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Abstrakt: Výpočetní  síla  přenosných  zařízení  v  poslední  době  výrazně  stoupla.
Jednou  z  výhod,  kterou  to  přináší,  je  možnost  nasazení  nových  druhů
distribuovaných systémů,  jako například komponentových systémů založených na
ensemblech  (EBCS).  Z  praktických  důvodů  jsou  zpravidla  EBCS  systémy  před
dokončením  testovány  pomocí  simulací.  Často  však  bývá  obtížné  interpretovat
výstup z takových simulací, neboť je obvykle ve formátu XML, jenž je uzpůsoben
strojovému čtení.  Vytvořili  jsme aplikaci  pro grafickou vizualizaci  těchto dat  -  v
současné  podobě  dokáže  graficky  znázornit  výstup  z  aplikací  postavených  na
JDEECo komponentovém modelu, ale může být snadno upravena i pro jiné EBCS
systémy.  Aplikace  dokáže  znázornit  komponenty  a  ensembly,  jejichž  grafickou
realizaci  je  možné  měnit  pomocí  připravené  skriptovací  konzole.  Dále  aplikace
nabízí  možnost  rozšíření  pomocí  zásuvných  modulů.  Provedené  měření  výkonu
ukazuje, že při použití typických vstupů aplikace běží rozumně rychle.
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Abstract: Computational power of mobile devices has been continuously improving
in the recent years. One of the benefits which it brings, is feasibility of new kinds of
distributed  systems,  such  as  Ensemble-Based  Component  Systems  (EBCS).  For
practical reasons, EBCS systems are usually tested using simulations before being
released.  However,  it  can  be  difficult  to  interpret  the  simulation  output,  as  it  is
usually contained in XML format, which is more suited to be read by machines than
by  people.  We  provide  a  visualizing  application,  which  creates  a  graphical
representation of such a simulation output. Out of the box, it is able to visualize data
from applications built on top of the JDEECo component model, but it can be easily
modified to accept output from different EBCS applications. It is able to visualize
both components and ensembles and provides a  scripting interface to modify the
graphical  output.  In  addition,  it  has  an  extensibility  mechanism for  adding  new
functionalities.  Our  benchmarking  shows  that  the  application  is  expected  to  run
reasonably fast in typical scenarios.
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1. Introduction

In the recent  years,  the computational  power of  mobile  devices  has  considerably
improved. It is not uncommon that smart-phones in the middle price range now ship
with  up  to  8-core  processors  and  RAM memory comparable  to  that  of  low-end
desktop computers. Some would argue that the main benefit of this technological
evolution is an increase of comfort for mobile users. Certainly, it is now much more
pleasant to work with a mobile internet browser or a video player, as it no longer
takes ages to load the application. However, it also created new opportunities – with
the improved hardware, it became possible to consider previously unfeasible forms
of distributed software systems. 

A prime example of such systems, only made feasible by the improved hardware, are
the  smart  cyber-physical  systems  (sCPS) [4][5]. We  can  characterize  them  as
distributed,  decentralized,  heterogeneous  and  open-ended  systems,  which  can
moreover interact with the surrounding environment. The interaction is supposed to
be carried out both ways; the system may retrieve information from the environment
as well as influence the environment in a certain way. A nice example of an sCPS is
an  intelligent  navigation  system  for  cars,  which  monitors  the  traffic  (using
communication with other members the sCPS) and chooses the optimal route based
on both the static map and the current traffic.

To  help  with  implementing  an  sCPS,  the  ensemble-based  component  systems
(EBCS) [2] software  concept  was  developed.  It  is  a  mixture  of  different
computational models and concepts which are otherwise usually used in a separate
manner.  EBCS  borrows  notions  and  design  principles  from  component-based
software  engineering,  agent-oriented  computing,  ensemble-oriented  systems  and
control-systems  engineering.  The  architecture  of  such  systems  is  based  on
components, whose behavior is completely determined locally. Communication of
components is done exclusively through dynamically created ensembles.

Having an appropriate software concept is still a long way from building an actual
application that will run the sCPS. Dependable Ensembles of Emerging Components
(DEECo) [2][8] is a refinement of the EBCS into a software engineering model. In
other  words,  DEECo  can  already  be  used  by  software  architects  to  design  the
structure  of  an  application [6],  unlike  sCPS,  which  is  just  a  general  concept.  To
enable the design process, DEECo provides the software architects with three pivotal
concepts – the runtime, component and ensemble. As the components and ensembles
can be easily translated into classes in an object-oriented programming language, the
main challenge in implementing DEECo was creating a proper runtime. This was
addressed by JDEECo [2][7], a pure Java implementation of DEECo. It provides a
software  library  for  building  new  applications  on  the  DEECo  principles,  thus
effectively making the final step on the journey from an abstract sCPS to a working
application.
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Using  the  DEECo  software  engineering  model,  together  with  its  Java
implementation,  it  is  possible  to  build  sCPS systems.  However,  a  new  problem
arises. When developing desktop software or even web applications, we usually have
good opportunities to test the product on the target platforms. We can simply test the
application  on  a  local  machine  with  configuration  similar  to  that  of  customers'
machines.  Possibly,  we  need  to  set  up  a  faux web  server  in  the  case  of  a  web
application.  However,  DEECo  applications  are  different,  since  they  are  highly
distributed with potentially high number of participating computers. We usually can
not afford to perform testing in a real-world environment, as it would most often
include the challenge of finding a sufficient number of people who are willing to
participate in the testing process. Even if this proved to be no problem, the testing
would probably take a lot of time, which is sometimes not desirable. 

Instead  of  testing  the  DEECo  applications  on  a  network  of  real  machines,  the
MATSim [3] simulation  system can  be  used.  While  it  originated  as  a  simulation
system solely for agent-based systems, it nicely fits the needs of EBCS applications,
as well. It offers extensive parametrization of the simulation process, thus making the
testing process very flexible. The output of the simulation is produced in the form of
XML documents.

1.1. Goals

While  certainly  XML  is  a  reasonable  means  to  store  structured  data  such  as
simulation output, it comes with a drawback – it is arguably more suited for being
read  by a  machine  than  by  humans.  Generally,  it  becomes  quite  challenging  to
interpret an XML file by sight even if it spans just about a few pages of text.

In  this  thesis,  we  aim  to  provide  a  software  tool  that  would  visualize  the  data
obtained  from EBCS  applications  –  such  as  the  DEECo applications  mentioned
above. In most cases, the input will be obtained from simulation of such systems, but
it is not a requirement. Before we state the goals of the work, we need to make clear
a few terms.

The graphical output of the application will consist of two logical components – the
infrastructure and presentation. The infrastructure consists of graphical shapes which
represent the elements of the EBCS application. These include the environment (for
instance  a  road  map),  the  moving  components  and  the  dynamically  changing
ensembles. The infrastructure thus provides the most important part of the output –
the information about how the application execution went. The presentation, unlike
infrastructure, does not bring any new information to the table – it is the graphical
design of the infrastructure elements. For example, a part of the presentation is a
definition  of  how  the  DEECo  components  are  visualized  (such  as  a
dot/square/arbitrary picture...). 

The  application  is  required  to  support  the  visualization  of  EBCS  applications'
infrastructure,  including  the  environment,  components  and  especially  ensembles.
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Because the EBCS applications  may represent  systems of  various  characters,  the
output presentation must be highly customizable. This way it is possible to modify
the presentation of individual input data in order to visualize it so that it is clear what
the original application actually did. 

Apart  from  the  support  for  infrastructure  and  customizable  presentation,  the
application should meet these additional criteria:

• Support for large input files
• Reasonable loading times
• Clean architecture and extensibility
• Platform independence
• Scripting interface

1.2. Structure of the Thesis

In the following chapter we expand on the topics concerning the background behind
this work. We describe in detail the notions of smart cyber-physical systems (sCPS),
ensemble-based component systems (EBCS), the platform of dependable ensemble of
emerging components (DEECo), and JDEECo, the Java implementation of DEECo.
We finish with characterization of the applications that can be built on the DEECo
platform.

In the third chapter we provide an analysis of the software work which forms the
basis of the thesis. We start with a discussion of the goals, introduced in the previous
section. For each of the goals, we describe the approach we have taken to solve it.
The next part of the chapter contains an overview of the application architecture,
especially of how the input data are processed. Finally, the chapter concludes with a
performance evaluation, where the application performance is measured. The results
are interpreted with regards to the initial goals.

In the fourth chapter  we present  a  few tips on how to use the application in  an
efficient way. It begins with a presentation of the configuration file feature, which is
a  way to  specify  input  for  the  application.  Introduction  of  the  plugin  extension
mechanism  follows.  Finally,  the  scripting  interface  is  introduced,  including  the
discussion of how it can be used to solve basic tasks, and illustrated by a number of
code examples.

In the fifth chapter, we put the presented work in the context of the current works in
the field of smart cyber-physical systems. We compare it with the existing visualizing
tools, and we list the benefits and drawbacks of using other visualizing solutions for
EBCS applications.

The  work  concludes  with  the  sixth  chapter,  which  provides  an  overview  of  the
presented work with regards to the goals which were originally set.
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2. Background

In this chapter we are going to discuss the concepts and notions which we work with
in the following chapters. These include the  smart cyber-physical systems (sCPS),
the  ensemble-based component  systems (EBCS) and  finally,  the  DEECo software
engineering concept.

2.1. Smart Cyber-Physical Systems

A  smart  cyber-physical  system  (sCPS) [4][5] is  a  collection  of  potentially  high
number of elements situated in a real-world environment. Each element of the sCPS
is presumably a mobile gadget, a phone, or a computer which runs a specific piece of
software. Typically, the elements are physically located at different places, and their
position  may  change  continuously  with  time,  which  is  in  agreement  with  the
assumption that the elements are portable forms of computers, which either move by
themselves or are carried by users in their luggage.

The elements are able to extract certain types of information from the surrounding
environment, such as their position or the local temperature. To enable the extraction,
the  elements  are  equipped  with  specialized  sensors.  Additionally,  they  can  also
retrieve specific kinds of information from other elements of the system. To make the
interaction with the environment complete, the elements can influence the physical
environment,  as  well.  For  this  reason,  they are  often  equipped with a  variety of
actuating devices. 

To characterize an sCPS in basic notions, we list the main properties [5] of such a
system:

• Decentralization –  there  is  no  central  element  that  would,  in  the  case  of
malfunction, paralyze the whole system.

• Distributed  character –  the  individual  elements  are  located  on  different
computers and communicate through network.  Behavior of the system as a
whole is an emergent result of the behaviors of its elements.

• Heterogeneous  nature –  the  elements  need  not  be  of  the  same  type.  For
example, one element might be an embedded computer in a car, while the
other is a mobile phone.

• Interaction  with  physical  environment –  as  mentioned  above,  the  system
members can interact with the physical environment (as well as with each
other).
One additional property is often assumed:

• Open-endedness – system elements can connect and disconnect at seemingly
random times.

As an example of an sCPS we may mention an intelligent navigation system. Each
navigation  system  gadget  corresponds  to  an  element  of  the  sCPS.  Usually,  the
gadgets  are  located  inside  cars,  but  may  also  be  worn  by  pedestrians  or  other
vehicles. The navigation software in each gadget then monitors the current position
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on the map, dynamically refining the optimal route to the destination. On top of that,
it  also  monitors  the  current  traffic,  using  communication  with  other  navigation
system elements. In the end, the optimal route is  determined both by the current
position and the traffic situation. 

In this example we may see how the interaction with the environment works both
ways. The behavior of an individual element is affected by the environment when it
selects  the  optimal  route  based  on  the  traffic  and  position  –  both  of  which  are
retrieved from the sensors. On the other hand, the element can influence the behavior
of other elements by selecting a particular route to go, thus increasing the traffic
along the way.

The remaining sCPS characteristics are easy to spot in the car navigation example, as
well. Decentralization is apparent, as the cars determine their route locally, not using
any central server. The system is distributed, since the software runs on each of the
elements,  and these element are equal in role/importance.  The individual element
may not only be cars – the navigation system may also be present in bicycles, trucks,
or in a pedestrian's mobile phone, which is what makes the system heterogeneous.
Finally,  the  open-endedness  is  ensured  by allowing  the  navigation  gadgets  to  be
turned on and off, effectively connecting and disconnecting them from the system.

The computational power of portable gadgets and computers has notably increased in
the recent years. Together with the solid coverage by cell-phone signal and improved
mobile  internet  bandwidth,  this  allowed  for  building  a  number  of  new  sCPSs.
Although the hardware still poses a few challenges to deal with – such as battery life
or weight of the gadgets, the main focus of the sCPS developers is now aimed at the
software part of the systems. 

Designing a reasonable software for an sCPS may present many challenges. Since
the combination of the basic characteristics of sCPS, listed above, does not fit in with
any of the usual software-engineering concepts [4][5], a new approach needed to be
developed [2].

2.2. Ensemble-Based Component Systems (EBCS)

To  match  the  needs  of  various  sCPS,  a  new  software  design  concept  has  been
developed – the  Ensemble-Based Component Systems (EBCS) [2][1][12]. It can be
seen as a mixture of the following computational models [2][8]:

• Component-Based Software Engineering [10][13]
• Agent-Oriented Computing [11]
• Ensemble-Oriented Systems [2][15]
• Control System Engineering [16]

EBCS concept has adopted the notion of a component from the  component-based
software engineering, which makes it possible to model the system members as well-
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encapsulated and reusable entities. The behavior of a member is based solely on a
piece  of  data,  called  "belief",  that  is  held  inside  the  member  and  describes  the
surrounding  environment.  Of  course,  the  belief  may  not  be  always  complete  or
accurate.  As a  result,  the behavior  of  the system as a  whole is  described by the
behavior of its individual members; there is no global way to change it. The reader
may  have  noted  that  this  is  actually  one  of  the  main  principles  of  agent-based
computing. As for the ensemble-oriented systems, the main asset EBCS borrows from
them is the communication model. System members can only exchange information
in one way, which is done implicitly by the runtime. The communication is attribute-
based – attributes are data associated with a system member. The attribute values are
exchanged between system members when they are members of an "ensemble" –
these are created and dismissed dynamically based on the member localization and
their  attribute  values.  Last  but  not  least,  EBCS  is  inspired  by  control  system
engineering in the way it ensures the  operational normalcy of components, that is,
how it makes sure that the components hold reasonably accurate belief  about the
environment. It is achieved by employing soft-real-time control feedback loops, with
carefully determined periods between individual loops.

2.3. DEECo Component Model

Of course, the EBCS is just a concept. When developing the software part  of an
sCPS we  need  a  more  rigorous  approach.  To  this  end,  the  software-engineering
model  of  Dependable  Ensembles  of  Emerging  Components  (DEECo) [1][2] was
developed. It employs the EBCS concept, described in section 2.2. On top of that, it
defines actual  software-engineering notions and semantics that make it possible for
software architects to design a new sCPS application. To make the difference clear,
look  at  the  situation  from the  perspective  of  a  software  architect  –  EBCS  only
describes an approach to software design, while DEECo should lead to an actual
application architecture.

The main notions DEECo works with are that of a  component and  ensemble.  To
provide an environment in which these two notions are implemented, there is also the
DEECo  runtime  framework.  It  carries  out  those  operations  on  components  and
ensembles that are considered to run implicitly in the DEECo model. Components
are, from the developer's point of view, a self-contained piece of code that can be
developed,  deployed  and  run  independently  of  other  components.  Internally,
components consist of two logical parts – knowledge and processes. 

Knowledge is the data that the component holds. It is organized as a collection of
key-value pairs, with the option to have a tree node in place of a primitive value. This
effectively makes  it a tree structure with primitive values in the leaves. The data that
knowledge contains define the component's  current state and the  functionality that
the  component  provides.  The  current  state  of  the  component  is,  informally,  a
collection of values of those keys that somehow characterize the component; these
keys  are  of  course  determined by the  actual  application  that  is  built  on  DEECo
model.  The  functionality  that  the  component  provides  is  specified  by  the
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implemented  interfaces.  Interface is  a  collection  of  keys  that  the  implementing
component  must  contain.  Interfaces  behave in  a  similar  way to  those  in  popular
programming languages – a component may feature zero, one or multiple interfaces,
and key in a component may be specified by multiple interfaces at once. As will be
described later, a component sometimes acts on the outside as an instance of one of
the  implemented  interfaces.  This  is  especially  useful  in  some  of  the  ensemble
operations that require the input component to contain certain keys – in other words,
it requires the component to implement a certain interface.

A  process is  a  procedure  that  operates  on  the  component  knowledge.  A list  of
knowledge  fields,  along  with  the  information  whether  they  act  as
input/output/input+output, is associated with each process. Each process is run by the
runtime, either periodically in regular time intervals (specified for each process), or
when triggered by an event, usually a change in a knowledge key (specified for each
process). When it is determined that the process should run, first the input knowledge
fields are atomically retrieved from the knowledge, then the actual procedure is run
and finally,  the results  are  atomically written to the output knowledge fields.  No
other external data may be accessed from within the procedure than the specified
knowledge keys.

An ensemble is  a  model  of  connection  among  components.  The  motivation  for
having  a  kind  of  binding/connection  among  components  is  to  allow  them  to
communicate. To keep things simple, the ensembles model has been designated as
the only means of communication in DEECo. Each ensemble is essentially a group
of  components  where  one  of  the  components  acts  in  a  privileged  role,  named
coordinator.  The other components in the ensemble act as  members.  These roles,
however, apply only for the one specific ensemble. As there may be a high number
of  ensembles  in  a  DEECo  system  as  a  whole,  each  component  is  allowed  to
participate in multiple ensembles; in each of the ensembles, the component may act
in a different role. As a result,  it does not make sense to talk about a component
being coordinator, unless a context of a specific ensemble has been specified.

Each ensemble is created dynamically by the runtime framework. To determine the
coordinator  and  members  of  the  ensemble,  the  membership  function is  called  in
sequence  on every ordered  pair  of  components,  determining that  they are  in  the
ensemble  with  the  first  component  acting  as  the coordinator.  This  way,  after  the
function  has  been  applied  on  every  ordered  component  pair,  we  get  the  full
information about which components are involved in the ensemble.

The ensemble definition contains five pieces of information. First, the interface of the
coordinator,  which  is  a  restriction  on  which  components  can  potentially  act  as
coordinators in this ensemble. If a component does not implement this interface, the
membership function is not even called on the component pairs where the component
acts as coordinator. The second part of ensemble definition is the interface of the
member, which works similarly to the coordinator interface restriction.  Third,  the
membership function is included. It is a binary predicate and can only access those
knowledge fields  of  the  potential  coordinator  and member which are part  of  the
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interfaces described above. Fourth part of the definition is knowledge exchange. It is
a procedure which describes the interaction among ensemble components. It receives
the coordinator and a collection of the members as parameters and manipulates the
knowledge entries in those components. Of course, the exact instructions contained
in the procedure depend on the actual application built on DEECo model. As in the
case  of  membership  function,  the  knowledge  exchange function  can  only access
those knowledge field specified by the interfaces described above. The last entry in
the ensemble definition is scheduling of knowledge exchange. It is a specification of
when  should  the  knowledge  exchange  be  carried  out  –  it  can  be  either  done
periodically  (i.e.  in  regular  time  intervals  with  the  interval  specified  here
accordingly), or when triggered, i.e. when a specified knowledge field has changed
its value. Generally, the scheduling is here defined the same way as in the component
process scheduling.

2.4. JDEECo: an Implementation of DEECo

In order to successfully transform the application architecture into a working piece of
software,  we  need  an  implementation  of  the  notions  and  tools  described  by the
DEECo model. JDEECo [7] is precisely what we want – a plain implementation of
the concepts described by DEECo, written in Java. It is an interesting project from a
software engineer's point of view – the main challenge it deals with is mapping the
concepts  of  the  model  to  the  constructs  of  an  object-oriented  programming
environment.

A component is simply represented as a Java class, which extends a specific base
class and is marked with appropriate annotations. The knowledge of a component is
determined to be the set of class member variables – the runtime framework then
uses reflection to access them. If a knowledge field should be a tree node, there is a
special wrapper class prepared for this purpose. The interfaces implemented by the
component  are  not  explicitly  marked;  they  are  determined  dynamically  using
reflection.  Finally,  the  processes  of  the  component  are  provided  as  properly
annotated static methods in the component class. The input and output knowledge
field are given as method parameters, again with appropriate annotations. 

An  ensemble is represented as a Java class, as well. The ensemble class extends a
specific base class and is marked with dedicated annotations. In contrast with the
DEECo model, the interfaces of coordinators and members are not explicitly marked
in the ensemble class; they are determined dynamically by looking at the knowledge
fields  required  in  the  membership  and  knowledge  exchange  functions.  The
membership  predicate  is  provided  as  a  properly  annotated  static  function.  The
knowledge fields of the coordinator and member, which the function needs to access,
are given as method parameters. The knowledge exchange function is, similarly to
the membership predicate, implemented as a properly annotated static method. The
knowledge fields of the coordinator and member, which it needs to access, are given
as method parameters. Finally, the DEECo ensemble definition contains information
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about  scheduling.  JDEECo delivers  special  annotations which provide scheduling
options, when applied on the ensemble class.

2.5 Delimitation of the Visualizer Application

With the Java implementation of DEECo, we are ready to build a variety of EBCS
applications. They will most likely be the software parts of sCPS systems, since this
is what the main motivation was behind creating the EBCS and DEECo abstractions.
Although the EBCS applications may be of various types, they bear a few common
traits,  mostly  connected  with  the  notions  defined  by  the  EBCS  concept  –  the
components and ensembles. Recall that the EBCS applications most often use the
components to model entities moving through some kind of an environment, while
ensembles help to model the communication among the entities.

It is generally a challenging task to debug and test distributed applications, and the
EBCS applications are no exception. To perform testing on real machines, it usually
requires a task of finding a sufficient number of machines and their users, who are
willing to participate in the testing process. Testing of distributed applications which
run on mainstream tablet operating systems is still somehow feasible, as it typically
only suffices to persuade users to install the application from the central repository.
However,  when  the  distributed  application  runs  in  embedded  gadgets,  things  get
more difficult. For this reason, an adequate simulation environment is usually used
instead of testing on real machines.

For EBCS applications, the Multi-Agent Transport Simulation Toolkit (MATSim) [3]
can be used to simulate a real environment. Among the many upsides of this solution
is the good integrability with the EBCS applications. The degree at which the tool is
configurable is also decent.

In the current form, the presented application accepts the input data in the format
produced by the MATSim framework simulations. As a result, the input data comes
in a standard form, the usual MATSim event  log format.  However,  the MATSim
event log files do not contain the whole information about the simulated application.
The missing part is especially the ensemble log, which must be exported from the
EBCS applications separately.

Our application has  an architecture,  which allows extending it,  so that  it  fits  the
needs of different EBCS applications. However, we had to choose a type of EBCS
applications to which the visualizer will be tailored out of the box. We chose two
classes of applications to be supported right away –  moving cars and  people in a
building.

The  moving  cars applications  have  their  components  contained  in  vehicles,  for
instance cars. The environment, in which they reside, may be represented as a simple
map – a network of nodes, representing points of interest or crossings, and links,
which represent streets and connect the nodes. The vehicles move solely through the
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provided links. Ensembles may represents any kind of connection among vehicles, as
the visualizing application is only interested in the participants of the ensembles, not
the interpretation of ensemble membership.

The components of the people in a building applications represent individual people,
as they move through a flat  or  building.  Alternatively,  the components  may also
represents some kind of robots which move inside a building, for example robotic
vacuum-cleaners. The main difference from the moving cars applications is that the
corridors, through which the components move, do not have to be of a straight line
shape. For example, the corridors may have a curved shape. Ensembles may, like in
the moving cars applications, represent virtually any kind of relationship.

2.6 Goals Revisited

We shall now review the goals of this work. Since we have discussed the essential
background, we can take the goals one by one, and explain their meaning. In the
subseqent  chapter  we  will  discuss  how  we  managed  to  meet  the  goals  in  our
application.

• Support for Infrastructure
The application has to be able to show the environment structure, along with the
EBCS components and ensembles. Since the components are subject to movements,
the visual output  must be properly animated so that it  shows how the individual
components moved through the environment as time went by. The ensembles must
be visualized in way which enables the user to tell, when a component assumes a
certain role in the ensemble (a coordinator, for instance).

• Customizable Output Presentation
The  infrastructure  is  completely  described  in  the  input  XML  files,  unlike  the
presentation, which is partially left undefined in the input files. The application must
choose a reasonable default presentation, which would make it easy to perform a
visualization, as the output would then need no further major refinements. Still,  the
users must be allowed to change any aspect of the presentation to fit the needs of the
individual input data – the range of possible DEECo applications is very large, so the
desired way of presenting the output may differ from one application to another. This
may  be  useful,  for  example,  when  we  need  to  show  just  a  selection  of  the
participating components. 

• Support for Large Input Files
When run (or simulated, as well), the DEECo applications produce output steadily
throughout the duration of their run. Especially when the process lasts for a long
time, the size of the output XML files may rise up to gigabytes. It is thus essential
that  the  visualizing  application  will  work  well  with  the  big  files.  Specifically,  it
should allow the user to specify a time interval of the EBCS application run, which
will  then  be  extracted  by  the  visualizing  application  from  the  input  files  and
visualized. 
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• Reasonable Loading times
As the application loads the input files, regardless whether just a part of them or the
whole  data,  it  parses  the  input  to  an  in-memory representation  of  the  data.  The
visualization then runs on this parsed form of the data.  If the input files are large, the
user should be able to specify a section of the files to be visualized. As a result, the
size of the input which will be visualized is reasonably small. Our goal is to make
sure, that the loading and parsing process does not take an excessive amount of time.

• Clean Architecture and Extensibility
The DEECo platform provides means to develop a large scale of applications. Apart
from the car navigation system example, we may also mention a planning system for
groups of robotic vacuum-cleaners – a set of robotic vacuum-cleaners move through
the building and cooperate on the cleaning process. As it seems, the environment in
which  the  DEECo application  is  situated  is  not  always  the  same.  It  can  be,  for
instance,  a  city  street  network,  corridors  and  rooms  inside  a  building,  or  a
topographical map. The actual gadgets which run the application are also of varying
character – for example, it can be cars, robotic vacuum cleaners, or mobile phones.
The visualizing application must have a clean and transparent architecture, so that it
is possible to extend it easily in order to fit the needs of a new DEECo application, or
any EBCS application. For example, a new EBCS application may potentially be
situated in a three-dimensional environment. The visualizing application should be
designed so that it  is clear where and how the extension should be added. In the
presented form, the visualizer should be ready to accept the output of the applications
which are situated  in  a  road/street  map,  or  a  building interior  (i.e.  corridors  and
rooms).

• Platform Independence
It is essential that the application runs at least on the three major desktop platforms –
the Windows operating system, Linux and OS X/macOS. A reasonable choice of the
programming  language  is  then  Java,  which  runs  on  all  of  the  systems.  For  the
graphical output, the JavaFX library will be utilized, because it is a modern GUI
platform which moreover became a standard part  of the Java Runtime in the last
major release. 

• Scripting Interface
The application will contain means to customize the presentation of the output. The
basic  options  will  be  available  as  GUI controls  –  for  example,  the  color  of  the
background, visibility of ensembles (as a whole, or zooming of the output. For more
refined customization a scripting interface must be available, with the ECMAScript
language used. 
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3. Description of the Solution

In this chapter, we are going to present the software work, which forms the basis of
the thesis. In the first section, we descibe how we have approached the solution of
the  goals  set  in  the  previous  chapters.  The  follow-up  section  contains  a  basic
overview of the application architecture, especially how the input data are processed.
In the final section we measure the application performance and interpret the results.

3.1. Resolution of the Goals

We will now consider the individual goals, set in the previous chapters. For each goal
we dedicate one subsection, where we describe, how we have decided to approach
the solution of the goal.

3.1.1. Support for Environment Infrastructure

EBCS applications may be situated in various environments, such as a network of
streets in a city, corridor system inside of a building or a topographical map of a
mountainous terrain. The EBCS elements, which carry out the application logic, may
as  well  be  of  very  diverse  character  –  for  example  a  car,  a  person  or  a  robot.
However, the situation is not as complicated as it seems. 

We can observe that in virtually any EBCS application, the basic structure of the
environment can be described by means of nodes and links. A node is a specific point
in a coordinate system, representing a point of interest. In most applications a node
corresponds to a kind of an intersection, be it of roads, paths or corridors. The links,
on the other hand, represent connections between the nodes. A single link connects
two nodes  in  a  specified order,  that  is,  it  can  be thought  of  as  a  directed arrow
between the two nodes. 

Recall the two classes of DEECo applications presented in section 2.5, the  moving
cars and the  people in a building.  We show how the environments used in these
applications can be modeled using the nodes and links abstraction. In moving cars,
the environment is a map, which consists of roads in a country, or streets in a city. In
either case, when we have a road network, it can be logically described as a set of
points together  with defined connections  between them – the points  are  the road
intersections,  while  the  connections  are  the  actual  roads.  Now  we  can  easily
represent  these points  as  nodes,  and the connections  as  links.  When we use  this
nodes and links description of the map, the only information we lose is the details of
the road trajectories – i.e. where the road goes through between its endpoints. We
consider this issue to be of presentational character, and discuss its solution in the
next section.

In people in a building class of applications, the environment is a ground plan of a
flat or a building floor. It comprises a system of corridors and rooms, only separated
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by thin walls. An important observation is that people can only move through certain
paths in the ground plan – it is, for example, impossible to move through walls or
some parts of rooms, where there is furniture. Thus it is possible, similarly to the
case of moving cars, to represent the environment as a set of nodes and links. To do
so, we just form a simple network of all paths where it is possible for people to move
and then proceed the same way as in the moving cars case. Again, the representation
of the path trajectories is dealt with in the next section.

With nodes and links, we now have means to represent the environmental structure of
most EBCS applications. The presented visualizing application is in the present form
ready for visualizing the output of the DEECo applications which follow this nodes
and links abstraction in their environment definition. 

The main advantage of modeling an EBCS application environment with nodes and
links is that it allows an elegant representation in XML. The environment definition
XML then just contains a set of node elements, each containing the definition of the
corresponding  node,  followed  by  a  set  of  link elements,  each  containing  the
definition  of  the  corresponding  link.  The  basic  structure  of  the  environment
definition XML is charted in Figure 3.1.

<?xml version="1.0" encoding="UTF-8"?>
<network name="prague_map">

<nodes>
<node id="top_left" x="10.0" y="10.0" />
<node id="center" x="20.0" y="20.0" />
<node id="top_right" x="30.0" y="10.0" />
...
<node id="bottom_right" x="30.0" y="30.0" />

</nodes>
<links>

<link id="1" from="top_left" to="center" />
<link id="1opp" from="center" to="top_left" />
<link id="2" from="bottom_right" to="center" />
...
<link id="2" from="bottom_right" to="center" />

</links>
...

</network>

Figure 3.1 – environment definition XML

The environment definition may also contain additional elements following the links 
definition, but these only deal with the presentational aspect of the output.
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3.1.2. Customizable Environment Presentation

It  is  very  much  possible  that  the  environment  definition  file  contains  just  the
infrastructure definition, with the presentational aspect completely left out. This is
made possible by the fact that the presentation definition is optional in the input file.
Therefore, our application must readily provide a reasonable default presentation for
all of the output elements. 

From the definition of  a  node,  we can  get  at  least  its  identification (ID) and its
position  in  a  coordinate  system.  After  obtaining  the  positions  of  all  nodes,  the
application can determine the boundaries of the provided map – that is, the left-most,
top-most, right-most and bottom-most nodes of the map. The actual values of the
coordinates  are  not  of  much  importance,  as  only  their  relative  positions  are  an
interesting piece of information from the perspective of the visualizing application.
The application then shows a view of the relevant part  of the coordinate system,
using the boundaries obtained from the available nodes. Each of the nodes is shown
as a red dot on the corresponding place with regards to the node's coordinates.

The  definition  of  a  link  always  contains  at  least  its  identification  (ID)  and
information about the nodes it connects, in addition to the direction in which the link
leads.  The  links  only connect  the  nodes  which  are  provided  in  the  environment
definition,  otherwise the input  is  rejected as  invalid.  Because  we already have  a
visualization of the nodes (the red dots), we can proceed to visualization of the links.
An individual link is shown as a straight gray line connecting the relevant nodes. The
direction of the link is not explicitly marked in the visual output, as it can be easily
spotted by looking at the people moving through the link (visualization of people will
be discussed in the following sections).  Visualization of an example environment
infrastructure is provided in Figure 3.19.

Figure 3.19 – example of the default environment visualization
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The presentation of the environment  infrastructure does not have to be explicitly
specified in the input files. The visualization of the environment then contains just
the nodes and links, as described above. However, sometimes the presentation forms
an  important  part  of  the  environment  definition  –  for  example,  when  the  links
represent roads in a country, it may be of great interest to know the trajectories of
individual roads, as they may be curved in otherwise inconceivable ways. In that
case, the presentation is usually included in the environment definition file, so that it
is applied by default, without further need of fiddling with the visual output. 

The  environment  definition  may  contain  some  parts  of  the  presentation;  the
visualizing application supports the following three main presentation aspects:

• nodes presentation
• links presentation
• static background image definition

The  parts  of  the  node  presentation,  which  can  be  specified  in  the  environment
definition file, consist of presentation definition for individual nodes. Not all of the
nodes have to  be covered – the other  will  just  be visualized the default  way,  as
described above. When a node is covered by the presentation definition, it means that
there  is  a  specification  of  which  image  should  be  used  to  represent  the  node.
Alternatively, the default shape can be used, but with changed color – in that case,
the color is provided. 

The  nodes  presentation  definition  is  provided  in  the  input  file  as  a  set  of
intersection elements, where each of the elements specifies a certain form of
node visualization. An example of such XML input is provided in Figure 3.2.

<intersections>
<intersection id="simple" 

nodes="top_left,center" 
color="green" />

<intersection id="decor" 
nodes="top_right"
image="/home/img.png" />

...
<intersections>

Figure 3.2 – example of node presentation definition

In Figure 3.2, we see that the nodes  top_left and center will be visualized as green
dots, since a color has been specified. The node top_right will be represented by the
specified image in the visual output. 

The links presentation definition in the input file consists of a set of  corridor
elements, where each of the elements describes a certain form of link visualization.
An example of such XML input is given in Figure 3.3.
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<corridors>
<corridor id="cor01" links="4,4opp">

<link_img source="/home/road.png" 
fromx="836" fromy="1280" 
tox="1" toy="250" />

<link_path>
<point x="836" y="653" />
<point x="817" y="446" />
<point x="695" y="305" />
<point x="483" y="251" />

</link_path>
</corridor>
<corridor id="cor02" links="5">

<link_path>
<point x="0.2" y="0.4" />
<point x="0.4" y="0.8" />
<point x="0.6" y="0.9" />
<point x="0.8" y="0.98" />

</link_path>
</corridor>

</corridors>

Figure 3.3 – example of link presentation definition

In Figure 3.3, we see that the links 4 and 4opp are represented by a specified image
in the visual output. In addition to the image specification in  link_img element,
there is also the link_path element, which defines a path through the previously
specified image. The path will be used by all sCPS elements moving through the
link. This way it is possible to provide a highly asymmetric image to represent a link
–  without the path definition, it would not be clear where the elements should move
when going through the link. 

The example link presentation also specifies how the link 5 will be visualized. In this
case, no image is given. Only a path definition is provided – this allows assigning a
polygonal path styled visualization for the link.
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Figure 3.20 – example of a customized environment visualization

In Figure 3.20 we provide a basic demonstration of the visual output customization.
The links located in the left-bottom part of the scene are shaped into a polygonal-line
shape, while the links located in the top-right part of the scene are represented by a
custom image, in this case a blue arrow.

The static background image definition, included in the environment definition file,
contains a reference to an image file. The image will be shown in the background of
the visual output of the application. This functionality can be used for two reasons:

• purely decorational purpose
• part of the environment appearance

In the former case, the background is used solely for aesthetical reasons and bears no
direct connection to the nodes and links. In the latter case, the background image is
somehow connected  to  the  environment  structure  –  it  may,  for  instance,  contain
various decorations of the places where some of the nodes or links are located. In
order for the connection with the environment structure to be established, we need to
calibrate  the  position  of  the  background  image  with  respect  to  the  environment
structure.  Thus  the  calibration  details  are  included  in  the  background  image
definition in the input file, as well.
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Figure 3.21 – example of customized environment visualization with 
background being a part of the environment

In Figure 3.21 we see an example of input where the background forms a significant
part of the environment. While the links and nodes define where the components can
travel, the background provides an intuitive insight into the spatial structure of the
environment – we see that the links actually go through a system of corridors, so it is
immediately clear why the links bear those strange polygonal shapes.

So far, we have only conceived means to modify the presentation before the actual
visualization is  started.  We did so by including the required modifications in  the
input files. The application, however, allows changing various presentation aspects
even during the visualization process. It can be done two ways – either by using the
GUI controls, or by utilizing the scripting interface. The GUI controls responsible for
manipulation  of  the  output  presentation  are  located  in  the  main  window  of  the
application, right next to the visual output. They only facilitate changing a few basic
properties of the presentation, such as the visibility of the nodes as a whole. For more
refined  modifications,  the  scripting  interface  must  be  used.  Description  of  the
scripting functionality is provided in the later sections.

3.1.3. Support for EBCS Components

Each  EBCS  application  is  characterized  by  the  environment  it  lives  in,  the
components and the ensembles of elements. So far we have discussed the support for
the first part, the environment. Now we shift our attention to the EBCS components.

As the presented application aims to visualize the provided simulation output, we are
only interested in those aspects of components which are visible from the outside –
mainly the current position of the element, direction of its movement, and optionally
the information whether the component is traveling inside a vehicle. Precisely this
kind of  information  is  contained in  the  event  log  file produced by the  MATSim
simulation system. 
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The structure of the event log file is simple – it is an XML file, consisting of a set of
event elements. Each of the event elements defines an event of a specific type,
which happened during the simulation. Of course, only a selected number of events
is stored in the log file – as an example of an event, which is not stored, is the event
that an element crossed the 38th x-coordinate in the environment. On the other hand,
there is definitely a record in the log file for every event that an element entered or
left a link. Since links are directed, we see that it is easy to compute the element's
position from these records. 

For practical reasons, the event log file is sorted in the ascending order according to
the time when the individual events occurred. While it is caused mainly by the way
the log file  originates,  as the MATSim incrementally appends data  to  the end, it
certainly fits the needs of our visualization software. With event elements sorted, it
makes it possible to search efficiently in the log file for events with specified time,
without the need for loading the whole file in the memory. An example event log file
is provided in Figure 3.4.

<?xml version="1.0" encoding="UTF-8"?>
<events>

<event time="10.0" 
type="PersonEntersVehicle" 
person="V1" vehicle="V1" />

<event time="10.0" type="departure" 
person="V1" link="1" />

<event time="10.0" type="left link" 
person="V1" link="1" />

<event time="10.0" type="entered link" 
person="V1" link="4opp" />

<event time="25.0" type="left link" 
person="V1" link="4opp" />

<event time="25.0" type="entered link" 
person="V1" link="4" />

<event time="40.0" type="left link" 
person="V1" link="4" />

<event time="40.0" type="arrival" 
person="V1" link="4" />

<event time="40.0" 
type="PersonLeavesVehicle" 
person="V1" vehicle="V1" />

</events>

Figure 3.4 – example event log file

In  Figure 3.4 we see that the event log contains events regarding the element V1.
Since the presented application is currently adapted for the two classes of DEECo
applications, mentioned in section  Chyba: zdroj odkazu nenalezen, it is reasonable
that the elements are called persons in the input log file. At first, the person V1 enters
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a vehicle,  then departs  and travels  through a bunch of  links before arriving to  a
destination, and leaves the vehicle. 

All of the interesting pieces of information about the elements can be put in the form
of events in the log file. As a result, no other input file is needed to contain further
information on elements. Unfortunately, a typical event log file will be much larger
than just a few lines. How the big input files are handled is discussed in section 3.1.5.

Presentation of elements is simple,  compared to the case of the environment.  By
default, the individual elements are shown as green dots in the visual output. If it is
desirable to change this visualization, it can be changed using the scripting interface,
to be described in the following sections. The visualization can be changed in two
ways. First option is just to change the color of the dot, which is how we can simply
differentiate various elements. The second option is to visualize selected elements
using  custom-provided images.  For  example,  sometimes  it  may be  reasonable  to
change the element visualization to an image of car, such as when we work with
output from a car navigation system. On the other hand, once the image is provided,
we can not modify it directly, like we can manipulate the dot color. The only way to
manipulate the provided image is to change it to another image. 

Figure 3.22 – the default component visualization

In Figure 3.22 we see the default presentation of the EBCS components, which is a
green  dot  for  each  of  the  components.  An  example  of  a  customized  component
presentation is given in Figure 3.23, where the components are represented as small
cars.
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Figure 3.23 – example of a customized component presentation, 
where components are represented as small cars

3.1.4. Support for Ensembles

The final part of the simulation output is the information about ensembles. From the
perspective of the simulated application, the essential aspect of the ensembles is that
they  provide  means  of  communication  among  components.  However,  from  the
visualization point of view, the knowledge exchange itself is not interesting at all,
since it only manipulates the internal knowledge of components and it only changes
the component behavior indirectly. We can obtain the log of components' behavior in
a direct way from the event log file. 

The second part of ensemble definition – the membership function, is much more
suitable  for  visualization.  To  obtain  the  complete  history  of  the  ensemble
membership function values for each of the available ensembles, a separate ensemble
event log file is provided as an input to the visualizing application. It is possible to
derive the value of each of the ensembles' membership function at any time during
the executed simulation, using the log file.

The ensemble event log file is an XML document which contains a set of  event
elements.  Each of the elements represents a change of the ensemble membership
function at a specified point in time – note that the log file only contains changes in
the ensemble membership function values, and not a regular snapshot of their values
at a given time interval, as it is sometimes used in other systems.

Similarly  to  the  MATSim event  log  file,  the  ensemble  log  file  is  sorted  in  the
ascending order.  Again,  the main reason is that it  is  written incrementally by the
simulated application as it runs. The practical impact is that searching the log file
becomes easy. 

An example ensemble event log file is provided in Figure 3.5.
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<?xml version="1.0" encoding="UTF-8"?>
<events>

<event type="ensemble" 
coordinator="V20" 
member="V6" 
membership="true" 
ensemble="CapacityExchange1" 
time="25871" />

<event type="ensemble" 
coordinator="V2" 
member="V3" 
membership="true" 
ensemble="CapacityExchange2" 
time="25871" />

<event type="ensemble" 
coordinator="V20" 
member="V6" 
membership="false" 
ensemble="CapacityExchange1" 
time="25873" />

<event type="ensemble" 
coordinator="V2" 
member="V3" 
membership="false" 
ensemble="CapacityExchange2" 
time="25873" />

</events>

Figure 3.5 – example ensemble log file

In  Figure 3.5 we see that the elements  V20 and  V6 enter the coordinator-member
relationship of the ensemble named CapacityExchange1, only to split up again after a
few seconds. The same can be said of elements V2 and V3, though these two enter
and leave a different ensemble, CapacityExchange2.

The presentation of ensembles is somewhat tricky. For a given ensemble, we have at
most one coordinator,  and if there is one, then there is also at  least  one member
element. There are a few ways how to visualize the membership relation:

• Add a "tool-tip" icon next to the corresponding nodes. The tool-tip manifests
that the node acts as a coordinator/member in the given ensemble.

• Enclose the ensemble coordinator and members into a graphical shape such
as a polygon or an ellipse. This way we see that a node has a role in the
ensemble by checking that it lies inside the enclosing shape.

• Connect  the  coordinator  by  a  line  segment  with  each  of  the  ensemble
members.
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The first  approach is good when we need to check the roles of a single node in
various  ensembles.  On the other  hand,  the application visual  output  may get  too
cluttered as the number of ensembles gets larger.

The second approach is useful in situations when we do not care about the positions
of nodes in the coordinate system of the environment. It is then possible to simply
relocate the members of the ensemble to the vicinity of the coordinator, and then
enclose them all in a circle. The situation may get a little bit disorganized, however,
when there is a number of ensembles.  Finally,  we must note that the assumption
about  irrelevance  of  node  positioning  is  very  restrictive  –  in  most  DEECo
application, we believe, the position of elements forms a very important part of the
output.

The third approach eliminates the drawbacks of the first two. When there is a number
of  ensembles,  the  visual  output  remains  clear,  without  the  excessive  number  of
tool-tips, which would occur in the first approach. Moreover, the nodes do not have
to be relocated in any way, which is not the case with the second approach. 

We describe in detail how the visualization of ensembles looks like, when the third
approach is  chosen.  For a  given ensemble,  a  random color  is  assigned.  For each
ordered  pair  of  nodes,  if  they are  in  the  coordinator-member  relationship  of  the
ensemble,  they are connected by a line segment.  The line segment has the color
associated  with  the  ensemble.  The  different  colors  associated  with  different
ensembles make it possible to easily tell the ensembles apart.

Figure 3.24 – the default presentation of ensembles

In Figure 3.24 we see the default ensembles presentation on an example input. We
see that a coordinator of an ensemble is connected with the members by lines of the
same color.

As it is the case with the environment and elements, the ensemble presentation is
modifiable.  The GUI of the application provides basic  options for this  end – the
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option  to  show/hide  all  the  ensembles,  or  show/hide  just  selected  ensembles,
depending on their name, coordinator, member. In addition, the application provides
the  scripting  interface,  to  be  discussed  in  the  following  chapters,  which  allows
modifying the ensemble presentation in a more refined way.

3.1.5. Support for Large Input Files

The DEECo applications  may contain a  considerable number of  components  and
ensembles. When simulated, it causes the output log files to grow at a steady rate. If,
moreover, the simulation is run for a longer period of time, the log files' size can go
up to gigabytes. This is obviously a problem when we try to visualize the data; it is
no longer possible to just load the whole data into memory and work with it. 

To address the challenge of large input files, the application allows specifying a time
interval of the original simulation, which will be visualized. The portion of the log
files  which  corresponds  to  the  specified  time  interval  will  then  be  loaded  and
visualized in the usual way, loading it to the memory and then working with the in-
memory copy.

There arises a problem of how to search the log files quickly so that we can find the
events within the specified time interval. We are going to need a solution for the
following problem P:  find the position in  the log file,  at  which there is  the first
element with time value equal to the one requested, or the nearest greater value. If
we can find a reasonably efficient algorithm solving the problem, we can just call the
algorithm for the enclosing time values of the specified interval and we have the
position in the file of the events within the time interval.

It is apparent that the problem described above is very similar to the problem of
searching for a value in an ordered array. The ordered array search problem has been
studied extensively, see for example [17][18]. Methods have been developed which
make it possible to search the ordered array in expected O(log log n) time. These
algorithms  assume  that  we  work  with  an  array,  where  it  is  cheap  (resource
consumption-wise) to access an element at a given index. However, our situation is
slightly different – for a given offset in the file, we do not care about the byte which
lies there. Instead, we seek the time value of the nearest event element. Even though
it  is  not  an  extremely  performance-expensive  procedure,  it  surely  requires  some
work. As a result,  we can not simply disregard the constant factors hidden in the
algorithm complexity  –  as  the  maximum expected  input  size  is  in  the  order  of
gigabytes, or units of terabytes at most, the input we search in is considered rather
"small" from the theoretical point of view. On such inputs, we believe that the simple
binary  search  algorithm  performs  at  least  as  well  as  the  asymptotically  faster
algorithms such as interpolative searching.

We are going to describe how to employ the binary search algorithm to solve the
problem  P.  The  basic  structure  of  the  algorithm  is  the  same  as  in  the  original
algorithm. The difference lies in what value we assign to each offset in the file – as
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mentioned above, we do not simply read the byte at that position, but we seek the
nearest event element and read its time attribute value. We do it in a straightforward
manner – at the given file offset, we read a sequence of bytes, in which we then
search for the time attribute of the first  event element. The process is charted in
Figure 3.6.

/* Gets the value of the time attribute of the nearest
event element at the specified position in the given log
file. */
function getTime(file logFile, integer offset) {

/* Size of the excerpt to be loaded */
integer bufferSize = 4096;

/* Load an excerpt of the log file into memory,
starting at the position specified by the method  
parameter */
String excerpt = 

system.readChars(logFile, offset, bufferSize);

/* Get the position of the first occurence of an  
event element in the excerpt. */
integer eventPosition = excerpt.findFirst("<event");

/* Delete everything in the excerpt before the first
event element. */
excerpt.deleteUntil(eventPosition);

/* Preamble of the time attribute value. */
String timeAttr = 'time=\"';

/* Get the position of the time attribute of the  
first event element in the excerpt. */
integer timePosition = excerpt.findFirst(timeAttr);

/* Delete everything before the first time attribute
value in the first event element. */
excerpt.deleteUntil(timePosition + timeAttr.length);

/* Interpret the leading digits as an integer. */
integer timeValue = 

excerpt.leadingDigits().toInteger();

return timeValue;
}

Figure 3.6 – pseudo-code of the algorithm which gets the time-stamp of 
the nearest event element at a given position in the input log file
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Note the second step of the algorithm from Figure 3.6 - it loads the excerpt of the file
into  memory.  We  could  avoid  it  by  just  reading  the  bytes  from  the  input  file
one-by-one until we reach the event element and its time attribute. However, if we
read a chunk of the input file at once, we avoid the potential performance overhead
of the unnecessary number of read operations.

3.1.6. Reasonable Loading Times

When faced with big input files, the application provides a remedy, which can be
dissected into two phases. First, it is possible to define a section of the input which
will be its only visualized part. The details of this functionality were presented in the
previous section. After a section of the input is delimited, we are left with a trimmed
input which can not be further reduced. Therefore, it is essential that the application
does not take a long time processing the input, before the visualization is shown.
According to Nielsen Norman Group [20], most users are discouraged (i.e. they close
the application) when they have to wait for at least 10 seconds during any phase of
the application run. Therefore, we aimed to keep the loading times below this limit.
We have measured the performance of the presented form of the application; the
methodology, along with results and interpretation, is provided in section 3.3. 

3.1.7. Platform Independence

The days when Unix was restricted on server machines and virtually every desktop
ran Windows are over. Desktop forms of Unix and especially Linux are now more
widespread than ever,  thanks to the emergence of a number of free distributions.
Moreover, as the Mac OS shifted from a custom OS to the Unix standard, we now
have quite a handful of active Unix-compliant computers.

The  Java  platform  provides  good  programming  environment  for  platform
independent development. What makes it especially suitable for our purpose is that is
offers a library for GUI development, so we do not have to care about different GUI
elements implementations on different platforms, as this is taken care of by the Java
platform.  There  are  actually  two  mature  GUI  libraries  included  in  the  Java
Development Kit (JDK)  – the Swing and JavaFX. 

Swing library has been a part of the JDK for years. It offers all the basic building
blocks needed to create standard desktop applications. However, not much work has
been done on extending the Swing functionality in the recent years. The Java updates
which  concerned  Swing  were  mainly  focused  on  bug  fixing  and  performance
enhancements.

In 2008, the first version of JavaFX platform has been released. It was originally a
product separate from Java. A custom scripting language JavaFX Script was used to
build JavaFX applications. In the following versions, the JavaFX platform changed
drastically – now it is fully integrated into the JDK, with programmatic access to all
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features of JavaFX. Many new features were introduced, including support for GPU
acceleration. Since version 8 of the JDK, JavaFX became a part of the standard Java
library, thus it became a reasonable choice for new GUI applications.

According to the Oracle website [19], Swing will remain a part of the JDK for now,
but  it  will  only  be  updated  for  security-relates  issues.  No  feature  updates  are
expected to happen anymore. On the other hand, JavaFX now takes Swing's place as
the preferred means to develop GUI applications, with a good chance that it will be
well maintained for the following years. 

Since JavaFX seems more perspective for the future than Swing, we have chosen it
as the library to be used by the GUI part of our application. The main drawback of
the  choice  is  that  not  all  Java  installations  have  the  JavaFX library included by
default, which is especially valid for older Java versions.

3.1.8. The Scripting Interface

In order to alter the presentation of the visual output, the user may follow one of the
following two approaches. The first option is to use the GUI controls. However, this
way it is only possible to do simple modifications of the visual output presentation.
The second approach is to use the bundled scripting console, which allows much
more  refined  modifications  than  the  dedicated  GUI  controls.  Using  scripts,  it  is
possible to alter the basic presentational aspects of virtually every element of the
visual output.

As  the  standard  Java  library provides  a  handy scripting  API  (JSR-223,  the  Java
Scripting API), we have decided to leverage it.  What we are going to need is an
implementation  of  a  scripting  language.  There  is  a  large  number  of  scripting
languages with JSR-223 compliant implementation on JVM, so we have picked a
few of the most well-known and assessed their suitability for our application:

• Groovy
First  released  in  2007,  the  Groovy  language  is  a  scripting  language  developed
primarily for the JVM. Its syntax is fairly similar to that of Java, which makes it
easier  to  learn  Groovy  for  Java  developers.  Most  typical  usage  is  in  web
development.

• ECMAScript
ECMAScript, or its dialect JavaScript, is probably the most notorious of all scripting
languages. It is the client-side scripting language of choice for most websites, and as
a  result,  most  programmers  have  at  least  basic  knowledge  of  the  language.
Importantly, this is the only scripting language with an implementation bundled with
the JDK.
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• Jaskell
A Java  implementation  of  Haskell,  Jaskell  is  one  of  the  most  purely  functional
languages available on the JVM. As Haskell is often used in functional programming
classes at universities, it is quite popular in the academic sphere.

• Jython
A  Java  implementation  of  Python.  First  released  already  in  the  1990s,  its
development partially stalled in the mid 2000s for various reasons. Nowadays it is
mainly  used  for  mathematical  computations,  where  is  leverages  the  power  the
underlying JVM.

We have chosen ECMAScript as the scripting language for our application. The main
reason was the  high  popularity of  the  language,  meaning that  most  users  of  our
application are likely to know at least the basics of ECMAScript. Another advantage
of choosing ECMAScript is that it  is bundled with the JDK, so that the language
implementation does not have to be shipped with our application.

The instructions on how to manipulate the individual parts of the visual output using
scripts are provided in section 4.3 as a part of the user instructions.

3.2. Basic Architecture of the Application

When the  application  is  run,  a  usual  work-flow is  typically  followed  –  the  user
specifies the input and starts the visualization. While this is a simple task from the
user's perspective, it consists of many sub-tasks and operations under the covers. In
this  section,  we  try  to  explain  how  the  input  processing  is  carried  out  by  the
application.  In  order  to  achieve  that,  we  present  the  basic  architecture  of  the
application.

3.2.1. Parsing the Input

We  start  at  the  point  when  the  application  has  been  provided  with  the  input
specification,  inside  the  GUI  controls.  The  primal  operations  are  done  by  the
cz.filipekt.jdcv.SceneImportHandler class, which does two things, in
sequence:

• Validate the contents of the input fields
• Parse the input files into in-memory representation

The former action is trivial, as it only requires to check, whether the fields contain
the correct data type input (i.e. a number when required, or a path). The latter action
is more complicated and its execution is delegated to various utility classes. 

The parsing process uses the cz.filipekt.jdcv.xml.XMLextractor utility
class, which makes it easy to parse XML files. Essentially, it is a wrapper for the Java
implementation of SAX (JAXP). It accepts a location of an XML file, together with
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an  instance  of  org.xml.sax.ContentHandler,  which  is  a  standardized
accessory to the SAX parsing process, which contains instructions on what to do on
various occasions during the file parsing. The ContentHandler implementation
usually provides  a means to  obtain the parsed form of the XML file,  after  SAX
parsing is done. Of course, the handler does not have to save all the information from
the XML file; it  can choose what to put in the parsing output. The output of the
parsing process can be in any format. The parameters which the  XMLextractor
utility takes, are summarized in Figure 3.17.

Figure 3.17 – XMLextractor and its input parameters

In our application we have chosen to parse the complete information from the input
XML files; if some the data is not required for visualization, it is simply not used. We
believe that it prepares ground for potential future enhancements of the application.
As for the format of the parsed output, our application follows a principle, that upon
parsing, no other processing should be done (there is time for that later). As a result,
the output format we have chosen is very simple – most of the elements of the XML
files are transformed in a one-to-one way to a  single class instance.  The parsing
process we have just described is charted in Figure 3.16.

String path = ensemblePathField.getText()
String encoding = ensembleEncodingField.getText()
EnsembleHandler handler = getHandler()
XMLextractor.run(path, encoding, handler)
List<EnsembleEvent> parsed = handler.getResult()

Figure 3.16 – how ensemble event log file is parsed

3.2.2. Internal Representation of the Input

We aim to provide a universal software tool, which is able to visualize the output of
most EBCS. While in the current state, it is mostly suited to the needs of the DEECo
platform applications, it bears an internal structure which makes it relatively easily
modifiable to fit any other EBCS output. One of the architectural traits which forms
the basis for the universality, is the use of an internal, generalized representation of
the input data. This way, the application transforms the parsed input data into the
generalized representation, and no further operations are performed on the original
parsed input. This approach has a significant advantage – it prepares the application
for future modifications. For example, not every EBCS produces the output in XML
format.  Using the  generalized  representation,  it  is  now sufficient  to  just  add the
parsing front-end for  the  different  file  format,  and no other  modifications  of  the
program structure is needed. The situation is charted in Figure 3.18.
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Figure 3.18 – generalized input representation as an entrance point to input
processing

We  shall  now  look  at  the  generalized  input  representation.  The  environment  is
represented using the nodes and links abstraction, which is the same as in the case of
input from DEECo applications. The ensemble events are represented the same way
as in the DEECo log file, as well, which is an ordered sequence of individual events.
The representation of the individual XML elements is the same as what is obtained
from the parsing process. 

The MATSim events are, however, represented in a slightly different way than in the
parsed DEECo input. The events which are not directly related to the movements of
EBCS components are omitted, and the same goes for the information contained in
the various XML attributes. The only types of events, which are contained in the
generalized  representation  of  input,  are  those  determining  that  a  component
entered/left a map link, and that a component entered/left a vehicle. The information
on movements through the links is  used to determine the component's  trajectory.
Meanwhile the vehicle information helps the visualizing application to tell, whether
the component is on a journey, and therefore eligible for visualization. 

Implementation  of  the  generalized  input  representation  is  provided  by  the
CheckPointDatabase class, which is a database of a number of checkpoints. A
checkpoint is a definition of where a given output element is at a given time, as was
touched upon in the characterization of the generalized input representation above.
The database of the checkpoints contains, on top the checkpoint collection, various
utility procedures  such as  searching for checkpoints  related to  a  specified output
element. 

The conversion process, which transforms the parsed XML input into the generalized
representation,  is  carried  out  by  the  SceneImportHandler class,  on  top  the
operations described in the previous sections. It is started as soon as the input file
parsing is finished; as a result,  the application can then dispose the parsed input,
which might free up some memory space.

3.2.3. Transition to JavaFX Representation

The generalized representation of the input contains precisely the information we
need in order to visualize the input. However, the actual visual output is managed by
the JavaFX platform, which uses different data representation.  Hence we need to
transform  our  generalized  representation  of  input  data  into  a  format  which  is
accepted by JavaFX. 
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First, we need to visualize the environment defined in the means of nodes and links.
We need to create a visual representation for each of these objects. For simplicity,
here we suppose that the default presentation is used – if that is not the case, the
differences  are  worked out  by parametrization  of  the  default  process.  The visual
representation  will  be  a  shape,  realized  as  an  instance  of  a  JavaFX  class
javafx.scene.Node. Of course, each of these JavaFX shapes will be located
appropriately in the output pane, which is a place in the application window, where
the visualization is shown. As for the environment, there is no motion in place, so we
do not have to care about potential animation.

Next, we need to create a visual representation for each of the EBCS components.
Again, for simplicity we will suppose that the default presentation is used. For each
of the components, a single shape implementing the Node interface is added to the
output pane as a visualization of the component. Unlike the environment, we must
take  care  of  proper  output  animation  in  this  case.  We  use  the  JavaFX  timeline
functionality for this end. It is an abstraction of the animation of vector graphics. We
provide the timeline with a collection of  key-frames, where each of the key-frames
defines the position of selected visual output elements at a specified time. In other
words, we tell the timeline where and when should each element of the output be
located at given times. The actual graphical animation is then taken care of by the
JavaFX runtime. The information needed for the key-frames to represent the input
correctly,  is  almost  exactly  the  information  contained  in  the  generalized  input
representation, described in the previous section. Therefore the conversion is pretty
straightforward, and we only have to deal with proper transformation of time units
and coordinates. The unit conversion is necessary, since the user probably wants the
visualization to run for a reasonable time, which can be defined upon visualization
start-up. Also the coordinates in the simulated EBCS application will most likely not
map well on the computer monitor, so a conversion is necessary.

Finally, the ensembles are taken care of in a similar way to the EBCS components.
Using the list of ensemble events, appropriate shapes are created and added to the
output  pane.  Each of  the shapes  represents  a  value of  the ensemble membership
predicate. In order to animate to visual output, the  timeline feature of the JavaFX
platform is employed the same way as in the case of EBCS components.

Implementation-wise,  the  whole  conversion  from  the  generalized  input
representation  to  the  format  accepted  by  JavaFX  timeline  is  contained  in  the
cz.filipekt.jdcv.MapScene class.  An  instance  of  this  class  represents  a
scene,  which  was  operated  by  an  EBCS  application  –  i.e.  it  consists  of  the
environment,  components,  ensembles  and  their  movements.  We  consider  the
transformation  of  the  data  obtained  from the  simulated  application  to  be  scene-
dependent, so we have included the above-mentioned conversion in the class.

< 38 >



3.3. Evaluating the Performance

One of the measures by which we can usually assess the success of an application is
its performance – if it runs slow, it will discourage users [20] from using it. We have
analyzed our application and identified two possible bottlenecks, whose performance
measurement makes sense with respect to the total application performance. In the
following sections, we first discuss the techniques we use for performance measuring
and then in the following two sections we move on to the description of the two parts
of  our  application  which  we  measure.  Each  of  the  sections  concludes  with  an
interpretation of the measured results.

3.3.1. Employed Techniques

Because our application is implemented in Java, we will have to deal with a few
peculiarities regarding the virtual machine environment. First, recall how the just-in-
time compilation (JIT) works in Hotspot, the reference implementation of Java which
is contained both in OpenJDK and Oracle JDK. Since version 8 of the JDK, the
tiered  compilation mode  is  the  default  behavior  of  the  JIT  compilation.  The
application first runs for a short while in an interpreted mode, then gets compiled by
the  C1 JIT compiler. The process does not end here; the Hotspot collects various
kinds of runtime information about the application, such as which methods are used
more frequently than the others, or which branches are frequently chosen in the  if
statements. After a reasonable amount of runtime information is obtained, the C2 JIT
compiler kicks in and creates a new compiled code for the application,  this  time
highly optimized according to the previous experience.

As a consequence, we will have to take into account the phases of compilation, in
order to get meaningful testing results. In order to eliminate the effect of compilation
on the performance, the usual tactics is to first warm up the virtual machine. During
the warm-up process, we repeatedly call the procedure whose performance we are
later going to measure. It is important to call precisely the same method which we
intend to measure later, because the goal is to achieve the performance behavior of
JVM as after running our application for a while. If the number of repetitions of
method  calls  during  warm-up  is  big  enough,  the  methods  will  get  compiled,
preferably to the final form (with C2 compiler). The actual performance measuring
will then use the compiled forms of methods, and therefore:

• Measurement results are not skewed by an occasional compilation process
• Measurement results reflect how the application behaves after being run for a

while

It is essential that during measuring, the whole application is started up. The reason is
that  the  JVM  uses  some  of  the   optimistic  type  optimizations for  compilation.
Specifically, one of such optimizations is the  devirtualization of method calls - in
case there is only one subtype of a class available, the JVM just replaces all virtual
method calls on the baseclass with a simple  inlined implementation from the only
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subclass, which results in better speed performance of the call, compared to the usual
virtual method call. However, if this happens during measuring and not later when
the whole application is run, we will get misleading measurement results. Thus it is
important  to  have  the  whole  application  started  when  doing  performance
measurements of any part of the application – that way we try to prevent the situation
when  only  a  small  subset  of  classes  is  loaded  for  measurements  and  the  JVM
performs some extra  optimizations  which  would  not  be  performed under  normal
circumstances when the application is run.

Another  peculiarity  stemming  from  the  use  of  Java  platform  is  the  memory
management.  Since  the  memory is  managed  automatically,  we  can  not  tell  with
certainty  when  exactly  the  garbage  collection  process  will  start.  Unlike  the
compilation-related issues, we are unfortunately unable to eliminate the possibility of
its occurrence – the garbage collection can not be turned off in Hotspot. On the other
hand, we might  decrease the probability of such an issue by advising the virtual
machine to perform a garbage collection right before the measuring starts. This is
done by the standard library method System.gc(), which makes sure that by the
time  it  returns,  best  effort  was  made  to  collect  garbage.  There  is,  however,  no
guarantee that the garbage collection actually runs upon calling the method. Then we
may expect that during the measuring phase,  the garbage collection is performed
only when really necessary.

In summary, there are two actions we need to perform on the same virtual machine
before  we  begin  with  the  performance  measuring.  First,  we  need  to  warm  the
machine up by repeated calls to the methods we are going to measure. Next, we need
to perform garbage collection in order to decrease the probability that it runs during
the measuring process. Obviously, we can not carry out these actions on a different
instance  of  the  JVM.  Therefore  it  is  not  possible  to  use  the  usual  performance
measuring tools such as time utility on Unix, as they have to be executed with the
same OS process as the measurements. 

The JVM, fortunately, provides various means of time measurement. We decided for
the  programmatic  approach,  and  we  use  the  System.nanoTime() standard
library method to measure the elapsed time. We should note that despite its name, the
method does not have to actually provide precision of nanosecond, as nanoseconds
are only the used units and the elapsed time might actually change less often than
every nanosecond. The actual precision is implementation dependent.

From what we have discussed so far, we can chart the algorithm of the performance
measurement process, in Figure 3.9.
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function measure(){
warmUp()
System.gc()
long before = System.nanoTime()
procedure()
long after = System.nanoTime()
return after-before

}

Figure 3.9 – pseudocode for the performance measuring

In Figure 3.9 we perform a simple measurement of performance of the (placeholder)
method  procedure().  It  does  the  virtual  machine  warmup,  so  unexpected
compilations  should not happen. However,  the defense against garbage collection
could be better – now we only try to collect the garbage just before the measurement,
and  then  only hope  that  it  does  not  happen  again.  If  it  does  happen  during  the
procedure() run,  our  results  can  be  skewed.  To prevent  it,  we might  opt  to
measure the procedure run multiple times in succession and then determine the mean
value of the measured times. If the garbage collection kicks in at some run of the
measured procedure,  the result  is  less likely to be skewed. Therefore,  our testing
procedure then looks more like that of Figure 3.10.

function measure(integer repeats){
warmUp()
System.gc()
long before = System.nanoTime()
for (i=1 to repeats){

procedure()
}
long after = System.nanoTime()
return (after-before)/repeats

}

Figure 3.10 – pseudocode for the improved testing procedure

The  testing  algorithm  of  Figure  3.10 provides  quite  a  good  picture  about  the
performance of the measured method. However, it can be improved – as of now, we
have  only  conceived  performance  testing  on  a  single  JVM  and  single  physical
machine. If we can perform the same testing process on different JVMs and physical
machines, we may get more telling results, as some of the unanticipated influences
can be filtered out. The benefits of using multiple physical machines for testing are
apparent  –  as  the machines  may have  different  memory hierarchy structures,  the
program  might  behave  in  completely  different  ways  on  the  machines;  other
components of the computers do, of course, influence the application behavior as
well. Employment of different JVMs serves a similar purpose. We can not say with
certainty which JVM the user will use with our application, so we should make sure
that it runs reasonably fast on all the major ones. Vast majority of computers run
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either OpenJDK or Oracle JDK. Both of these implementations use Hotspot virtual
machine, with only minor differences in marginal parts of the machine. On the other
hand, the Java library implementations differ a little bit more – especially in the area
of  audio/video  related  classes.  For  example,  the  JavaFX  library  gets  different
implementations in the JDKs, so it makes sense to carry out tests on both of them, as
in one of the tests we will be using some of the JavaFX classes.

In  Figure  3.11 we  list  the  physical  machines,  along  with  the  employed  JDK
implementations,  which  we  had  the  opportunity  to  use  for  the  performance
measuring purposes.

Intel® Core i5-5257U @ 2.7GHz, shared
L3 cache 3MB

Intel® Core(TM) i5-3210M @ 2.50GHz

RAM 8GB LPDDR3 (1867MHz) RAM 8GB DDR3 (1333MHz)

SSD SM0128G Samsung SSD 840 Pro

Os X El Capitan 10.11.5 Ubuntu Linux 15.04

Oracle JDK8 update 92, 64-bit OpenJDK 1.8.0_91, 64-bit 

Configuration A Configuration B

Figure 3.11 – configurations used for performance measuring

3.3.2. Searching the Big Files

Before we start with the performance measurements, we first discuss the algorithms
whose  implementation  we  measure,  as  they  might  shed  some  light  on  what  we
actually measure.

In section 3.1.5, we discussed the support for large input files. We reviewed why it is
reasonable to expect large input, and how we can deal with it. One of the tools we
used when faced with a large log file is the option to select a time interval, where
only  the  events  which  happened  during  the  interval  are  visualized.  When  this
selection is applied, only a portion of the input file is left, which we can then easily
visualize. The essential task we need to perform, can thus be formulated as follows:

Task T: Find a section of the input file, which contains all the event elements within
the specified time interval.

Of course, the input file as a whole fits the description of the section, as above. As a
result, we will aim to provide an algorithm which delivers such a section, but without
the  unreasonable  amount  of  redundant  elements.  It  is,  however,  unnecessary  to
require that no additional elements are included – a reasonable amount of them is
fine,  as we can just  filter  them out when parsing the XML before producing the
visualization. 
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The approach we have taken is to approximate the result of task P, introduced in
section 3.1.5, and use it to construct an approximation of the smallest solution of the
task T. We have already charted an algorithm solving the problem P. It utilizes a
slight modification of the standard binary search, although it does not work over an
array, but over an XML file. Now we are going to describe it more thoroughly in
Figure 3.7.

function getPrecedingLocation(integer time){
integer lower = 0
integer upper = filesize(logfile)
while ((upper – lower) >= step){

integer midPoint = (lower + upper) / 2
integer timeAtMid = getTime(logfile, midPoint)
if (timeAtMid < time){

lower = midPoint
} else {

upper = midPoint
}

}
return lowerBound

}

Figure 3.7 – algorithm which provides an approximation (from the left) of the
position of the first event element with the time value as given

In Figure 3.7 we see that the algorithm uses the getTime() method, introduced in
section  3.1.5. Recall, that it computes the value of the time attribute of the nearest
event element at the specified position in the given log file. Note that as a result, the
moving right bound of the binary search procedure might cross, although only once,
the position of  the  element  we are  looking for.  This  would be a  problem in  the
standard binary search, but in our case it is not a problem at all – the method only
computes an approximation of the position, and the returned value is really a valid
approximation from the left. 

To obtain a reasonably small section which solves the task T, we use the algorithm in
Figure 3.8.

function getSection(integer timeA, integer timeB){
integer from = getPrecedingLocation(timeA)
integer to = getPrecedingLocation(timeB+1)
to = to + step + maxlength
return read(from, to)

}

Figure 3.8 – algorithm which obtains a section which 
qualifies as a solution for task T

In Figure 3.8 we see that the algorithm just approximates the left and right bounds of
the desired interval. To see it,  we explain the meaning of the two used variables.
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step is the same as in  getPrecedingLocation(), and means the maximal
deviation of the approximation of the precise position. maxlength is the maximal
possible length (in characters) of an event element. 

The getPrecedingLocation() procedure provides a left-approximation of the
desired element position, with the maximum possible deviation being step. We can
use its result as an approximation of the left bound of the interval. The right bound of
the interval must, however, be approximated from the right side. Thus we must find a
way  to  transform  the  outcome  of  getPrecedingLocation()into  a  right-
approximation. Note that if we shift by step bytes to the right, we get at least as far
as the right bound from inside the getPrecedingLocation() method, when it
terminated.  In  the corner  case that  this  internal  right  bound is  located inside  the
element preceding the precise position, we must additionally move by the maximal
element size to get to the following element.

In  the  actual  implementation  of  the  visualizer,  the  algorithms  must  deal  with
additional practical issues. One of them is the character encoding of the log file –
unless a fixed-width encoding is used, each time we access the file at a new position,
we must first determine the correct alignment of characters in the byte stream. For
example,  when  the  binary  search  procedure  accesses  the  file  at  a  position,  the
position may be inside a 4-byte UTF-8 representation of a single Hangul alphabet
character.

It is apparent that from the performance measuring standpoint, the most interesting
part  of  the  getSection() algorithm  are  the  two  calls  of  the
getPrecedingLocation() algorithm. The third line only consists  of simple
integer arithmetic, and the last line runs for a time proportional to the length of the
selection. Therefore, in the following we will be measuring the performance of the
getPrecedingLocation() implementation.

Now that we have given some insight on the algorithms which deal with big input
files, we can move on to the performance measurement. The part of our application,
which  manages  access  to  the  big  input  files,  is  encapsulated  in  a  single  class
(cz.filipekt.jdcv.util.BigFilesSearch).  Therefore  we  can  simply
access the class's interface and test it, without any need for further integration of our
testing procedure within the application structure.

We  have  prepared  a  performance-measuring  utility  class,  which  can  be  used  to
measure the performance of the big-files search algorithm. One of the advantages of
this utility is that it is well-encapsulated – there is no need for any other external
sources  of  parameters,  input  files  or  anything else.  When the  utility  is  called,  it
generates a MATSim event log file and performs various measurements on it. After
the measuring is over, the file gets deleted immediately. The utility then proceeds to
create another MATSim event log file, repeating the procedure for a few more input
files.  The generated input  files  are  not  all  the same;  they follow certain patterns
which we present in Figure 3.12.
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File Size 6 MB 20 MB 60 MB 200 MB 600 MB 2 GB

# of
elements

100 k 100 k 1 M 1 M 10 M 10 M

Element
Size

30 200 30 200 30 200

Text
Encoding

UTF-16 UTF-8 UTF-16 UTF-8 UTF-16 UTF-8

File A File B File C File D File E File F

Figure 3.12 – files used for big-files search performance testing

In Figure 3.12 we see that the generated input files vary in several aspects. First, they
differ in the number of contained event elements. That is natural, as the real input
files will usually have a previously undetermined number of the elements. The real
input files will also most often contain elements which have highly variable length,
in characters. While some events contain just a plain identification of its cause and a
timestamp, others may contain a variety of attributes with detailed information about
the  event  circumstances.  Thus  our  generated  files  have  different  length  of  the
contained elements. Finally, the files also differ in the used text encoding. While not
obvious at first sight, the encoding may affect the search times. The reason is because
the application needs to perform character alignment whenever it accessed a random
position in the input files. When simple US-ASCII encoding is used, the character
aligning does not have to take place, while in multibyte, especially variable-length
encodings it is definitely a neccessary process.

As  we  described  in  the  previous  section,  the  performance  measurements  were
executed  for  each  of  the  input  files  on  different  machine  configurations.  In  the
following Figure 3.13, we sum up the results we got.

Config. A 48 μs 26 μs 74 μs 42 μs 111 μs 58 μs

Config. B 45 μs 20 μs 59 μs 29 μs 97 μs 51 μs

File A File B File C File D File E File F

Figure 3.13 – results of the big-files search performance measurements

In  Figure  3.13 we  see  the  results  of  the  measurements  of  the  big-files  search
functionality.  Each row contains  the results  obtained by running the  tests  on the
given configuration, introduced in section  3.3.1. The value assigned to a file and a
configuration, is a mean value of a larger number of test results. The file has been
searched for a fixed number of event times, and for each of these value, the search
has  been executed  and measured  repeatedly for  a  number  of  times.  Of  all  these
search results, the mean value is included in Figure 3.13.
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We see that in general, the files encoded in UTF-16 often take a little bit longer to
search than those encoded using UTF-8. We believe that it is caused by the fact that
in  UTF-16 encoded files  the  application does  the  character  alignment  procedure,
while in UTF-8 it does not, since the generated files only contain ASCII characters. It
is well-known that UTF-8 and US-ASCII are compatible in the first 127 characters,
thus in the generated files, the UTF-8 representation is exclusively single-byte.

Another trait can be seen if we restrict ourselves to the input files which differ only
by the file  size (that  is,  A-C-E and B-D-F).  In these situations,  the search times
approximately  increase  by  an  additive  factor  when  the  file  size  grows
multiplicatively. This is the expected behavior for a form of binary search, so there is
no surprise.

In conclusion,  the  process  of  searching big  input  files  will  not  most  likely be  a
bottleneck in the application performance, as the measured times are in the range of
hundreds of microseconds, and the elapsed times only increase logarithmically with
the size of the input.

3.3.3. Input Processing

The following is the typical work-flow of the application:

(1) Application starts
(2) Input files are specified
(3) Visualization parameters are specified
(4) Application processes the input
(5) Visualization starts

During the application start-up, no complex tasks are performed by our application.
The only work which has to be done is the loading of the Java platform and JavaFX
libraries, which in most practical scenarios takes about 1-2 seconds. Chiefly because
the  loading  time  is  dependent  only  on  the  Java  implementation  and  computer
hardware,  and  it  is  independent  of  our  application  qualities,  we  decided  not  to
perform performance measurements of this process.

Obviously, the steps (2) and (3) last only until the user provides the required input,
which is highly dependent on how well the user handles the computer. Once the step
(4)  is  finished  and  the  visualization  is  prepared  to  start,  there  are  no  additional
situations  in  step  (5)  when  the  user  would  have  to  wait  for  anything.  The  only
performance issue which could arise during the step (5) is  a poor fluency of the
visual  output  animation.  The  implementation  of  the  visual  output  animation  is
provided by the JavaFX platform, so the hardware requirements for the animation to
run smoothly are dependent on the quality of the JavaFX implementation. Although
we could not achieve a jerky animation on any of the computer configurations, which
we used for testing, we must advise the users of such a possibility, especially on the
oldest versions of JavaFX. However, in version 8 the JavaFX implementation greatly
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improved its performance, and it now adapts the computational complexity of the
video output to the performance of the computer.

The  step  (4)  seems  to  be  the  work-flow  phase  which  could  potentially  be  the
bottleneck. For clarity, we divide it into two parts:

(4a) Searching for the selected section of the input file
(4b) Loading and processing the selection

In section 3.3.2, we measured the process in (4a). Now we are going to measure the
performance of the process in part (4b). 

When  we  measured  the  performance  of  step  (4a),  the  whole  file-searching
functionality was embedded in a  single  class  BigFilesSearch.  Therefore  the
ground was prepared for the testing, as we just had to call a method on the class and
measure how long it takes to run. In (4b), the situation is slightly different. The input
processing is a task carried out by a variety of classes, where each part of the process
is delegated to specialized classes and subroutines. 

We have done two slight  modifications of the visualizing application in  order  to
support the performance testing process. First,  we have added time-logging at the
points where the input processing is just being started and where it just ends. The
logged times are then made available to our performance testing utility class. Second,
we allowed the application to accept the input specification in a programmatic way.
It is done using the JavaFX constructs which simulate the actions of a user – as a
result, from our application's view, it can not be determined, whether the input was
provided by hand or programatically.

The  performance  testing  logic  is  encapsulated  in  a  single  class
cz.filipekt.jdcv.measuring.MeasureInputProcessing, containing
a main method. When the utility class is started, it generates a few sets of input files.
After the input is prepared, the performance measuring is started. Finally, when the
testing is over, the previously generated input files are deleted again. The generated
input sets are not all the same; they differ mainly in the total number of MATSim
event elements and ensemble event elements. An overview of the properties of the
generated input is given in Figure 3.14.  

In addition to  the generated input,  we provide one additional  input  set,  which is
packaged with the application and is not dynamically generated upon performance
testing. It contains the output of a simulated system of cars, as they move through the
map of a South Dakotan city, Sioux Falls. 
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# of DEECo
elements

4 k 3 k 30 k 100 100

# of MATSim
events

377 k 39 k 390 k 1300 1300

# of ensemble
events

1.5 k 0 0 30 k 300 k

MATSim event
log size

32.7 MB 2.51 MB 25.9 MB 78.2 kB 78.2 kB

Ensemble event
log size

198 kB 0 B 0 B 3.27 MB 33.0 MB

Input #1 Input #2 Input #3 Input #4 Input #5

Figure 3.14 – the input used for performance testing of input processing

Input #1 is the described cars simulation output from Dakota. Inputs #2 and #3 are
dynamically generated upon start of the performance measuring. They bear the same
structure – the map is a square, with nodes being in the corners and links forming a
circle (in the graph theory sense). The DEECo elements emerge one by one from the
top-left corner and circle the map once. After returning to the initial node, they stop.
No  ensembles  are  formed.  The  inputs  #2  and  #3  differ  only  in  the  number  of
participating DEECo elements.

On the other hand, inputs #4 and #5 stress the ensemble visualization functionality.
Like  the  #2  and  #3,  they  are  both  dynamically  generated  upon  start  of  the
performance measuring. They bear the same structure – the map is a square, with
nodes being in the corners and links forming a circle (in the graph theory sense). The
DEECo components emerge from the top-left corner in close succession, and circle
the map in a swarm. Upon returning to the initial node, they stop. Because these
input files stress the ensemble functionality, the number of DEECo elements is kept
rather  low  and  the  ensemble  definition  is  enhanced  in  return.  The  ensembles
definition contains a number of different ensembles, each of which is formed only
once and dismissed a shortly after. All of the ensembles have one coordinator and
three members.

Now that we have described the input used for performance testing, we can proceed
to the results of the measurements.

Config. A 935 ms 137 ms 2233 ms 180 ms 3424 ms

Config. B 964 ms 137 ms 2678 ms 210 ms 4473 ms

Input #1 Input #2 Input #3 Input #4 Input #5

Figure 3.15 – results of the performance measurement of input processing

In Figure 3.15 we see that we succeeded in keeping the total processing time of the
input below 10 seconds, which is crucial in order to keep the user's attention, and to
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possibly  prevent  him/her  from  shutting  down  the  application  for
unresponsiveness [20]. On the more modern machines, we actually managed to keep
the times under 4 seconds, making the user experience more pleasant. 

If we look at the results obtained on inputs #2 and #3, we can deduce how the input
processing time is  dependent  on the size of  the  MATSim event  log.  Input  #3 is
exactly 10 times bigger than #2, and bears the same structure. We see that the time
complexity of the processing is slightly super-linear, but still remains reasonable.

Looking  at  the  results  from  inputs  #4  and  #5,  we  can  deduce  how  the  input
processing time is  dependent  on the  size of  the  ensemble event  log.  Input  #5 is
exactly 10 times bigger than #4, and bears the same structure. The situation is similar
to that of the two previous inputs – we get a slightly super-linear dependence, within
reasonable bounds.
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4. Using and Customizing the Application

In this chapter we are going to advise on how to use the application in an efficient
way. We begin with a discussion of how the application can be provided with input
data, using the configuration file feature. Next, we describe how the application can
be extended by writing custom plugins. Finally, we present the scripting interface
and how it  can be used to solve basic tasks,  illustrated by a number of practical
examples.

4.1. Supplying the Input

There are basically two ways how to provide the application with an input. First, the
user  can fill  in all  of the GUI controls which deal with input specification.  This
includes filling in up to 7 individual text fields, which can sometimes prove tiresome.
The application window with the input specification page is depicted in Figure 4.1.

Figure 4.1 – the input specification GUI controls

In  Figure  4.1 we  see  that  the  last  of  the  GUI  controls  facilitates  specifying  a
configuration file, which forms the second way of providing input. A configuration
file is a text file in a specific format, which contains the complete specification of an
input. That is, the paths to the input files, duration of the visualization, section of the
input files to be visualized and others.

The  main  advantage  of  the  configuration  files  is  that  they  make  it  possible  to
automatize the visualization process. Once we have put the input specification into
the text file form, we can run the visualization much easier than before – it is only
necessary  to  provide  the  configuration  file  and  the  application  does  not  need
anything more. 

In  order  to  create  a  configuration  file,  we need to  know the  structure of  its  file
format. An example configuration file is given in Figure 4.2.
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network;example_data/network.xml;UTF-8
events;example_data/events.xml;US-ASCII
ensembles;example_data/ensembles.xml;US-ASCII
target_duration;56
just_agents;true
start_at;25000

Figure 4.2 – example configuration file

Inspecting  Figure 4.2, we see that the configuration file consists of a set of lines,
each of which contains specification of a part of the input. For every GUI control,
which appears in the application window for input specification (see  Figure 4.1),
there is a single line in the configuration file. Of course, not all of the lines must
always be present – the application can deduce reasonable default values for most
parts of the input.

Notice the format of the individual lines in the configuration file. Each of them can
be logically dissected into a few parts, using semicolon as a delimiter. The first of
these parts is used to identify the part of the input which is specified on the given
line. The second part contains the actual input specification, while the third part is
sometimes used to define the text encoding of the text file referenced in the previous
part.

4.2. Extending the Application with Plugins

One  of  the  goals  of  the  thesis  was  to  create  an  application  with  a  reasonable
architecture, so that it is possible to extend it easily. The main part of the goal – the
appropriate architecture,  was already discussed in section  3.2.  However,  we have
approached the extensibility goal in one additional way. 

The reasons why users decide to extend our application can be most likely divided
into two categories:

• The application does not accept input in a specific format
• The application does not show a certain kind of information in the visual

output

We believe that the second class of problems will occur much more often than the
first. The reason is that the changes in input data format are usually connected with a
change in an EBCS log format, while the lack of a specific kind of information in our
application output is connected with demands of individual people. As there may
potentially be a number of people who use our application, the probability that some
of them will find the visual output lacking, is non-negligible. 

Therefore, we have equipped the application with a plugin API. Using this API, it is
possible to write a standalone plugin, which can then be added to the application.
What makes the plugin system powerful, is that from inside the plugin, it is possible
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to  access  and  modify  any  part  of  the  visual  output,  such  as  the  environment,
components  and  ensembles,  along  with  their  visual  representations.  With  this
capability available to the plugin developer, it facilitates creating a wide selection of
plugins, including various filters, highlighters or graphical mods, which completely
change the visual appearance of the graphical output.

The programming details of how to create a plugin can be found in the source code
documentation, included on the attached optical medium. In summary, it is necessary
to  extend  a  specific  class,  the  PluginWithPreferences.  Inside  the  plugin
application logic, the presentation of the visual output elements can be modified by
retrieving their preferences objects by a dedicated method, and then by calling the
various methods on these preferences objects. 

In order to make the plugin visible for our application, it just needs to be packaged in
a JAR archive, which is marked as a service-provider in the sense of the Java service
loader/provider functionality, and placed on the Java classpath. The provided service
is the cz.filipekt.jdcv.plugins.Plugin interface.

The application comes equipped with two plugins by default. We are going to present
their intended usage in the following sections.

4.2.1. Information Plugin

The  information  plugin shows  detailed  information  about  various  visual  output
elements (links, components, etc.). Because the visual output usually contains more
than just a few components and ensembles, and the environment may also get quite
complicated, it  is not practical for the plugin to show the details of every output
element at once. Instead, the plugin only shows the details of a single output element.
The user just has to click on the desired element, and the related information shows
up in the plugin panel. In Figure 4.3, we see an example of how the contents of the
information plugin may look, when the user clicks on a component and a link.

 

Figure 4.3 – example content of the information plugin
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4.2.2. Filter Plugin

The filter plugin adds basic filtering functionality to the application. Whenever the
use of the scripting environment is considered as a too sophisticated approach for the
task, the filter plugin provides a simpler alternative.

The plugin supports filtering by an attribute value of an output element. If one such
attribute value is provided, then out of the output elements of the given type, only
those with the matching attribute value will be shown. For example, we can filter by
an ensemble name. After the filter is applied, the ensemble membership predicate
will only be visualized for the given ensemble.

  

Figure 4.4 – the filter plugin in action

In the left part of Figure 4.4 we see the plugin window where a new filter is being
created. It offers the possible output element types, along with the corresponding
attributes by which we can filter. In the right part of Figure 4.4 the main window of
the filter plugin is shown. It contains a list of filters which are currently active. 

The plugin implementation uses the preferences objects, provided to the plugin code
by the application. For every output element, the corresponding preferences object
contains an option to make the element visualization visible/invisible, which is how
the plugin manages to “filter out” some parts of the visual output.

4.3. Scripting Interface

Sometimes  the  options  which  the  application  GUI  provides  are  not  enough.  For
example, when we need a sophisticated filtering of components in the output, the
filter plugin functionality may not fit our needs. Another case when the GUI controls
can not do what we need is if we want to change the visual representation of selected
components. For these and other similar reasons, the application is equipped with a
scripting interface which offers a much more refined form of control over the visual
output.
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Recall  section  3.1.8, where we reasoned about our choice of ECMAScript as the
language  of  the  scripting  environment.  One  of  the  advantages  of  selecting
ECMAScript over other languages was that it is bundled with the JDK by default.
Unfortunately, the ECMAScript implementation bundled with OpenJDK is different
in versions 7 and 8. Version 7 contains the Rhino engine, while in version 8 there is
the  newer  Nashorn  engine.  Both  engines  implement  the  standardized  part  of
ECMAScript. However, the non-standard language extensions they offer are slightly
different. In this section we are going to present a few ECMAScript code examples,
which will be written for the Nashorn engine. In order to run them on a JVM with
only  Rhino  available,  they  must  be  modified  so  that  they  do  not  contain
Nashorn-specific constructs.

Before we move on to the examples of how the visual output can be modified using
the scripting interface, we explain the general approach the scripts take in order to
have any influence at all on the visual output. The application exports a few special
objects  to  the  environment  where  the  scripts  are  executed.  These  objects  are
essentially  collections  of  preferences  objects for  the  individual  visual  output
elements. A preferences object for an output element is an object with properties,
where each of the properties corresponds to a single graphical characteristic of the
visual output element. Since Java does not support properties natively, we follow the
JavaBeans properties naming convention, and access them using the usual getters
and  setters.  An  example  of  the  objects  which  are  exported  to  the  scripting
environment is  links,  which contains preferences object for each of the links –
links.get(“123”) provides a preferences object for the link with id equal to
“123”.

In the following sub-sections we are going to present a few examples of how various
output elements can be modified using the scripting interface.

4.3.1. Customizing the Environment

In order to manipulate the environment  nodes, the application exports the  nodes
object to the scripting environment. It implements the java.util.Map interface,
mapping the individual node IDs to their respective preferences objects. Each node
preferences  object  contains  the  following  properties:  id,  x,  y,
circleColor, visible.  In order,  they represent the node ID, the node's  x-
coordinate and y-coordinate, the color of the its default visualization, and finally the
visibility of the node. 

We shall now look at a few examples. We start with a basic demonstration of node
customization functionality. We take the node with id equal to “123”, and we look at
the color of its visualization. If it is yellow, we change it to brown, as the yellow
color may not be well visible at some monitors. If it has another color, we leave it
unchanged. The algorithm transferred to the corresponding ECMAScript code is in
Figure 4.5.
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var prefs = nodes.get(“123”)
var color = prefs.getCircleColor()
if (color.equals(Color.YELLOW)){

prefs.setCircleColor(Color.BROWN)
}

Figure 4.5 – setting the node color

We see that  there is  available  a utility class  Color,  which makes it  possible  to
quickly select a color of one's choice. For more information about the Color class,
consult the JavaFX documentation [9].

Now we are  going to  print  some details  about  the node to  the  scripting  console
output.  We  just  employ  the  Nashorn-specific  print() function,  and  call  the
appropriate getters. The algorithm is charted in Figure 4.6.

var prefs = nodes.get(“123”)
print(prefs.getId())
print(prefs.getX())
print(prefs.getY())

Figure 4.6 – printing info about a node

In the next example, we hide all the nodes with the x-coordinate greater than 100. To
traverse all the preferences objects, we use the values() method offered by the Java
Map interface. In addition, we also employ the Nashorn-specific for-each cycle for
traversing Java collections. The full script is charted in Figure 4.7.

var allPrefs = nodes.values()
for each (var pref in allPrefs){

if (pref.getX() > 100){
pref.setVisible(false)

}
}

Figure 4.7 – hiding selected nodes

In  a  similar  way  we  treated  the  environment  nodes,  we  can  customize  the
environment  links.  In  order  to  manipulate  the  links,  the  application  exports  the
links object to the scripting environment. It implements the  java.util.Map
interface,  mapping the individual link IDs to their  respective preferences  objects.
Each link preferences object contains the following properties:  id, from, to,
color, width, visible. In order, they represent the link ID, the nodes where
the link starts and ends, color (of the default  visualization), width (of the default
visualization) and finally its visibility.
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We are  ready to  move  on  to  the  examples.  First,  we  show how to  hide  a  link
visualization in case it is red. The code provided in Figure 4.8.

var pref = links.get(“123”)
var color = pref.getColor()
if (color.equals(Color.RED)){

pref.setVisible(false)
}

Figure 4.8 – hiding a red link

Next  we  show  how  to  double  the  width  of  every  link  visualization.  The
corresponding code is in  Figure 4.9.

var allPrefs = links.values()
for each (var pref in allPrefs){

var width = pref.getWidth()
pref.setWidth(2 * width)

}

Figure 4.9 – widening the links

4.3.2. Customizing the Components

As for the EBCS components, the main information they bear is the way how they
move. Apart from that, their presentation is quite simple – the only aspect we can
manipulate  is  the  image  which  represents  them.  By  default,  each  component  is
represented by a simple green circle. 

In order to change the visualization of a component from the default one to a custom
image, we once again use a specific object imported to the scripting environment. It
is the  components object, which unlike the  nodes and  links objects is not a
Java  map.  Instead,  it  offers  a  single  varargs method,  which  is  in  charge  of  the
customizing the component visualization. 

We will now have a look on how we can change the visualization of a component
with id equal to “comp” to a custom image. An example code is given in Figure 4.10.

components.setComponentImage(
“/home/img.png”, “comp”)

Figure 4.10 – setting a custom visualization for a component

To revert the visualization to the default one, just provide a null value instead of an
image path. If we want to apply the change of visualization to multiple components,
we  may  add  them as  additional  parameters  –  the  signature  of  the  method  uses
variadic arguments, as seen in Figure 4.11.
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void setComponentImage(
String imagePath, 
String... selectedComponents

)

Figure 4.11 – signature of the component visualization changing method

In order to apply the visualization change to all components, we can either provide
all the individual component IDs as parameters to the  setComponentImage()
method, or equivalently, we may omit the component IDs at all, providing just the
image path specification. An example of such action is given in Figure 4.12.

components.setComponentImage(“/home/img.png”)
components.setComponentImage(null, “comp”)

Figure 4.12 – sets a custom visualization of all components, 
with the exception of “comp”, which is left with the default one

4.3.3. Customizing the Ensembles

The ensembles are by default visualized by a set of straight lines, connecting the
components acting as a coordinator with the components acting in the member role.
In order to allow modifications of the default visualization, the application exports
the ensembles object to the scripting environment. It is a collection of preferences
objects,  each  of  which  is  associated  with one  of  the  straight  lines  providing the
ensemble visualization. 

The ensembles object contains the following properties –  color, visible,
coordinator, member, ensembleName. In order, they represent the color
of the straight line, visibility of the line, the identification of components which the
line  connects  and  finally  the  ensemble  name.  Of  course,  the  last  three  of  the
properties are read-only.

In the first example usage, we paint with red color all the ensemble lines with the
coordinator “comp” and ensemble name “ens”. The corresponding code in given in
Figure 4.13.

for each (var pref in ensembles){
if ((pref.getCoordinator().equals(“comp”)) && 

(pref.getEnsembleName().equals(“ens”))) {
pref.setColor(Color.RED)

}
}

Figure 4.13 – painting red a specific ensemble with given coordinator

Next, we can hide all other ensemble lines than those painted red in the previous
example. The corresponding code is given in Figure 4.14.
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for each (var pref in ensembles){
if ((pref.getCoordinator().equals(“comp”)) && 

(pref.getEnsembleName().equals(“ens”))) {
pref.setVisible(true)

} else {
pref.setVisible(false)

}
}

Figure 4.14 – hiding all ensemble lines not meeting specified criteria

In the final example,  we want to print some information about each of the lines
which provide ensemble visualization.  The corresponding code is given in  Figure
4.15.

var count = 0
for each (var pref in ensembles){

print("Item " + count + ": ")
print("Ensemble=" + pref.getEnsembleName() + ", ")
print("Coord.=" + pref.getCoordinator() + ", ")
print("Member=" + pref.getMember())
print()
count += 1

}

Figure 4.15 – printing info about the ensemble visualization lines
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5. Related Works

The  EBCS  concept  is  a  combination  of  multiple  standard  software-engineering
models and concepts, with one of them being component-based software engineering
(CBSE). As CBSE is not a new notion and has been studied for years, there are a few
visualizing solutions available for output from such systems. However, they all share
a  common  drawback  –  none  of  them  has  any  kind  of  support  for  ensembles.
Therefore, they can only be used to visualize the environment and components, with
the ensembles  left  out.  We are not aware of  any other  visualizer,  other  than our
application, which would be able to visualize the ensemble-related data.

One of the CBSE visualizers is  OTFVis [21], which is visualizing tool for output
obtained from MATSim-based simulations of CBSE systems. Its main advantage is
probably  the  support  of  hardware  graphics  acceleration,  which  enables  the
application  to  handle  big  input  data  comfortably.  Among  its  drawbacks  we  can
mention a poor user interface and a stalled state of development in the last years –
the latest release dates back to 2012. 

Probably the most  advanced visualization solution for CBSE systems is  Senozon
Via [22], a commercial product for visualization of MATSim output, among others. It
offers numerous tools and customization options, including support for visualization
layering. However, as is the case with OTFVis, there is no support for ensembles.
Another drawback is its licensing – the free version has only limited functionality, so
in order to get a proper visualization tool, it is necessary to buy a license.

Finally, a piece of software with high relevance to EBCS systems is the  MATSim
simulation system [3]. It can be nicely integrated with EBCS and especially DEECo
applications in order to see how the applications behave in a simulated environment.
The  MATSim-produced  output  contains  information  about  the  environment  and
components.  However,  in  EBCS  applications  the  ensemble-related  output  is  not
handled by the MATSim system, and has to be managed separately.
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6. Conclusion and Future Work

We have provided a visualization solution for EBCS systems. In the current form, it
accepts input data obtained from DEECo applications. However, its architecture has
been designed so that it is easy to modify the application in order to make it accept
data from different EBCS systems.

The application meets the criteria set in the  introduction. First, it is written in Java
and uses the standard JavaFX library for handling of the graphical output. As a result,
it is implemented in a platform-independent manner. 

Next, it  facilitates customizing of the visual output – it is possible to modify the
visualization of environment, components and ensembles. The basic customizations
can be made using the GUI controls,  while  for  the more refined ones  there is  a
scripting environment available. In addition to the scripting interface, we have also
included  a  plugin  interface,  which  makes  it  possible  to  extend  the  application's
functionality by providing standalone plugins.

The application also provides support for big files – it is possible to select a section
of the input files  to visualize.  We have measured the performance of the section
finding process, and we conclude that the process runs at under 1 ms on inputs sized
up to a few gigabytes. 

Finally, we have measured how long it takes the application to load various inputs.
We conclude that for inputs of size up to 30 MB the loading time is kept well-bellow
the 10s limit, which helps the users keep their attention.

There is space for future development mainly in three key areas. First, it is currently
being considered to modify the concept of an ensemble in the DEECo component
model, so that it can model much more general relations than just the current 1-to-
many  coordinator-members  relation.  When  such  a  change  is  introduced,  an
opportunity arises  to  implement  the  change into  our  application.  The application
architecture  has  been  designed  in  such  a  way,  that  it  is  ready  to  be  modified
accordingly,  in  order  to  support  input  coming  from  applications  built  upon  the
updated DEECo component model. 
 
Second, it is possible that more of new applications following the EBCS model will
be developed in the short future. If that is the case, we see it as a good opportunity to
modify our work for the needs of such applications. 

Last, there is currently effort being made for the JDEECo applications to produce an
index  file,  apart  from the  usual  logging  data.  The  file  contains  mapping  of  the
simulation time to offsets in the logging file, which makes it possible to search the
input data quicker than at the present time. We consider it quite trivial to integrate
this new functionality into our application, provided that the format definition of the
index file is available.
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List of Abbreviations

DEECo Dependable Ensembles of Emerging Components, a 
component model

EBCS Ensemble-Based Component Systems, a computational model

JavaFX (Java framework for creating rich GUI applications)

JDEECo Java implementation of DEECo component model

JDK Java Development Kit

JRE Java Runtime Environment

JVM Java Virtual Machine

MATSim Multi-Agent Transport Simulation Toolkit, simulation 
framework

sCPS Smart Cyber-Physical System
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Attachments

An important part of the thesis is the presented software work. It is provided on the
attached optical disc, as well as in the following online repository:

github.com/filipekt/JDEECoVisualizer

The data contained in both sources contains the source code of the application, as
well as the compilation and start-up scripts needed to run the software. The basic
directory structure of the provided data is as follows:

--bin [Compile & run scripts for the 
application]

--example_data [Example input data for the application]

--plugin_projects [Source code for provided plugins]

--plugins [Provided plugins, already compiled]

--resources [Mostly graphics used by the application]

--src [Source code of the application]

--thesis [Text of the thesis]

README.txt [Basic instructions on how to start the 
application]

[and other miscellaneous files]
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