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ABSTRAKT

Rodina  interleukinu  10  (FIL-10,  family  of  interleukin  10)  je  důležitá  skupina  cytokinů 

regulující imunitní odpověď různého charakteru, od protizánětlivé odpovědi interleukinu (IL) 

10, přes reakci regulující imunitní odpověď epitelech podrodiny IL-19, IL-20 a IL-24 k IL-22 

a IL-26, které ovliňují imunitní odpověď při infekcích. Celá rodina je příbuzná interferonům 

(IFN),  z  nichž několik (interferony  a  v  této  studii  také IFN ) je  zařazováno doλ γ  FIL-10 

z důvodu  funkčních  a  strukturních  podobností  s  členy  FIL-10.  Interleukiny  této  rodiny 

používají  k signalizaci  několik  podjednotek  receptorů,  které  v různých  kombinacích  a  při 

vazbě  různých  interleukinů  vyvolávají  rozdílnou  imunitní  odpověď.  Proteiny  FIL-10 jsou 

produkovány  již  v evolučně  velmi  starých  organismech  jako  paryby,  proto  studie 

předpokládala,  že  koevoluce  probíhající  mezi cytokiny  této  rodiny  a  receptory  je 

detekovatelná v sekvencích genů a následně jimi kódovaných proteinů. Pomocí statistických a 

strukturně biologických metod studie popisuje evoluční vztahy v rámci FIL-10 a ve skupině 

jejich  receptorů,  Zajímavé  je  rozštěpení  IFNγ do  sekvenčně  nezávislých  skupin  ryb  a 

ostatních.  Zaznamenali  jsme koevoluci  mezi  většinou  studovaných  interleukinů  a  jejich 

receptorů, s výjimkou některých ligandů IL10RB, nejšíře používaného receptorového řetězce 

v rámci  studované  rodiny,  především  v interakci  IL-26  a  IL10RB  a  interakcích  proteinů 

s podobnou funkcí divergujících později v evoluci , IL-19 a IL-20.

KLÍČOVÁ SLOVA

rodina interleukinu 10, interferon gamma, koevoluce, ligand-receptor, Bayesiánské metody



ABSTRACT 

Interleukin  10  family  (FIL-10)  is  an  important  family  of  cytokines  triggering  immune 

response  of different  outcome,  from  antiinflammatory  factor  interleukin  (IL)  10  through 

epithelia  related  subfamily  of IL-19,  IL-20  and  IL-24,  to  IL-22  and  IL-26  with  role 

in infection immunity. The family is closely related to interferons (IFNs), several of which 

(IFN s, and inλ  this study also IFN ) are commonly placed into FIL-10 forγ  its functional and 

structural  similarities  with  FIL-10  proteins.  FIL-10  interleukins  share  several  receptor 

subunits,  which  in different  combinations  of  receptors  and  interleukin  bound  result 

in different immune response. As the family proteins are expressed in as evolutionary old taxa 

as cartilaginous fish, we presumed a coevolution in the protein family and the corresponding 

receptors would be detectable in the sequences of genes and subsequently proteins of FIL-10. 

Using statistical  and structure biological  methods,  evolutionary relations within the group 

of FIL-10 and group of their  receptors  were resolved,  with notable division of  IFN  intoγ  

independent  groups  of  fish  and  the  later  vertebrates.  Coevolution  of  the  ligand  receptor 

combination  in  FIL-10  was  detected  in  most  cases,  with exception  of  some  interactions 

of IL10RB,  the  most  widely  used  receptor  subunit  in the family,  most  notably  IL-26  – 

IL10RB  interaction  and  interactions  of  proteins  with similar  function  diverging  later 

in evolution, IL-20 and IL-19. 
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Abbreviations

aa Amino acid, amino acids

Abbrev. Abbreviation

AIC Akaike information criterion

Aln. alignment

Avg. average

BIC Bayesian information criterion

BLAST Basic local alignment search tool

FIL-10 Interleukin 10 family

IFN interferon

IFNGR1 Interferon gamma receptor 1

IFNGR2 Interferon gamma receptor 2

IFNLR1 Interferon lambda receptor 1

IL interleukin

IL10RA Interleukin 10 receptor 1, IL-10 receptor α

IL10RB Interleukin 10 receptor 2, IL-10 receptor β

IL20RA Interleukin 20 receptor 1, IL-10 receptor α

IL20RB Interleukin 20 receptor 2, IL-10 receptor β

IL22BP Interleukin 22 binding protein

IL22RA1 Interleukin 22 receptorα1

IL22RA2 Interleukin 22 receptor α2, also IL22BP

mDCs Myeloid dendritic cells

ML maximum likelihood

MSA Multiple sequence alignment

NJ Neighbour joining

NK cell Natural killer

PDB Protein Data Bank



pDCs Plasmacytoid dendritic cells

TLR Toll-like receptor

UID Unique identifier

UPGMA Unweighted pair group method with arithmetic mean

WGD Whole genome duplication

WSP weighted sums of pairs



1  Introduction

1.1  Interleukin 10 family

Interleukins, in general, trigger immune response of different types by activating 

signalling pathways. Interleukin 10 is a representative of an important and large family  

of interleukins  with  mainly  antiinflammatory  function,  but  the  family  also  includes 

members  with  antiviral  function.  Interleukin  10  homologues  have  been  found 

in as evolutionary  old  organisms  as cartilaginous  fish  demonstrating  thus  a  high  level 

of conservation  of their  function  and  structure.  Nevertheless,  complexity  of  immune 

response  is  increasing in evolution,  thus in  lower  vertebrates  we can only  find a  few 

representatives of interleukin 10 family. 

Interleukin 10 family proteins in general have a 5 exon, 4 intron genomic pattern. 

Conserved six-helical structure often forms homodimers. It has been shown that IL-10 

has  important  structural  similarities  with  interferon  (IFN)γ (Zdanov  et  al.  1995), 

for which IFNγ has been also included in this study.

Interleukins of the family of interleukin 10, called hereafter FIL-10, signal through 

binding  to  cellular  membrane  receptors,  whose  combination  implies  their  different 

functions.  As with many  signalling  pathways  in  immune  system,  FIL-10  proteins  use 

in many cases signal transfer through variants of Janus kinase – Signal Transducer and 

Activator of Transcription – (JaK/STAT) pathway. Regulation of transcription in such 

cases is yet not well described, although it is well known that effects of signal transduction 

of JaK/STAT  pathways  may  be  either  of pro-inflammatory  or  antiinflammatory 

character. 

Proteins of this family have very diverse biological effects, dependent on the type 

of interleukin as well as target tissue. The effects include immunosuppressive IL-10 and 

skin and mucosal immunity related IL-20 and IL-24 or proteins involved in antiviral 

response. Receptor subunits are often shared by several members of FIL-10 (Figure 1), 

which implies different signalling functions in diverse tissues and ligand-receptor pairs.
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Figure 1. Combinations of interleukin 10 family proteins and their receptors.  Subunits marked as 1 are referred 
to as A (e.g. IL10R1 = IL10RA), “2” subunits are marked B in the thesis. Image from Akdis et al. (2011) (edited).

1.1.1  Interleukin 10

Interleukin  10  (IL-10)  is  homodimeric  protein  in  length  of  178  amino  acids 

in each  subunit  (human  IL-10).  IL-10  is  an  important  factor  in antiinflammatory 

response and immune suppression.

IL-10 is produced by multiple immune cell types, major producers of IL-10 are 

monocytes, regulatory T and regulatory B cells (Del Prete et al. 1993; Holan et al. 2014), 

it is also secreted by macrophages and myeloid dendritic cells (mDCs), however there is 

no  evidence  of  its  expression  in plasmacytoid  dendritic  cells  (pDCs)  (Boonstra  et  al. 

2006).

IL-10 is a pleiotropic signalling molecule. It is involved in activation of JAK/STAT 

pathway, it is capable of blocking  NF-κB transcription factor activity and is regulates 

differentiation of several  cell  types.  One of its main activities is  suppression of  IFNγ 

production (Dandrea et al. 1993).

Its  signalling through JaK/STAT pathway is  not yet  well  described, since many 

cytokines share the similar signalling pathway to promote opposite effects  (Jones et al. 

2016). IL-10 inhibits production of pro-inflammatory IFNγ and IL-2, IL-5, IL-6 and 

IL-12.  By regulation  of  MHC  II  expression  in  monocytes,  IL-10  inhibits  antigen 

presentation of microbial peptides (Commins et al. 2008). Treg cells, present throughout 
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the body, produce IL-10, down-regulating immune response by Th1 and Th17 (Wang et 

al. 2016).

Maintenance of serum levels of IL-10 is crucial in pathology of several diseases. 

While deficiency inhibits tumour growth  (Wang et al. 2016), impaired regulation leads 

to several diseases and symptoms. Antiinflammatory function implies role in pathological 

immune response, as is described primarily in respiratory tract and intestine.

IL-10 has crucial role in maintenance of allergen tolerance. Constant high levels 

of IL-10 are produced on mucosal tissues mainly in upper and lower airways. Allergen 

tolerance established by this  mechanism is  impaired in respiration allergy and asthma 

patients (Palomares et al. 2010).

Regulation of intestinal epithelial immunity is dependent on IL-10 as well. Mutant 

variants of both IL-10 gene and its receptor may cause severe colitis  (Shah et al. 2012; 

Kole and Maloy 2014).  Recombinant IL-10 has been used in experimental  biological 

treatment of Crohn’s disease and colitis (Braat et al. 2006; Marlow 2013). 

IL-10  binds  to  receptor  consisting  of  two  IL10RA  and  two  IL10RB  chains 

(Kotenko et al. 1997).

1.1.2  Interleukin 19, interleukin 20 and interleukin 24 subfamily 

Interleukins 19, 20 and 24 form protein subfamily, characterized primarily by its 

monomer helical structure and expression in epithelial tissues. Interleukin 19, or IL-19 is 

an  IL-10  orthologue  of 177 amino  acids  in  length  (human  variant)  (Gallagher  et  al. 

2000). Interleukin 20 (IL-20) is a protein in length of 176 amino acids  (Blumberg et al. 

2001). IL-24, firstly described as melanoma differentiation associated 7 (mda7) is a 206 

amino acid protein (Jiang et al. 1996; Caudell et al. 2002). 7-helical monomer structure is 

typical for the subfamily (Chang et al. 2003). 

IL-19, IL-20 and IL-24 modulate inflammatory response in favour of Th2 type 

(Liao et al. 2004; Wu et al. 2014) and are also further expressed by Th2 cells. Primarily 

produced by monocytes induced by IL-4 in combination with LPS stimulation (Gallagher 

et  al.  2000) members  of  this  sub-family  and  their  receptors  are  not only  expressed 

in activated immune cells, but also in similar amounts in keratinocytes (Kunz et al. 2006). 
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Furthermore,  IL-19 is  produced  in  central  nervous  system by microglia,  for  which  it 

also serves as autocrine negative regulator (Horiuchi et al. 2015). 

As mentioned above, subfamily of IL-19, IL-20 and IL-22 is expressed in high 

levels  in  skin  and  connective  tissues.  Proteins  of  the  sub-family  have  positive  effect 

on wound healing in skin and mucosal tissues, IL-19 effects in skin cell proliferation and 

wound healing by up-regulation expression of  keratinocyte growth factor  (Sun et  al. 

2013). 

Similarly to IL-10, IL-19 serum levels and concentration in lungs are increased 

in asthma patients  (Liao et al. 2004). Connection between kidney disease or injury and 

increased levels  of IL-19 has been recently pointed out,  but details of IL-19 function 

in kidney have not been described (Jennings et al. 2015). IL-19 is known to be involved 

in pathology of systemic lupus erythematodes  (Lin et al. 2016) and together with other 

members of the sub-family, also in psoriasis (Otkjaer et al. 2005; Wang et al. 2012).

IL-24,  apart  from  its  immunity  effects  in  skin,  has  specific  tumor-suppresor 

activity. Through IL-20 receptors, independently of JaK/STAT pathway, IL-24 induces 

effectively  apoptosis  specifically  to  tumour  cells  (Zheng  et  al.  2006) by  inducing 

autophagy, which in later stages switches to apoptosis  (Yang et al. 2010; Bhutia et al. 

2010).

The subfamily signals through different combinations of shared receptor subunits 

(some members are also shared with closely related IL-22 and IL-26, see Figure 1). IL-19 

signals  through  IL20RA/IL20RB  heterodimer.  IL-20  binds  to IL20RA/IL20RB 

heterodimer,  nevertheless it  is also able to signal through IL22RA/IL20RB heterodimer 

(Commins et al. 2008). IL-24 the uses same two receptor pairs as IL-20  (Wang et al. 

2002).  IL-20  and  IL-24  N-terminus  forms  a  β-hairpin  structure  distincting  them 

in binding to receptor subunits from IL-19. Affinity to receptor chains is defined by their  

secondary structure (Logsdon et al. 2012).

1.1.3  Interleukin 22

IL-22 is 6 antiparallel helices protein with 179 amino acids. IL-22 is produced 

by activated immune cells, NK-22 (Cella et al. 2009), Th17 cells (Liang et al. 2006) and 

Th22 cells (express IL-22 without IL-17) (Duhen et al. 2009). IL-22 molecules secreted 
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by NK-cells  in lymphoid  associated  mucosal  tissues  (tonsils,  Peyer’s  patches)  provide 

innate protection against bacterial and viral infection (Cella et al. 2009).

As in its relatives, it was described that IL-22 facilitates wound healing in mucosal 

tissue  by  increase  of fibroblast  activity  (McGee  et  al.  2013).  Dysregulation  in  IL-22 

signalling is observed in development of psoriasis and atopic dermatitis symptoms (Ma et 

al. 2008) and promotes hyperplasia of epidermis (Zheng et al. 2007).

Interleukin  22  binds  to  IL22RA/IL10RB heterocomplex  (Kotenko et  al.  2001). 

Soluble Interleukin 22 Binding Protein (IL22BP) competitively inhibits IL-22 activity (Xu 

et al. 2001).

1.1.4  Interleukin 26

Interleukin 26 or IL-26 is 171 amino acids long (human) and has similar 6 helices 

structure to IL-19,20 and 24 family, however unlike them, forms a homomer. IL-26 is 

conserved throughout mammals,  interestingly is  lacking in mice and rats,  it  is  present 

also in amphibian, bird  (Donnelly et al. 2010) and fish  (Igawa et al. 2006) models. Due 

to its  absence  in the  most  important  model  organisms  – mice  and  rats,  information 

about its in vivo function is quite limited. 

IL-26 is produced by Th17 alongside with the other members of IL-10 family 

(Wilson et al. 2007). IL-26 main function seems to be in antimicrobial defence and Th17 

antimicrobial  activity  is  hugely  dependent  on  IL-26  production.  IL-26  activity 

in infection is  based on its  ability to form pores on extracellular bacteria membranes. 

IL-26  recognizes  bacterial  DNA  released  in  lysis  and  forms  insoluble  complexes, 

afterwards presented, independently of IL-26 receptor, to pDCs to stimulate production 

of type I interferon (IFNα) (Meller et al. 2015). 

Besides  of  its  activity  in  innate  infection,  IL-26  signals  through  IL10R2  and 

IL20R1  combination  of  receptor  subunits  activating  JaK/STAT  pathway  in  epithelia. 

Pathway activation by IL-26 may be inhibited by heparin (Hor et al. 2004).
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1.1.5  Interferon λ family

Interferon lambda (IFNλ) group is  a group of 3 proteins  in human consisting 

of IL 29 - Interleukin 29 / IFNλ1 - Interferon lambda 1, IL-28A or IFNλ2 and IL-28B 

(IFNλ3).  Known  as  IL-28  and  IL-29,  IFNλs  are  commonly  seen  as IL-10  family 

members, due to their (monomeric) structure, in particular to its resemblance of IL-22 

structure  and  function  – antiinfection  immunity  (Gad et  al.  2009).  Members  of  this 

subgroup are further referred to as IFNλs, not ILs (IFNλ1, IFNλ2, IFNλ3) in this 

thesis. Similarity with IFN type I is presumably only of functional, not genetic character, 

as gene structure of IFNλ matches IL-10 5 exon – 4 intron pattern  (Kotenko et al. 

2003). 

IFNλ  group  is  categorized  as  type  III  interferons.  Interferon-typical  antiviral 

activity lies in blocking viral replication. IFNλs is known primarily for its activity against  

hepatitis viruses – it is responsible for inducing immune response against Hepatitis C 

(HCV) virus in liver  (Marukian et al. 2011) predominantly by inhibition of both HBV 

and  HCV replication  (Robek  et  al.  2005).  HCV  clearance  from  organism  is  hugely 

dependent on IFNλ genotype (Sheahan et al. 2014).

Antiviral activity of IFNλ is not limited to hepatitis viruses. IFNλ is expressed 

together with IFN type I (IFNα) by wide variety of cell types after stimulation of toll-like 

receptor (TLR)3 and TLR9 (Ank et al. 2008). IFNλ is able to act against coronaviruses 

(Hamming et al. 2013) or norovirus (Baldridge et al. 2015; Nice et al. 2015) and possibly 

many other viruses.

IFNλ  uses  the  complex  of  IFNRL1/IL10RA  chains  for  immune  signalling 

(Kotenko et al. 2003). IL10RA, being used by IL-10, IL-22 and IL-26 as well, is another 

similarity supporting IFNλ assignment into the family. 

1.1.6  Interferon γ 

Long  known  IFN  type  II  group  member  was  first  discovered  in  1960s  and 

described to have antiviral activity. IFNγ occurs in homodimers with 6-helical structure 

(Ealick  et  al.  1991) similar  to  IL-10.  The  protein  has 166  amino  acids  in  length, 

the encoding gene has 4 exons and 3 introns. 
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Pro-inflammatory IFNγ is continuously produced by NK and NKT cells in innate 

immune system. NKT cells posses characteristics of both NK (many of inhibitory and 

activation  receptors)  and  T cells  (TCR  with  CD3  coreceptor,  expression  of  CD4 

coreceptor) and are activated after TCR recognition of antigen. IFNγ further stimulates 

NK cell activity. Production of IFNγ in innate system seems to be regulated by IL-12 

and IL-18 (Schoenborn and Wilson 2007). 

Th1  and  cytotoxic  T-cells  produce  IFNγ  as a part  of  adaptive  response 

to infection. Being the main chemokine product of Th1, its effects predefine character 

of Th1  response  as  cytotoxic  activity  targeted  mainly  against  intracellular  parasites 

(Schoenborn and Wilson 2007). 

IFNγ is  critical  in  protection from intracellular  bacteria  and viruses.  Antiviral 

activity  of  IFNγ lies  in  induction of expression of antiviral  enzymes,  such as  dsRNA 

adenosine  deaminase  (Patterson  et  al.  1995).  Through JaK/STAT activation,  IFNγ is 

capable of inducing apoptosis (Chin et al. 1997). Polymorphism in IFNγ and IL-26 gene 

cluster has been shown to impact susceptibility to rheumatoid arthritis (Vandenbroeck et 

al. 2003). Besides, IFNγ is involved in tumour immunity.

IFNγ signaling  is  induced  by its  binding  to  IFNγ receptor  1  (IFNGR1)  and 

subsequent  association  with  IFNγ  receptor  2  (IFNGR2).  The  ternary  complex 

then activates the JaK/STAT pathway (Akdis et al. 2011). 

1.1.7  Receptors and signalling

Regulation  of  cytokine signaling  is  dependent  on  their  interactions  with  the 

receptor chains (Figure 2). Their expression is different in different tissues. Most receptors 

involved in signaling of IL-10 family are expressed in immune cells, primarily T, B and 

NK cells. In addition, their expression has been also detected in skin, liver or pancreas 

(Wolk et al. 2002). IL20RB is expressed in keratynocytes  (Wolk et al. 2004). IL20RA 

expression,  unlike  other  receptors,  has  not  been  detected  in  NK  cells,  T,  B  cells 

or monocytes,  but  it  is  present  in high  levels  in skin  (Wolk  et  al.  2002). The  group 

of FIL-10 receptors  includes  IFNL1 or  IL28RA interacting  with  SH2 domain  of  JaK 

proteins (Zhang et al. 2016b).
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Several defects in signalling caused by mutations in receptor subunits are known. 

IL10RB mutation  causes  defect  in  JaK/STAT signalling  connected  with  inflammatory 

bowel diseases such as Crohn’s disease or colitis in adults (Glocker et al. 2009; Chaudhry 

et al. 2011) and specific mutation in IL-10RA causes very early onset inflammatory bowel 

disease in children (Shim and Seo 2014).

Figure 2. Receptor binding and signalling in monomeric and dimeric proteins of IL-10 family. 
R1-type chain proteins: IL-10R1, IL-20R1, IL-22R1 and IFN-gR1. R2-type chain proteins IL-10R2, IL-20R2 
and IFN-gR2. Image from Kotenko and Langer (2004).
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 Interleukin 22 binding protein

Interleukin 22 receptor A2, (IL22RA2) or interleukin 22 binding protein (IL22BP) 

is a soluble antagonist of IL-22 sharing amino acid homology with IL22RA1. It is highly 

expressed in placenta and spleen as well as digestive tract and immune system (Xu et al. 

2001), particularly in mDCs (Martin et al. 2014).

IL22BB binds IL-22, but is unable of inducing JaK/STAT signalling (Kotenko et al. 

2001),  functioning  thus  as  IL-22  neutraliser.  IL22BP  is  involved  in  regulation 

of pathological  IL-22  response  (Martin  et  al.  2014) and  tumour-genesis  in  intestine 

(Huber et al. 2012).

Activity  of  IL22BP  is  affected  by  tissue  damage  sensing.  Inflammasome 

down-regulates  production  of  IL22BP.  Disrupted  ratio  of  IL-22  and  its  antagonist 

supports tumour development after previous damage by chronic inflammations of colon 

(Huber et al. 2012).

 Interferon γ receptors

Interferon  γ signals through 2 receptor subunits distinct from IL-10 receptors, 

interferon gamma receptor  1  (IFNGR1) and interferon gamma receptor  2  (IFNGR2). 

Interferon gamma receptor genetic variants are involved in various diseases. 

IFNGR1 is likely involved in intestinal and colorectal carcinoma formation (Wang 

et al. 2015; Zhang et al. 2016a). The IFN γ receptor promotes antiviral activity against 

hepatitis  viruses  (Lam et  al.  2014), against  bacterial  tuberculosis  (Sahiratmadja  et  al. 

2007) and against Dengue Virus in connection with interferons type I  (Prestwood et al. 

2012) and  .  As a  result  of  viral  coevolution  with  the  host,  some  viruses  developed 

mechanisms  to avoid  immune  response  by interferon  γ  pathway.  For  instance, 

herpesviruses are able to suspend expression of IFNGR1 (Li et al. 2007). 
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1.1.8  Gene clustering in Interleukin 10 family

In vertebrate genomes, interleukin genes commonly occur in clusters. This fact may 

be  consequence  of  gene  duplications  in  evolution  and  it  effects  regulation  of  gene 

expression. 

Human IL-10, IL-19, IL-20 and IL-24 genes are located on chromosome 1q31-

32 (Kim et al. 1992; Blumberg et al. 2001).  Human IFNγ, IL-26 and IL-22 genes are 

located on chromosome 12q15 (Donnelly et al. 2010). IL10RB and IFNGR2 are encoded 

on  chromosome   21q33.  IL20RA,  IL22BP  and  IGNFR1  are  clustered  on  human 

chromosome  6q23  (data  from  UCSC  and  NCBI  databases).  Vertebrate  homologues 

of the mentioned groups are clustered in genome as well.

1.2  Coevolution of ligand-receptor pairs

Protein coevolution (correlated evolution) is a fundamental principle of evolution 

and occurs in every organism or group of organisms. By means of coevolution of protein 

and receptor pairs,  signalling  pathways  are  preserved  despite  changes  in  their  genetic 

information and consequently the protein structures. The correlation of evolution of many 

ligand-receptor pairs  in immune signalling molecules  has been previously pointed out 

(Goh et al. 2000). 

Coevolution  may  be  studied  on  different  levels,  from  inter-organism  level 

to inter-residual  relations.  Current  methods  of  protein  coevolution  analysis  are  based 

on comparison  of  distance  matrices  (Figure  3).  For  inter-protein  evolution,  distance 

matrices calculated from phylogenies are used, whereas inter-amino acid studies require 

a MSA for calculation of the distance matrix (de Juan et al. 2013). 

Characterization  of  phylogenetic  history  of  a  protein  family  may  elucidate 

foundation of interleukin diversity as known in human, as well as origins of combinations 

of particular ligand-receptor pairs, since complete understanding of signal transduction 

from particular interleukin 10 family members is still incomplete. 
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Figure 3.Analysis  of  protein receptor coevolution. Distance matrix is  calculated from a phylogeny or multiple 
sequence alignment  and analysed for pairwise correlation in protein evolution. Image from de Juan et al. (2013).

1.3  Introduction to phylogenetic reconstruction

Characterization  of  phylogenetic  history  of  interleukin  10  family  is  valuable 

for understanding of the divergence of signalling pathways in the family and for general 

understanding of immunity evolution. Evolutionary trees of the family and their receptors 

may  elucidate  foundation  of  the  interleukin  diversity  as known  in  human,  as  well 

as origins of ligand-receptor combination and their specificity. 

Phylogenetic  tree  is  graphical  representation  of  relationships  within  a  group 

of organisms or proteins. Unrooted trees only present relationships within the family, may 

be rooted using outgroup or molecular clock to show the common ancestor.

Phylogenetic trees may be constructed by several methods using different statistical 

approaches.  Distance  based  methods  use  distance  matrix  of  sequences  in  alignment. 

The methods  include  neighbour  joining  (NJ)  trees,  finding  least  related  taxa  and 

recalculating their tree nodes and branches, or UPGMA (Unweighted pair group method 

with arithmetic  mean)  trees,  using  hierarchical  clustering  based  on  pairwise  similarity 
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matrix  creating  rooted  trees.  Methods  using  optimality  criteria  include  maximum 

parsimony,  maximum likelihood (ML),  or  Bayesian.  Methods  implement evolutionary 

models  to  establish  the phylogeny. Maximum  parsimony  trees  use  the  principle 

of Occam’s razor. As the name implies, the lowest possible number of evolutionary events 

is conducted to create the tree (Mount 2008). 

Maximum  likelihood  (Whelan  and  Goldman  2001) methods  are  based 

on calculation  of  likelihood  of  parameters.  Likelihood  corresponds  to  probability 

of obtaining recorded data under given model. The method is quite time consuming and 

dependent  on computational  resources.  The  calculation  of  likelihood  is  rather 

straightforward,  yet the estimation  of  parameters  used  in  the  phylogeny  is  quite 

demanding. 

Bayesian  estimation  of  phylogeny  infers  trees  based  on  prior  probability. 

The method incorporates Markov Chain Monte Carlo algorithms to produce distribution 

of  posterior  probability  of  phylogenies.  The  resulting  trees  are  concatenated 

from sampling of calculations of trees with high posterior probability (Felsenstein 2004). 

Probability based methods such as  ML and Bayesian inference should be used 

for well  supported  trees.  Nonetheless,  the  overall  phylogeny quality  depends  not  only 

on the selected method, but also largely on sequence alignment quality. 
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2  Aims

Coevolution of  interleukins  of  the  group of  IL-10 and corresponding receptor 

pairs  is  important  for understanding  complexity  of  immune  signalling  pathway 

of the family. The thesis aims at describing evolutionary history of FIL-10 and the protein 

group serving as receptors of FIL-10 proteins. 

The particular aims of the thesis are:

• to construct phylogenies of both interleukin 10 family proteins and corresponding 

receptor protein groups

• using statistical methods, describe correlation between evolution of the interleukins 

and their receptors.

• describe  protein  conservation  on  structural  level  for  selected  representatives 

of the interleukin 10 family.
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3   Materials and methods

The methods used in this thesis and the processes are illustrated in Figure 4.

Figure  4.  Workflow  chart. Data  (ellipses)  obtained  by  methods  (rectangular)  on  top  are  further  analysed 
by RAxML software and MrBayes software. The coevolutionary analysis is preformed in Parafit tool of R and 
compared to relation plot of interleukins and corresponding receptors created by tools available in ape package 
in R. Based on the data, I performed conservation analysis in ConSurf.
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3.1  Data collection

Interleukins of IL-10 family (FIL-10) need to be studied in species from distant 

taxonomic groups to determine their relationships. Species were selected based on their 

evolutionary distance, but also based on completeness and quality of genome sequence. 

Species from groups with expected changes in interleukin structure were preferred. 

Fish  species  were  selected  with  consideration  of  the  past  whole  genome 

duplications (WGD). Tetraodon nigrovidis represents  teleost fish with 1 WGD (Jaillon et 

al.  2004) and  Oncorhynchus  mykiss (rainbow trout)  was  selected  as a representative 

of Salmonidae with two WGDs (Berthelot et al. 2014).

Table 1: Binomial and English names of selected species. The species is mentioned as a representative of mentioned 
taxonomic group.

Binomial name Taxonomic group English name

Calorhinchus milii Chondrichthyes The Australian ghost shark

Danio rerio Actinopterygii - Cypriniformes The Zebrafish

Oncorhynchus mykiss Actinopterygii - Salmoniformes The Rainbow trout

Tetraodon nigroviridis Actiopterygii - Tetraodontiformes The Green spotted puffer

Xenopus tropicalis Amphibia The Western clawed frog

Alligator mississippiensis Crocodylia American alligator

Gallus gallus Aves The red junglefowl/domestic chicken

Ornithorhynchus anatinus Mammalia - Prototheria The Platypus

Mus musculus Mammalia – Rodentia The house mouse

Homo sapiens Mammalia – Primates Modern human

3.1.1  Database search and BLAST

The  NCBI  protein  database  at  https://www.ncbi.nlm.nih.gov/protein/ and 

UniProt protein database at http://www.uniprot.org/ were queried by the binomial name 

of selected model species (Table 1) and name of selected protein. 

Sequences of non-annotated proteins were searched useing Basic local alignment 

search tool  (BLAST) at  https://blast.ncbi.nlm.nih.gov/Blast.cgi.  Protein databases were 

queried  with  the  evolutionary  closest  homologous  protein  sequence  available 

from database search using BLASTp, delta-BLAST and tBLASTn algorithms.

Desired protein sequences were exported from databases in FASTA format. 
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3.1.2  FGENESH+

FGENESH+ (Solovyev 2001) is a prediction tool finding exon sequences in given 

genomic DNA. In this study, FGENESH+ was used for prediction of exon and protein 

sequences  in  unannotated  genomes,  particularly  in  evolutionary  older  species,  where 

genomes of non-model species are not annotated completely or correctly. 

FGENESH+ uses hidden Markov model and similar protein sequence to predict 

protein homologues in eukaryotes. Required inputs for the program are: a homologous 

protein  sequence  from  evolutionary  close  species,  species  of  prediction  and  genomic 

sequence  of the species,  that  based  on  clustering  of proteins  should  include  coding 

sequence of the predicted protein.  FGENESH+ is limited in ability  to process genomic 

sequences  longer  than  ~200  000  bp,  therefore  information  about  clustering  of genes 

is necessary for successful prediction. 

3.1.3  Data formatting and processing

Data from databases  were  downloaded in FASTA format and alignments  were 

preformed in FASTA format. For further analysis, data was converted to NEWICK format 

and  PHYLIP  formats  using  ReadSeq  tool  (Gilbert  2002).  Complete  data  used 

for the analysis  is  presented  in  Tables  2,  3  and  4,  with  unique  identifiers  (UID) 

of the sequences in databases.

UGENE (Okonechnikov et al. 2012) and Jalview  (Waterhouse et al. 2009) were 

used for data visualization and control  The dataset was aligned and checked for error 

and duplicate sequences. For  further visualisation of trees, R package ape (Paradis et al. 

2004) or FigTree at http://tree.bio.ed.ac.uk/ software was used.
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3.1.4  Final dataset

Table 2.  Interleukin sequences from databases. Table  mentions binomial species name, protein name as stated 
in the database, database from which sequence has been obtained and sequence UID.
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Alligator mississippiensis interleukin-10 NCBI 1011565932 Mus musculus Interleukin-19 UniProt Q8CJ70
Alligator mississippiensis interleukin-20 NCBI 1011565931 Mus musculus Interleukin-20 UniProt Q9JKV9
Alligator mississippiensis interleukin-22 NCBI 1011613344 Mus musculus Interleukin-22 UniProt Q9JJY9
Alligator mississippiensis Interferon lambda-3 UniProt A0A151N9Y8 Mus musculus Interleukin-22b UniProt Q9JJY8
Alligator mississippiensis interferon gamma NCBI 1011613342 Mus musculus Interleukin-24 UniProt Q925S4
Callorhinchus milii interleukin-10 NCBI 632963185 Mus musculus Interferon lambda-2 UniProt Q4VK74
Callorhinchus milii interleukin-20-like NCBI 632963320 Mus musculus Interferon lambda-3 UniProt Q8CGK6
Callorhinchus milii interleukin-22 NCBI 632973502 Mus musculus interferon gamma NCBI 237845681
Callorhinchus milii interferon gamma NCBI 632973500 Oncorhynchus mykiss interleukin-10 NCBI 47678893
Danio rerio Interleukin 10 NCBI 190337256 Oncorhynchus mykiss Interleukin 20 NCBI 311771762
Danio rerio interleukin-20 NCBI 130508100 Oncorhynchus mykiss interleukin 22 NCBI 242098052
Danio rerio interleukin 22 NCBI 66472836 Oncorhynchus mykiss interferon-lambda NCBI 209972108
Danio rerio Interleukin 26 NCBI 190339888 Oncorhynchus mykiss interferon gamma NCBI 56291619
Danio rerio interferon-lambda UniProt A0FJI5 Ornithorhynchus anatinus interleukin-10 NCBI 620945898
Danio rerio interferon gamma NCBI 40363745 Ornithorhynchus anatinus interleukin-19 UniProt F6SIJ2
Gallus gallus interleukin-10 NCBI 51173888 Ornithorhynchus anatinus interleukin-20 NCBI 345320613
Gallus gallus interleukin-20 NCBI 118102427 Ornithorhynchus anatinus interleukin-22 NCBI 149632275
Gallus gallus interleukin-22 NCBI 571255083 Ornithorhynchus anatinus interleukin-26 NCBI 149632273
Gallus gallus interleukin 28A NCBI 184186388 Ornithorhynchus anatinus interferon lambda-3 NCBI 345314447
Gallus gallus Interferon lambda-3 UniProt B4ER10 Ornithorhynchus anatinus interferon gamma NCBI 620958883
Gallus gallus interferon-gamma NCBI 27549285 Tetraodon nigroviridis interleukin 10 NCBI 29125864
Homo sapiens Interleukin-10 UniProt P22301 Tetraodon nigroviridis interleukin-20 NCBI 31747223
Homo sapiens Interleukin-19 UniProt Q9UHD0 Tetraodon nigroviridis interleukin-24 NCBI 31747227
Homo sapiens Interleukin-20 UniProt Q9NYY1 Tetraodon nigroviridis Interferon gamma NCBI 28475279
Homo sapiens Interleukin-22 UniProt Q9GZX6 Xenopus tropicalis interleukin-10 NCBI 284813591
Homo sapiens Interleukin-24 UniProt Q13007 Xenopus tropicalis interleukin-20 NCBI 847096564
Homo sapiens Interleukin-26 UniProt Q9NPH9 Xenopus tropicalis interleukin-22 NCBI 213983241
Homo sapiens Interferon lambda-1 UniProt Q8IU54 Xenopus tropicalis interleukin-26 NCBI 212549595
Homo sapiens Interferon lambda-2 UniProt Q8IZJ0 Xenopus tropicalis interferon lambda5 NCBI 256860238
Homo sapiens Interferon lambda-3 UniProt Q8IZI9 Xenopus tropicalis interferon lambda2 NCBI 256860234
Homo sapiens Interferon lambda-4 UniProt K9M1U5 Xenopus tropicalis interferon lambda3 NCBI 847153596
Homo sapiens Interferon gamma UniProt P01579 Xenopus tropicalis interferon lambda1 NCBI 256860232
Mus musculus Interleukin-10 UniProt P18893 Xenopus tropicalis interferon gamma NCBI 301618299



Table  3.  Receptor  sequences  from databases. Table  mentions  binomial  species  name,  protein  name as  stated 
in the database, database from which sequence has been obtained and sequence unique identifier UID.

Table 4. FGENESH+ predicted protein sequences with UIDs of homologue proteins used for prediction. Predicted 
sequences are presented in Supplement 1. Only the marked sequence is used in following analysis.

Protein Homologue ID, species Length, exons Score

Anolis carolinensis IL-20 1011565931 Alligator mississippiensis 174 aa, 5 1282.128223

Gallus gallus IL-26 558155504 Pelodiscus sinensis 178 aa, 4 774.493945

Pelodiscus sinensis IFNLR1 1011571573 Alligator mississippiensis 587 aa, 7 1370.3634

3.2  Multiple sequence alignment (MSA)

Critical step in phylogenetic reconstruction is multiple sequence alignment. Quality 

of  the  tree  is  hugely  dependent  on  the  quality  of  alignment,  therefore  high-quality 

alignment  with  well-defined  positional  homology  is  a  necessary  prerequisite.  Several 

different tools for alignment of higher number of divergent sequences are commonly used.  
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Alligator mississippiensis Interleukin-10 receptor  alpha UniProt A0A151NFH0 Mus musculus interferon gamma receptor 1 NCBI 148671505
Alligator mississippiensis interferon gamma receptor 1 NCBI 1011562648 Mus musculus interferon gamma receptor 2 NCBI 148671877
Alligator mississippiensis interferon gamma receptor 2 NCBI 1011567279 Mus musculus Protein Il20rb UniProt E9Q9A6
Alligator mississippiensis interferon lambda receptor 1 NCBI 1011571573 Mus musculus Interleukin-10 receptor beta UniProt Q61190
Alligator mississippiensis interleukin-20 receptor beta UniProt A0A151LYK3 Mus musculus Interleukin-10 receptor  alpha UniProt Q61727
Alligator mississippiensis Interleukin-20 receptor alpha UniProt A0A151M3P1 Mus musculus Interleukin-20 receptor alpha UniProt Q6PHB0
Alligator mississippiensis Interleukin-10 receptor beta UniProt A0A151ME26 Mus musculus interleukin-22 receptor alpha-2 UniProt Q80XF5
Alligator mississippiensis interleukin-22 receptor alpha-1 UniProt A0A151MML2 Mus musculus interleukin-22 receptor alpha-1 UniProt Q80XZ4
Callorhinchus milii interleukin-20 receptor beta NCBI 632934306 Mus musculus Interferon lambda receptor 1 UniProt Q8CGK5
Callorhinchus milii interferon gamma receptor 1 NCBI 632951240 Oncorhynchus mykiss interferon-gamma receptor 2 NCBI 166406457
Callorhinchus milii Interleukin-22 receptor  alpha-1 UniProt V9KQD1 Oncorhynchus mykiss interferon-gamma receptor alpha NCBI 185132696
Callorhinchus milii Interleukin-10 receptor alpha-like UniProt V9KUB8 Oncorhynchus mykiss interleukin-20 receptor alpha NCBI 185133176
Callorhinchus milii Interleukin-10 receptor  beta UniProt V9KWB3 Oncorhynchus mykiss Interleukin-10 receptor beta NCBI 526252816
Callorhinchus milii Interleukin-20 receptor alpha UniProt V9LAR4 Oncorhynchus mykiss Interleukin-10 receptor  alpha NCBI 642084689
Danio rerio interleukin 10 receptor beta-like NCBI 76563837 Oncorhynchus mykiss interleukin-20 receptor beta NCBI 642096911
Danio rerio interleukin-22 receptor alpha-2 NCBI 113674671 Oncorhynchus mykiss interferon lambda receptor 1 NCBI 642126604
Danio rerio interleukin 10 receptor  alpha NCBI 117606403 Oncorhynchus mykiss IL-22 binding protein UniProt K0J8Z9
Danio rerio Interferon gamma receptor 1 NCBI 190338988 Ornithorhynchus anatinus interferon gamma receptor 1 NCBI 620942285
Danio rerio interleukin-20 receptor beta NCBI 300490528 Ornithorhynchus anatinus interleukin-20 receptor beta NCBI 620955148
Danio rerio interferon lambda receptor 1 NCBI 308275358 Ornithorhynchus anatinus interferon lambda receptor 1 NCBI 620962825
Gallus gallus interferon gamma receptor 2 NCBI 56711284 Ornithorhynchus anatinus Interleukin-10 receptor beta NCBI 620974654
Gallus gallus interleukin 10 receptor 1 NCBI 83999156 Ornithorhynchus anatinus interferon gamma receptor 2 NCBI 1018961860
Gallus gallus Interleukin-10 receptor beta NCBI 84618077 Ornithorhynchus anatinus Interleukin-10 receptor  alpha UniProt F6SGX7
Gallus gallus interferon gamma receptor 1 NCBI 158420743 Ornithorhynchus anatinus interleukin-22 receptor alpha-1 UniProt F6UJT9
Gallus gallus interleukin-22 receptor alpha-1 UniProt E1BRV0 Ornithorhynchus anatinus Interleukin-20 receptor alpha UniProt F6VJN7
Gallus gallus Uncharacterized protein UniProt E1BW22 Ornithorhynchus anatinus interleukin-22 receptor alpha-2 UniProt F6VJR3
Gallus gallus Interleukin-20 receptor alpha UniProt F1NYV0 Tetraodon nigroviridis helical cytokine receptor CRFB8 NCBI 28475293
Gallus gallus interleukin-22 receptor alpha-2 UniProt F1NYV1 Tetraodon nigroviridis interferon gamma receptor alpha NCBI 337729935
Gallus gallus Interferon lambda receptor 1 UniProt K9JA28 Tetraodon nigroviridis interferon lambda receptor 1 UniProt H3C6M4
Homo sapiens Interferon gamma receptor 1 UniProt P15260 Tetraodon nigroviridis interleukin-20 receptor beta UniProt H3CAT4
Homo sapiens Interferon gamma receptor 2 UniProt P38484 Tetraodon nigroviridis interleukin-22 receptor alpha-2 UniProt H3DHY6
Homo sapiens Interleukin-10 receptor beta UniProt Q08334 Tetraodon nigroviridis Interleukin-20 receptor alpha UniProt Q7ZT35
Homo sapiens Interleukin-10 receptor  alpha UniProt Q13651 Xenopus tropicalis interferon gamma receptor 1 NCBI 195540123
Homo sapiens Interleukin-20 receptor  beta UniProt Q6UXL0 Xenopus tropicalis Interleukin-10 receptor beta NCBI 284521656
Homo sapiens Interferon lambda receptor 1 UniProt Q8IU57 Xenopus tropicalis Interferon  lambda receptor 1 NCBI 284795282
Homo sapiens interleukin-22 receptor alpha-1 UniProt Q8N6P7 Xenopus tropicalis interferon gamma receptor 2-like NCBI 512824041
Homo sapiens interleukin-22 receptor alpha-2 UniProt Q969J5 Xenopus tropicalis interleukin-20 receptor beta NCBI 512866588
Homo sapiens Interleukin-20 receptor alpha UniProt Q9UHF4 Xenopus tropicalis interleukin-22 receptor alpha-1 NCBI 847101222

Xenopus tropicalis Interleukin-10 receptor  alpha UniProt F7C5L9



MAFFT, MUSCLE, ClustalW, Clustal OMEGA and T-Coffee, represent some of widely 

used tools for MSA. As the alignment quality is essential for phylogenetic inference, error 

sequences  and  overall  quality  of  the  alignment  needs  to  be  manually  checked 

after aligning sequences. In this study, I used MAFFT tool to align obtained sequences. 

3.2.1  MAFFT 

MAFFT  (multiple  alignment  by  fast  Furier  transform)  uses  identification 

of homologous regions by fast Furier transform (FFT).  MAFFT is claimed to be quicker 

than T-Coffee or ClustalW (Katoh and Standley 2013) while preserving high accuracy. 

FFT identifies homologous regions by grouping of amino acids in sequence by chemical 

and  physical  characteristics  (Katoh  et  al.  2002).  Afterwards,  similarly  to  many other 

alignment  tools,  MAFFT refines  the alignment  to  create  better  results.  MAFFT uses  2 

types of scores to determine the quality of alignment – WSP (weighted sums of pairs) and 

consistency score (also called importance value as described by Katoh et al. (2005)).

MAFFT  is  used  in desktop  version  7.307  (Katoh  and  Standley  2013). 

The --globalpair option for alignment of sequences  of similar length is used. Pairwise 

alignments  are  computed  with  Needleman-Wunsch  algorithm  for  global  alignment 

(Needleman and Wunsch 1970). Maximum number of iterative refinement cycles  is set 

to recommended 1000  (--maxiterate  1000). MAFFT uses  BLOSUM62 scoring matrix 

for amino acid sequences by default. 

After aligning the sequences, I used trimAl tool  (Capella-Gutierrez et al. 2009) 

on web  interface  on  Phylemon2  web  server  at  http://phylemon2.bioinfo.cipf.es/ 

with gappyout option to remove columns unsuitable for further analysis.

3.3  Amino acid evolution model selection

Inference  of  phylogeny  requires  selection  of  best-fitting  model  of  amino  acid 

evolution  for  particular  data.  The  sequence  alignment  was  analysed  by  ProtTest  3 

software (Abascal et al. 2005; Darriba et al. 2011).

Selection was based on Akaike information criterion (AIC) 

AIC=2 p−2 ln(L)
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and Bayesian information criterion (BIC)

BIC=2⋅ln(L)+ p⋅ln (n)

where p corresponds to number of free parameters and L is maximum value of likelihood 

function. With higher penalization for number of parameters, BIC is less likely to propose 

an overfitted model.

Based on both criteria, JTT + Γ + F model was selected for both interleukin and 

receptor alignments.  JTT is  a  protein  evolution model  based on substitutional  matrix 

proposed by (Jones et al. 1992) and is used with Γ distribution of parameters with shape 

parameter  α estimated  within  the  analysis.  F  option  assumes  empirical  amino  acids 

frequencies.  

3.4   Maximum Likelihood inference of phylogeny

Maximum  likelihood  is  one  of  the  basic  methods  of  frequentist  statistics 

(as opposed to Bayesian statistical framework) and it  is widely used in bioinformatics. 

ML method  aims  to  estimate  the  parameters  of  the  model,  when  given  the  data. 

The method  estimates  the  parameters,  so  that  the  likelihood  of  the  data  coming 

from the distribution  defined  by  the  values  of  parameters,  reaches  maximal  possible 

values.

3.4.1  RAxML

For  maximum  likelihood  phylogeny  I  used  RAxML  (Randomised  Axelerated 

maximum  likelihood)  software  (Stamatakis  2014).  RAxML  produces  maximum 

parsimony trees, followed by calculation of likelihood of each tree by evaluating the tree 

parameters.  Nodes  are  supported  by  bootstrap  values  from  standard  bootstrapping 

algorithm or rapid bootstrapping algorithm (Stamatakis et al. 2008), developed to lower 

computational demands of maximum likelihood phylogenetic inference.

ML estimations  were  calculated  by  RAxML MPI  version  8.2.4.  As  the  input, 

RAxML requires alignment in PHYLIP format. Protein evolution model is set according 

to ProtTest 3 results, gamma distribution shape parameter is calculated by RAxML:
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raxmlHPC -f a -s alignment_file.phy -n il -m PROTGAMMAJTTX -p 12345 -x 12345 

-#1000 > log_file

-s  input alignment

-n output files

-m model used for estimation

PROT – protein model

GAMMA - Γ distribution of parameters

X – empirical frequencies

-p random seed for  parsimony inference (important to  reproduce results,  required 
by RAxML)

-x random seed for bootstrapping

-# number of bootstrap replicates

-f a execute rapid bootstrapping in one step with ML search

Above stated command executes rapid bootstrap analysis  (Stamatakis 2014) with 1000 

replicates and afterwards performs throrough search for best ML scoring tree. The output 

of the run is a tree with bootstrap values of the nodes, obtained by one command. Nodes 

with bootstrap values < 50 are not to be considered reliable and are therefore collapsed 

using TreeGraph 2 (Stöver and Müller 2010).

3.5  Bayesian inference of phylogeny

Bayesian statistical methods are widely used not only in biological applications, 

but also  in  physics  and other  fields.  Bayesian inference of  phylogenies  uses  likelihood 

function  to  calculate  posterior  probability  distribution  of  phylogenies  (P(A|B)), 

implementing model of evolution. Following the Bayes’ theorem:

P(A∣B)=
P(B∣A)P(A )

P(B)

where P(A) represents posterior probability of the tree and P(B) likelihood of the data 

the trees  are  calculated.  Nodal  support  of  phylogeny  is  set  by  posterior  probability 

of the node in the phylogenetic tree. 
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3.5.1  MrBayes 

MrBayes  is  a  software  using  above  described  principles  to  infer  phylogenies. 

MrBayes  uses  Markov  chain  Monte  Carlo  methods  (MCMC)  to  sample  from 

the posterior distribution. In default, MrBayes uses Metropolis coupling MCMC to run 

number of heated chains and a cold chain over adjusted distribution with less peaks and 

bigger  steps,  allowing  crossing  the  “valleys”  in  probability,  therefore  it  is  less  likely  

for the analysis  to end  in  a  local  maximum,  rather  than  finding  global  maximum 

probability. 

MrBayes is used in version 3.2.6 (Ronquist et al. 2012; Ronquist and Huelsenbeck 

2003).  MrBayes  works  either  in  interactive  mode,  setting  parameters  one  by  one, 

or by inputting  NEXUS  format  alignment  in  file  with  MrBayes  command  block 

for interleukins:

Begin MrBayes;

lset rates=gamma ngammacat=4;

prset statefreqpr=fixed(empirical) aamodelpr=fixed(jones) shapepr=fixed(3.074);

mcmcp  ngen=5000000  nruns=2  nchains=4  printfreq=250  samplefreq=250 

burnin=1000; 

mcmc; 

sump;

sumt;

end;

where lset and prset specify the model used for the analysis estimated by ProtTest 3, ngen 

parameter sets number of generations of MCMC estimations, nruns number of runs and 

nchains number of heated chains. Printfreq sets frequency of printed results, samplefreq 

frequency of  trees,  that  will  participate  in  final  consensus tree.  Burnin  command sets 

number of initial samples (not probability estimations) that are discarded at the beginning 

of  analysis  for  their  lower  posterior  probability.  In  estimation  of  receptor  phylogeny, 

shapepr parameter was set as calculated previously by ProtTest 3.
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3.6  Comparison of phylogenetic approaches

I compared maximum likelihood and Bayesian estimation of phylogenies visually, 

based on knowledge of relations of  proteins.  Afterwards,  I  calculated distance of  tree 

topologies using  dist.topo tool  of  package  ape (Paradis et al.  2004) in R to quantify 

differences of phylogenies. The dist.topo calculates two types of scores, “PH85”, defining 

difference of internal nodes and “score”, derived from previous but incorporating internal 

branch  lengths  into  the analysis  –  score  calculated  as   square  root  of  the  sum 

of the squared  differences  of the (internal)  branch  lengths,  defining  different  tip 

topologies.

3.7  Ligand-receptor coevolution analysis

For  further  analysis  only  the  best  result  tree  was  selected  from  the  previous 

phylogenetic analyses. Analysis of coevolution, or correlated evolution, where topology 

of the tree and branch lengths should be correlated in related proteins, was preformed 

in R package ape (Paradis et al. 2004). 

3.7.1  Parafit

Analysis of evolutionary relations is performed with Parafit tool  (Legendre et al. 

2002) of the ape package.  Parafit  was originally developed for  testing of host-parasite 

coevolutionary relations, however is applicable to any related coevolving genes, proteins 

or organisms. 

Parafit is able to calculate a global test of coevolution, indicating signs of relations 

within the 2 given trees or to test individual links between host and parasite, or in this  

case,  ligand  and  receptor.  For  testing  of  individual  links  Parafit  requires  an  input 

of the two distance matrices created from unrooted phylogenies of interacting proteins, 

which  I  calculated  in R.  Additionally,  for  individual  protein  link  coevolution  testing, 

a matrix  of  relations  between proteins  based on theoretical  knowledge of interleukin-

receptor interaction is  needed. The input matrices are multiplied to create one matrix 

for the analysis. 
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Test statistics is calculated as a difference of sums of squares of values in the main 

diagonal  of the combined  matrix  and  a  matrix  without  the  particular  interaction 

to determine the importance of the ligand-receptor relation (F1.stat) and in the second 

case,  as  difference  standardised  by  the  trace  of  non-permutated  matrix  (F2.stat). 

Permutation tests are based on random shuffling of values in rows of a relation matrix. 

Results  of  Parafit  search  for  coevolution  were  visualised  by  cophylo  tool 

of phytools package in R (Revell 2012) in comparison with links of ligand-receptor pairs 

with no significant signs of coevolution.

3.8  ConSurf

ConSurf is a software for estimation of evolutionary conserved regions and sites 

in proteins based on secondary or tertiary structure  (Glaser et al. 2003; Landau et al. 

2005). Current version is available at http://consurf.tau.ac.il (Ashkenazy et al. 2016). Based 

on knowledge of conserved sites under slower evolution, biologically important and active 

regions may be predicted. Conserved regions are common in the protein core to maintain 

the structure, higher conservation is also expected in binding and active sites.

ConSurf  calculates  relative  conservation  of  amino  acid  sites  based  on  either 

sequence and BLAST of databases, or MSA. Optionally, known protein structure may be 

input to ConSurf. When used with structure file, ConSurf maps the conservation scheme 

to the structure.

I  used ConSurf  to  find  conservation of  amino acid  sites  in  IL-10 and IFNγ. 

In both cases,  I used an input of  the MSA of interleukins created as described above, 

Bayesian phylogeny of interleukins and a structure file retrieved from RSCB Protein Data 

Bank  (PDB)  at http://www.rcsb.org/pdb,  describing  structure  of  either  IL-10 

(PDB ID: 1Y6K  (Yoon et al. 2005)) or IFNγ (PDB ID: 1FG9  (Thiel et al. 2000)) and 

queried by the protein sequence in Homo sapiens  to establish the conservation.
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4  Results

4.1  Phylogenetic inference

4.1.1  Maximum likelihood

ML  search  for  optimal  phylogeny  (Figure  5)  was  performed  using  RAxML 

software.  Bootstrap  values  for  nodal  support  were  obtained  by  rapid  bootstrapping 

algorithm implemented in RAxML. Support values under 70 are marked by line weight, 

bootstrap  values  under  50  are  generally  not  considered  reliable  and  therefore  were 

collapsed  in  the  result  tree.  Figure  5  shows  unrooted  trees  with  grouping  of  related 

proteins with several polytomies in the tree created by RAxML.

Resulting trees from ML search for optimal tree have highly unresolved relations 

between the proteins and therefore  only show grouping of  particular interleukins  and 

receptors and relations among the proteins is in many cases unclear. In the interleukin 

tree,  grouping  of  IFN group is  shown with  support  between  50  and  70.  In  the  tree 

of receptors,  group of IL22RA1, IL20RA and IL22BP is  formed,  IL10RB and IL20RB 

form a group, the rest of relations remains unresolved.

Figure 5. Unrooted maximum likelihood tree of FIL-10 interleukins (left) and their receptors.  Line weight is scaled 
to bootstrap values. Nodes with bootstrap support < 50 were collapsed. Colours  and colour gradient of receptors 
shows relation to interleukins. Results were visualised by FigTree and edited.

34



4.1.2  Bayesian

Bayesian inference of phylogeny is calculated in MrBayes software. The result tree 

is concatenated from tree sampling from the distribution defined by command block given 

to MrBayes. Nodal support is provided by node posterior probability values. Probability 

values of all  nodes in both phylogenies were higher than 55, however,  MrBayes itself  

creates polytomies in the topology.

Figure  6  shows  resolved  relations  of  interleukins  in  FIL-10  on  the  left  and 

the receptor  relations  are  shown  on  the  right.  The  interleukin  tree  shows  grouping 

of IFNγ into  2  groups,  one  containing  only  fish  species.  The  grouping  is  supported 

by 93%  posterior  probability.  The following  node  shows  lower  posterior  probability 

of 60%. The receptor tree shows relation of IFNGR2 to FIL-10 receptors, IFNLR1 is 

divided into 2 groups, one containing mammal, bird and amphibian species, another  with 

only fish species. 

 The result  trees  are  visualised  in  detail  with  species  specific  tip  labels 

as phylograms  of  FIL-10  (Figure  7)  and  receptors  individual  FIL-10 interleukins  use 

for signalling (Figure 8).

Figure 6. Unrooted Bayesian tree of FIL-10 interleukins (left) and their receptors.  Line weight is scaled to posterior 
probability values. Colours and colour gradient of receptors show relation to interleukins. Results were visualised 
by FigTree and edited.
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Figure 7. MrBayes phylogeny of interleukins of FIL-10. Node labels mark posterior probabilities. Result trees were 
visualised by FigTree. 
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Figure 8. MrBayes phylogeny of receptors of FIL-10.  Node labels represent posterior probabilities of the nodes. 
Result trees were visualised by FigTree.
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4.1.3  Comparison of phylogenetic approaches

After  inferring  the  phylogenies  by  two  distinct  methods,  only  one  resulting 

phylogeny is to be used in further analysis. I tested similarity of the tree topologies created  

by RAxML and MrBayes with R ape package tool dist.topo. 

In  phylogenies  of  FIL-10,  “PH85”  method  showing  difference  of  number 

of internal  branches  was  17,  and  “score”  method  incorporating  branch  lengths 

into the calculation was 3.1996. FIL-10 receptors showed differences in internal branch 

numbers  to  be  9  and  “score”  value  impaired  by  branch  length  to  be  0.5480.  Based 

on visual comparison and analysis of differences of topologies, Bayesian result trees were 

selected for further analysis.

4.2  Interleukin-receptor coevolution analysis

I  calculated  2  types  of  coevolutionary  statistics  using  Parafit,  test  of  global 

coevolution  within  the  two trees  and  tests  of  individual  links  between  receptors  and 

ligands.  Global  test  of coevolution shown significant  coevolution within  the two trees 

with p-value = 0.001. 

In  the  test  of  individual  interactions  two  types  of  statistics  were  calculated. 

Significant interleukin receptor coevolution was found in most given relations (Figure 9) 

using both statistical tests (F1.stat and F2.stat) (Table 5) with p-value lower than 0.01. 

No  significant  signs  of coevolution  between  the interleukin  and  receptor  were  found 

in IL-26 - IL10RB relation in every species tested, from fish to human proteins included 

in the analysis. IFNλ and both its receptors (IFNLR1 and IL10RA) were not significantly 

coevolved in Mus musculus and Gallus gallus. IL-19 and its receptors (IL20RA, IL20RB) 

showed no significant  coevolution in  none of  the  tested mammals  (IL  is  present  only 

in mammals). IL-20 shows no signs of significant coevolution with its receptors (IL20RA 

and IL20RB) in Callorhinchus milii, Danio rerio and Gallus gallus.
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Table  5.  Parafit  results  of  coevolution  of  FIL-10  and  corresponding  receptors.  Interactions  with  no  detected 
significant coevolution was found are marked by grey. Types of used statistics are described in Chapter 3.7.1.

Interleukin Receptor F2..stat p.F1 F2..stat p.F2

IFNL2_Mus_musculus IFNLR1_Mus_musculus 79 0.398 0.0023 0.108

IFNL2_Mus_musculus IL10RA_Mus_musculus 78 0.337 0.0023 0.057

IFNG_Alligator_mississippiensis IFNGR1_Alligator_mississippiensis 529 0.006 0.0153 0.001

IFNG_Alligator_mississippiensis IFNGR2_Alligator_mississippiensis 1026 0.003 0.0296 0.001

IFNG_Callorhinchus_milii IFNGR1_Callorhinchus_milii 637 0.003 0.0184 0.001

IFNG_Danio_rerio IFNGR1_Danio_rerio 727 0.002 0.0210 0.001

IFNG_Gallus_gallus IFNGR1_Gallus_gallus 698 0.002 0.0201 0.001

IFNG_Gallus_gallus IFNGR2_Gallus_gallus 1112 0.002 0.0321 0.001

IFNG_Homo_sapiens IFNGR1_Homo_sapiens 899 0.001 0.0259 0.001

IFNG_Homo_sapiens IFNGR2_Homo_sapiens 1155 0.001 0.0333 0.001

IFNG_Mus_musculus IFNGR1_Mus_musculus 789 0.003 0.0228 0.001

IFNG_Mus_musculus IFNGR1_Mus_musculus 956 0.001 0.0276 0.001

IFNG_Oncorhynchus_mykiss IFNGR1_Oncorhynchus_mykiss 526 0.001 0.0152 0.001

IFNG_Oncorhynchus_mykiss IFNGR2_Oncorhynchus_mykiss 953 0.001 0.0275 0.001

IFNG_Ornithorhynchus_anatinus IFNGR1_Ornithorhynchus_mykiss 462 0.001 0.0133 0.001

IFNG_Ornithorhynchus_anatinus IFNGR2_Ornithorhynchus_anatinus 953 0.001 0.0275 0.001

IFNG_Xenopus_tropicalis IFNGR1_Xenopus_tropicalis 517 0.003 0.0149 0.001

IFNG_Xenopus_tropicalis IFNGR2_Xenopus_tropicalis 702 0.002 0.0202 0.001

IFNL_Danio_rerio IFNLR1_Danio_rerio 594 0.004 0.0171 0.001

IFNL_Danio_rerio IL10RB_Danio_rerio 564 0.006 0.0163 0.001

IFNL_Oncorhynchus_mykiss IFNLR1_Oncorhynchus_mykiss 593 0.008 0.0171 0.001

IFNL_Oncorhynchus_mykiss IL10RB_Oncorhynchus_mykiss 480 0.014 0.0138 0.001

IFNL_Tetraodon_nigroviridis IFNLR1_Tetraodon_nigroviridis 1268 0.001 0.0366 0.001

IFNL1_Homo_sapiens IFNLR1_Homo_sapiens 1178 0.001 0.0340 0.001

IFNL1_Homo_sapiens IL10RB_Homo_sapiens 938 0.002 0.0271 0.001

IFNL1_Xenopus_tropicalis IFNLR1_Xenopus_tropicalis 1240 0.001 0.0358 0.001

IFNL1_Xenopus_tropicalis IL10RB_Xenopus_tropicalis 1164 0.003 0.0336 0.001

IFNL2_Homo_sapiens IFNLR1_Homo_sapiens 1075 0.001 0.0310 0.001

IFNL2_Homo_sapiens IL10RB_Homo_sapiens 859 0.003 0.0248 0.001

IFNL2_Xenopus_tropicalis IFNLR1_Xenopus_tropicalis 1215 0.001 0.0350 0.001

IFNL2_Xenopus_tropicalis IL10RB_Xenopus_tropicalis 1146 0.003 0.0331 0.001

IFNL3_Alligator_mississippiensis IFNLR1_Alligator_mississippiensis 421 0.027 0.0121 0.001

IFNL3_Alligator_mississippiensis IL10RB_Alligator_mississippiensis 929 0.001 0.0268 0.001

IFNL3_Gallus_gallus IFNLR1_Gallus_gallus 907 0.001 0.0262 0.001

IFNL3_Gallus_gallus IL10RB_Gallus_gallus 599 0.004 0.0173 0.001

IFNL3_Homo_sapiens IFNLR1_Homo_sapiens 862 0.001 0.0249 0.001

IFNL3_Homo_sapiens IL10RB_Homo_sapiens 694 0.005 0.0200 0.001

IFNL3_Mus_musculus IFNLR1_Mus_musculus 906 0.001 0.0261 0.001

IFNL3_Mus_musculus IL10RB_Mus_musculus 509 0.004 0.0147 0.001

IFNL3_Ornithorhynchus_anatinus IFNLR1_Ornithorhynchus_anatinus 1032 0.001 0.0298 0.001

IFNL3_Ornithorhynchus_anatinus IL10RB_Ornithorhynchus_anatinus 837 0.003 0.0242 0.001

IFNL3_Xenopus_tropicalis IFNLR1_Xenopus_tropicalis 1282 0.001 0.0370 0.001

IFNL3_Xenopus_tropicalis IL10RB_Xenopus_tropicalis 1252 0.003 0.0361 0.001

IFNL4_Homo_sapiens IFNLR1_Homo_sapiens 947 0.001 0.0273 0.001

IFNL4_Homo_sapiens IL10RB_Homo_sapiens 743 0.005 0.0214 0.001
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IFNL5_Xenopus_tropicalis IFNLR1_Xenopus_tropicalis 895 0.001 0.0258 0.001

IFNL5_Xenopus_tropicalis IL10RB_Xenopus_tropicalis 876 0.006 0.0253 0.001

IL10_Alligator_mississippiensis IL10RA_Alligator_mississippiensis 753 0.001 0.0217 0.001

IL10_Alligator_mississippiensis IL10RB_Alligator_mississippiensis 868 0.003 0.0250 0.001

IL10_Callorhinchus_milii IL10RA_Callorhinchus_milii 742 0.002 0.0214 0.001

IL10_Callorhinchus_milii IL10RB_Callorhinchus_milii 700 0.005 0.0202 0.001

IL10_Danio_rerio IL10RA_Danio_rerio 1050 0.001 0.0303 0.001

IL10_Danio_rerio IL10RB_Danio_rerio 826 0.002 0.0238 0.001

IL10_Gallus_gallus IL10RA_Gallus_gallus 1074 0.001 0.0310 0.001

IL10_Gallus_gallus IL10RB_Gallus_gallus 602 0.002 0.0174 0.001

IL10_Homo_sapiens IL10RA_Homo_sapiens 1110 0.001 0.0320 0.001

IL10_Homo_sapiens IL10RB_Homo_sapiens 615 0.008 0.0177 0.001

IL10_Mus_musculus IL10RA_Mus_musculus 1042 0.001 0.0301 0.001

IL10_Mus_musculus IL10RB_Mus_musculus 465 0.004 0.0134 0.001

IL10_Oncorhynchus_mykiss IL10RA_Oncorhynchus_mykiss 844 0.004 0.0243 0.001

IL10_Oncorhynchus_mykiss IL10RB_Oncorhynchus_mykiss 681 0.004 0.0197 0.001

IL10_Ornithorhynchus_anatinus IL10RA_Ornithorhynchus_anatinus 730 0.005 0.0211 0.001

IL10_Ornithorhynchus_anatinus IL10RB_Ornithorhynchus_anatinus 663 0.003 0.0191 0.001

IL10_Tetraodon_nigroviridis IL10RA_Tetraodon_nigroviridis 799 0.002 0.0230 0.001

IL10_Xenopus_tropicalis IL10RA_Xenopus_tropicalis 677 0.005 0.0195 0.001

IL10_Xenopus_tropicalis IL10RB_Xenopus_tropicalis 798 0.008 0.0230 0.001

IL19_Homo_sapiens IL20RA_Homo_sapiens -714 0.998 -0.0206 1.000

IL19_Homo_sapiens IL20RB_Homo_sapiens -892 0.998 -0.0257 1.000

IL19_Mus_musculus IL20RA_Mus_musculus -756 0.993 -0.0218 1.000

IL19_Mus_musculus IL20RB_Mus_musculus -993 0.998 -0.0286 1.000

IL19_Ornithorhynchus_anatinus IL20RA_Ornithorhynchus_anatinus -856 1.000 -0.0247 1.000

IL19_Ornithorhynchus_anatinus IL20RB_Ornithorhynchus_anatinus -1046 1.000 -0.0302 1.000

IL20_Alligator_mississippiensis IL20RA_Alligator_mississippiensis 697 0.008 0.0201 0.001

IL20_Alligator_mississippiensis IL20RB_Alligator_mississippiensis -850 0.999 -0.0245 1.000

IL20_Alligator_mississippiensis IL22RA1_Alligator_mississippiensis -793 1.000 -0.0229 1.000

IL20_Callorhinchus_milii IL20RA_Callorhinchus_milii 506 0.010 0.0146 0.001

IL20_Callorhinchus_milii IL20RB_Callorhinchus_milii -826 0.999 -0.0238 1.000

IL20_Danio_rerio IL22RA1_Danio_rerio -801 0.999 -0.0231 1.000

IL20_Danio_rerio IL20RB_Danio_rerio -851 0.999 -0.0246 1.000

IL20_Gallus_gallus IL20RA_Gallus_gallus -683 1.000 -0.0197 1.000

IL20_Gallus_gallus IL20RB_Gallus_gallus 1451 0.001 0.0418 0.001

IL20_Gallus_gallus IL22RA1_Gallus_gallus 1149 0.001 0.0332 0.001

IL20_Homo_sapiens IL20RA_Homo_sapiens 1391 0.001 0.0401 0.001

IL20_Homo_sapiens IL20RB_Homo_sapiens 1631 0.001 0.0471 0.001

IL20_Homo_sapiens IL22RA1_Homo_sapiens 1328 0.001 0.0383 0.001

IL20_Mus_musculus IL20RA_Mus_musculus 1406 0.001 0.0406 0.001

IL20_Mus_musculus IL20RB_Mus_musculus 1663 0.001 0.0480 0.001

IL20_Mus_musculus IL22RA1_Mus_musculus 1196 0.001 0.0345 0.001

IL20_Oncorhynchus_mykiss IL20RA_Oncorhynchus_mykiss 2195 0.001 0.0633 0.001

IL20_Oncorhynchus_mykiss IL20RB_Oncorhynchus_mykiss 2529 0.001 0.0729 0.001

IL20_Ornithorhynchus_anatinus IL20RA_Ornithorhynchus_anatinus 2250 0.001 0.0649 0.001

IL20_Ornithorhynchus_anatinus IL20RB_Ornithorhynchus_anatinus 2422 0.001 0.0699 0.001

40



IL20_Ornithorhynchus_anatinus IL22RA1_Ornithorhynchus_anatinus 415 0.001 0.0120 0.001

IL20_Tetraodon_nigroviridis IL20RA_Tetraodon_nigroviridis 2288 0.001 0.0660 0.001

IL20_Tetraodon_nigroviridis IL20RB_Tetraodon_nigroviridis 1784 0.001 0.0514 0.001

IL20_Xenopus_tropicalis IL20RB_Xenopus_tropicalis 1806 0.001 0.0521 0.001

IL22_Alligator_mississippiensis IL20RB_Alligator_mississippiensis 2590 0.001 0.0747 0.001

IL22_Alligator_mississippiensis IL22RA1_Alligator_mississippiensis 2059 0.001 0.0594 0.001

IL22_Callorhinchus_milii IL20RB_Callorhinchus_milii 2605 0.001 0.0751 0.001

IL22_Callorhinchus_milii IL22RA1_Callorhinchus_milii 2175 0.001 0.0627 0.001

IL22_Danio_rerio IL20RB_Danio_rerio 2552 0.001 0.0736 0.001

IL22_Danio_rerio IL22BP_Danio_rerio 1739 0.001 0.0502 0.001

IL22_Gallus_gallus IL20RB_Gallus_gallus 2573 0.001 0.0742 0.001

IL22_Gallus_gallus IL22BP_Gallus_gallus 2097 0.001 0.0605 0.001

IL22_Gallus_gallus IL22RA1_Gallus_gallus 2318 0.001 0.0669 0.001

IL22_Homo_sapiens IL20RB_Homo_sapiens 2757 0.001 0.0795 0.001

IL22_Homo_sapiens IL22BP_Homo_sapiens 2672 0.001 0.0771 0.001

IL22_Homo_sapiens IL22RA1_Homo_sapiens 2600 0.001 0.0750 0.001

IL22_Mus_musculus IL20RB_Mus_musculus 3163 0.001 0.0912 0.001

IL22_Mus_musculus IL22BP_Mus_musculus 2434 0.001 0.0702 0.001

IL22_Mus_musculus IL22RA1_Mus_musculus 2541 0.001 0.0733 0.001

IL22_Oncorhynchus_mykiss IL20RB_Oncorhynchus_mykiss 3112 0.001 0.0898 0.001

IL22_Oncorhynchus_mykiss IL22BP_Oncorhynchus_mykiss 2431 0.001 0.0701 0.001

IL22_Ornithorhynchus_anatinus IL20RB_Ornithorhynchus_anatinus 2943 0.001 0.0849 0.001

IL22_Ornithorhynchus_anatinus IL22BP_Ornithorhynchus_anatinus 2260 0.001 0.0652 0.001

IL22_Ornithorhynchus_anatinus IL22RA1_Ornithorhynchus_anatinus 532 0.001 0.0154 0.001

IL22_Xenopus_tropicalis IL22RA1_Xenopus_tropicalis 483 0.001 0.0139 0.001

IL22B_Mus_musculus IL20RB_Mus_musculus 3241 0.001 0.0935 0.001

IL22B_Mus_musculus IL22RA1_Mus_musculus 2519 0.001 0.0726 0.001

IL24_Homo_sapiens IL20RA_Homo_sapiens 758 0.007 0.0219 0.001

IL24_Homo_sapiens IL20RB_Homo_sapiens 920 0.006 0.0265 0.001

IL24_Homo_sapiens IL22RA1_Homo_sapiens 560 0.019 0.0161 0.001

IL24_Mus_musculus IL20RA_Mus_musculus 850 0.009 0.0245 0.001

IL24_Mus_musculus IL20RB_Mus_musculus 1016 0.008 0.0293 0.001

IL24_Mus_musculus IL22RA1_Mus_musculus 537 0.012 0.0155 0.001

IL24_Tetraodon_nigroviridis IL20RA_Tetraodon_nigroviridis 874 0.013 0.0252 0.001

IL24_Tetraodon_nigroviridis IL20RB_Tetraodon_nigroviridis 712 0.005 0.0205 0.001

IL26_Danio_rerio IL10RB_Danio_rerio -493 0.999 -0.0142 1.000

IL26_Danio_rerio IL20RB_Danio_rerio 912 0.006 0.0263 0.001

IL26_Gallus_gallus IL10RB_Gallus_gallus -234 0.978 -0.0068 1.000

IL26_Gallus_gallus IL20RB_Gallus_gallus 915 0.007 0.0264 0.001

IL26_Homo_sapiens IL10RB_Homo_sapiens -299 0.982 -0.0086 1.000

IL26_Homo_sapiens IL20RB_Homo_sapiens 1029 0.004 0.0297 0.001

IL26_Ornithorhynchus_anatinus IL10RB_Ornithorhynchus_anatinus -417 0.986 -0.0120 1.000

IL26_Ornithorhynchus_anatinus IL20RB_Ornithorhynchus_anatinus 976 0.004 0.0282 0.001

IL26_Xenopus_tropicalis IL10RB_Xenopus_tropicalis -436 0.984 -0.0126 1.000

IL26_Xenopus_tropicalis IL20RB_Xenopus_tropicalis 631 0.013 0.0182 0.001

IL28_Gallus_gallus IFNLR1_Gallus_gallus -435 0.993 -0.0125 1.000

IL28_Gallus_gallus IL10RB_Gallus_gallus -205 0.967 -0.0059 1.000
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Figure  9.  Graphical  representation  of  coevolutionary  relations  and  Parafit  analysis.  Red  lines  represent  links 
between  proteins  with  significant  coevolution,  black  lines  represent  tested  links  with  no  significant  signs 
of coevolution. 
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4.3  Protein conservation

Protein  conservation  was  analysed  based  on  amino-acid  residue  conservation 

in the dataset. The analysis was performed for interleukin 10 (in the structure in complex 

with  IL10RA,  PDB  ID:  1Y6K  (Yoon  et  al.  2005) and  IFNγ  in  the  multiplex 

with IFNGR1, PDB ID: 1FG9 (Thiel et al. 2000). 

Figure  10  shows  conservation  of  amino  acid  residues  in  IL-10,  analysed 

by ConSurf (cyan represents the most variable regions, while magenta coloured regions 

are  highest  conserved)  conservation  of  IFNγ  amino  acid  residues  and  comparison 

of the two  to the hydrophobicity  conservation.  Highly  hydrophobic  region  marked 

by green is  not overlapping with high conservation of  amino acid  marked by yellow, 

second  highly  conserved  hydrophobicity  region  is  partially  overlapped.  The  regions 

of highest conservation of amino acid residues are identical for IL-10 and IFNγ.

Analysis of amino acid conservation is subsequently mapped to known structure 

of the protein. Conservation of amino acid residues in the structure of IL-10 is shown 

in Figure  11,  with  interaction  with  one  IL10RA chain  in  monomer  and  homodimer. 

The conserved regions are visible in the core of the protein. 

Amino acid residue conservation of IFNγ is mapped to the structure in Figure 12. 

The mapping shows interaction of one IFNγ molecule with IFNGR1 subunits and IFNγ 

dimer  interaction  with  the  receptor.  The  conserved  regions  are  found  in  the  centre 

of the protein  interacting  with  second  IFNγ subunit  and  facing  interaction  interface 

with IFNGR1 chain.
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Figure 10.  TOP: Conservation scores  of  IL-10 calculated by ConSurf,  scale  from cyan (lowest  conservation) 
to magenta (highly conserved sites). MIDDLE: Conservation scores  of IFNγ calculated by ConSurf, scale from 
cyan (lowest conservation) to magenta (highly conserved sites). BOTTOM: Visualisation of receptor protein MSA 
created by MAFFT and automatically trimmed using trimAl. Colour scheme marks hydrophobicity of amino acids 
(hydrophilic in blue, hydrophobic in red) Image obtained in UGENE software. 
  Green rectangle  marks  region of  highly conserved hydrophobicity region,  yellow high conservation of  sites 
analysed by ConSurf. Similarity of the overall architecture of IL-10 and IFNγ is obvious.
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Figure 11. ConSurf scheme of amino acid residue conservation in IL-10 monomer (top) and homodimer (bottom) 
in complex with IL10RA (PDB:1Y6K) based on whole protein family. Both receptor chains are drawn as grey 
lines, IL-10 amino acids as spheres coloured by ConSurf. 
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Figure 12. ConSurf scheme of amino acid residue conservation of IFNγ monomer (top) and homodimer (bottom) 
in complex with 3 IFNGR1 chains (PDB:1FG9), based on the whole protein family. -S marks incomplete side 
chains in the  structure.  All  receptor chains are drawn as  grey lines,  IFNγ amino acids  as  spheres  coloured 
by ConSurf. 
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5  Discussion

Interleukin  10  family  represents  an  important  family  of  immune  signalling 

molecules  directing  immune  response  in  divergent  manner.  Phylogenetic  relations 

of the proteins with different, in some cases even opposite effect is not yet well described, 

similarly to FIL-10 evolutionary relation to IFNs with mainly antiviral activity. FIL-10 

with included  closely  related  IFNγ  and  IFNλs,  as  analysed  in  this  study,  uses 

combinations  of shared  receptor  subunits  with  different  or  even  opposite  signalling 

outcome. Therefore, evolutionary relations are expected in the case of related proteins. 

Coevolution in sense of one to one substitution or convergent evolution of interleukins 

and  receptors  is  detectable  in evolving  genome  and  subsequently  in  proteins  and  is 

analysable by statistical methods.

5.1  Phylogenies by ML and Bayesian approaches

Evolution of sequences may be analysed by several approaches. I analysed proteins 

by  maximum-likelihood approach  and Bayesian  approach.  From results  of maximum 

likelihood analysis,  relations  of  the  proteins  within  the  family  were  hardly  definable, 

showing only grouping of orthologous proteins.  Bayesian analysis  of  the  same dataset 

showed relation of the orthologues in groups as well as relation between the proteins.

As  the  dataset  consists  of  considerably  high  number  of  proteins  of  divergent 

species, length and variability of analysable regions is crucial for the successful definition 

of the relations among the family members. Bayesian analysis showed results with higher 

definition of the relations. The difference of the output of the methods may be caused 

by mechanism of inference of phylogeny, as well as different requirements for the data 

diversity. The maximum likelihood analysis creates several phylogenies, where the best 

scoring ML tree is found and afterwards used to map bootstrap values onto it. The best  

scoring  ML tree  may  not  describe  the  biological  evolution  exactly,  since  it  is  highly 

dependent  on  selection  of  a  model  describing  amino  acid  evolution  appropriate 

for the given data, and evaluation of parameters in ML search for the best scoring tree. 

In the Bayesian  approach,  several  trees  from  predefined  random  sampling 

from the posterior distribution of the trees are used to create a consensus tree. Consensus 

tree, created with sampling of a number of trees is to be less likely to propose a phylogeny 
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that  is  not well  describing the evolution of  the  protein  family,  while  second or third 

to the best  scoring  ML  phylogeny  may  propose  better  result  of  tree  phylogeny 

with subsequently higher bootstrap values.

The  difference  of  the  two  approaches  is  compared  visually  (Figure  5  and  6). 

Differences  in  the  topology  are  clear,  but  the  difference  was  also  quantified 

as the difference of number of internal nodes and difference with a correction as described 

in Chapter 4.1.3. Differences in the topologies were higher in the trees of interleukins, 

than in  receptor  inference.  Considering  the  limitation  of  ML  approach  in  resolution 

of the differences discussed above, the difference in topologies may be explained by higher 

variability  of  amino  acid  residues  in  analysed  receptor  sequences,  in  comparison 

to the interleukin sequences.

For the further analysis, I selected Bayesian phylogenies based on higher resolution 

of inter protein relations. In the Bayesian phylogeny, we can see grouping of functionally 

similar  proteins.  IL-19  and IL-20  are  shown to  be  very  closely  related,  with  IL-19 

diverged  from  IL-20  very  late  in  evolution.  IL-19  is  currently,  according 

to the information in  sequence databases,  known to be expressed only  in  mammalian 

species,  and  the  resulting  phylogeny  supports  the  divergence  from mammalian  IL-20. 

The  branch of the tree with IL-19 and IL-20 also contains IL-24, closely related with its 

function in skin and epithelia.

Group  of  interferons  –  IFNγ  and  IFNλ  -  form  a  rather  distinct  group 

from the rest of analysed proteins. The corresponding receptors IFNLGR1 and IFNLR1 

seem to be rather unrelated to the rest of the receptors as well, however the distinction is  

not clear. Interestingly, IFNγ evolution seems to be split into two parts, with fish IFNγ 

as evolutionary  older  proteins  forming  one  group  and  amphibian,  bird  and  mammal 

IFNγ forming another. No such separation is present in IFNGR1 or IFNGR2, however 

proteins annotated as IFNLR1 form two groups of proteins. In this context, structural 

research  of  fish  IFNγ  is  of  interest  as  it  may  elucidate  some  of  the  differences 

distinguishing them from the other IFNγ. 

IL-26  of  Danio  rerio represents  a  single  protein  unrelated  closely  to the other 

protein  groups  in  the  analysis.  The  gene  for  IL-26  in  Danio  rerio was  described 

by genomic  analysis  (Igawa  et  al.  2006) however  the  protein  is  quite  distinct 

from the other  members  in  the  phylogeny.  Danio  rerio underwent  a WGD  recently 

in evolution, therefore 2 copies of IL-26 are present in the genome. Thus, one of the genes 
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may  have  changed  under  evolutionary  pressure  to  acquire  different  function, 

with the second  copy  maintaining  the  function  of  IL-26.  However,  the  distinction 

of Danio rerio IL-26 is seemingly rather caused by incorrect database annotation and not 

evolutionary events.

IL22BP is a soluble protein, that binds IL-22 and competitively inhibits activation 

of  JaK/STAT pathway  by  blocking  interaction  of  IL-22  with  IL22RA1  and  IL10RB 

(Kotenko et al. 2001). In the phylogeny of receptors, IL22BP is diverged from subgroup 

of IL20RA and IL22RA1, which supports hypothesis, that IL22BP, an IL-22 antagonist, 

has evolved from IL22RA1, which is used by IL-22 for signalling, by loss or mutation 

in the membrane domain.

The  resulting  phylogenies  describe  relations  within  the  groups  of  interleukins 

in one  phylogeny  and  receptors  in  the  second,  however  due  to  unique  combinations 

of the shared  receptor  subunits,  coevolution  of interleukins  and  their  receptors  is 

not obvious  from  the  phylogenies  at  the  first  sight.  Therefore,  coevolution  between 

the ligands  and  receptors  needs  to  be  analysed  from the phylogenies  using  numerical 

methods.

5.2  Coevolution of interleukins and their receptors

We expect coevolution of related proteins not only in selection of parasites and 

hosts, where coevolution is often mediated by positive selection pressures (Anderson and 

May 1982),  but also in inter-protein interactions of  various types.  In the coevolution 

of ligand-receptor pairs, purifying selection is expected, together with interrelated changes 

in amino acid structure in active sites  (Fraser et al.  2002), since preservation of active 

amino acid sites is necessary to maintain the signalling function. Changes in evolutionary 

relations between functionally connected proteins are detectable at the genetic level and 

subsequently  the  encoded  protein  structure.  Coevolution  was  analysed  using  method 

originally developed for comparison of evolution in parasites and hosts, since the analytic 

method implements presumptions of the evolution applicable likewise to ligand-receptor 

coevolution (Legendre et al. 2002).

Previous  research  on  IL-10  family  evolution  and  evolution  of  receptors 

of the family  showed possible  relation among the interleukins  of  the  family,  however, 
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methods  of  analysis  are  not  well  specified  (Kotenko  and  Langer  2004) or  structure 

of the used  data  provides  results  with  limited  number  of  branches  with  acceptable 

bootstrap, values to identify the relations and the common ancestor (Lutfalla et al. 2003) 

and relation of receptors and proteins is assumed, but not tested. Insight into coevolution 

of interleukins from FIL-10, emergence of new interleukins in evolution and correlation 

of evolution of interleukin-receptor pairs is provided by Krause and Pestka (2005) who 

assume that both IL-10 and IFNγ and some other members of the family as well as their 

receptors  diverged  before  formation  of  vertebrates.  Thus,  correlation  of  evolution 

of the signalling  pairs  should  be  strong  in  ancient  species,  and  with  newly  emerged 

interleukins be decreasing.

In this study, correlated evolution of interleukins of FIL-10 is detected in most 

tested  interactions.  However,  several  inter-protein  interactions  were  statistically 

insignificant in more than one species, or even in every tested case. The most versatile 

receptor in the family – IL10RB is shared by IL-10, IL-22, IL-26 and IFNλ  of all 

subtypes.  However,  in  case  of interaction  with IL-26  and  IFNλ,  no significant 

coevolution with IL10RB  was detected.  IL-26, where all  tested relations with IL10RB 

were insignificant,  and IFNλ, which also shares IL10RB for signalling, are according 

to the calculated phylogeny and in addition to consideration of functional aspects, more 

distant  members  of  the  protein  family.  Both proteins  are  crucial  for  antiviral  and 

antimicrobial response of the organism, unlike the other members of the family involved 

mainly in skin and epidermis immune reactions.  IFNλ uses IFNLR1 receptor subunit 

for signalling,  unshared  with  the  other  members  of the FIL-10.  In the  interaction 

with IFNLR1, significant coevolution is found, thus we may assume that the evolution 

of IFNλ is  directed by reciprocal  changes  between IFNλ and IFNLR1. IL-26 signals 

through a shared subunit of IL10RB and subunit of IL20RB used by less interleukins for 

signalling, therefore evolution of IL-26 is likely more affected by IL20RB than IL10RB. 

Correlation of IL-19 and both of its receptors evolution is insignificant in all tested 

cases, coevolution of IL-20 and its receptors is in some cases insignificant as well. IL-19 

diverges  from  IL-20  in  mammals,  therefore  the  proteins  are  highly  similar  in  their 

function as well as usage of the receptor subunits. Since the two use the same receptor 

subunits,  despite  the  divergence,  certain  level  of similarity  needs  to  be  maintained 

by ongoing processes of  negative selection in the interleukins and receptor,  rather than 

directed  coevolution.  The  further  divergence  of  IL-19  and  IL-20  without  influence 

50



of coevolution with IL20RA and IL20RB is unlikely, since it would likely lead to loss 

of signalling function in the two mentioned interleukins.

Evolution  of  proteins  with  more  interactions  with  other  proteins  are  generally 

slower  than interaction  of  more  independent  proteins  (Fraser  et  al.  2002).  Therefore, 

interleukins  using  IL10RB  with  more  interactions  with  other  proteins  are  generally 

expected to be more conserved than proteins with more independent signalling subunits. 

In the tree of interleukins, it is clear that subfamily of IL-19, IL-20 and IL-24 is more 

diverged  from the  other  proteins  in  the family,  which may be a  result  of  divergence  

of independent  receptors  from  the  receptor  group.  IL10RB,  the  most  promiscuous 

receptor chain is  further diverged from the other members of the family,  therefore its 

divergence  may  force  changes  in  the  related  interleukins.  Nevertheless,  the  question 

of evolutionary divergence time is hard to be answered from unrooted trees, definition 

of ancestral sequence of the proteins is necessary to define the evolutionary age.

5.3  Conserved amino acid sites and domains

Proteins  encoded  in  one  genome  evolve  under  different  rates,  dependent 

on the functional  network  connecting  it  to  other  proteins.  The  same  differentiation 

of evolutionary speed occurs in amino acids in single gene and further in genome, regions 

in related proteins evolve dependently on each other  (Fraser et  al.  2002).  Coevolution 

of the protein families is however a complex process whose speed is dependent on regions 

that  need to be conserved to maintain the folding,  solubility,  and in  a broader sense 

function of coevolving proteins. 

Conserved  amino acid  residues  and  whole  regions  are  most  expected  in  cores 

of proteins  to  maintain  protein  folding  and  thus  binding  interfaces  and  even  more 

so active sites in the protein and therefore are quite easily detected by analysing number 

of amino acid substitutions (Pils et al. 2005). Regions of amino acid residue variability are 

commonly on the surface of the protein. In the analysis of conservation, both monomeric 

and  dimeric  forms  of selected  proteins  are  shown.  Monomeric  form  is  shown 

for illustration  of position  of conserved  sites  otherwise  not  visible  in the  core 

of the protein. Highly conserved regions are often detected at sites where the protein binds 

to its partners. In addition, highly conserved regions are expected in sites of homodimer 

interactions  (Valdar and Thornton 2001), where conservation regions are visible in our 
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analysis  in both  analysed  proteins. Dimeric  form  conservation  reflects  variability 

of surface proteins in both IL-10 and IFNγ. 

Regions  with  the  most  conserved  amino  acid  do  not  completely  coincide 

with regions of hydrophilic or hydrophobic character. In this case, folding is preserved 

by substitutions  of  amino  acids  with  similar  hydrophobicity  and  steric  characteristics 

(Ladunga  and  Smith  1997).  Regions  with  highly  preserved  hydrophobicity  are  likely 

regions of membrane domains, where particular amino acid conservation is unnecessary. 

In analogy, hydrophilic regions with unpreserved amino acids may indicate surface amino 

acids  not  involved  in  critical  (functional)  interactions.  Therefore,  on  protein  surfaces 

or in intermembrane  regions,  the  amino  acid  character,  not  the particular  amino  acid 

in the sequence is conserved. 

Conservation of amino acid sites and its effect on structure and hence function 

requires further research, especially in proteins and species with interesting evolutionary 

history such as IFNγ in fish, and later divergence of IFNγ in other organisms, paying 

attention  to the relation  to  orthologues  in  species  with  well  described  function  and 

structure.
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6  Conclusions

This  study  investigates  evolutionary  history  of  important  group  of  immune 

regulators, interleukin 10 family proteins, and its relation to evolutionary history of their  

receptors  and  describes  structural  conservation  throughout  the  interleukin  10  family 

proteins using statistical methods and data available at public databases. 

The  evolutionary  relations  of  the  FIL-10 and its  related  proteins  from groups 

of interferons  are  not  yet  well  understood,  however  the  presented  results  help 

to understand  the  relation within  the  groups.  The relations  between sequences  within 

the interleukin  family  show  distinguishing  of IL-19,  IL-20  and  IL-24  subfamily, 

interferons  included  in the analysis  and  closeness  of IL-26  to  antiviral  interferons. 

The receptor  phylogeny  shows  relation  of  IL22BP  to IL22RA1  and  subgrouping 

of the related interleukin receptors.

Evolution of  interleukin-receptor  pairs  is  in  most  cases  correlated,  with  a  few 

important exceptions: interaction of IL10RA, the most used receptor chain throughout 

the protein family with some, but by far not most, of its ligands, most notably IL-26 and 

interaction of the most diverged interleukins in the group – IL-19 and IL-20 and their 

receptors.

The  evolution  of  amino  acid  sequences  and  their  conservation  or  variability 

depends in a complex way on the protein structure and function. The most conserved 

regions  are  observed  in  cores  of  proteins  and  intra-monomer  interfaces,  as  well 

as in functionally critical  regions such as binding sites.  Interestingly,  high conservation 

of amino  acid  residues  observed  here  is  not  directly  overlapped  to  high  conservation 

of hydrophobic  regions  expected  in  the  protein  interiors  as  we  also  showed  here 

on example of three dimensional structures of IL-10 and IFNγ. 

Relations between interleukins in the group may also provide a guide for search 

for interleukins of FIL-10 in taxonomic groups, especially in fish taxa, where no similar 

signalling molecules are currently known. Thorough analysis of available genomic data 

may provide basis for further experimental research of ancestors of the family.

53



7  References

ABASCAL, Federico, Rafael  ZARDOYA and David POSADA, 2005.  ProtTest: selection of best-fit  
models  of  protein  evolution.  Bioinformatics  (Oxford,  England) [online].  1. 5.,  21(9),  2104–2105. 
ISSN 1367-4803. Available at: doi:10.1093/bioinformatics/bti263

AKDIS,  M beccel,  Simone  BURGLER,  Reto  CRAMERI,  Thomas  EIWEGGER,  Hiroyuki  FUJITA,ü  
Enrique  GOMEZ,  Sven  KLUNKER,  Norbert  MEYER,  Liam O’MAHONY,  Oscar  PALOMARES, 
Claudio  RHYNER, Nadia  OUAKED, Nadia  QUAKED, Anna SCHAFFARTZIK,  Willem VAN DE 
VEEN, Sabine ZELLER, Maya ZIMMERMANN and Cezmi A. AKDIS, 2011. Interleukins, from 1 to 
37, and interferon-γ: receptors, functions, and roles in diseases. The Journal of Allergy and Clinical  
Immunology [online].  3.,  127(3),  701-721–70.  ISSN 1097-6825.  Available 
at: doi:10.1016/j.jaci.2010.11.050

ANDERSON, R. M. and R. M. MAY, 1982. Coevolution of hosts and parasites. Parasitology [online]. 
10., 85(02), 411. ISSN 0031-1820, 1469-8161. Available at: doi:10.1017/S0031182000055360

ANK, N., M. B. IVERSEN, C. BARTHOLDY, P. STAEHELI, R. HARTMANN, U. B. JENSEN, F.  
DAGNAES-HANSEN,  A.  R.  THOMSEN,  Z.  CHEN,  H.  HAUGEN,  K.  KLUCHER  and  S.  R. 
PALUDAN, 2008. An Important Role for Type III Interferon (IFN- /IL-28) in TLR-Induced Antiviral  
Activity.  The Journal of Immunology [online]. 15. 2.,  180(4), 2474–2485. ISSN 0022-1767, 1550-
6606. Available at: doi:10.4049/jimmunol.180.4.2474

ASHKENAZY, Haim, Shiran ABADI, Eric MARTZ, Ofer CHAY, Itay MAYROSE, Tal PUPKO and 
Nir BEN-TAL, 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary 
conservation  in  macromolecules.  Nucleic  Acids  Research [online].  8. 7.,  44(W1),  W344–W350. 
ISSN 0305-1048, 1362-4962. Available at: doi:10.1093/nar/gkw408

BALDRIDGE,  M.  T.,  T.  J.  NICE,  B.  T.  MCCUNE,  C.  C.  YOKOYAMA,  A.  KAMBAL,  M. 
WHEADON,  M.  S.  DIAMOND,  Y.  IVANOVA,  M.  ARTYOMOV  and  H.  W.  VIRGIN,  2015.  
Commensal  microbes  and  interferon-  determine  persistence  of  enteric  murine  norovirus  infection. 
Science [online].  16. 1.,  347(6219),  266–269.  ISSN 0036-8075,  1095-9203.  Available 
at: doi:10.1126/science.1258025

BERTHELOT,  Camille,  Fr d ric  BRUNET,  Domitille  CHALOPIN,  Am lie  JUANCHICH,  Mariaé é é  
BERNARD,  Benjamin  NOËL,  Pascal  BENTO,  Corinne  DA  SILVA,  Karine  LABADIE,  Adriana 
ALBERTI,  Jean-Marc  AURY,  Alexandra  LOUIS,  Patrice  DEHAIS,  Philippe  BARDOU,  J r meé ô  
MONTFORT,  Christophe  KLOPP,  C dric  CABAU,  Christine  GASPIN,  Gary  H.  THORGAARD,é  
Mekki BOUSSAHA, Edwige QUILLET, Ren  GUYOMARD, Delphine GALIANA, Julien BOBE, Jean-é
Nicolas VOLFF, Carine GEN T, Patrick WINCKER, Olivier JAILLON, Hugues Roest CROLLIUS andÊ  
Yann GUIGUEN, 2014. The rainbow trout genome provides novel insights into evolution after whole-
genome  duplication  in  vertebrates.  Nature  Communications [online].  22. 4.,  5.  ISSN 2041-1723. 
Available at: doi:10.1038/ncomms4657

BHUTIA, S. K., R. DASH, S. K. DAS, B. AZAB, Z. z. SU, S. G. LEE, S. GRANT, A. YACOUB, P.  
DENT, D. T. CURIEL, D. SARKAR and P. B. FISHER, 2010. Mechanism of Autophagy to Apoptosis  
Switch  Triggered  in  Prostate  Cancer  Cells  by  Antitumor  Cytokine  Melanoma  Differentiation-
Associated Gene 7/Interleukin-24.  Cancer Research [online].  1. 5.,  70(9),  3667–3676. ISSN 0008-
5472, 1538-7445. Available at: doi:10.1158/0008-5472.CAN-09-3647

BLUMBERG, Hal, Darrell CONKLIN, WenFeng XU, Angelika GROSSMANN, Ty BRENDER, Susan 
CAROLLO,  Maribeth  EAGAN,  Don  FOSTER,  Betty  A.  HALDEMAN,  Angie  HAMMOND and 
OTHERS, 2001. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell. 
104(1), 9–19. Available at: doi:10.1016/S0092-8674(01)00187-8

54



BOONSTRA,  A.,  R.  RAJSBAUM,  M.  HOLMAN,  R.  MARQUES,  C.  ASSELIN-PATUREL,  J.  P. 
PEREIRA, E. E. M. BATES, S. AKIRA, P. VIEIRA, Y.-J. LIU, G. TRINCHIERI and A. O’GARRA, 
2006. Macrophages and Myeloid Dendritic Cells, but Not Plasmacytoid Dendritic Cells, Produce IL-10 
in  Response  to  MyD88- and  TRIF-Dependent  TLR  Signals,  and  TLR-Independent  Signals.  The 
Journal of Immunology [online]. 1. 12., 177(11), 7551–7558. ISSN 0022-1767, 1550-6606. Available 
at: doi:10.4049/jimmunol.177.11.7551

BRAAT, H., P. ROTTIERS, D. W. HOMMES, N. HUYGHEBAERT, E. REMAUT, J. P. REMON, S. J. 
H. VAN DEVENTER, S. NEIRYNCK, M. P. PEPPELENBOSCH and L. STEIDLER, 2006. A phase I  
trial with Transgenic bacteria expressing interleukin-10 in Crohn’s disease.  Clinical Gastroenterology 
and  Hepatology [online].  6.,  4(6),  754–759.  ISSN 1542-3565.  Available 
at: doi:10.1016/j.cgh.2006.03.028

CAPELLA-GUTIERREZ, S., J. M. SILLA-MARTINEZ and T. GABALDON, 2009. trimAl: a tool for 
automated  alignment  trimming  in  large-scale  phylogenetic  analyses.  Bioinformatics [online].  1. 8., 
25(15), 1972–1973. ISSN 1367-4803, 1460-2059. Available at: doi:10.1093/bioinformatics/btp348

CAUDELL, E. G., J. B. MUMM, N. POINDEXTER, S. EKMEKCIOGLU, A. M. MHASHILKAR, X. 
H. YANG, M. W. RETTER, P. HILL, S. CHADA and E. A. GRIMM, 2002. The Protein Product of the 
Tumor Suppressor Gene, Melanoma Differentiation-Associated Gene 7, Exhibits Immunostimulatory 
Activity and Is Designated IL-24. The Journal of Immunology [online]. 15. 6.,  168(12), 6041–6046. 
ISSN 0022-1767, 1550-6606. Available at: doi:10.4049/jimmunol.168.12.6041

CELLA, Marina, Anja FUCHS, William VERMI, Fabio FACCHETTI, Karel OTERO, Jochen K. M. 
LENNERZ, Jason M. DOHERTY, Jason C. MILLS and Marco COLONNA, 2009. A human natural  
killer  cell  subset provides an innate source of IL-22 for mucosal immunity.  Nature [online].  5. 2., 
457(7230), 722–725. ISSN 0028-0836, 1476-4687. Available at: doi:10.1038/nature07537

CHANG,  C.,  E.  MAGRACHEVA,  S.  KOZLOV,  S.  FONG,  G.  TOBIN,  S.  KOTENKO,  A. 
WLODAWER and A. ZDANOV, 2003. Crystal Structure of Interleukin-19 Defines a New Subfamily 
of Helical Cytokines. Journal of Biological Chemistry [online]. 31. 1., 278(5), 3308–3313. ISSN 0021-
9258, 1083-351X. Available at: doi:10.1074/jbc.M208602200

CHAUDHRY, Ashutosh, Robert M. SAMSTEIN, Piper TREUTING, Yuqiong LIANG, Marina C. PILS, 
Jan-Michael HEINRICH, Robert S. JACK, F. Thomas WUNDERLICH, Jens C. BR NING, WernerÜ  
M LLER and AlexanderÜ  Y.  RUDENSKY, 2011.  Interleukin-10 Signaling  in Regulatory  T Cells  Is 
Required for Suppression of Th17 Cell-Mediated Inflammation.  Immunity [online]. 4.,  34(4), 566–
578. ISSN 10747613. Available at: doi:10.1016/j.immuni.2011.03.018

CHIN, Yue E., Motoo KITAGAWA, Keisuke KUIDA, Richard A. FLAVELL and Xin-Yuan FU, 1997. 
Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Molecular  
and cellular biology. 17(9), 5328–5337. 

COMMINS, Scott, John W. STEINKE and Larry BORISH, 2008. The extended IL-10 superfamily: 
IL-10,  IL-19,  IL-20,  IL-22,  IL-24,  IL-26,  IL-28,  and  IL-29.  Journal  of  Allergy  and  Clinical  
Immunology [online].  5.,  121(5),  1108–1111.  ISSN 00916749.  Available 
at: doi:10.1016/j.jaci.2008.02.026

DANDREA, A., M. ASTEAMEZAGA, Nm VALIANTE, Xj MA, M. KUBIN and G. TRINCHIERI, 
1993.  Interleukin-10  (il-10)  Inhibits  Human  Lymphocyte  Interferon  Gamma-Production  by 
Suppressing  Natural-Killer-Cell  Stimulatory  Factor/Il-12  Synthesis  in  Accessory  Cells.  Journal  of 
Experimental  Medicine [online].  1. 9.,  178(3),  1041–1048.  ISSN 0022-1007.  Available 
at: doi:10.1084/jem.178.3.1041

55



DARRIBA, D., G. L. TABOADA, R. DOALLO and D. POSADA, 2011. ProtTest 3: fast selection of 
best-fit models of protein evolution.  Bioinformatics [online]. 15. 4.,  27(8), 1164–1165. ISSN 1367-
4803, 1460-2059. Available at: doi:10.1093/bioinformatics/btr088

DE JUAN, David, Florencio PAZOS and Alfonso VALENCIA, 2013. Emerging methods in protein co-
evolution.  Nature  Reviews  Genetics [online].  5. 3.,  14(4),  249–261.  ISSN 1471-0056,  1471-0064. 
Available at: doi:10.1038/nrg3414

DEL PRETE,  G.,  M.  DE CARLI,  F.  ALMERIGOGNA,  M.  G.  GIUDIZI,  R.  BIAGIOTTI  and  S. 
ROMAGNANI, 1993. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) 
T cell  clones  and  inhibits  their  antigen-specific  proliferation  and  cytokine  production.  Journal  of  
Immunology (Baltimore, Md.: 1950). 15. 1., 150(2), 353–360. ISSN 0022-1767. 

DONNELLY,  Raymond  P.,  Faruk  SHEIKH,  Harold  DICKENSHEETS,  Ram SAVAN,  Howard  A. 
YOUNG and Mark R. WALTER, 2010. Interleukin-26: An IL-10-related cytokine produced by Th17 
cells.  Cytokine & Growth Factor Reviews [online]. 10.,  21(5), 393–401. ISSN 13596101. Available 
at: doi:10.1016/j.cytogfr.2010.09.001

DUHEN, Thomas, Rebekka GEIGER, David JARROSSAY, Antonio LANZAVECCHIA and Federica 
SALLUSTO, 2009. Production of interleukin 22 but not interleukin 17 by a subset of human skin-
homing memory T cells.  Nature Immunology [online]. 8.,  10(8), 857–863. ISSN 1529-2908, 1529-
2916. Available at: doi:10.1038/ni.1767

EALICK, Steven E., William J. COOK and et AL, 1991. Three-Dimensional Structure of Recombinant  
Human Interferon-(Gamma). Science; Washington. 3. 5., 252(5006), 698. ISSN 00368075. 

FELSENSTEIN, Joseph, 2004. Inferring Phylogenies. B.m.: Sinauer. ISBN 978-0-87893-177-4. 

FRASER, H. B.,  A. E. HIRSH, L. M. STEINMETZ, C. SCHARFE and M. W. FELDMAN, 2002. 
Evolutionary rate in the protein interaction network.  Science [online].  26. 4.,  296(5568), 750–752. 
ISSN 0036-8075. Available at: doi:10.1126/science.1068696

GAD, H. H., C. DELLGREN, O. J. HAMMING, S. VENDS, S. R. PALUDAN and R. HARTMANN, 
2009. Interferon- Is Functionally an Interferon but Structurally Related to the Interleukin-10 Family. 
Journal  of  Biological  Chemistry [online].  31. 7.,  284(31),  20869–20875.  ISSN 0021-9258,  1083-
351X. Available at: doi:10.1074/jbc.M109.002923

GALLAGHER,  G.,  H.  DICKENSHEETS,  J.  ESKDALE,  L.  S.  IZOTOVA,  O.  V. 
MIROCHNITCHENKO,  J.  D.  PEAT,  N.  VAZQUEZ,  S.  PESTKA,  R.  P.  DONNELLY and  S.  V. 
KOTENKO, 2000. Cloning, expression and initial characterisation of interleukin-19 (IL-19), a novel  
homologue  of  human  interleukin-10  (IL-10).  Genes  and  immunity [online].  1(7),  442.  Available 
at: doi:10.1038/sj.gene.6363714

GILBERT, Don, 2002. Sequence File Format Conversion with Command-Line Readseq. In: Current 
Protocols  in  Bioinformatics [online].  B.m.:  John  Wiley  &  Sons,  Inc.  ISBN 978-0-471-25095-1. 
Available at: http://dx.doi.org/10.1002/0471250953.bia01es00

GLASER, Fabian, Tal PUPKO, Inbal PAZ, Rachel E. BELL, Dalit BECHOR-SHENTAL, Eric MARTZ 
and Nir BEN-TAL, 2003. ConSurf: identification of functional regions in proteins by surface-mapping 
of phylogenetic information. Bioinformatics. 19(1), 163–164. 

GLOCKER,  Erik-Oliver,  Daniel  KOTLARZ,  Kaan  BOZTUG,  E.  Michael  GERTZ,  Alejandro  A. 
SCH FFER,  Fatih  NOYAN,  Mario  PERRO,  Jana  DIESTELHORST,  Anna  ALLROTH,  DhaariniÄ  
MURUGAN and OTHERS, 2009. Inflammatory bowel disease and mutations affecting the interleukin-
10  receptor.  New  England  Journal  of  Medicine [online].  361(21),  2033–2045.  Available 
at: doi:10.1056/NEJMoa0907206

56



GOH,  Chern-Sing,  Andrew  A.  BOGAN,  Marcin  JOACHIMIAK,  Dirk  WALTHER  and  Fred  E. 
COHEN, 2000. Co-evolution of proteins with their interaction partners. Journal of Molecular Biology 
[online]. 6., 299(2), 283–293. ISSN 00222836. Available at: doi:10.1006/jmbi.2000.3732

HAMMING, Ole J., Ewa TERCZY SKA DYLA, Gabrielle VIEYRES, Ronald DIJKMAN, Sanne E.Ń ‐  
JØRGENSEN,  Hashaam AKHTAR,  Piotr  SIUPKA,  Thomas  PIETSCHMANN, Volker  THIEL and 
Rune HARTMANN, 2013. Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral 
activity against HCV and coronaviruses.  The EMBO Journal [online]. 27. 11.,  32(23), 3055–3065. 
ISSN 0261-4189, 1460-2075. Available at: doi:10.1038/emboj.2013.232

HOLAN, Vladimir, Alena ZAJICOVA, Eliska JAVORKOVA, Peter TROSAN, Milada CHUDICKOVA, 
Michaela PAVLIKOVA and Magdalena KRULOVA, 2014. Distinct cytokines balance the development 
of regulatory T cells and interleukin-10-producing regulatory B cells. Immunology [online]. 4., 141(4), 
577–586. ISSN 00192805. Available at: doi:10.1111/imm.12219

HOR, S., H. PIRZER, L. DUMOUTIER, F. BAUER, S. WITTMANN, H. STICHT, J.-C. RENAULD, 
R.  DE WAAL MALEFYT and  H.  FICKENSCHER,  2004.  The  T-cell  Lymphokine  Interleukin-26 
Targets Epithelial Cells through the Interleukin-20 Receptor 1 and Interleukin-10 Receptor 2 Chains. 
Journal of Biological Chemistry [online]. 6. 8., 279(32), 33343–33351. ISSN 0021-9258, 1083-351X. 
Available at: doi:10.1074/jbc.M405000200

HORIUCHI,  Hiroshi,  Bijay  PARAJULI,  Yue  WANG,  Yasu-Taka  AZUMA,  Tetsuya  MIZUNO, 
Hideyuki  TAKEUCHI and Akio SUZUMURA, 2015.  Interleukin-19 Acts  as  a  Negative  Autocrine 
Regulator  of  Activated  Microglia.  PLOS ONE [online].  20. 3.,  10(3),  e0118640.  ISSN 1932-6203. 
Available at: doi:10.1371/journal.pone.0118640

HUBER, Samuel, Nicola GAGLIANI, Lauren A. ZENEWICZ, Francis J. HUBER, Lidia BOSURGI, Bo 
HU,  Matija  HEDL,  Wei  ZHANG,  William  O’CONNOR,  Andrew  J.  MURPHY,  David  M. 
VALENZUELA, George D. YANCOPOULOS, Carmen J. BOOTH, Judy H. CHO, Wenjun OUYANG, 
Clara ABRAHAM and Richard A. FLAVELL, 2012. IL-22BP is regulated by the inflammasome and 
modulates tumorigenesis in the intestine.  Nature [online]. 17. 10.,  491(7423), 259–263. ISSN 0028-
0836, 1476-4687. Available at: doi:10.1038/nature11535

IGAWA,  Daisuke,  Masahiro  SAKAI  and  Ram  SAVAN,  2006.  An  unexpected  discovery  of  two 
interferon gamma-like genes along with interleukin (IL)-22 and -26 from teleost: IL-22 and -26 
genes have been described for the first time outside mammals.  Molecular Immunology [online].  3., 
43(7), 999–1009. ISSN 01615890. Available at: doi:10.1016/j.molimm.2005.05.009

JAILLON, O., J. M. AURY, F. BRUNET, J. L. PETIT, N. STANGE-THOMANN, E. MAUCELI, L. 
BOUNEAU, C. FISCHER, C. OZOUF-COSTAZ, A. BERNOT, S. NICAUD, D. JAFFE, S. FISHER, G. 
LUTFALLA, C. DOSSAT, B. SEGURENS, C. DASILVA, M. SALANOUBAT, M. LEVY, N. BOUDET, 
S. CASTELLANO, R. ANTHOUARD, C. JUBIN, V. CASTELLI, M. KATINKA, B. VACHERIE, C. 
BIEMONT,  Z.  SKALLI,  L.  CATTOLICO,  J.  POULAIN,  V.  DE  BERARDINIS,  C.  CRUAUD,  S. 
DUPRAT, P. BROTTIER, J. P. COUTANCEAU, J. GOUZY, G. PARRA, G. LARDIER, C. CHAPPLE, 
K. J. MCKERNAN, P. MCEWAN, S. BOSAK, M. KELLIS, J. N. VOLFF, R. GUIGO, M. C. ZODY, J. 
MESIROV,  K.  LINDBLAD-TOH,  B.  BIRREN,  C.  NUSBAUM,  D.  KAHN,  M.  ROBINSON-
RECHAVI, V. LAUDET, V. SCHACHTER, F. QUETIER, W. SAURIN, C. SCARPELLI, P. WINCKER, 
E. S. LANDER, J. WEISSENBACH and H. R. CROLLIUS, 2004. Genome duplication in the teleost fish 
Tetraodon  nigroviridis  reveals  the  early  vertebrate  proto-karyotype.  Nature [online].  21. 10., 
431(7011), 946–957. ISSN 0028-0836. Available at: doi:10.1038/nature03025

JENNINGS, Paul, Daniel CREAN, Lydia ASCHAUER, Alice LIMONCIEL, Konrad MOENKS, Georg 
KERN, Philip HEWITT, Karl LHOTTA, Arno LUKAS, Anja WILMES and Martin O. LEONARD, 
2015. Interleukin-19 as a translational indicator of renal injury.  Archives of Toxicology [online]. 1., 
89(1), 101–106. ISSN 0340-5761, 1432-0738. Available at: doi:10.1007/s00204-014-1237-3

57



JIANG, Hongping, Zao-Zhong SU, Jiao Jiao LIN, Neil I. GOLDSTEIN, C. S. YOUNG and Paul B.  
FISHER, 1996. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. 
Proceedings of the National Academy of Sciences. 93(17), 9160–9165. 

JONES, D. T., W. R. TAYLOR and J. M. THORNTON, 1992. The rapid generation of mutation data 
matrices from protein sequences.  Computer applications in the biosciences: CABIOS. 6.,  8(3), 275–
282. ISSN 0266-7061. 

JONES, Lindsay L., Rajshekhar ALLI, Bofeng LI and Terrence L. GEIGER, 2016. Differential T Cell 
Cytokine Receptivity and Not Signal  Quality Distinguishes IL-6 and IL-10 Signaling during Th17 
Differentiation.  The  Journal  of  Immunology [online].  1. 4.,  196(7),  2973–2985.  ISSN 0022-1767, 
1550-6606. Available at: doi:10.4049/jimmunol.1402953

KATOH, K. and D. M. STANDLEY, 2013. MAFFT Multiple Sequence Alignment Software Version 7: 
Improvements in Performance and Usability.  Molecular Biology and Evolution [online]. 1. 4.,  30(4), 
772–780. ISSN 0737-4038, 1537-1719. Available at: doi:10.1093/molbev/mst010

KATOH, Kazutaka, Kei-ichi KUMA, Hiroyuki TOH and Takashi MIYATA, 2005. MAFFT version 5: 
improvement  in  accuracy  of  multiple  sequence  alignment.  Nucleic  Acids  Research [online].  33(2), 
511–518. ISSN 0305-1048. Available at: doi:10.1093/nar/gki198

KATOH, Kazutaka, Kazuharu MISAWA, Kei-ichi KUMA and Takashi MIYATA, 2002. MAFFT: a 
novel method for rapid multiple sequence alignment based on fast Fourier transform.  Nucleic Acids  
Research [online].  15. 7.,  30(14),  3059–3066.  ISSN 1362-4962.  Available 
at: doi:https://doi.org/10.1093/nar/gkf436

KIM, J. M., C. I. BRANNAN, N. G. COPELAND, N. A. JENKINS, T. A. KHAN and K. W. MOORE, 
1992. Structure of the mouse IL-10 gene and chromosomal  localization of the mouse and human 
genes. Journal of Immunology (Baltimore, Md.: 1950). 1. 6., 148(11), 3618–3623. ISSN 0022-1767. 

KOLE, Abhisake and Kevin J. MALOY, 2014. Control of intestinal inflammation by interleukin-10. 
Current Topics in Microbiology and Immunology [online].  380, 19–38. ISSN 0070-217X. Available 
at: doi:10.1007/978-3-662-43492-5_2

KOTENKO,  S.  V.,  L.  S.  IZOTOVA,  O.  V.  MIROCHNITCHENKO,  E.  ESTEROVA,  H. 
DICKENSHEETS,  R.  P.  DONNELLY  and  S.  PESTKA,  2001.  Identification,  Cloning,  and 
Characterization of  a  Novel  Soluble  Receptor  That  Binds  IL-22 and Neutralizes  Its  Activity.  The 
Journal of Immunology [online]. 15. 6., 166(12), 7096–7103. ISSN 0022-1767, 1550-6606. Available 
at: doi:10.4049/jimmunol.166.12.7096

KOTENKO,  Sergei  V.,  Grant  GALLAGHER,  Vitaliy  V.  BAURIN,  Anita  LEWIS-ANTES,  Meiling 
SHEN, Nital K. SHAH, Jerome A. LANGER, Faruk SHEIKH, Harold DICKENSHEETS and Raymond 
P.  DONNELLY,  2003.  IFN-λs  mediate  antiviral  protection  through  a  distinct  class  II  cytokine 
receptor  complex.  Nature  Immunology [online].  1.,  4(1),  69–77.  ISSN 15292908.  Available 
at: doi:10.1038/ni875

KOTENKO,  Sergei  V and  Jerome A LANGER,  2004.  Full  house:  12  receptors  for  27  cytokines. 
International  Immunopharmacology [online].  5.,  4(5),  593–608.  ISSN 15675769.  Available 
at: doi:10.1016/j.intimp.2004.01.003

KOTENKO, Serguei V., Christopher D. KRAUSE, Lara S. IZOTOVA, Brian P. POLLACK, Wei WU 
and Sidney PESTKA, 1997.  Identification and functional  characterization of a second chain of  the 
interleukin-10 receptor complex. The EMBO journal. 16(19), 5894–5903. 

58



KRAUSE, Christopher D. and Sidney PESTKA, 2005. Evolution of the Class 2 cytokines and receptors,  
and discovery of new friends and relatives.  Pharmacology & Therapeutics [online]. 6.,  106(3), 299–
346. ISSN 01637258. Available at: doi:10.1016/j.pharmthera.2004.12.002

KUNZ, Stefanie, Kerstin WOLK, Ellen WITTE, Katrin WITTE, Wolf-Dietrich DOECKE, Hans-Dieter 
VOLK, Wolfram STERRY, Khusru ASADULLAH and Robert SABAT, 2006. Interleukin (IL)-19, IL-
20  and  IL-24  are  produced  by  and  act  on  keratinocytes  and  are  distinct  from  classical  ILs. 
Experimental Dermatology [online]. 12.,  15(12), 991–1004. ISSN 0906-6705, 1600-0625. Available 
at: doi:10.1111/j.1600-0625.2006.00516.x

LADUNGA,  I.  and  R.  F.  SMITH,  1997.  Amino  acid  substitutions  preserve  protein  folding  by 
conserving steric and hydrophobicity properties. Protein Engineering. 3., 10(3), 187–196. ISSN 0269-
2139. 

LAM, Yuk-Fai,  Danny  Ka-Ho WONG,  Wai-Kay  SETO,  Kelvin  Kai-Wang  TO,  Ivan  Fan-Ngai 
HUNG, James FUNG, Ching-Lung LAI and Man-Fung YUEN, 2014. HLA-DP and γ-interferon 
receptor-2  gene  variants  and  their  association  with  viral  hepatitis  activity  in  chronic  hepatitis  B 
infection: Genetic variants and hepatitis B viral activity. Journal of Gastroenterology and Hepatology 
[online]. 3., 29(3), 533–539. ISSN 08159319. Available at: doi:10.1111/jgh.12378

LANDAU, M., I. MAYROSE, Y. ROSENBERG, F. GLASER, E. MARTZ, T. PUPKO and N. BEN-
TAL, 2005. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein 
structures.  Nucleic Acids Research [online]. 1. 7.,  33(Web Server),  W299–W302. ISSN 0305-1048, 
1362-4962. Available at: doi:10.1093/nar/gki370

LEGENDRE, Pierre,  Yves DESDEVISES and Eric BAZIN, 2002. A statistical  test  for host-parasite 
coevolution.  Systematic  Biology [online].  4.,  51(2),  217–234.  ISSN 1063-5157.  Available 
at: doi:10.1080/10635150252899734

LI, Q., R. MEANS, S. LANG and J. U. JUNG, 2007. Downregulation of Gamma Interferon Receptor 1 
by Kaposi’s Sarcoma-Associated Herpesvirus K3 and K5.  Journal of Virology [online]. 1. 3.,  81(5), 
2117–2127. ISSN 0022-538X. Available at: doi:10.1128/JVI.01961-06

LIANG, Spencer C., Xiang-Yang TAN, Deborah P. LUXENBERG, Riyez KARIM, Kyriaki DUNUSSI-
JOANNOPOULOS, Mary COLLINS and Lynette A. FOUSER, 2006. Interleukin (IL)-22 and IL-17 
are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial  peptides.  The 
Journal of Experimental Medicine [online]. 2. 10., 203(10), 2271–2279. ISSN 0022-1007, 1540-9538. 
Available at: doi:10.1084/jem.20061308

LIAO, S.-C., Y.-C. CHENG, Y.-C. WANG, C.-W. WANG, S.-M. YANG, C.-K. YU, C.-C. SHIEH, 
K.-C. CHENG, M.-F. LEE, S.-R. CHIANG, J.-M. SHIEH and M.-S. CHANG, 2004. IL-19 Induced 
Th2 Cytokines and Was Up-Regulated in Asthma Patients. The Journal of Immunology [online]. 1. 12., 
173(11), 6712–6718. ISSN 0022-1767, 1550-6606. Available at: doi:10.4049/jimmunol.173.11.6712

LIN, J.R., H.H. QIN, Y. WANG, J. LIANG and J.H. XU, 2016. Analysis of interleukin 19 serum levels  
and  single  nucleotide  polymorphisms  in  systemic  lupus  erythematosus.  Genetics  and  Molecular 
Research [online]. 15(2). ISSN 16765680. Available at: doi:10.4238/gmr.15028007

LOGSDON, N. J., A. DESHPANDE, B. D. HARRIS, K. R. RAJASHANKAR and M. R. WALTER, 
2012.  Structural  basis  for  receptor  sharing  and activation by interleukin-20 receptor-2 (IL-20R2) 
binding cytokines. Proceedings of the National Academy of Sciences [online]. 31. 7., 109(31), 12704–
12709. ISSN 0027-8424, 1091-6490. Available at: doi:10.1073/pnas.1117551109

LUTFALLA, Georges, Hugues Roest CROLLIUS, Nicole STANGE-THOMANN, Olivier JAILLON, 
Knud  MOGENSEN  and  Dani le  MONNERON,  2003.  Comparative  genomic  analysis  revealsè  
independent expansion of a lineage-specific gene family in vertebrates: the class II cytokine receptors 

59



and  their  ligands  in  mammals  and  fish.  BMC  genomics [online].  4(1),  29.  Available 
at: doi:10.1186/1471-2164-4-29

MA, Hak-Ling, Spencer LIANG, Jing LI, Lee NAPIERATA, Tom BROWN, Stephen BENOIT, Mayra 
SENICES,  Davinder  GILL,  Kyriaki  DUNUSSI-JOANNOPOULOS,  Mary  COLLINS,  Cheryl 
NICKERSON-NUTTER, Lynette A. FOUSER and Deborah A. YOUNG, 2008. IL-22 is required for 
Th17  cell–mediated  pathology  in  a  mouse  model  of  psoriasis-like  skin  inflammation.  Journal  of  
Clinical Investigation [online]. 17. 1. ISSN 0021-9738. Available at: doi:10.1172/JCI33263

MARLOW, Gareth J, 2013. Why interleukin-10 supplementation does not work in Crohn’s disease 
patients.  World  Journal  of  Gastroenterology [online].  19(25),  3931.  ISSN 1007-9327.  Available 
at: doi:10.3748/wjg.v19.i25.3931

MARTIN, J  Cj,  G B RIOU, M HESLAN, C CHAUVIN, L UTRIAINEN, A AUMEUNIER,  C LÉ  
SCOTT, A MOWAT, V CEROVIC, S A HOUSTON, M LEBOEUF, F X HUBERT, C H MONT, MÉ  
MERAD, S MILLING and R JOSIEN, 2014. Interleukin-22 binding protein (IL-22BP) is constitutively 
expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal  
Immunology [online].  1.,  7(1),  101–113.  ISSN 1933-0219,  1935-3456.  Available 
at: doi:10.1038/mi.2013.28

MARUKIAN, Svetlana, Linda ANDRUS, Timothy P. SHEAHAN, Christopher T. JONES, Edgar D. 
CHARLES, Alexander PLOSS, Charles M. RICE and Lynn B. DUSTIN, 2011. Hepatitis C virus induces 
interferon-λ and interferon-stimulated genes in primary liver cultures. Hepatology [online]. 12., 54(6), 
1913–1923. ISSN 02709139. Available at: doi:10.1002/hep.24580

MCGEE,  Heather  M.,  Barbara  A.  SCHMIDT,  Carmen  J.  BOOTH,  George  D.  YANCOPOULOS, 
David M. VALENZUELA, Andrew J. MURPHY, Sean STEVENS, Richard A. FLAVELL and Valerie 
HORSLEY,  2013.  IL-22 promotes  fibroblast-mediated  wound repair  in  the  skin.  The  Journal  of  
Investigative  Dermatology [online].  5.,  133(5),  1321–1329.  ISSN 1523-1747.  Available 
at: doi:10.1038/jid.2012.463

MELLER, Stephan, Jeremy DI DOMIZIO, Kui S VOO, Heike C FRIEDRICH, Georgios CHAMILOS, 
Dipyaman GANGULY, Curdin CONRAD, Josh GREGORIO, Didier LE ROY, Thierry ROGER, John 
E  LADBURY,  Bernhard  HOMEY,  Stanley  WATOWICH,  Robert  L  MODLIN,  Dimitrios  P 
KONTOYIANNIS, Yong-Jun LIU, Stefan T AROLD and Michel GILLIET, 2015. TH17 cells promote 
microbial killing and innate immune sensing of DNA via interleukin 26. Nature Immunology [online]. 
13. 7., 16(9), 970–979. ISSN 1529-2908, 1529-2916. Available at: doi:10.1038/ni.3211

MOUNT, David W., 2008. Maximum Parsimony Method for Phylogenetic Prediction.  Cold Spring 
Harbor  Protocols [online].  1. 4.,  2008(4),  pdb.top32.  ISSN 1940-3402,  1559-6095.  Available 
at: doi:10.1101/pdb.top32

NEEDLEMAN, Saul B. and Christian D. WUNSCH, 1970. A general method applicable to the search 
for similarities in the amino acid sequence of two proteins. Journal of molecular biology. 48(3), 443–
453. 

NICE,  T.  J.,  M.  T.  BALDRIDGE,  B.  T.  MCCUNE,  J.  M.  NORMAN,  H.  M.  LAZEAR,  M. 
ARTYOMOV,  M.  S.  DIAMOND and  H.  W.  VIRGIN,  2015.  Interferon- cures  persistent  murine 
norovirus infection in the absence of adaptive immunity. Science [online]. 16. 1., 347(6219), 269–273. 
ISSN 0036-8075, 1095-9203. Available at: doi:10.1126/science.1258100

OKONECHNIKOV, Konstantin, Olga GOLOSOVA and Mikhail FURSOV, 2012. Unipro UGENE: a 
unified  bioinformatics  toolkit.  Bioinformatics [online].  15. 4.,  28(8),  1166–1167.  Available 
at: doi:10.1093/bioinformatics/bts091

60



OTKJAER, K., K. KRAGBALLE, A. T. FUNDING, J. T. CLAUSEN, P. L. NOERBY, T. STEINICHE 
and L. IVERSEN, 2005. The dynamics of gene expression of interleukin-19 and interleukin-20 and 
their receptors in psoriasis. British Journal of Dermatology [online]. 11., 153(5), 911–918. ISSN 0007-
0963. Available at: doi:10.1111/j.1365-2133.2005.06800.x

PALOMARES, Oscar, G rkem YAMAN, Ahmet K. AZKUR, Tunc AKKOC, M beccel AKDIS andö ü  
Cezmi A. AKDIS, 2010. Role of Treg in immune regulation of allergic diseases.  European Journal of  
Immunology [online].  10. 2.,  40(5),  1232–1240.  ISSN 00142980.  Available 
at: doi:10.1002/eji.200940045

PARADIS,  Emmanuel,  Julien  CLAUDE  and  Korbinian  STRIMMER,  2004.  APE:  Analyses  of 
Phylogenetics and Evolution in R language.  Bioinformatics (Oxford, England) [online]. 22. 1.,  20(2), 
289–290. ISSN 1367-4803. Available at: doi:10.1093/bioinformatics/btg412

PATTERSON,  John  B.,  Daniel  C.  THOMIS,  Sherrie  L.  HANS  and  Charles  E.  SAMUEL,  1995. 
Mechanism of Interferon Action: Double-Stranded RNA-Specific Adenosine Deaminase from Human 
Cells  Is  Inducible  by  Alpha  and  Gamma  Interferons.  Virology [online].  10. 7.,  210(2),  508–511. 
ISSN 0042-6822. Available at: doi:10.1006/viro.1995.1370

PILS,  Birgit,  Richard R. COPLEY and J rg SCHULTZ, 2005.  Variation in structural  location andö  
amino acid conservation of functional sites in protein domain families. BMC Bioinformatics [online]. 6, 
210. ISSN 1471-2105. Available at: doi:10.1186/1471-2105-6-210

PRESTWOOD,  T.  R.,  M.  M.  MORAR,  R.  M.  ZELLWEGER,  R.  MILLER,  M.  M.  MAY,  L.  E.  
YAUCH, S. M. LADA and S. SHRESTA, 2012. Gamma Interferon (IFN- ) Receptor Restricts Systemic 
Dengue  Virus  Replication  and  Prevents  Paralysis  in  IFN- /  Receptor-Deficient  Mice.  Journal  of  
Virology [online].  1. 12.,  86(23),  12561–12570.  ISSN 0022-538X.  Available 
at: doi:10.1128/JVI.06743-11

REVELL, Liam J.,  2012. phytools: an R package for phylogenetic comparative biology (and other 
things). Methods in Ecology and Evolution [online]. 1. 4., 3(2), 217–223. ISSN 2041-210X. Available 
at: doi:10.1111/j.2041-210X.2011.00169.x

ROBEK, M. D., B. S. BOYD and F. V. CHISARI, 2005. Lambda Interferon Inhibits Hepatitis B and C 
Virus Replication. Journal of Virology [online]. 15. 3., 79(6), 3851–3854. ISSN 0022-538X. Available 
at: doi:10.1128/JVI.79.6.3851-3854.2005

RONQUIST, F. and J. P. HUELSENBECK, 2003. MrBayes 3: Bayesian phylogenetic inference under 
mixed  models.  Bioinformatics [online].  12. 8.,  19(12),  1572–1574.  ISSN 1367-4803,  1460-2059. 
Available at: doi:10.1093/bioinformatics/btg180

RONQUIST, F., M. TESLENKO, P. VAN DER MARK, D. L. AYRES, A. DARLING, S. HOHNA, B. 
LARGET, L. LIU, M. A. SUCHARD and J. P. HUELSENBECK, 2012. MrBayes 3.2: Efficient Bayesian 
Phylogenetic Inference and Model Choice Across a Large Model Space.  Systematic Biology [online]. 
1. 5., 61(3), 539–542. ISSN 1063-5157, 1076-836X. Available at: doi:10.1093/sysbio/sys029

SAHIRATMADJA, E., B. ALISJAHBANA, T. DE BOER, I. ADNAN, A. MAYA, H. DANUSANTOSO, 
R. H. H. NELWAN, S. MARZUKI,  J.  W. M. VAN DER MEER, R. VAN CREVEL, E.  VAN DE 
VOSSE  and  T.  H.  M.  OTTENHOFF,  2007.  Dynamic  Changes  in  Pro-  and  Anti-Inflammatory 
Cytokine  Profiles  and  Gamma Interferon  Receptor  Signaling  Integrity  Correlate  with  Tuberculosis 
Disease Activity and Response to Curative Treatment.  Infection and Immunity [online]. 1. 2.,  75(2), 
820–829. ISSN 0019-9567. Available at: doi:10.1128/IAI.00602-06

SCHOENBORN, Jamie R. and Christopher B. WILSON, 2007. Regulation of Interferon γ During‐  
Innate and Adaptive Immune Responses. In: Advances in Immunology [online]. B.m.: Elsevier, p. 41–
101. ISBN 978-0-12-373709-0. Available at: doi:10.1016/S0065-2776(07)96002-2

61



SHAH,  Neil,  Jochen  KAMMERMEIER,  Mamoun  ELAWAD  and  Erik-Oliver  GLOCKER,  2012. 
Interleukin-10 and Interleukin-10-Receptor Defects in Inflammatory Bowel Disease. Current Allergy 
and  Asthma  Reports [online].  10.,  12(5),  373–379.  ISSN 1529-7322.  Available 
at: doi:10.1007/s11882-012-0286-z

SHEAHAN,  Timothy,  Naoko  IMANAKA,  Svetlana  MARUKIAN,  Marcus  DORNER,  Peng  LIU, 
Alexander  PLOSS and  Charles M.  RICE,  2014.  Interferon Lambda  Alleles  Predict  Innate  Antiviral 
Immune Responses and Hepatitis C Virus Permissiveness.  Cell  Host & Microbe [online]. 2.,  15(2), 
190–202. ISSN 19313128. Available at: doi:10.1016/j.chom.2014.01.007

SHIM, Jung Ok and Jeong Kee SEO, 2014. Very early-onset inflammatory bowel disease (IBD) in 
infancy  is  a  different  disease  entity  from  adult-onset  IBD;  one  form  of  interleukin-10  receptor 
mutations.  Journal  of  Human  Genetics [online].  6.,  59(6),  337–341.  ISSN 1434-5161.  Available 
at: doi:10.1038/jhg.2014.32

SOLOVYEV, V., 2001. Statistical approaches in eukaryotic gene prediction.  Handbook of statistical  
genetics. 

STAMATAKIS, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large  
phylogenies. Bioinformatics [online]. 1. 5., 30(9), 1312–1313. ISSN 1367-4803, 1460-2059. Available 
at: doi:10.1093/bioinformatics/btu033

STAMATAKIS,  Alexandros,  Paul  HOOVER and Jacques  ROUGEMONT, 2008.  A rapid bootstrap 
algorithm for the RAxML Web servers. Systematic Biology [online]. 10., 57(5), 758–771. ISSN 1076-
836X. Available at: doi:10.1080/10635150802429642

ST VER, Ben C. and Kai F. M LLER, 2010. TreeGraph 2: Combining and visualizing evidence fromÖ Ü  
different  phylogenetic  analyses.  BMC  Bioinformatics [online].  11,  7.  ISSN 1471-2105.  Available 
at: doi:10.1186/1471-2105-11-7

SUN,  Ding-Ping,  Ching-Hua  YEH,  Edmund  SO,  Li-Yun  WANG,  Tsui-Shan  WEI,  Ming-Shi 
CHANG  and  Chung-Hsi  HSING,  2013.  Interleukin  (IL)-19  promoted  skin  wound  healing  by 
increasing fibroblast  keratinocyte growth factor  expression.  Cytokine [online].  6.,  62(3),  360–368. 
ISSN 10434666. Available at: doi:10.1016/j.cyto.2013.03.017

THIEL, D. J., M. H. LE DU, R. L. WALTER, A. D’ARCY, C. CH NE, M. FOUNTOULAKIS, G.È  
GAROTTA, F. K. WINKLER and S. E. EALICK, 2000. Observation of an unexpected third receptor 
molecule in the crystal structure of human interferon-gamma receptor complex.  Structure (London, 
England: 1993). 15. 9., 8(9), 927–936. ISSN 0969-2126. 

VALDAR, William SJ and Janet M. THORNTON, 2001. Protein–protein interfaces: analysis of amino 
acid conservation in homodimers. Proteins: Structure, Function, and Bioinformatics. 42(1), 108–124. 

VANDENBROECK, K., S. CUNNINGHAM, A. GORIS, I. ALLOZA, S. HEGGARTY, C. GRAHAM, 
A. BELL and M. ROONEY, 2003.  Polymorphisms in the interferon-γ/interleukin-26 gene region 
contribute to sex bias in susceptibility to rheumatoid arthritis: IFNG/IL26 Polymorphisms and Sex Bias 
in Susceptibility to RA.  Arthritis & Rheumatism [online]. 10.,  48(10), 2773–2778. ISSN 00043591. 
Available at: doi:10.1002/art.11236

WANG,  F.,  N.  SMITH,  L.  MAIER,  W.  XIA,  C.  HAMMERBERG,  H.  CHUBB,  C.  CHEN,  M. 
RIBLETT, A. JOHNSTON, J.E.  GUDJONSSON, Y. HELFRICH, S.  KANG, G.J.  FISHER and J.J.  
VOORHEES,  2012.  Etanercept  suppresses  regenerative  hyperplasia  in  psoriasis  by  acutely 
downregulating  epidermal  expression of  interleukin  (IL)-19,  IL-20 and IL-24:  Etanercept  acutely 
suppresses the IL-20 cytokine subfamily. British Journal of Dermatology [online]. 7., 167(1), 92–102. 
ISSN 00070963. Available at: doi:10.1111/j.1365-2133.2012.10961.x

62



WANG, Lu, Yan WANG, Zhiyu SONG, Jiahui CHU and Xianjun QU, 2015. Deficiency of Interferon-
Gamma or Its Receptor Promotes Colorectal Cancer Development.  Journal of Interferon & Cytokine  
Research [online].  4.,  35(4),  273–280.  ISSN 1079-9907,  1557-7465.  Available 
at: doi:10.1089/jir.2014.0132

WANG, M., Z. J. TAN, R. ZHANG, S. V. KOTENKO and P. LIANG, 2002. Interleukin 24 (MDA-
7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. 
Journal  of  Biological  Chemistry [online].  1. 3.,  277(9),  7341–7347.  ISSN 0021-9258.  Available 
at: doi:10.1074/jbc.M106043200

WANG, Shimin, Xiang GAO, Guobo SHEN, Wei WANG, Jingyu LI, Jingyi ZHAO, Yu-Quan WEI 
and Carl K. EDWARDS, 2016. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-
1  functions  and  promotes  Th1  and  Th17  immunity.  Scientific  Reports [online].  14. 4.,  6,  24249. 
ISSN 2045-2322. Available at: doi:10.1038/srep24249

WATERHOUSE, A. M., J. B. PROCTER, D. M. A. MARTIN, M. CLAMP and G. J. BARTON, 2009. 
Jalview  Version  2--a  multiple  sequence  alignment  editor  and  analysis  workbench.  Bioinformatics 
[online].  1. 5.,  25(9),  1189–1191.  ISSN 1367-4803,  1460-2059.  Available 
at: doi:10.1093/bioinformatics/btp033

WHELAN, Simon and Nick GOLDMAN, 2001. A General  Empirical  Model  of  Protein Evolution 
Derived from Multiple Protein Families Using a Maximum-Likelihood Approach.  Molecular Biology 
and  Evolution [online].  1. 5.,  18(5),  691–699.  ISSN 0737-4038.  Available 
at: doi:10.1093/oxfordjournals.molbev.a003851

WILSON,  Nicholas  J,  Katia  BONIFACE,  Jason  R  CHAN,  Brent  S  MCKENZIE,  Wendy  M 
BLUMENSCHEIN, Jeanine D MATTSON, Beth BASHAM, Kathleen SMITH, Taiying CHEN, Franck 
MOREL, Jean-Claude LECRON, Robert A KASTELEIN, Daniel J CUA, Terrill K MCCLANAHAN, 
Edward P BOWMAN and Rene DE WAAL MALEFYT, 2007.  Development,  cytokine  profile  and 
function of human interleukin 17–producing helper T cells.  Nature Immunology [online]. 9.,  8(9), 
950–957. ISSN 1529-2908. Available at: doi:10.1038/ni1497

WOLK, K., S. KUNZ, K. ASADULLAH and R. SABAT, 2002. Cutting Edge: Immune Cells as Sources  
and Targets of the IL-10 Family Members? The Journal of Immunology [online]. 1. 6., 168(11), 5397–
5402. ISSN 0022-1767, 1550-6606. Available at: doi:10.4049/jimmunol.168.11.5397

WOLK,  Kerstin,  Stefanie  KUNZ,  Ellen  WITTE,  Markus  FRIEDRICH,  Khusru  ASADULLAH and 
Robert SABAT, 2004. IL-22 increases the innate immunity of tissues. Immunity [online]. 21(2), 241–
254. Available at: doi:http://dx.doi.org/10.1016/j.immuni.2004.07.007

WU, Jinxiang, Guicheng WANG, Junqing HAO, Wenbin GONG, Junfei WANG, Jiping ZHAO and 
Dong LIANG, 2014. The correlation between IL-20 and the Th2 immune response in human asthma. 
Asian  Pacific  journal  of  allergy  and  immunology [online].  32(4),  316.  Available 
at: doi:110.12932/AP0447.32.4.2014

XU, W. F., S. R. PRESNELL, J. PARRISH-NOVAK, W. KINDSVOGEL, S. JASPERS, Z. CHEN, S. R.  
DILLON, Z. GAO, T. GILBERT, K. MADDEN, S. SCHLUTSMEYER, L. YAO, T. E. WHITMORE, 
Y. CHANDRASEKHER, F. J. GRANT, M. MAURER, L. JELINEK, H. STOREY, T. BRENDER, A. 
HAMMOND, S. TOPOUZIS, C. H. CLEGG and D. C. FOSTER, 2001. A soluble class II cytokine 
receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proceedings of the National Academy 
of Sciences of the United States of America [online].  14. 8.,  98(17), 9511–9516. ISSN 0027-8424. 
Available at: doi:10.1073/pnas.171303198

YANG, C.,  Y.  TONG, W. NI,  J.  LIU, W. XU, L.  LI,  X. LIU,  H. MENG and W. QIAN, 2010. 
Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the 

63



antileukemia  activity  in  vitro  and  in  vivo.  Cancer  Gene  Therapy [online].  2.,  17(2),  109–119. 
ISSN 0929-1903. Available at: doi:10.1038/cgt.2009.57

YOON,  Sung  Il,  Brandi  C.  JONES,  Naomi  J.  LOGSDON and  Mark  R.  WALTER,  2005.  Same 
Structure,  Different  Function.  Structure [online].  1. 4.,  13(4),  551–564. ISSN 0969-2126. Available 
at: doi:10.1016/j.str.2005.01.016

ZDANOV,  A.,  C.  SCHALK-HIHI,  A.  GUSTCHINA,  M.  TSANG,  J.  WEATHERBEE  and  A. 
WLODAWER,  1995.  Crystal  structure  of  interleukin-10  reveals  the  functional  dimer  with  an 
unexpected topological similarity to interferon gamma. Structure (London, England: 1993). 15. 6., 3(6), 
591–601. ISSN 0969-2126. 

ZHANG, Caibo, Dong HOU, Haifeng WEI, Minnan ZHAO, Lin YANG, Qiao LIU, Xiyu ZHANG, 
Yaoqin  GONG  and  Changshun  SHAO,  2016a.  Lack  of  interferon-γ  receptor  results  in  a 
microenvironment favorable for intestinal tumorigenesis.  Oncotarget [online].  7(27), 42099. Available 
at: doi:10.18632/oncotarget.9867

ZHANG,  Di,  Alexander  WLODAWER  and  Jacek  LUBKOWSKI,  2016b.  Crystal  Structure  of  a 
Complex  of  the  Intracellular  Domain  of  Interferon  λ Receptor  1  (IFNLR1)  and  the  FERM/SH2 
Domains  of  Human  JAK1.  Journal  of  Molecular  Biology [online].  11.,  428(23),  4651–4668. 
ISSN 00222836. Available at: doi:10.1016/j.jmb.2016.10.005

ZHENG,  Mingzhong,  Dora  BOCANGEL,  Blair  DONESKE,  Abner  MHASHILKAR,  Rajagopal 
RAMESH, Kelly K. HUNT, Suhendan EKMEKCIOGLU, R. Bryan SUTTON, Nancy POINDEXTER, 
Elizabeth A. GRIMM and Sunil CHADA, 2006. Human interleukin 24 (MDA-7/IL-24) protein kills 
breast  cancer  cells  via  the  IL-20  receptor  and  is  antagonized  by  IL-10.  Cancer  Immunology,  
Immunotherapy [online].  27. 11.,  56(2),  205–215.  ISSN 0340-7004,  1432-0851.  Available 
at: doi:10.1007/s00262-006-0175-1

ZHENG,  Yan,  Dimitry  M.  DANILENKO,  Patricia  VALDEZ,  Ian  KASMAN,  Jeffrey  EASTHAM-
ANDERSON, Jianfeng WU and Wenjun OUYANG, 2007. Interleukin-22, a TH17 cytokine, mediates 
IL-23-induced  dermal  inflammation  and  acanthosis.  Nature [online].  8. 2.,  445(7128),  648–651. 
ISSN 0028-0836, 1476-4687. Available at: doi:10.1038/nature05505

7.1  Online resources

FigTree software available from http://tree.bio.ed.ac.uk/

ConSurf available at http://consurf.tau.ac.il/

NCBI BLAST available at https://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI database at https://www.ncbi.nlm.nih.gov/protein/

Phylemon 2 webserver at http://phylemon2.bioinfo.cipf.es/

Protein Data Bank available at http://www.rcsb.org/pdb 

UniPROT database at http://www.uniprot.org/

64

http://www.uniprot.org/
http://www.rcsb.org/pdb
http://phylemon2.bioinfo.cipf.es/
https://www.ncbi.nlm.nih.gov/protein/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://consurf.tau.ac.il/
http://tree.bio.ed.ac.uk/


 Supplementary material

FGENESH+ sequences

>FGENESH: Anolis carolinensis | IL20

MAFGAFSCLVLVAFLFAKTVVAEGRRLSLGQCELNSVSFRELRDNFDAIKENVQTQDI

RTDVILLKESVLREVPMSESCCLLRHLLRFYVESIFKHYEPTSNLLRRKTSTLANAFLSI

KAKLRECHNQNKCSCGEETNRRFKLVLDEYQKLDKTTAAIKSLGEMDVLFAWMEGF

>FGENESH: Gallus gallus | IL26

MKVYSIFRSGHLLVLLCLFTVEGKKSPTGKHTCRKGLLSQVTENLYTKASSLKSSVPKD

LIKNTRLLKKTTKMLFMTNCNVRDQLLSFYMKNVFSHLGMESEKLFVISAFRVLQE

NMNACLPCAPSTRLTSAVKNIKKTFLKVRVGGVGSCFGGVGGFTSNTFIFLTAWGEGG

LQGHQ

>FGENESH: Pelodiscus sinensis | IFNLR1

MSAGSRAVLVALCSFQQLLGSVALGQPGVPLPPPRNVKLLSKDFGVAVTWLPGEGSPP

DVLYSVRYQTLYHQSNWKQVRHCKNISHVTCNLTCGPDPYNKFSTRVKALAAGRQS

PWVESNSLEYHLDVHLAPPALAVSVAETTINVSATFPLASCVKSVFIGLKYDLDFWKAG

TGDKVPFHDRMKWENVTISTLALSGNYCLSARASYQAIQLKHSQFSRPLCMLLTPRA

KGWEFLITMAVPLLILLFFCTAPGTVLEELIERDLFICVVQPASAGRWRSDASRTARND

TSLVARNNASPVARNDASPVARNDTSPVARNDTSLTASLLSLSEEEDDDSGGRPYTEMP

LFLRRAPNCSGASMSQEGSHSGSELSGSHLAGGPVPDLAGLGFSRLVWRGGPAEEDAS

GFPDSEKSSSFSESSSVGEFSLSEAPCPVTCGGERQGWEADTGQEDPFLQVSVLAEGLK

GGSPAEEWGVPRRGPRKTDPQRHLHPDPSVCVARGVSEAADGFPLEEQLVRFQTVKL

ALDEGVASDSESLAGGAERDPPPLSAALSETGGAEAWGKGGGLWPARDPAWQCRGY

QHMRYMPRT
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