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Abstrakt: Rozšiřování velkého počtu bezdrátových zařízení dalo podnět ke vzniku 

komponentového modelu DEECo určeného pro aplikace, jejichž neoddělitelnou 

součástí je mobilita a dynamická kompozice s architekturou vytvářenou za běhu. 

Velkou výzvou při realizaci takového systému je návrh komunikačního systému 

založeném na gossip protokolu. Takové řešení je zvlášť vhodné pro sítě typu MANET 

a jeho účelem je zvýšení spolehlivosti. V této práci jsme navrhli optimalizaci protokolu 

s využitím vlastností sítě s vlastní infrastrukturou. Zachovali jsme při tom gossip 

způsob komunikace bez zavedení centralizovaného prvku. Navrhované zlepšení 

spočívá ve vytvoření komunikačních skupin zformovaných na úrovni návrhu. 

Experimenty ukázaly podstatný pokles počtu odeslaných zpráv a celkově snížený čas 

doručení. Problematiku časování jsme pak zvlášť zpracovali pro MANET sítě a 

implementovali jsme mechanizmus pullování, který významně snížil latenci. Část této 

práce je věnována formální specifikaci sémantiky za účelem přesného zdůvodnění 

vlastností systému, čímž jsme také položili základ pro další rozšíření protokolu a 

budoucí výzkum v oblasti distribuovaných systémů.  
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Abstract: The spread of wireless devices inspired the creation of a DEECo component 

model suitable for designing applications with immanent mobility and dynamic 

composition where the system architecture emerges at runtime. A great challenge in 

implementation of such a system is the underlying communication mechanism based 

on gossip protocol in order to achieve resilience and suitability for MANET networks. 

In this thesis we propose an optimization of the protocol exploiting infrastructure 

networks, but still preserving the gossip-like communication without a centralized 

element. The improvement is based on forming communication groups introduced at 

the design level. The experiments show a substantial decrease in the number of sent 

messages and a decrease in time of data delivery. The timing aspect of data delivery is 

further elaborated for MANET networks by implementing a pulling mechanism with 

significant improvement of the latency. Part of this thesis is dedicated to a formal 

specification of the system semantic to provide a precise rationale about its properties 

and laying the ground for further extensions and research. 
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1. Introduction 

The number of devices connected to the Internet is growing rapidly. According 

to Cisco research targeting the forecast of the impact of visual networking application 

on global networks almost half a billion mobile devices and connections were added 

in 2014 and the total number exceeded global population. Such a high number of 

devices and the increase of connectivity gives possibility to arise a new types of 

distributed applications. The previously futuristic concept Internet of Things (IoT) is 

no longer so unbelievable idea. Multiple devices closely interacting with the physical 

environment could be able to cooperate together and achieve a common goal which 

would be otherwise impossible taking into account individual units. A good example 

of such an application, commonly referred to as cyber-physical system, is so called 

smart grid [1] automatically adapting the behavior of electrical system to achieve 

efficiency and reliability. 

A special case of cyber physical systems are those with inherent mobility which 

became more interesting with the rise of popularity of smartphones which possess 

sufficient computational resources, connectivity mechanisms, storage capability, high-

level programming languages support etc. The dynamicity, mobility, great 

heterogeneity, large-scale and unreliable environment make engineering of such 

systems a very complex and difficult task. DEECo component model [2] is intended 

to simplify the development and to give the programmer a possibility to cope with 

these issues. 

DEECo framework is suitable for designing large resilient distributed systems 

focusing on mobility. At design level it uses components which are composed into 

dynamic groups in order to cooperate on a common goal but still each component 

remains an autonomic entity. The decision of a component is made individually on the 

current belief of the system state resembling the agent-oriented computing. As a result 

an efficient decentralized execution avoids single point of failure. 

One of the challenges in such a dynamic distributed system is the 

implementation of effective communication. It is necessary to find an optimal way so 

that the network won’t collapse after deployment in the production environment 

because of the overload, but also that the content will be delivered where it needs to 

be. At the communication level we would like to adapt to the dynamicity as it is done 
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at the design level and make the system resistant to node failures or any unexpected 

communication behavior and also to deal with high mobility of individual nodes. It 

turns out that it’s not possible to rely on the traditional paradigm from the world of 

computer networking, what makes the problem even more complex. Difficulties which 

arise are mainly the mobility of the devices and uncertainty of network topology which 

may rapidly change over time.  

Various protocols have been developed for this purpose trying to exploit a 

particular mobility model or to pretend more solid network structure [3]. DEECo 

communication on the other hand is based on gossip protocol [4] which eliminates 

explicit communication channels and provides best-effort resilient communication. 

The advantages of gossip are mainly the simplicity and easy implementation. The 

protocol is based on a single rule of publishing local data or data from someone else 

to anyone who is ready to accept and as such is very resilient to node failures and 

dynamic topology. On the other hand gossip puts high demands on the transmission 

capacity and can lead to a network congestion. To make the protocol useful and 

effective we need to restrict the publishing so that the communication demands will 

be minimal but the data will be delivered anywhere it is necessary. In gossip we 

distinguish two types of methods called PUSH and PULL referring to the side 

initiating the request for data. Both approaches comparing to the other have its 

advantages and disadvantages and it will be interesting to investigate a synergy 

between them. 

More particularly, we will focus on the following areas: 

 DEECo makes the system engineering easier, but on the other hand 

development of such a framework faces the same difficulty as the programmer 

implementing a dynamic distributed system. Because of that there is a need for 

proper verification of the implementation. The design model must be therefore 

adequately described at the formal level to clearly outline system properties 

and deduce the derived properties. Our objective is to extend the DEECo 

operational semantic defined in [5] by the definition of the communication 

model currently implemented in jDEECo and provide its documentation. 

 Subsequently our objective is to extend proposed semantic in order to 

support efficient gossip communication on infrastructure and 
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infrastructure-less networks allowing for PUSH-based and PULL-based 

communication. The extension will be in a comprehensive form allowing to 

reason about system properties and laying the ground for the implementation. 

 Having the semantic description of proposed concepts we will provide the 

implementation in jDEECo (current implementation of DEECo). 

 Finally our objective is to experimentally evaluate proposed concept on a 

realistic use case scenario of car sharing. 

This work is further structured as follows: Chapter 2 describes the background 

necessary to prove our concepts such as DEECo component model, its Java 

implementation and simulation instruments. In 3 chapter we present an example of 

distributed application using DEECo. This application will be used to illustrate our 

concepts. Chapter 4 identifies communication aspects that should be considered and 

emphasize possible improvements of the communication protocol. Based on this 

statements Chapter 5 refines DEECo operational semantic to capture the network 

model as well as our improvements in the protocol. Chapter 6 deals with 

implementation issues of proposed solution. Experimental demonstration with the use 

of example application introduces in Chapter 3 is shown and explained in Chapter 7. 

Chapter 8 discusses typical use-case scenarios and possible future extensions. We 

mention similar approaches in Chapter 9 and an overall summary is covered by 

Chapter 10. 
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2. Background 

In this Chapter we will shortly describe tools used to validate our concepts by 

simulation of an example application in a realistic environment. 

2.1. DEECo Component Model 

When building an application using DEECo targeting highly dynamic and 

distributed environment the only important thing is how to structure the software. The 

runtime of an external framework will take care of the communication and the 

management services. DEECo component model uses two basic principles – a 

component and an ensemble. A component is an autonomous unit of deployment 

developed without awareness of how communication will be performed. The only way 

of component interaction is through ensembles. An ensemble is a dynamically 

composed group of components formed by evaluation of component’s data. We will 

further explain both concepts. 

A component consists of a knowledge and processes. Knowledge expresses the 

current component state and contains all component’s data in a hierarchical structure 

with mapping of field identifiers to their possibly structured values. A process is a 

computational logic which takes knowledge as an input, performs some processing 

and writes modified knowledge back to the component. It can be either periodic or 

triggered by a modification of a knowledge field. Every component periodically shares 

knowledge with other components in the system. Own knowledge is referred to as 

local while knowledge coming from others is referred to as replica. 

An ensemble is a dynamically formed group of components which cooperate 

to achieve a common goal. In the language of component models the ensemble 

determine a composition. Membership to an ensemble is evaluated locally based on 

the local and replica knowledge. A component in the ensemble takes a role of a 

member or a coordinator which is assigned by periodically checking the membership 

of local and replica knowledge and vice versa. Complementary to the membership 

evaluation the ensemble performs an exchange of knowledge between the components 

forming a group. In particular between the coordinator and the member. Notice that 

only the local knowledge will be effected by the exchange, because replica will be 

updated by the remote instance of the ensemble. 
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Components are not explicitly conscious of an ensemble. Their processes are 

performed using a local knowledge only, which gets updated whenever the 

components becomes part of an ensemble. Further the ensembles do not know 

explicitly about other nodes. They only operate locally on the top of local and replica 

knowledge which may be modified by an update from the network. These assumptions 

made the system robust and reliable with respect to the ever changing environment. 

2.2. OMNeT++ 

In this Section we will shortly describe the OMNeT++ simulation framework 

used in our experiments. OMNeT++ itself only provides a basic platform and 

instruments for writing simulation but does not contain any simulation components. 

These are supported by external projects such as INET, MiXiM or Castalia. 

OMNeT++ delivers a C++ class library with a simulation kernel, utility classes such 

as random number generator, topology discovery and many more, configurable 

infrastructure in order to compose simulation components, runtime user interfaces and 

more. Specifically we are using INET and MiXiM frameworks to simulate a network 

with wired and wireless communication. 

Network models in OMNeT++ are assembled from so called modules. A 

module is a C++ written class which defines its behavior. Modules can combined 

together or interconnected with each other by gates. The composition is done by 

OMNeT++ configuration NED files. We are using modules for emulating the network 

stack and a module for node mobility. 

Communication between OMNeT++ simulation and jDEECo is done by a Java 

Native Interface wrapper which provides a basic functionality such as running the 

simulation, sending or broadcasting a packet and setting the position of a particular 

node in the simulated network especially useful for nodes equipped with a radio 

device. 

2.3. MATSim 

MATSim is a framework for running agent based mobility simulation. We are 

using it to get a realistic imitation of vehicle and person movement. In order to run a 

MATSim simulation at least 3 configuration files needs to be provided: 
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 Network – specifies transport infrastructure, in particular nodes and links 

interconnecting nodes 

 Population – plans (activities) of simulated agents 

 Configuration – defines simulation parameters, used infrastructure, population, 

… 

Additionally for other types of simulation more configuration files can be 

provided. For our evaluation we are using a simulation of public transport which 

requires two additional configuration files:  

 Vehicles – defines available types and instances of vehicles 

 Schedule – defines plans of public transport vehicles 

For the large scaled simulations we are using a tool for generating random 

population and public transport schedule. The tool was written by us in C#. 

Because MATSim is written in Java the integration with jDEECo is quite 

straightforward. The simulation is managed by a controller instance created and 

executed in our code. The controller can register several types of listener for instance 

simulation start, end, or step listener. We are using these to synchronize the simulation 

with execution of jDEECo processes and ensemble evaluations. MATSim agents’ 

implementations such as the transit driver or passenger are replaced with custom ones 

so we are able to follow them from our simulation. For more information about the 

MATSim integration see Chapter 6. 
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3. Running Example 

The main concepts will be illustrated on a realistic example from everyday life. 

First we describe a possibility for a distributed application and then we propose a 

solution using DEECo component model. This application will be further used in our 

experiments. 

3.1. Smart Car Sharing 

In large cities traveling to work or any other activity using the public transport 

can consume a serious amount of time. Also public transport is not as flexible as having 

a car. Many times you have to take a transfer line, the bus does not necessarily stop at 

your point of interest and you have to adjust your schedule to the timetable of the 

transport. None of these happen if you have a car. But on the other hand there are other 

disadvantages such as higher price, necessity of parking lots and from a general point 

of view more cars in the city increases the traffic congestion. A new concept of 

transport has been introduced to overcome these drawbacks referred to as car sharing. 

The basic idea of this approach is that if you have a car and you are regularly traveling 

to work you can share seats with other townsmen who are going to the same destination 

or to the destination on your way for a little tax. So you decrease your costs and the 

total amount of cars is decreased as well as there are less unused seats overall. Usually 

there is a webpage provided by a town or some company which allows to negotiate 

this agreement of neighbors. 

Inspired by the idea of car sharing we have proposed an innovative design 

which will allow to negotiate a seat in the car at real time. Imagine people in the streets 

having a mobile Smart Car Sharing (SCS) application. Those having a car use the 

application to indicate how many available seats they have and the destination they are 

going to1. Similarly those without a car enter the number of required seats and their 

destination. The SCS application will then show to the drivers positions of candidates 

and possibly calculate the appropriate meet point. Equally the pedestrians will see 

those drivers’ positions who meet their requirements. It is expected that the current 

position will be available to the application through cell phone GPS device. The 

application can be further extended with public transport buses. The only difference is 

                                                 
1 With the combination of Google services it won’t be even necessary as Google know where you are 

going to. 
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that bus driver has given check points and much more seats to offer. Such a service 

would be especially useful in cities without bus schedule or schedule which can’t be 

properly kept because of difficult transport conditions or high traffic congestion. The 

user will be able to see online the buses currently passing along. 

3.2. DEECo Approach 

The very first step when designing a DEECo application is the identification of 

components and ensembles. Obviously drivers and pedestrians are modeled as 

components, while the propagation of positions of other persons in the system is 

captured by an ensemble. Figure 1 shows an example of how such components can be 

designed. Any component features arbitrary number of roles which act as interfaces in 

object oriented languages. Lines 1-4 classify a component which is aware of its 

position in GPS coordinates as well as of some other components positions’. The roles 

impose requirements on Driver component knowledge shown on lines 7-9. The 

current state is updated by updatePosition process (lines 10-14) which every second 

reads coordinates from GPS device and stores it to the driver position knowledge field. 

Both Driver and Pedestrian (lines 16-17) looks exactly the same, they monitor their 

current position and keep track of positions of interesting components. We have 

defined them separately because for Driver only Pedestrian components are 

interesting and vice versa. 

1. role PositionAware 
2.   position 

3. role PositionAggregator 
4.   positions 

5.  
6. component Driver features PositionAware, PositionAggregator 
7.   knowledge: 

8.    position = GPS(…) 

9.    positions = [GPS(…), GPS(…), …] 

10.   process updatePosition: 

11.     out position 

12.    function: 

13.     position <- Sensor.getPosition() 

14.    scheduling: periodic(1s) 

15.   

16. component Pedestrian features PositionAware 

17.   ... /* same as driver */ 

Figure 1. Example of a component definition for SCS application. 

The interaction between driver and pedestrian is expressed by 

PositionDistributor ensemble. Coordinator of this ensemble can be only a 

component which aggregates positions (line 19) of its members (line 20). The 
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membership condition defines that driver will only interact with other pedestrians and 

vice versa (lines 22-24). When the condition is met the coordinator then adds the 

member’s current position to the aggregation list (lines 25-26). 

18. ensemble PositionDistributor: 

19.   coordinator: PositionAggregator 

20.   member: PositionAware 

21.   /*…*/ 

22.   membership: 

23.    (coord is Driver && member is Pedestrian) || 

24.     (coord is Pedestrian && member is Driver) 

25.   knowledge exchange: 

26.    coord.positions += member.position 

Figure 2. Example of an ensemble definition for SCS application. 

It is expected that some of the deployed applications will have a connection to 

infrastructure network while others only a radio broadcast medium. 
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4. Analysis 

This Chapter is structured as follows: 4.1 summarizes DEECo computational 

model as defined in [5] and we introduce necessary notations used in next sections. In 

the following Chapter 4.2 we identify issues which should to be considered in order to 

provide an effective communication mechanism. Specifically these are: aspects of the 

network environment covered by Chapter 4.2.1, specific properties of infrastructure 

networks described in Chapter 4.2.2, the necessity of guarantee of content delivery 

described in Chapter 4.2.3 and finally requirements for the semantic refinement 

included in Chapter 4.2.4. 

4.1. DEECo Computational Model 

In this Section we will shortly describe DEECo computational semantics as 

defined in [5]. Notice that we have only included parts relevant to our research. For 

more detailed information please refer to [5]. 

The semantics of DEECo system 𝑆 = (ℂ, 𝔼) where ℂ is a set of all components 

and 𝔼 is a set of all ensemble definitions is defined by introducing a transition system 

𝐴(𝑆) = ∏ 𝐴(𝐶)∀𝐶∈ℂ × ∏ 𝐴(𝐸)∀𝐸∈𝔼  constructed as a Cartesian product of component 

automata 𝐴(𝐶) and ensemble automata 𝐴(𝐸). Each transition is associated with an 

action 𝑎 ∈ 𝔸 and a timestamp 𝑡 ∈ 𝑇𝑖𝑚𝑒. We will further describe the component 

automata 𝐴(𝐶). Each component 𝐶 is associated with valuation 𝑉𝐶  of its knowledge, 

belief of valuation 𝑉𝐶
𝐶𝑖  of other components 𝐶𝑖 ≠ 𝐶 and with a set of queues {𝑄𝐶

𝐶𝑖|𝐶𝑖 ∈

ℂ, 𝐶𝑖 ≠ 𝐶}. Each queue is associated with an automaton 𝐴(𝑄𝐶
𝐶𝑖) depicted in Figure 3 

and is intended to model the latency of belief propagation caused by transmission over 

network. 

 

Figure 3. Knowledge valuation queue automaton (Taken from [5]). 

𝑉𝐶
𝐶𝑖 ≔ 𝑄𝐶

𝐶𝑖 . 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

𝑄𝐶
𝐶𝑖 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑖

) 
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The complete automaton 𝐴(𝐶) = ∏ 𝐴(𝑄𝐶
𝐶𝑖)𝐶𝑖∈ℂ × ∏ 𝐴(𝑝)𝑝∈𝑃𝐶

, where 𝑃𝐶  is a 

set of all processes of component 𝐶 and 𝐴(𝑝) is an automaton modeling the execution 

of process 𝑝.  

Execution trace of 𝐴(𝑆) is formally defined as a sequence 𝑇 =

(𝑎1, 𝑡1), (𝑎2, 𝑡2), …  for which it holds that ∀𝑎𝑖 ∈ 𝔸, 𝑡𝑖 ∈ 𝑇𝑖𝑚𝑒: 𝑡𝑖 ≤ 𝑡𝑖+1 and we 

denote 𝕋(𝑆) as the set of all traces of system 𝑆. In order to reason about knowledge 

valuation considering timing aspects we introduce a function 𝑉𝑇
𝐶 : 𝑇𝑖𝑚𝑒 → 𝕍𝐶 defined 

as follows: 𝑡 < 𝑡1: 𝑉𝑇
𝐶(𝑡) = 𝐼𝐶  otherwise 𝑉𝑇

𝐶  equals to 𝑉𝐶  after all 

actions 𝑎𝑖, … , 𝑎𝑚, 𝑚 = max (𝑖|𝑡𝑖 ≤ 𝑡). The 𝐼𝐶  symbol here refers to the initial 

knowledge valuation of component 𝐶. 

The above Section describes a relatively general DEECo operational 

semantic 𝒟 and it is intended to be refined whenever a new feature is implemented. 

Refinements of semantic 𝒜 by semantic ℬ (denoted as 𝒜 ≼ ℬ) is formally defined as 

follows: for any system 𝑆 = (ℂ, 𝔼) and each real-time execution trace 𝑇𝒜 ∈ 𝕋𝒜(𝑆) 

featured by semantic 𝒜, there exist a trace 𝑇ℬ ∈ 𝕋ℬ(𝑆) featured by semantic ℬ such 

that for each 𝐶 ∈ ℂ it holds that 𝑉𝑇𝒜

𝐶 = 𝑉𝑇ℬ

𝐶 . 

4.2. Shortcomings and Problem Identifications 

4.2.1. Communication Aspects 

The computational model defined in [5] and shortly described in 4.1 is very 

general and as such has been intentionally designed to allow new features to be added 

by semantic refinement. On the other hand it omits several properties necessary for 

efficient system design especially when deployed in a distributed environment. It does 

not specify how communication should be performed and the concept of component 

communicating with any other is rather unrealistic. We need to be able to consider the 

fact that some component is not reachable at specific time. Also we should take into 

account different behavior of the communication interface in infrastructure networks 

or MANET. 

Communication between components is based on sending and reception of 

messages. The content of a message can be of arbitrary size and may exceed the 

transmission limit given by the physical environment. Therefore the content 

fragmentation and combination should also be considered. Moreover there is a 
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significant difference between communication of components deployed on a single 

node and components on different nodes interconnected by a network. 

DEECo communication mechanism based on gossip protocol seems to be 

suitable because of the unreliable and dynamic environment but may be inefficient or 

event infeasible when the total number of messages exceeds the network throughput. 

It is carried out by a regular broadcast of component knowledge data. Any component 

upon message reception stores it locally and retransmits. Such a solution is also 

referred to as epidemic protocol based on the similarity with virus spreading in 

biological terms or flooding. Data dissemination by flooding may lead to network 

overload and so called broadcast storm problem [6]. Drawbacks of flooding are in 

particular: (i) redundant retransmissions – a node decides to retransmit when neighbors 

already have the message, (ii) contention – to many broadcasts from nearby hosts (iii) 

and collisions – more likely to occur. 

In a network of 𝑛 nodes flooding results in 𝑛 message transmissions and 

delivers the message to every node. In a realistic production environment the boundary 

of the network is potentially unrestricted and therefore it is necessary to have a 

possibility to limit the communication reach to interested components as well as to 

optimize the communication and to decrease the total number of messages. In order to 

do that any component upon message reception decides, using local information only, 

whether to retransmit it or not. Several possible solutions have been introduced such 

as probabilistic forwarding. A message upon its first reception is retransmitted with 

probability 𝑝 ≤ 1 which is a parameter of the protocol. For a particular network 

topology there exists a retransmission probability 𝑝𝑡ℎ such that almost all nodes 

receives the disseminated information [7]. If 𝑝𝑡ℎ < 1 then gossip algorithm clearly 

outperforms epidemic spreading. Probabilistic forwarding can be combined with other 

forwarding schemes for instance counter-based, distance-based, location-based or 

cluster-based [6] in order to reduce the impact of broadcast storm and to decrease the 

total number of retransmitted messages. All of these techniques use some information 

coming from the network to make the decision. An interesting alternative solution 

could be to consider some of the domain knowledge of a component. 

Part of the communication model is already described in [8] but not formally 

specified. This model presents an optimization in MANET networks, but does not 



13 

involve communication in infrastructure networks which are fundamentally different 

and can be exploited more effectively. The following Chapter analyzes this issue. 

4.2.2. Exploiting Infrastructure Networks 

The optimization listed in [8] are useful in MANET network where nodes 

operate on a short-range radio broadcast device and are only capable of communication 

with near neighbors. If more distant target is addressed the message should be 

delivered using intermediary nodes passing it from one to another until it reaches the 

final destination. 

When a component is deployed in a network with more reliable infrastructure 

which is not only capable of broadcasting but also can route a message directly to the 

receiver the gossip based protocol can be adjusted to improve the performance. We 

can exploit the routing mechanism so costly in MANET and not only restrict the 

retransmission. We can directly address the content to groups of interested nodes. The 

routing mechanism requires the nodes in the network to be addressable. If we are able 

to identify nodes involved in communication i.e. to form a communication group, we 

can restrict the broadcast only to the members of the group. In order to implement this 

solution we need a mechanism which will identify members of those groups and 

maintain them. Distributed environment puts demand on how communication groups 

will be established at runtime as there should be no single point of failure. 

4.2.3. Increasing Gossip Reliability 

As described above gossip dissemination protocols are based on selective 

retransmission of received messages taking into account only local information. This 

procedure is referred to as a PUSH mechanism as the data from sender are pushed to 

potential recipients. A feasibility of this approach can be broken when the 

retransmission decision algorithm releases too many messages. For instance a 

probability based gossip with threshold 0.9 would retransmit almost all messages and 

presumably leads to a broadcast storm. 

In order to reduce the total number of messages in the network we can decrease 

the probability. However if the probability is too low the system may suffer from 

undelivered or too outdated messages. Consider network topology as shown in Figure 

4. All nodes 𝑛𝑖 , … , 𝑛𝑘 , 𝑝 are in the transmission range of 𝑠 except 𝑞 which is only in 
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transmission range of 𝑝. Obliviously the probabilistic forwarding should not deliver a 

message from 𝑠 to 𝑞 as 𝑝 must not decide to retransmit. Similarly in counter-based 

forwarding with any counter threshold 𝑘 it is possible that 𝑛1, … , 𝑛𝑘will rebroadcast 

before 𝑝 and therefore 𝑝 won’t.  

 

Figure 4. The Necessity of pull request (taken from [9, p. 177]). 

Therefore we need a recovery mechanism which explicitly requests the missing 

message to ensure the reliability of its delivery. This procedure is referred to as PULL 

method as the data is actively pulled by recipients from the sender. There are some 

well-known pull algorithms [10] basically working in the following way: Every node 

regularly broadcasts headers of messages it received. It is expected that headers are 

much smaller than the original message content and that multiple headers can be 

combined into a single pack. Also message headers are not retransmitted so there is no 

danger of the broadcast storm. This mechanism allows particular node to realize that 

some of the messages sent somewhere else in the network are missing and to initiate a 

PULL request. Thinking more deeply about the possible implementation we must also 

consider timing aspects. The fact that a message is not delivered does not mean that a 

PULL request is necessary because it can be delivered in a meantime or the message 

is so outdated that it is no longer relevant for the application. 

While push-based protocol can achieve low latency and high tolerance to 

communication failures the redundancy and overhead may be unacceptable [11]. On 

the other hand pull-based protocol can produce lower overhead at the cost of higher 

latency. Combination of both approaches can lead to a promising solution if it is well 

balanced. Notice that setting up the protocol for rather pull than push leads to broadcast 

storm similarly to the probabilistic forwarding with high probability. It is expected that 

there will be more nodes interested in the sent message and all of them can receive it 

in one transmission. Letting them to pull the message results in a significant overhead. 
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As an input parameter we require from the software design process to specify demands 

on the acceptable latency. 

4.2.4. Semantic Requirements 

The above proposed modifications should be captured by semantic extension 

to allow for reasoning about the system and to see how its protocols are designed. 

There is a big gap between the general semantic and concrete implementation. We 

need to refine the semantic in such a way that it can be taken by the developer as a 

specification and implemented. Current DEECo implementation lacks the formal 

definition which will help to see clearly its properties and deduce its derived properties. 

We will describe the semantic refinement by stating rules which must be kept 

in order to support given features. The rules actually play role of a guard restricting 

the original semantic. 
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5. The New DEECo Communication Model 

Considering the aspects analyzed in Chapter 4 we propose several DEECo 

extensions defined by the semantic refinement. This Chapter is structured as follows: 

5.1 discusses the communication aspects, in particular multiple components on a single 

node, network topology and fragmentation of messages. The following Chapter 5.2 

takes the communication model, proposes a communication protocol based on gossip 

together with some optimization i.e. bounding the dissemination and group 

communication. Another point of view on the gossip communication is taken in 

Chapter 5.3 considering pull communication as a counterpart of push. Finally Chapter 

5.4 gives an informal proof of valid DEECo semantic refinement. 

5.1. Communication Aspects 

We extend DEECo semantics 𝒟 as specified in the DEECo computational 

model [5] by introducing communication aspects. The semantic refinement is 

described with rules in the form of a logical formula stating about execution traces of 

system 𝑆. 

Taking a general point of view we say that the components in the system 

communicate by sending messages. Later we assign a specific meaning to particular 

message such as knowledge valuation or other type of content. Reusing the notation 

established in [5] we use 𝑉𝐶  to refer to a message 𝑉 sent by component 𝐶.  But contrary 

to that notation we use 𝑉𝐶 rather for a single instance of a message holding knowledge 

valuation not necessarily the most current one. This assumption makes difference 

when taking into account the timing aspects. Knowledge valuation of a component at 

two instances of time can be the exactly the same but messages sent with these 

valuations are considered to be different. 

Given an execution trace  𝑇 = (𝑎1, 𝑡1), (𝑎2, 𝑡2), … we consider several aspects 

of the communication among components given by the environment described in the 

following chapters.  

To ease reading, Table 1 and Table 2 summarize the notation defined and used 

in the following subsections. 



17 

Predicate/Function/Set Description 

𝐷𝑒𝑝 ⊆ ℂ × ℂ Deployment equivalence relation 

outlines components deployed on the 

same node. 

𝑁𝑒𝑡: 2ℂ × 2ℂ × 𝑇𝑖𝑚𝑒 → 𝑇𝑖𝑚𝑒 ∪ {∞} Network topology function defines 

connection between nodes and 

transfer time of a message sent from 

one to another. 

𝑃𝑢𝑏 ⊆ [2ℂ] × [2ℂ] × {⋃ 𝕍𝐶
𝐶∈ℂ

} × 𝑇𝑖𝑚𝑒 
Publish predicate defines strategy of 

messages sending from one node to 

another at particular time. 

𝑅𝑡2 ⊆ [2ℂ] × 𝕍𝐶  Retransmission predicate defines 

strategy of given message 

retransmission by particular node at 

layer 2. 

𝐵𝑛𝑑 ⊆ 𝕍[𝐶] × 𝕍𝐶  Boundary predicate defines strategy 

of given message retransmission by 

particular node taking into account 

node knowledge. 

𝑃𝑒𝑒𝑟[𝐶]: 𝑇𝑖𝑚𝑒 → [2ℂ] Peers function for particular node 

defines set of known nodes at specific 

time. 

𝑅𝑐𝑝[C]: 𝑇𝑖𝑚𝑒 → 2𝑃𝑒𝑒𝑟[𝐶] Recipient function selects recipients 

of a message at particular time. These 

recipients are taken from known 

nodes only. 

𝑃𝑎𝑟𝑡: 𝕍𝐶 → 𝐷 Partitioning function divides 

knowledge of components into 

several groups. 

Table 1. Recapitulation of predicates and function used for semantic refinement. 

Structure Description 

𝑄[𝐶]
[𝐶𝑖]

 Node queue encapsulating individual queues between 

components operating like priority queue with reception 

time as priority value. 

𝑆𝑡[𝐶] Node storage encapsulating individual queues between 

nodes. Allows for communication between components 

deployed on the same node. 

𝐵[𝐶] Node buffer of received messages associated with 

reception time. Messages are maintained in the buffer for 

certain period of time. 

Table 2. Recapitulation of structures used for semantic refinement. 
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5.1.1. Components Hosted by Nodes 

Components are deployed on nodes which are interconnected by a network 

infrastructure. Multiple components can be deployed on a single node. 

Communication model considers these facts because the situation of components on a 

single node is different from those separated by the network. Single node components 

do not communicate together2, but they share some local information such as the 

position in the network topology or received messages. When dealing with component 

extermination we restrict our considerations to only two cases – either the node is 

running correctly with all components able to operate or the node is out of execution. 

For this purpose we define a deployment relation 𝐷𝑒𝑝 ⊆ ℂ × ℂ, where 

𝐷𝑒𝑝(𝐶𝑖, 𝐶𝑗) means that components 𝐶𝑖 and 𝐶𝑗  are deployed on the same node. The 

relation is an equivalence and divides the set of components ℂ into a set of nodes. 

Notation [𝐶]𝐷𝑒𝑝 (shortly [𝐶]) is used to refer to a set of components deployed on the 

same node as 𝐶. We also interchange the set [𝐶] with the physical node hosting the 

components. 

 

Figure 5. Components deployed on nodes. We have omitted several connections between [C1] and [C4] to preserve 

the clarity. 

Rule 1. No local communication: Components on the same node do not 

communicate using the queues. 

∀(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑄𝐶
𝐶𝑖 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑖

) ⇒ 𝐶𝑖 ∉ [𝐶] 

                                                 
2 Queues associated with these nodes are never used locally by other component on the same node. 

C1 

C2 

C3 

C5 

C4 

C6 
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Now we consider only communication between nodes. If there is a message 

coming from node [𝐶𝑖] to [𝐶𝑗] it is available to all components in [𝐶𝑗]. To simplify the 

view of the system we define for each node [𝐶] a set of communication queues 

{𝑄[𝐶]
[𝐶𝑖]

|∀𝐶𝑖 ∈ ℂ: 𝐶𝑖 ≠ 𝐶} where each one wraps all queues used to communicate with 

components on other node. In Figure 5 queue 𝑄[𝐶1]
[𝐶3]

 wraps components’ 

queues 𝑄𝐶1

𝐶3   and 𝑄𝐶2

𝐶3. The wrapping queue has the same operations as the original one 

and calling an operation results in immediate call of the same operation in the 

underlying queues. Introduction of these modifications give us a single communication 

channel between nodes. The previous concept of a component hosted by a node and 

sending a message to other component hosted by a different node can be seen as 

applications using different ports, but still the message is delivered to the same address. 

Using Figure 5 as an example sending a message 𝑉𝐶3
 from [𝐶3] to [𝐶1] is handled 

by 𝑄[𝐶1]
[𝐶3]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶3
) and this call results in immediate call of 𝑄𝐶1

𝐶3 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶3
) 

and 𝑄𝐶2

𝐶3 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶3
). 

In order to allow reason about the modified version of the system we replace 

transitions of the queue automata by queue wrappers’ operations. 

 

Figure 6. Modified queue automata employing queue wrapper. 

Notice that in Figure 6 𝑉𝐶𝑘
 is a message sent from component 𝐶𝑘 ∈ [𝐶𝑗]. This 

modified system generates a different execution trace 𝑇̇ = (𝑎1, 𝑡1), (𝑎2, 𝑡2), …. We use 

this trace to put constrains on the original trace 𝑇. 

Rule 2. Shared node interface: a message sent to a node is sent to all components 

at once hosted by that node and is available to all of them at the same time. 

∀(𝑎𝑥, 𝑡) ∈ 𝑇̇: 𝑎𝑥 = 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) ⇒ 

⇒ ∀𝐶 ∈ [𝐶𝑖]: ∃(𝑎𝑦, 𝑡) ∈ 𝑇: 𝑎𝑦 =  𝑄𝐶
𝐶𝑘 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) 

𝑉𝐶𝑘
≔ 𝑄

[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

𝑄
[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) 
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∀(𝑎𝑥, 𝑡) ∈ 𝑇̇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ⇒ 

⇒ ∀𝐶 ∈ [𝐶𝑖]: ∃(𝑎𝑦, 𝑡) ∈ 𝑇: 𝑎𝑦 = 𝑉𝐶
𝐶𝑘 ≔ 𝑄𝐶

𝐶𝑘 . 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

 

The following figure illustrates how individual queues are merged into single 

node connection in the modified system. 

 

Figure 7 Connections between components are joined into node connections. Connections between components of 

[C1] and [C4] are skipped for clarity. 

5.1.2. Network Topology 

As stated in the previous Chapter nodes are interconnected with an 

infrastructure. The communication model must consider the actual network topology 

evolving over time and the fact that some nodes could be directly unreachable. In order 

to capture the network topology we define a function 

𝑁𝑒𝑡: 2ℂ × 2ℂ × 𝑇𝑖𝑚𝑒 → 𝑇𝑖𝑚𝑒 ∪ {∞} 

The 𝑁𝑒𝑡 function indicates whether two nodes are able to communication at 

specific instant of time i.e. whether they are currently in the range of the radio 

broadcast device or linked by wired connection. Here we use the symbol 2ℂ as a set of 

all subsets of ℂ where a subset indicates components deployed on one node. 

Specifically 𝑁𝑒𝑡([𝐶1], [𝐶2], 𝑡1) = 𝑡2; 𝑡2 ∈ 𝑇𝑖𝑚𝑒 means that [𝐶1] can send a message 

to [𝐶2] at time 𝑡1 and [𝐶2] will receive this message at time 𝑡2. For the 𝑁𝑒𝑡 function it 

always holds 𝑡1 ≤ 𝑡2. If 𝑡2 = ∞ the message from [𝐶1] won’t be delivered. Now we 

C1 

C2 

C3 

C5 

C4 

C6 
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refine DEECo semantics to only allow communication when it is supported by the 

underlying network infrastructure. 

Rule 3. Network topology: Communication is only allowed between nodes 

interconnected by the underlying network infrastructure. More specifically, 

a message can be sent and received only when the 𝑁𝑒𝑡 function returns valid 

reception timestamp. 

∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇̇: 𝑎𝑥 = 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) ∧ 𝑁𝑒𝑡([𝐶𝑖], [𝐶𝑗], 𝑡𝑥) = 𝑡𝑦 ⇔ 

⇔ ∃(𝑎𝑦, 𝑡𝑦) ∈ 𝑇̇: 𝑎𝑦 = 𝑉𝐶𝑘
≔ 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

From here the internal implementation of node queue will be slightly modified 

to imitate behavior of a priority queue, where the priority is the result of 𝑁𝑒𝑡 function. 

This concept allows to model situation where two messages are delivered in a reverse 

order comparing to the times when sent. Also sending a message to an unreachable 

node or a lost message will result in actual send action of the node, but the message 

will stay in the queue forever as the result of 𝑁𝑒𝑡 function is infinity. 

We specifically consider deployment on MANET network which are a little bit 

specific in the way the communication is performed. The content is not directly 

addressed to the recipient and delivered by the underlying infrastructure. Nodes in 

MANET network only support message broadcasting i.e. a node is transmitting a 

message to all nodes within the wireless range of its radio device. 

Rule 4. MANET broadcast: In MANET network message is transmitted or 

retransmitted by broadcasting it within the wireless range of the hosting 

node. 

(𝑎𝑥, 𝑡) ∈ 𝑇̇: 𝑎𝑥 = 𝑄
[𝐶𝑗]

[𝐶𝑖]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) ⇒ 

⇒ ∀𝐶 ∈ ℂ: 𝑁𝑒𝑡([𝐶𝑖], [𝐶], 𝑡) ∈ 𝑇𝑖𝑚𝑒: ∃(𝑎𝑦, 𝑡) ∈ 𝑇̇: 𝑎𝑦 = 𝑄[𝐶]
[𝐶𝑖]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘
) 

5.1.3. Message Fragmentation 

The content of a message is potentially unrestricted with respect to the size. 

Therefore it must be fragmented when exceeds the maximum allowed size that can be 

transferred over the physical medium. Current DEECo implementation introduces a 



22 

two layers mechanism. The layer 1 handles message fragments while the layer 2 

combines received fragments into a complete message or divides sent message into 

fragments. But from the component point of view the message always appears as a 

single object and it is received only when the entire content has arrived. 

A message as defined in [5] is a partial function 𝑉𝐶: 𝐾𝐶 ⇀ 𝐷. In order to allow 

communication generated by nodes themself we conceptually consider each node to 

be a DEECo component. Node [𝐶𝑖] sending a message to [𝐶𝑗] is then translated into 

𝑄[𝐶𝑗]
[𝐶𝑖]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉[𝐶𝑖]) operation. Technically there is no component associated with a 

node, it can be rather understood as the instance of DEECo framework itself deployed 

on the node. 

 

Figure 8. Network layers mechanism implemented by DEECo. 

Given a message 𝑉𝐶  we introduce a notion of message fragmentation as a set 

of partial functions {𝐹𝐶
𝑚 | 𝐹𝐶

𝑚: 𝐾𝐶 ⇀ 𝐷}𝑚=1
𝑛  such that 𝑉𝐶 = ⋃ 𝐹𝐶

𝑚𝑛
𝑚=1  and ∀𝑘 ≠

𝑙: 𝐹𝐶
𝑚 ∩ 𝐹𝐶

𝑙 = ∅. In the queue automata (Figure 6) we replace the notations of a 

message 𝑉𝐶𝑘
 by symbol 𝐹𝐶𝑘

𝑚  to indicate sending of message fragments. With respect to 

the knowledge valuation this is a perfectly valid step as 𝐹𝐶𝑘

𝑚 ∈ 𝕍𝐶𝑘
. The modified 

automata is shown on Figure 9. Trace generated by this modification is assigned with 

symbol 𝑇̈. 
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Figure 9. Modified queue automata passing message fragments. 

A node can communicate using several type of devices such as radio broadcast 

device which is unaware of addressing and only allows for sending a message to 

anyone listening around. Other devices support direct sending of the message to 

selected nodes by address. Also the decision when to send a message is part of the 

protocol design. We capture these facts by defining a publish strategy predicate 𝑃𝑢𝑏 ⊆

[2ℂ] × [2ℂ] × {⋃ 𝕍𝐶𝐶∈ℂ } × 𝑇𝑖𝑚𝑒, where 𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) indicates node 

[𝐶𝑖] sending a message 𝑉𝐶𝑘
 to node [𝐶𝑗] starting at time 𝑡. 

Rule 5. Follow publish strategy: Messages are sent according to the publish 

strategy 𝑃𝑢𝑏 keeping the timing requirement. 

𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒ 

⇒ ∀𝑚 ∈ {1, … , 𝑛}: ∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇̈: 𝑎𝑥 = 𝑄
[𝐶𝑗]

[𝐶𝑖]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚) ∧ 𝑡𝑥 ≥ 𝑡 

5.1.4. Node Storage Wrapper 

We encapsulate the concept of queues associated with each node into a concept 

of node storage 𝑆𝑡[𝐶] (see Figure 10) similar to hash table having the following 

operations: 

 𝑆𝑡[𝐶]. 𝑝𝑢𝑡(𝑉𝐶𝑘
) − Operation called by node [𝐶] makes message 𝑉𝐶𝑘

 available 

to other nodes which are interested. 

 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑘) − Operation called by node [𝐶] retrieves message coming from 

component 𝐶𝑘. 

𝐹𝐶𝑘

𝑚 ≔ 𝑄
[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚) 
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Figure 10. Node storage of individual nodes manages messages of local (dotted line) and replica (dashed line) 

components. 

Conceptually nodes in the system communicate by using the node storage. 

Upon sending a message 𝑉𝐶𝑘
 the node [𝐶𝑖] invokes operation 𝑆𝑡[𝐶𝑖]. 𝑝𝑢𝑡(𝑉𝐶𝑘

). On the 

other side node [𝐶𝑗] when there is a necessity of a message coming from 𝐶𝑖 invokes 

operation 𝑆𝑡[𝐶𝑗]. 𝑔𝑒𝑡(𝐶𝑖). 

For the last time we change the notation in the queue automata (Figure 9) 

because the nodes are no longer communicating using the queues but the node storage. 

 

Figure 11. Modified "communication" automata using node storage instead of queue. 

We use 𝑇 symbol to refer to traces generated by this modified system. For given 

message fragmentation {𝐹𝐶𝑘

𝑚}
𝑚=1

𝑛
 of a message 𝑉𝐶𝑘

 operation semantics are defined in 

the following way: 

Rule 6. Local message: Node storage wrapper returns immediately message which 

is locally accessible i.e. coming from component on the local node. 

∀𝐶𝑘 ∈ [𝐶] ⇒ 𝑆𝑡. 𝑔𝑒𝑡[𝐶](𝐶𝑘) = 𝑉𝐶𝑘
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Rule 7. Combine fragments: Central storage wrapper returns the message only after 

all fragments has been successfully delivered. 

∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑘) ⇒ 

⇒ ∀𝑚 ∈ {1, … , 𝑛}: ∃(𝑎𝑦, 𝑡𝑦) ∈ 𝑇̈: 𝑡𝑦 ≤ 𝑡𝑥, 𝑎𝑦 = 𝐹𝐶𝑘

𝑚 ≔ 𝑄[𝐶]
[𝐶𝑘]

. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

Rule 7 is only applied to messages coming from component on a remote node. 

Notice that there is a difference between the messages 𝑉𝐶𝑘
 in Rule 6 and Rule 7 when 

interpreted as knowledge valuation. While 𝑉𝐶𝑘
 in Rule 6 is the current valuation of 

component 𝐶𝑘, in Rule 7 𝑉𝐶𝑘
 is the 𝐶 belief of knowledge valuation of component 𝐶𝑘. 

Rule 8. Follow publish strategy: Messages are disseminated using a predefined 

strategy 𝑃𝑢𝑏 which specifies message recipients. 

∃𝐶𝑗 ∈ ℂ: 𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒ ∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶𝑖]. 𝑝𝑢𝑡(𝑉𝐶𝑘

) 

The 𝑆𝑡[𝐶𝑖]. 𝑝𝑢𝑡(𝑉𝐶𝑘
) operation does not specify recipients, it only requires the 

message to be disseminated and the predefined strategy takes care of the rest. This 

strategy will be defined further. 

5.2. Gossiping Components in DEECo 

One of the supporting challenges in DEECo design is an efficient and robust 

data dissemination across a distributed group of nodes. DEECo framework should be 

able to cope with the difficulty caused by the dynamicity and unreliability of the 

physical environment. Gossip-based protocol seems to be a promising solution for this 

complex task [8]. 

Current DEECo approach uses gossiping [9] to propagate its knowledge to any 

interested component in the network. A component which is interested in sharing its 

knowledge data regularly broadcasts on the network. Gossip broadcast protocols can 

be divided into push based and pull based. Push based gossip forward messages upon 

the first reception with certain probability. Contrary in pull based protocol the nodes 

exchange information about received messages. This exchange helps them realize 

which messages are missing and send an explicit pull request. 

Gossip-based dissemination is suitable for MANETs naturally operating on 

radio broadcast medium. However there are several differences comparing to 
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communication in infrastructure networks3. Nodes in MANET are only capable of 

communication with immediate neighbors. If more distant nodes are addressed 

intermediaries4 are required. On the other hand infrastructure network such as the 

Internet provide routing mechanism which is very expensive in MANET. Considering 

these facts, when talking about gossip, we will distinguish between MANET and 

infrastructure networks. 

Resuming mentioned aspects of gossip communication we are going to address 

four cases: 

 Push based gossip in MANET 

 Pull based gossip in MANET 

 Push based gossip in infrastructure network 

 Pull based gossip in infrastructure network 

Taking a more general point of view of the system we state that communication 

is performed by sending messages. Content of these messages is not only the 

component knowledge, as it is obvious, but also other kind of data such as auxiliary 

messages supporting the functionality of the protocol. As an example consider ACK 

packet in the TCP protocol which is necessary to establish a TCP connection, but is 

not part of the transferred data. 

5.2.1. Gossip Communication Model 

In a gossip-based protocol all nodes in the system collaborates on the data 

dissemination by actively retransmitting received message based on some well-defined 

strategy. The retransmission decision is based on node local information only. Let us 

define a predicate  

𝑅𝑡2 ([𝐶𝑖], 𝑉𝐶𝑗
 ) 

which indicates whether a message 𝑉𝐶𝑗
 should be retransmitted or not by 

node [𝐶𝑖]. We left the internal definition or 𝑅𝑡2 predicate unknown by now as there 

are many possible strategies, but it may be specified in the future. Some of commonly 

used strategies employ information such as number of received copies of the same 

                                                 
3 Also referred to as IP-based networks 
4 Relay nodes 
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message, current GPS position, radio signal strength indicator (RSSI), etc. Current 

DEECo implementation uses a strategy based on probabilistic retransmission. 

Rule 9. Periodic publish: knowledge of each component 𝐶𝑖 ∈ ℂ is periodically with 

a period 𝑅𝐾 and fixed delay offset 𝑜 published by the hosting node to other 

nodes in the system. 

∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶]. 𝑝𝑢𝑡(𝑉𝐶𝑖
) ⇒ 𝑡 =  𝑜 + 𝑛. 𝑅𝐾, 𝑛 ∈ ℕ0 

Rule 10. MANET gossip: In MANET network message fragments are transmitted or 

retransmitted by broadcasting it within the wireless range of the hosting 

node. 

(𝑎𝑥, 𝑡) ∈ 𝑇̈: 𝑎𝑥 = 𝑄
[𝐶𝑗]

[𝐶𝑖]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚) ⇒ 

⇒ ∀𝐶 ∈ ℂ: 𝑁𝑒𝑡([𝐶𝑖], [𝐶], 𝑡) ∈ 𝑇𝑖𝑚𝑒: ∃(𝑎𝑦, 𝑡) ∈ 𝑇̈: 𝑎𝑦 = 𝑄[𝐶]
[𝐶𝑖]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚) 

In MANET network message fragments are transmitted by broadcasting it 

within the wireless range of the node and therefore the publish strategy is determined 

by the physical environment. It holds: 

𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒ ∀𝐶 ∈ ℂ: 𝑁𝑒𝑡([𝐶𝑖], [𝐶], 𝑡) ∈ 𝑇𝑖𝑚𝑒: 𝑃𝑢𝑏([𝐶𝑖], [𝐶], 𝑉𝐶𝑘

, 𝑡) 

Actually even stronger requirement holds. Not only is the message sent to all 

neighbors of the source node at the same time but the individual fragments at sent at 

the same time. 

In the case of infrastructure networks such as the Internet a broadcast is not 

possible. Data is rather disseminated by communication with nodes 

𝑅𝑐𝑝[C](𝑡) ⊆
𝑟𝑛𝑑

𝑃𝑒𝑒𝑟[𝐶](𝑡) where 𝑃𝑒𝑒𝑟[𝐶](𝑡) is a set of nodes known by [𝐶] at time 

𝑡 and 𝑅𝑐𝑝[𝐶](𝑡) is a random subset formed by random generator with seed argument 𝑡. 

Rule 11. IP gossip: In infrastructure network node [𝐶] transmits or retransmits a 

message to randomly selected subset of known nodes. 

𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒ 

⇒ ∀𝐶 ∈ 𝑅𝑐𝑝[𝐶𝑖](𝑡): 𝑃𝑢𝑏([𝐶𝑖], [𝐶], 𝑉𝐶𝑘
, 𝑡) 



28 

Notice that the 𝑃𝑢𝑏 predicate indicates that the message sending process is 

started at time 𝑡, but may take time to be finished. Rule 11 requires a message to be 

sent to a set of nodes at specific time, but it is actually sent individually starting at the 

specified time instant. 

Rule 12. Follow the retransmission strategy: Each node upon message reception 

from other node can decide to retransmit it. The decision is based on a 

strategy involving only node local information and the message being 

retransmitted. 

∃(𝑎𝑥 , 𝑡𝑥) ∈ 𝑇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑆𝑡. 𝑔𝑒𝑡[𝐶](𝐶𝑘) ∧  𝑅𝑡2([𝐶], 𝑉𝐶𝑘

) ⇒ 

⇒ ∃(𝑎𝑦, 𝑡𝑦) ∈ 𝑇: 𝑎𝑦 = 𝑆𝑡. 𝑝𝑢𝑡[𝐶](𝑉𝑘), 𝑡𝑦 ≥ 𝑡𝑥 

Rule 13. No circular retransmission: In order to prevent from circular 

retransmission it is forbidden to resend message already retransmitted before. 

∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇: 𝑎𝑥 = 𝑆𝑡. 𝑝𝑢𝑡[𝐶](𝑉𝑘) ⇒ 

⇒ ∀(𝑎𝑦, 𝑡𝑦) ∈ 𝑇: 𝑡𝑥 ≤ 𝑡𝑦: 𝑎𝑥 ≠ 𝑎𝑦 

 

5.2.2. Bounded Gossip Extension 

DEECo component model is suitable for designing systems at architectural 

level without considering the deployment aspects such as the communication 

infrastructure, component distribution or number of instances. We are able to reason 

about the components and ensembles in isolation. On the other hand introducing 

domain knowledge at the architecture level can significantly improve performance. 

Gossip-based protocol successfully meets the requirement for knowledge 

dissemination but may cause a performance issue. Particularly in realistic environment 

the reach of the network is potentially unlimited and unrestricted gossip could cause a 

serious problem. DEECo is extended at the architectural level by the concept of 

communication boundary [8] to permit effective functionality at the communication 

level – gossip dissemination. The communication boundary specifies whether 

particular knowledge should be rebroadcasted or not. This mechanism allows to 

disseminate knowledge data in a specific geographical or other-way specified location. 



29 

Nodes included in the boundary represent an over-approximation of nodes interested 

in disseminated knowledge data i.e. those that satisfies the membership condition. 

We denote node knowledge valuation 𝑉[𝐶] as the union of knowledge valuation 

of all components 

𝑉[𝐶] ≔ ⋃ 𝑉𝐶𝑖

𝐶𝑖∈[𝐶]

 

The 𝕍[𝐶] symbol is used for all possible knowledge valuation of component 

hosted by node [𝐶]. 

Let us define a predicate 𝐵𝑛𝑑 = {𝕍[𝐶] × 𝕍𝐶𝑘
|𝐶𝑘, ∈ ℂ, 𝐶 ≠ 𝐶𝑘}, where 

𝐵𝑛𝑑(𝑉[𝐶], 𝑉𝐶𝑘
) indicates whether message 𝑉𝐶𝑘

 received by node [𝐶] could be 

retransmitted. 

Notice that 𝐵𝑛𝑑 predicate is a concrete instance of retransmission strategy 

where the knowledge valuation of all components hosted by the node is considered as 

the local information the strategy is based on. The specific about the 𝐵𝑛𝑑 predicate is 

that it is a design decision rather than definition of the protocol. 

Rule 14. Boundary condition: a knowledge valuation can only be retransmitted while 

boundary condition 𝐵𝑛𝑑 holds. 

¬𝐵𝑛𝑑(𝑉[𝐶], 𝑉𝐶𝑘
) ⇒ ¬𝑅𝑡2([𝐶], 𝑉𝐶𝑘

) 

5.2.3. Communication Boundary Example 

In the example described in 3.2 we have defined components aware of their 

own position in GPS coordinates. Position of each component is disseminated to other 

components so that the application can display to the user a map with positions of other 

drivers or pedestrians – actors for short. Developer domain knowledge is that only 

actor’s close enough should be displayed because there is a chance of joining other 

actor and travel together. Therefore knowledge valuation should not be disseminated 

too far from its source. This is when the communication boundary is useful. 

Figure 12 shows a definition of the ensemble with communication boundary 

only retransmitting when position of the source component is within 2 kilometers. 

Notice the relation with 𝑅𝑡2 predicate specified at design level. 
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18. ensemble PositionDistributor: 

  … /* membeship, knowledge exchange */ 

27.   communication boundary: 

28.    (sender: PositionAware, node: NodeKnowledge) 

29.    ∃  comp in node.components: 
30.     comp is PositionAware &&  

31.     |sender.position, comp.position| < 2 km 

32.   scheduling: periodic(1s) 

Figure 12. Example of ensemble extension by communication boundary. 

5.2.4. DEECo Groupers 

In order to optimize communication in infrastructure network we need to be 

able to identify components forming a communication group and to prevent from 

sending knowledge valuation to uninterested nodes.  

At the design level this requirement is satisfied by defining a partitioning 

function 𝑃𝑎𝑟𝑡: 𝕍𝐶 → 𝐷, where 𝐷 is the domain of knowledge field values. 

Components with the same 𝑃𝑎𝑟𝑡(𝑉𝐶) form a group. Communication groups are 

established by a specialized system component 𝐺 ∈ ℂ called grouper which upon 

knowledge valuation reception computes the value of 𝑃𝑎𝑟𝑡 function and places the 

source component to a particular group. This task is handled by a grouper process and 

currently formed groups are part of grouper knowledge. This knowledge is then 

disseminated to other components using regular DEECo approach of knowledge 

valuation publishing. The grouper can be deployed on multiple nodes together with 

other components to prevent single point of failure. Each of them is responsible for 

specific part of the key space i.e. values of 𝑃𝑎𝑟𝑡 function. 

Grouper knowledge is composed of a set of tables {𝑇1, 𝑇2, … , 𝑇𝑠}. Each table is 

a set of nodes’ addresses 𝑇𝑖 ⊆ 2ℂ. This modification is intended for infrastructure 

networks where each node possess a unique address. 

Rule 15. Partial publish: the knowledge valuation of the grouper is published by part 

containing individual address tables. 

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐺]. 𝑝𝑢𝑡(𝑉𝐺) ⇒ 𝑉𝐺 ∈ {𝑇1, 𝑇2, … , 𝑇𝑠} 

Rule 16. Publish to groups: knowledge valuation of grouper component is published 

only on infrastructure network (no MANET) and only to members of 

particular group. 

𝐺 ∈ ℂ, {𝑇1, 𝑇2, … , 𝑇𝑠}, 𝑃𝑢𝑏([𝐺], [𝐶], 𝑇𝑖 , 𝑡) ⇒ [𝐶] ∈ 𝑇𝑖 
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Notice that Rule 16 also requires the [𝐶] node to be selected by the random 

subset. 

𝑃𝑢𝑏([𝐺], [𝐶], 𝑇𝑖, 𝑡) ⇒ [𝐶] ∈ 𝑅𝑐𝑝[𝐺](𝑡) 

As a result grouper knowledge valuation is published to a random subset of 

components specified in the grouper knowledge. 

Rule 17. Group join: each node interprets the last knowledge valuation of a grouper 

as the list of known peer nodes – 𝑃𝑒𝑒𝑟[𝐶]. Notice that the node can join 

multiple groups and therefore we use ⊆ symbol instead of =. 

𝑃𝑒𝑒𝑟[𝐶](𝑡) ⊆ 𝑉𝐺: (𝑎𝑥, 𝑡𝑥) ∈ 𝑇, 𝑎𝑥 = 𝑉𝐺 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐺), 𝑡𝑥 ≤ 𝑡 ∧ 

∧ ∀(𝑎𝑦, 𝑡𝑦) ∈ 𝑇: 𝑡𝑥 < 𝑡𝑦 ≤ 𝑡: 𝑎𝑦 ≠ 𝑉𝐺 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐺) 

5.2.5. Groupers Example 

We will now show at the running example how to use the grouper service to 

optimize the communication. It is possible that some of the drivers or pedestrians 

would have a more reliable connection to an infrastructure network. Communication 

groups will be established to connect only drivers and pedestrians marching in a 

similar direction. Figure 13 shows how groups are established using the information 

about the route. The pedestrians are only interested in drivers starting and going to the 

same location as they are. 

18. ensemble PositionDistributor: 

19.   coordinator: PositionAggregator 

20.   member: PositionAware 

21.   group: coord => coord.start + coord.dest 

22.   membership: 

23.    (coord is Driver && member is Pedestrian) || 

24.     (coord is Pedestrian && member is Driver) 

25.   knowledge exchange: 

26.    coord.positions += member.position 

Figure 13. Example of communication groups 

Nodes with grouper component require stable infrastructure connection and as 

the computation is more intensive on that node power consumption is also higher. It is 

therefore preferable that grouper service can be provided by the public transport buses 

which may also take part in the dissemination or by some infrastructure established by 

the town. 
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Figure 14 shows an example of nodes grouped by common destination. Persons 

working and therefore traveling to the same building are more likely to communicate 

with each other. 

 

Figure 14. Example of vehicle nodes grouping. 

5.3. Pulling Knowledge 

Upon reception of a message the node stores its header into a buffer. Content 

of this buffer is regularly broadcasted to other nodes. Headers received from a neighbor 

are also put into the buffer and then broadcasted when necessary. Unlike in the case of 

knowledge valuation the headers are not retransmitted hence the total number of 

messages is linear with respect to the number of nodes. 

Every header has a timeout specified and is removed from the buffer when 

expired otherwise buffers will grow without limits. It is expected that after this timeout 

either the message is delivered to all nodes or there are no more interested nodes which 

are able to receive it. 

A PULL request is passed through the network until it reaches the node which 

has the required message 𝑉𝐶. This node does not retransmit the request any more but 

it broadcasts the requested message 𝑉𝐶. When some node receives 𝑉𝐶 not for the first 

time it is ignored, because that node already had chance for retransmission. 

Otherwise 𝑉𝐶 is retransmitted using regular gossip rules with probability. 
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Another timeout parameter needs to be specified for the pull request itself. It is 

possible that the source of a messages is no longer available and pulling will be 

stopped. 

We have emphasized following protocol parameters which may have a 

significant impact on the performance or even correct functionality. The first part of 

Table 3 shows parameters of push-based protocol already implemented in DEECo. 

Second part summarize parameters identified by our analysis of pull-based extension. 

Parameter Description 

PUSH 

Knowledge broadcast 

period 

How often is broadcasted the local component 

knowledge. 

Knowledge rebroadcast 

probability 

Probability of knowledge rebroadcast upon its reception 

IP broadcast count To how many randomly selected known nodes will be 

sent a message when publishing on infrastructure 

network. 

PULL 

Header broadcast period How often is broadcasted the content of the headers 

buffer. 

Pull request period How often the node checks and requests outdated 

messages by pulling. 

Local header timeout After this timeout a message is considered outdated and 

can be pulled. 

Global header timeout After this timeout a message is considered either 

delivered to all interested nodes or the message source 

is unavailable. 

Table 3. Parameters of gossip push-pull protocol. 

If a message is outdated it needs to be requested explicitly. Because we have 

described our solution in a more general way stating that the nodes are communicating 

by sending messages and not knowledge valuation the principle of message pulling 

can be then applicable also for layer 1 (see Figure 8) and message fragments can be 

pulled as well. To allow such a feature we need to propagate in the system which 

message have been currently sent by which nodes. 

On layer 2 the situation is a little bit different when considering the message 

content as knowledge valuation of a component. Although a component is a source of 

multiple messages with knowledge valuation during its lifetime from DEECo point of 
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view only the last one is interesting i.e. the most recent knowledge. Therefore we only 

need to propagate which components are involved in the communication rather than 

inform about every message coming from a particular component. 

Notice that we only consider MANET network and possible improvements by 

exploiting infrastructure networks will be mentioned in 8.3. 

Each node maintains a buffer 𝐵[𝐶] of received messages where each message 

𝑀 is associated with a tuple (𝑙𝑀, 𝑔𝑀, 𝑝𝑀): 

 𝑙𝑀 – Time when the message was received by current node. 

 𝑔𝑀 – Maximal known message reception time of 𝑀 by any node in the system 

including current node. 

 𝑝𝑀 – Flag indicating whether the message 𝑀 was pulled by any other node. 

Typically a message 𝑀 stored in the buffer will be the knowledge valuation 

such as 𝑉𝐶𝑘
. Expressing that a message is present in the buffer we state 𝑀 ∈ 𝐵[𝐶]. If 

𝑀 ∉ 𝐵[𝐶] then 𝑙𝑀 = 𝑔𝑀 = 𝑝𝑀 = ∅ (undefined). 

We define following parameters as outlined in Table 3: 

 𝑅𝐾 – Period of knowledge publishing. 

 𝑅𝐻 – Period of message headers notification. 

 𝑅𝑃 – Period of pull request routine. 

 𝑇𝑚 – Message timeout. If message is not received after this timeout it is pulled. 

 𝑇𝑝 – Pull timeout. If message is not received after this timeout the pulling is 

stopped. 

In the following text we use specific notation for message having a particular 

content: 

 𝑉𝐻 – a message with headers of other messages 

 𝑉𝑃 – a pull request message 

 𝑉𝐶  – a message with knowledge valuation of component 𝐶 

The pulling protocol is defined by the following rules: 

Rule 18. No header/pull retransmission: A message containing the headers and pull 

requests must not be retransmitted. 
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∀𝐶 ∈ ℂ: ¬𝑅𝑡2([𝐶], 𝑉𝐻) ∧ ¬𝑅𝑡2([𝐶], 𝑉𝑃) 

Rule 19. Received message: upon message reception its header is immediately added 

to the buffer. 

(𝑎, 𝑡) ∈ 𝑇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑘) ⇒ 

⇒ 𝑉𝐶𝑘
∈ 𝐵[𝐶] ∧ 𝑙𝐶𝑘

= 𝑔𝐶𝑘
= 𝑡 

Rule 20. Publish headers: periodically with a fixed delay offset publish headers of 

all received messages i.e. the content of the node reception buffer. 

∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶]. 𝑝𝑢𝑡({𝑀|𝑀 ∈ 𝐵[𝐶]}) ⇒ 

⇒ 𝑡 =  𝑜 + 𝑛. 𝑅𝐻, 𝑛 ∈ ℕ0 

 

Rule 21. Process headers: received message headers are added to the local reception 

buffer. 

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑉𝐻 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡([𝐶𝑖]) ⇒ 

⇒ ∀𝑀 ∈ 𝑉𝐻: 𝑀 ∈ 𝐵[𝐶] 

Rule 22. Pull outdated messages: periodically with fixed delay offset publish headers 

of outdated messages. Outdated messages are those with expired message 

timeout. 

∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶]. 𝑝𝑢𝑡({𝑀|𝑀 ∈ 𝐵[𝐶] ∧ 𝑡 − 𝑙𝑀 > 𝑇𝑚}) ⇒ 

⇒ 𝑡 =  𝑜 + 𝑛. 𝑅𝑃, 𝑛 ∈ ℕ0 

Rule 23. Receive pull request: messages contained in the pull request are marked 

with the pull flag. 

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑉𝑃 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡([𝐶𝑖]) ⇒ 

⇒ ∀𝑀 ∈ 𝑉𝑃: 𝑀 ∈ 𝐵[𝐶] ∧ 𝑝𝑀 

Rule 24. Retransmit pulled message: Message containing knowledge requested by 

the pull request must be retransmitted. 

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑉𝐶𝑖
≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑖) ∧ 𝑝𝐶𝑖

⇒ 𝑅𝑡2([𝐶], 𝑉𝐶𝑖
) 
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Rule 25. Up-to-date messages: reception buffer stores headers only for a certain 

period of time. Old message headers are removed. 

∀𝑡 ∈ 𝑇𝑖𝑚𝑒, ∀𝑀 ∈ 𝐵[𝐶]: 𝑡 − 𝑔𝑀 ≤ 𝑇𝑝 

5.4. Informal Proof of Semantic Refinement 

In the previous Chapters we have defined several rules which determine traces 

of the refined semantic. We will now prove that the modified semantic is a valid 

refinement according the definition. Let us denote the new semantic as 𝒞 and we will 

prove 𝒞 ≼ 𝒟 (see Chapter 4.1), specifically that for each real-time trace 𝑇𝒞 featured by 

semantic 𝒞 there is a trace 𝑇𝒟 featured by semantic 𝒟 such that 𝐶 ∈ ℂ: 𝑉𝑇𝒞

𝐶 = 𝑉𝑇𝒟

𝐶 . 

All rules restrict possible traces and therefore for any trace in 𝒞 there is an 

equivalent trace in 𝒟. We divide our rules into several classes of trace restriction and 

we show that each type does not violate the refinement. 

1. Rule stating that if there is some transition (𝑎𝑥, 𝑡𝑥) then a condition must hold 

for this transition. 

2. Modification of the system automata results in modified traces. Then we give 

a rule which joins these two types of traces i.e. if there is a transition (𝑎𝑥, 𝑡𝑥)  in 

the modified trace, than there is a transition (𝑎𝑥, 𝑡𝑥)′ in the original one (or 

multiple ones). This rule can be applied multiple times, because once modified 

automata can be modified again. 

3. A transition (𝑎𝑥, 𝑡𝑥) or an arbitrary condition requires other transitions to exist 

in the same trace. 

4. Rules which directly do not effect the traces but rather the behavior of some 

part of the system such as an auxiliary structure or a set. This rules usually 

effect rules in class 1 where the condition can be based on the auxiliary 

structure or set. 

The following table shows classification of each of defined rules into one of 

the above restriction types. 
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Class Rules 

1 Rule 1, Rule 9, Rule 13, Rule 15, Rule 19, Rule 20, Rule 21, 

Rule 22, Rule 23, Rule 24 

2 Rule 2, Rule 7 

3 Rule 3, Rule 4, Rule 5, Rule 8, Rule 10, Rule 12 

4 Rule 6, Rule 11, Rule 14, Rule 16, Rule 17, Rule 18, Rule 25 

Table 4. Classification of rules according to the restriction of traces. 

The rule class 1 only selects subset of traces generated by the original semantic 

and therefore by using these rules we get a valid refinement. The condition in class 1 

rules can be more precisely specified by a rule from class 4, but it does not refine the 

semantic itself. A little more difficult is the case of class 2 and 3 because the rules 

require the trace to have particular transitions. So it can happen that in the original 

semantic there won’t be such a trace.  

For example Rule 2 requires the presence of  𝑄𝐶
𝐶𝑘 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) transition 

which can be present at any position in the original semantic trace. And this is the case 

of all rules in class 2 and 3. So we only accept those traces which has the required 

transition while others will be excluded. These rules therefore only restricts the set of 

possible traces and the resulting semantic is a valid refinement. 
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6. Implementation 

In this Chapter we describe technical details necessary to implement and 

evaluate the proposed solution. 

6.1. JDEECo Simulation 

For the purpose of validation and testing jDEECo provides a simulation 

infrastructure. The immanent part of it is the DEECo simulation which consists of 

execution of component processes, ensemble evaluation and knowledge publishing. 

The core of this simulation framework is a scheduler which enables to register tasks to 

be executed periodically or sporadically and as such allows to extend the simulation 

by custom functionality. We have integrated MATSim and OMNeT++5 simulation in 

order to achieve realistic behavior of node mobility and communication at the network 

layer. 

JDEECo implementation provides a simple interface for creating plugins. A 

plugin in this context is a class which can be registered to be automatically created and 

initialized by the simulation environment. The lifecycle of a plugin is started by the 

call of init method. Each plugin specifies a list of plugin classes it depends on and 

these are initialized before. During the initialization the instance of currently running 

simulation is accessible and the plugin is able to deploy components or ensembles or 

the register new tasks to the scheduler. 

<<Interface>>

DEECoPlugin

getDependencies()
init(DEECoContainer node)

 

Figure 15. JDEECo plugin interface. 

MATSim and OMNeT++ simulation support are implemented as plugins and 

can be used individually or together. If both simulators are used, they run in a separate 

threads and at each simulation step synchronized together with data exchange. 

In our work MATSim is used to provide a multi-agent mobility simulation. In 

order to extract information about individual agents during the simulation such as 

position or speed we initialize the runtime with custom agent factory which for given 

                                                 
5 Parts of the code were taken from existing jDEECo implementation. 
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person creates our custom implementation of MATSim agent. A person in this context 

is an individual from the population with some attributes and plan as specified in the 

configuration file population (Chapter 2.3). 

JDEECo simulation uses a timer which provides current simulation time. 

MATSim plugin extends this timer to provide time according to the MATSim 

simulation, which is executing on its own. It allows for registering a custom callbacks 

fired at each simulation step. The timer can use these callbacks to intercept the 

MATSim simulation and synchronize with DEECo. 

Existing jDEECo implementation also contains support for network 

communication by introducing a two layers mechanism as described in Figure 8. Each 

layer allows to register a strategy which is invoked any time a packet is received. In 

particular this is component knowledge on layer 2 or packet fragment on layer 1. 

Especially for the purpose of the communication protocol implementation we 

conceptually distinguish two categories of plugins. 

 Strategy – plugins which register custom layer strategy. These are used to 

consume the communication and to perform custom message processing. 

 Task – plugins which register custom task to the simulation scheduler. These 

are used to produce the communication and to send custom messages. 

6.2. Gossip Dissemination Protocol 

The basic principle of gossip as describe in Chapter 5.2.1 is in short: regularly 

publish data, retransmit upon reception with certain probability. This protocol is 

implemented using three plugins depicted on Figure 16. SendKN6 plugin periodically 

takes knowledge of local node components and publishes them by broadcasting on 

MANET and/or to selected hosts on IP network. The knowledge is retrieved from 

KnowledgeProvider plugin as a deep copy. On the other side ReceiveKN plugin 

updates replica data of the remote node component. The GossipRebroadcast plugin 

on the same node can decide to rebroadcast or resend to selected hosts.  

                                                 
6 Plugin class names end with “Plugin” suffix. We have omitted these in the description for short. 
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SendKN

publish()

ReceiveKN

receive(KnowledgeData)

GossipRebroadcast

receive(KnowledgeData)

KnowledgeProvider

getLocalKnowledge()

knowledgeProvider

 

Figure 16. Plugins implementing gossip protocol communication. The arrows indicate knowledge passed over the 

network. 

Especially for infrastructure network SendKN plugin uses implementation of 

RecipientSelector interface (see Figure 17) which provides a list of nodes addresses 

to which given knowledge should be sent. Different implementation of this interface 

could be used. For instance in the case of regular gossip on infrastructure network we 

have a RangeRecipinetSelector implementation, which selects and return a random 

set of IP addresses from given range such as 10.0.0.1-10.0.1.100. The same instance 

is also used by the GossipRebroadcast plugin to retrieve a list of addresses to which 

received knowledge should be resent. 

SendKN

publish()

knowledgeProvider
recipinetSelector

GossipRebroadcast

receive(KnowledgeData)

recipientSelector

<<Interface>>

RecipientSelector

getRecipinets(KnowledgeData)

RangeRecipientSelector

getRecipinets(KnowledgeData)

 

Figure 17. Recipient selector provides a set of hosts for knowledge publishing. 

6.3. Grouper Component 

Plugin infrastructure allows for deployment of custom components and 

ensembles. GrouperServer converts the hosted node into a grouper service which is 

implemented using DEECo component GrouperServerComponent. The knowledge is 

partitioned by a function, which is in our case a value of some knowledge field. If 

multiple groupers are used the domain of the partitioning function is divided between 
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them similarly to the key space partitioning in distributed hash tables (DHT) and each 

grouper process only knowledge with partition value belonging to its range. We 

emphasize that there is no implementation of node joining and leaving as required by 

the DHT algorithms. 

The processKnowledge process executes periodically, calculates knowledge 

partition value and updates the register containing communication groups. For each 

partition value there is a set of node addresses forming a group. When knowledge of 

the grouper is published members of a group are assigned to groupMembers field. 

GrouperServerComponent

groupMembers
@Local register
@Local partitions

processKnowledge()

GrouperRegister

groups[]

Contains 
addresses of 
formed groups

 

Figure 18. DEECo component implementing grouper service. Fields marked with @Local are excluded from 

component knowledge. 

On the grouper node the SendKN plugin is initialized with different 

implementation of RecipinetSelector. ServerRecipinetSelector distinguish 

between grouper knowledge and knowledge of any other component. For grouper 

knowledge it returns a random subset of the groupMembers field, which contains the 

members of the communication group. For non-grouper knowledge behaves as the 

previous implementation such as RangeRecipientSelector. 

On the other side on a non-grouper node, the ClientRecipientSelector 

returns a random subset from local node register. The register can be initialized with 

the address of a well-known grouper. But during the execution addresses of group 

members are added, so the node communicates only inside the group. Also this 

recipient selector prevents from resending knowledge by returning empty set of 

addresses, because all members of the communication group are aware of it and the 

content can be addressed to all of them directly from the source node. 
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SendKN
<<Interface>>

RecipientSelector

getRecipinets(KnowledgeData)

ServerRecipientSelector ClientRecipientSelector

AddressRegister

getAddresses()

getRecipients(KnowledgeData) getRecipients(KnowledgeData)

GossipRebroadcast

recipientSelector

recipientSelector

 

Figure 19. Configuration of recipient selector for the usage with groupers. 

The grouper node has a register of known addresses, which is initialized with 

addresses of other groupers. Whenever the node receives knowledge which partition 

value is not managed by the current node, the knowledge is resend to addresses from 

this register i.e. to other grouper. The groupers pointing one to another forms an 

overlay network which can be customized by the initial addresses in the local registers. 

In the SCS example we have used a simple ring overlay network as shown in Figure 

20. 

In order to correctly enable grouper service it is necessary to support 

communication of grouper component with other nodes in the system. For this purpose 

we have implemented GrouperClientEnsemble and GrouperClientComponent 

deployed on non-grouper nodes only. The ensemble allows only knowledge exchange 

between server as a coordinator and client as member and the exchange itself copies 

group members from server to client knowledge. GrouperClientComponent has a 

process which automatically updates the local address register according to its 

knowledge. All of the above mentioned classes are instantiated by deploying 

GrouperServerPlugin on nodes dedicated to groupers and GrouperClientPlugin 

for the rest of nodes. 
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Figure 20. Groupers passing received knowledge using a ring overlay network. 

Figure 20 shows an example of possible communication in a network with five 

groupers forming ring overlay. Component C sends knowledge to the only address in 

its register which is the grouper 3. Grouper 3 realizes based on the partition value that 

it is not responsible for this knowledge and resends it to the address from its own 

register, which is grouper 4. Grouper 4 performs exactly the same logic a passes the 

knowledge to grouper 5. Grouper 5 is finally takes the knowledge, stores address of 

component C node to its grouper register and next time it publishes communication 

groups it also send it to component C node, which updates its address register. Next 

time component C directly publishes its knowledge to grouper 5 which responds with 

updated list of group members. 

6.4. Gossip PULL concept 

Conceptually nodes are communicating by sending messages. Content of a 

message is the knowledge valuation. The messages are emitted by SendKN plugin as 

explained in 6.2. In order to allow for the pulling mechanism every node periodically 

broadcasts7 headers of all received messages. For this purpose we have 

ReceptionBuffer plugin which stores required information. In particular header 

includes: source component identifier, reception time locally on the current node, the 

latest known global reception time of any other node and pulled flag. 

During the system lifetime are sent multiple knowledge valuations of one 

component. We consider these to be a single message with several versions from which 

only the latest one is relevant. Therefore upon the next reception of knowledge coming 

                                                 
7 In this Chapter we will consider only pulling in the MANET network. 
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from the same component we only update the local reception time and we do not add 

new record to the buffer. In order to preserve general concept reception buffer also 

stores information about messages coming from local components. The local and 

global reception time equals to time when the message was sent by SendKN plugin. 

The content of ReceptionBuffer is regularly published by SendHD plugin. 

Notice that messages in the buffer have a timeout and too old ones are removed before 

publish. On the other side ReceiveHD plugin receives and process the headers by 

updating the content of its own ReceptionBuffer. In particular the global reception 

time is updated to the maximum value of global reception time on the current node 

and the remote node. This way the node can realize that there is some message received 

on other node but never locally. The important detail is that messages emitted by 

SendHD plugin are never rebroadcasted and the total number is linear with respect to 

the number of nodes. 

SendPL plugin periodically checks for messages with local reception time 

beyond the defined timeout and broadcasts headers of these messages as a pull request. 

ReceivePL plugin on the other side receives such messages and sets the pull flag on it 

in the ReceptionBuffer. Messages with pull flag set are rebroadcasted with 

probability 1. Another possibility is to actively broadcast the messages upon the pull 

request. This behavior is possible to enable by SendPulledKN plugin. 

<<Interface>>

DEECoPlugin

getDependencies()
init(DEECoContainer node)

SendBase

period

at(long)

delay
layer2

SendKN SendHD SendPL

 

Figure 21. Inheritance hierarchy of plugins sending messages registering a custom task to the scheduler. 

The counterpart plugins have a similar inheritance hierarchy but instead of task 

their register a custom layer 2 strategy. This strategy is called whenever a packet is 

received from the network. 
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ReceiveBase

receptionBuffer

processL2Packet(L2Packet packet)

ReceiveKN ReceiveHD ReceivePL

 

Figure 22. Inheritance hierarchy of plugins receiving messages registering a custom strategy at layer 2. 

All of the above described plugins access the ReceptionBuffer for 

information about messages. For instance the ReceiveKN plugin updates local 

reception time whenever a message is received. On the other hand ReceiveHD updates 

global reception time, because these are reception times of messages on other nodes. 

Contrary to those plugins updating the reception times, SendPL uses local reception 

time to decide which messages are outdated. Complete overview is shown on Figure 

23. The dash dot line indicates communication between instances of individual plugins 

on different nodes. 

LOCAL

GLOBAL

LOCAL

GLOBAL

GLOBAL

Message
LOCAL

GLOBAL

PULLEDLOCAL

ReceiveHD

receive(MessageHeader)

SendHD

publish()

ReceivePL

receive(MessageHeader)

SendPL

publish()

ReceiveKN

receive(KnowledgeData)

SendKN

publish()

 

Figure 23. Different plugins accessing reception buffer. 
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7. Experiments and Evaluation 

7.1. Smart Car Sharing 

We have been simulating proposed communication mechanisms on a realistic 

scenario of the center of Berlin. The movement of individual drivers and pedestrians 

(or agents for short) is performed by MATSim itself. The cars are simulated by transit 

module with well-defined routes generated by our tool (Chapter 7.1.2). Pedestrians are 

just regular persons defined in the MATSim population file with prescribed activities. 

The movement of persons around the city is handled by MATSim and the person uses 

available public transport to get to the desired destination. The only junction point with 

DEECo simulation is the reading of actual actors’ positions. 

Specifically we have run the simulations with the following inputs: the center 

of Berlin of 8 km perimeter with 100 of car drivers and 100 walkers and the simulation 

is running for 15 minutes. 

 

Figure 24. Exported map of the center of Berlin used by the simulation. 

In the following Chapters we describe implementation details necessary to 

perform the simulations and to gather measurement data. 

7.1.1. DEECo Application 

We have tested implemented features on a realistic scenario described in 

Chapter 3. The application is decomposed into two components, for driver and 

passenger, and one ensemble for aggregation of positions. Basically, the functionality 
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of a driver and a passenger is very similar, both collect positions of actors in the other 

role and show them on a map. We have implemented this functionality in a parent 

component Actor from which driver and passenger inherit and specify the value of 

Role knowledge field. The base component has a process which regularly obtains 

current GPS location and updates the Position knowledge field. The 

PositionAggregator ensemble on the other hand updates list of currently visible 

actors. This ensemble only accepts knowledge exchange between Driver as a 

coordinator and Passenger as a member or vice versa. During the knowledge 

exchange the knowledge field Actors is updated. Knowledge dissemination of the 

ensemble is bounded by a two kilometers perimeter as there is no need to display actors 

too far away. Positions of other actors are removed from the list if they are not updated 

for a longer period of time, because they disappeared from the system or left the 

communication boundary and they are no longer interesting. This is acquired by the 

updateActors process of the component. 

Actor

ID
Position
Role
Actors

measurePosition()
showActors()
updateActors()

Driver

Role

Passanger

Role

PositionAggregator

membership()
exchange()
boundary()

 

Figure 25. Decomposition of SCS Application into components and ensembles. 

7.1.2. MATSim Generator 

The concept of SCS application is very similar to public transport. There are 

cars traveling around the city and passengers using these cars to get to the desired 

destination. In order to allow for such a simulation we have used MATSim transit 

module. We generate the schedule of several transit vehicles which simulates the 

movement of drivers and each node in the MATSim network is a potential transit stop. 

The passengers are just regular MATSim population with generated schedule. This 

way we let MATSim to completely simulate behavior of the realistic scenario as 
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described in Chapter 3.1 – persons are traveling to their destination points using even 

multiple drivers to get there. 

Simulation of smart car sharing application is supported by a generator tools 

which provides customizable generator of grid network or takes already existing 

network as an input and creates random population and traffic on it. Specifically this 

tool generates following MATSim configuration files: 

 Grid transport infrastructure  – network.xml 

 Plans of person activities – population.xml 

 Available vehicles used during the simulation – vehicles.xml 

 Schedule and routes of the vehicles – schedule.xml 

 Input configuration file of MATSim simulator referencing all previously 

mentioned files – config.xml 

 

Figure 26. MATSim configuration file generator interface. 

7.1.3. Simulation 

As described above the implementation contains several plugins which can be 

configured to provide required platform with specific behavior. As this is a little more 

complicated task we provide a SimConfig class which reads given configuration file 

and setups the simulation accordingly. The experiments than consists of generating 

several configuration files with different protocol parameters, communication devices 
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or simulators and executing the demo application with each of these files. To automate 

these steps we have implemented a PowerShell script. 

The output of the simulation is apparently the communication between nodes. 

For this purpose RequestLogger plugin intercept communication between layer 1 and 

layer 2 and each sent or received message logs to a file. This file is then processed by 

a summarization tool which gives us an overall view of the system communication. 

The RequestLogger has the ability to register additional parameters to be logged. 

 

Figure 27. Request logger intercepts communication between layer 1 and layer 2. 

7.2. Gossip in MANET 

The first experiment consists of nodes equipped only with broadcast device. 

Every node publishes its knowledge with 5s period and rebroadcasts with certain 

probability, which is the input parameter of the protocol. Then we run the same 

simulation using communication boundary. The condition is based on the fact that 

nodes too far are not interesting – displaying them on the map for the user would not 

bring any added value. So the knowledge is rebroadcasted only in 0.5 km perimeter. 

The simulations has been performed with different rebroadcast probabilities. Figure 

28 shows comparison of both methods and indicates decreased number of 

(re)broadcasts necessary to disseminate the knowledge when communication 

boundary is used. 
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Figure 28. Regular gossip protocol in MANET network comparing to communication boundary. P = rebroadcast 

probability. 

Parameters Simple Boundary 

P:0,0 36 200 36 200 

P:0,1 42 600 42 549 

P:0,2 52 522 52 105 

P:0,3 66 474 65 458 

P:0,4 86 106 85 546 

P:0,5 120 407 112 137 

P:0,6 314 844 162 826 

P:0,7 392 155 193 898 

P:0,8 511 723 257 829 

P:0,9 639 448 295 620 

P:1,0 958 077 397 807 

Table 5. Total number of sent messages using Gossip protocol in MANET network. 

We have been also investigating how much is the knowledge outdate when 

delivered to the target node. Figure 29 summarize selected simulations with 

rebroadcast probability above 0.5 using a box plot and shows that when 

communication boundary is used the medium age of delivered knowledge is lower. 

This is caused by the fact that the knowledge in the protocol without boundary is 

delivered to many other distant nodes after several hops. Using the boundary also 
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improves the belief inaccuracy. Without it a message can be delivered a long time after 

is has been sent and the state of that component by that time already changed radically. 

 

Figure 29. Comparison of knowledge ageing using Gossip protocol in MANET with and without boundary. 

We have taken also another point of view on this experiment and we have 

calculated how many knowledge valuations of distinct components has been delivered 

to individual nodes. Figure 30 shows that the boundary slightly outperform simple 

version of the protocol when the probability is higher. This probably caused by too 

many collisions what results in undelivered (or partially undelivered) messages. 

 

Figure 30. Number of different component's knowledge valuation delivered to individual nodes. 
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7.3. Gossip in Infrastructure Networks 

In the infrastructure network rather than broadcasting, the knowledge is sent to 

a set of random nodes in order to disseminate the data. Upon reception the knowledge 

is retransmitted again to random set of nodes with certain probability. We have been 

simulating the behavior of this protocol changing the probability (0.0 – 0.5) and the 

size of random nodes set (1 – 3). After that we have exchanged the random set of nodes 

for the set of nodes provided by the grouper. Figure 31 shows comparison of both 

approaches and significant decrease of total messages necessary to disseminate the 

knowledge when using the groupers. In the second case groupers have been deployed 

to 8 nodes. The number of messages increases drastically with the increase of publish 

count. 

 

Figure 31. Comparison of regular IP gossip and gossip with groupers. 

There is also a positive side effect of the grouper feature. The age of knowledge 

delivered to individual nodes is smaller as it is delivered to nodes which are interested 

in it and only to those. Figure 32 shows significant decrease of knowledge age when 

using the groupers. In the graph the results for simple and grouper version are 

alternating. It is also visible that by the increase of retransmission probability and 

publish count the age of knowledge is decreasing in the case of simple protocol 

version. With input parameters P:0.5 C:3 the age already achieves appropriate values, 

but the total number of messages is disproportionately high. 
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Figure 32. Comparing of knowledge ageing in regular IP gossip and gossip with groupers. 

7.4. Pulling in MANET 

The pulling mechanism has been simulated with the same inputs as in the 

experiment of gossip protocol in MANET network, except that the nodes had deployed 

necessary plugins. Different parameters of the protocols has been tested as outlined in 

Table 3. Consequently we have been investigating the dependency between individual 

input parameters considering the age of knowledge delivered to nodes. 

For individual configurations of input parameters we have calculated first 

quartile, median and third quartile. Because there are many of them we report only on 

those giving reasonable results (this means those whose third quartile of time needed 

for knowledge delivery is less than 20 seconds). Further, to show necessary detail, we 

visualize only 1st, 3rd quartile and the median leaving out the minimum and maximum. 

Selected configuration has been order by median which is in range from 6 to 16 

seconds (see Figure 33). 
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Figure 33. Age of knowledge using various input parameters ordered by median. We have omitted maximum and 

minimum for clarity. 

From these we have taken only those configuration having the median around 

6 seconds reasoning that publish period is 5 seconds such a value is still acceptable as 

delivery latency for the majority of the nodes. All of these configurations have 

probability parameter set to 0.9. The red line in Figure 34 on secondary axis indicates 

median of knowledge age without the use of pulling and with the same probability (see 

Figure 29 in Chapter 7.2). Table 6 summarizes the complete set of input parameters 

for selected configurations. 

 

Figure 34. Knowledge age of selected configurations. 
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Configuration HD (ms) PL (ms) P L (ms) G (ms) 

24 5000 11000 0.9 9000 13000 

25 5000 9000 0.9 9000 13000 

26 5000 7000 0.9 9000 13000 

27 5000 5000 0.9 9000 13000 

28 5000 9000 0.9 11000 17000 

29 5000 11000 0.9 13000 21000 

30 5000 11000 0.9 11000 17000 

31 5000 7000 0.9 11000 17000 

33 5000 9000 0.9 13000 21000 

34 9000 15000 0.9 11000 17000 

35 5000 5000 0.9 11000 17000 

37 5000 7000 0.9 13000 21000 

38 7000 13000 0.9 11000 17000 

39 7000 11000 0.9 13000 21000 

40 5000 5000 0.9 13000 21000 

41 7000 9000 0.9 11000 17000 

42 9000 9000 0.9 11000 17000 

46 7000 11000 0.9 11000 17000 

50 7000 13000 0.9 13000 21000 

54 7000 7000 0.9 11000 17000 

89 7000 9000 0.9 13000 21000 

Table 6. Input parameters of selected configurations (HD=header publish period, PL=pull request period, 

P=rebroadcast probability, L=message timeout, G=pulling timeout). 

We have compared this approach with previously mentioned regular gossip. 

The median value for simple version is about 475 second while for the version using 

the communication boundary the median is 32 seconds. Our approach with properly 

selected inputs results in median knowledge age of 6 seconds. 

Figure 35 show the total number of sent messages for selected configurations. 

Increasing the publish period of message headers slightly decreases the number of 

messages without significant impact on the knowledge age. The same argument holds 

for pulling period. Once the pull request is initiated it is very probable to be delivered 

and therefore it is not necessary to repeat it more frequently. 
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Figure 35. Number of sent messages for selected configurations (Protocol parameters from up down: pull timeout, 

message timeout, pull request period, message header period). 
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8. Discussion 

8.1. Protocol Parameters 

In Chapter 7.4 we have been investigating only reasonable combination of 

input parameters, holding the following rules: 

1. Knowledge broadcast period < Message timeout < Pull timeout 

2. Knowledge broadcast period ≤ Header broadcast period ≤ Pull request period 

Ad. 1 It is reasonable that the pull request won’t timeout before it is even 

initiated (Local header timeout < Global header timeout). Also the message should not 

timeout before it is even sent (Knowledge broadcast period < Local header timeout). 

Ad. 2 It is not necessary to send notifications about message headers more 

frequently as the messages itself. The same thing holds for pulling. 

The experiments show that it is reasonable to set message timeout 

approximately twice as publish period because the message can be delivered by the 

PUSH mechanism while PULL request wastefully is initiated. The message timeout 

expresses the acceptable latency with the following meaning: it is the half of the 

knowledge delivery latency. If the message is to be delivered in time after the timeout 

we need to reserve time for pull request and for the response as well. 

If a message is not delivered at least the header should be. Therefore the publish 

header period should be the same or close to the publish knowledge period if a missing 

message is about to be discovered. Otherwise the message is pulled too tardily and the 

age is higher. This is also confirmed by the experiments showing good results only for 

header publish period set to 5 or 7 seconds. 

The pulling period does not influence significantly the delivery latency and for 

simplicity can be the same as the publish header period. On the other hand setting it a 

slightly higher decreases the number of messages consumed by pulling as shown in 

Figure 35. 

Summarizing observations mentioned above we give following rules for 

correct configuration of input parameters. 

1. 2x publish knowledge period ≤ message timeout 

2. 2x message timeout ≤ acceptable delivery latency 
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3. publish knowledge period = publish header period ≤ pull request period 

Combining the first two rules gives: 4x publish knowledge period ≤ 2x message 

timeout ≤ acceptable delivery latency. Figure 34 confirms our observation: publish 

knowledge period is 5 seconds, message timeout is around 10 seconds and the 3rd 

quartile is less than 20 seconds. 

8.2. Behavior in Typical Situations 

Except the simulation experiments targeting rather quantitative properties of 

the implementation such as the number of messages or knowledge age we discuss also 

the protocol behavior in specific cases. For this purpose we have used sample network 

topology as shown in Figure 36 where only immediate nodes are accessible to each 

other. In this network the delivery of message from one nodes to another may require 

multiple hops. For instance a message from 1 to 6 requires 3 hops. 

 

Figure 36. Sample network topology used in the use-case scenarios 

8.2.1. Pulling Outdated Knowledge 

In this example scenario we show how pulling mechanism is working. The 

rebroadcast probability is set to zero so the knowledge of components is accessible 

only to the neighbors. For example knowledge of 1 is published to 2, 4 and 5, but to 

the rest of nodes is never delivered. We have enabled the pulling with the following 

parameters: 

Parameter Value 

KN8 period 5000 

                                                 
8 A message containing component knowledge valuation 

1 2 3 

4 5 6 

7 8 9 
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Parameter Value 

HD9 period 5000 

PL10 period  5000 

Local timeout 6000 

Global timeout 10000 

Table 7. Pulling knowledge scenario parameters. 

Table 8 shows selected events which occurred during runtime, in particular the 

delivery of component 1 knowledge to component 9. In this example after 15 seconds 

the knowledge of component 1 is regularly delivered to component 9 every 10 seconds. 

Time (ms) Event 

4782 1 sends KN 

4883 2 receives KN from 1 

7795 2 sends HD (including KN 1) 

7896 3 receives HD from 2 (including KN 1) 

8837 3 sends HD (including KN 1) 

8938 6 receives HD from 3 (including KN 1) 

11585 6 sends PL 1 

11686 5 receives PL 1 from 6 

14984 5 retransmits KN 1 

15186 9 receives KN 1 

25186 9 receives KN 1 

35186 9 receives KN 1 

… … 

Table 8. Events of pulling system. 

Even if a message is not delivered to the more distant nodes the immediate 

neighbors further disseminate the message header. Reception of the header on a node 

where the message was never delivered results in a pull request and consecutive 

delivery. In this example we have shown how can be ensured the reliability of message 

delivery by PULL request when the PUSH dissemination fails to do so. 

                                                 
9 A message containing headers of received messages 
10 A message requesting particular message to be sent 
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8.2.2. Node Extermination 

As a second example we have consider the node 1 failure after 20 seconds of 

the system run. Because the knowledge is no longer published the nodes start to pull 

it. Table 9 shows selected events which occurred during the runtime. 

Time (ms) Event 

… … 

21408 9 sends PL 1 

21585 3 sends PL 1 

21585 6 sends PL 1 

24850 8 sends PL 1 

28657 2 sends PL 1 

29726 4 sends PL 1 

29850 8 stops pulling 1 

31408 9 stops pulling 1 

33657 2 stops pulling 1 

… … 

Table 9. Event of pulling system with node failure. 

Notice that more distant nodes start to pull the message earlier because it was 

delivered a longer time ago but then also the immediate neighbors start pulling. 

Because the source node is no longer available there is no one to respond the request. 

After a specified timeout the nodes realize that the message probably will not be 

delivered and stop pulling. In this example we have shown how the protocol 

overcomes the case of having a header of a nonexistent message. 

8.3. Exploiting Infrastructure Networks – PULL-based Communication 

The advantage of infrastructure network has been exploited implementing the 

groupers. It is probable that a promising solution can be also achieved for the pulling 

mechanism. In this Section we propose some ideas that could be used in the future.  

As it is visible on the Figure 32 the grouper acts as the pulling mechanism. 

Sending to it knowledge of some component has the same result as pulling the 

knowledge of all other components with some probability. The dissemination of the 

communication groups is performed by the grouper and can be viewed as the message 
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headers dissemination. The group members are actually the components involved in 

the communication. 

When implementing the pulling directly without groupers we can exploit the 

possibility of node addressing and pulled knowledge can be directly send to the 

requested node and eliminate completely the gossip communication channel. The 

dissemination could work as in the case of regular gossip together with notification of 

sent message headers. Each message header has associated the address of the source 

node. A pull request is then directed to the source node with the address of the 

requesting node and pulled message is sent directly and immediately. Incoming pulling 

requests can be exploited to improve the gossip protocol. The dissemination 

mechanism could prefer to select those nodes from which the most pulling requests 

are coming. It is expected that these nodes are interested in the disseminated data. 
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9. Related work 

9.1. DHT 

Implementation of a distributed key-value storage (DHT) can be decomposed 

into two main components: a key-space partitioning and an overlay network [12]. 

Key-space partitioning mechanism assigns range of keys to the involved nodes 

[12]. Whenever a new value is inserted we find the node responsible for particular key 

and we store the value on that node. Similarly when searching for a key we find the 

responsible node and the value is obtained from there. Many systems use some variant 

of consistent hashing [13] to assign keys to the nodes. So when a new node joins the 

network only limited number of nodes are affected. Chord [14, p. 230] for instance 

treats keys as points on a circle. Each node has assigned one point and is responsible 

for keys between the previous node and itself. Arrival of a new node results only in 

reorganization between two neighbors. 

Whenever performing lookup or insert operation any node in the system must 

be able to determine which node is responsible for a particular key. Therefore each 

node maintains a set of links (routing table) to other nodes which form an overlay 

network. For an illustration purpose consider a simple solution: each node keeps a link 

to the successor node on the circle. When performing a lookup operation a message 

with the key is passed around the circle until the responsible node is found. 

In order to optimize communication between ensemble components we 

partition them into related groups. To provide such a service we have introduced a 

special role of grouper component which performs the grouping and stores the 

partitions in a distributed storage. 

Because key-space partitioning is a complex task and it is not in our interest to 

come up with a completely new implementation of distributed hash table, we have 

statically assigned ranges of keys to individual nodes. This solution is however 

intended for testing purpose only. Because the grouper is a regular component its 

knowledge can be also target of a partitioning function. Nodes with grouper deployed 

use the register of known nodes as routing table in DHT pointing to each other forming 

a circle. The routing tables can be initialized with special purposed grouper designated 

for grouping other groupers. 
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The overlay network is build and maintained by a gossip communication and 

thereby exploiting the jDEECo communication mechanism. This approach is also used 

by the Amazon Dynamo [15] system utilized to store customer shopping carts. As 

explained in [16] and [17] gossip protocol seems to be a promising solution for 

maintaining the overlay network. 

A grouper role can be also viewed as a group communication mechanism in a 

distributed environment except the fact that it does not need to be reliable. A node is 

subscribed to a group by simply gossiping its knowledge and membership in a group 

is based on node knowledge. 

9.2. Routing 

Context aware routing is a technique used in wireless mesh networks or 

delayed tolerant mobile ad hoc networks. Routing protocols in such networks use 

various information from the environment (context) in order to discover optimal path 

from source to the destination or to adapt to the network topology changes. These 

protocols can be categorized into (i) proactive (table-driven) – each node maintain 

information about topology (ii) and reactive (on-demand) – path to the destination will 

be discovered when requested e.g. by flooding message [18]. Various kind of data can 

be exploited to achieve this goal. [19] propose a solution based on host mobility (it is 

probable that mobile host meets many neighbors) and previous colocation with the 

recipient (past colocation indicates meeting in the future). 

Geographic routing (geo-routing) for instance relies on the geographical 

position and instead of fixed address it is able to deliver packets to a node at particular 

position. This can be achieved by greedy forwarding [20, pp. 3–5] algorithm which 

forwards sent packet from the source node to the next one which is closer to the 

destination. 

Our gossip communication among the nodes is optimized by exploiting the 

knowledge data and delivering it only to interested nodes. As in the case of on-demand 

ad hoc routing protocol. The destination is discovered by flooding the network 

(broadcasting to any node we know), but maintained by a table-driven routing 

protocol. Routing information is propagated across the network by the groupers which 

can be viewed as a global distributed routing table. 
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Geo-routing can be applied under the following assumptions [20, p. 2]: (i) node 

can determine its position, (ii) node is aware of neighbor positions, (iii) and destination 

position is known. In a very simplified way we modify the idea of geo-routing but 

instead of geographical location we use arbitrary part of node local data. As an example 

consider Vehicle nodes partitioned by the vehicle type (passenger car, truck, bus …). 

In the assumptions of geo-routing we replace the position with the vehicle type: (i) 

whenever a node communicates with other nodes it determines its type, (ii) it is aware 

of other nodes of same type because of the grouper updates, (iii) so the communication 

is directed to the well-known nodes with specified vehicle type. Now we are able to 

send a message to a truck without further knowledge of the current network topology. 

Delivery of knowledge data resembles the greedy forwarding. A vehicle truck 

node gossips its knowledge in the assumption that the recipient is a truck as well. 

Instead a grouper receives it and realizes that another grouper is responsible for truck 

vehicles so the knowledge is forwarded. DHT algorithm achieves that the knowledge 

is finally forwarded to grouper which stores truck vehicle knowledge. From here it can 

be again forwarded to truck nodes. On the way from the sender the knowledge is 

permanently approaching to the recipient. 

9.3. Stigmergy 

Stigmergy is a general mechanism of coordination between multiple agents 

without the need of planning or direct communication. As a result the agents can 

implement very simple logic and possess limited resources such as the memory. This 

mechanism was observed in the behavior of ants laying down pheromones after finding 

food and returning back to the nest. The designated route attracts more ants which 

following the path lay down even more pheromones reinforcing the route. 

Described mechanism can be successfully used in routing of messages in 

MANET network. In [21] the authors introduce a STIgmergy base Routing protocol 

(STIR) targeting delay tolerant networks. Agents in this system create virtual paths 

between the content publisher and the content consumer similarly to ants searching for 

the food. This paths are reinforced or modified according to the evolution of the 

environment such as temporal disconnection, node failure or extermination. 

The pulling mechanism of DEECo similarly to STIR publishes the interest of 

communicating nodes by retransmitting the headers of missing or outdated messages 
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and leaving behind a virtual path formed by the pull flags. Reaching the source at the 

producer the requested message is traveling back using the virtual path. The pull flags 

are temporal and after predefined timeout are released avoiding the message to be 

delivered where unnecessary. 
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10. Conclusion 

In this work we have considered communication aspects of DEECo component 

model targeting a distributed environment with nodes mobility and highly dynamic 

architecture. These aspects has been formally specified by rules restricting rather 

general semantic of DEECo component model. With this step we have provided a 

documentation which clearly outlines the environment and system properties at 

theoretical level. We have shown the usability of this approach by further extension of 

the refined semantic for new features in the communication protocol. We expect this 

work will lay a ground for further elaboration of the DEECo component model, 

especially the communication aspects. 

Additionally, we have defined a modification of the communication with 

optimization in mind with promising results. In particular we have exploited the 

communication on infrastructure level by introducing a so called grouper service 

establishing communication group and restricting the range of gossip protocol. The 

experiments show that a regular gossip results in exponential increase of the number 

of messages necessary to be sent in order to successful disseminate the data comparing 

to the grouper service. This solution however does not introduce any centralized 

element and is based on a well-known principles of distributed hash tables and existing 

algorithms may be reused for this purpose. 

As the last we have considered the timing aspect of data delivery and we have 

implemented a pulling mechanism in order to actively control the direction of data 

routing. Our experiments shows that the median of message delivery time is 

approximately the same as the sending period, which is 70 time smaller than regular 

gossip in MANET network. 
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List of Abbreviations 

CPS – Cyber-physical system 

DEECo – Dependable emergent ensemble of components 

DHT – Distributed hash table 

GPS – Global positioning system 

MANET – Managed ad-hoc network 

MATSim – multi-agent transport simulation 

NED – Network Description 

RSSI – radio signal strength indicator 

SCS – Smart Car Sharing 

STIR – SIGmergy Routing 

TCP – transmission control protocol 
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