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Abstrakt 
Mandelinkovití brouci patří k nejdiverzifikovanějším skupinám hmyzu a v rámci této čeledi se nejvíce 

popsaných druhů řadí mezi dřepčíky. Tato práce shrnuje dosavadní znalosti o jejich příbuzenských 

vazbách k ostatním skupinám mandelinek (především bázlivcům) a srovnává různé názory na jejich 

fylogenetickou pozici, a vnitřní systematiku. V práci téţ shrnuji známé fosilní nálezy dřepčíků a 

diskutuji jejich systematické postavení a evoluční, jakoţ i biogeografický význam. Za svůj úspěch 

dřepčíci pravděpodobně vděčí i řadě unikátních znaků, jako je například schopnost skákat, a také 

překvapivě široké škále ekologických přizpůsobení, kterých mohou nabývat. V práci diskutuji jak 

morfologická, tak i ekologická specifika dřepčíků a speciální důraz kladu na zdánlivě okrajové ţivotní 

strategie dřepčíků – ţivot v půdní hrabance a v mechu, neboť právě v těchto ekologických nikách se 

v poslední době ukazuje být rozsáhlá a nepopsaná diverzita dřepčíků. Mechoví dřepčíci jsou navíc, 

vzhledem ke sníţeným disperzním schopnostem a častému endemismu, zajímavou modelovou 

skupinou pro ekologicko-evoluční a biogeografické studie. V práci také diskutuji současné rozšíření 

dřepčíků a zabývám se otázkami po vzniku a dynamice jejich areálů. Předkládám také teorie o 

moţných mechanismech disperze nelétavých dřepčíků. 

Klíčová slova 
Chrysomelidae, Galerucinae, Alticini, biogeografie, fosílie brouků, taxonomie, fylogeneze, disperze 

hmyzu 

Abstract 
Leaf beetles belong to most diverse groups of insects and the biggest diversity inside this group is 

among flea beetles. This work summarizes existing hypotheses about their relationships with other 

groups of leaf beetles (especially galerucines) and compares various hypotheses about their 

phylogenetic position and suprageneric systematics. I also rewiev known fossils of flea beeltes and 

discuss their systematic position and evolutionary or biogeographic significance. The success of flea 

beetles is likely caused among others by their specific characters, (e. g. their jumping ability), and also 

their ability to reach dozens of various strategies and ecological adaptations. I discuss both 

morphological and ecological specifics of flea beetles and especially, I focus on apparently marginal 

life strategies – terrestrial and moss inhabitance, because in these ecological niches, an interestingly 

big diversity of flea beetles is uncovered recently. Moss-inhabiting flea beetles are also a very 

interesting model for ecological, evolutionary and biogeographical studies, because of their high 

endemism and low dispersal abilities. I also discuss extant distribution of flea beetles in the work and I 

concern questions about the origins and dynamics of their distributional ranges. I propose theories on 

possible dispersal mechanisms of non-volant flea beetle species. 

Keywords 
Chrysomelidae, Galerucinae, Alticini, biogeography, beetle fossils, taxonomy, phylogeny, insect 

dispersal 
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1. Introduction 

Beetles (Coleoptera) are one of the most diverse groups among insects and all Metazoa (Hunt et al. 

2007; McKenna et al. 2015). The largest species diversity of beetles is represented by a monophyletic 

herbivorous clade (so-called Phytophaga, i.e. Chrysomeloidea and Curculionoidea) . Because of this 

huge diversity, majority of phytophagous beetles, especially in groups, which are not very attractive 

for amateur entomologists, seems to be still undescribed. One of these groups are also Alticini 

(Chrysomelidae: Galerucinae), mostly represented by small or medium-sized leaf beetles. Their 

English name ‗flea beetles‘ refers to their typical behavioral feature – the ability to jump using hind 

legs with thickened femora and a specialized jumping organ. Jumping provides to flea beetles a perfect 

way to escape a predator. 

The systematic position of flea beetles was reclassified many times during last two centuries, both in 

their rank (subfamiliar or tribal) and in their phylogenetic status in relation to their closest relatives, 

the galerucine leaf beetles. The actual view on the problem, based on the modern molecular phylogeny 

of both groups (Ge et al. 2012) revealed the majority of the Alticini fauna as a monophyletic group, 

which is a sister group of Galerucinae s. str. Surprisingly, few lineages of flea beetles (e. g. Nonarthra, 

Luperomorpha or Hespera) were recognized as internal lineages inside of the galerucine clade, where 

the jumping ability originated as a convergence.  

Flea beetles are distributed worldwide (with exceptions of Antarctica and some oceanic islands). 

Although the knowledge about the historical biogeography of the group is very limited, partly by the 

absence of phylogenetic data, there are some preliminary studies, showing cases of colonization and 

radiation on islands (D‘Alessandro et al. 2014; D‘Alessandro et al. 2016), distributional patterns on 

continents corresponding to phylogenetic position of particular groups (Biondi & D‘Alessandro 2012) 

or biogeographic events corresponding to paleogeographical reconstructions (e.g. the Great American 

Interchange or crossing the Wallace‘s line; Mohamedsaid 2009; Scherer 1988). 

In this thesis, I summarize basic information about flea beetle evolution, discuss the traits in 

morphological, ecological or karyotypic evolution mentioned in the literature, and present some 

insights into the historical biogeography of the group. I also discuss some interesting aspects of flea 

beetle biology, e.g. the species inhabiting forest leaf litter and the corresponding loss of flight abilities. 

I specify and discuss future research possibilities in the biology, evolutionary systematics and 

historical biogeography of flea beetles, in connection to my future MSc. project.  
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Fig. 1. – Examples of flea beetles. A – Altica birmanensis (Jacoby, 1896), Thailand – Doi Inthanon; B – Hyphasis 

cyanipennis (Motschultsky, 1866), Thailand – Doi Inthanon; C – Podontia quatuordecimpunctata (Linnaeus, 1767), 

Thailand – Phuket; D – Arrhenocoela lineata Rossi, 1970, Italy – Fondi env.; E – Aphthona cyparissiae  (Koch, 1803), 

Czech Rep. – Hluboká n. Vlt.; F – Clavicornaltica sp. nov., Thailand – Khao Sok; G – Chaetocnema aridula 

(Gyllenhal, 1827), Czech Rep. – Havraníky; H – Cangshanaltica siamensis Damaška & Konstantinov, 2016, Thailand 

– Doi Inthanon; I – male aedeagus of C. siamensis; I – female spermatheca of C. siamensis; K – flea beetles in their 

environment: Phyllotreta chotanica Basu et al. 1981, Thailand – Khlung. Pictures H, I, J are from Damaška and 

Konstantinov 2016, other pictures original. 
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2. Evolution and systematics 

2.1. History and palaeontology of Chrysomelidae and Alticini 

Earliest moments of the leaf beetle evolution still remain unclear. This is caused by a low number of 

well-preserved and realiably dated fossils limiting our knowledge about morphology and distribution 

of early Chrysomelidae, but also by methodological problems in using these fossils as calibrations for 

molecular-based time trees (Toussaint et al. 2016). The latest dated phylogenetic tree of beetles 

(McKenna et al. 2015) reveals that basal divergences among Chrysomelidae s. str. (excluding 

Megalopodidae and Orsodacnidae which are members of the cerambycid clade in this phylogeny) 

happened during the Early and Middle Cretaceous, ca. between 145 and 105 million years ago (Ma). 

Divergence of Galerucinae and Chrysomelinae is considered to take place about 110 Ma. The study by 

Toussaint et al. (2016) suggests an alternative calibration of McKenna‘s (2015) tree using a higher 

number of reliably identified and dated fossils, which pushes the divergence time of Chrysomelidae to 

the Late Triassic to Early Jurassic, between 222 and 187 Ma. 

As mentioned above, the Mesozoic fossil record of leaf beetles is very poor. Older literature 

(Santiago-Blay 1994) lists relatively many fossil chrysomelid taxa from the Mesozoic, but the identity 

of most of them is unclear and/or highly speculative because the fossils are badly preserved, 

insufficiently described and sometimes even lost. Other fossils were misidentified at first and their 

position in Chrysomelidae was denied by further studies. This is the case of Protoscelinae, a group of 

Mesozoic beetles originally placed into Chrysomelidae, considered to be the only extinct leaf beetle 

subfamily (Santiago-Blay 1994). Nevertheless, modern studies transferred the whole subfamily 

Protoscelinae into the Anthribidae, i.e. out of Chrysomeloidea (Legalov 2013), although additional 

studies seem to be needed to corroborate this position (S. Davis, pers. comm. to M. Fikáček, 2016). 

Fortunately, there are some well-preserved fossils of leaf beetles from the Mesozoic, e. g. 

Mesopachymerus antiquus Poinar, 2005
1
, a bruchine from Canadian amber of Cretaceous origin 

(Poinar 2005). The oldest fossils considered as Chrysomelidae are members of the extinct tribe 

Mesolpinini, described from compression fossils found in the Lower Cretaceous of Liaoning, China 

and placed into the subfamily Chrysomelinae (Kirejtshuk et al. 2015). No reliable fossils of a flea 

beetle are known from the Mesozoic. The only known fossil which could possibly belong to Alticinae 

is a very old record (Westwood 1854), identified as “a minute Haltica or other Chrysomelideous 

beetle”. However, pictures in the work of Westwood (1854) do not allow a modern interpretation of 

this fossil and the material was not examined by modern authors.  

After the K/T boundary, the number of known leaf beetle fossils increases rapidly, probably due to 

the existence of large amber deposits, especially in the Baltic area (Eocene) and the Dominican 

                                                      
1
 The species is originally described as Mesopachymerus antiqua, but this name is invalid because of a wrong 

latin spelling (the generic name is masculine, instead of the feminine form of the species name). Therefore, I am 

spelling the species name as a masculine too. 
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Republic (Miocene) (Bukejs 2015; Nadein 2010; Moseyko et al. 2010; Rasnitsyn & Ross 2000). 

Fifteen species of fossil flea beetles in 9 genera are described up to date from Tertiary fossil resins and 

it is likely that many other new alticine fossils will be found in the future (Biondi 2014; Bukejs et al. 

2015; Nadein et al. 2016; Bukejs et al. 2016). Three recent genera are known also from fossil resins 

(Crepidodera Chevrolat, 1836, Neocrepidodera Heikertinger, 1911 and Wanderbiltiana Bechyně, 

1955). The number of fossils (and sub-fossils) of flea beetles increases during the Neogene and, 

especially, Quaternary again. The Quaternary fossils and subfossils mostly belong to recent genera (e. 

g. Altica Geoffroy, 1762, Hippuriphila Foudras, 1861, Chaetocnema Stephens, 1831) (Santiago-Blay 

1994; Kuzmina 2015; Buckland & Buckland 2012). 

Fossil resin inclusions (the only relevant Paleogene flea beetle fossils) show us some interesting 

information about Paleogene flea beetle fauna:  

(1) European Eocene amber fossils include taxa related to modern Oriental lineages. This is the case 

of the extinct genus Manobiomorpha possibly related to recent Oriental genera Lipromima and 

Manobia, both Oriental (Nadein et al. 2016). It corresponds with the findings in other groups (e. g. 

trees or mammals) in which the current Paleotropical endemics were present in European paratropical 

and subtropical Cenozoic landscape (Kemp 2005; Nadein et al. 2016). An interesting case, 

corresponding with this problem, is represented by the recent European endemic flea beetle 

Arrhenocoela lineata (Rossi, 1719). Taxonomic position of this flea beetle is very unclear and it is 

supposed that it is related to Xuthea Baly, 1865 from the Oriental region. This would suggest that A. 

lineata may be a relict of tropical fauna distributed in Europe during the Cenozoic (Biondi & De 

Nardis 2002). However, A.lineata was not incorporated in any molecular phylogeny and the 

hypotheses need to be addressed once the phylogenetic position of the genus will be clear. 

(2) Although tropical species are found in Baltic amber, members of temperate faunal elements (e. g. 

Crepidodera, Psyllototus) prevail in the Eocene fauna. This shows that Baltic amber is a record of 

a seasonal paratropical forests with warm summers and mild winters where both tropical and 

temperate animals could live and co-occur (Nadein et al. 2016). 

(3) An interesting case is presented by a newly published study (Konstantinov 2016) describing 

a new recent flea beetle genus Chanealtica Konstantinov, 2016, which is very similar to the fossil 

genus Psyllototus Nadein, 2010 from European Eocene amber deposits (Nadein et al. 2016). Both 

genera are very similar to Psylliodes Latreille, 1829, a widespread flea beetle genus, characterized by 

the combination of 10 antennomeres and the metatarsus attached far from metatibial apex. The second 

character is typical also for other genera (Aphthonoides Jacoby, 1885, Argopistes Motschultsky, 1860, 

Metroserrapha Bechyně, 1950, slightly also for the group Monoplatina), but is rare among other flea 

beetles. The fossil Psyllototus is  very similar to and possibly closely related to Psylliodes, but differs 

in having 11 antennomeres (Nadein 2010). The newly described recent Chanealtica is also very 

similar to Psylliodes and also has 11 antennomeres, which is why  its close relation with Psyllototus 

was suggested (Konstantinov 2016). However, a biogeographic problem occurs in the hypothesis – 
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Psyllototus is known only from European amber, whereas Chanealtica is described from Chile. 

Psylliodes is a cosmopolitan genus. Molecular phylogenetic analysis revealing the position of 

Chanealtica would be necessary for clarifying this problem. 

 

A checklist of known fossil Alticini. 

Only data with some generic determination are involved – obsolete fossil findings of ―incertae sedis‖ 

or ―Altica sp.‖ are neglected, with exception of the Jurrasic species described as Altica sp., which 

needs to be revised, but interestingly, it is the only known fossil of suspect alticine from the Mesozoic.  

Review literature: Kirejtshuk & Ponomarenko (2017); Santiago-Blay (1994); Nadein et al. (2016); 

Bukejs & Nadein (2013). 

 

Mesozoic fossils. 

 

Altica sp. (in: Westwood 1854)  
Jurassic, Durdlestone Bay, England 

Remarks: The fossil had not been redescribed and  is 

originally determined as „Haltica or other 

Chrysomelidan―. 

 

Tertiary fossils. 

Altica dryophyllorum Piton, 1940  
Paleocene, Menat, Puy-de-Dome, France 

Altica dubia Foerster, 1891  
Oligocene, Brunnstatt, Elsas, France 

Altica magna Foerster, 1891  
Oligocene, Brunnstatt, Elsas, France 

Altica renovata Wickham, 1941  
Oligocene, Florissant, Colorado St., USA 

Altica sp. (in: Helm 1896) 
Eocene, Baltic amber 

Acallepitrix sp. (in: Santiago-Blay&Craig 1999) 
Miocene, Dominican amber 

Altica tholimorpha Zhang et al., 1994  
Miocene, Shanwang Basin, Shandong Prov., China 
 

Ambroaltica baltica Bukejs et  

Konstantinov, 2013  
Eocene, Baltic amber 

Aphthona puncticollis Piton, 1939  

Miocene, Cantal, Murat, France 
Remarks: Unclear generic placement, needs revision. 
. 
Apteropeda grossa Theobald, 1937  

Miocene, Cantal, Murat, France 
Remarks: Unclear generic placement, needs  revision. 

Archealtica convexa Nadein, 2016  
Eocene, Rovno amber, Ukraine 

Crepidocnema yantarica Moseyko et al., 2010  
Eocene, Oise amber, France 

 

Crepidodera decolorata Nadein et Perkovsky, 

2010  
Eocene, Rovno amber, Ukraine 

Crepidodera svetlanae Bukejs, 2014  
Eocene, Baltic amber 

Crepidodera tertiotertiaria Bukejs et al., 2016  
Eocene, Baltic amber  

Derorthea curtiantenna Zhang et al., 1994  
Miocene, Shanwang Basin, Shandong Prov., China 

Manobiomorpha eocenica Nadein, 2010  

Eocene, Rovno amber, Ukraine 

Neocrepoidodera antiqua Gressit, 1970  
Miocene, Chiapas amber, Mexico 

Ochrosis sp. (in: Klebs 1873) 
Eocene, Baltic amber 

Oryctoscirtites protogaeum Scudder 1876 
Oligocene, Florissant, Colorado St., USA 

Paolaltica eocenica Biondi, 2014  
Eocene, Baltic amber 

Phyllotreta sp. (in: Kiselev 1981) 
Pliocene, Siberia 
 

Plectrotetrophanes hageni Wickham, 1914  
Oligocene, Florissant, Colorado St., USA 

 

Prochaetocnema florissantella Wickham, 1914  
Oligocene, Florissant, Colorado St., USA 

 

Psylliodes difficilis Foerster, 1891  
Oligocene, Brunnstatt and Kleinkembs, Alsace-Lorraine, 

France 

Psylliodes difiguratus Theobald, 1937  
Oligocene, Kleinkembs, Baden-Wurtemberg, Germany 
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Psyllototus doeberli Bukejs et Nadein, 2013  
Eocene, Baltic amber 

Psyllototus groehni Bukejs et Nadein, 2014  
Eocene, Baltic amber 

Psyllototus progenitor Nadein, 2010  
Eocene, Rovno amber, Ukraine 

Psyllototus viking Nadein et al., 2016  
Eocene, Danish amber 

Sucinolivolia torpida Bukejs et al., 2015  
Eocene, Baltic amber 

Systena florissantensis Wickham, 1914  
Oligocene, Florissant, Colorado St., USA 

Walterianella sp. Santiago-Blay et al., 1996  
Miocene, Dominican amber 

 

Wanderbiltiana wawasita Santiago-Blay et al., 

2004  
Miocene, Dominican amber 
 

 

 

2.2. Phylogenetic position and systematic status of Alticini  

Chrysomelidae are a diverse family of beetles (Coleoptera), placed into the clade Chrysomeloidea. 

The sister group of Chrysomeloidea is Curculionoidea (weewils and their relatives), together, this 

megadiverse phytophagous clade is informally known as Phytophaga and is nested in the series 

Cucujiformia (Haddad & McKenna 2016; McKenna et al. 2015). Chrysomelidae are a monophyletic 

family (Hunt et al. 2007; McKenna et al. 2015; Gómez-Zurita et al. 2008; Haddad & McKenna 2016). 

A discussion was taken during last decades about the phylogenetic positions of Megalopodidae and 

Orsodacnidae, groups formerly recognized as subfamilies of Chrysomelidae. Afterwards, both groups 

were designated as separate families and hypothetically placed as sister clades of Chrysomelidae. 

However, modern molecular phylogenies uncovered their relation with Cerambycidae, which is also 

supported by presence of a stridulatory organ between head and pronotum, which now appears to be 

a synapomorphy of the ―cerambycid clade‖. An antagonistic situation happened with the former 

family Bruchidae. This group is recently considered as a subfamily of Chrysomelidae, which is based 

both on larval morphology and molecular data (Gómez-Zurita et al. 2008; Bouchard et al. 2011). 

Recent studies indicate their relation with the chrysomelid subfamily Sagrinae. 

Phylogenetic relationships among subfamilies of Chrysomelidae are revealed by several molecular 

studies (Gómez-Zurita et al. 2008; Gómez-Rodríguez et al. 2015). The tree of Gómez-Zurita et al. 

(2008) is presented on the Fig. 2. Chrysomelidae form three main clades – the Sagrine clade 

(containing Donaciinae, Criocerinae, Bruchinae and Sagrinae), the Chrysomeline clade (containing 

Chrysomelinae and Galerucinae, where Chrysomelinae split up into two clades) and Eumolpine clade 

(containing the rest of leaf beetle subfamilies – Spilopyrinae, Eumolpinae, Cassidinae, 

Lamprosomatinae and Cryptocephaline groups Clythrinae, Cryptocephalinae and Chlamysinae). 

Eumolpines are, surprisingly, paraphyletic. Actual phylogeny by Gómez-Rodríguez et al. (2015), is 

not using a sampling wide enough to reject the results of Gómez-Zurita (2008) and a review by 

Haddad and McKenna (2016) shows that relationships and monophyly of several chrysomelid lineages 
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(especially the cryptocephaline 

lineages, eumolpines and 

chrysomelines) still unclear. 

Nevertheless, the Galerucine-Alticine 

clade (Galerucinae s. lat.) is 

monophyletic in all cases. 

A problematic point is the division 

of these two groups. Flea beetles 

were traditionally considered as 

a separate subfamily Alticinae (Seeno 

& Wilcox 1982; Konstantinov & 

Vandenberg 1996). However, a close 

link between Alticinae and 

Galerucinae permanently proposed 

a possibility that Alticinae are an 

internal lineage of Galerucinae – this 

opinion was also presented in some 

old systematic works (Chapuis 1875; 

Horn 1889). Several phylogenies 

were published on this problem with 

confusingly variable results. 

a phylogeny by Lingafelter and 

Konstantinov (1999) based on 50 

adult morphological characters  

revealed a hypothesis of paraphyletic 

Galerucinae and Alticinae as 

a lineage within Galerucinae. The authors propose a nomenclatorical rearrangement and design the 

tribe Alticini within Galerucinae. Interestingly, the alticine clade was in the phylogeny by Lingafelter 

and Konstantinov (1999) nested within the galerucine tribe Luperini, which has root-feeding larvae, 

a typical character for majority of alticines. A problem of this phylogeny is low taxon sampling, which 

is also discussed by the authors.  On the contrary, other studies (Reid 1995; Crowson & Crowson 

1996) propose a completely different hypothesis: Alticinae are paraphyletic and Galerucinae are 

a lineage within Alticinae. This hypothesis would indicate that the common ancestor of galerucines 

completely lost its metafemoral spring – a structure connected with jumping present in all alticines 

(see Chapter 3.2). However, Reid (1995) proposes the loss of the metafemoral spring is possibly an 

easy evolutionary event. The third possible hypothesis, proposed by a study made during this ―wild 

Fig. 2 – a tree of the Chrysomelidae family based on 

multilocus ribosomal RNA phylogeny by Gómez-Zurita et al. 

(2008). 
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time‖ of many contradictive hypotheses, is the monophyly of both Alticinae and Galerucinae, based on 

the analysis of an 18S single gene phylogeny of Phytophaga (Farrell 1998). However, a low taxon 

sampling of both galerucines and alticines is again a problem in this analysis and the support for this 

hypothesis is therefore low. All hypotheses from the ―wild time‖ are discussed by Kim et al. (2003), 

who compares all of them and improves the morphological dataset from Lingafelter and Konstantinov 

(1999) by three partial gene sequence data. The result of the analysis is a confirmation of the 

―monophyletic Galerucinae hypothesis‖ – Alticinae are paraphyletic and galerucines form 

a monophyletic clade within, which lost the metafemoral spring. Another three-gene molecular 

phylogeny by Bünnige et al. (2008) reveals a similar phylogenetic tree – Alticinae are paraphyletic 

again, with galerucines nested inside.  

A new view into the problem was presented by a multigene sequence phylogenetic analysis by Ge et 

al. (2011). This analysis is not ground-breaking only because of the usage of a relatively good 

molecular dataset – it is also the first study, where a relatively wide sampling of taxa among 

galerucines (more than 100 genera) and alticines is involved. Four genes (two mitochondrial and two 

nuclear) were used on a large sample of Alticinae and Galerucinae, and the presence and morphology 

of the metafemoral spring was mapped on the topology. The subfamily Galerucinae s. lat. appears to 

consist of two main diverse groups, where one of them contains nearly all flea beetles included in the 

study and no non-jumping galerucines. The second clade of Galerucinae s. lat. contains all non-

jumping galerucines in the study, but surprisingly also five lineages of jumping galerucines, 

previously classified as Alticinae. The same situation happened in the subsequent phylogenetic 

analysis of Galerucinae s. lat. (Ge et al. 2012), which used different methods of alignment and more 

precise phylogenetic analysis on the same dataset. The newest relevant phylogenetic tree of 

Galerucinae s. lat. is presented in Fig. 3. 

Another contribution to the discussion is a recent phylogenetical study by Hua et al. (2014), which is 

strictly morphological and based on larval characters. The tree containing a really small sample of 

alticines and a better, but still extremely incomplete sample of galerucines, reveals a confusing 

situation – both lineages are polyphyletic. Galerucines are considered to be a lineage inside a radiation 

of alticines and a monophyletic Blepharida-group is nested within the galerucine clade. This topology 

is evidentely confused and irrelevant, which is also confessed by the authors as an artifact of a low 

taxon sampling. Some partial phenomena, including monophyly of Luperini, Oidini, Hylaspini and the 

Blepharida-group, are nonetheless interesting and can demonstrate that larval morphology could be 

a potential source of phylogenetically significant characters. However, the study is not very relevant in 

solving the ―alticine-galerucine problem‖. 

The phylogeny by Ge et al. (2012), which is probably the most relevant alticine-galerucine 

phylogeny, shows, that there are no relevant arguments to classify Alticinae as a tribe Alticini in the 
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family Galerucinae – especially if the nomenclature is designed in the way of dividing Galerucinae 

into two tribes (Alticini and Galerucini). This treatment, in my opinion, is not necessary, makes no 

change in systematics and causes confusion. The most relevant nomenclatorical treatment of the group 

could be designating two subfamilies: (1) Galerucinae, divided into traditional tribes (Luperini, 

Galerucini etc.) and containing all known jumping lineages, where the jumping ability was considered 

to be convergent to the jumping ability of true alticines, and (2) Alticinae as a monophyletic sister 

group of Galerucinae with the jumping ability as a key synapomorphy. However, in accordance with 

recent usage in the literature (Bieńkowski and Orlova-Bienkowskaja 2016; Biondi, Urbani, and 

D‘Alessandro 2013; Biondi 2014; Hua et al. 2013; Lee et al. 2011; Ruan et al. 2015), I respect flea 

beetles as a tribe Alticini inside the subfamily Galerucinae, with reservations discussed below. 

2.3. Suprageneric classification of flea beetles 

Despite the big diversity of flea beetles, there is no often-used tribal (or subtribal) systematics of the 

group. New genera are usually described with discussions of which genera are possibly closely related, 

but formally, they are described as incertae sedis and not placed to any tribe or genus group. 

Nevertheless, there were some trials to designate the suprageneric flea beetle system, which are 

a crucial source for further systematics. 

The first suprageneric system of flea beetles was created by Chapuis (1875), who designated 19 

subtribes. Horn (1889) modified the system, focusing on American genera. However, modern 

catalogues (Döberl 2010; Mohamedsaid 2016; Biondi & D‘Alessandro 2012) do not use any system 

for cataloguing alticine genera. Scherer (1983) does not name the majority of genus-groups, except of 

two tribes, Oedionychini and Monoplatini. These two tribes (or subtribes) are usually the only named 

suprageneric taxa even in recent literature (Konstantinov & Konstantinova 2011; Casari & Teixeira 

2011).  

Seeno & Wilcox (1982) vote a ‗buck-passing‘ statement – they do not name groups of genera in their 

catalogue, but they present some possibilities of the tribal classification and classify genera into some 

groups, where nominate genus for each group is marked. However, they state that systematics of 

alticines needs to be clarified. Bouchard et al. (2011) lists some subtribal names in Alticini, but 

a majority of them is not used. Takizawa (2005) tries to divide flea beetles into suprageneric taxa 

using larval morphology characters. Although he newly describes some Neotropical alticine larvae, the 

systematics is still very incomplete and biased on eastern Palearctic and Oriental fauna. He states that 

his larval system is incomplete and compares it with the systematic attempts by Seeno & Wilcox 

(1982), which he states as adult morphology groups. According to Takizawa‘s study, larval 

morphology is usable for suprageneric systematics in some cases and we can see some apomorphies 

there (e. g. in Takizawa‘s ‗Hemipyxis group‘, which corresponds with usually recognized subtribe 

Oedionychina). In other cases, larval morphology shows to be highly homoplastic (e. g. in cases of 
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leaf miners, which have very similar larval morphology according to their special life style). Another 

case of confusion is represented for example in the Takizawa (2005) Liprus group, which contains 

genera, listed in totally different groups by Seeno & Wilcox (1982) and Chapuis (1875). Takizawa 

(2005) states his study as an evidence of a possibly good contribution of larval morphology to the 

problem of suprageneric alticine systematics. According to the previously mentioned paper by Hua et 

al. (2014), I can agree that larval morphology can be very useful in searching some apomorphies for 

specific subgroups, but definitely, it cannot be used as a key source for uncovering alticine phylogeny. 

Another contribution to supregeneric systematics of flea beetles was done by studying the morphology 

of the metafemoral extensor tendon (‗metafemoral spring‘), which are discussed in the Chapter 3.2. 

Here I only mention that the morphology of the metafemoral apodeme appears to be highly 

homoplastic in general, but it can be helpful for morphological treatment of some genus-groups, 

because in some cases, closely related genera bear a similar type of the metafemoral extensor tendon 

(Ge et al. 2011; Ge et al. 2012; Furth & Suzuki 1998). 

The newest contribution in alticine suprageneric systematics is the previously mentioned paper by Ge 

et al. (2012), which is a crucial modern work in flea beetle evolution and systematics. 18 species 

groups, based on well-supported nodes on a phylogenetic tree were designated in this paper. Many of 

these groups correspond relatively with morphologically defined subtribes by Chapuis (1875), e. g. 

Blepharida group (Blepharidites in Chapuis 1875), Amphimela group (Amphimelites in Chapuis 

1875), Oedionychis group (Oedionychites in Chapuis 1875) or Monoplatus group (Monoplatites in 

Chapuis 1875). Other traditional morphological groups by Chapuis (1875) split into more unrelated 

genus groups, e. g. the Aphthonites by Chapuis (which is newly considered as a group containing only 

Aphthona and some very related genera, but not Longitarsus or Phyllotreta, which are not related to 

Aphthonites) or Mniophilites by Chapuis, which represent a wastebasket taxon of many unrelated 

genera of oval and convex body shape. Three named genus-groups (Luperomorpha group, Nonarthra 

group and Hespera group) were transferred into Galerucinae (or Galerucini s. str.), another two 

recognized saltative lineages were considered as members of Sermylini (Galerucinae s. str.). 

A problematic point of the study is the designation of the ‗Chaetocnema group‘, which is paraphyletic 

and includes the Altica group. All other designated genus-groups are monophyletic. Many important 

genera were not included into any genus-group and stay incertae sedis, waiting for further more 

comprehensive and complex phylogenetic study. An interesting point of the study is for example 

a possibly isolated position of the genus Systena. However, the support for the Systena – branch is not 

very big. The biggest problem of the study is in the geographically biased sampling – the majority of 

sampled genera are Palearctic and, especially, Oriental genera. Only a few sampled genera (moreover 

members of well-known groups, as Oedionychina or Monoplatina) are Neotropic and no endemically 

Afrotropic genus is involved. Also, some problematic genera (as Crimissa or Polyclada) are not 

included. Nevertheless, the paper is perfectly usable as a basal work and a keystone of modern flea 
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beetle systematics, because new genes and new taxa can be easily added into the existing phylogeny. 

A well-working phylogenetically supported and morphologically treated suprageneric systematics of 

Alticini remains awaiting for further studies. 

The table below,  comparising various systematics of Alticini, is adopted from (Ge et al. 2012) and 

complementary data from Furth et al. 1980; 1985; 1988; 1989 and Furth & Suzuki 1998) added 

additionally. 

Chapuis (1875) Horn (1889) Takizawa (2005) 
Furth (1980, 1985, 

1988, 1989, 1998) 
Ge et al. (2012) 

Blepharidites:  
Notozona, Blepharida,  

Ophrida, Podontia 

Blepharidea:  
Blepharida 

Podontia group:  
Blepharida, Ophrida,  

Podontia 

Blepharida group: 
Amphimeloides, Asialtica, 

Chabria, Clitea, Erystus, 
"Lactica", Lipromela, 

Lypnea, Mellipora, 

Myrcinoides, Ophrida, 
Pentamesa, Podagricomela, 

Podontia, Sinocrepis, 

Tonfania, Xuthea, Zipangia, 
Acrotium, Arrhenocoela, 

Hermaeophaga, Mantura, 

Podagrica, Cacoscelis, 
Crimissa 

Blepharida group:  
Blepharida, Ophrida,  

Podontia 

Elithiites:  
Elithia, Crimissa 

        

Diamphidiites: 
Diamphidia 

        

  Euplectrosceles: 
Euplectroscelis 

      

Arsipodites:  
Arsipoda, Nisotra, 

Podagrica,  
Balanomorpha 

Arsipodes:  
Mantura 

    Nisotra group:  
Euphitrea, Sinocrepis, 

Podagrica, Nisotra 
Sphaeroderma,  

Amphimelites:  
Amphimela 

  Clitea group:  
Clitea, Crepidodera,  
Hippuriphila, Lythraria 

  Amphimela group:  
Amphimela,  
Podagricomela, Clitea 

        Manobia group:  
Manobia, Aphthonoides,  
Asiorestia, Lythraria 

Halticites:  
Haltica, Pelonia,  
Phrynocepha, Caeporis 

Plectrotetra, Cacoscelis, Di

sonycha, Caloscelis,  

 

Halticae:  
Haltica 

Altica group:  
Lysathia, Aphthona, 
Macrohaltica,  Altica,  

Neocrepidodera,  

Othocrepis  

Altica group: Neodera, 

Altica, Neocrepidodera, 
Trichaltica, Crepidodera, 

Derocrepis, Disonycha, 

Epitrix, Hemiglyptus, 
Hippuriphila, Hornaltica, 

Luperaltica, Lysathia, 

Lythraria, Syphrea 
Macrohaltica, Minota, 

Cardax, Mniophila, 

Monomacra, Ochrosis, 
Phrynocepha, Strabala,  

Altica group:  
Altica, Macrohaltica,  
Syphraea 

Aphthonites:  
Longitarsus, Phyllotreta 

Glyptina, Botaphila,  

Aphthona 

Aphthona:  
Aphthona, Phyllotreta 

Longitarsus, Glyptina 

    Aphthona group:  
Aphthona, Aphthonomorph,  

Glyptina 
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      Phyllotreta group: 
Phyllotreta, Apraea, 

Aphthonaltica, Manobia, 
Pedethma, Xenidea, Suthrea, 

Yunohespera, Dysphenges, 

Glenidion, Lupraea, 
Pachyonychus, Phydanis, 

Pseudolampsis, Systena, 

Exoceras, Pedilia, 
Hemilactica, Homoschema 

Phydanis, 

  

Lacticites:  
Lactica, Diphaulaca,  

Hermaeophaga, Xuthea 
Psilapha, Myrcina,  

Lactica:  
Lactica, Diphaulaca,  

Trichaltica 

    Lactica group:  
Hermaeophaga, Lactica,  

Orthocrepis 

  Disonychae:  
Disonycha,  
Hemiphrynus 

    Disonycha group:  
Diphaltica, Agasicles,  
Disonycha 

    Longitarsus group:  
Longitarsus 

Longitarsus group: 
Longitarsus 

Longitarsus group:  
Lanka, Longitarsus,  
Tegyrius 

    Lanka group: Lanka     

Crepidoderites:  
Pseudodera, Systena, 

Clamophora, Tenosis, 

Crepidodera, Prasona,  
Iphitrea 

Chaetocnemae:  
Chaetocnema 

Chaetocnema group:  
Chaetocnema 

Chaetocnema group:  
Anthobiodes, Aphthona, 

Argopus, Asphaera, 

Capraita, Euplectroscelis, 
Glyptina, Heyrovskya, 

Kuschelina, Oedionychus, 

Pachyonychis, Alagoasa 
Sphaeroderma, 

Chaetocnema, Bhamoina, 

Halticorus, Eucyclomela, 
Hyphasis, Lipromima,  

Chaetocnema group:  
Psylliodes, Chaetocnema,  

Crepidodera 

Plectroscelites: 
Chaetocnema (as 
Plectroscelis) 

        

  Systenae: Systena       

  Crepidoderae:  
Hemiglyptus Epitrix, 

Crepidodera,  

Orthaltica,  Leptotrix 

      

Psylliodites:  
Psylliodes 

Psylliodes:  
Psylliodes 

Liprus group:  
Liprus, Phygasia,  

Phyllotreta, Pseudodera, 
Psylliodes, Sangariola 

Psylliodes group: 
Psylliodes, Schenklingia, 

Goweria, Arsipoda, 
Aphthonoides, 

Megistops,Apteropeda, 

Argopistes, Batophila, 
Dibolia, Distiogmoptera, 

Aedmon, Heikertingerella 

Pseudodera group:  
Pseudodera, Laboissierea 

        Phygasia group:  
Phygasia, Trachyaphthona 

      Sangariola group: 
Liprus, Sangariola, 
Laboissierea, Pseudodera 

  

Diboliites:  
Dibolia, Megistops 

Dibolia:  
Dibolia 

Sphaeroderma 

group: Argopistes,  

Argopus, Dibolia, Megistops

Schenklingia, Sphaeroderma 

  Dibolia group:  
Argopistes, Dibolia,  
Jacobyana 

Mniophilites:  
Mniophila, Argopusa,  
Hypnophita, Argopistes 

Sphaeroderma, 

Apteropeda,  

Mniophilae:  
Argopistes,  
Sphaeroderma 

      

        Pentamesa group:  
Pentamesa, Bhamoina  

Argopus 
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        Chabria group:  
Chabria, Parathrylea,  

Sutrea, Chabrisoma 

Oedionychites:  
Omophoita, Eutornus, 

Physodactyla,  

Oedionychis,  Physoma 
Physonychis, Lithonoma 

Oedionychis:  
Hamletia,  

Oedionychis 

Hemipyxis group:  
Alagoasa, Kuschelina,  

Walterianella, Philopona 

Disonycha, Hemipyxis,  
Omophoita  

  Oedionychis group:  
Hemipyxis, Hyphasis,  

Philopona, Physoma,  

Oedionychis,Alagoasa, 
Omophoita, Asphaera,  

Wanderbiltiana, Aspicela 

Aspicelites:  
Aspicela, Sebaethea,  

Asphaera, Sphaerometopa 

Rhopalotoma, Febra 

Aspicelea:  
Homophaeta,  

Phydanis 

  Sphaerometopa 

group: Sphaerometopa 

Sphaerometopa group:  
Sphaerometopa  

(Galerucinae) 

Monoplatites:  
Monoplatus, plus 38 genera 

Monoplati:  
Phaedromus, Pachyonyc

hus, Hypolampsis 

    Monoplatus group:  
Monoplatus 

  Pseudolampses: 
Pseudolampsis 

      

    Pseudoliprus group:  
Pseudoliprus, (Mantura) 

Pseudoliprus group: 
Pseudoliprus, 

Lipromorpha 

  

      Chalaenosoma 

group: Chalaenosoma, 

Luperomorpha 

Luperomorpha group: 
Luperomorpha 

Nonarthrites:  
Nonarthra 

  Nonarthra 
group: Nonarthra 

Nonarthra group: 
Nonarthra, Typhodes 
Glaucosphaera, 

Trachyaphthona,  

Nonarthra 

group: Nonarthra  

(Galerucinae) 

Acrocryptites:  
Acrocrypta 

    Acrocrypta group: 
Acrocrypta 

Acrocrypta group:  
Acrocrypta (Galerucinae) 

Oxygonites: Oxygona, 

Chaloenus, Sophraena 
        

      Buphonella group: 
Chaloenus, Eudolia,  
Hespera 

Hespera group: Hespera, 

Laotzeus, Taiwanhespera, 
Stenoluperus (Galerucinae) 

      Mandarella group: 
Mandarella, Stenoluperus 

  

      Licyllus group: Licyllus, 

Thrasychroma 
  

      Garuda group: Garuda   

 

As mentioned above, the majority of authors do not place newly described genera into tribal or 

subtribal classification. However, there are some exceptions, also named above. It is especially the 

case of the subtribe Monoplatina, which is distributed mainly in the Neotropics. Many  new genera, 

chiefly moss-inhabiting, were assigned to this subtribe during last years (Morais et al. 2016; 

Konstantinov & Konstantinova 2011; Linzmeier & Konstantinov 2012; Furth 2007). Savini & 

Escalona (2005) describes a new species of Longitarsus and writes about this genus as a member of 

a tribe Longitarsini. 
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Fig. 3 – An up-to-date phylogenetic tree of 

Galerucinae. Black branches: metafemoral apodeme 

absent, red branches: metafemoral apodeme present. 

After Ge et al. (2012). 
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3. Morphological and Ecological Characters 

3.1. Morphological evolution 

The evolution of important morphological characters which are often used as diagnostic at tribe-genus 

levels was analyzed in the work by Ge et al. (2012). A frequent character used for diagnosing flea 

beetle genera, the presence/absence of the anti-basal transverse impression on the pronotum, appears 

to be a homoplasy, occurring in many lineages, but not occurring ancestrally. A more interesting case 

figures the morphology of the procoxal cavities (open or closed), where early-branching clades have a 

closed procoxal cavity (with few exceptions of lineages in which open procoxal cavities evolved 

convergentely), but the crown group of Alticini (the sister clade of the Systena lineage on the tree) is 

characterized by open procoxal cavities. Various lineages within this clade then got their procoxal 

cavities closed again. Further studies should reveal if the morphology of the procoxal cavity has some 

functional (ecological or kinematic) implications for the beetles. Open procoxal cavity should allow 

a wider range of movement and deflection of the coxa (and the whole leg). A theory about 

Cerambycidae supposes it could be an advantage in copulation, because better ability of movement 

and deflection of the leg can help in attachment of the male on female‘s body (Perger 2013). However, 

the closed procoxal cavity should also be advantageous for some reason, as many crown lineages of 

flea beetles convergentely regained closed procoxal cavity. In my opinion, the closed procoxal cavity 

(and therefore stronger sclerotization of the body) can be helpful to avoid predator or parasitoid attacks 

or to survive dry conditions. The analyses by Ge et al. (2012) consider most of the mapped characters 

as highly homoplastic in general (and hence useless for highler-level systematics), but small subgroups 

of genera are often well-characterized by some of these apomorphic characters or their combinations. 

For example, this is the case of the Blepharida-group, characterized by the presence of bifid claws. 

Some groups (Phygasia-group and Disonycha-group), on the contrary, can be diagnosed only by 

a combination of plesiomorphies. 

An interesting point of morphological evolution of flea beetles is a huge diversity of the shape of hind 

legs (tibiae and tarsi) present among flea beetle genera. In some cases (e. g. in the genus Longitarsus), 

the tarsus is extremely elongated, in cases of the subtribes Oedionychini and Monoplatini, last tarsal 

segment forms a maul-like ending, in cases of genera Psylliodes or Chanealtica, the tarsus is attached 

nearly in the middle of the tibia and an elongated part of tibia is present behind the tarsus. Also in the 

case of the genus Aphthonoides, there is an extremely long and wide post-tarsal tibial spine. Schmitt 

(2004) shows that jumping skills of Longitarsus are extremely high and this is correlated not only with 

the shape of the metafemoral extensor tendon (see Chapter 3.2), but also with the absolute length of 

the hind leg (together with the tarsus), so the elongation of tarsi is an effective specialization for long 

jumping. Also, the position of the attachment of the tarsi in Psylliodes, which is in the middle of 

metatibia, could be an advantage for jumping efficiency. Photographic studies of the flea beetle jump 
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revealed that the beetle pushes itself from the ground by the apex of the metafemur (Brackenbury & 

Wang 1995; Nadein & Betz 2016). Therefore, specific structures on the metafemoral apex, as long 

spines, or the absence of the delicate and vulnerable tibio-tarsal joint can improve the mechanics for 

the pushing (Konstantinov 2016). The mechanics of the jump in Oedionychina and Monoplatina were 

not photographed, so we do not know if the pushing mechanism is same as in other flea beetles. 

Metatibia in Oedionychina are shorter than metafemora (Nadein & Betz 2016), which allows me to 

speculate that the swollen metatarsi cannot be the main element for pushing the beetle, unlike in other 

alticines. Also, it can be a tool for changing the focal point of the leg, which can possibly be useful for 

the jumping efficiency. However, these speculations fundamentally need experimental verification. 

3.2. Jumping ability 

The ability to jump presents the major diagnostic character, on which pre-phylogenetic taxonomical 

diagnosis of flea beetles was based. The first contribution to the knowledge of the function of jumping 

abilities of flea beetles was made by Maulik (1929), who described a specific chitinized organ in the 

inner space of the extended metafemur, and a number of strong muscules connected with this 

structure, the metafemoral wall and the tibia. Maulik (1929) suggests that this organ should be 

responsible for jumping, because it is found in all alticine species he examined. He proposes the 

presence of this structure as a diagnostic character for distinguishing Alticinae and Galerucinae, 

because it is found also in non-jumping species of Alticinae (e. g. Podontia sp.), which shows that 

ancestors of these species had the ability to jump which was later lost. Lever (1930) uncovered another 

independent chitinized structure in the anatomy of the metafemur – a small subtibial triangular plate. 

Barth (1954) describes on a model species Homophoeta sexnotata, how the jumping mechanism could 

work: the inner chitinized organ functions as a medium for accumulation of the energy by its extension 

by the muscules. The relaxation of the muscules provides contraction of the chitinized organ and 

adduction of the tibia. This theory was corroborated by further studies by (Furth et al. 1983; Furth 

1988) which aimed on finding an exact mechanic background of the function of the metafemoral 

spring, how the chitinized organ was named by Furth (1988). The major effort was invested in finding 

the evidence for the presence of resilin in the metafemoral spring. Resilin is a special, extremely 

elastic protein. It is widespread among insects in their jumping organs, e. g. in Siphonaptera , 

Hemiptera and also numerous Coleoptera (Burrows et al. 2008; Michels et al. 2016; Lyons et al. 

2011). Resilin was also discovered in beetle wing veins (Haas et al. 2000), where it improves the 

elasticity, in compound eyes, where it is probably present due to its very good optical properties, and 

in a plenty of other functions in all arthropods (Michels et al. 2016). However, resilin was not found in 

the ultrastructure of the metafemoral spring, which consists from alpha-chitin and protein fibers. 

However, Furth et al. (1983) assumes that even without resilin the chitinous and protein structure itself 

provides good elastic properties for accumulation of the jumping energy. Neverthless, a recent study 

(Nadein & Betz 2016) shows that the interpretation of the metafemoral spring as an energy storage 
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mechanism was completely false. The authors used various methods to explain flea beetle jump, 

including hi-tech methods such as synchrotron imaging. They tried to search resilin fibres not only in 

the metafemoral spring, but also in the other parts of the metafemur, which was successful – because 

of blue autofluorescence of resilin, fluorescence microscopy uncovered massive presence of resilin in 

the extensor ligament, a short connection between the metafemoral spring and the tibia, in some other 

ligaments and in joint membranes of the femoro-tibial joint.   

 

Fig. 4 – Morphology of the metafemoral extensor tendon of Sphaeroderma testaceum by Nadein & 

Betz (2016). A – a picture with a cut through the metafemoral cuticle; B – a picture with the 

metafemoral cuticle removed. MET – metafemoral extensor tendon, TFS – tibial flexor sclerite 

(Lever’s triangular plate). 

 

In the contrary, the metafemoral spring does not show any special elastic properties. This leads to the 

confidence that the metafemoral spring can store minimum of the energy needed for the jump 

(maximally 10 %) and the major energy-storage mechanism is represented by the resilinized ligaments 

and membranes. The presence of the metafemoral spring is, nevertheless, fully correlated with the 

jumping ability, so its role in the jumping should be crucial. The authors of the study suggest that the 

function could be in providing a massive space for connecting flexor musculature – the metafemoral 

spring can be a ―handle‖ for flexor muscles. The role of the Lever‘s triangular plate (Fig. 3) might be 

protective, it strengthens the base of the flexor tendon and provides also a larger angle for flexing the 

tibia by ―diving‖ into the tibial cavity during the flexing of tibia (and stretching the extensor ligament). 

It can also help in prevention of a premature extension of the tibia. The authors re-name the 

metafemoral spring to the metafemoral extensor tendon, because, according to their results, it actually 

does not function as a spring. The anatomic visualization of the jump is presented on Fig. 5.  

Although the metafemoral extensor tendon is not direct energy storage, its morphology is significant 

for phylogenetic studies. It is present among more families and subfamilies of beetles, e. g. weewils 
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(Rhynchaeninae, Erirhininae, Ceutorhynchinae), Melandryidae, Scirtidae, Anthribidae, Buprestidae 

etc. and also in one other subfamily of leaf beetles, Bruchinae (Furth & Suzuki 1992). 

 

Fig. 5. – A jump of a flea beetle: how does it work. a – initial phase, B – prior flexion of the tibia, C – 

flexion of major femoral flexor muscles and tension of the resilinized extensor ligament, D – 

relaxation of  the tibial flexor, flexion of the extensor ligament, flexion of big flexor muscles for 

maximizing the extension of the tibia: the take-off. Anatomical legend to A: em – extensor muscles, fm 

– flexor muscles, MET – metafemoral extensor tendon, TFS – Lever’s trinangular plate, m – 

membrane, e.li – extensor ligament. Figure from Nadein & Betz (2016). 

 

Furth (1988) tries to define 6 morpho-groups based on the morphology of the metafemoral extensor 

tendon (MET). He assumes that intrageneric variability of the MET is low, but describes a relatively 

high intergeneric variability. He also assumes flea beetles as a monophyletic group based on the 

presence of the metafemoral extensor tendon and other aspects of their unique evolution, which are, 

however, not defined in the paper. In further studies (Furth & Suzuki 1998), additional genus-groups 

based on the morphology of the MET were proposed (their comparison with other suprageneric 

systematics, including molecular systematics, is presented in the table in Chapter 2.3).  

Evolutionary interpretations of the presence/absence and the morphology of the metafemoral extensor 

tendon were radically changed by Ge et al. (2011) who put them into a phylogenetic context and 

mapped the shapes of the metafemoral extensor tendon on a multigene phylogenetic tree of 

galerucines and alticines. As mentioned above, the result shows few independent origins of the 

metafemoral extensor tendon in the alticine-galerucine clade. In addition, there seems to be 

a correlation between the complexity of the MET and the shape of the metafemur – more swollen and 

modified metafemur contains usually a highly developed metafemoral extensor tendon. In some 

lineages of the monophyletic alticine clade, the MET is secondarily reduced to a simpler shape, which 
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demonstrates the possibility of the regression of this character. Some lineages of non-alticine jumping 

galerucines (Acrocrypta group and Hespera group) bear a very simple MET without a ventral lobe, 

other non-alticine jumping galerucines have a simple MET with ventral lobe not exceeding half of 

MET which is also secondarily present in some true alticine lineages. The ancestral state of the true 

alticine clade is a well-developed MET with ventral lobe exceeding half of the MET which also 

evolved in parallel in the Nonarthra clade (i.e. the non-alticine jumping galerucine clade). Ge et al. 

(2011) agree with Furth (1983) that the structural specific in morphology of the MET are shared 

among closely related genera, but refuses his opinion, that this morphology can be used for higher 

suprageneric systematics. The high amount of parallelism and homoplasy in MET morphology, i.e. the 

character originally considered as crucial for highler-lever systematics is discussed by Ge et al. (2011) 

as one of main reasons of why the former systematics of flea beetles was so obsolete and full of 

systematic confusions and mistakes. The jumping ability as a character, however, is extremely 

important and can be considered as one of the major phenomena responsible for the mega-radiation of 

alticines. Ge et al. (2011) also discuss the advantages of the jumping ability. In their opinion, the 

jumping could be an evolutionary reaction on appearance of root-feeding larvae in most saltative 

galerucine lineages. Chrysomelinae, the sister group of Galerucinae s. lat., have usually leaf-feeding 

larvae. In this situation, larvae and adults can use mutual chemical defence strategies. Alticine larvae 

do not occupy the same ecological niche with the adults and jumping is a very efficient new strategy, 

when no larval defence-helpers are found in the area where the adult is present. The small body size of 

alticines can be also a result of the jumping ability – it might make the jumping escape strategy more 

efficient physically. 

3.3. Karyotype evolution 

Karyotypes and cytotaxonomy of flea beetles has been vastly studied during the last two decades of 

the 20th century, but a problem of these studies is a relative naivity of the author‘s view on evolution 

and phylogeny of flea beetles. No phylogenetic information or mapping of characters on phylogenetic 

trees is used. Meioformulas seem to be very variable in Alticinae and even species in one genus have 

sometimes distinct differences in chromosome numbers, e. g. in case of Longitarsus, where the 

chromosome number varies from 2n = 26 to 2n = 32 (Segarra & Petitpierre 1988). The sex 

determination in flea beetles is usually the Drosophila-type XY, with several modifications, as 

increasing the number of sex chromosomes X, Y or both, or switch to XO type (Petitpierre et al. 1993; 

Segarra & Petitpierre 1982; Petitpierre 2006). 

A mass of work was done in the cytotaxonomy and karyotype evolution in Oedionychina, particularly 

in the Neotropics. Cytotaxonomical characters seem to support the monophyly of this group – 

the majority of Oedionychina has 2n=22 and the 10+X+y meioformula (Virkki & Santiago-Blay 

1993). Interestingly, some oedionychines – some Asphaera and some Aspicela – a big Y chromosome 
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is present in the karyotype, and multiple small X chromosomes. Big Y chromosomes are generally 

a typical character for oedionychines (Virkki & Santiago-Blay 1993; Petitpierre 2006). The paper is 

examining also other fissions and fusions of chromosomes in Neotropical Oedionychina. Further study 

(Petitpierre 2006) show that the 10+X+y meioformula is typical only for Neotropical Oedionychina – 

Palearctic species show meioformulas 2n=16, 8+X+Y. Petitpierre (2006) suggests that this 

phenomenon is possibly a result of two centric fusions in autosomes of a possible 2n=22 ancestor. 

However, in modern phylogeny (Ge et al. 2012), Palearctic Oedionychis appears to be a sister group of 

all Neotropic oedionychines.  

Species can be usually separated by examining karyotypes in Alticini, however, meioformulas appear 

to be conservative between close species, sometimes also intragenerically. Closely related species with 

the same meioformulas can be usually separated by comparing the size of the chromosomes and the 

position of the centromere. An interesting situation appears in the genus Hermaeophaga, where an 

intrageneric increase in the number of X chromosomes is known – H. ruficollis has 7+Xy, instead of 

H. cicatrix with 7+X1+X2+Y (Petitpierre 2006). Despite the usual chromosomal numbers of alticines, 

which are not extremely small, some genera show artificially small chromosomal numbers – 

Homoschema (2+neoXY) or Heikertingerella (4+neoXY), both collected in the West Indies islands. 

The genus Heikertingerella is also special because of a big intrageneric variability in meioformulas 

(Virkki & Santiago-Blay 1996) – continental species have bigger chromosome numbers. The authors 

suggest a possibility of an impact of the island evolution (small, isolated population) on the 

chromosomal number, and compare the case of these two island species with the case of Strepsiptera, 

where chromosomal numbers are also very low (Ferreira et al. 1984). They suggest the parasitism of 

Strepsiptera as a similar evolutionary case to island isolation. As mentioned above, some large genera 

of flea beetles are polymorphic in meioformulas. Sometimes close species groups, which appear to be 

monophyletic, share the meioformula. This appears in some species groups of Longitarsus, e. g. in the 

case of the species group L. tabidus (Fabricius, 1775), where two examined members, L. tabidus and 

L. australis (Mulsant et Rey, 1874) share the same karyotype (Petitpierre 2006). However, another 

closely related species, as L. nigrofasciatus (Goeze, 1777), does not share the same karyotype. In some 

other closely related species, e.g. in L. pellucidus (Foudras, 1859), L. succineus (Foudras, 1860), L. 

codinai Madar et Madar, 1965 and L. ochroleucus (Marsham, 1802), is the karyotype stable and 

shared (Segarra & Petitpierre 1988). About 40 % of known species has 2n = 20, and because of their 

morphological and ecological heterogeneity, it is possible to assume this chromosome number as 

ancestral in Longitarsus. The karyotype diversity does not correlate with the specialization on various 

food plants (Segarra & Petitpierre 1988). A good correlation between karyotype diversity and 

morphological species-group taxonomy, but also host plant relationships, is present in the case of 

Psylliodes, another widespread megadiverse genus. Also here, a diversity of chromosome number is 

huge, but the majority of species share 2n=34 (Segarra & Petitpierre 1989). 
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Karyotypes, meioformulas and sex determination types could be probably be a good character 

correlated with monophyly of some species groups or genera. However, it probably is not a rich source 

for finding apomorphies on suprageneric level (Petitpierre 1997). 

3.4. Host plant relationships and its evolutionary aspects 

Flea beetles, are ancestrally specialized on eudicots and larvae of first alticines were probably root 

feeders (Ge et al. 2011). Host switches between host families, also to monocots, are very usual, even 

on intrageneric level, as in the case of the genus Chaetocnema, where many species are feeding on 

various graminoids, (Juncaceae, Cyperaceae, Poaceae), while other feed on Chenopodiaceae, 

Convolvulaceae or Polygonaceae (Konstantinov et al. 2011). Unfortunately, there is no phylogeny of 

the genus, so potential multiple switches between monocots and dicots and switches between various 

host plant families are unknown. This is the case of all flea beetle genera. There are some 

contributions to the knowledge of host switches in the evolution of other leaf beetles, e. g. reed beetles 

(Donaciinae), where a phylogeny was done and host plant characters were mapped (Kölsch & 

Pedersen 2008). In this non-alticine casual situation, we see various interesting switches between host 

families and their evolutionary implications. It rejects the usual opinion that a close specialization to 

some host is an ―evolutionary trap‖ which doesn‘t allow any further re-generalization or a complete 

life history change. The phylogeny shows a clade of very closely specialized beetles, where one 

lineage (the genus Macroplea) completely changes its host selection and life history and becomes fully 

aquatic. The reed beetle case shows us a plenty of possibilities for further research also in many flea 

beetle groups. In megadiverse genera of flea beetles with wide host specialization diversity (e. g. 

Chaetocnema, Longitarsus, Psylliodes or Mantura), we can expect many interesting evolutionary 

events, as seen in the reed beetle case. 

Becerra & Venable (1999) analyzed host plant relationships in the genus Blepharida in Mexico in 

a more evolutionary way – they tried to consider if phylogenetic relationship, chemical defence 

similarity or biogeographic co-distribution is the major factor explaining host shifts in Blepharida. 

They used a molecular phylogeny of Blepharida (which is, unfortunately, a little naive in today‘s 

perspective) and compared it with the phylogeny of Bursera, the host plant genus, and with chemical 

diversity and distributional patterns of the host species. The analysis showed chemical similarity as the 

major phenomenon which allows a monophagous species of Blepharida to change the host, instead of 

situations, when more species of Bursera occur directly on the same locality, but Blepharida feeds and 

develop only on species with the same chemical defence strategy. One exception, B. alternata, 

however, appeared to be polyphagous and feed on many species of Bursera with different chemical 

defence strategies, which occur in its distributional range. 
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Some alticines also switched their host range from angiosperms to ferns (e. g. Schenklingia) or 

equisetophytes (Hippuriphila) (Kimoto 2000; Konstantinov & Vandenberg 1996). a surprisingly big 

generic diversity was also found in association with moss (this strategy is discussed in the Chapter 

3.5). Bark or wood feeding is not known among Alticini. 

The way of larval interactions with host plants is also diverse among flea beetles. Usually, larvae of 

flea beetles are root feeders, some groups, (e. g. Altica group or Blepharida group) have externally leaf 

feeding larvae (Konstantinov & Vandenberg 1996; Hua et al. 2014), and some other flea beetles (e. g. 

Dibolia, Podagricomela, Sphaeroderma, some Phyllotreta) have leaf-mining larvae (Santiago-Blay 

2004; Hua et al. 2015). Adults feed usually on leaves, some species on flowers. An example are adults 

of Luperomorpha xanthodera, an Oriental species which was introduced to Europe with flowering 

garden plants and become invasive (Del Bene & Conti 2009). However, anthophagy is more common 

among flea beetles and is known e. g. in the genus Neocrepidodera or Altica (Bieńkowski 2010). 

Nonarthra and Arsipoda were documented to be pollen feeders (Samuelson 1989). 

The majority of flea beetles are oligophagous specialists. However, some species are monophagous 

and other are widely polyphagous. An interesting contribution of to biology of polyphagous alticines 

is a study on Phyllotreta nemorum and its colonization a new food plant (Barbarea vulgaris) in 

Denmark (de Jong & Nielsen 1999). The probability of the success in feeding on the new food plant 

between individuals of P. nemorum is dependant on the genotype.  

While feeding on host plants, some flea beetles had to involve ways how to overcome different ways 

of plant chemical defence. Those defence strategies, however, stimulate evolution in some flea beetle 

genera, because of lower competition on toxic plants. This is the case of the genus Phyllotreta, where 

species are specialized usually on Brassicaceae and related families Capparaceae and Resedaceae. 

Crucifers contain mustard oil glucosides, which makes them unexploitable for the majority of beetles. 

However, Phyllotreta involved biochemical strategies to overcome this problem and even uses 

glucosides as a chemical marker for finding their host plants (Furth 1979).  

An outstanding phenomenon, related to host plant toxicity, is chemical defence and toxicity of flea 

beetles themselves. Free-living larvae of the Blepharida group are able to use plant toxins from their 

host in their chemical defence, while they cover their body into a fecal coat and present the plant toxin 

in their feces (Prathapan & Chaboo 2011). The predation avoidance has two sides – the fecal coat is 

toxic and it also can work as a mimetic element. The strategy was firstly documented in the case of 

Blepharida rhois, where chemicals from the host plant Rhus glabra are used as a repellents and 

defensives in the fecal shield for avoiding ant attacs. When fed with a non-poisonous plant (e. g. 

lettuce), the fecal coat is not effective in defence against ants (Vencl & Morton 1998). In the 

Blepharida group, some species are also able to synthetize their own toxins. An interesting case of flea 

beetle toxicity is documented in Africa, where some poisonous species of the genera Diamphidia, 
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Polyclada and Blepharida are used by indigenous Khoisan people for preparing arrow poisons. In the 

best-studied case of the genus Diamphidia, all developmental stages (larva, pupa, adult) are poisonous 

and pupae are used for extracting arrow poison (Woollard et al. 1984; Chaboo et al. 2016). The 

poison, diamphotoxin, is a protein (Mebs et al. 1982). Another, obscure case of toxicity was 

documented in larvae and adults of Altica aenea in Brisbane, Australia. When individuals feeding on 

a emerged host plant Ludwigia swam in water around, they killed mosquito larvae probably by 

releasing their defense secrets. The description seems that larvae were swimming in the water 

randomly, although they are not aquatic (Hamlyn-Harris 1930; Reid & Beatson 2015). 

3.5. Specific life strategies: terrestrial and moss inhabitance 

One of the very obscure habitats flea beetles inhabit is leaf litter, plant detritus and, especially, moss 

cushions. There are about 15 various genera of moss inhabiting flea beetles known up to date 

(Konstantinov et al. 2013), and numerous other terrestrial or semi-terrestrial species. In Czech fauna, 

the terrestrial life style is present for example in the genus Orestia Chevrolat, 1836. The genus occurs 

in subalpine and montane forests in mountain ranges across the Palaearctic, and is usually found by 

sifting plant detritus and leaf litter along stream edges (Číţek & Doguet 2008). Some species of the 

genus Neocrepidodera are also terrestrial, wingless, inhabiting the alpine and nival zone of European 

mountains. Mountain ranges in other parts of the world also host specific alpine apterous flea beetles: 

for examplethe genus Sjoestedtinia Weise, 1910 inhabits alpine zone of East African volcanoes of the 

Kilimanjaro mountain range – Mt. Kenya and Mt. Kilimanjaro (Biondi & D‘Alessandro 2010).  

Moss-inhabiting flea beetles are generally poorly known, because their habitats are largely omitted by 

the majority of leaf beetle researchers. Moreover, the ranges of moss-inhabiting species are usually 

rather limited, and majority of species found in moss cushions in previously unexplored sites outside 

the western Palearctic are undescribed (Konstantinov et al. 2013). The majority of known moss-

inhabiting flea beetle species has been described during last years and it is likely that the majority of 

the species richness is still unknown. They are however known from all biogeographic regions already 

(Konstantinov & Lourdes Chamorro-Lacayo 2006; Konstantinov et al. 2013; Konstantinov & 

Konstantinova 2011).  

The systematic and phylogenetic position of moss inhabiting flea beetle genera remains unclear. It is 

likely that the association with moss evolved multiple times independently, which is indicated by the 

morphology and distribution:_the moss-inhabiting genera differ from each other by characters usually 

constant within genus-groups (i.e. the morphology of anterior coxal cavities), and they are present 

world-wide, despite their very low dispersal abilities once associated with moss and leaf litter habitats.  

Convergence of morphological characters is nevertheless outstanding in some cases. For example, the 

moss-inhabiting genera Clavicornaltica Scherer, 1974 from the Orienal and Australian Regions, and 
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Kiskeya Konstantinov & Chamorro-Lacayo, 2006 endemic to the West Indies share many unusual 

morphological characters including extremely small body (usually less than 1 mm), compactly 

rounded and very convex body shape, and last antennomeres significantly broadened and forming an 

apical antennal club (Konstantinov & Lourdes Chamorro-Lacayo 2006). Despite these similarities, 

they are likely not closely related: Kiskeya is a member of the subtribe Monoplatina distributed in 

Neotropical and Australian Regions only, whereas Clavicornaltica is considered closely related to 

Oriental moss-inhabiting and terrestrial genera Kamala or Ivalia (Scherer 1974).  

Larvae of moss inhabiting flea beetles are not well known and only those of Old World genera 

Mniophila Stephens, 1831and Ivalia Jacoby, 1887 are described at the moment (Cox 1997; Duckett et 

al. 2006). However, studies on larval morphology of Neotropical monoplatine genera are in 

preparation (Konstantinov, pers. comm. 2016). 

Suprisingly, the diet of moss-living alticines is not known in the majority of genera, and bryophagy in 

adults was confirmed only in the western Palearctic genus Mniophila (Nadein 2009) and the Asian 

species Cangshanaltica nigra, in which microscopical fragments of Hypnum moss were found after 

dissecting the gut (Konstantinov et al. 2013). Konstantinov et al. (2013) also mention the observation 

of bryophagy in some undescribed species of Ivalia by the Indian specialist K. D. Prathapan. 

Biogeography of moss-inhabiting flea beetles is very interesting and would deserve further studies. 

The beetles have low dispersal abilities, as they are unable to fly; however they oftenform many 

endemic species on islands, eventually in mountain ranges, which are in fact also island-like 

geographical structures. This is the case of the Neotropical genus Kiskeya, which is distributed in 

Puerto Rico and Dominican Republic only. There are also other wingless and moss-inhabiting genera 

with Carribean distribution, as Distigmoptera or Apleuraltica (Konstantinov and Konstantinova 2011; 

Konstantinov and Lourdes Chamorro-Lacayo 2006). In Asia, the island phenomenon is not known for 

oceanic islands, but for isolated mountain ranges. This is the case of the genus Benedictus distributed 

in the whole Himalayan area from Pakistan and India to China and Thailand. Usually, particular 

species of Benedictus are locally endemic for small regions across Himalaya (Sprecher-Uebersax et al. 

2008). Similar, but not well studied case could be the newly described genus Cangshanaltica, which 

was found in the Cangshan mountain range in China and, suprisingly, in the range of Doi Inthanon in 

Thailand. Because this genus is also wingless, we can expect discoveries of additional species in 

mountains between and around known localities (Damaška & Konstantinov 2016; Konstantinov et al. 

2013).  

We can formulate several alternative hypotheses about the origin of the discontinuous ranges of the 

moss-inhabiting species: 
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(1) Dispersal of a winged ancestor of extant wingless species, or passive dispersal of a wingless 

ancestor. In case of this scenario, the phylogeny would reveal a starting point of this dispersal. If more 

than one species are distributed on one island (what is for example the case of Kiskeya), also the 

dispersal direction could be visible in the phylogeny. If all species of one island form a paraphylum 

including species from another island, dispersal from the point of origin through another island would 

be demonstrated.  

(2) Vicariance after a geological event, e. g. the break-up of the island from the continent . In this case, 

the time of divergence of the island lineage would correspond to the (sub)division of the island, and 

the topology would follow particular landmass splitting events. 

(3) Vicariance after some climatic event, e. g. end of the last glaciation. This may be the case of 

montane species inhabiting colder forest habitats which were more widespread during colder periods. 

After warming, these forests migrated to higher altitudes and their ranges became discontinuous, 

which was the starting event for flea beetle speciation. The same case (i.e. splitting of originally 

continuous range of the flea beetle) would appear on islands which were parts of a landmass during 

the last glaciation, when the sea surface was lower. We would see then a few species groups 

(respecting hypothetical more ancestor species) with many species lineages being equally old. 

Possibly, this scenario seems to be represented by the case of Montiaphthona Scherer, 1961 in East 

African montane forests. A widespread population of one species of Montiaphtnona has been likely 

isolated in montane forests, when the temperatures became higher and the cool forest ecosystem was 

pushed into some isolated mountains (Scherer 1988).  

Despite there are no studies directly focused on dispersal abilities of moss-inhabiting flea beetles, we 

can theoretize about their migration by using other studies. Flø & Hågvar (2013) report abilities of 

non-winged small invertebrates (e. g. springtails) of passive dispersal by wind together with small 

pieces of moss and soil in Fennoscandia. Furth (1979) suggests that flea beetles could be able to 

survive passive aerial migration in higher layers of the athmosphere and that this ability may be 

a crucial phenomenon for migration of flea beetles in desert areas of the Middle East, where strong 

seasonal winds are present. Moss-inhabiting flea beetles ale known to inhabit also epiphytic mosses on 

trunks and branches of trees in cloud forests in high elevations (Damaška & Konstantinov 2016). 

Slopes of mountains are often exposed to very strong winds, especially in typhoon, monsoon or 

hurricane areas, where majority of moss-inhabiting flea beetles are living (Himalayas, Southeast Asia 

and the Carribean). The jumping ability of moss-inhabiting flea beetles allows them to jump off when 

disturbed. Therefore, I am suggesting a scenario of how migration of montane moss-inhabiting flea 

beetles could be possible – they may be catught by strong winds from tree branches and become 

passive aerial migrants. This ability could be stronger in case of flea beetles than in cases of other 
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moss-inhabiting beetles, because of their jumping ability – the disturbance caused by the strong branch 

movement in the wind could easily make them jump and get caught by the wind. 

At the moment, there is no information about the age of species divergences within moss-inahabiting 

genera, preventing the formulation of more accurate hypotheses. A possibly ―good‖ case of vicariance 

is represented by Caucasian and Crimean species of the genus Mniophila. Four different species are 

distributed in the Black Sea region – Mniophila caucasica Nadein, 2009 is widespread in the 

Caucasus, Mniophila transcaucasica Nadein, 2009 is known from one locality in Armenia, Mniophila 

turcica Medvedev, 1970 lives around Rize in northern Turkey and Mniophila taurica Nadein, 2009 is 

endemic for Crimea. Another two species, Mniophila muscorum (Koch, 1803) and Mniophila bosnica 

Apfelbeck, 1914 are widespread in Europe (Nadein 2009). The historical scenario of European 

Mniophila is enigmatic, because distributional ranges of these two species overlap. A possible 

scenario is vicariance after isolation of ancestor Mniophila populations Mniophila in two different 

glacial refuges. When forests covered Europe again, both species migrated and their ranges began to 

overlap. 

 Very interesting field for further studies of this problem could be the case of the formerly mentioned 

genus Clavicornaltica. In contrast to the majority of moss-inhabiting flea beetles including Kiskeya, 

males of many species of Clavicornaltica are able to fly, whereas other species are completely 

wingless (Scherer 1974). The genus in very widely distributed and hyperdiverse – studies show a high 

level of endemism and a high local diversity– one locality may be inhabited by multiple endemic 

species (Medvedev 1996; Konstantinov & Duckett 2005). Moreover, some species (e. g. C. dali) are 

completely wingless (Konstantinov & Duckett 2005). 

4. Biogeography 

4.1. Recent distribution 

Flea beetles are distributed worldwide except in the Antarctica (Konstantinov and Vandenberg 

1996), and are also absent from some isolated islands (e. g. Hawaii) (Sekerka, pers comm). The 

Neotropical region has the most diverse fauna (around 240 genera), followed by the Oriental region 

(around 180 genera), Afrotropical region (around 100 genera), Palearctic region (around 60 genera), 

and the lowest diversity is known from Australia and Oceania (around 50 genera) and the Nearctic 

region (around 40 genera) (Konstantinov & Vandenberg 1996; Biondi & D‘Alessandro 2012; Nadein 

2013; Scherer 1988). A review of the biogeographic knowledge of Alticini and suggesting some 

hypotheses on their origin was presented by Scherer (1988). In this text, I will follow this work, 

commenting its information by new contributions to the problem. 
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(1) Neotropical fauna is the most diverse at generic level, and the majority of the genera is endemic 

to the mainland of South America. Cosmopolitan genera (e. g. Longitarsus, Epitrix and Chaetocnema) 

are also distributed in the Neotropics, but their presence in the South America is considered a result of 

the Great American Interchange by Scherer (1988). This hypothesis is corroborated by their 

distributional pattern in South America – the number of species in these genera decreases rapidly from 

north to south. It is difficult to test if this phenomenon is really an effect of a migration from the north, 

or simply a non-diversification or prior extinction caused by hostile and arid conditions of Patagonia 

and former glaciation. Especially, the case of the genus Epitrix could be very intriguing, because there 

is a diversity center of this genus in Central and South Americas (Deczynski 2014; Konstantinov & 

Vandenberg 1996). Fauna of the Neotropics is also typical by presence of two faunal radiations: the 

subtribes Monoplatini and Oedionychini. While the subtribe Oedionychini is distributed worldwide 

with a huge Neotropical monophyletic radiation (Ge et al. 2012), Monoplatini are, with one 

spectacular exception in Australia, endemic to Neotropics (Seeno & Wilcox 1982; Scherer 1988). 

There is no large modern study of Neotropical alticine genera after the work by Scherer (1983), who 

also mentions tens of genera described additionally, never revised or keyed. Also, some new genera 

and species of moss-inhabiting flea beetles were described recently (see Chapter 3.5). 

(2) Nearctic fauna is relatively poor and the majority of North American genera is not endemic – 

there are many Neotropical and Holarctic faunal elements – likely results of migration events. 

Examples of genera shared with the Neotropics are e. g. Systena or Kuschelina. Genera shared with the 

Palearctic are e. g. Orestia or Derocrepis. A typically Holarctic genus is Hippuriphila (Konstantinov 

& Vandenberg 1996). There are also many worldwide-distributed genera largely diversified in the 

Nearctic region, e. g. Phyllotreta, Longitarsus, Epitrix or Chaetocnema (Riley et al. 2003; Smith 1985; 

Deczynski 2014; Furth & Savini 1996; Furth 1985). 

(3) Palearctic fauna is slightly more diversified at generic level than the Nearctic one; however, the 

delimitation of the ―true Palearctic fauna‖ is very difficult due to the unclear delimitation of the 

Palearctic region in Eastern Asia and penetration of the Oriental fauna to the north. The genus 

Nonarthra is an example: the genus is typically Oriental, but reaches Japan and Siberia (Kimoto 1965; 

Konstantinov & Vandenberg 1996). Only a few genera are endemic for the Palearctic region, some of 

them distributed in the mountains or in the moss (Mniophila, Apteropeda), other are probably faunal 

relicts (e. g. Oedionychis, Arrhenocoela). The distribution of Oedionychina in the Palearctic region is 

very interesting, because only two species are present (both on the Atlantic coast of Morocco and the 

Iberian Penninsula) and these two species are not closely related to any of the widespread Oriental or 

Afrotropic genera; they form a sister group of the monophyletic Neotropical Oedionychina clade (Ge 

et al. 2012). There is also a study on biogeography of the Macaronesian islands, which shows the 

fauna of Madeira and Canary islands Palearctic, unlike the fauna of Cape Verde, which is Afrotropical 

(Biondi 1990). 
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(4) Oriental fauna is very rich. This region is geographically very complex – it is formed by the 

Indian subcontinent (having around 60 endemic alticine genera), the Indochina, and the Sundaland, 

where many genera and species are diversified on islands and the diversity is vastly understudied 

(Scherer 1988; Kimoto 2000). Many of the Oriental alticine genera are also present in the southern 

Palearctic, especially in southern China, where the border between Palearctic and Oriental regions is 

unclear (Döberl 2010). A study on the faunal composition of chrysomelid beetles in the Wallacea (i.e. 

the transitional region between the Oriental and Australasian regions, represented by the Lesser Sunda 

archipelago, the Maluku islands and the island of Celebes) was performed by Mohamedsaid (2009). 

He assumes that 41% of the Lesser Sunda leaf beetle fauna is derived from the Oriental region; while 

46% of the Chrysomelidae fauna is endemic (numbers are on the species level). Only 3% are derived 

from the Australasian region. Interestingly, the Wallace‘s line appears to be a strong migration barrier 

for Galerucinae s. str.  

(5) Australian region has the lowest number of alticine species, but many endemic genera are 

present (e. g. Platycepha, Bellaltica, Pedethma etc.). Also fauna of oceanic islands adjacent to 

mainland Australia is interesting by the presence of some endemic genera (e. g. Alema or Pleuraltica 

endemic to New Zealand and, in the case of the second genus, also Norfolk Island) (Scherer 1973; 

Reid 1988). Also, some typically Australian genera, as Licyllus or Arsipoda also have few species in 

the Oriental region (Mohamedsaid 2016; Scherer 1973). Corresponding to other animal groups, there 

are some genera of Alticini which are distributed worldwide, but absent in Australia. This is for 

example the case of Dibolia (no species in Australia), and Phyllotreta (one species in Australia) 

(Nadein 2013; Scherer 1973). The fauna of the Oceania has mainly an Oriental origin. The alticine 

fauna of Papua-New Guinea is vastly understudied. Only a few contributions were made, usually 

describing new genera (Samuelson 1971; Samuelson 1965; Samuelson 1969; Medvedev 2010), so we 

can expect large amount of new taxa to be described from this area. Endemic genera known from New 

Guinea are represented e. g. by Setsaltica or Maaltica. An interesting member of the Australian fauna 

is the genus Opistopygme which belongs to the mainly South American subtribe Monoplatina, but has 

also some characters typical for non-monoplatine Australian genera (Scherer 1988). 

(6) Afrotropical region is the poorest big tropical continent in alticine fauna. However, the 

biogeography of the flea beetle fauna was very vastly studied, unlike in other zoogeographic regions. 

The delimitation between Palearctic and Afrotropical regions is very disputable and sometimes, the 

Saharan desert is assumed as a part of the Afrotropical region (Kreft & Jetz 2010). The same situation 

appears on the Arabian Peninsula. Medvedev (1997) comments the faunal composition of whole 

Chrysomelidae of the Arabian Peninsula and assumes Yemen to be Afrotropical (with 71 % of the leaf 

beetle fauna of Afrotropical origin), unlike northern Oman having only 22 % of the fauna of 

Afrotropical origin and 78% of Palearctic origin. The whole Arabian Peninsula has 39 % of the 

Chrysomelidae fauna of Afrotropical origin. The influence of the Oriental fauna is very low – 3%. The 
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only endemic leaf beetle genus in the area is a flea beetle genus Yemenaltica, which is considered to be 

related to Afrotropical genera. Interestingly, in the fauna of Palearctic origin, the influence of the 

Irano-Turanian area is lower than the influence of the Mediterranean and North African desert areas. 

The whole Afrotropical region can be distinctly divided into a Malgasy and continental areas 

according to the flea beetle fauna; based on a cluster analysis, Mascarenes and Seychelles show 

relation to other biogeographic regions and their flea beetle fauna is not coherent with the fauna of 

Africa and Madagascar (Biondi & D‘Alessandro 2012). A high percentage (71 %) of Afrotropical flea 

beetle genera are endemic, the highest percentage of shared genera is with Oriental and Palearctic 

regions. An interesting member of the Afrotropical fauna is the genus Zomba, which is the only 

Afrotropical member of Monoplatina, and, together with Australian Opistopygme, the only non-

Neotropical monoplatine. a possibility of a relictual Gondwanan origin is discussed (Biondi & 

D‘Alessandro 2012). Some biogeographic analyses were done to contribute the understanding of 

Afrotropical fauna and its distributional patterns (Biondi 2006; Biondi et al. 2015). Different 

‗chorotypes‘ of distribution were recognized in the fauna of Afrotropical Chaetocnema and some 

endemism zones (e. g. in Western Cape or Madagascar) were described. Species of Chaetocnema have 

usually regionally restricted  ranges, only a few species are widespread. The endemism of 

Chaetocnema in Madagascar is assumed to be ‗higher than that recorded for birds‘ (Biondi et al. 

2015). Unsurprisingly, species with wide ecological valence are usually widespread, unlike biotope 

specialists. Madagascar has 13 of total 39 genera of flea beetles endemic (e. g. Neodera, Ntaolaltica 

or Anaxerta). Some of them, as Ntaolaltica or Antanemora are considered to be related to some 

Oriental genera (including the genus Chabria, which is distributed both in the Oriental and 

Afrotropical regions), another, as Pseudophygasia or Neodera, show more relations to native African 

fauna (Biondi & D‘Alessandro 2013).  

4.2. Understanding flea beetle biogeography 

With information about time of origin of Galerucinae and with partial knowledge of flea beetle 

phylogeny, it should be possible to provide some interpretations of the historical biogeography of 

some groups. At the generic level, we can see a complete confusion when trying to map biogeography 

on the tree by Ge et al. (2012) (biogeographic data adopted from Nadein (2013) and Seeno & Wilcox 

(1982)) – mapped distribution is presented in Fig 6. The problem is in the sampling bias – the 

sampling used in the analysis by Ge et al. (2012) is strongly biased towards Oriental fauna , and other, 

especially Neotropical, Afrotropical and Australian genera are absent or underrepresented. Despite of 

that, some interesting information can be revealed from the tree. In the case of the Oedionychina, we 

see two independent lineages in North America. This shows the formerly mentioned fact that many 

different lineages of Neotropical Oedionychina migrated to the Nearctic region relatively recently, 

probably during the Great American Interchange (Pliocene). The situation of the cosmopolitan genera 

(e. g. Longitarsus, Chaetocnema or Psylliodes) in the Neotropics is very complex and the mapping 
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cannot yield any satisfactory explanation, because the genera are old and diverse. Thus, we need 

complex (and dated) phylogenies of these genera for resolving their migration pathways. Some work 

was published on biogeography of the cosmopolitan genera in other regions. Biondi (2001) tried to 

reconstruct migration routes staying behind the faunal composition of Chaetocnema in Madagascar. 

He assumes two endemic species descending from the Oriental (Eurasian) ancestors (and tries to 

hypothesize possible closely related Oriental genera, which seems somewhat foolish because Oriental 

Chaetocnema is totally understudied), other Madagascar endemics are considered to be of African 

origin. Two possible radiations on Madagascar are described, each with few species, other endemics in 

Madagascar are assumed to be single descendants of independent migrations. If true, this situation just 

verifies biogeographic notes considering Madagascar as an isolated ‗little continent‘ more than a big 

island. However, these studies are very problematic, because the lack of the phylogenetic knowledge. 

Modern casual studies show us, that biogeographic studies without knowledge about phylogeny can 

show us interesting patterns of today‘s organism distribution, which can lead to several ecologic 

theories, but are not able to clarify historically biogeographic scenarios, which led to recent 

distributional ranges (Balke et al. 2009). Therefore, it is necessary to wait for complex phylogenetic 

analyses.  

Some cases, when closely related taxa have disjunctive ranges, are possibly explainable as relicts of 

some ancient widespread taxa, the majority of which became extinct and some lineages became 

isolated in completely different parts of the world. This can possibly be the case of formerly 

mentioned genera Psylliodes, Psyllototus and Chamealtica. Psyllototus, a fossil genus from Baltic 

amber, is considered to be closely related with Psylliodes differing only in having 11 antennomeres (as 

plesiomorphic among Alticini) instead of 10 (an apomorphy of Psylliodes). Chamealtica also appears 

to be very closely related to Psyllototus, but occurs only in Chile, unlike the Baltic fossil Psyllototus 

and cosmopolitan Psylliodes. As Psylliodes in recent times, Psyllototus could also be a very 

successful, diverse and widespread genus. In one lineage of Psyllototus, an evolutionary event 

occurred by losing one antennomere – this hypothetical lineage would be the stem lineage of recent 

Psylliodes radiation. During the Neogene, Psyllototus became extinct on a majority of its distributional 

range and was replaced by other lineages, which became widespread. One of these newly successful 

lineages was also the Psylliodes lineage, which became monophyletic after extinction of majority of 

Psyllototus. However, another lineage of the Psyllototus radiation survived the extinction isolated in 

Chile and become extant Chamealtica. This scenario is possibly applicable for many other disjunctive 

ranges of taxa. In mammals, such scenarios are known e. g. in the case of camels (reference), however, 

in insects, searching for residua of ancient widespread ranges seems to be a novel way of studies of 

insect distribution. a similar phenomenon is suggested by Scherer (1988) in the case of the genus 

Terpnochlorus, which is distributed in Africa, Madagascar and South America. An interesting 

situation of a biogeographic disjunction is represented by Longitarsus capensis and L. anchusae 
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species groups, which are assumed to be very closely related (without proper phylogenetic analyses, 

only based on the morphotaxonomic view), but the L. capensis group is endemic in the Mediterranean 

biome area of the Cape floral region in South Africa (Biondi & D‘Alessandro 2008) and L. anchusae. 

A possible origin of the disjunction is considered to be a migration event after Miocene, when the 

fynbos vegetation arose in the Western Cape. The migration routes had to be some arid belts in Africa. 

However, more hypotheses, not formulated in the paper, are possible – for example those discussed 

below. And, again – we need a proper phylogenetic analysis to bring more insight into the 

relationships in the genus. The morphological similarity could be a plesiomorphy and the ―anchusae – 

capensis‖ group could be paraphyletic with many morphologically different species complexes in 

Africa. In this situation, the explanation of the similarity would be very simple. 

Interesting cases in flea beetle biology are also possible island radiations. However, these studies still 

lack the insight by modern molecular phylogenetic methods.  For example, a casual study was 

provided by D‘Alessandro et al. (2016) about the genus Arsipoda in New Caledonia. This island is 

well-known as enigmatic in biogeography, because it has many relictual Gondwanan elements in other 

taxa, especially in plants. The taxonomic work of the mentioned study is on a very good level, but the 

phylogeny provided is only morphological and using obsolete phylogenetic methods. Even the 

sampling of outgroups is inaccurate (only two non-Caledonian species were used), so the phylogenetic 

results may be largely biased. However, there is a very interesting study on New Caledonia done on 

another leaf beetle group – Eumolpinae, which is very diverse in New Caledonia Papadopoulou et al. 

(2013). We also cannot consider that all of the New Caledonian eumolpines are a monophyletic group, 

but we can see the divergences between eumolpine lineages from the New Caledonia much younger 

than possible for considering some parts of the fauna as a Gondwanan relict. Fauna of the Eumolpinae 

in New Caledonia is a result of a few (or, strikingly, only one) migration events and further adaptive 

radiations. Another case of a radiation on islands (now in flea beetles again) is the case of the 

Madagascar endemic genus Neodera, which is studied by D‘Alessandro et al. (2014). The genus 

shows a big tendency to microendemism in Madagascar and is associated with primary humid forests. 

These forests are very endangered in Madagascar due to the massive deforestation and Neodera is 

usually unable to survive in secondary forests, so it can be considered as an ecological indicator and 

also an endangered genus. The diversification of Neodera in Madagascar seems to be a result of an 

evolution in some centers of endemism (especially mountain ranges with humid forests, which refuged 

forest species during the more arid times and also led them to diversify). The paper presents many 

different hypotheses of the diversifications, however, there is only a relatively primitive morphological 

phylogeny again. An interesting situation appears on the Canary islands. The island of Tenerife seems 

to be a ‗catching island‘, where invaders from surrounding areas arrive. Then, they can migrate from 

Tenerife to other islands around, so some Canarian species groups can possibly originate on Tenerife 
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and have the diversity center 

there – however, phylogenetic 

data for Alticini are not existing 

again in this case (Biondi 

1990). 

Specific aspects of flea beetle 

biogeography, which cannot be 

missed, are recent biological 

invasions of flea beetles. The 

genus Epitrix has many species, 

which become invasive as crop 

pests on Solanaceae, especially 

those from North America 

(Bieńkowski & Orlova-

Bienkowskaja 2016). Another 

case of an invasive alticine is 

the formerly mentioned species 

Luperomorpha xanthodera, 

which invaded Europe in 

containers with ornamental 

plants (Del Bene & Conti 

2009). A comic situation 

appeared in the case of Epitrix 

papa, described from the 

Iberian Peninsula as an invasive 

pest on potatoes, but its native 

range is not known and it is 

similar to some Californian species 

of the genus (Orlova-

Bienkowskaja 2015).   

Fig. 6. – Distribution of flea beetles in zoogeographic regions 

based on the phylogeny by Ge et al. (2012) and data from Nadein 

(2013), visualized in Mesquite software (Maddison & Maddison 

2017).
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5. Summary 

The systematic position of Alticini and the multiple origin of the jumping ability in various lineages 

among Galerucinae s. str. is an interesting discovery resulting from including molecular data and we 

can expect more interesting views and insights into alticine biology and evolution by improving the 

molecular phylogeny by adding more taxa into the sampling and extending the number of used genes. 

Molecular phylogenies of certain genera, especially those cosmopolitan, megadiverse ones 

(Longitarsus, Chaetocnema, Phyllotreta, Aphthona, Epitrix, Psylliodes) and their proper taxonomic 

revisions are required for resolving some traits in their evolution and can help to explain their 

historical biogeography. Better sampling and further molecular phylogenetic studies of moss 

inhabiting flea beetles can help in explaining their expected multiple origin and parallel evolution. It 

can bring more light into understanding their enigmatic dispersal abilities and can also be useful for 

general understanding of the evolution organisms with possibly low dispersal abilities, their 

evolutionary traits and circumstances of their specialization. Thus, Alticini are a possibly perfect 

model taxon for studies on insect evolution, historical biogeography and ecological traits. 

Additionally, the poor knowledge of their diversity is a perfect field for an enthusiastic evolutionary 

taxonomist, who is interested in travelling all around the world in search for interesting and beautiful 

unknown organisms, trying to unearth monumental stories of how they got where they are and what 

they look like – the stories hidden behind all the organisms, in millions of years of their history. 
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