prolongation of the filling phase and maximal hemodynamic improvement in CRT 
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recipients as compared to the optimal AVD in conventional pacemakers. In addition, some 

studies in patients with preserved LV systolic function suggest that the spontaneous atrial 

activation during atrial-triggered ventricular pacing (atrial sense followed by ventricular 

pacing at a predetermined AV delay, S-AVD) is hemodynamically superior to AV sequential 

pacing (paced both atrium and ventricle with a predetermined AV delay, P-AVD)168. 

Therefore, we assessed 2/ if it is similar in CRT recipients. Finally, 3/ need of individual AVD 

optimization and 4/ effect of various degree of ventricular preexcitation (VVD) on the acute 

hemodynamic changes were assessed in the last study of this PhD.  

METHODS

Patients included in the studies fulfilled accepted criteria for CRT: advanced CHF   

with persistent symptoms despite optimized medical treatment (NYHA class III-IV),            

LV dysfunction (LV ejection fraction (LVEF) <30-35%, QRS duration >150ms (in most 

cases), LV dilatation (LV end-diastolic diameter (LVEDD) > 60mm). The study populations 

were of different size: twenty patients were enrolled in study 1, 28 patients in study 2,           

99 and 19 patients were included in study 3 and 4. Underlying heart disease was either 

coronary artery disease or idiopathic dilated cardiomyopathy or their combination. In few 

cases, coincidence of previsouly corrected valvular disease and ischemic cardiomyopathy   

was present (study 2 and 3). The mean age of enrolled patients was close to 60 years in all 

studies. Patients with CHF decompensation requiring catecholamine support, those             

with a recent history of myocardial infarction (<6 months) and/or angina pectoris of III-IV 

degree were excluded from all analyses. Except study 1, presence of atrial fibrillation          

was another exclusion criterium. On the other hand, patients with complete AV block (either 

spontaneous or ablation-induced) were included in studies 1, 2 and 4. Upgrade                    

from conventional pacemaker to CRT was performed in indicated patients based on the above 

mentioned indication criteria and QRS duration during right-ventricular pacing >200ms.       

All patients gave their informed consent. 

DEVICE IMPLANTATION

Device providing CRT therapy was implanted in the left or right subclavian region. 

All pacing leads were implanted transvenously via subclavian route. Leads with active 

fixation were used for pacing of the right ventricle and right atrium in most cases.
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Right-ventricular lead was inserted either into the apex (RVA) or midseptal region 

(RVS) of the right ventricle. In the later case, pacing lead was first introduced to the high     

RV outflow tract and then pulled down along the IVS. Suitable RVS site was identified using 

both simultaneously recorded intracardial signal from the tip of RV pacing lead and 

radiographic appearance in at least 3 different views.

Left-ventricular pacing lead was introduced into a suitable tributary of the coronary 

sinus and placed laterally or posterolaterally in most cases. Alternative LV pacing site         

was used in patients with no suitable vessel in this region or in those with repeated lead 

dislocations, high pacing threshold, pacing of the diaphragm or phrenic nerve. In such cases, 

LV lead was inserted predominantly more posteriorly or anterolaterally.

For selection of the optimal right- and left-ventricular pacing site, periprocedural 

recording of the intracardial signal from the tip of the appropriate lead was used. The site         

with intracardial signal recorded in the most terminal portion of the QRS complex               

was assigned as the target place for LV lead insertion. Vice versa, signal preceeding               

or coincide with the onset of QRS complex and/or displaying sharp signal of the conduction 

system determined region for RVS pacing (Figure 5). 

The third electrode was inserted in 

the right atrium, usually in its appendage. 

Biventricular pacing was set in all patients 

after the implantation. BVP configuration 

was also let in long-term follow-up in all 

patients with succesfull LV lead insertion. 

LVP was obtained by temporary 

reprogramming of the CRT device. 

In addition, total of 7 patients with bifocal RV pacing was included in the study 1. 

This pacing strategy was predominantly indicated in those patients with unsucessfull LV lead 

implantation. For BFP, two leads were introduced in the RV with one placed in the apex and 

second in the high outflow tract of the RV.

ELECTROANATOMICAL ACTIVATION MAPPING (CARTO) – STUDY 1

Four-milimeter tip mapping catheter was introduced via vena and arteria femoralis   

into the right and left ventricle. The LV catheter was introduced retrogradely through            

the aortic valve and boluses of heparin were administered during the mapping as a prevention 

of thromboembolic events. Detail electroanatomical activation mapping during BVP, LVP     
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or BFP was performed using CARTO system (Biosense Webster, Haifa, Israel). AVD was set 

at 120ms for sensed and 150ms for paced AVD. Four patients with no intraventricular 

conduction disturbance who underwent radiofrequency ablation of the accessory pathway 

served as a control group. There were no procedure-related complications.

All 3D isochronal activation maps were subsequently analyzed by one operator.       

The local activation time of each point was defined by the onset of the first high-frequency 

component of the bipolar signal. Analysis of the unipolar signal was additionally used             

if the amplitude of the bipolar signal was <0.5mV or in the presence of fragmented potentials. 

Low-voltage signals (<0.2mV) with uncapture were labelled as a scar.

The ventricular activation sequence was described with regard to direction and number 

of the activation wavefronts. Left ventricular activation time (LVAT) was defined                 

by the interval between the earliest and the latest endocardial activation. Interventricular 

delaly was described as the time-difference between the earliest activation in the RV and LV 

respectively (negative values marked preexcitation of the LV). The transseptal time                

was defined by the interval between the pacing stimulus and the earliest LV endocardial 

activation in the septal region. Fusion between spontaneous and pacing-induced activation 

was considered to be present, when additional LV endocardial breakthrough corresponding 

with the RV pacing site was observed and was not present during the spontaneous rhythm.

STRESS ECHOCARDIOGRAPHY AND NONIVASIVE MEASUREMENT OF 

THE CARDIAC OUTPUT – STUDIES 2 AND 4

Impact of BVP and LVP on the acute changes of the cardiac output during exercise 

was assessed by stress echocardiography in study 2. The test was performed in the supine 

position using bicycle ergometer (Ergoline-ergometrics 900, Marquette Electroics MN, USA). 

After resting for 10minutes, exercise with stepwise workload increase by 25watts every 

3minutes was applied. The test was performed in the mornings of 2 consecutive days           

and the patients were randomly allocated to either BVP or LVP with crossover                       

on the following day. 

At the end of the resting phase and at the end of each exercise level, blood pressure 

and heart rate were measured noninvasively. In addition, cardiac output was assessed        

using velocity time integral formula with the sampling volume placed in the LV outflow tract. 

A mean value of velocity time integral obtained by averaging of three consecutive cycles    

was used for calculation of the cardiac output (CO).
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Similar approach to the estimation of CO was also applied in study 4. This study      

was focused on the impact of different AVD and VVD on the cardiac output during              

the following pacing modes: 1/ BiV-LV – BVP with preexcitation of the LV by 4ms,            

2/ BiV-RV – BVP with preexcitation of the RV by 4ms, 3/ LVP. We tested a sequence          

of sensed and paced AVD (i.e. AVD during atrial-trigerred ventricular pacing                       

and atrioventricular sequential pacing, resp.) in all three pacing modes. Range of 80-160ms 

for sensed and 120-160ms for paced AVD was tested. Changes of CO induced by various 

degree of ventricular preexcitation (interventricular delay, VVD) were then assessed         

during BVP with an optimal AVD. Preexcitation of either RV or LV by 4-20ms was tested 

(Figure 1 in study 4).  

LONG-TERM FOLLOW-UP – STUDIES 1-4

Following variables were evaluated every 3 months after the CRT implantation: 

clinical outcome including current NYHA functional class and change in exercise tolerance, 

medication, ECG, spiroergometry and check of the device function, pacing thresholds, 

sensings and impedances of all implanted pacing leads. In addition, echocardiographic 

evaluation assessing LVEDD and LVEF was performed routinelly every 3 months.

STATISTICAL ANALYSIS

The main findings were expressed as a mean ± standard deviation. For comparison     

in the group or between different groups, paired or unpaired t-test was used,                       

when appropriate. P-value <0.05 was considered as significant. Correlation between variables 

was assessed using Pearson correlation coefficient, independent predictors were then 

identified using discriminant analysis. 
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RESULTS

1. ELECTRICAL ACTIVATION SEQUENCE DURING DIFFERENT PACING 

MODES 

(STUDY 1)

Using electroanatomical mapping, activation pattern of both ventricles during different 

pacing modes (BVP, LVP, single-site RV pacing, BFP) was analysed. It was clearly shown 

that the activation sequence of the heart can be interindividually highly variable,        

depending on 1/ the type of conduction disturbace, 2/ pacing mode and 3/ placement             

of the pacing lead(s). In addition, underlying heart disease, specifically the presence             

and location of scar, participated on this variability of activation pattern. The conduction 

defect localized on the ventricular level predominantly determined the ventricular activation 

pattern. Moreover, this study highlighted the contribution and impact of spontaneous 

activation via right bundle on the degree and pattern of ventricular resynchronization,            

so called phenomenon of fusion. Our results indicate that the presence of fusion                      

of spontaneous conduction with LVP-induced wavefront mimicks ventricular activation 

sequence observed during BVP. More importantly, this study described factors that modify 

the degree of this fusion. Present study further demonstrated that various pacing strategies 

alter the degree of both intra- and interventricular dyssynchrony. In addition, this was the first 

study describing activation sequence during BFP to our knowledge.

2. COMPARISON OF THE ACUTE EFFECT OF BIVENTRICULAR AND SINGLE-

SITE LEFT VENTRICULAR PACING DURING EXERCISE (STUDY 2)

In the second study, effect of BVP and LVP on the acute, exercise-induced changes    

of stroke volume was assessed. The results of our study implied that similar exercise level   

can be reached during both BVP and LVP in most cases with preserved AV conduction. Our 

results also indicated that LVP is equivalent to BVP in terms of augmentation of cardiac 

output. In fact, LVP was associated with slightly better results at rest and during low-level 

exercise as compared to BVP. However, cardiac output increase did not differ between LVP 

and BVP during higher exercise-levels. In addition, we observed superiority of one the modes 

in about 80% of all cases. Interestingly, superiority of LVP was seen predominantly              

in patients with DCM in our study. This might be related to a different expression of the inter-

and intraventricular dyssynchrony among patients with DCM and CAD.
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3. VENTRICULAR PACING SITE(S) (STUDY 3 & REVIEW) 

The aim of the third study of this PhD was to assess the importance of RV lead 

positioning in CRT recipients. The review summarizes current data about the hemodynamic 

consequences of alternative RV pacing sites that served as a rationale for study 3.

To our knowledge, our study was the first study assessing the impact of RV lead 

positioning on the long-term outcome of CRT. Its results confirmed our hypothesis that        

the selection of RV pacing site in CRT recipients affects the extent of LV reverse remodeling 

with more favourable results when paced from midseptal region. Less pronounced reverse 

remodeling was observed in patients with RV lead placed in the apical region. However, trend 

towards reduction of LVEDD was visible also among the later group, but after 2-3 times 

longer period than in the patients with midseptal pacing. This observation may suggest that 

CRT related reverse remodeling is also time-dependent. In addition, this study demonstrated 

that midseptal pacing is associated with a shortening of the total electrical activation             

(as expressed by the duration of QRS complex) during both single-site RV pacing and BVP. 

In accordance with other studies, however, we did not find relationship between the degree    

of reverse remodeling and either QRS duration or the extent of the QRS narrowing. 

4. IMPACT OF DIFFERENT ATRIOVENTRICULAR AND INTERVENTRICULAR 

DELAYS ON CARDIAC OUTPUT DURING CRT (STUDY 4)

Our last study demonstrated that the acute hemodynamic benefit of ventricular pacing 

is primarily dependent on the pacing mode, but using any pacing mode or site, the benefit       

is titrated by selected AVD. Our results shown nonsignificantly higher CO during the atrial-

trigered than during AV sequential CRT pacing. Optimal P-AVD was constantly longer      

than the optimal S-AVD during CRT and no significant correlation with spontaneous           

AV conduction was found. In addition, it was possible to identify an optimal S-AVD           

and P-AVD in most patients as the distribution of CO during different AVD setting              

was a bell-shaped curve with the maximum around 120ms for S-AVD and 140ms for P-AVD, 

respectively. However, CO changed only minimally in some patients and optimum value    

was often shifted to the right in these cases. This finding emphasized the necessity to optimize 

AVD individually as we have not identified any independent predictor of this AVD behavior.

Regarding VVD optimization, our findings suggest that the optimization of VVD     

may partially modify hemodynamics during CRT. LV preexcitation or simultaneous BVP   

was favorable in majority of our patients. Preexcitation of RV was constantly associated    

with worse hemodynamic performance.
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1. ELECTRICAL ACTIVATION SEQUENCE DURING DIFFERENT 

PACING MODES

STUDY 1

Peichl P, Kautzner J, Čihák R, Riedlbauchová L, Bytešník J. Ventricular activation 

patterns during different pacing modes. An insight from electroanatomical mapping. 

Kardiol Pol 2005;63(6):622-632. (PMID: 16380863)
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2. COMPARISON OF THE ACUTE EFFECT OF BIVENTRICULAR               

AND SINGLE-SITE LEFT VENTRICULAR PACING DURING EXERCISE

STUDY 2

Riedlbauchová L, Frídl P, Kautzner J, Peichl P. Performance of left ventricular

versus biventricular pacing in chronic heart failure assessed by stress echocardiography.

Pacing Clin Electrophysiol 2004 May,27(5):626-631. (PMID: 15125719).
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3. IMPORTANCE OF RIGHT-VENTRICULAR PACING SITE IN CRT

STUDY 3 & REVIEW

Riedlbauchová L, Čihák R, Bytešník J, Vančura V, Frídl P, Hošková L, Kautzner J. 

Optimization of right ventricular lead position in cardiac resynchronization therapy. 

Eur J Heart Fail 2006 Oct;8(6):609-614. Epub 2006 Feb 28. (PMID: 16504581)

Riedlbauchová L, Kautzner J, Hatala R, Buckingham TA. Is right ventricular outflow tract 

pacing an alternative to left ventricular/biventricular pacing? Pacing Clin Electrophysiol 2004 

Jun;27(6 Pt 2):871-877. (review, PMID: 15189518).
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4. IMPACT OF DIFFERENT ATRIOVENTRICULAR AND 

INTERVENTRICULAR DELAYS ON CARDIAC OUTPUT DURING CRT

STUDY 4

Riedlbauchová L, Kautzner J, Frídl P. Influence of different atrioventricular                         

and interventricular delays on cardiac output during cardiac resynchronization therapy. 

Pacing Clin Electrophysiol 2005 Jan;28 Suppl 1:S19-S23. (PMID: 15683494)
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CONCLUSIONS

Cardiac resynchronization therapy (CRT) represents an accepted treatment modality   

in patients with advance chronic heart failure, acute and long-term benefit of which             

was confirmed in several clinical trials. Recently, reduced mortality and rate of hospitalization 

for heart failure were also demonstrated. However, response to CRT is interindividually 

highly variable with a substantial proportion of CRT recipients who do not respond to this 

therapy. 

Although the identification of suitable candidates is probably the most important 

factor in the reduction of the rate of non-responders, some other determinants, peri- and post-

implant, may substantially affect the final effect of CRT. The present PhD focused on some   

of these variables:

1/ First of them is a selection of the appropriate pacing mode. This PhD evaluated 

effect of 3 pacing modalities that have been proposed as alternatives of CRT – biventricular

pacing (BVP), single-site left-ventricular pacing (LVP) and right-ventricular bifocal pacing 

(BFP). It was clearly shown that the first two pacing strategies, BVP (i.e. simultaneous pacing 

of both ventricles) and LVP, cause comparable acute hemodynamic improvement at rest. 

Study No.2 of this PhD confirmed that the comparable effect of BVP and LVP is preserved 

also during the exercise. 

In addition, study No.1 described the character of ventricular activation during            

all 3 pacing strategies and explained the reasons for comparable hemodynamic benefit              

of BVP and LVP by restoration of more physiological activation sequence with merge           

of two activation wave fronts in the middle of the left ventricle. On the contrary, based          

on our experience from the long-term follow-up, BFP (simultaneous pacing                        

from the apex and outflow tract of the right ventricle) is only rarely associated                   

with the clinical improvement. Possible reasons for the inferiority of BFP as compared          

to BVP and/or LVP on the electrical level is the inability to correct the intraventricular 

asynchrony by BFP.

2/ Besides the selection of pacing mode, the pacing site is very important determinant 

affecting the final outcome of CRT. Optimal regions for insertion of the left-ventricular lead 

were studied by many investigators in the past. However, the issue of proper right-ventricular 

(RV) lead positioning in BVP was not addressed before. In fact, our study was the first one 
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that demonstrated additional benefit when using RV midseptal region as compared                 

to RV apex for long-term BVP (study No.3). More significant and earlier reverse remodeling 

of the ventricles was observed when paced from the midseptal region.

3/ Last, but not least, the final benefit of CRT is titrated, at least partially,                   

by the atrioventricular and interventricular delay programming (AVD and VVD) due             

to modification of the degree of inter- and/or intraventricular resynchronization. Study No.4 

of this PhD indicated that the cardiac output changes with selected AVD and VVD, with the 

optimum usually around 120ms and 140ms for sensed and paced AVD resp.                        

and preexcitation of the left ventricle in range 4-12ms for the VVD. Variable response           

to changed AVD and VVD setting in some patients, however, suggested the superiority             

of their individually-based optimization.



40

PERSONAL BIBLIOGRAPHY

REFERENCES



41

Lucie Riedlbauchová, MD - PERSONAL BIBLIOGRAPHY

Summary of publications:
Original articles - in English:    6
Reviews   - in English:    2

  - in Czech:        4
Book Chapters     - in English      1

  - in Czech         3
Abstracts   - in English:    7

  - in Czech:     15
Other   - in English:      1 (CD-CRT)

Original articles:  
* Kubánek M, Málek I, Bytešník J, Frídl P, Riedlbauchová L, et al. Decrease in plasma B-type 
natriuretic peptide early after initiation of cardiac resynchronization therapy predicts clinical 
improvement at 12 months. Eur J Heart Fail 2006 Dec;8(8):832-840. (JIF 3,546 / 2005, PMID: 
16545444)

* Riedlbauchová L., Čihák R, Bytešník J, Vančura V, Frídl P, Hošková L, Kautzner J.  Optimization 
of right ventricular lead position in cardiac resynchronization therapy, Eur J Heart Fail 2006 Oct;8(6): 
609-614. (JIF 3,546 / 2005, PMID: 16504581)

* Peichl P, Kautzner J, Čihák R, Riedlbauchová L, Bytešník J. Ventricular activation patterns during 
different pacing modes. An insight from electroanatomical mapping. Kardiol Pol. 2005 
Dec;63(6):622-632. (PMID: 16380863)

* Riedlbauchová L., Kautzner J, Frídl P. Influence of different atrioventricular and interventricular 
delays on cardiac output during cardiac resynchronization therapy. PACE 2005 Jan;28 Suppl 1: S19-
S23. (JIF 1,019, PMID: 15683494)

* Riedlbauchová L, Frídl P, Kautzner J, Peichl P.  Performance of left ventricular versus biventricular 
pacing in chronic heart failure assessed by stress echocardiography. PACE 2004 May; 27(5):626-631. 
(JIF 1.019, PMID: 15125719). 

* Kautzner J, Riedlbauchová L, Čihák R, Bytešník J, Vančura V. Technical aspects of implantation of 
LV lead for cardiac resynchronization therapy in chronic heart failure. PACE 2004 Jun; 27(6 Pt 1): 
783-790. (JIF 1.019, PMID: 15189535) 

Review articles:
* Riedlbauchová L. Identification of suitable candidates for cardiac resynchronization therapy.  
Proceeding book for XII.annual meeting of Czech Society of Internal Medicine – satelite symposium 
of Medtronic Czechia company „Cardiac resynchronization therapy“, Prague, CZ, 25.10.2005. (in 
czech)

* Kautzner J, Riedlbauchová L. Treating heart failure and preventing atrial fibrillation. Proceeding 
book for international meeting “Atrial fibrillation and heart failure 2005 The ugly and the nasty”, 
Bologna, September 2005 (in english)

* Riedlbauchová L, Kautzner J, Hatala R, Buckingham TA. Is right-ventricular outflow tract pacing an 
alternative to left-ventricular/biventricular pacing? PACE 2004 Jun; 27(6 Pt 2):871-877. (JIF 1.132, 
PMID: 15189518)



42

* Peichl P, Riedlbauchová L. Patophysiology of chronic heart failure and mechanism of cardiac 
resynchronization therapy. Cardiologic Revue-special issue 2004; 7-11. (in czech)

* Kautzner J, Riedlbauchová L. Biventricular cardiac pacing. Vnitr Lek. 2003 Sep;49(9):734-739. 
(PMID: 14584425, in czech)

* Riedlbauchová L, Kautzner J. Biventricular pacing-new way for treatment of chronic heart failure. 
Medical newspaper 2002;49:28-30. (in czech)

Other:
* Kautzner J, Peichl P, Riedlbauchová L. Cardiac Resynchronization Therapy: Important Practical 
Issues. CD- project cardio3biventricular, St.Jude Medical (sponsor) and Rekesh comp. (publisher), 
2003

Chapters in book:
*  Chapters in book: Kautzner J et al. „Arrhytmias in clinical practice“ – prepared for publication in  
    Galen (in czech):   “Epidemiology of arrhythmias” – chapter 1.1.

         “Elecrical cardioversion/defibrillation” – chapter 6.2.
           “Arrhytmias associated with acute myocardial infarction”– chapter 5.7.1.

* Grim M, Riedlbauchová L, Valášek P. Interaction of Head Mesoderm and Cells of Neural Crest in 
the Chick. – chapter in book: Sanders E.J., Lash J.W., Ordahl C.P. The Origin and Fate of Somites. 
IOS Press, 2001. (in english)

Abstracts:
* Kautzner J, Riedlbauchová L, Marek T, Popová L, Mlčochová H, Hošková L, Peichl P. Comparison 
of single-site left-ventricular and biventricular in patients with chronic heart failure due to idiopathic 
dilated cardiomyopathy. Cor Vasa (Suppl) 2007;49(4). (abstract).

* Riedlbauchová L, Patel D, Corrado A, et al. and Natale A. Cardiac scar and response to cardiac 
resynchronization therapy in ischemic cardiomyopathy. Heart Rhythm 2007; 4(5S, Suppl.): S390 
(abstract No. P06-95).

*Civello K, Riedlbauchová L, Burkhardt D, et al. and Auricchio A, Natale A. Long-term risk of 
mortality and cardiac transplant following cardiac resynchronization therapy in patients with left-
ventricular reverse remodeling. Heart Rhythm 2007; 4(5S, Suppl.): S382 (abstract No. P06-77).

* Corrado A, Patel D, Riedlbauchová L, et al. and Natale A. Safety, efficacy and follow-up of atrial 
fibrillation ablation in septuagenarians. Heart Rhythm 2007; 4(5S, Suppl.): S319 (abstract No. P05-51) 

* Riedlbauchová L., Kautzner J, Bytešník J, Čihák R, Vančura V, Hošková L, Frídl P. Right 
ventricular-bifocal pacing – an alternative of cardiac resynchronization therapy? Europace 2005 
(Suppl);7:89 (abstract No 409) 

* Peichl P, Kautzner J, Riedlbauchova L, Čihák R, Vančura V, Bytešník J. Uncomplicated left bundle 
branch block in patients with dilated cardiomyopathy is asssociated with higher long-term benefit of 
cardiac resynchronization therapy. Europace 2005 (Suppl);7:110 (abstract No 469) 

* Riedlbauchová L, Kautzner J, Bytešník J, Čihák R, Vančura V, Hošková L, Frídl P. Importance of 
simultaneous pacing of the right ventricle from two in patients with chronic heart failure. Cor Vasa 
Suppl 2005;47(4):92 (abstract). 



43

* Riedlbauchová L, Frídl P, Kautzner J. Influence of different AV and VV delays on cardiac output 
during cardiac resynchronization therapy. Europace 2004;6(Suppl):100 (abstract No.137P/9). 

* Kautzner J, Riedlbauchová L, Čihák R, Bytešník J, Vančura V. Optimization of right-ventricular 
lead position during cardiac resynchronization therapy. Heart Rhythm 2004;1(Vol.1):S119-120 
(abstract No.375).  

* Riedlbauchová L, Kautzner J, Vojvodičová O, Čihák R, Bytešník J, Vančura V. Impact of cardiac 
resynchronization therapy on acute changes of blood pressure. Cor Vasa 2004;46(4)(Suppl):S77. 

* Riedlbauchová L, Frídl P, Kautzner J. Importance of atrio- and inter-ventricular delay optimization 
in cardiac resynchronization therapy. Cor Vasa 2004;46(4)(Suppl):S77. 

* Riedlbauchová L, Kautzner J, Vojvodičová O, Čihák R, Bytešník J, Vančura V. Predictive value of 
acute changes of blood pressure for evaluation of CRT effect. Interv Akut Kardiol 2004;3(Suppl):A 
22. 

* Kautzner J, Riedlbauchová L, Čihák R, Vančura V, Bytešník J. Electrophysiologic approach to 
coronary sinus cannulation during LV-lead implantation in cardiac resynchronization therapy. Interv 
Akut Kardiol 2004;3(Suppl):A 17. 

* Riedlbauchová L, Kautzner J, Peichl P. Optimization of lead position during cardiac 
resynchronization therapy. Cor Vasa 2003;45(4)(Suppl):79. 

* Kautzner J, Riedlbauchová L, Peichl P, Frídl P, Hošková L. Importance of Right-ventricular lead 
positioning in CRT (abstract). Cor et Vasa 2003; 4(Suppl.): 41. 

* Riedlbauchová L., Kautzner J, Peichl P, Hošková L. Right-ventricular Bifocal Pacing as an 
Alternative of Cardiac Resynchronization Therapy in patients with chronic heart failure (abstract). Cor 
et Vasa 2003; 4(Suppl.): 78. 

* Riedlbauchová L, Kautzner J, Peichl P. Influence of leads position on QRS duration in cardiac 
resynchronization therapy. Cardiol 2003;12(1):K/C 12A.

* Kautzner J, Riedlbauchová L, Peichl P, Frídl P, Hošková L. Importance of RV lead position in 
cardiac resynchronization therapy. Cardiol 2003;12(1):K/C 6A. 

* Riedlbauchová L, Frídl P, Kautzner J, Peichl P. Influence of single/site LV and biventricular pacing 
on hemodynamics in patients with chronic heart failure during stress. Cardiol 2003;12(1):K/C 12A. 

* Frídl P, Kautzner J, Peichl P, Riedlbauchová L, Marek T, Vítovec J. Sress echocardiography-
evaluation of the effect of biventricular and left ventricular pacing on hemodynamics (abstract). Cor et 
Vasa 2002; 44(9): 197 . 

* Hošková L, Málek I, Kautzner J, Frídl P, Riedlbauchová L. Clinical experience with cardiac 
resynchronization therapy in patients with chronic heart failure (abstract). Cor et Vasa 2002; 44(9): 
198.

* Kubánek M, Hošková L, Kautzner J, Málek I, Riedlbauchová L, Karasová L. Changes in 
neurohumoral activation during biventricular pacing (abstract). Cor et Vasa 2002; 44(9): 198.



44

REFERENCES 

*1 Cleland JGF, Cohen-Solal A, Cosin Aguilar J, et al. Management of heart failure in primary care 
(the IMPROVEMENT of Heart Failure Programme): an international survey. Lancet 2002;360:1631-
1639.
*2 Vernooy K, Verbeek XA, Peschar M, et al. Left bundle branch block induces ventricular 
remodeling and functional septal hypoperfusion. Eur Heart J 2005;26:91-98.
*3 Yu CM, Chau E, Sanderson JE, et al. Tissue Doppler echocardiographic evidence of reverse 
remodeling and improved synchronicity by simultaenously delaying regional contraction after 
biventricular pacing therapy in heart failure. Circulation 2002;105:438-445.
*4 Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in heart failure. N Eng J 
Med 2002;346:1845-1853.
*5 Saxon LA, De Marco T, Schafer J, et al. Effect of long-term biventricular stimulation for 
resynchronization on echocardiographic measures of remodeling. Circulation 2002;105:1304-1310.
*6 Bristow MR, Saxon LA, Boehmer J, et al. for the Comparison of Medical Therapy, Pacing and 
Defibrillation in Heart Failure (COMPANION) Investigators. Cardiac-resynchronization therapy with 
or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 
2004;350:2140-2150.
*7 Cleland JGF, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity 
and mortality in heart failure (CARE-HF study). N Engl J Med 2005;352:1539-1549.
*8 Špinar J., Hradec J., Málek I. and Toman J. Doporučení pro diagnostiku a léčbu chronického 
srdečního selhání. Cor Vasa 2001; 43(6): K123–K137.
*9 Cleland JGF, Khand A and Clark AL. The heart failure epidemic: Exactly how big is it? Eur Heart 
J 2001;22:623-626.
*10 Zannad F, Briancon S, Juilliere Y, et al., and the EPICAL investigators. Incidence, clinical and 
etiologic features and outcomes of advanced chronic heart failure: the EPICAL study. J Am Coll 
Cardiol 1999;33:634-642.  
*11 Cleland JGF, Clark A. Has the survival of the heart failure population changed? Lessons from 
trials. Am J Cardiol 1999;83:112D-119D.
*12 Cleland JGF, Swedberg K, Poole-Wilson PA, et al. Successes and failures of current treatment of 
heart failure. Lancet 1998;352:19-28.
*13 Levy D, Kenchaiam S, Larson MG, et al. Long-term trends in the incidence of and survival with 
heart failure. N Engl J Med 2002;347:1397-1402.
*14 Opasich C, Tavazzi L, Lucci D, et al. Comparison of one-year outcome in women versus men 
with chronic cingestive heart failure. Am J Cardiol 2000;86:353-357.
*15 Ho KK, Anderson KM, Kandel WB, et al. Survival after the onset of congestive heart failure in 
Framingham Heart Study subjects. Circulation 1993;88:107-115.
*16 Rodeheffer RJ, Jacobsen SJ, Gersh BJ, et al. The incidence and prevalence of congestive heart 
failure in Rochester, Minnesota. Mayo Clin Proc 1993;68:1143-1150.
*17 Khand A, Gemmel I, Clark A and Cleland JG. Is the prognosis of heart failure improving? J Am 
Coll Cardiol 2000;36:2284-2286.
*18 Narang R, Cleland JGF, Erhardt L, et al. Mode of death in chronic heart failure: a request for more 
accurate classification. Eur Heart J 1996;17:1390-1403.
*19 MERIT-HF study group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL 
randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 1999;353:2001-2007.
*20 Cleland JGF, Massie BM, Packej M. Sudden death in heart failure: vascular or electrical? Eur J 
Heart Fail 1999;1:41-45.
*21 Bigger JT, Whang W, Rottman JN, et al. Mechanisms of death in the CABG Patch trial: a 
randomized trial of implantable cardiac defibrillator prophylaxis in patients at high risk of death after 
coronary artery bypass graft surgery. Circulation 1999;99:1416-1421.
*22 Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: a 
consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum 
on Cardiac Remodeling. J Am Coll Cardiol 2000;35:569-582.



45

*23 Herpel E, Pritsch M, Koch A, et al. Interstitial fibrosis in the heart: differences in extracellular 
matrix proteins and matrix metalloproteinases in end-stage dilated, ischaemic and valvular 
cardiomyopathy. Histopathology. 2006;48(6):736-747.
*24 Colucci WS, Ribeiro JP, Rocco MB, et al. Impaired chronotropic response to exrecise in patients 
with congestive heart failure. Role of postsynaptic beta-adrenergic desensitization. Circulation 
1989;80(2):314-323.
*25 Cazeau S, Gras D, Lazarus A,et al. Multisite stimulation for correction of cardiac asynchrony. 
Heart 2000;84:579-581.
*26 Brecker SJ, Xiao HB, Sparrow J, et al. Effects of dual-chamber pacing with short atrioventricular 
delay in dilated cardiomyopathy. Lancet 1992;340:1308-1312.
*27 Shenkman HJ, Pampati V, Khandelwal AK, et al. Congestive heart failure and QRS duration: 
establishing prognosis study. CHEST 2002;122:528-534.
*28 Bader H, Garrigue S, Laffite S, et al. Intra-left ventricular asynchrony. A new independent 
predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol 2004;43:248-256.
*29 Fauchier L, Marie O, Casset-Senon D, et al. Interventricular and intraventricular dyssynchrony in 
idiopathic dilated cardiomyopathy: a prognostic study with Fourier phase analysis of radionuclide 
scintigraphy. J Am Coll Cardiol 2002;40:2022-2030.
*30 Hamby RI, Weissman RH, Prakash MN, et al. Left bundle branch block: A predictor of poor left 
ventricular function in coronary artery disease. Am Heart J 1983;106:471-477.
*31 Littmann L, Symanski J. Hemodynamic implications of left bundle branch block. J Electrocard 
2000;33:115-121.
*32 Lee SJ, Mc Culloch CH, Mangat I, et al. Isolated bundle branch block and left ventricular 
dysfunction. J Card Fail 2003;9:87-92.
*33 Xiao HB, Roy C, Fujimoto S, Gibson DG. Natural history of abnormal conduction and its relation 
to prognosis in patients with dilated cardiomyopathy. International J Cardiol 1996;53:163-170.
*34 Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 
1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from 
the Italian network on congestive heart failure. Am Heart J 2002;143:398-405.
*35 Shamim W, Francis DP, Yousufuddin M, et al. Intraventricular conduction delay: a prognostic 
marker in chronic heart failure. International J Cardiol 1999;70:171-178.
*36 Silvet H, Amin J, Padmanabhan S, and Pai RG. Prognostic implications of increased QRS 
duration in patients with moderate and severe left ventricular systolic dysfunction. Am J Cardiol 
2001;88:182-185.
*37 Gottipaty VK, Krelis SP, Lu F, et al. The resting electrocardiogram provides a sensitive and 
inexpensive marker of prognosis in patients with chronic congestive heart failure. (Abstract) J Am 
Coll Cardiol 1999;847-4.
*38 Durrer D, Dam v.RT, Freud GE, et al. Total excitation of the isolated human heart. Circulation 
1970; 41:899-912.
*39 Rodriguez LM, Timmermans C, Nabar A, Beatty G, Wellens HJJ. Variable patterns of septal 
activation in patients with left bundle branch block and heart failure. J Cardiovasc Electrophysiol 
2003;14:135-141.
*40 Peichl P, Kautzner J, Čihák R, Bytešník J. The spectrum of inter- and intraventricular conduction 
abnormalities in patients eligible for cardiac resynchronization therapy. PACE 2004;27:1105-1112.
*41 Schneider JF, Thomas HE Jr, Sorlie P, et al. Comparative features of newly acquired left and right 
bundle branch block in the general population: The Framingham study. Am J Cardiol 1981;47:931-
940.
*42 Vassallo JA, Cassidy DM, Marchlinski FE, et al. Endocardial activation of left bundle branch 
block. Circulation 1984;69(5):914-923.
*43 Van Dam RT. Ventricular activation in human and canine left bundle branch block. In Wellens 
HKK, Lie KI, Janse MJ ,eds. The conduction system of the heart. Philadelphia: Lea&Febiger, 1976, 
p.337.
*44 Verbeek XAA, Vernooy K, Peschar M, et al. Intra-ventricular resynchronization for optimal left 
ventriclar function during pacing in experimental left bundle branch block. J Am Coll Cardiol 
2003;42:558-567.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Herpel+E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Pritsch+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Koch+A%22%5BAuthor%5D
javascript:AL_get(this, 'jour', 'Histopathology.');


46

*45 Auricchio A, Fantoni C, Regoli F, et al. Characterization of left ventricular activation in patients 
with heart failure and left bundle-branch block. Circulation 2004;109:1133-1139.
*46 Fung JWH, Yu CM, Zhang Y, et al. Variable left ventricular activation pattern in patients with 
heart failure and left bundle branch block. Heart 2004;90:17-19.
*47 Verbeek XAAM, Vernooy K, Peschar M, et al. Quantification of interventricular asynchrony 
during LBBB and ventricular pacing. Am J Physiol Heart Circ Physiol 2002;283:H1370-H1378.
*48 Rouleau F, Merheb M, Geffroy S, et al. Echocardiographic assessment of the interventricular 
delay of activation and correlation to the QRS width in dilated cardiomyopathy. PACE 2001;24:1500-
1506.
*49 Kawara T, Derksen R, de Groot JR, et al. Activation delay after premature stimulation in 
chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 
2001;104:3069-3075.
*50 Liu L, Tockman B, Girouard S, et al. Left ventricular resynchronization therapy in a canine model 
of left bundle branch block. Am J Physiol Heart Circ Physiol. 2002;282:H2238-H2244.
*51 Grines CL, Bashore TM, Boudoulas H, et al. Functional abnormalities in isolated left bundle 
branch block: the effect of interventricular asynchrony. Circulation 1989;79:845-853.
*52 Prinzen FW, Augustijn H, Allessie MA, et al. The time sequence of electrical and mechanical 
activation during spontaneous beating and ectopic stimulation. Eur Heart J 1992;13:535-543.
*53 Caso P, D´Andrea A, Martinello AR, et al. Myocardial systolic activation delay in patients with 
left bundle branch block and either normal or impaired left-ventricular function. Echocardiography 
2006;23(1):14-23.
*54 Ghio S, Constantin C, Klersy C, et al. Interventricular and intraventricular dyssynchrony are 
common in heart failure patients, regardless of QRS duration. Eur Heart J. 2004;25(7):571-578.
*55 Little WC, Reeves RC, Arciniegas J, et al. Mechanism of abnormal interventricular septal motion 
during delayed left ventricular activation. Circulation 1982;65:1486-1491.
*56 Xiao HB, Lee CH, and Gibson DG. Effects of left bundle branch block on diastolic function in 
dilated cardiomyopathy. Br Heart J 1991;66:443-447.
*57 Kerwin WF, Botvinick EH, O´Connell JW, et al. Ventricular contraction abnormalities in dilated 
cardiomyopathy: effect of biventricular pacing to correct interventricular dyssynchrony. J Am Coll 
Cardiol 2000;35:1221-1227.
*58 Rouleau F, Merheb M, Geffroy, et al. Echocardiographic assessment of the interventricular delay 
of activation and correlation to the QRS width in dilated cardiomyopathy. PACE 2001;24:1500-1506.
*59 Prinzen FW, Hunter WC, Wyman BT, and Mc Veigh ER. Mapping of regional myocardial strain 
and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J 
Am Coll Cardiol 1999;33:1735-1742.
*60 Badke FR, Boinay P, Covell JW. Effect of ventricular pacing on regional left ventricular 
performance in the dog. Am J Physiol 1980;238:H858-H867.
*61 Bax JJ, Marwick TH, Molhoek SG, et al. Left ventricular dyssynchrony predicts benefit of cardiac 
resynchronization therapy in patients with end-stage heart failure before pacemaker implantation. Am 
J Cardiol 2003;92:1238-1240.
*62 He S, Fontaine AA, Schwammenthal E, et al. Integrated mechanism for functional mitral 
regurgitation; leaflet restriction versus coapting force: in vitro studies. Circulation 1997;96:1826-1834.
*63 Yiu SF, Enriquez-Serano M, Tribouilloy C, et al. Determinants of the degree of functional mitral 
regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. 
Circulation 2000;102:1400-1406.
*64 Prinzen FW, Augustinj CH, Arts T, et al. Redistribution of myocardial fiber strain and blood flow 
by asynchronous activation. Am J Physiol 1990;259:H300-H308.
*65 Wyman BT, Hunter WC, Prinzen FW, et al. Effects of single- and biventricular pacing on 
temporal and spatial dynamics of ventricular contraction. Am J Physiol Heart Circ Physiol 
2002;282:H372-H379.
*66 Delhaas T, Arts T, Prinzen FW, et al. Relation between regional electrical activation time and 
subepicardial fiber strain in canine left ventricle. Eur J Physiol {Pflugers Arch} 1993;423:78-87.
*67 Tse HF, Yu C, Wong KK, et al. Functional abnormalities in patients with permanent right 
ventricular pacing: the effect of sites of electrical stimulation. J Am Coll Cardiol 2002;40:1451-1458.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Ghio+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Constantin+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Klersy+C%22%5BAuthor%5D
javascript:AL_get(this, 'jour', 'Eur Heart J.');


47

*68 Ono S, Nohara R, Kambara H, et al. Regional myocardial perfusion and glucose metabolism in 
experimental left bundle branch block. Circulation 1992;85:1125-1131.
*69 Delhaas T, Arts T, Prinzen FW, Reneman RS. Regional fibre stress-fiber strain area as estimate of
regional oxygen demand in the canine heart. J Physiol (Lond) 1994;477:481-496.
*70 Bassingthwaighte JB, Li Z. Heterogeneities in myocardial flow and metabolism: exacerbation 
with abnormal excitation. Am J Cardiol 1999;83:7H-12H.
*71 Van Oosterhout MFM, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces 
inhomogenous hypertrophy of the left ventricular wall. Circulation 1998;98:588-595.
*72 Prinzen FW, Cheriex EM, Delhaas T, et al. Asymmetric thickness of the left ventricular wall 
resulting from asynchronous electrical activation: a study in patients with left bundle branch block and 
in dogs with ventricular pacing. Am Heart J 1995;130:1045-1053.
*73 Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: a 
consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 2000;35:569-
582.
*74 Cordeiro JM, Greene L, Heilmann C, et al. Transmural heterogeneity of calcium activity and 
mechanical function in the canine left ventricle. Am J Physiol 2004;286:H1471-H1479.
*75 Quintana M, Saha S, Rohani M, et al. Electromechanical coupling, uncoupling, and ventricular 
function in patients with bundle branch block: a tissue-Doppler echocardiographic study. 
Echocardiography 2004;21(8):687-698.
*76 deTeresa E, Chamorro JL, Pulpon LA. An even more physiologic pacing: changing the sequence 
of activation. In: Steinbech KGD, Laskovic A, et al., eds. Cardiac pacing. Proceedings of the VIIth 
World Symposium on Cardiac Pacing. Darmstadt, Germany. Steinkoopff Verlag;1984:95-400.
*77 Hochleitner M, Hortnagl H, Ng CK, et al. Usefulness of physiologic dual-chamber pacing in drug-
resistant idiopathic dilated cardiomyopathy. Am J Cardiol 1990;66:223-224.
*78 Brecker SJ, Xiao HB, Sparrow J and Gibson DG. Effects of dual-chamber pacing with short 
atrioventricular delay in dilated cardiomyopathy. Lancet 1992;340{8831}:1308-1312.
*79 Nishimura RA, Hayes DL, Holmes DR Jr and Tajik AJ. Mechanism of hemodynamic 
improvement by dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and 
catheterization study. J Am Coll Cardiol 1995;25:281-288.
*80 Linde C, Gadler F, Edner M, et al. Results of atrioventricular synchronous pacing with optimized 
delay in patients with severe congestive heart failure. Am J Cardiol 1995;75:919-923.
*81 Gold MR, Feliciano Z, Gottlieb SS and Fisher ML. Dual-chamber pacing with a short 
atrioventricular delay in congestive heart failure: a randomized study. J Am Coll Cardiol 1995;36:967-
973.
*82 Salukhe TV, Henein MY and Sutton R. Pacing in heart failure: patient and pacing mode selection. 
Eur Heart J 2003;24:977-986.
*83 Lupi G, Sassone B, Badano L, et al. Ablate and Pace fibrillation {APAF} Pilot Echocardiographic 
trial investigators. Effects of right ventricular pacing on intra-left ventricular electromechanical 
activation in patients with native narrow QRS. Am J Cardiol 2006;98:219-222.
*84 The DAVID trial investigators. Dual chamber-pacing or ventricular back-up pacing in patients 
with an implantable defibrillator: The dual chamber and VVI implantable defibrillator {DAVID} trial. 
JAMA 2002;285:3115-3123.
*85 Manolis AS. The deleterious consequences of right ventricular apical pacing: time to seek 
alternate site pacing. PACE 2006;29:298-315.
*86 Foster AH, Gold MR and McLaughlin JS. Acute hemodynamic effects of atrio-biventricular 
pacing in humans. Ann Thorac Surg 1995;59:294-300.
*87 Kass DA, Chen CH, Curry C, et al. Improved left ventricular mechanics from acute VDD pacing 
in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 1999;99:1567-
1573.
*88 Fei L, Wrobleski D, Groh W, et al. Effects of multisite ventricular pacing on cardiac function in 
normal dogs and dogs with heart failure. J Cardiovasc Electrophysiol 1999;10:935-46.
*89 Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on 
acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for 
Congestive Heart Failure Study Group. Circulation 1999;99:2993-3001.



48

*90 Kurzidim K, Reinke H, Sperzel J, et al. Invasive optimization of cardiac resynchronnization 
therapy: role of sequential biventricular and left ventricular pacing. PACE 2005;28:754-761.
*91 Yu Y, Kramer A, Spinelli J, et al. Biventricular mechanical asynchrony predicts hemodynamic 
effect of uni- and biventricular pacing. Am J Physiol Heart Circ Physiol 2003;285:H2788-H2796.
*92 Peschar M, de Swart H, Michels KJ, et al. Left ventricular septal and apex pacing for optimal 
pump function in canine hearts. J Am Coll Cardiol 2003;41:1218-1226.
*93 Verbeek XA, Auricchio A, Yu Y, et al. Tailoring cardiac resynchronization therapy using 
interventricular asynchrony. Validation of a simple model. Am J Physiol Heart Circ Physiol 
2006;290{3}:H968-H977.
*94 Etienne Y, Mansourati J, Gilard M, et al. Evaluation of left ventricular based pacing in patients 
with congestive heart failure and atrial fibrillation. Am J Cardiol 1999;83:1138-40.
*95 Leclercq C, Victor F, Alonso C, et al. Comparative effects of permanent biventricular pacing for 
refractory heart failure in patient with stable sinus rhythm or chronic atrial fibrillation. Am J Cardiol 
2000;85:1154-1156.
*96 Leclercq C, Walker S, Linde C, et al. Comparative effects of permanent biventricular and right-
univentricular pacing in heart failure patients with chronic atrial fibrillation. Eur Heart J 
2002;23:1780-1787.
*97 Hay I, Melenovský V, Fetics BJ, et al. Short-term effects of right-left heart sequential cardiac 
resynchronization in patients with heart failure, chronic atrial fibrillation, and atrioventricular nodal 
block. Circulation 2004;110:3404-3410.
*98 Farwell D, Patel NR, Hall A, et al. How many people with heart failure are appropriate for 
biventricular resynchronization? Eur Heart J 2000;21:1246-1250.
*99 Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does 
not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 
2002;106:1760-1763.
*100 Bleasdale RA, Turner MS, Mumford CE, et al. Left ventricular pacing minimizes diastolic 
ventricular interaction, allowing improved preload-dependent systolic performance. Circulation 
2004;110:2395-2400. 
*101 Butter C, Wellnhofer E, Seifert M, et al. Time course of left ventricular volumes in severe 
congestive heart failure patients treated by optimized AV sequential left-ventricular pacing alone-a 3 
dimensional echocardiographic study. Am Heart J 2006;151:115-123.
*102 Bordachar P, Lafitte S, Reuter S, et al. Biventricular pacing and left ventricular pacing in heart 
failure: similar hemodynamic improvement despite marked electromechanical differences. J 
Cardiovasc Electrophysiol 2004;15:1342-1347.
*103 Bordachar P, Lafitte S, Reuter S, et al. Echocardiographic assessment during exercise of heart 
failure patients with cardiac resynchronization therapy. Am J Cardiol 2006;97:1622-1625.
*104 Cazeau S, Bordachar P, Jauvert G, et al. Echocardiographic modeling of cardiac dyssynchrony 
before and during multisite stimulation: a prospective study. PACE 2003;26(PtII):137-143.
*105 Blanc JJ, Ettiene Y, Gilard M, et al. Evaluation of different ventricular pacing sites in patients 
with severe heart failure: results of an acute hemodynamic study. Circulation 1997;96:3273-3277.
*106 Leclercq C, Cazeau S, LeBreton H, et al. Acute hemodynamic effects of biventricular DDD 
pacing in patients with end-stage heart failure. J Am Coll Cardiol 1998;32:1825-1831.
*107 Yu CM, Fung WH, Lin H, et al. Predictors of left ventricular reverse remodeling after cardiac 
resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic 
cardiomyopathy. Am J Cardiol 2002;91:684-688.
*108 Nelson GS, Berger RD, Fetics BJ, et al. Left ventricular or biventricular pacing improves cardiac 
function at diminished energy cost in patients with dilated cardiomyopathy and left-bandle branch 
block. Circulation 2000;102:3053-3059.
*109 Nowak B, Sinha AM, Schaefer WM, et al. Cardiac resynchronization therapy homogenizes 
myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. 
J Am Coll Cardiol 2003;41:1523-1528.
*110 Hamdan MH, Zagrodzky JD, Joglar JA, et al. Biventricular pacing decreases sympathetic 
activity compared with right ventricular pacing in patients with depressed ejection fraction. 
Circulation 2000;102:1027-1032.



49

*111 Kubánek M, Málek I, Bytešník J, et al. Decrease in plasma B-type natriuretic peptide early after 
initiation of cardiac resynchronization therapy predicts clinical improvement at 12 months. Eur J Heart 
Fail 2006;8:832-840.
*112 McAlister FA, Ezekowitz JA, Wiebe N, et al. Systemic review: cardiac resynchronization in 
patients with symptomatic heart failure. Ann Intern Med 2004;141:381-390.
*113 Rector TS, Cohn JN. Assessment of patient outcome with Minnesota Living with Heart Failure 
Questionnaire: reliability and validity during a randomized, double-blind, placebo-controlled trial of 
pimobendan. Pimobendan Multicenter Research Group. Am Heart J 1992;124:1017-1025.
*114 Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic 
heart failure. N Engl J Med 2001;345:1667-1675.
*115 Touiza A, Etienne Y, Gilard M, et al. Long-term left ventricular pacing: assessment and 
comparison with biventricular pacing in patients with severe congestive heart failure. J Am Coll 
Cardiol 2001;38:1966-1970.
*116 Auricchio A, Stellbrink C, Butter C, et al. Clinical efficacy of cardiac resynchronization therapy 
using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction 
delay. J Am Coll Cardiol 2003;42:2109-2116.
*117 Blanc JJ, Bertault-Valls V, Fatemi M, et al. Midterm benefits of left univentricular pacing in 
patients with congestive heart failure. Circulation 2004;109:1741-1744.
*118 Gasparini M, Bocchiardo M, Lunati M, et al. Comparison of 1-year effects of left ventricular and 
biventricular pacing in patients with heart failure who have ventricular arrhythmias and left bundle 
branch block: the Bi vs Left Ventricular Pacing: an International Pilot Evaluation on Heart Failure 
Patients with Ventricular Arrhythmias (BELIEVE) multicenter prospective randomized pilot study. 
Am Heart J 2006;152:155.e 1-7.
*119 Breithardt OA, Stellbrink C, Herbots L, et al. Cardiac resynchronization therapy can reverse 
abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J 
Am Coll Cardiol 2003;42:486-494.
*120 Sutton MG, Plappert T, Hilpisch KE, et al. Sustained reverse left ventricular structural 
remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler 
echocardiographic evidence from the Multicenter InSync Randomized Clinical Evaluation 
(MIRACLE). Circulation 2006;113:266-272.
*121 Stellbrink C, Breithardt OA, Franke A ,et al. Impact of cardiac resynchronization therapy using 
hemodynamically optimized pacing on left ventricular remodeling in patients with congestive heart 
failure and ventricular conduction disturbances. J Am Coll Cardiol 2001;38:1957-1965.
*122 Duncan A, Wait S, Gibson D, et al. Left ventricular remodeling and hemodynamic effects of 
multisite biventricular pacing in patients with left ventricular systolic dysfunction and activation 
disturbances in sinus rhythm: sub-study of the MUSTIC (Multisite Stimulation in Cardiomyopathies) 
trial. Eur Heart J 2003;24:430-441.
*123 Bradley DJ, Bradley EA, Baughman KL, et al. Cardiac resynchronization and death from 
progressive heart failure: a meta-analysis of randomized controlled trials. JAMA 2003;289:730-740.
*124 Brophy JM, Joseph L, Rouleau JL. Beta-blockers in congestive heart failure. A Bayesian 
metaanalysis. Ann Intern Med 2001;134:550-560.
*125 Flather MD, Yusuf S, Kober L, et al. Long-term ACE-inhibitor therapy in patients with heart 
failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-
Inhibitors Myocardial Infarction Collaborative Group. Lancet 2000;355:1575-1581.
*126 Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in 
patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J 
Med 1999;341:709-717.
*127 ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure 
in the Adult: A report of the Američan College of Cardiology/ American Heart Association task force 
on practice guidelines. Sharon Ann hunt. J Am Coll Cardiol 2005;46:1-82. (www.acc.org and 
www.americanheart.org). 
*128 ESC Guidelines for the Diagnosis and Treatment of Chronic Heart Failure. K. Swedberg 
(Chairperson), J. Cleland, H. Dargie, H. Drexler, F. Follath, A. ,M. Komajda, L. Tavazzi, O. A. 
Smiseth /Other contributors: A. Gavazzi, A. Haverich, A. Hoes, T. Jaarsma, , J. Korewicki, S. Levy, 
C. Linde, J.L. Lopez-Sendon, M. Nieminen, L. Piérard, W.J. Remme Eur Heart J 2005;26:1115-1140.

http://www.escardio.org/NR/rdonlyres/83B0E854-D56A-47C1-988F-585F4EBFEAF8/0/CHF_diagnosis.pdf


50

*129 Táborský M, Kautzner J, Bytešník J, et al. Doporučení pro implantace kardiostimulátorů, ICD a 
srdeční resynchronizační léčbu. Cor Vasa 2005;47(9):s.59-68.
*130 Abraham WT, Fischer WG, Smith AL, et al. and the MIRACLE Study Group. Multicentric 
InSync Randomized Clinical Evaluation. Cardiac resynchronization in chronic heart failure. N Engl J 
Med 2002;346:1845-1853.
*131 Auricchio A, Stellbrink C, Sack S, et al. for the PATH-CHF Study group. Long-term clinical 
effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure 
and ventricular conduction delay. J Am Coll Cardiol 2002;39:2026-2033.
*132 Bax JJ, Marwick TH, Molhoek SG, et al. Left ventricular dyssynchrony predicts benefit of 
cardiac resynchronization therapy in patients with end-stage heart failure before pacemaker 
implantation. Am J Cardiol 2003;92:1238-1240.
*133 Auricchio A, Ding J, Spinelli JC, et al. Cardiac resynchronization therapy restores optimal 
atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am 
Coll Cardiol 2002;39:1163-1169.
*134 Nelson GS, Curry CW, Wyman BT, et al. Predictors of systolic augmentation from left 
ventricular preexcitation in patients with dilated cardiomyopathy and intraventricular conduction 
delay. Circulation 2000;101:2703-2709.
*135 Alonso C, Leclercq C, Victor F, et al. Electrocardiographic predictive factors of long-term 
clinical improvement with multisite biventricular pacing in advanced heart failure. Am J Cardiol 
1999;84:1417-1421.
*136 Reuter S, Garrigue S, Barold SS, et al. Comparison of characteristics in responders versus 
nonresponders with biventricular pacing for drug-resistant congestive heart failure. Am J Cardiol 
2002;89:346-350.
*137 Cazeau S, Leclercq C, Lavergne T, et al. Effects of multisite biventricular pacing in patients with 
heart failure and intraventricular conduction delay. N Engl J Med 2001;344:873-880.
*138 Pitzalis MV, Iacoviello M, Romito R, et al. Cardiac resynchronization therapy tailored by 
echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 2002;40:1615-1622.
*139 Penicka M, Bartunek J, De Bruyne B, et al. Improvement of left ventricular function after 
cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography. 
Circulation 2004;109:978-983.
*140 Touissant JF, Lavergne T, Kerrou K, et al. Basal asynchrony and resynchronization with 
biventricular pacing predict long-term improvement of LV function in heart failure patients. PACE 
2003;26:1815-1823.
*141 Perez de Isla L, Florit J, Garcia-fernandez MA, et al. Prevalence of echocardiographically 
detected ventricular asynchrony in patients with left ventricular systolic dysfunction. J Am Soc 
Echocardiogr 2005;18:850-859.
*142 Fauchier L, Marie O, Casset-Senon D, et al. Reliability of QRS duration and morphology on 
surface electrocardiogram to identify ventricular dyssynchrony in patients with idiopathic dilated 
cardiomyopathy. Am J Cardiol 2003;92:341-344.
*143 Yu CM, Lin H, Zhang Q and Sanderson JE. High prevalence of left ventricular systolic and 
diastolic asynchrony in patients with congestive heart failure and normal QRS duration. Heart 
2003;89:54-60.
*144 Bleeker GB, Schalij MJ, Molhoek S, et al. Frequency of left ventricular dyssynchrony in patients 
with heart failure and narrow QRS complex. Am J Cardiol 2005;95:140-142.
*145 Yu CM, Fung JW, Chan Ck, et al. Comparison of efficacy of reverse remodeling and clinical 
improvement for relatively narrow and wide QRS complexes after cardiac resynchronization therapy 
for heart failure. J Cardiovasc Electrophysiol 2004;15:1058-1065.
*146 Achilli A, Sassara M, Ficili S, et al. Long-term effectiveness of cardiac resynchronization 
therapy in patients with refractory heart failure and „narrow“ QRS. J Am Coll Cardiol 2003;42:2117-
2124.
*147 Turner MS, Bleasdale RA, Vinereanu D, et al. Electrical and mechanical components of 
dyssynchrony in heart failure patients with normal QRS duration and left bundle-branch block: impact 
of left and biventricular pacing. Circulation 2004;109:2544-2549.
*148 Yu CM, Abraham WT, Bax J, et al. Predictors of response to cardiac resynchronization therapy 
(PROSPECT) – study design. Am Heart J 2005;149:600-605.



51

*149 Ypenburg C, Schalij MJ, Bleeker GB, et al. Extent of viability to predict response to cardiac 
resynchronization therapy in ischemic heart failure patients. J Nucl Med 2006;47:1565-1570.
*150 Mangiavacchi M, Gasparini M, Faletra F, et al. Clinical predictors of marked improvement in 
left ventricular performance after cardiac resynchronization therapy in patients with chronic heart 
failure. Am Heart J 2006;151:477.e1-477.e6.
*151 Faris OP, Evans FJ, Dick AJ, et al. Endocardial versus epicardial electrical asynchrony during 
LV free-wall pacing. Am J Physiol Heart Circ Physiol 2003;285:H1864-H1870.
*152 Auricchio A, Klein H, Tockman B, et al. Transvenous biventricular pacing for heart failure: Can 
the obstacles be overcome? Am J Cardiol 1999;83:136D-142D.
*153 Butter C, Auricchio A, Stellbrink C, et al. Should stimulation site be tailored in the individual 
heart failure patient? Am J Cardiol 2000;86:K144-K151.
*154 Butter CH, Auricchio A, Stellbrink CH, et al. Effect of resynchronization therapy stimulation site 
on the systolic function of heart failure patients. Circulation 2001;104:3026-29.
*155 Dekker AL, Phelps B, Dijkman B, et al. Epicardial left ventricular lead placement for cardiac 
resynchronization therapy: optimal pace site selection with pressure-volume loops. J Thorac 
Cardiovasc Surg 2004;127:1641-1647.
*156 Ansalone G, Giannantoni P, Ricci R, et al. Doppler myocardial imaging to evaluate the 
effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 
2002;39:489-499.
*157 Rossilo A, Verma A, Sad EB, et al. Impact of coronary sinus lead position on biventricular 
pacing: mortality and echocardiographic evaluation during long-term follow-up. J Cardiovasc 
Electrophysiol 2004;15:1120-1125.
*158 Murphy RT, Sigurdsson G, Mulamalla S, et al. Tissue synchronization imaging and optimal left 
ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol 2006;97:1615-1621.
*159 Iwase M, Sotobata I, Yokota M, et al. Evaluation by pulsed Doppler echocardiography of the 
atrial contribution to left ventricular filling in patients with DDD pacemakers. Am J Cardiol 
1986;58:104-109.
*160 Nishimura RA, Hayes DL, Holmes DR, et al. Mechanism of hemodynamic improvement by 
dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and catheterization 
hemodynamic study. J Am Coll Cardiol 1995;25:281-288.
*161 Leonelli FM, Wang K, Youssef M, et al. Systolic and diastolic effects of variable atrioventricular 
delay in patients with complete heart block and normal ventricular function. Am J Cardiol 
1997;80:294-298.
*162 Daubert C, Leclercq C, Pavin D, et al. Pacing therapy in congestive heart failure: present status 
and new perspectives. In SS Barold, J, Mugica (eds): Recent Advances in Cardiac Pacing. Armonk, 
NY, Futura publishing Co. Inc., 1997, pp.51-80.
*163 Daubert JC, Pavin D, Jauvert G and Mabo P. Intra- and interatrial conduction delay: Implications 
for cardiac pacing. PACE 2004;27:507-525.
*164 Pearson AC, Janošík DL, Redd RR, et al. Doppler echocardiographic assessment of the effect of 
varying atrioventricular delay and pacemaker mode on left ventricular filling. Am Heart J 
1988;115:611-621.
*165 Breithardt OA, Sinha AM, Schwammenthal E, et al. Acute effect of cardiac resynchronization 
therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol 
2003;41:765-770.
*166 Brandt RR, Reiner CH, Arnold R, et al. Contractile response and mitral regurgitation after 
temporary interruption of long-term cardiac resynchronization therapy. Eur Heart J 2006;27: 187-192.
*167 Ishikawa T, Kimura K, Nihei T, et al. Relationship between diastolic mitral regurgitation and PQ 
intervals or cardiac function in patients implanted with DDD pacemakers. PACE 1991 Nov;14(11 Pt 
2):1797-802.
*168 Videen JS, Huang SK, Bazgan ID, et al. Hemodynamic comparison of ventricular pacing, 
atrioventricular sequential pacing, and atrial synchronous ventricular pacing using radionuclide 
ventriculography. Am J Cardiol. 1986 Jun 1;57(15):1305-1308.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ishikawa+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kimura+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Nihei+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Videen+JS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Huang+SK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bazgan+ID%22%5BAuthor%5D
javascript:AL_get(this, 'jour', 'Am J Cardiol.');


52

Lucie Riedlbauchová, MD

Prague, May 2007


	Charles University, Prague, Czech Republic
	Ph.D. Thesis
	Lucie Riedlbauchová, MD
	Supervisor: Prof. Josef Kautzner, MD, PhD, FESC
	Acknowledgments:
	I would like to use this opportunity to thank many people who helped me during my PhD studies:
	I express my sincere gratitude particularly to my supervisor Professor Josef Kautzner, MD, PhD, FESC, Head of Department of Cardiology, for his untiring help during all steps of these studies and for the opportunity to participate in the research projects of our clinic.
	Many thanks belong also to all colleagues from the Department of Cardiology IKEM, specifically to those from the antiarrhythmic unit and echocardiographic laboratory for their cooperation and valuable comments.
	Above all, I thank my parents and sister for their unlimitted and neverending support and loving care they have given me during all these years and especially to my mam who encouraged me in all my plans and ideas.
	All studies included in the dissertation were produced in the Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague.
	This work was supported by the following grants:
	CRT – cardiac resynchronization therapy
	CONTENT
	2.1. ELECTRICAL ACTIVATION OF THE VENTRICLES PHYSIOLOGICALLY AND DURING LBBB
	2.2. MECHANICAL VENTRICULAR ACTIVATION UNDER PHYSIOLOGIC CONDITIONS AND DURING LBBB
	3. CARDIAC RESYNCHRONIZATION THERAPY CRT
	3.1. INTRODUCTION
	METHODS
	2. COMPARISON OF THE ACUTE EFFECT OF BIVENTRICULAR AND SINGLE-SITE LEFT VENTRICULAR PACING DURING EXERCISE STUDY 2
	Original articles:
	Lucie Riedlbauchová, MD



