
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Ondrej Kováč

Optimization of DEECo gossip-based

communication

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Tomáš Bureš, Ph.D.

Study programme: Informatics

Specialization: Software Systems

Prague 2015

I would like to thank to doc. RNDr. Tomáš Bureš, supervisor my thesis, for the

opportunity to collaborate on scientific research of cyber-physical system at the

Department of Distributed and Dependable Systems. I am especially grateful for the

advices and remarks I got during our meetings and for me a brand new look on the

design of a distributed system.

I am also grateful to Michal Kit and Vladimír Matěna for our regular meetings

and advices introducing me the world of DEECo.

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the

Charles University in Prague has the right to conclude a license agreement on the use

of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague July 28, 2015

Název práce: Optimization of DEECo gossip-based communication

Autor: Ondrej Kováč

Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí diplomové práce: doc. RNDr. Tomáš Bureš, Ph.D., Katedra distribuovaných

a spolehlivých systémů, Matematicko-fyzikální fakulta, Univerzita Karlove v Praze,

Česká Republika

Abstrakt: Rozšiřování velkého počtu bezdrátových zařízení dalo podnět ke vzniku

komponentového modelu DEECo určeného pro aplikace, jejichž neoddělitelnou

součástí je mobilita a dynamická kompozice s architekturou vytvářenou za běhu.

Velkou výzvou při realizaci takového systému je návrh komunikačního systému

založeném na gossip protokolu. Takové řešení je zvlášť vhodné pro sítě typu MANET

a jeho účelem je zvýšení spolehlivosti. V této práci jsme navrhli optimalizaci protokolu

s využitím vlastností sítě s vlastní infrastrukturou. Zachovali jsme při tom gossip

způsob komunikace bez zavedení centralizovaného prvku. Navrhované zlepšení

spočívá ve vytvoření komunikačních skupin zformovaných na úrovni návrhu.

Experimenty ukázaly podstatný pokles počtu odeslaných zpráv a celkově snížený čas

doručení. Problematiku časování jsme pak zvlášť zpracovali pro MANET sítě a

implementovali jsme mechanizmus pullování, který významně snížil latenci. Část této

práce je věnována formální specifikaci sémantiky za účelem přesného zdůvodnění

vlastností systému, čímž jsme také položili základ pro další rozšíření protokolu a

budoucí výzkum v oblasti distribuovaných systémů.

Klíčová slova: gossip, MANET, distribuovaný systém, pullování zpráv, DEECo

Title: Optimization of DEECo gossip-based communication

Author: Ondrej Kováč

Department / Institute: Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Tomáš Bureš, Ph.D., Department of

Distributed and Dependable Systems, Faculty of Mathematics and Physics, Charles

University in Prague, Czech Republic

Abstract: The spread of wireless devices inspired the creation of a DEECo component

model suitable for designing applications with immanent mobility and dynamic

composition where the system architecture emerges at runtime. A great challenge in

implementation of such a system is the underlying communication mechanism based

on gossip protocol in order to achieve resilience and suitability for MANET networks.

In this thesis we propose an optimization of the protocol exploiting infrastructure

networks, but still preserving the gossip-like communication without a centralized

element. The improvement is based on forming communication groups introduced at

the design level. The experiments show a substantial decrease in the number of sent

messages and a decrease in time of data delivery. The timing aspect of data delivery is

further elaborated for MANET networks by implementing a pulling mechanism with

significant improvement of the latency. Part of this thesis is dedicated to a formal

specification of the system semantic to provide a precise rationale about its properties

and laying the ground for further extensions and research.

Keywords: gossip, MANET, distributed system, message pulling, DEECo

Contents

1. Introduction .. 1

2. Background .. 4

2.1. DEECo Component Model ... 4

2.2. OMNeT++ ... 5

2.3. MATSim .. 5

3. Running Example ... 7

3.1. Smart Car Sharing ... 7

3.2. DEECo Approach .. 8

4. Analysis .. 10

4.1. DEECo Computational Model .. 10

4.2. Shortcomings and Problem Identifications ... 11

4.2.1. Communication Aspects .. 11

4.2.2. Exploiting Infrastructure Networks.. 13

4.2.3. Increasing Gossip Reliability ... 13

4.2.4. Semantic Requirements .. 15

5. The New DEECo Communication Model ... 16

5.1. Communication Aspects .. 16

5.1.1. Components Hosted by Nodes ... 18

5.1.2. Network Topology ... 20

5.1.3. Message Fragmentation ... 21

5.1.4. Node Storage Wrapper ... 23

5.2. Gossiping Components in DEECo .. 25

5.2.1. Gossip Communication Model .. 26

5.2.2. Bounded Gossip Extension .. 28

5.2.3. Communication Boundary Example .. 29

5.2.4. DEECo Groupers ... 30

5.2.5. Groupers Example .. 31

5.3. Pulling Knowledge .. 32

5.4. Informal Proof of Semantic Refinement ... 36

6. Implementation .. 38

6.1. JDEECo Simulation .. 38

6.2. Gossip Dissemination Protocol ... 39

6.3. Grouper Component .. 40

6.4. Gossip PULL concept ... 43

7. Experiments and Evaluation .. 46

7.1. Smart Car Sharing ... 46

7.1.1. DEECo Application ... 46

7.1.2. MATSim Generator ... 47

7.1.3. Simulation .. 48

7.2. Gossip in MANET ... 49

7.3. Gossip in Infrastructure Networks .. 52

7.4. Pulling in MANET .. 53

8. Discussion .. 57

8.1. Protocol Parameters ... 57

8.2. Behavior in Typical Situations .. 58

8.2.1. Pulling Outdated Knowledge ... 58

8.2.2. Node Extermination ... 60

8.3. Exploiting Infrastructure Networks – PULL-based Communication 60

9. Related work .. 62

9.1. DHT ... 62

9.2. Routing .. 63

9.3. Stigmergy .. 64

10. Conclusion ... 66

1

1. Introduction

The number of devices connected to the Internet is growing rapidly. According

to Cisco research targeting the forecast of the impact of visual networking application

on global networks almost half a billion mobile devices and connections were added

in 2014 and the total number exceeded global population. Such a high number of

devices and the increase of connectivity gives possibility to arise a new types of

distributed applications. The previously futuristic concept Internet of Things (IoT) is

no longer so unbelievable idea. Multiple devices closely interacting with the physical

environment could be able to cooperate together and achieve a common goal which

would be otherwise impossible taking into account individual units. A good example

of such an application, commonly referred to as cyber-physical system, is so called

smart grid [1] automatically adapting the behavior of electrical system to achieve

efficiency and reliability.

A special case of cyber physical systems are those with inherent mobility which

became more interesting with the rise of popularity of smartphones which possess

sufficient computational resources, connectivity mechanisms, storage capability, high-

level programming languages support etc. The dynamicity, mobility, great

heterogeneity, large-scale and unreliable environment make engineering of such

systems a very complex and difficult task. DEECo component model [2] is intended

to simplify the development and to give the programmer a possibility to cope with

these issues.

DEECo framework is suitable for designing large resilient distributed systems

focusing on mobility. At design level it uses components which are composed into

dynamic groups in order to cooperate on a common goal but still each component

remains an autonomic entity. The decision of a component is made individually on the

current belief of the system state resembling the agent-oriented computing. As a result

an efficient decentralized execution avoids single point of failure.

One of the challenges in such a dynamic distributed system is the

implementation of effective communication. It is necessary to find an optimal way so

that the network won’t collapse after deployment in the production environment

because of the overload, but also that the content will be delivered where it needs to

be. At the communication level we would like to adapt to the dynamicity as it is done

2

at the design level and make the system resistant to node failures or any unexpected

communication behavior and also to deal with high mobility of individual nodes. It

turns out that it’s not possible to rely on the traditional paradigm from the world of

computer networking, what makes the problem even more complex. Difficulties which

arise are mainly the mobility of the devices and uncertainty of network topology which

may rapidly change over time.

Various protocols have been developed for this purpose trying to exploit a

particular mobility model or to pretend more solid network structure [3]. DEECo

communication on the other hand is based on gossip protocol [4] which eliminates

explicit communication channels and provides best-effort resilient communication.

The advantages of gossip are mainly the simplicity and easy implementation. The

protocol is based on a single rule of publishing local data or data from someone else

to anyone who is ready to accept and as such is very resilient to node failures and

dynamic topology. On the other hand gossip puts high demands on the transmission

capacity and can lead to a network congestion. To make the protocol useful and

effective we need to restrict the publishing so that the communication demands will

be minimal but the data will be delivered anywhere it is necessary. In gossip we

distinguish two types of methods called PUSH and PULL referring to the side

initiating the request for data. Both approaches comparing to the other have its

advantages and disadvantages and it will be interesting to investigate a synergy

between them.

More particularly, we will focus on the following areas:

 DEECo makes the system engineering easier, but on the other hand

development of such a framework faces the same difficulty as the programmer

implementing a dynamic distributed system. Because of that there is a need for

proper verification of the implementation. The design model must be therefore

adequately described at the formal level to clearly outline system properties

and deduce the derived properties. Our objective is to extend the DEECo

operational semantic defined in [5] by the definition of the communication

model currently implemented in jDEECo and provide its documentation.

 Subsequently our objective is to extend proposed semantic in order to

support efficient gossip communication on infrastructure and

3

infrastructure-less networks allowing for PUSH-based and PULL-based

communication. The extension will be in a comprehensive form allowing to

reason about system properties and laying the ground for the implementation.

 Having the semantic description of proposed concepts we will provide the

implementation in jDEECo (current implementation of DEECo).

 Finally our objective is to experimentally evaluate proposed concept on a

realistic use case scenario of car sharing.

This work is further structured as follows: Chapter 2 describes the background

necessary to prove our concepts such as DEECo component model, its Java

implementation and simulation instruments. In 3 chapter we present an example of

distributed application using DEECo. This application will be used to illustrate our

concepts. Chapter 4 identifies communication aspects that should be considered and

emphasize possible improvements of the communication protocol. Based on this

statements Chapter 5 refines DEECo operational semantic to capture the network

model as well as our improvements in the protocol. Chapter 6 deals with

implementation issues of proposed solution. Experimental demonstration with the use

of example application introduces in Chapter 3 is shown and explained in Chapter 7.

Chapter 8 discusses typical use-case scenarios and possible future extensions. We

mention similar approaches in Chapter 9 and an overall summary is covered by

Chapter 10.

4

2. Background

In this Chapter we will shortly describe tools used to validate our concepts by

simulation of an example application in a realistic environment.

2.1. DEECo Component Model

When building an application using DEECo targeting highly dynamic and

distributed environment the only important thing is how to structure the software. The

runtime of an external framework will take care of the communication and the

management services. DEECo component model uses two basic principles – a

component and an ensemble. A component is an autonomous unit of deployment

developed without awareness of how communication will be performed. The only way

of component interaction is through ensembles. An ensemble is a dynamically

composed group of components formed by evaluation of component’s data. We will

further explain both concepts.

A component consists of a knowledge and processes. Knowledge expresses the

current component state and contains all component’s data in a hierarchical structure

with mapping of field identifiers to their possibly structured values. A process is a

computational logic which takes knowledge as an input, performs some processing

and writes modified knowledge back to the component. It can be either periodic or

triggered by a modification of a knowledge field. Every component periodically shares

knowledge with other components in the system. Own knowledge is referred to as

local while knowledge coming from others is referred to as replica.

An ensemble is a dynamically formed group of components which cooperate

to achieve a common goal. In the language of component models the ensemble

determine a composition. Membership to an ensemble is evaluated locally based on

the local and replica knowledge. A component in the ensemble takes a role of a

member or a coordinator which is assigned by periodically checking the membership

of local and replica knowledge and vice versa. Complementary to the membership

evaluation the ensemble performs an exchange of knowledge between the components

forming a group. In particular between the coordinator and the member. Notice that

only the local knowledge will be effected by the exchange, because replica will be

updated by the remote instance of the ensemble.

5

Components are not explicitly conscious of an ensemble. Their processes are

performed using a local knowledge only, which gets updated whenever the

components becomes part of an ensemble. Further the ensembles do not know

explicitly about other nodes. They only operate locally on the top of local and replica

knowledge which may be modified by an update from the network. These assumptions

made the system robust and reliable with respect to the ever changing environment.

2.2. OMNeT++

In this Section we will shortly describe the OMNeT++ simulation framework

used in our experiments. OMNeT++ itself only provides a basic platform and

instruments for writing simulation but does not contain any simulation components.

These are supported by external projects such as INET, MiXiM or Castalia.

OMNeT++ delivers a C++ class library with a simulation kernel, utility classes such

as random number generator, topology discovery and many more, configurable

infrastructure in order to compose simulation components, runtime user interfaces and

more. Specifically we are using INET and MiXiM frameworks to simulate a network

with wired and wireless communication.

Network models in OMNeT++ are assembled from so called modules. A

module is a C++ written class which defines its behavior. Modules can combined

together or interconnected with each other by gates. The composition is done by

OMNeT++ configuration NED files. We are using modules for emulating the network

stack and a module for node mobility.

Communication between OMNeT++ simulation and jDEECo is done by a Java

Native Interface wrapper which provides a basic functionality such as running the

simulation, sending or broadcasting a packet and setting the position of a particular

node in the simulated network especially useful for nodes equipped with a radio

device.

2.3. MATSim

MATSim is a framework for running agent based mobility simulation. We are

using it to get a realistic imitation of vehicle and person movement. In order to run a

MATSim simulation at least 3 configuration files needs to be provided:

6

 Network – specifies transport infrastructure, in particular nodes and links

interconnecting nodes

 Population – plans (activities) of simulated agents

 Configuration – defines simulation parameters, used infrastructure, population,

…

Additionally for other types of simulation more configuration files can be

provided. For our evaluation we are using a simulation of public transport which

requires two additional configuration files:

 Vehicles – defines available types and instances of vehicles

 Schedule – defines plans of public transport vehicles

For the large scaled simulations we are using a tool for generating random

population and public transport schedule. The tool was written by us in C#.

Because MATSim is written in Java the integration with jDEECo is quite

straightforward. The simulation is managed by a controller instance created and

executed in our code. The controller can register several types of listener for instance

simulation start, end, or step listener. We are using these to synchronize the simulation

with execution of jDEECo processes and ensemble evaluations. MATSim agents’

implementations such as the transit driver or passenger are replaced with custom ones

so we are able to follow them from our simulation. For more information about the

MATSim integration see Chapter 6.

7

3. Running Example

The main concepts will be illustrated on a realistic example from everyday life.

First we describe a possibility for a distributed application and then we propose a

solution using DEECo component model. This application will be further used in our

experiments.

3.1. Smart Car Sharing

In large cities traveling to work or any other activity using the public transport

can consume a serious amount of time. Also public transport is not as flexible as having

a car. Many times you have to take a transfer line, the bus does not necessarily stop at

your point of interest and you have to adjust your schedule to the timetable of the

transport. None of these happen if you have a car. But on the other hand there are other

disadvantages such as higher price, necessity of parking lots and from a general point

of view more cars in the city increases the traffic congestion. A new concept of

transport has been introduced to overcome these drawbacks referred to as car sharing.

The basic idea of this approach is that if you have a car and you are regularly traveling

to work you can share seats with other townsmen who are going to the same destination

or to the destination on your way for a little tax. So you decrease your costs and the

total amount of cars is decreased as well as there are less unused seats overall. Usually

there is a webpage provided by a town or some company which allows to negotiate

this agreement of neighbors.

Inspired by the idea of car sharing we have proposed an innovative design

which will allow to negotiate a seat in the car at real time. Imagine people in the streets

having a mobile Smart Car Sharing (SCS) application. Those having a car use the

application to indicate how many available seats they have and the destination they are

going to1. Similarly those without a car enter the number of required seats and their

destination. The SCS application will then show to the drivers positions of candidates

and possibly calculate the appropriate meet point. Equally the pedestrians will see

those drivers’ positions who meet their requirements. It is expected that the current

position will be available to the application through cell phone GPS device. The

application can be further extended with public transport buses. The only difference is

1 With the combination of Google services it won’t be even necessary as Google know where you are

going to.

8

that bus driver has given check points and much more seats to offer. Such a service

would be especially useful in cities without bus schedule or schedule which can’t be

properly kept because of difficult transport conditions or high traffic congestion. The

user will be able to see online the buses currently passing along.

3.2. DEECo Approach

The very first step when designing a DEECo application is the identification of

components and ensembles. Obviously drivers and pedestrians are modeled as

components, while the propagation of positions of other persons in the system is

captured by an ensemble. Figure 1 shows an example of how such components can be

designed. Any component features arbitrary number of roles which act as interfaces in

object oriented languages. Lines 1-4 classify a component which is aware of its

position in GPS coordinates as well as of some other components positions’. The roles

impose requirements on Driver component knowledge shown on lines 7-9. The

current state is updated by updatePosition process (lines 10-14) which every second

reads coordinates from GPS device and stores it to the driver position knowledge field.

Both Driver and Pedestrian (lines 16-17) looks exactly the same, they monitor their

current position and keep track of positions of interesting components. We have

defined them separately because for Driver only Pedestrian components are

interesting and vice versa.

1. role PositionAware
2. position

3. role PositionAggregator
4. positions

5.
6. component Driver features PositionAware, PositionAggregator
7. knowledge:

8. position = GPS(…)

9. positions = [GPS(…), GPS(…), …]

10. process updatePosition:

11. out position

12. function:

13. position <- Sensor.getPosition()

14. scheduling: periodic(1s)

15.

16. component Pedestrian features PositionAware

17. ... /* same as driver */

Figure 1. Example of a component definition for SCS application.

The interaction between driver and pedestrian is expressed by

PositionDistributor ensemble. Coordinator of this ensemble can be only a

component which aggregates positions (line 19) of its members (line 20). The

9

membership condition defines that driver will only interact with other pedestrians and

vice versa (lines 22-24). When the condition is met the coordinator then adds the

member’s current position to the aggregation list (lines 25-26).

18. ensemble PositionDistributor:

19. coordinator: PositionAggregator

20. member: PositionAware

21. /*…*/

22. membership:

23. (coord is Driver && member is Pedestrian) ||

24. (coord is Pedestrian && member is Driver)

25. knowledge exchange:

26. coord.positions += member.position

Figure 2. Example of an ensemble definition for SCS application.

It is expected that some of the deployed applications will have a connection to

infrastructure network while others only a radio broadcast medium.

10

4. Analysis

This Chapter is structured as follows: 4.1 summarizes DEECo computational

model as defined in [5] and we introduce necessary notations used in next sections. In

the following Chapter 4.2 we identify issues which should to be considered in order to

provide an effective communication mechanism. Specifically these are: aspects of the

network environment covered by Chapter 4.2.1, specific properties of infrastructure

networks described in Chapter 4.2.2, the necessity of guarantee of content delivery

described in Chapter 4.2.3 and finally requirements for the semantic refinement

included in Chapter 4.2.4.

4.1. DEECo Computational Model

In this Section we will shortly describe DEECo computational semantics as

defined in [5]. Notice that we have only included parts relevant to our research. For

more detailed information please refer to [5].

The semantics of DEECo system 𝑆 = (ℂ, 𝔼) where ℂ is a set of all components

and 𝔼 is a set of all ensemble definitions is defined by introducing a transition system

𝐴(𝑆) = ∏ 𝐴(𝐶)∀𝐶∈ℂ × ∏ 𝐴(𝐸)∀𝐸∈𝔼 constructed as a Cartesian product of component

automata 𝐴(𝐶) and ensemble automata 𝐴(𝐸). Each transition is associated with an

action 𝑎 ∈ 𝔸 and a timestamp 𝑡 ∈ 𝑇𝑖𝑚𝑒. We will further describe the component

automata 𝐴(𝐶). Each component 𝐶 is associated with valuation 𝑉𝐶 of its knowledge,

belief of valuation 𝑉𝐶
𝐶𝑖 of other components 𝐶𝑖 ≠ 𝐶 and with a set of queues {𝑄𝐶

𝐶𝑖|𝐶𝑖 ∈

ℂ, 𝐶𝑖 ≠ 𝐶}. Each queue is associated with an automaton 𝐴(𝑄𝐶
𝐶𝑖) depicted in Figure 3

and is intended to model the latency of belief propagation caused by transmission over

network.

Figure 3. Knowledge valuation queue automaton (Taken from [5]).

𝑉𝐶
𝐶𝑖 ≔ 𝑄𝐶

𝐶𝑖 . 𝑑𝑒𝑞𝑢𝑒𝑢𝑒

𝑄𝐶
𝐶𝑖 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑖

)

11

The complete automaton 𝐴(𝐶) = ∏ 𝐴(𝑄𝐶
𝐶𝑖)𝐶𝑖∈ℂ × ∏ 𝐴(𝑝)𝑝∈𝑃𝐶

, where 𝑃𝐶 is a

set of all processes of component 𝐶 and 𝐴(𝑝) is an automaton modeling the execution

of process 𝑝.

Execution trace of 𝐴(𝑆) is formally defined as a sequence 𝑇 =

(𝑎1, 𝑡1), (𝑎2, 𝑡2), … for which it holds that ∀𝑎𝑖 ∈ 𝔸, 𝑡𝑖 ∈ 𝑇𝑖𝑚𝑒: 𝑡𝑖 ≤ 𝑡𝑖+1 and we

denote 𝕋(𝑆) as the set of all traces of system 𝑆. In order to reason about knowledge

valuation considering timing aspects we introduce a function 𝑉𝑇
𝐶 : 𝑇𝑖𝑚𝑒 → 𝕍𝐶 defined

as follows: 𝑡 < 𝑡1: 𝑉𝑇
𝐶(𝑡) = 𝐼𝐶 otherwise 𝑉𝑇

𝐶 equals to 𝑉𝐶 after all

actions 𝑎𝑖, … , 𝑎𝑚, 𝑚 = max (𝑖|𝑡𝑖 ≤ 𝑡). The 𝐼𝐶 symbol here refers to the initial

knowledge valuation of component 𝐶.

The above Section describes a relatively general DEECo operational

semantic 𝒟 and it is intended to be refined whenever a new feature is implemented.

Refinements of semantic 𝒜 by semantic ℬ (denoted as 𝒜 ≼ ℬ) is formally defined as

follows: for any system 𝑆 = (ℂ, 𝔼) and each real-time execution trace 𝑇𝒜 ∈ 𝕋𝒜(𝑆)

featured by semantic 𝒜, there exist a trace 𝑇ℬ ∈ 𝕋ℬ(𝑆) featured by semantic ℬ such

that for each 𝐶 ∈ ℂ it holds that 𝑉𝑇𝒜

𝐶 = 𝑉𝑇ℬ

𝐶 .

4.2. Shortcomings and Problem Identifications

4.2.1. Communication Aspects

The computational model defined in [5] and shortly described in 4.1 is very

general and as such has been intentionally designed to allow new features to be added

by semantic refinement. On the other hand it omits several properties necessary for

efficient system design especially when deployed in a distributed environment. It does

not specify how communication should be performed and the concept of component

communicating with any other is rather unrealistic. We need to be able to consider the

fact that some component is not reachable at specific time. Also we should take into

account different behavior of the communication interface in infrastructure networks

or MANET.

Communication between components is based on sending and reception of

messages. The content of a message can be of arbitrary size and may exceed the

transmission limit given by the physical environment. Therefore the content

fragmentation and combination should also be considered. Moreover there is a

12

significant difference between communication of components deployed on a single

node and components on different nodes interconnected by a network.

DEECo communication mechanism based on gossip protocol seems to be

suitable because of the unreliable and dynamic environment but may be inefficient or

event infeasible when the total number of messages exceeds the network throughput.

It is carried out by a regular broadcast of component knowledge data. Any component

upon message reception stores it locally and retransmits. Such a solution is also

referred to as epidemic protocol based on the similarity with virus spreading in

biological terms or flooding. Data dissemination by flooding may lead to network

overload and so called broadcast storm problem [6]. Drawbacks of flooding are in

particular: (i) redundant retransmissions – a node decides to retransmit when neighbors

already have the message, (ii) contention – to many broadcasts from nearby hosts (iii)

and collisions – more likely to occur.

In a network of 𝑛 nodes flooding results in 𝑛 message transmissions and

delivers the message to every node. In a realistic production environment the boundary

of the network is potentially unrestricted and therefore it is necessary to have a

possibility to limit the communication reach to interested components as well as to

optimize the communication and to decrease the total number of messages. In order to

do that any component upon message reception decides, using local information only,

whether to retransmit it or not. Several possible solutions have been introduced such

as probabilistic forwarding. A message upon its first reception is retransmitted with

probability 𝑝 ≤ 1 which is a parameter of the protocol. For a particular network

topology there exists a retransmission probability 𝑝𝑡ℎ such that almost all nodes

receives the disseminated information [7]. If 𝑝𝑡ℎ < 1 then gossip algorithm clearly

outperforms epidemic spreading. Probabilistic forwarding can be combined with other

forwarding schemes for instance counter-based, distance-based, location-based or

cluster-based [6] in order to reduce the impact of broadcast storm and to decrease the

total number of retransmitted messages. All of these techniques use some information

coming from the network to make the decision. An interesting alternative solution

could be to consider some of the domain knowledge of a component.

Part of the communication model is already described in [8] but not formally

specified. This model presents an optimization in MANET networks, but does not

13

involve communication in infrastructure networks which are fundamentally different

and can be exploited more effectively. The following Chapter analyzes this issue.

4.2.2. Exploiting Infrastructure Networks

The optimization listed in [8] are useful in MANET network where nodes

operate on a short-range radio broadcast device and are only capable of communication

with near neighbors. If more distant target is addressed the message should be

delivered using intermediary nodes passing it from one to another until it reaches the

final destination.

When a component is deployed in a network with more reliable infrastructure

which is not only capable of broadcasting but also can route a message directly to the

receiver the gossip based protocol can be adjusted to improve the performance. We

can exploit the routing mechanism so costly in MANET and not only restrict the

retransmission. We can directly address the content to groups of interested nodes. The

routing mechanism requires the nodes in the network to be addressable. If we are able

to identify nodes involved in communication i.e. to form a communication group, we

can restrict the broadcast only to the members of the group. In order to implement this

solution we need a mechanism which will identify members of those groups and

maintain them. Distributed environment puts demand on how communication groups

will be established at runtime as there should be no single point of failure.

4.2.3. Increasing Gossip Reliability

As described above gossip dissemination protocols are based on selective

retransmission of received messages taking into account only local information. This

procedure is referred to as a PUSH mechanism as the data from sender are pushed to

potential recipients. A feasibility of this approach can be broken when the

retransmission decision algorithm releases too many messages. For instance a

probability based gossip with threshold 0.9 would retransmit almost all messages and

presumably leads to a broadcast storm.

In order to reduce the total number of messages in the network we can decrease

the probability. However if the probability is too low the system may suffer from

undelivered or too outdated messages. Consider network topology as shown in Figure

4. All nodes 𝑛𝑖 , … , 𝑛𝑘 , 𝑝 are in the transmission range of 𝑠 except 𝑞 which is only in

14

transmission range of 𝑝. Obliviously the probabilistic forwarding should not deliver a

message from 𝑠 to 𝑞 as 𝑝 must not decide to retransmit. Similarly in counter-based

forwarding with any counter threshold 𝑘 it is possible that 𝑛1, … , 𝑛𝑘will rebroadcast

before 𝑝 and therefore 𝑝 won’t.

Figure 4. The Necessity of pull request (taken from [9, p. 177]).

Therefore we need a recovery mechanism which explicitly requests the missing

message to ensure the reliability of its delivery. This procedure is referred to as PULL

method as the data is actively pulled by recipients from the sender. There are some

well-known pull algorithms [10] basically working in the following way: Every node

regularly broadcasts headers of messages it received. It is expected that headers are

much smaller than the original message content and that multiple headers can be

combined into a single pack. Also message headers are not retransmitted so there is no

danger of the broadcast storm. This mechanism allows particular node to realize that

some of the messages sent somewhere else in the network are missing and to initiate a

PULL request. Thinking more deeply about the possible implementation we must also

consider timing aspects. The fact that a message is not delivered does not mean that a

PULL request is necessary because it can be delivered in a meantime or the message

is so outdated that it is no longer relevant for the application.

While push-based protocol can achieve low latency and high tolerance to

communication failures the redundancy and overhead may be unacceptable [11]. On

the other hand pull-based protocol can produce lower overhead at the cost of higher

latency. Combination of both approaches can lead to a promising solution if it is well

balanced. Notice that setting up the protocol for rather pull than push leads to broadcast

storm similarly to the probabilistic forwarding with high probability. It is expected that

there will be more nodes interested in the sent message and all of them can receive it

in one transmission. Letting them to pull the message results in a significant overhead.

s p q ni

n1

nk

15

As an input parameter we require from the software design process to specify demands

on the acceptable latency.

4.2.4. Semantic Requirements

The above proposed modifications should be captured by semantic extension

to allow for reasoning about the system and to see how its protocols are designed.

There is a big gap between the general semantic and concrete implementation. We

need to refine the semantic in such a way that it can be taken by the developer as a

specification and implemented. Current DEECo implementation lacks the formal

definition which will help to see clearly its properties and deduce its derived properties.

We will describe the semantic refinement by stating rules which must be kept

in order to support given features. The rules actually play role of a guard restricting

the original semantic.

16

5. The New DEECo Communication Model

Considering the aspects analyzed in Chapter 4 we propose several DEECo

extensions defined by the semantic refinement. This Chapter is structured as follows:

5.1 discusses the communication aspects, in particular multiple components on a single

node, network topology and fragmentation of messages. The following Chapter 5.2

takes the communication model, proposes a communication protocol based on gossip

together with some optimization i.e. bounding the dissemination and group

communication. Another point of view on the gossip communication is taken in

Chapter 5.3 considering pull communication as a counterpart of push. Finally Chapter

5.4 gives an informal proof of valid DEECo semantic refinement.

5.1. Communication Aspects

We extend DEECo semantics 𝒟 as specified in the DEECo computational

model [5] by introducing communication aspects. The semantic refinement is

described with rules in the form of a logical formula stating about execution traces of

system 𝑆.

Taking a general point of view we say that the components in the system

communicate by sending messages. Later we assign a specific meaning to particular

message such as knowledge valuation or other type of content. Reusing the notation

established in [5] we use 𝑉𝐶 to refer to a message 𝑉 sent by component 𝐶. But contrary

to that notation we use 𝑉𝐶 rather for a single instance of a message holding knowledge

valuation not necessarily the most current one. This assumption makes difference

when taking into account the timing aspects. Knowledge valuation of a component at

two instances of time can be the exactly the same but messages sent with these

valuations are considered to be different.

Given an execution trace 𝑇 = (𝑎1, 𝑡1), (𝑎2, 𝑡2), … we consider several aspects

of the communication among components given by the environment described in the

following chapters.

To ease reading, Table 1 and Table 2 summarize the notation defined and used

in the following subsections.

17

Predicate/Function/Set Description

𝐷𝑒𝑝 ⊆ ℂ × ℂ Deployment equivalence relation

outlines components deployed on the

same node.

𝑁𝑒𝑡: 2ℂ × 2ℂ × 𝑇𝑖𝑚𝑒 → 𝑇𝑖𝑚𝑒 ∪ {∞} Network topology function defines

connection between nodes and

transfer time of a message sent from

one to another.

𝑃𝑢𝑏 ⊆ [2ℂ] × [2ℂ] × {⋃ 𝕍𝐶
𝐶∈ℂ

} × 𝑇𝑖𝑚𝑒
Publish predicate defines strategy of

messages sending from one node to

another at particular time.

𝑅𝑡2 ⊆ [2ℂ] × 𝕍𝐶 Retransmission predicate defines

strategy of given message

retransmission by particular node at

layer 2.

𝐵𝑛𝑑 ⊆ 𝕍[𝐶] × 𝕍𝐶 Boundary predicate defines strategy

of given message retransmission by

particular node taking into account

node knowledge.

𝑃𝑒𝑒𝑟[𝐶]: 𝑇𝑖𝑚𝑒 → [2ℂ] Peers function for particular node

defines set of known nodes at specific

time.

𝑅𝑐𝑝[C]: 𝑇𝑖𝑚𝑒 → 2𝑃𝑒𝑒𝑟[𝐶] Recipient function selects recipients

of a message at particular time. These

recipients are taken from known

nodes only.

𝑃𝑎𝑟𝑡: 𝕍𝐶 → 𝐷 Partitioning function divides

knowledge of components into

several groups.

Table 1. Recapitulation of predicates and function used for semantic refinement.

Structure Description

𝑄[𝐶]
[𝐶𝑖]

 Node queue encapsulating individual queues between

components operating like priority queue with reception

time as priority value.

𝑆𝑡[𝐶] Node storage encapsulating individual queues between

nodes. Allows for communication between components

deployed on the same node.

𝐵[𝐶] Node buffer of received messages associated with

reception time. Messages are maintained in the buffer for

certain period of time.

Table 2. Recapitulation of structures used for semantic refinement.

18

5.1.1. Components Hosted by Nodes

Components are deployed on nodes which are interconnected by a network

infrastructure. Multiple components can be deployed on a single node.

Communication model considers these facts because the situation of components on a

single node is different from those separated by the network. Single node components

do not communicate together2, but they share some local information such as the

position in the network topology or received messages. When dealing with component

extermination we restrict our considerations to only two cases – either the node is

running correctly with all components able to operate or the node is out of execution.

For this purpose we define a deployment relation 𝐷𝑒𝑝 ⊆ ℂ × ℂ, where

𝐷𝑒𝑝(𝐶𝑖, 𝐶𝑗) means that components 𝐶𝑖 and 𝐶𝑗 are deployed on the same node. The

relation is an equivalence and divides the set of components ℂ into a set of nodes.

Notation [𝐶]𝐷𝑒𝑝 (shortly [𝐶]) is used to refer to a set of components deployed on the

same node as 𝐶. We also interchange the set [𝐶] with the physical node hosting the

components.

Figure 5. Components deployed on nodes. We have omitted several connections between [C1] and [C4] to preserve

the clarity.

Rule 1. No local communication: Components on the same node do not

communicate using the queues.

∀(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑄𝐶
𝐶𝑖 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑖

) ⇒ 𝐶𝑖 ∉ [𝐶]

2 Queues associated with these nodes are never used locally by other component on the same node.

C1

C2

C3

C5

C4

C6

19

Now we consider only communication between nodes. If there is a message

coming from node [𝐶𝑖] to [𝐶𝑗] it is available to all components in [𝐶𝑗]. To simplify the

view of the system we define for each node [𝐶] a set of communication queues

{𝑄[𝐶]
[𝐶𝑖]

|∀𝐶𝑖 ∈ ℂ: 𝐶𝑖 ≠ 𝐶} where each one wraps all queues used to communicate with

components on other node. In Figure 5 queue 𝑄[𝐶1]
[𝐶3]

 wraps components’

queues 𝑄𝐶1

𝐶3 and 𝑄𝐶2

𝐶3. The wrapping queue has the same operations as the original one

and calling an operation results in immediate call of the same operation in the

underlying queues. Introduction of these modifications give us a single communication

channel between nodes. The previous concept of a component hosted by a node and

sending a message to other component hosted by a different node can be seen as

applications using different ports, but still the message is delivered to the same address.

Using Figure 5 as an example sending a message 𝑉𝐶3
 from [𝐶3] to [𝐶1] is handled

by 𝑄[𝐶1]
[𝐶3]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶3
) and this call results in immediate call of 𝑄𝐶1

𝐶3 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶3
)

and 𝑄𝐶2

𝐶3 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶3
).

In order to allow reason about the modified version of the system we replace

transitions of the queue automata by queue wrappers’ operations.

Figure 6. Modified queue automata employing queue wrapper.

Notice that in Figure 6 𝑉𝐶𝑘
 is a message sent from component 𝐶𝑘 ∈ [𝐶𝑗]. This

modified system generates a different execution trace 𝑇̇ = (𝑎1, 𝑡1), (𝑎2, 𝑡2), …. We use

this trace to put constrains on the original trace 𝑇.

Rule 2. Shared node interface: a message sent to a node is sent to all components

at once hosted by that node and is available to all of them at the same time.

∀(𝑎𝑥, 𝑡) ∈ 𝑇̇: 𝑎𝑥 = 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) ⇒

⇒ ∀𝐶 ∈ [𝐶𝑖]: ∃(𝑎𝑦, 𝑡) ∈ 𝑇: 𝑎𝑦 = 𝑄𝐶
𝐶𝑘 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

)

𝑉𝐶𝑘
≔ 𝑄

[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒

𝑄
[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

)

20

∀(𝑎𝑥, 𝑡) ∈ 𝑇̇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ⇒

⇒ ∀𝐶 ∈ [𝐶𝑖]: ∃(𝑎𝑦, 𝑡) ∈ 𝑇: 𝑎𝑦 = 𝑉𝐶
𝐶𝑘 ≔ 𝑄𝐶

𝐶𝑘 . 𝑑𝑒𝑞𝑢𝑒𝑢𝑒

The following figure illustrates how individual queues are merged into single

node connection in the modified system.

Figure 7 Connections between components are joined into node connections. Connections between components of

[C1] and [C4] are skipped for clarity.

5.1.2. Network Topology

As stated in the previous Chapter nodes are interconnected with an

infrastructure. The communication model must consider the actual network topology

evolving over time and the fact that some nodes could be directly unreachable. In order

to capture the network topology we define a function

𝑁𝑒𝑡: 2ℂ × 2ℂ × 𝑇𝑖𝑚𝑒 → 𝑇𝑖𝑚𝑒 ∪ {∞}

The 𝑁𝑒𝑡 function indicates whether two nodes are able to communication at

specific instant of time i.e. whether they are currently in the range of the radio

broadcast device or linked by wired connection. Here we use the symbol 2ℂ as a set of

all subsets of ℂ where a subset indicates components deployed on one node.

Specifically 𝑁𝑒𝑡([𝐶1], [𝐶2], 𝑡1) = 𝑡2; 𝑡2 ∈ 𝑇𝑖𝑚𝑒 means that [𝐶1] can send a message

to [𝐶2] at time 𝑡1 and [𝐶2] will receive this message at time 𝑡2. For the 𝑁𝑒𝑡 function it

always holds 𝑡1 ≤ 𝑡2. If 𝑡2 = ∞ the message from [𝐶1] won’t be delivered. Now we

C1

C2

C3

C5

C4

C6

21

refine DEECo semantics to only allow communication when it is supported by the

underlying network infrastructure.

Rule 3. Network topology: Communication is only allowed between nodes

interconnected by the underlying network infrastructure. More specifically,

a message can be sent and received only when the 𝑁𝑒𝑡 function returns valid

reception timestamp.

∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇̇: 𝑎𝑥 = 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) ∧ 𝑁𝑒𝑡([𝐶𝑖], [𝐶𝑗], 𝑡𝑥) = 𝑡𝑦 ⇔

⇔ ∃(𝑎𝑦, 𝑡𝑦) ∈ 𝑇̇: 𝑎𝑦 = 𝑉𝐶𝑘
≔ 𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒

From here the internal implementation of node queue will be slightly modified

to imitate behavior of a priority queue, where the priority is the result of 𝑁𝑒𝑡 function.

This concept allows to model situation where two messages are delivered in a reverse

order comparing to the times when sent. Also sending a message to an unreachable

node or a lost message will result in actual send action of the node, but the message

will stay in the queue forever as the result of 𝑁𝑒𝑡 function is infinity.

We specifically consider deployment on MANET network which are a little bit

specific in the way the communication is performed. The content is not directly

addressed to the recipient and delivered by the underlying infrastructure. Nodes in

MANET network only support message broadcasting i.e. a node is transmitting a

message to all nodes within the wireless range of its radio device.

Rule 4. MANET broadcast: In MANET network message is transmitted or

retransmitted by broadcasting it within the wireless range of the hosting

node.

(𝑎𝑥, 𝑡) ∈ 𝑇̇: 𝑎𝑥 = 𝑄
[𝐶𝑗]

[𝐶𝑖]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) ⇒

⇒ ∀𝐶 ∈ ℂ: 𝑁𝑒𝑡([𝐶𝑖], [𝐶], 𝑡) ∈ 𝑇𝑖𝑚𝑒: ∃(𝑎𝑦, 𝑡) ∈ 𝑇̇: 𝑎𝑦 = 𝑄[𝐶]
[𝐶𝑖]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘
)

5.1.3. Message Fragmentation

The content of a message is potentially unrestricted with respect to the size.

Therefore it must be fragmented when exceeds the maximum allowed size that can be

transferred over the physical medium. Current DEECo implementation introduces a

22

two layers mechanism. The layer 1 handles message fragments while the layer 2

combines received fragments into a complete message or divides sent message into

fragments. But from the component point of view the message always appears as a

single object and it is received only when the entire content has arrived.

A message as defined in [5] is a partial function 𝑉𝐶: 𝐾𝐶 ⇀ 𝐷. In order to allow

communication generated by nodes themself we conceptually consider each node to

be a DEECo component. Node [𝐶𝑖] sending a message to [𝐶𝑗] is then translated into

𝑄[𝐶𝑗]
[𝐶𝑖]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉[𝐶𝑖]) operation. Technically there is no component associated with a

node, it can be rather understood as the instance of DEECo framework itself deployed

on the node.

Figure 8. Network layers mechanism implemented by DEECo.

Given a message 𝑉𝐶 we introduce a notion of message fragmentation as a set

of partial functions {𝐹𝐶
𝑚 | 𝐹𝐶

𝑚: 𝐾𝐶 ⇀ 𝐷}𝑚=1
𝑛 such that 𝑉𝐶 = ⋃ 𝐹𝐶

𝑚𝑛
𝑚=1 and ∀𝑘 ≠

𝑙: 𝐹𝐶
𝑚 ∩ 𝐹𝐶

𝑙 = ∅. In the queue automata (Figure 6) we replace the notations of a

message 𝑉𝐶𝑘
 by symbol 𝐹𝐶𝑘

𝑚 to indicate sending of message fragments. With respect to

the knowledge valuation this is a perfectly valid step as 𝐹𝐶𝑘

𝑚 ∈ 𝕍𝐶𝑘
. The modified

automata is shown on Figure 9. Trace generated by this modification is assigned with

symbol 𝑇̈.

N
o
d
e

L2

L1

Device Device

Fragments

Message

Bytes

L2

L1

23

Figure 9. Modified queue automata passing message fragments.

A node can communicate using several type of devices such as radio broadcast

device which is unaware of addressing and only allows for sending a message to

anyone listening around. Other devices support direct sending of the message to

selected nodes by address. Also the decision when to send a message is part of the

protocol design. We capture these facts by defining a publish strategy predicate 𝑃𝑢𝑏 ⊆

[2ℂ] × [2ℂ] × {⋃ 𝕍𝐶𝐶∈ℂ } × 𝑇𝑖𝑚𝑒, where 𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) indicates node

[𝐶𝑖] sending a message 𝑉𝐶𝑘
 to node [𝐶𝑗] starting at time 𝑡.

Rule 5. Follow publish strategy: Messages are sent according to the publish

strategy 𝑃𝑢𝑏 keeping the timing requirement.

𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒

⇒ ∀𝑚 ∈ {1, … , 𝑛}: ∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇̈: 𝑎𝑥 = 𝑄
[𝐶𝑗]

[𝐶𝑖]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚) ∧ 𝑡𝑥 ≥ 𝑡

5.1.4. Node Storage Wrapper

We encapsulate the concept of queues associated with each node into a concept

of node storage 𝑆𝑡[𝐶] (see Figure 10) similar to hash table having the following

operations:

 𝑆𝑡[𝐶]. 𝑝𝑢𝑡(𝑉𝐶𝑘
) − Operation called by node [𝐶] makes message 𝑉𝐶𝑘

 available

to other nodes which are interested.

 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑘) − Operation called by node [𝐶] retrieves message coming from

component 𝐶𝑘.

𝐹𝐶𝑘

𝑚 ≔ 𝑄
[𝐶𝑖]

[𝐶𝑗]
. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒

𝑄[𝐶𝑖]

[𝐶𝑗]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚)

24

Figure 10. Node storage of individual nodes manages messages of local (dotted line) and replica (dashed line)

components.

Conceptually nodes in the system communicate by using the node storage.

Upon sending a message 𝑉𝐶𝑘
 the node [𝐶𝑖] invokes operation 𝑆𝑡[𝐶𝑖]. 𝑝𝑢𝑡(𝑉𝐶𝑘

). On the

other side node [𝐶𝑗] when there is a necessity of a message coming from 𝐶𝑖 invokes

operation 𝑆𝑡[𝐶𝑗]. 𝑔𝑒𝑡(𝐶𝑖).

For the last time we change the notation in the queue automata (Figure 9)

because the nodes are no longer communicating using the queues but the node storage.

Figure 11. Modified "communication" automata using node storage instead of queue.

We use 𝑇 symbol to refer to traces generated by this modified system. For given

message fragmentation {𝐹𝐶𝑘

𝑚}
𝑚=1

𝑛
 of a message 𝑉𝐶𝑘

 operation semantics are defined in

the following way:

Rule 6. Local message: Node storage wrapper returns immediately message which

is locally accessible i.e. coming from component on the local node.

∀𝐶𝑘 ∈ [𝐶] ⇒ 𝑆𝑡. 𝑔𝑒𝑡[𝐶](𝐶𝑘) = 𝑉𝐶𝑘

C3

C5

C4

C6

C1 C2

C3 C4

C5 C6

C1

C2

C1 C2

C3 C4

C5 C6

C1 C2

C3 C4

C5 C6

𝑉𝐶𝑘
≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑘)

𝑆𝑡[𝐶]. 𝑝𝑢𝑡(𝑉𝐶𝑘
)

25

Rule 7. Combine fragments: Central storage wrapper returns the message only after

all fragments has been successfully delivered.

∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑘) ⇒

⇒ ∀𝑚 ∈ {1, … , 𝑛}: ∃(𝑎𝑦, 𝑡𝑦) ∈ 𝑇̈: 𝑡𝑦 ≤ 𝑡𝑥, 𝑎𝑦 = 𝐹𝐶𝑘

𝑚 ≔ 𝑄[𝐶]
[𝐶𝑘]

. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒

Rule 7 is only applied to messages coming from component on a remote node.

Notice that there is a difference between the messages 𝑉𝐶𝑘
 in Rule 6 and Rule 7 when

interpreted as knowledge valuation. While 𝑉𝐶𝑘
 in Rule 6 is the current valuation of

component 𝐶𝑘, in Rule 7 𝑉𝐶𝑘
 is the 𝐶 belief of knowledge valuation of component 𝐶𝑘.

Rule 8. Follow publish strategy: Messages are disseminated using a predefined

strategy 𝑃𝑢𝑏 which specifies message recipients.

∃𝐶𝑗 ∈ ℂ: 𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒ ∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶𝑖]. 𝑝𝑢𝑡(𝑉𝐶𝑘

)

The 𝑆𝑡[𝐶𝑖]. 𝑝𝑢𝑡(𝑉𝐶𝑘
) operation does not specify recipients, it only requires the

message to be disseminated and the predefined strategy takes care of the rest. This

strategy will be defined further.

5.2. Gossiping Components in DEECo

One of the supporting challenges in DEECo design is an efficient and robust

data dissemination across a distributed group of nodes. DEECo framework should be

able to cope with the difficulty caused by the dynamicity and unreliability of the

physical environment. Gossip-based protocol seems to be a promising solution for this

complex task [8].

Current DEECo approach uses gossiping [9] to propagate its knowledge to any

interested component in the network. A component which is interested in sharing its

knowledge data regularly broadcasts on the network. Gossip broadcast protocols can

be divided into push based and pull based. Push based gossip forward messages upon

the first reception with certain probability. Contrary in pull based protocol the nodes

exchange information about received messages. This exchange helps them realize

which messages are missing and send an explicit pull request.

Gossip-based dissemination is suitable for MANETs naturally operating on

radio broadcast medium. However there are several differences comparing to

26

communication in infrastructure networks3. Nodes in MANET are only capable of

communication with immediate neighbors. If more distant nodes are addressed

intermediaries4 are required. On the other hand infrastructure network such as the

Internet provide routing mechanism which is very expensive in MANET. Considering

these facts, when talking about gossip, we will distinguish between MANET and

infrastructure networks.

Resuming mentioned aspects of gossip communication we are going to address

four cases:

 Push based gossip in MANET

 Pull based gossip in MANET

 Push based gossip in infrastructure network

 Pull based gossip in infrastructure network

Taking a more general point of view of the system we state that communication

is performed by sending messages. Content of these messages is not only the

component knowledge, as it is obvious, but also other kind of data such as auxiliary

messages supporting the functionality of the protocol. As an example consider ACK

packet in the TCP protocol which is necessary to establish a TCP connection, but is

not part of the transferred data.

5.2.1. Gossip Communication Model

In a gossip-based protocol all nodes in the system collaborates on the data

dissemination by actively retransmitting received message based on some well-defined

strategy. The retransmission decision is based on node local information only. Let us

define a predicate

𝑅𝑡2 ([𝐶𝑖], 𝑉𝐶𝑗
)

which indicates whether a message 𝑉𝐶𝑗
 should be retransmitted or not by

node [𝐶𝑖]. We left the internal definition or 𝑅𝑡2 predicate unknown by now as there

are many possible strategies, but it may be specified in the future. Some of commonly

used strategies employ information such as number of received copies of the same

3 Also referred to as IP-based networks
4 Relay nodes

27

message, current GPS position, radio signal strength indicator (RSSI), etc. Current

DEECo implementation uses a strategy based on probabilistic retransmission.

Rule 9. Periodic publish: knowledge of each component 𝐶𝑖 ∈ ℂ is periodically with

a period 𝑅𝐾 and fixed delay offset 𝑜 published by the hosting node to other

nodes in the system.

∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶]. 𝑝𝑢𝑡(𝑉𝐶𝑖
) ⇒ 𝑡 = 𝑜 + 𝑛. 𝑅𝐾, 𝑛 ∈ ℕ0

Rule 10. MANET gossip: In MANET network message fragments are transmitted or

retransmitted by broadcasting it within the wireless range of the hosting

node.

(𝑎𝑥, 𝑡) ∈ 𝑇̈: 𝑎𝑥 = 𝑄
[𝐶𝑗]

[𝐶𝑖]
. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚) ⇒

⇒ ∀𝐶 ∈ ℂ: 𝑁𝑒𝑡([𝐶𝑖], [𝐶], 𝑡) ∈ 𝑇𝑖𝑚𝑒: ∃(𝑎𝑦, 𝑡) ∈ 𝑇̈: 𝑎𝑦 = 𝑄[𝐶]
[𝐶𝑖]

. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐹𝐶𝑘

𝑚)

In MANET network message fragments are transmitted by broadcasting it

within the wireless range of the node and therefore the publish strategy is determined

by the physical environment. It holds:

𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒ ∀𝐶 ∈ ℂ: 𝑁𝑒𝑡([𝐶𝑖], [𝐶], 𝑡) ∈ 𝑇𝑖𝑚𝑒: 𝑃𝑢𝑏([𝐶𝑖], [𝐶], 𝑉𝐶𝑘

, 𝑡)

Actually even stronger requirement holds. Not only is the message sent to all

neighbors of the source node at the same time but the individual fragments at sent at

the same time.

In the case of infrastructure networks such as the Internet a broadcast is not

possible. Data is rather disseminated by communication with nodes

𝑅𝑐𝑝[C](𝑡) ⊆
𝑟𝑛𝑑

𝑃𝑒𝑒𝑟[𝐶](𝑡) where 𝑃𝑒𝑒𝑟[𝐶](𝑡) is a set of nodes known by [𝐶] at time

𝑡 and 𝑅𝑐𝑝[𝐶](𝑡) is a random subset formed by random generator with seed argument 𝑡.

Rule 11. IP gossip: In infrastructure network node [𝐶] transmits or retransmits a

message to randomly selected subset of known nodes.

𝑃𝑢𝑏([𝐶𝑖], [𝐶𝑗], 𝑉𝐶𝑘
, 𝑡) ⇒

⇒ ∀𝐶 ∈ 𝑅𝑐𝑝[𝐶𝑖](𝑡): 𝑃𝑢𝑏([𝐶𝑖], [𝐶], 𝑉𝐶𝑘
, 𝑡)

28

Notice that the 𝑃𝑢𝑏 predicate indicates that the message sending process is

started at time 𝑡, but may take time to be finished. Rule 11 requires a message to be

sent to a set of nodes at specific time, but it is actually sent individually starting at the

specified time instant.

Rule 12. Follow the retransmission strategy: Each node upon message reception

from other node can decide to retransmit it. The decision is based on a

strategy involving only node local information and the message being

retransmitted.

∃(𝑎𝑥 , 𝑡𝑥) ∈ 𝑇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑆𝑡. 𝑔𝑒𝑡[𝐶](𝐶𝑘) ∧ 𝑅𝑡2([𝐶], 𝑉𝐶𝑘

) ⇒

⇒ ∃(𝑎𝑦, 𝑡𝑦) ∈ 𝑇: 𝑎𝑦 = 𝑆𝑡. 𝑝𝑢𝑡[𝐶](𝑉𝑘), 𝑡𝑦 ≥ 𝑡𝑥

Rule 13. No circular retransmission: In order to prevent from circular

retransmission it is forbidden to resend message already retransmitted before.

∃(𝑎𝑥, 𝑡𝑥) ∈ 𝑇: 𝑎𝑥 = 𝑆𝑡. 𝑝𝑢𝑡[𝐶](𝑉𝑘) ⇒

⇒ ∀(𝑎𝑦, 𝑡𝑦) ∈ 𝑇: 𝑡𝑥 ≤ 𝑡𝑦: 𝑎𝑥 ≠ 𝑎𝑦

5.2.2. Bounded Gossip Extension

DEECo component model is suitable for designing systems at architectural

level without considering the deployment aspects such as the communication

infrastructure, component distribution or number of instances. We are able to reason

about the components and ensembles in isolation. On the other hand introducing

domain knowledge at the architecture level can significantly improve performance.

Gossip-based protocol successfully meets the requirement for knowledge

dissemination but may cause a performance issue. Particularly in realistic environment

the reach of the network is potentially unlimited and unrestricted gossip could cause a

serious problem. DEECo is extended at the architectural level by the concept of

communication boundary [8] to permit effective functionality at the communication

level – gossip dissemination. The communication boundary specifies whether

particular knowledge should be rebroadcasted or not. This mechanism allows to

disseminate knowledge data in a specific geographical or other-way specified location.

29

Nodes included in the boundary represent an over-approximation of nodes interested

in disseminated knowledge data i.e. those that satisfies the membership condition.

We denote node knowledge valuation 𝑉[𝐶] as the union of knowledge valuation

of all components

𝑉[𝐶] ≔ ⋃ 𝑉𝐶𝑖

𝐶𝑖∈[𝐶]

The 𝕍[𝐶] symbol is used for all possible knowledge valuation of component

hosted by node [𝐶].

Let us define a predicate 𝐵𝑛𝑑 = {𝕍[𝐶] × 𝕍𝐶𝑘
|𝐶𝑘, ∈ ℂ, 𝐶 ≠ 𝐶𝑘}, where

𝐵𝑛𝑑(𝑉[𝐶], 𝑉𝐶𝑘
) indicates whether message 𝑉𝐶𝑘

 received by node [𝐶] could be

retransmitted.

Notice that 𝐵𝑛𝑑 predicate is a concrete instance of retransmission strategy

where the knowledge valuation of all components hosted by the node is considered as

the local information the strategy is based on. The specific about the 𝐵𝑛𝑑 predicate is

that it is a design decision rather than definition of the protocol.

Rule 14. Boundary condition: a knowledge valuation can only be retransmitted while

boundary condition 𝐵𝑛𝑑 holds.

¬𝐵𝑛𝑑(𝑉[𝐶], 𝑉𝐶𝑘
) ⇒ ¬𝑅𝑡2([𝐶], 𝑉𝐶𝑘

)

5.2.3. Communication Boundary Example

In the example described in 3.2 we have defined components aware of their

own position in GPS coordinates. Position of each component is disseminated to other

components so that the application can display to the user a map with positions of other

drivers or pedestrians – actors for short. Developer domain knowledge is that only

actor’s close enough should be displayed because there is a chance of joining other

actor and travel together. Therefore knowledge valuation should not be disseminated

too far from its source. This is when the communication boundary is useful.

Figure 12 shows a definition of the ensemble with communication boundary

only retransmitting when position of the source component is within 2 kilometers.

Notice the relation with 𝑅𝑡2 predicate specified at design level.

30

18. ensemble PositionDistributor:

 … /* membeship, knowledge exchange */

27. communication boundary:

28. (sender: PositionAware, node: NodeKnowledge)

29. ∃ comp in node.components:
30. comp is PositionAware &&

31. |sender.position, comp.position| < 2 km

32. scheduling: periodic(1s)

Figure 12. Example of ensemble extension by communication boundary.

5.2.4. DEECo Groupers

In order to optimize communication in infrastructure network we need to be

able to identify components forming a communication group and to prevent from

sending knowledge valuation to uninterested nodes.

At the design level this requirement is satisfied by defining a partitioning

function 𝑃𝑎𝑟𝑡: 𝕍𝐶 → 𝐷, where 𝐷 is the domain of knowledge field values.

Components with the same 𝑃𝑎𝑟𝑡(𝑉𝐶) form a group. Communication groups are

established by a specialized system component 𝐺 ∈ ℂ called grouper which upon

knowledge valuation reception computes the value of 𝑃𝑎𝑟𝑡 function and places the

source component to a particular group. This task is handled by a grouper process and

currently formed groups are part of grouper knowledge. This knowledge is then

disseminated to other components using regular DEECo approach of knowledge

valuation publishing. The grouper can be deployed on multiple nodes together with

other components to prevent single point of failure. Each of them is responsible for

specific part of the key space i.e. values of 𝑃𝑎𝑟𝑡 function.

Grouper knowledge is composed of a set of tables {𝑇1, 𝑇2, … , 𝑇𝑠}. Each table is

a set of nodes’ addresses 𝑇𝑖 ⊆ 2ℂ. This modification is intended for infrastructure

networks where each node possess a unique address.

Rule 15. Partial publish: the knowledge valuation of the grouper is published by part

containing individual address tables.

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐺]. 𝑝𝑢𝑡(𝑉𝐺) ⇒ 𝑉𝐺 ∈ {𝑇1, 𝑇2, … , 𝑇𝑠}

Rule 16. Publish to groups: knowledge valuation of grouper component is published

only on infrastructure network (no MANET) and only to members of

particular group.

𝐺 ∈ ℂ, {𝑇1, 𝑇2, … , 𝑇𝑠}, 𝑃𝑢𝑏([𝐺], [𝐶], 𝑇𝑖 , 𝑡) ⇒ [𝐶] ∈ 𝑇𝑖

31

Notice that Rule 16 also requires the [𝐶] node to be selected by the random

subset.

𝑃𝑢𝑏([𝐺], [𝐶], 𝑇𝑖, 𝑡) ⇒ [𝐶] ∈ 𝑅𝑐𝑝[𝐺](𝑡)

As a result grouper knowledge valuation is published to a random subset of

components specified in the grouper knowledge.

Rule 17. Group join: each node interprets the last knowledge valuation of a grouper

as the list of known peer nodes – 𝑃𝑒𝑒𝑟[𝐶]. Notice that the node can join

multiple groups and therefore we use ⊆ symbol instead of =.

𝑃𝑒𝑒𝑟[𝐶](𝑡) ⊆ 𝑉𝐺: (𝑎𝑥, 𝑡𝑥) ∈ 𝑇, 𝑎𝑥 = 𝑉𝐺 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐺), 𝑡𝑥 ≤ 𝑡 ∧

∧ ∀(𝑎𝑦, 𝑡𝑦) ∈ 𝑇: 𝑡𝑥 < 𝑡𝑦 ≤ 𝑡: 𝑎𝑦 ≠ 𝑉𝐺 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐺)

5.2.5. Groupers Example

We will now show at the running example how to use the grouper service to

optimize the communication. It is possible that some of the drivers or pedestrians

would have a more reliable connection to an infrastructure network. Communication

groups will be established to connect only drivers and pedestrians marching in a

similar direction. Figure 13 shows how groups are established using the information

about the route. The pedestrians are only interested in drivers starting and going to the

same location as they are.

18. ensemble PositionDistributor:

19. coordinator: PositionAggregator

20. member: PositionAware

21. group: coord => coord.start + coord.dest

22. membership:

23. (coord is Driver && member is Pedestrian) ||

24. (coord is Pedestrian && member is Driver)

25. knowledge exchange:

26. coord.positions += member.position

Figure 13. Example of communication groups

Nodes with grouper component require stable infrastructure connection and as

the computation is more intensive on that node power consumption is also higher. It is

therefore preferable that grouper service can be provided by the public transport buses

which may also take part in the dissemination or by some infrastructure established by

the town.

32

Figure 14 shows an example of nodes grouped by common destination. Persons

working and therefore traveling to the same building are more likely to communicate

with each other.

Figure 14. Example of vehicle nodes grouping.

5.3. Pulling Knowledge

Upon reception of a message the node stores its header into a buffer. Content

of this buffer is regularly broadcasted to other nodes. Headers received from a neighbor

are also put into the buffer and then broadcasted when necessary. Unlike in the case of

knowledge valuation the headers are not retransmitted hence the total number of

messages is linear with respect to the number of nodes.

Every header has a timeout specified and is removed from the buffer when

expired otherwise buffers will grow without limits. It is expected that after this timeout

either the message is delivered to all nodes or there are no more interested nodes which

are able to receive it.

A PULL request is passed through the network until it reaches the node which

has the required message 𝑉𝐶. This node does not retransmit the request any more but

it broadcasts the requested message 𝑉𝐶. When some node receives 𝑉𝐶 not for the first

time it is ignored, because that node already had chance for retransmission.

Otherwise 𝑉𝐶 is retransmitted using regular gossip rules with probability.

33

Another timeout parameter needs to be specified for the pull request itself. It is

possible that the source of a messages is no longer available and pulling will be

stopped.

We have emphasized following protocol parameters which may have a

significant impact on the performance or even correct functionality. The first part of

Table 3 shows parameters of push-based protocol already implemented in DEECo.

Second part summarize parameters identified by our analysis of pull-based extension.

Parameter Description

PUSH

Knowledge broadcast

period

How often is broadcasted the local component

knowledge.

Knowledge rebroadcast

probability

Probability of knowledge rebroadcast upon its reception

IP broadcast count To how many randomly selected known nodes will be

sent a message when publishing on infrastructure

network.

PULL

Header broadcast period How often is broadcasted the content of the headers

buffer.

Pull request period How often the node checks and requests outdated

messages by pulling.

Local header timeout After this timeout a message is considered outdated and

can be pulled.

Global header timeout After this timeout a message is considered either

delivered to all interested nodes or the message source

is unavailable.

Table 3. Parameters of gossip push-pull protocol.

If a message is outdated it needs to be requested explicitly. Because we have

described our solution in a more general way stating that the nodes are communicating

by sending messages and not knowledge valuation the principle of message pulling

can be then applicable also for layer 1 (see Figure 8) and message fragments can be

pulled as well. To allow such a feature we need to propagate in the system which

message have been currently sent by which nodes.

On layer 2 the situation is a little bit different when considering the message

content as knowledge valuation of a component. Although a component is a source of

multiple messages with knowledge valuation during its lifetime from DEECo point of

34

view only the last one is interesting i.e. the most recent knowledge. Therefore we only

need to propagate which components are involved in the communication rather than

inform about every message coming from a particular component.

Notice that we only consider MANET network and possible improvements by

exploiting infrastructure networks will be mentioned in 8.3.

Each node maintains a buffer 𝐵[𝐶] of received messages where each message

𝑀 is associated with a tuple (𝑙𝑀, 𝑔𝑀, 𝑝𝑀):

 𝑙𝑀 – Time when the message was received by current node.

 𝑔𝑀 – Maximal known message reception time of 𝑀 by any node in the system

including current node.

 𝑝𝑀 – Flag indicating whether the message 𝑀 was pulled by any other node.

Typically a message 𝑀 stored in the buffer will be the knowledge valuation

such as 𝑉𝐶𝑘
. Expressing that a message is present in the buffer we state 𝑀 ∈ 𝐵[𝐶]. If

𝑀 ∉ 𝐵[𝐶] then 𝑙𝑀 = 𝑔𝑀 = 𝑝𝑀 = ∅ (undefined).

We define following parameters as outlined in Table 3:

 𝑅𝐾 – Period of knowledge publishing.

 𝑅𝐻 – Period of message headers notification.

 𝑅𝑃 – Period of pull request routine.

 𝑇𝑚 – Message timeout. If message is not received after this timeout it is pulled.

 𝑇𝑝 – Pull timeout. If message is not received after this timeout the pulling is

stopped.

In the following text we use specific notation for message having a particular

content:

 𝑉𝐻 – a message with headers of other messages

 𝑉𝑃 – a pull request message

 𝑉𝐶 – a message with knowledge valuation of component 𝐶

The pulling protocol is defined by the following rules:

Rule 18. No header/pull retransmission: A message containing the headers and pull

requests must not be retransmitted.

35

∀𝐶 ∈ ℂ: ¬𝑅𝑡2([𝐶], 𝑉𝐻) ∧ ¬𝑅𝑡2([𝐶], 𝑉𝑃)

Rule 19. Received message: upon message reception its header is immediately added

to the buffer.

(𝑎, 𝑡) ∈ 𝑇: 𝑎𝑥 = 𝑉𝐶𝑘
≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑘) ⇒

⇒ 𝑉𝐶𝑘
∈ 𝐵[𝐶] ∧ 𝑙𝐶𝑘

= 𝑔𝐶𝑘
= 𝑡

Rule 20. Publish headers: periodically with a fixed delay offset publish headers of

all received messages i.e. the content of the node reception buffer.

∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶]. 𝑝𝑢𝑡({𝑀|𝑀 ∈ 𝐵[𝐶]}) ⇒

⇒ 𝑡 = 𝑜 + 𝑛. 𝑅𝐻, 𝑛 ∈ ℕ0

Rule 21. Process headers: received message headers are added to the local reception

buffer.

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑉𝐻 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡([𝐶𝑖]) ⇒

⇒ ∀𝑀 ∈ 𝑉𝐻: 𝑀 ∈ 𝐵[𝐶]

Rule 22. Pull outdated messages: periodically with fixed delay offset publish headers

of outdated messages. Outdated messages are those with expired message

timeout.

∃(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑆𝑡[𝐶]. 𝑝𝑢𝑡({𝑀|𝑀 ∈ 𝐵[𝐶] ∧ 𝑡 − 𝑙𝑀 > 𝑇𝑚}) ⇒

⇒ 𝑡 = 𝑜 + 𝑛. 𝑅𝑃, 𝑛 ∈ ℕ0

Rule 23. Receive pull request: messages contained in the pull request are marked

with the pull flag.

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑉𝑃 ≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡([𝐶𝑖]) ⇒

⇒ ∀𝑀 ∈ 𝑉𝑃: 𝑀 ∈ 𝐵[𝐶] ∧ 𝑝𝑀

Rule 24. Retransmit pulled message: Message containing knowledge requested by

the pull request must be retransmitted.

(𝑎, 𝑡) ∈ 𝑇: 𝑎 = 𝑉𝐶𝑖
≔ 𝑆𝑡[𝐶]. 𝑔𝑒𝑡(𝐶𝑖) ∧ 𝑝𝐶𝑖

⇒ 𝑅𝑡2([𝐶], 𝑉𝐶𝑖
)

36

Rule 25. Up-to-date messages: reception buffer stores headers only for a certain

period of time. Old message headers are removed.

∀𝑡 ∈ 𝑇𝑖𝑚𝑒, ∀𝑀 ∈ 𝐵[𝐶]: 𝑡 − 𝑔𝑀 ≤ 𝑇𝑝

5.4. Informal Proof of Semantic Refinement

In the previous Chapters we have defined several rules which determine traces

of the refined semantic. We will now prove that the modified semantic is a valid

refinement according the definition. Let us denote the new semantic as 𝒞 and we will

prove 𝒞 ≼ 𝒟 (see Chapter 4.1), specifically that for each real-time trace 𝑇𝒞 featured by

semantic 𝒞 there is a trace 𝑇𝒟 featured by semantic 𝒟 such that 𝐶 ∈ ℂ: 𝑉𝑇𝒞

𝐶 = 𝑉𝑇𝒟

𝐶 .

All rules restrict possible traces and therefore for any trace in 𝒞 there is an

equivalent trace in 𝒟. We divide our rules into several classes of trace restriction and

we show that each type does not violate the refinement.

1. Rule stating that if there is some transition (𝑎𝑥, 𝑡𝑥) then a condition must hold

for this transition.

2. Modification of the system automata results in modified traces. Then we give

a rule which joins these two types of traces i.e. if there is a transition (𝑎𝑥, 𝑡𝑥) in

the modified trace, than there is a transition (𝑎𝑥, 𝑡𝑥)′ in the original one (or

multiple ones). This rule can be applied multiple times, because once modified

automata can be modified again.

3. A transition (𝑎𝑥, 𝑡𝑥) or an arbitrary condition requires other transitions to exist

in the same trace.

4. Rules which directly do not effect the traces but rather the behavior of some

part of the system such as an auxiliary structure or a set. This rules usually

effect rules in class 1 where the condition can be based on the auxiliary

structure or set.

The following table shows classification of each of defined rules into one of

the above restriction types.

37

Class Rules

1 Rule 1, Rule 9, Rule 13, Rule 15, Rule 19, Rule 20, Rule 21,

Rule 22, Rule 23, Rule 24

2 Rule 2, Rule 7

3 Rule 3, Rule 4, Rule 5, Rule 8, Rule 10, Rule 12

4 Rule 6, Rule 11, Rule 14, Rule 16, Rule 17, Rule 18, Rule 25

Table 4. Classification of rules according to the restriction of traces.

The rule class 1 only selects subset of traces generated by the original semantic

and therefore by using these rules we get a valid refinement. The condition in class 1

rules can be more precisely specified by a rule from class 4, but it does not refine the

semantic itself. A little more difficult is the case of class 2 and 3 because the rules

require the trace to have particular transitions. So it can happen that in the original

semantic there won’t be such a trace.

For example Rule 2 requires the presence of 𝑄𝐶
𝐶𝑘 . 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑉𝐶𝑘

) transition

which can be present at any position in the original semantic trace. And this is the case

of all rules in class 2 and 3. So we only accept those traces which has the required

transition while others will be excluded. These rules therefore only restricts the set of

possible traces and the resulting semantic is a valid refinement.

38

6. Implementation

In this Chapter we describe technical details necessary to implement and

evaluate the proposed solution.

6.1. JDEECo Simulation

For the purpose of validation and testing jDEECo provides a simulation

infrastructure. The immanent part of it is the DEECo simulation which consists of

execution of component processes, ensemble evaluation and knowledge publishing.

The core of this simulation framework is a scheduler which enables to register tasks to

be executed periodically or sporadically and as such allows to extend the simulation

by custom functionality. We have integrated MATSim and OMNeT++5 simulation in

order to achieve realistic behavior of node mobility and communication at the network

layer.

JDEECo implementation provides a simple interface for creating plugins. A

plugin in this context is a class which can be registered to be automatically created and

initialized by the simulation environment. The lifecycle of a plugin is started by the

call of init method. Each plugin specifies a list of plugin classes it depends on and

these are initialized before. During the initialization the instance of currently running

simulation is accessible and the plugin is able to deploy components or ensembles or

the register new tasks to the scheduler.

<<Interface>>

DEECoPlugin

getDependencies()
init(DEECoContainer node)

Figure 15. JDEECo plugin interface.

MATSim and OMNeT++ simulation support are implemented as plugins and

can be used individually or together. If both simulators are used, they run in a separate

threads and at each simulation step synchronized together with data exchange.

In our work MATSim is used to provide a multi-agent mobility simulation. In

order to extract information about individual agents during the simulation such as

position or speed we initialize the runtime with custom agent factory which for given

5 Parts of the code were taken from existing jDEECo implementation.

39

person creates our custom implementation of MATSim agent. A person in this context

is an individual from the population with some attributes and plan as specified in the

configuration file population (Chapter 2.3).

JDEECo simulation uses a timer which provides current simulation time.

MATSim plugin extends this timer to provide time according to the MATSim

simulation, which is executing on its own. It allows for registering a custom callbacks

fired at each simulation step. The timer can use these callbacks to intercept the

MATSim simulation and synchronize with DEECo.

Existing jDEECo implementation also contains support for network

communication by introducing a two layers mechanism as described in Figure 8. Each

layer allows to register a strategy which is invoked any time a packet is received. In

particular this is component knowledge on layer 2 or packet fragment on layer 1.

Especially for the purpose of the communication protocol implementation we

conceptually distinguish two categories of plugins.

 Strategy – plugins which register custom layer strategy. These are used to

consume the communication and to perform custom message processing.

 Task – plugins which register custom task to the simulation scheduler. These

are used to produce the communication and to send custom messages.

6.2. Gossip Dissemination Protocol

The basic principle of gossip as describe in Chapter 5.2.1 is in short: regularly

publish data, retransmit upon reception with certain probability. This protocol is

implemented using three plugins depicted on Figure 16. SendKN6 plugin periodically

takes knowledge of local node components and publishes them by broadcasting on

MANET and/or to selected hosts on IP network. The knowledge is retrieved from

KnowledgeProvider plugin as a deep copy. On the other side ReceiveKN plugin

updates replica data of the remote node component. The GossipRebroadcast plugin

on the same node can decide to rebroadcast or resend to selected hosts.

6 Plugin class names end with “Plugin” suffix. We have omitted these in the description for short.

40

SendKN

publish()

ReceiveKN

receive(KnowledgeData)

GossipRebroadcast

receive(KnowledgeData)

KnowledgeProvider

getLocalKnowledge()

knowledgeProvider

Figure 16. Plugins implementing gossip protocol communication. The arrows indicate knowledge passed over the

network.

Especially for infrastructure network SendKN plugin uses implementation of

RecipientSelector interface (see Figure 17) which provides a list of nodes addresses

to which given knowledge should be sent. Different implementation of this interface

could be used. For instance in the case of regular gossip on infrastructure network we

have a RangeRecipinetSelector implementation, which selects and return a random

set of IP addresses from given range such as 10.0.0.1-10.0.1.100. The same instance

is also used by the GossipRebroadcast plugin to retrieve a list of addresses to which

received knowledge should be resent.

SendKN

publish()

knowledgeProvider
recipinetSelector

GossipRebroadcast

receive(KnowledgeData)

recipientSelector

<<Interface>>

RecipientSelector

getRecipinets(KnowledgeData)

RangeRecipientSelector

getRecipinets(KnowledgeData)

Figure 17. Recipient selector provides a set of hosts for knowledge publishing.

6.3. Grouper Component

Plugin infrastructure allows for deployment of custom components and

ensembles. GrouperServer converts the hosted node into a grouper service which is

implemented using DEECo component GrouperServerComponent. The knowledge is

partitioned by a function, which is in our case a value of some knowledge field. If

multiple groupers are used the domain of the partitioning function is divided between

41

them similarly to the key space partitioning in distributed hash tables (DHT) and each

grouper process only knowledge with partition value belonging to its range. We

emphasize that there is no implementation of node joining and leaving as required by

the DHT algorithms.

The processKnowledge process executes periodically, calculates knowledge

partition value and updates the register containing communication groups. For each

partition value there is a set of node addresses forming a group. When knowledge of

the grouper is published members of a group are assigned to groupMembers field.

GrouperServerComponent

groupMembers
@Local register
@Local partitions

processKnowledge()

GrouperRegister

groups[]

Contains
addresses of
formed groups

Figure 18. DEECo component implementing grouper service. Fields marked with @Local are excluded from

component knowledge.

On the grouper node the SendKN plugin is initialized with different

implementation of RecipinetSelector. ServerRecipinetSelector distinguish

between grouper knowledge and knowledge of any other component. For grouper

knowledge it returns a random subset of the groupMembers field, which contains the

members of the communication group. For non-grouper knowledge behaves as the

previous implementation such as RangeRecipientSelector.

On the other side on a non-grouper node, the ClientRecipientSelector

returns a random subset from local node register. The register can be initialized with

the address of a well-known grouper. But during the execution addresses of group

members are added, so the node communicates only inside the group. Also this

recipient selector prevents from resending knowledge by returning empty set of

addresses, because all members of the communication group are aware of it and the

content can be addressed to all of them directly from the source node.

42

SendKN
<<Interface>>

RecipientSelector

getRecipinets(KnowledgeData)

ServerRecipientSelector ClientRecipientSelector

AddressRegister

getAddresses()

getRecipients(KnowledgeData) getRecipients(KnowledgeData)

GossipRebroadcast

recipientSelector

recipientSelector

Figure 19. Configuration of recipient selector for the usage with groupers.

The grouper node has a register of known addresses, which is initialized with

addresses of other groupers. Whenever the node receives knowledge which partition

value is not managed by the current node, the knowledge is resend to addresses from

this register i.e. to other grouper. The groupers pointing one to another forms an

overlay network which can be customized by the initial addresses in the local registers.

In the SCS example we have used a simple ring overlay network as shown in Figure

20.

In order to correctly enable grouper service it is necessary to support

communication of grouper component with other nodes in the system. For this purpose

we have implemented GrouperClientEnsemble and GrouperClientComponent

deployed on non-grouper nodes only. The ensemble allows only knowledge exchange

between server as a coordinator and client as member and the exchange itself copies

group members from server to client knowledge. GrouperClientComponent has a

process which automatically updates the local address register according to its

knowledge. All of the above mentioned classes are instantiated by deploying

GrouperServerPlugin on nodes dedicated to groupers and GrouperClientPlugin

for the rest of nodes.

43

Figure 20. Groupers passing received knowledge using a ring overlay network.

Figure 20 shows an example of possible communication in a network with five

groupers forming ring overlay. Component C sends knowledge to the only address in

its register which is the grouper 3. Grouper 3 realizes based on the partition value that

it is not responsible for this knowledge and resends it to the address from its own

register, which is grouper 4. Grouper 4 performs exactly the same logic a passes the

knowledge to grouper 5. Grouper 5 is finally takes the knowledge, stores address of

component C node to its grouper register and next time it publishes communication

groups it also send it to component C node, which updates its address register. Next

time component C directly publishes its knowledge to grouper 5 which responds with

updated list of group members.

6.4. Gossip PULL concept

Conceptually nodes are communicating by sending messages. Content of a

message is the knowledge valuation. The messages are emitted by SendKN plugin as

explained in 6.2. In order to allow for the pulling mechanism every node periodically

broadcasts7 headers of all received messages. For this purpose we have

ReceptionBuffer plugin which stores required information. In particular header

includes: source component identifier, reception time locally on the current node, the

latest known global reception time of any other node and pulled flag.

During the system lifetime are sent multiple knowledge valuations of one

component. We consider these to be a single message with several versions from which

only the latest one is relevant. Therefore upon the next reception of knowledge coming

7 In this Chapter we will consider only pulling in the MANET network.

1

2

3

4

5

C
3

4

5

5

…

44

from the same component we only update the local reception time and we do not add

new record to the buffer. In order to preserve general concept reception buffer also

stores information about messages coming from local components. The local and

global reception time equals to time when the message was sent by SendKN plugin.

The content of ReceptionBuffer is regularly published by SendHD plugin.

Notice that messages in the buffer have a timeout and too old ones are removed before

publish. On the other side ReceiveHD plugin receives and process the headers by

updating the content of its own ReceptionBuffer. In particular the global reception

time is updated to the maximum value of global reception time on the current node

and the remote node. This way the node can realize that there is some message received

on other node but never locally. The important detail is that messages emitted by

SendHD plugin are never rebroadcasted and the total number is linear with respect to

the number of nodes.

SendPL plugin periodically checks for messages with local reception time

beyond the defined timeout and broadcasts headers of these messages as a pull request.

ReceivePL plugin on the other side receives such messages and sets the pull flag on it

in the ReceptionBuffer. Messages with pull flag set are rebroadcasted with

probability 1. Another possibility is to actively broadcast the messages upon the pull

request. This behavior is possible to enable by SendPulledKN plugin.

<<Interface>>

DEECoPlugin

getDependencies()
init(DEECoContainer node)

SendBase

period

at(long)

delay
layer2

SendKN SendHD SendPL

Figure 21. Inheritance hierarchy of plugins sending messages registering a custom task to the scheduler.

The counterpart plugins have a similar inheritance hierarchy but instead of task

their register a custom layer 2 strategy. This strategy is called whenever a packet is

received from the network.

45

ReceiveBase

receptionBuffer

processL2Packet(L2Packet packet)

ReceiveKN ReceiveHD ReceivePL

Figure 22. Inheritance hierarchy of plugins receiving messages registering a custom strategy at layer 2.

All of the above described plugins access the ReceptionBuffer for

information about messages. For instance the ReceiveKN plugin updates local

reception time whenever a message is received. On the other hand ReceiveHD updates

global reception time, because these are reception times of messages on other nodes.

Contrary to those plugins updating the reception times, SendPL uses local reception

time to decide which messages are outdated. Complete overview is shown on Figure

23. The dash dot line indicates communication between instances of individual plugins

on different nodes.

LOCAL

GLOBAL

LOCAL

GLOBAL

GLOBAL

Message
LOCAL

GLOBAL

PULLEDLOCAL

ReceiveHD

receive(MessageHeader)

SendHD

publish()

ReceivePL

receive(MessageHeader)

SendPL

publish()

ReceiveKN

receive(KnowledgeData)

SendKN

publish()

Figure 23. Different plugins accessing reception buffer.

46

7. Experiments and Evaluation

7.1. Smart Car Sharing

We have been simulating proposed communication mechanisms on a realistic

scenario of the center of Berlin. The movement of individual drivers and pedestrians

(or agents for short) is performed by MATSim itself. The cars are simulated by transit

module with well-defined routes generated by our tool (Chapter 7.1.2). Pedestrians are

just regular persons defined in the MATSim population file with prescribed activities.

The movement of persons around the city is handled by MATSim and the person uses

available public transport to get to the desired destination. The only junction point with

DEECo simulation is the reading of actual actors’ positions.

Specifically we have run the simulations with the following inputs: the center

of Berlin of 8 km perimeter with 100 of car drivers and 100 walkers and the simulation

is running for 15 minutes.

Figure 24. Exported map of the center of Berlin used by the simulation.

In the following Chapters we describe implementation details necessary to

perform the simulations and to gather measurement data.

7.1.1. DEECo Application

We have tested implemented features on a realistic scenario described in

Chapter 3. The application is decomposed into two components, for driver and

passenger, and one ensemble for aggregation of positions. Basically, the functionality

47

of a driver and a passenger is very similar, both collect positions of actors in the other

role and show them on a map. We have implemented this functionality in a parent

component Actor from which driver and passenger inherit and specify the value of

Role knowledge field. The base component has a process which regularly obtains

current GPS location and updates the Position knowledge field. The

PositionAggregator ensemble on the other hand updates list of currently visible

actors. This ensemble only accepts knowledge exchange between Driver as a

coordinator and Passenger as a member or vice versa. During the knowledge

exchange the knowledge field Actors is updated. Knowledge dissemination of the

ensemble is bounded by a two kilometers perimeter as there is no need to display actors

too far away. Positions of other actors are removed from the list if they are not updated

for a longer period of time, because they disappeared from the system or left the

communication boundary and they are no longer interesting. This is acquired by the

updateActors process of the component.

Actor

ID
Position
Role
Actors

measurePosition()
showActors()
updateActors()

Driver

Role

Passanger

Role

PositionAggregator

membership()
exchange()
boundary()

Figure 25. Decomposition of SCS Application into components and ensembles.

7.1.2. MATSim Generator

The concept of SCS application is very similar to public transport. There are

cars traveling around the city and passengers using these cars to get to the desired

destination. In order to allow for such a simulation we have used MATSim transit

module. We generate the schedule of several transit vehicles which simulates the

movement of drivers and each node in the MATSim network is a potential transit stop.

The passengers are just regular MATSim population with generated schedule. This

way we let MATSim to completely simulate behavior of the realistic scenario as

48

described in Chapter 3.1 – persons are traveling to their destination points using even

multiple drivers to get there.

Simulation of smart car sharing application is supported by a generator tools

which provides customizable generator of grid network or takes already existing

network as an input and creates random population and traffic on it. Specifically this

tool generates following MATSim configuration files:

 Grid transport infrastructure – network.xml

 Plans of person activities – population.xml

 Available vehicles used during the simulation – vehicles.xml

 Schedule and routes of the vehicles – schedule.xml

 Input configuration file of MATSim simulator referencing all previously

mentioned files – config.xml

Figure 26. MATSim configuration file generator interface.

7.1.3. Simulation

As described above the implementation contains several plugins which can be

configured to provide required platform with specific behavior. As this is a little more

complicated task we provide a SimConfig class which reads given configuration file

and setups the simulation accordingly. The experiments than consists of generating

several configuration files with different protocol parameters, communication devices

49

or simulators and executing the demo application with each of these files. To automate

these steps we have implemented a PowerShell script.

The output of the simulation is apparently the communication between nodes.

For this purpose RequestLogger plugin intercept communication between layer 1 and

layer 2 and each sent or received message logs to a file. This file is then processed by

a summarization tool which gives us an overall view of the system communication.

The RequestLogger has the ability to register additional parameters to be logged.

Figure 27. Request logger intercepts communication between layer 1 and layer 2.

7.2. Gossip in MANET

The first experiment consists of nodes equipped only with broadcast device.

Every node publishes its knowledge with 5s period and rebroadcasts with certain

probability, which is the input parameter of the protocol. Then we run the same

simulation using communication boundary. The condition is based on the fact that

nodes too far are not interesting – displaying them on the map for the user would not

bring any added value. So the knowledge is rebroadcasted only in 0.5 km perimeter.

The simulations has been performed with different rebroadcast probabilities. Figure

28 shows comparison of both methods and indicates decreased number of

(re)broadcasts necessary to disseminate the knowledge when communication

boundary is used.

L2 L1

D
ev

ic
e

L
o
g
g
er

Log file

50

Figure 28. Regular gossip protocol in MANET network comparing to communication boundary. P = rebroadcast

probability.

Parameters Simple Boundary

P:0,0 36 200 36 200

P:0,1 42 600 42 549

P:0,2 52 522 52 105

P:0,3 66 474 65 458

P:0,4 86 106 85 546

P:0,5 120 407 112 137

P:0,6 314 844 162 826

P:0,7 392 155 193 898

P:0,8 511 723 257 829

P:0,9 639 448 295 620

P:1,0 958 077 397 807

Table 5. Total number of sent messages using Gossip protocol in MANET network.

We have been also investigating how much is the knowledge outdate when

delivered to the target node. Figure 29 summarize selected simulations with

rebroadcast probability above 0.5 using a box plot and shows that when

communication boundary is used the medium age of delivered knowledge is lower.

This is caused by the fact that the knowledge in the protocol without boundary is

delivered to many other distant nodes after several hops. Using the boundary also

0

2

4

6

8

10

12

P:0,0 P:0,1 P:0,2 P:0,3 P:0,4 P:0,5 P:0,6 P:0,7 P:0,8 P:0,9 P:1,0

o

f
b

ro
ad

ca
st

s

x
1

0
0

0
0

0

Protocol parameters

Gossip in MANET

Simple

Boundary

51

improves the belief inaccuracy. Without it a message can be delivered a long time after

is has been sent and the state of that component by that time already changed radically.

Figure 29. Comparison of knowledge ageing using Gossip protocol in MANET with and without boundary.

We have taken also another point of view on this experiment and we have

calculated how many knowledge valuations of distinct components has been delivered

to individual nodes. Figure 30 shows that the boundary slightly outperform simple

version of the protocol when the probability is higher. This probably caused by too

many collisions what results in undelivered (or partially undelivered) messages.

Figure 30. Number of different component's knowledge valuation delivered to individual nodes.

0

1

2

3

4

5

6

7

8

9

10

P
:0

,5
Si

m
p

le

P
:0

,5
B

o
u

n
d

ar
y

P
:0

,6
Si

m
p

le

P
:0

,6
B

o
u

n
d

ar
y

P
:0

,7
Si

m
p

le

P
:0

,7
B

o
u

n
d

ar
y

P
:0

,8
Si

m
p

le

P
:0

,8
B

o
u

n
d

ar
y

P
:0

,9
Si

m
p

le

P
:0

,9
B

o
u

n
d

ar
y

P
:1

,0
Si

m
p

le

P
:1

,0
B

o
u

n
d

ar
y

A
ge

 o
f

kn
o

w
le

d
ge

 (
m

s)

x
1

0
0

0
0

0

Knowledge Age

0

1000

2000

3000

4000

5000

6000

7000

P:0,0 P:0,1 P:0,2 P:0,3 P:0,4 P:0,5 P:0,6 P:0,7 P:0,8 P:0,9 P:1,0

Simple

Boundary

52

7.3. Gossip in Infrastructure Networks

In the infrastructure network rather than broadcasting, the knowledge is sent to

a set of random nodes in order to disseminate the data. Upon reception the knowledge

is retransmitted again to random set of nodes with certain probability. We have been

simulating the behavior of this protocol changing the probability (0.0 – 0.5) and the

size of random nodes set (1 – 3). After that we have exchanged the random set of nodes

for the set of nodes provided by the grouper. Figure 31 shows comparison of both

approaches and significant decrease of total messages necessary to disseminate the

knowledge when using the groupers. In the second case groupers have been deployed

to 8 nodes. The number of messages increases drastically with the increase of publish

count.

Figure 31. Comparison of regular IP gossip and gossip with groupers.

There is also a positive side effect of the grouper feature. The age of knowledge

delivered to individual nodes is smaller as it is delivered to nodes which are interested

in it and only to those. Figure 32 shows significant decrease of knowledge age when

using the groupers. In the graph the results for simple and grouper version are

alternating. It is also visible that by the increase of retransmission probability and

publish count the age of knowledge is decreasing in the case of simple protocol

version. With input parameters P:0.5 C:3 the age already achieves appropriate values,

but the total number of messages is disproportionately high.

0

50

100

150

200

250

P:0,1
C:1

P:0,1
C:2

P:0,1
C:3

P:0,2
C:1

P:0,2
C:2

P:0,2
C:3

P:0,4
C:1

P:0,4
C:2

P:0,4
C:3

P:0,5
C:1

P:0,5
C:2

P:0,5
C:3

o

f
m

es
sa

ge
s

x
1

0
0

0
0

Protocol parameters (P=probability, C=publish count)

IP Gossip

Simple

Grouper

53

Figure 32. Comparing of knowledge ageing in regular IP gossip and gossip with groupers.

7.4. Pulling in MANET

The pulling mechanism has been simulated with the same inputs as in the

experiment of gossip protocol in MANET network, except that the nodes had deployed

necessary plugins. Different parameters of the protocols has been tested as outlined in

Table 3. Consequently we have been investigating the dependency between individual

input parameters considering the age of knowledge delivered to nodes.

For individual configurations of input parameters we have calculated first

quartile, median and third quartile. Because there are many of them we report only on

those giving reasonable results (this means those whose third quartile of time needed

for knowledge delivery is less than 20 seconds). Further, to show necessary detail, we

visualize only 1st, 3rd quartile and the median leaving out the minimum and maximum.

Selected configuration has been order by median which is in range from 6 to 16

seconds (see Figure 33).

0

50

100

150

200

250

300

350

P
:0

,2
 C

:1
…

P
:0

,2
 C

:1
…

P
:0

,2
 C

:2
…

P
:0

,2
 C

:2
…

P
:0

,2
 C

:3
…

P
:0

,2
 C

:3
…

P
:0

,3
 C

:1
…

P
:0

,3
 C

:1
…

P
:0

,3
 C

:2
…

P
:0

,3
 C

:2
…

P
:0

,3
 C

:3
…

P
:0

,3
 C

:3
…

P
:0

,4
 C

:1
…

P
:0

,4
 C

:1
…

P
:0

,4
 C

:2
…

P
:0

,4
 C

:2
…

P
:0

,4
 C

:3
…

P
:0

,4
 C

:3
…

P
:0

,5
 C

:1
…

P
:0

,5
 C

:1
…

P
:0

,5
 C

:2
…

P
:0

,5
 C

:2
…

P
:0

,5
 C

:3
…

P
:0

,5
 C

:3
…

A
ge

 o
f

kn
o

w
le

d
ge

 (
s)

Protocol parameters (P=probability, C=publish count)

Knowledge Age

54

Figure 33. Age of knowledge using various input parameters ordered by median. We have omitted maximum and

minimum for clarity.

From these we have taken only those configuration having the median around

6 seconds reasoning that publish period is 5 seconds such a value is still acceptable as

delivery latency for the majority of the nodes. All of these configurations have

probability parameter set to 0.9. The red line in Figure 34 on secondary axis indicates

median of knowledge age without the use of pulling and with the same probability (see

Figure 29 in Chapter 7.2). Table 6 summarizes the complete set of input parameters

for selected configurations.

Figure 34. Knowledge age of selected configurations.

0

2

4

6

8

10

12

14

16

18

20

A
ge

 o
f

kn
o

w
le

d
ge

 (
s)

Pulling: Knowledge age

0

50

100

150

200

250

300

350

400

450

500

0

5

10

15

20

25

30

24 25 26 27 28 29 30 31 33 34 35 37 38 39 40 41 42 46 50 54 89

A
ge

 o
f

kn
o

w
le

d
ge

 (
s)

Configuration

Pulling: Knowledge age

55

Configuration HD (ms) PL (ms) P L (ms) G (ms)

24 5000 11000 0.9 9000 13000

25 5000 9000 0.9 9000 13000

26 5000 7000 0.9 9000 13000

27 5000 5000 0.9 9000 13000

28 5000 9000 0.9 11000 17000

29 5000 11000 0.9 13000 21000

30 5000 11000 0.9 11000 17000

31 5000 7000 0.9 11000 17000

33 5000 9000 0.9 13000 21000

34 9000 15000 0.9 11000 17000

35 5000 5000 0.9 11000 17000

37 5000 7000 0.9 13000 21000

38 7000 13000 0.9 11000 17000

39 7000 11000 0.9 13000 21000

40 5000 5000 0.9 13000 21000

41 7000 9000 0.9 11000 17000

42 9000 9000 0.9 11000 17000

46 7000 11000 0.9 11000 17000

50 7000 13000 0.9 13000 21000

54 7000 7000 0.9 11000 17000

89 7000 9000 0.9 13000 21000

Table 6. Input parameters of selected configurations (HD=header publish period, PL=pull request period,

P=rebroadcast probability, L=message timeout, G=pulling timeout).

We have compared this approach with previously mentioned regular gossip.

The median value for simple version is about 475 second while for the version using

the communication boundary the median is 32 seconds. Our approach with properly

selected inputs results in median knowledge age of 6 seconds.

Figure 35 show the total number of sent messages for selected configurations.

Increasing the publish period of message headers slightly decreases the number of

messages without significant impact on the knowledge age. The same argument holds

for pulling period. Once the pull request is initiated it is very probable to be delivered

and therefore it is not necessary to repeat it more frequently.

56

Figure 35. Number of sent messages for selected configurations (Protocol parameters from up down: pull timeout,

message timeout, pull request period, message header period).

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

17000 17000 17000 17000 17000 17000 17000 17000

11000 11000 11000 11000 11000 11000 11000 11000

5000 7000 9000 11000 7000 9000 11000 13000

5000 7000

o

f
m

es
sa

ge
s

x
1

0
0

0
0

0

PL

KN

HD

57

8. Discussion

8.1. Protocol Parameters

In Chapter 7.4 we have been investigating only reasonable combination of

input parameters, holding the following rules:

1. Knowledge broadcast period < Message timeout < Pull timeout

2. Knowledge broadcast period ≤ Header broadcast period ≤ Pull request period

Ad. 1 It is reasonable that the pull request won’t timeout before it is even

initiated (Local header timeout < Global header timeout). Also the message should not

timeout before it is even sent (Knowledge broadcast period < Local header timeout).

Ad. 2 It is not necessary to send notifications about message headers more

frequently as the messages itself. The same thing holds for pulling.

The experiments show that it is reasonable to set message timeout

approximately twice as publish period because the message can be delivered by the

PUSH mechanism while PULL request wastefully is initiated. The message timeout

expresses the acceptable latency with the following meaning: it is the half of the

knowledge delivery latency. If the message is to be delivered in time after the timeout

we need to reserve time for pull request and for the response as well.

If a message is not delivered at least the header should be. Therefore the publish

header period should be the same or close to the publish knowledge period if a missing

message is about to be discovered. Otherwise the message is pulled too tardily and the

age is higher. This is also confirmed by the experiments showing good results only for

header publish period set to 5 or 7 seconds.

The pulling period does not influence significantly the delivery latency and for

simplicity can be the same as the publish header period. On the other hand setting it a

slightly higher decreases the number of messages consumed by pulling as shown in

Figure 35.

Summarizing observations mentioned above we give following rules for

correct configuration of input parameters.

1. 2x publish knowledge period ≤ message timeout

2. 2x message timeout ≤ acceptable delivery latency

58

3. publish knowledge period = publish header period ≤ pull request period

Combining the first two rules gives: 4x publish knowledge period ≤ 2x message

timeout ≤ acceptable delivery latency. Figure 34 confirms our observation: publish

knowledge period is 5 seconds, message timeout is around 10 seconds and the 3rd

quartile is less than 20 seconds.

8.2. Behavior in Typical Situations

Except the simulation experiments targeting rather quantitative properties of

the implementation such as the number of messages or knowledge age we discuss also

the protocol behavior in specific cases. For this purpose we have used sample network

topology as shown in Figure 36 where only immediate nodes are accessible to each

other. In this network the delivery of message from one nodes to another may require

multiple hops. For instance a message from 1 to 6 requires 3 hops.

Figure 36. Sample network topology used in the use-case scenarios

8.2.1. Pulling Outdated Knowledge

In this example scenario we show how pulling mechanism is working. The

rebroadcast probability is set to zero so the knowledge of components is accessible

only to the neighbors. For example knowledge of 1 is published to 2, 4 and 5, but to

the rest of nodes is never delivered. We have enabled the pulling with the following

parameters:

Parameter Value

KN8 period 5000

8 A message containing component knowledge valuation

1 2 3

4 5 6

7 8 9

59

Parameter Value

HD9 period 5000

PL10 period 5000

Local timeout 6000

Global timeout 10000

Table 7. Pulling knowledge scenario parameters.

Table 8 shows selected events which occurred during runtime, in particular the

delivery of component 1 knowledge to component 9. In this example after 15 seconds

the knowledge of component 1 is regularly delivered to component 9 every 10 seconds.

Time (ms) Event

4782 1 sends KN

4883 2 receives KN from 1

7795 2 sends HD (including KN 1)

7896 3 receives HD from 2 (including KN 1)

8837 3 sends HD (including KN 1)

8938 6 receives HD from 3 (including KN 1)

11585 6 sends PL 1

11686 5 receives PL 1 from 6

14984 5 retransmits KN 1

15186 9 receives KN 1

25186 9 receives KN 1

35186 9 receives KN 1

… …

Table 8. Events of pulling system.

Even if a message is not delivered to the more distant nodes the immediate

neighbors further disseminate the message header. Reception of the header on a node

where the message was never delivered results in a pull request and consecutive

delivery. In this example we have shown how can be ensured the reliability of message

delivery by PULL request when the PUSH dissemination fails to do so.

9 A message containing headers of received messages
10 A message requesting particular message to be sent

60

8.2.2. Node Extermination

As a second example we have consider the node 1 failure after 20 seconds of

the system run. Because the knowledge is no longer published the nodes start to pull

it. Table 9 shows selected events which occurred during the runtime.

Time (ms) Event

… …

21408 9 sends PL 1

21585 3 sends PL 1

21585 6 sends PL 1

24850 8 sends PL 1

28657 2 sends PL 1

29726 4 sends PL 1

29850 8 stops pulling 1

31408 9 stops pulling 1

33657 2 stops pulling 1

… …

Table 9. Event of pulling system with node failure.

Notice that more distant nodes start to pull the message earlier because it was

delivered a longer time ago but then also the immediate neighbors start pulling.

Because the source node is no longer available there is no one to respond the request.

After a specified timeout the nodes realize that the message probably will not be

delivered and stop pulling. In this example we have shown how the protocol

overcomes the case of having a header of a nonexistent message.

8.3. Exploiting Infrastructure Networks – PULL-based Communication

The advantage of infrastructure network has been exploited implementing the

groupers. It is probable that a promising solution can be also achieved for the pulling

mechanism. In this Section we propose some ideas that could be used in the future.

As it is visible on the Figure 32 the grouper acts as the pulling mechanism.

Sending to it knowledge of some component has the same result as pulling the

knowledge of all other components with some probability. The dissemination of the

communication groups is performed by the grouper and can be viewed as the message

61

headers dissemination. The group members are actually the components involved in

the communication.

When implementing the pulling directly without groupers we can exploit the

possibility of node addressing and pulled knowledge can be directly send to the

requested node and eliminate completely the gossip communication channel. The

dissemination could work as in the case of regular gossip together with notification of

sent message headers. Each message header has associated the address of the source

node. A pull request is then directed to the source node with the address of the

requesting node and pulled message is sent directly and immediately. Incoming pulling

requests can be exploited to improve the gossip protocol. The dissemination

mechanism could prefer to select those nodes from which the most pulling requests

are coming. It is expected that these nodes are interested in the disseminated data.

62

9. Related work

9.1. DHT

Implementation of a distributed key-value storage (DHT) can be decomposed

into two main components: a key-space partitioning and an overlay network [12].

Key-space partitioning mechanism assigns range of keys to the involved nodes

[12]. Whenever a new value is inserted we find the node responsible for particular key

and we store the value on that node. Similarly when searching for a key we find the

responsible node and the value is obtained from there. Many systems use some variant

of consistent hashing [13] to assign keys to the nodes. So when a new node joins the

network only limited number of nodes are affected. Chord [14, p. 230] for instance

treats keys as points on a circle. Each node has assigned one point and is responsible

for keys between the previous node and itself. Arrival of a new node results only in

reorganization between two neighbors.

Whenever performing lookup or insert operation any node in the system must

be able to determine which node is responsible for a particular key. Therefore each

node maintains a set of links (routing table) to other nodes which form an overlay

network. For an illustration purpose consider a simple solution: each node keeps a link

to the successor node on the circle. When performing a lookup operation a message

with the key is passed around the circle until the responsible node is found.

In order to optimize communication between ensemble components we

partition them into related groups. To provide such a service we have introduced a

special role of grouper component which performs the grouping and stores the

partitions in a distributed storage.

Because key-space partitioning is a complex task and it is not in our interest to

come up with a completely new implementation of distributed hash table, we have

statically assigned ranges of keys to individual nodes. This solution is however

intended for testing purpose only. Because the grouper is a regular component its

knowledge can be also target of a partitioning function. Nodes with grouper deployed

use the register of known nodes as routing table in DHT pointing to each other forming

a circle. The routing tables can be initialized with special purposed grouper designated

for grouping other groupers.

63

The overlay network is build and maintained by a gossip communication and

thereby exploiting the jDEECo communication mechanism. This approach is also used

by the Amazon Dynamo [15] system utilized to store customer shopping carts. As

explained in [16] and [17] gossip protocol seems to be a promising solution for

maintaining the overlay network.

A grouper role can be also viewed as a group communication mechanism in a

distributed environment except the fact that it does not need to be reliable. A node is

subscribed to a group by simply gossiping its knowledge and membership in a group

is based on node knowledge.

9.2. Routing

Context aware routing is a technique used in wireless mesh networks or

delayed tolerant mobile ad hoc networks. Routing protocols in such networks use

various information from the environment (context) in order to discover optimal path

from source to the destination or to adapt to the network topology changes. These

protocols can be categorized into (i) proactive (table-driven) – each node maintain

information about topology (ii) and reactive (on-demand) – path to the destination will

be discovered when requested e.g. by flooding message [18]. Various kind of data can

be exploited to achieve this goal. [19] propose a solution based on host mobility (it is

probable that mobile host meets many neighbors) and previous colocation with the

recipient (past colocation indicates meeting in the future).

Geographic routing (geo-routing) for instance relies on the geographical

position and instead of fixed address it is able to deliver packets to a node at particular

position. This can be achieved by greedy forwarding [20, pp. 3–5] algorithm which

forwards sent packet from the source node to the next one which is closer to the

destination.

Our gossip communication among the nodes is optimized by exploiting the

knowledge data and delivering it only to interested nodes. As in the case of on-demand

ad hoc routing protocol. The destination is discovered by flooding the network

(broadcasting to any node we know), but maintained by a table-driven routing

protocol. Routing information is propagated across the network by the groupers which

can be viewed as a global distributed routing table.

64

Geo-routing can be applied under the following assumptions [20, p. 2]: (i) node

can determine its position, (ii) node is aware of neighbor positions, (iii) and destination

position is known. In a very simplified way we modify the idea of geo-routing but

instead of geographical location we use arbitrary part of node local data. As an example

consider Vehicle nodes partitioned by the vehicle type (passenger car, truck, bus …).

In the assumptions of geo-routing we replace the position with the vehicle type: (i)

whenever a node communicates with other nodes it determines its type, (ii) it is aware

of other nodes of same type because of the grouper updates, (iii) so the communication

is directed to the well-known nodes with specified vehicle type. Now we are able to

send a message to a truck without further knowledge of the current network topology.

Delivery of knowledge data resembles the greedy forwarding. A vehicle truck

node gossips its knowledge in the assumption that the recipient is a truck as well.

Instead a grouper receives it and realizes that another grouper is responsible for truck

vehicles so the knowledge is forwarded. DHT algorithm achieves that the knowledge

is finally forwarded to grouper which stores truck vehicle knowledge. From here it can

be again forwarded to truck nodes. On the way from the sender the knowledge is

permanently approaching to the recipient.

9.3. Stigmergy

Stigmergy is a general mechanism of coordination between multiple agents

without the need of planning or direct communication. As a result the agents can

implement very simple logic and possess limited resources such as the memory. This

mechanism was observed in the behavior of ants laying down pheromones after finding

food and returning back to the nest. The designated route attracts more ants which

following the path lay down even more pheromones reinforcing the route.

Described mechanism can be successfully used in routing of messages in

MANET network. In [21] the authors introduce a STIgmergy base Routing protocol

(STIR) targeting delay tolerant networks. Agents in this system create virtual paths

between the content publisher and the content consumer similarly to ants searching for

the food. This paths are reinforced or modified according to the evolution of the

environment such as temporal disconnection, node failure or extermination.

The pulling mechanism of DEECo similarly to STIR publishes the interest of

communicating nodes by retransmitting the headers of missing or outdated messages

65

and leaving behind a virtual path formed by the pull flags. Reaching the source at the

producer the requested message is traveling back using the virtual path. The pull flags

are temporal and after predefined timeout are released avoiding the message to be

delivered where unnecessary.

66

10. Conclusion

In this work we have considered communication aspects of DEECo component

model targeting a distributed environment with nodes mobility and highly dynamic

architecture. These aspects has been formally specified by rules restricting rather

general semantic of DEECo component model. With this step we have provided a

documentation which clearly outlines the environment and system properties at

theoretical level. We have shown the usability of this approach by further extension of

the refined semantic for new features in the communication protocol. We expect this

work will lay a ground for further elaboration of the DEECo component model,

especially the communication aspects.

Additionally, we have defined a modification of the communication with

optimization in mind with promising results. In particular we have exploited the

communication on infrastructure level by introducing a so called grouper service

establishing communication group and restricting the range of gossip protocol. The

experiments show that a regular gossip results in exponential increase of the number

of messages necessary to be sent in order to successful disseminate the data comparing

to the grouper service. This solution however does not introduce any centralized

element and is based on a well-known principles of distributed hash tables and existing

algorithms may be reused for this purpose.

As the last we have considered the timing aspect of data delivery and we have

implemented a pulling mechanism in order to actively control the direction of data

routing. Our experiments shows that the median of message delivery time is

approximately the same as the sending period, which is 70 time smaller than regular

gossip in MANET network.

67

Bibliography

[1] S. Karnouskos, “Cyber-Physical Systems in the SmartGrid,” in 2011 9th IEEE

International Conference on Industrial Informatics (INDIN), 2011, pp. 20–23.

[2] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil,

“DEECO: An Ensemble-based Component System,” in Proceedings of the 16th

International ACM Sigsoft Symposium on Component-based Software

Engineering, New York, NY, USA, 2013, pp. 81–90.

[3] B. Divecha, A. Abraham, C. Grosan, and S. Sanyal, “Impact of node mobility on

MANET routing protocols models,” J. Digit. Inf. Manag., vol. 5, no. 1, pp. 19–24,

2007.

[4] Márk Jelasity, Gossip. .

[5] Rima Al Ali, Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav

Keznikl, Michal Kit, and Frantisek Plasil, “DEECo computational model–I.” .

[6] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The Broadcast Storm Problem

in a Mobile Ad Hoc Network,” in Proceedings of the 5th Annual ACM/IEEE

International Conference on Mobile Computing and Networking, New York, NY,

USA, 1999, pp. 151–162.

[7] P. N. Kyasanur, R. R. Choudhury, and I. Gupta, “Smart Gossip: Infusing

Adaptivity into Gossiping Protocols for Sensor Networks,” Apr. 2006.

[8] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil,

“Gossiping Components for Cyber-Physical Systems,” in Software Architecture,

P. Avgeriou and U. Zdun, Eds. Springer International Publishing, 2014, pp. 250–

266.

[9] B. Garbinato, “Gossip-Based Dissemination,” in Middleware for Network

Eccentric and Mobile Applications, .

[10] A. Saidi and M. Mohtashemi, “Minimum-cost First-Push-Then-Pull gossip

algorithm,” in 2012 IEEE Wireless Communications and Networking Conference

(WCNC), 2012, pp. 2554–2559.

[11] P. Felber, A.-M. Kermarrec, L. Leonini, E. Rivière, and S. Voulgaris, “Pulp:

An adaptive gossip-based dissemination protocol for multi-source message

streams,” Peer--Peer Netw. Appl., vol. 5, no. 1, pp. 74–91, Feb. 2012.

[12] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,

“Looking Up Data in P2P Systems,” Commun ACM, vol. 46, no. 2, pp. 43–48,

Feb. 2003.

[13] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,

“Consistent Hashing and Random Trees: Distributed Caching Protocols for

Relieving Hot Spots on the World Wide Web,” in Proceedings of the Twenty-ninth

Annual ACM Symposium on Theory of Computing, New York, NY, USA, 1997,

pp. 654–663.

[14] K. Dhara, Y. Guo, M. Kolberg, and X. Wu, “Overview of Structured Peer-to-

Peer Overlay Algorithms,” in Handbook of Peer-to-Peer Networking, X. Shen, H.

Yu, J. Buford, and M. Akon, Eds. Springer US, 2010, pp. 223–256.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.

Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s

Highly Available Key-value Store,” in Proceedings of Twenty-first ACM SIGOPS

Symposium on Operating Systems Principles, New York, NY, USA, 2007, pp.

205–220.

68

[16] A. Ghodsi, S. Haridi, and H. Weatherspoon, “Exploiting the Synergy Between

Gossiping and Structured Overlays,” SIGOPS Oper Syst Rev, vol. 41, no. 5, pp.

61–66, Oct. 2007.

[17] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a DHT,”

in Proceedings of the Annual Conference on USENIX Annual Technical

Conference, Berkeley, CA, USA, 2004, pp. 10–10.

[18] Y. Yang, J. Wang, and R. Kravets, “Designing Routing Metrics for Mesh

Networks.”

[19] M. Musolesi and C. Mascolo, “CAR: Context-Aware Adaptive Routing for

Delay-Tolerant Mobile Networks,” IEEE Trans. Mob. Comput., vol. 8, no. 2, pp.

246–260, Feb. 2009.

[20] B. S. P. Bentham Science Publisher, “Theory and Practice of Geographic

Routing,” in Ad Hoc and Sensor Wireless Networks: Architectures, Algorithms

and Protocols, H. Liu, X. Chu, and Y.-W. Leung, Eds. BENTHAM SCIENCE

PUBLISHERS, 2012, pp. 69–88.

[21] A.-D. Nguyen, P. Sénac, and M. Diaz, “STIgmergy Routing (STIR) for

Content-Centric Delay-Tolerant Networks,” presented at the LAWDN - Latin-

American Workshop on Dynamic Networks, 2010, p. 4 p.

69

List of Tables

Table 1. Recapitulation of predicates and function used for semantic refinement. ... 17

Table 2. Recapitulation of structures used for semantic refinement. 17

Table 3. Parameters of gossip push-pull protocol. ... 33

Table 4. Classification of rules according to the restriction of traces. 37

Table 5. Total number of sent messages using Gossip protocol in MANET network.

 .. 50

Table 6. Input parameters of selected configurations (HD=header publish period,

PL=pull request period, P=rebroadcast probability, L=message timeout, G=pulling

timeout). ... 55

Table 7. Pulling knowledge scenario parameters. .. 59

Table 8. Events of pulling system. ... 59

Table 9. Event of pulling system with node failure. .. 60

70

List of Figures

Figure 1. Example of a component definition for SCS application. 8

Figure 2. Example of an ensemble definition for SCS application. 9

Figure 3. Knowledge valuation queue automaton (Taken from [5]). 10

Figure 4. The Necessity of pull request (taken from [9, p. 177]). 14

Figure 5. Components deployed on nodes. We have omitted several connections

between [C1] and [C4] to preserve the clarity. .. 18

Figure 6. Modified queue automata employing queue wrapper. 19

Figure 7 Connections between components are joined into node connections.

Connections between components of [C1] and [C4] are skipped for clarity. 20

Figure 8. Network layers mechanism implemented by DEECo. 22

Figure 9. Modified queue automata passing message fragments. 23

Figure 10. Node storage of individual nodes manages messages of local (dotted line)

and replica (dashed line) components. ... 24

Figure 11. Modified "communication" automata using node storage instead of queue.

 .. 24

Figure 12. Example of ensemble extension by communication boundary. 30

Figure 13. Example of communication groups .. 31

Figure 14. Example of vehicle nodes grouping. .. 32

Figure 15. JDEECo plugin interface. ... 38

Figure 16. Plugins implementing gossip protocol communication. The arrows indicate

knowledge passed over the network. ... 40

Figure 17. Recipient selector provides a set of hosts for knowledge publishing. 40

Figure 18. DEECo component implementing grouper service. Fields marked with

@Local are excluded from component knowledge.. 41

Figure 19. Configuration of recipient selector for the usage with groupers. 42

Figure 20. Groupers passing received knowledge using a ring overlay network. 43

Figure 21. Inheritance hierarchy of plugins sending messages registering a custom task

to the scheduler. ... 44

Figure 22. Inheritance hierarchy of plugins receiving messages registering a custom

strategy at layer 2. .. 45

Figure 23. Different plugins accessing reception buffer. ... 45

Figure 24. Exported map of the center of Berlin used by the simulation. 46

71

Figure 25. Decomposition of SCS Application into components and ensembles...... 47

Figure 26. MATSim configuration file generator interface. 48

Figure 27. Request logger intercepts communication between layer 1 and layer 2. .. 49

Figure 28. Regular gossip protocol in MANET network comparing to communication

boundary. P = rebroadcast probability. .. 50

Figure 29. Comparison of knowledge ageing using Gossip protocol in MANET with

and without boundary. .. 51

Figure 30. Number of different component's knowledge valuation delivered to

individual nodes. .. 51

Figure 31. Comparison of regular IP gossip and gossip with groupers. 52

Figure 32. Comparing of knowledge ageing in regular IP gossip and gossip with

groupers. ... 53

Figure 33. Age of knowledge using various input parameters ordered by median. We

have omitted maximum and minimum for clarity.. 54

Figure 34. Knowledge age of selected configurations. .. 54

Figure 35. Number of sent messages for selected configurations (Protocol parameters

from up down: pull timeout, message timeout, pull request period, message header

period). ... 56

Figure 36. Sample network topology used in the use-case scenarios 58

72

List of Abbreviations

CPS – Cyber-physical system

DEECo – Dependable emergent ensemble of components

DHT – Distributed hash table

GPS – Global positioning system

MANET – Managed ad-hoc network

MATSim – multi-agent transport simulation

NED – Network Description

RSSI – radio signal strength indicator

SCS – Smart Car Sharing

STIR – SIGmergy Routing

TCP – transmission control protocol

73

Attachments

1. Implementation in Java

2. Configuration files of simulations perform during the experiments

3. Use-case scenario data and configuration files

4. Setup guide for DEECo, OMNeT++ and MATSim

5. Random scenario generator tool

6. Reporting scripts

