
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Peter Júnoš

Flexible Event Processing Subsystem
for the Java Performance Monitoring

Framework

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Ing. Lubomı́r Bulej, Ph.D.

Study programme: Informatika

Specialization: Software systems

Prague 2015

I would like to thank to my consultant Lubomir Bulej, who was leading this thesis
for his support and for his questions forcing me to think about the thesis in detail.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Flexible Event Processing Subsystem for the Java Performance
Monitoring Framework

Autor: Peter Júnoš

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: Ing. Lubomı́r Bulej, Ph.D., Katedra distribuovaných
a spolehlivých systémů

Abstrakt: Java Performance Measurement Framework (JPMF) je framework
zaměřen na popis sledovaćıch bod̊u, které se použ́ıvaj́ı pro měřeńı výkonnosti.
Popis se použije na źıskáváńı dat vztahuj́ıćıch se k výkonnosti v těhto bodech.
Data jsou vždy źıskána od operačńıho systému a zapsána bez daľśıho zpracováńı.
Popsaný tok dat přez framework je velký a zvyšuje zátěž úložǐstě. JPMF neu-
možňuje uživateli zredukovat množstv́ı těhto dat.

Tato práce se zaměřuje na vyřešeńı popsaných problémů. Použ́ıvá se při tom
filtrováńı dat a jejich agregace, co vede k zmenšeńı množstv́ı dat na zápis. Kromě
toho se tato práce věnuje úzkym hrdlám při zpracováńı dat v JPMF, řeš́ı jejich
d̊uvody a snaž́ı se je odstranit.

Kĺıčová slova: analýza výkonnosti software, měřeńı výkonnosti, sledováńı výkonnosti

Title: Flexible Event Processing Subsystem for the Java Performance Monitoring
Framework

Author: Peter Júnoš

Department: Department of Distributed and Dependable Systems

Supervisor: Ing. Lubomı́r Bulej, Ph.D., Department of Distributed and Depend-
able Systems

Abstract: Java Performance Measurement Framework (JPMF) is a framework
dedicated to description of points, where the performance is measured. This
description is used to gather performance data in these running points. Data are
gathered and written without any processing. The handling increases bandwidth
and puts high load on the storage. JPMF does not provide any possibility for
user to reduce this data.

This thesis aims to solve the described problem by introduction of filtering and
aggregation, that should reduce the bandwidth. Additionally, performance bot-
tlenecks in various parts of JPMF are investigated and removed.

Keywords: application performance analysis, performance measurement, perfor-
mance monitoring

Contents

1 Introduction 3
1.1 Background . 3
1.2 JPMF Overview . 4
1.3 Goals . 5

2 Analysis 6
2.1 Profiling . 6
2.2 Benchmarking . 6

2.2.1 Microbenchmarks . 6
2.3 Monitoring . 7
2.4 Original JPMF implementation for user 8

2.4.1 Application-driven subsystems 8
2.4.2 Externally-driven subsystems 10

2.5 Event processing . 10
2.5.1 Event source . 11
2.5.2 Java performance data access 12
2.5.3 Memory recorder . 12
2.5.4 Writing to disk . 12
2.5.5 Synchronization . 13

2.6 Goals revisited . 14
2.6.1 Configurable pipeline . 14
2.6.2 Pipeline filtering . 14
2.6.3 Virtual data source . 14

3 Design 15
3.1 Processing pipeline . 15

3.1.1 Simplified data flow . 15
3.1.2 Reduced amount of synchronization 16
3.1.3 Buffer resizing requirements 17

3.2 Division of virtual data source . 19
3.2.1 MapDataSource . 19
3.2.2 VirtualDataSource . 20

4 Implementation 22
4.1 Pipeline . 22

4.1.1 Overview of pipeline elements 22
4.1.2 SpeedLimiterFilter . 24
4.1.3 InitialDropFilter . 24
4.1.4 TeeFilter . 24
4.1.5 MassTransformer . 26
4.1.6 Configuration . 26
4.1.7 Further extensions . 28

4.2 Virtual data source . 28
4.2.1 Configuration . 30

4.3 Mapping data source . 30

1

4.4 Bugs in the old implementation 33
4.4.1 Race condition . 33
4.4.2 Measurement of time taken 34

5 Evaluation 37
5.1 Experiment design . 37

5.1.1 Possible errors . 37
5.1.2 Independence . 38

5.2 Experiment setup . 38
5.2.1 Kieker . 38
5.2.2 MooBench . 39
5.2.3 DaCapo . 39
5.2.4 JPMF . 41

5.3 Measurement . 41
5.3.1 Kieker vs PMF – MooBench 41
5.3.2 Kieker vs PMF – DaCapo 43
5.3.3 Kieker vs PMF – with DiSL 45
5.3.4 The new PMF vs the old PMF – same configuration . . . 48

6 Conclusion 49

7 Attachments 56

2

1. Introduction

Computers are part of our lives. The complexity of computer systems leads to
incorrect predictions of necessary computing power. Incorrect predictions in turn
caused multiple well-known incidents resulting in angry users, money loss and
was cited to be a cause contributing to the a fall of a government.

Czech vehicle registry has been reprogrammed to introduce connection with
other registers. Unexpected load lead to the major slowdown[car-reg].

Financial administration of Slovak republic (IRS) experienced malfunctioning
system with anticipated losses exceeding ten million eur[1], being one of the causes
of fall of Slovak government[2]. According to an employee, one action took nine
minutes instead of few seconds[3], which corresponds with performance issues. A
completely new system was made, but it was also reported running slowly and
thus increasing the time required to process taxes[4].

HealthCare.gov[5] is the health insurance website for US citizens. Despite
the estimated costs reaching $1.7 billion [6], it could not fulfill the performance
demands. Barack Obama, the president of United States of America, stated:
”There’s no sugar coating - the website has been too slow, people have been
getting stuck during the application process and I think it’s fair to say that
nobody’s more frustrated by that than I am.”[7].

Multiple solutions to the aforementioned issues arise. The problem can be
shifted to the future by developing of newer and faster algorithms. Performance
problems can be revealed during the development using benchmarking and by
monitoring after the development is finished.

1.1 Background

There are multiple tools focused on measurement and benchmarking differing in
the area of usage and also in the abstraction level, where the tools operate. They
range from low-level tools monitoring the processes and finishing with profilers
exposing slow instructions and functions.

The most low-level performance monitoring tools are Unix-based sar[8] and
Windows-based PerfMon[9]. They provide the summary of CPU usage by differ-
ent processes running on one hardware. Followingly, misbehaving processes can
be identified.

Nagios[10] and Zabbix[11] are enterprise solutions spanning across multiple
platforms. In addition to monitoring, alerts can be sent and the plugin interface
is provided. The measurements are visualized to provide overall image of the
system.

Google-wide profiling[12] provides continuous profiling on of whole machine as
well as per-process profiling for cloud applications. The per-process measurement
can expose the performance differences based on platform including microarchi-
tectural peculiarities to get performance improvements of ”up to 15”%[12].

Contention aware execution runtime (CAER) measures differences in cache
misses. That leads increased CPU utilization by 58% and thus overall perfor-
mance is improved[13].

3

On application level, Application Response Measurement[14] describes com-
mon method for application management including diagnosing a performance
problems.

Performance measurement and application monitoring are provided by Kiek-
er[15]. Application is instrumented to deliver performance-related data.

Last, but not least, one solution to application monitoring is Java Performance
Measurement Framework (JPMF). We will focus on it in this work.

1.2 JPMF Overview

JPMF aims to be high-performance low-overhead instrumentation framework fo-
cused on application monitoring. It focuses on live instrumentation of running
program performed when the unexpected runtime condition appears.

Despite of the requirements mentioning low overhead, configuration and mea-
surement concerns are strictly separated to provide generic framework. More
overhead could be eliminated by placing measurements directly to the code, but
the strict separation would be lost.

Overview

Measurement data are sampled in specified points, that are exactly defined in
event sources. User of framework is able to define new event source as well
as send new event to the framework.

When event arrives to the framework, performance data are obtained from
data sources, which are operating system-dependent. Linux data source gathers
data using syscalls, netlink interface and virtual file systems /proc and /sys[16].
Windows gathers data using Windows Performance Objects[17]. The requested
set of data to measure can be configured either during runtime or in a static file.

The performance data are written to a single file for further analysis. It can
provide insight into the program and to target a specific outcome.

Examples of usage

System administrator diagnosing high I/O utilization can configure sampling
length of I/O queues and I/O bytes read and written in various parts of running
program along with the other I/O values provided by framework. These values
are compared with the samples of the running program without observable bugs
to find the difference and therefore the cause of high I/O utilization.

In case of serious performance issues, JPMF can be used to get the raw sam-
ples, that will not be compared to the other samples. When the programmer or
administrator thinks the action takes unexpected amount of time to complete,
data from operating systems can advise, where to look for the issue. High iowait
point to slow I/O, that can be solved either programmatically or by the hardware
upgrade.

4

1.3 Goals

JPMF suffers from multiple performance ineffectivities as well as missing features,
that should be solved by this work.

It does not provide any form of aggregation or possibility to skip measured
data. Everything sampled must be written to a single output. While JPMF pro-
vides programming interface to extend provided storage, which could use multiple
outputs, adding another storage does not solve aggregation and filtering of data.
More data being sent increases the pressure on storage and results in imprecise
measurements.

JPMF also uses platform-dependent sensor naming. With different names
on each platform, measurements have to be reconfigured when moving across
platform boundaries.

To sum up, our goals are to analyze architecture of JPMF, its event processing
and provide a support for configurable pipeline. It should be able to aggregate
and filter performance data, provide them to multiple storages, provide cross-
platform naming without further performance degradation.

5

2. Analysis

In this section, we provide an analysis of JPMF architecture and implementation.
We point out the existing shortcomings and derive specific goals to address them.

Profilers are well known to programmers. They are used to find ”hot code” –
the code where the significant portion of time is spent.

There are at least two possibilities of profiling implementation. One is based
on sampling and the another is based on direct calls of benchmarking functions.
Furthermore, small parts of code can be profiled standalone in microbenchmarks.

2.1 Profiling

Sampling-based profiler instructs the processor to sample running instructions in
specified intervals. According to the law of large numbers, by regularly sampling
running instruction, the distribution of appearances in each instruction approach-
es to the real distribution of the time taken during analysis.

The approach is useful, ensuring low overhead while providing ability to mea-
sure performance of whole system, including the system kernel.

One example of statistical profiler is OProfile compiled with Java support.
Despite the low overhead, optimizations of compiler and incorrect reading

of native code can cause an incorrect interpretation of running functions and
instructions[18].

2.2 Benchmarking

2.2.1 Microbenchmarks

One solution to the profiling is using microbenchmarks. They provide a possibility
to measure a performance of individual functions as the smallest parts of program.

Microbenchmarking requires its own setup. It can be accomplished by calling
one function in loop, while measuring the time taken to complete N runs. Set
of tools such as JMH solve the problems of naive loop-based implementation by
providing tools, that ensure the code is not optimized away while not taking
measurable amount of resources[19].

Microbenchmarks are performance-sensitive, as only short functions are being
executed. Their solution to save measured data is simple, but still understandable
– they avoid it and use only memory. Using memory does not cause extreme
performance losses while allowing sampling for a short time. Solutions suggested
for sampling does no work, as microbenchmarks precisely know, which functions
are being executed.

Practice of microbenchmarking of all parts of code was discouraged, as it leads
to premature optimization.

”We should forget about small efficiencies, say about 97% of the time: prema-
ture optimization is the root of all evil. Yet we should not pass up our opportuni-
ties in that critical 3%. A good programmer will not be lulled into complacency
by such reasoning, he will be wise to look carefully at the critical code; but only
after that code has been identified” Donald Knuth[20]

6

Furthermore, microbenchmarked functions run on their CPU not taking the
other parts into consideration. Depending on Java scheduler, parallel programs
can show linear scalability while providing only little performance benefit. This
can be caused by thread interleaving, when benchmarked thread is run alone on
one CPU and the completion takes less time than expected. Therefore, it is not
always reliable.

On the other hand, microbenchmarking is not without advantages. It can
provide measurement of performance in performance critical parts of code and
identify small issues. By utilizing a correct framework, issues with usage are
eliminated and the resource consumption of the benchmarking code.

2.3 Monitoring

Performance measurement based on direct calls can measure the performance of
application focused on individual functions, without the requirements like custom
runner in case of microbenchmarking. It provides ability to measure performance
of parts of the application like an electrical circuit. One possible use includes
measurement of application, that is already deployed, via live instrumentation.

Calling benchmarking framework from application code is cross-cutting con-
cern. It can be solved either by aspect oriented programming, conditional com-
pilation or instrumentation.

Java performance measurement framework

JPMF is designed to be used in call-based performance measurement. It is up
to programmer to implement event source in any way. However, programmer is
provided with triggers designed to be in used in manual instrumentation.

It evolved from benchmarking solution. Changes were introduced to provide
a framework for harvesting the performance data, that in turn lead to reduced
performance. Therefore, it cannot be used for microbenchmarking.

JPMF samples performance data in specified points and outputs them to a
file. The performance data can be defined in order to sample the data necessary
to provide insight while not slowing the sampling down. The data contain the
stats provided by operating system, including, but not limited to CPU cycles,
time, cache misses, memory usage, bytes read and written to storage and to the
network adapter.

The data can be analyzed to provide insight into the program and to target
a specific outcome. System administrator diagnosing high I/O utilization would
sample length of I/O queues and I/O bytes read and written in various parts of
running program along with the other I/O values provided by framework. These
values could be compared with the samples of the running program without ob-
servable bugs to find the difference and therefore the cause of high I/O utilization.

Programmer could try the similar sampling while evaluating the performance.
The data would be compared between older and newer implementations to provide
the speedup factor between different versions.

In case of serious performance issues, JPMF can be used to get the raw sam-
ples, that will not be compared to the other samples. When the programmer or
administrator thinks the action takes unexpected amount of time to complete,

7

data from operating systems can advise, where to look for the issue. High iowait
point to slow I/O, that can be solved either programmatically or by the hardware
upgrade.

Kieker

Besides from JPMF, Kieker[15] uses instrumentation to specify the position to
execute measurement code. Kieker does not provide configurable filtering or
aggregation, but can still serve as an example.

Kieker utilizes SIGAR[21] and JMX to sample the performance data. Code
generation is used to generate class to transfer sampled data to storage, so that
the data are not stored in generic structures using generic algorithms, but the
simple copying algorithm is generated. Note that despite these microoptimiza-
tions, transfer objects are allocated on each transfer. That increases the load put
on garbage collector.

Furthermore, it provides the aggregation. As the provided aggregation and
filtering is only static, code must be generated to change sampling. Without
external compilation, everything measured must be always written and thus ex-
tending the waiting queues. However, basic aggregation functions are provided
in AggregationMethod. It is called on the measured data just after obtaining
them. This approach reduces the load while preserving the essence of data by
using average, median or an another aggregating function.

Kieker also offers architecture discovery. Monitored program is being run
with Kieker agent and Kieker reports, which functions are called from which
parts of program. Using SynchroViz [22], user can get the idea about which
synchronization is being done. It is visualized in 3D (see 2.1) and it could be
useful, but it is outside the scope of performance measurement and PMF.

2.4 Original JPMF implementation for user

As the name says, JPMF is Java-based framework divided into more subsystems
depicted in Figure 2.2.

JPMF contains application-driven subsystems to be executed in the context of
measured application during the measurement and externally driven subsystems,
that provide the API to access JPMF from the application.

2.4.1 Application-driven subsystems

Event source

These are subsystems to be run by instrumentation during the measurement.
The main role is to sample and save data related to performance, whenever Event
source emits new event. The Event Source can be either called by instrumentation
of the application or can be called externally. Furthermore, it allows disabling
events, so that they will not be emitted anymore to save the resources.

8

Figure 2.1: Synchroviz example from [22]

Figure 2.2: JPMF modules from [22]

9

Performance Data Access

Performance Data Access subsystem measures data, that can be useful when
assessing performance of application. The performance data are provided by
applications, operating systems and some are provided directly by hardware.
It relies on data sources and time sources, that should provide more types of
performance and time data, such as I/O stats, CPU usages, network stats and
even more data.

Data sources provide data in sensors. These are of unified naming denoted by
URI-like syntax:

[sensor://]<datasource>/<group>/<sensor>[#<instance>]

Sensors are sorted into groups, that merge together similar areas of sampling.
For example, there is a group for network, for block devices, for CPU and similarly.

Name of sensor then provides the name of data, that is sampled – sensors
in group CPU could provide sensor load. To avoid more CPUs having different
groups, instances were introduced. Instance is the naming of the unique resource.
More CPUs in one system would be part of one sensor, but the sensor would
provide and instance for each CPU available. There are also singletons, where
there can be only one instance – such as in the case of system RAM.

To sum up, to describe sensor denoting length of I/O queue on sda1 provided
by ProcFS, one would use URI-like syntax

sensor://linux.procfs/io/queue length#sda1

Data storage

The data sampled by Performance Data Access are sampled only in memory. Data
storage is provided to store them persistently. Nowadays, only direct writing of
measured data to files is supported. However, it could be extended to save data
over network.

Data storage can save data to the one predefined storage in one format, that
is either xml or custom indexed data format. All the sampled data are saved in
the format they were sampled.

2.4.2 Externally-driven subsystems

Externally-driven subsystems allows access to JPMF from the outside of the
measured application.

Data delivery provides the measured data back to the application based on
the subscription. Also, it provides metadata about the running storages.

Infrastructure managements is the management API of the whole JPMF. It
also serves as a registry to save and provide shared resources.

2.5 Event processing

The event processing part describes, how events are generated and the effects
they have on the other parts of the framework. It starts a measurement of the
performance data to be sampled and saved. Class diagram of the most important
classes used in old implementation is depicted in Figure 2.3.

10

EventData

AbstractDataStorage

StorageNotification

BulkDataHolder

BaseMeasurementContext

<< interface >>

MeasurmentContext

+ sample ():void

+ prepare ():void

+ decode ():void

+ update ():void

XmlFileDataStorage

<< interface >>

DataStorage

SynchronousMemoryRecorder

EventSource

cd: Old architecture − overview

recorder

context

*

contexts

*
source

*

Figure 2.3: Most important classes when processing performance data

2.5.1 Event source

The first step in performance data gathering is the request to get the data. This is
called event and is produced by an event source. Although there are some imple-
mentations of event sources, programmer is encouraged to implement additional
ones.

The implemented helpers contain only the simplest, yet sufficient events.
There are events for entering and leaving method, cycles and one-time fired events.
Each event contains fields, that bear additional information to allow identification
of calls. This identification is bound to the event and cannot be simply moved
elsewhere.

The event source is expected to be called, when the measurement should be
performed. One way to call it is using the call directly in code. Direct call is
done by programmer and is called everytime the part of program is executed. If
the programmer does not want to call it in production, he is free to use ifdefed
code. Then, the code will be executed only with certain compile-time configu-
ration, when ifdef is satisfied. When one compiled program is to be used both
in production and during the measurements, the event source can be called by
instrumentation.

When the event source is called, it fires an event to be processed. The event
is picked up by Java Performance Data Access.

11

2.5.2 Java performance data access

Java performance data access (JPDA) is the part responsible for obtaining the
performance data via available source. As all sources of performance data are
platform dependent, there are different implementations for different operating
systems. Performance data are obtained via netlink, virtual file systems and
syscalls on Linux; via WPO on Windows. The data are obtained and transferred
to be saved.

On a lower level, event is dispatched to all currently registered measurement
contexts for current sampling. Measurement code requests getting the perfor-
mance data from Probes — the units of code dedicated to accomplish sampling
from one physical resource. Probes are designed to accomplish quick sampling
of data when told to sample() while they can spend more time, when user only
wants to prepare() them for sampling. Therefore, the sampling is prepared and
sampled afterwards. The data are propagated to SynchronousMemoryRecorder,
where the JPDA section ends.

2.5.3 Memory recorder

SynchronousMemoryRecorder is designed to hold data in its temporary buffer.
Custom synchronized buffer is provided by BulkDataHolder and SingleCon-

textMemoryStore. All measured data are stored there till the time they are be
requested.

When the filled capacity reached specified percentage, which is 75% by default,
StorageLowNotification is sent to the storage, so that the storage can request
the sampled data. When requested, the data were read from their temporary
store and copied to the structure called EventData. The structure contained
event fields, that are the data directly related to measurement and to the event
received when sampling along with measured data.

After the EventData were filled, they were sent to the storage.

2.5.4 Writing to disk

Storage is composed of AbstractDataStorage and the storage implementation.
Division has its sense - while AbstractDataStorage is requesting the data to be
read, the real storage implementation is called from its abstract ancestor without
caring about the source of the data.

The stored data are therefore propagated to writer, that writes either to XML
file usable for developer overview or to indexed file which is developed to be faster.

Simplified diagram of the dispatching of performance data can be seen in
Figure 2.4.

Original storage was built on an idea, that we cannot avoid writing to disk
and it is the slowest part of the system, so we should not request writing to disk
too often (amount of data written is still the same). Although the idea is correct,
there is not an ideal time, when PMF will write its data to disk. PMF is not a
microbenchmarking suite, so that it could hold all the sampled data in memory
till the next run. Program runs continuously and the measurements have to be
stored continuously.

12

Save data to FileStorage

Is store running out of space?

Save to SingleContextMemoryStore with custom synchronization

Record data to SynchronousMemoryRecorderPerformance data is sampledEventSource fires

start

ad: OldSaving

no

yes

Figure 2.4: Saving data in old versions of PMF

Storing data in bursts avoids regular overhead during traversal of measured
code. However, spikes in execution time appear, when there are a lot of records
to write and the disk is already utilized. When program continues traversing
measurement point and generating big amounts of sampled data, original program
dropped these records.

2.5.5 Synchronization

Furthermore, implementation of custom synchronization is error prone. Bugs in
synchronization are hard to detect, as they cannot be observed consistently, but
only when timing of multiple threads interleaves in a way, that triggers the bug.
Finding race conditions is NP hard, therefore less apparent races are relied upon
debugging in practice [23].

The possible solution is to utilize formal verification to solve this bug. How-
ever, that would need more work on formal verification itself or creation of model
and then would require more work from the maintainer.

The easiest solution, albeit not so rigorous and without any guarantees, is
using standard algorithms and trusting them, as it is often quoted as ”Don’t
reinvent the wheel” [24]. This reduces the surface, where the bug could appear.
This solution also provides possibilities of future speedups, that do not need
attention of programmer. New update of JVM can always use the best algorithm
available.

13

2.6 Goals revisited

There are also abilities outside the scope of JPMF and this work, that will not
be implemented. Interesting feature too far from JPMF range is architecture
mapping. Besides that, only functional parts will be used. Therefore, useful tools
from another performance measurement programs will not be reimplemented.

One of the main problems alternative implementations tried to solve was per-
formance of the measurement itself. Therefore, we want to provide:

To get high performance of sampling, we will support omitting of events and
allow only one event per specified time. Microbenchmarks show we should con-
centrate on the lowest overhead possible and we will be able to measure the
performance of all slower executing functions. We could also support the aggre-
gation like in Kieker, that could be improved by having aggregation stackable.

2.6.1 Configurable pipeline

Pipeline implementation, requires saving performance data to the pipeline in-
stead to the SynchronousMemoryRecorder. SynchronousMemoryRecorder also
holds important details about fields, so it cannot be simply eliminated. Using
SynchronousMemoryRecorder in pipeline would cause slowdown, as it is the part,
that synchronizes accesses and is necessary on every data reading.

Moreover, the data are still copied between buffers, so that the time is spent on
copying and more memory is allocated when not really required. The main reason
for not adding this or another overhead is targeting of JPMF. With overhead,
sampling is dominated by noise.

Therefore, the first subgoal is to design configurable pipeline between the
temporary and persistent storage without adding significant overhead.

2.6.2 Pipeline filtering

More data flowing thru the whole framework slows it down. We could simply place
our pipeline after dispatching data to write, but then the majority is framework
is already traversed and the filtering cannot offer expected performance benefits.

The second subgoal is to provide filtering, aggregation and transformation
of events to avoid writing them to the storage. Filtering should be provided at
runtime. This will reduce the overhead even further.

2.6.3 Virtual data source

Virtual data source is designed but not implemented in the thesis of Lubomir
Bulej. We see the data can be sampled in rapid way, but sometimes cannot be
saved. It is suggested as a solution to unification of sensor naming.

We also need aggregation, that could be provided by Virtual data source to
avoid saving megabytes of data, when only a part of them will be ever read.

The third subgoal is to design virtual data source capable of data aggregation
and unification of sensor naming across platforms.

14

3. Design

In this chapter, we outline the concepts of the proposed solution. Details of imple-
mentation along with implementation difficulties are described in Implementation
(Chapter 4)

When there are more events from EventSource than the size of buffer, file
writer has to write performance data as fast as possible to avoid slowing down
of program execution. Slowdown means the benchmarked program is waiting for
benchmarking program, which invalidates the results of benchmarks.

Writing of big amounts of data to the target file causes unnecessary slowdowns.
Therefore, we decided to implement filtering to filter out as much measured data
as possible.

3.1 Processing pipeline

3.1.1 Simplified data flow

When the performance data are sampled, they have to be written or thrown away
to not fill the memory. We describe the investigation of the path from sampling
to writing and suggest improvements.

Measured data in old model were immediately stored to a temporary storage
called SynchronousMemoryRecorder. They were then put to transfer objects to
be sent for recording to storage when temporary storage is full. The original
implementer predicted aggregation1 of requests. Less, but bigger chunks of data
sent to disk could speed it up.

However, there are multiple problems in this approach. There were multiple
buffers on the path from sampling to storage — one on the level of aggregation
and one on level of open file in Java; another one could have been provided by
operating system. With each buffer requiring deep-copy of data, part of process-
ing power was spent in getting data from one transfer object and copying it to
the other transfer object.

Moreover, large buffers to group up writes resulted in periodic floods of the
storage. This was observed in case of measured program writing data to the same
slow hard disk as the JPMF used. Time spent in writing program data was higher
than expected. Consequently, the results contained outliers resulting in incorrect
marking, which functions are hot.

Furthermore, multiple buffers always reduce predictability of the produced
load. With bigger jitter, less implications of measured program execution can be
deduced.

Writing everything individually spreads the time taken by I/O to a wider
time window. Continuous monitoring of target application results in small I/O
overhead in all samples, in exchange for hard-to-predict bigger overhead in part
of samples. Regularity can help an administrator to spot the problems and to
avoid choking in case we run out of our buffers.

1The aggregation was only performed on the level of Java calls between temporary storage
and writer implementation. All original data were retained and written

15

Slight increase in overhead is expected in this step. We decided stable and
therefore more usable results are much more important than the overhead is.

Nevertheless, with the previously noted, we do not aim to eliminate all buffers
by design. One buffer to be used by writer on the Java level (BufferedFileWrit-
er) can be preserved to optimize access to hardware. Contrary to the previous
parts, hardware storage is significantly slowed down by writing chunks in the sizes
of bytes and therefore we leave there aggregation.

Considering some simplification, this is shown in Figure 3.1.

Does pipeline save the data?

Data sent to pipeline without transformation

Save data to FileStorage

Performance data is sampledEventSource fires

start

ad: NewSaving

yes

no

Figure 3.1: Saving data in proposed version of PMF

3.1.2 Reduced amount of synchronization

When running sampling, each copying of data flow mentioned earlier used its
custom synchronization. In chapter ”Simplified data flow” is the description of
omitted steps, that also reduces amount of synchronization, which in turn results
in less contention. However, there is still a connection between sampling and
storage. We were considering changes there.

We considered direct and synchronous passing of performance data from sam-
pling to storage. That would decrease the contention, improve the cache usage
and therefore, would allow more rapid sampling. That would mean writing perfor-
mance data to disk will always block the measured method, which is undesirable.

To avoid extra buffers, we have decided to use simple queue as the only syn-
chronized part. The queue (BlockingQueue) in our usage can be implemented
even as a lock-free data structure using Hazard Pointers [25], that allows afford-
able performance without custom implementation. To avoid allocation during the
measurement, we use two queues. One stores records to be delivered to pipeline
and possibly follow to disk, the other one returns used records for further reuse.
By using this setup, we can avoid any allocation while sampling, that results in
more consistent sampling results.

16

3.1.3 Buffer resizing requirements

Previous implementation provided temporary aggregation storage described in
”Simplified data flow”. That was extending the buffers as soon as they were full.
As they were scheduled to be freed at 75% of their capacity, the resizing was
not often executed, but it happened when producing data in more rapid fashion.
Therefore it seems we would also need temporary storage, if we wanted to mimic
the old behavior.

The main problem of omission of their implementation is only the bounded
amount of unwritten data in queues. This results in slower program executions,
when the buffer size is underestimated.

We could, of course, extend our buffers. However, extending buffers costs CPU
time and only postpones the problem of them being filled. When the buffering
memory extends, it should also shrink to avoid memory leak.

If we were to shrink buffers, then it is questionable, when the shrinking oc-
curs. If it shrank whenever the buffer was used below specified percentage of its
capacity, shrinking and possibly regrowing array would generate high extra load
and therefore would result in unusable performance data. Predictions of future
array usage are similar to other predictions of future - they can be wrong and
one cannot rely on them.

Last, but not least, allocation changes the measured times as:

• There is an extended working set for CPU. Bigger working set means lesser
part of it can fit in CPU caches. This can, but do not have to, affect the
performance

• Java has to allocate memory to be freed later. Allocation on newer JVM
with garbage collector can be done in as low as 10 machine instructions ??.
On the other hand, allocation puts load on garbage collector traversing
memory to be freed.

• In the worst case, it allocates whole available memory and starts to use
swapping. It could slow down the whole system by high factor.

Therefore, we decided not to reimplement indefinitely extending buffers. There
is a configuration of buffer size, that is static. In case application produces more
events than it can be written to disk, the application is paused as in producer-
consumer model. User can avoid this pause by configuring filter, that drops the
extra data.

The new pipeline was designed to be composed of stages named elements, as
shown in Figure 3.2. Each of the elements should be responsible to send the data
to the next element in the row. It could also choose to filter the data our simply
by not resending the data, that will not proceed. On the other hand, one part
of pipeline should be able to resend the data to multiple targets solely at its own
discretion to provide filtering.

Expected interactions of pipeline working are depicted in Figure 3.3. Pipeline
is passively fed by the data from measurements and provides its outputs to a
selectable target or sink of measurements. As the data transferred are produced
by different events and the new events can be created, it also provides an interface
to register new events to be transferred (not depicted in Figure). These metadata

17

Storage

Storage connector

Storage

Storage connector

Pipeline element

Event source

cd: Pipeline concept

eventListener

Tee element

next

Pipeline element

next

next

store

tee

store

Figure 3.2: Concept of pipeline (simplified)

could be transferred by the out-of-band channel, but it would need extra channel
and the metadata could not be used in created pipeline elements.

The main idea behind editing the existing implementation of PMF was to
reduce overhead and to simplify overall architecture, that can reward us by avoid-
ing possible bugs in code. Secondly, we wanted to implement new functionality.
Programmers do not want to be restricted by only one file, where is everything
measured written. One would expect writing everything to multiple targets or
even no target, if he does not need data. This can provide additional speed, as
hard disk, its queue and whole I/O subsystem are not utilized by measurement,
when it is not absolutely necessary. Such utilization causes unexpectable results,
which, in turn, renders measurement useless.

Its implementation of this pipeline along with the implementation problems
are described more closely in the pipeline part of Implementation chapter (see
Chapter 4.1).

18

st :Storagesc:Storage connectorfilter :Pipeline elementtee :Tee elementfilter :Pipeline elementes:Event source

sd: Pipeline interaction

2) . transport

2)

3) . transport

3)

4) . transport

4)

5) . transport

5)

6) .store

6)

7) . transport

7)

8) .store

8)

Figure 3.3: Expected interaction of pipeline (simplified)

3.2 Division of virtual data source

The original author of JPMF envisioned building a virtual data source [26], that
was designed to serve two basic ideas. The more pronounced one is an implemen-
tation of DataSource interface, that serves as an intermediary and unifies naming
of different sensors across operating systems. Such data source gets platform in-
dependent name of sensor, that is going to be measured. As a return value, it
measures and provides data from platform specific sensor. MapDataSource was
separated to facilitate efficient renaming.

The other one is VirtualDataSource, that is the extra DataSource used
for aggregation of values. It can provide any other transformations including
aggregation, but with the significantly higher costs.

Targets and even implementation of these data sources differ significantly.
While one does not need to store nor read any data, the other one has to store
at least its own sampled value. In cases like flowing averages, more values, with
the size proportional to input size, would have to be stored.

3.2.1 MapDataSource

If the data source was implemented in the most generic fashion, it would have to
provide renaming and also aggregation together. JPMF does not directly allow
rewriting of sampled data, as they are transferred in container to avoid rewriting
them mistakenly.

If we designed only the virtual data source, that would transform all data, it
would need an extra step even with data left without transformation. MapData-

Source can be obviously implemented more effectively, as shown in its interaction

19

with other data sources in Figure 3.4. For comparison, virtual data source will
be shown in Figure 3.5. Thanks to PMF architecture, MapDataSource does not
have to allocate its own storage and can use sampled state of other sensors. The
only prerequisite is, that the MapDataSource provides the descriptors in the way
JPMF samples sensors underneath. By this implementation, user gets only a
renamed sensor without sampling overhead.

jds :JNIDataSourcedsm :Data source manager wp :WinPerfDataSourceds1 :Map data source

sd: Example interaction of map data source

1) .get descriptor

1)

4) .sample

4)

2) .get descriptor

2)

3) .get descriptor

3)

5) .sample

5)

Figure 3.4: Proposed map data source (high-level view) - compare to Figure 3.5

Designing it seems to be trivial, but it has also some drawbacks. JPMF
provides its interfaces outside itself, but it does not expect, that the caller could be
inside. This newly introduced loop could, for example, yield to infinite recursion.
If MapDataSource wanted to update state of all sensors, it could call update()
on its PMF Controller. That would call update() on all DataSources again and
it yields to an infinite recursion.

We know it and have to be careful about the calls. Avoiding the calls to up-

date() solves the issue for any observer outside the API. It has some drawbacks,
as the user inside the API will not see updated data, when it calls the update()

only in this data source, that can lead to confusion. However, it should never be
used as stated and therefore no confusion is possible. It will be supported by a
comment in the mentioned method.

3.2.2 VirtualDataSource

The second implementation is VirtualDataSource, that is able to change the
values. It gets sampled values from the other data sources and uses their outputs
for its custom sampling.

Changing values in regular pipeline comes with hazard of unpredictable re-
sults. When user decides to send the measured values to more consumers, where
one contains transformations of source data, also the second consumer can get

20

the transformed data. In case of sending values to two tee branches in parallel,
the results could be vastly worse, as they would depend on a data race condition.
Details are in the implementation chapter of MassTransformer (4.1.5).

This could be trivially solved in implementation by defensively cloning each
element containing performance data to be sent to multiple targets. However,
we do not want to put extra load on garbage collector and have to solve it on
design level. To avoid this issue, we decided altering contents of already measured
performance data should not be provided to users.

When changes are forbidden, changing can still be implemented by sampling
the data again after transforming them, as shown in Figure 3.5. Therefore there
will never be unpredictable results, as the new data are sent in the new pipeline
and it seems to be only coincidence they are coming from the same source.

jds :JNIDataSourcedsm :Data source manager wp :WinPerfDataSourceds1 :Virtual data source

sd: Example of VirtualDataSource interaction

1) .get descriptors

1)

2) .get descriptors

2)

3) .get descriptors

3)

4) .sample

4)

5) .sample

5)

6) .sample

6)

loop ()

Figure 3.5: Proposed virtual data source (high-level view) - compare to Figure 3.4

It has also some disadvantages to be considered. This data source is not an
observable part of any pipeline and so it leads to harder debugging. It is still not
as bad as unpredictability, so we can go for it.

More details about its implementation is mentioned in the ”Implementation”
chapter.

21

4. Implementation

Implementation should contain configurable and understandable delivery of sam-
pled data. Still, it is the target impossible to attain if it was a coding monolith.
With one monolithic implementation, user cannot decompose his problems.

As the decomposition is useful and welcomed, implementation results in pipeline.
It is furtherly divided to multiple stages, where each stage is independent.

4.1 Pipeline

When the idea of pipeline is discussed, there are at least two approaches to the
meaning of word ”pipeline”. One is a generalized meaning and the other one is
the one, that stands for software design pattern.

The pipeline pattern sees pipelining as a design pattern designed to improve
the concurrency. Each of the stages is designed to be ran with separate resources,
that provides the speedup factor up to k in case of k-stage pipeline.

The generalized one is the name of concept. It expects there are data flowing
between the elements, without any mention of how are the data passed. Data
are supplied to pipeline and consecutively transformed by multiple stages, where
each stage produces output for the next stage in row. It can be run in one process
without leading to any speedup. Pipeline pattern is also the generalized pipeline,
though the inverse is not always true.

When we referenced pipeline in chapter Design 3.1.3, it was always the pipeline
in the generalized sense, as we were describing concepts. However, we should
think about the idea, whether our pipeline can be implemented using pipeline
pattern.

If we used pipeline pattern, we should put each stage to separate thread, as
it is usual when the throughput has to be maximized. Maximizing output by
putting each stage to another thread could work, when each stage does a lot of
computation. Then, the synchronization among the stages takes less time than
the computation itself. Otherwise, the overhead outweighs the performance gains.

Synchronization puts extra overhead on pipeline and sampled program. In
this matter, we decided to implement pipeline, that consists only of two stages,
also called as producer-consumer pattern. Consumer gets the data and it is a
responsibility of this consumer to save the data. There are two buffers between
them – one for delivering sampled data to be saved and the other one for records
to be reused.

Note that on the architectural side and from logical viewpoint, the multilevel
pipeline is still being used. Implementation as producer-consumer means, that
all levels except one happen on the level of internal implementation, as it can be
seen in Figure 4.1.

4.1.1 Overview of pipeline elements

Pipeline elements can be divided by their responsibilities. There are elements
that treat all measured data as immutable called filters and another elements
allowing code mutation originally called transformers. Filters can either serve as

22

Send to XMLFileDataTransport

SpeedLimiterFilterSend to IndexedFileDataTransport

Pass TeeFilter

TransportPipeline gets free record from BlockingList and sends data to other thread to Pipeline

Data sent to TransportPipeline

New data were sampled

ad: TransportPipeline example

Thread1

Thread2

Figure 4.1: Showing TransportPipeline – the base part of Pipelines

leafs of pipelines to stop selected measured data from further propagation, or can
serve as branching points by sending measured data to more recipients.

Each stage (element) of pipeline is independent, as the whole pipeline is.
On the implementation level, this is exhibited by the way each element is called.
There is not a single class or object, that knows about all elements and dispatches
calls. Instead, the PipelineElement itself is responsible for resending all the
data, in case it wants to resend it further. Failure to resend data for any reason
means the data will not be dispatched to output without any warning. This
design decision was backed by the idea of independent elements.

No element is permitted to store the reference to measured data directly after
returning from transport() function designed to deliver them. In case of neces-
sity, this can be bypassed by copying the data so that the structure can be reused.
Failure to comply with this rule may result in unexpected changes of measured
data.

One argument to constructor is the next PipelineElement in row. This is
because it is how can be the pipeline imagined - more elements are connected and
the output of one is sent to the input of another PipelineElement.

Another constructor parameter passed to PipelineElement is PipelineMan-
ager, that can be used to get any pipeline by name. Together, it allows us to
build TeeFilter, that behaves like a ”tee” command from the Unix world [27].
This TeePipeline is sequential for now - one branch happens after another. That
is not the strict requirement and in case of independent writers. It can be also

23

ran in parallel, if changed slightly.
User can see pipelines, when he specifies the output. Output default is used

every time; afterwards, user can specify more pipelines and forward the output
of default pipeline to them using TeeFilter.

Implementation of all PipelineElements and even one unimplemented can
be seen in Figure 4.2.

Pipeline itself is implemented by synchronous calls from each stage.

4.1.2 SpeedLimiterFilter

By this responsibility division, there is only one synchronization on the whole
Pipeline. As the data sampling should not wait for data to be transformed and/or
written to disk, there are more threads as consumers of sampled data. The
consumer thread count is configurable. Additionally, it is up to consumer, what
it does with the sampled data. There is an implementation of multiple solutions,
where consumers can decide, what should be done with the data.

One is to omit the data completely and not to save it. This can be useful,
when the system is predicted to produce more data, than can be consumed. Such
situation can arise, when the possible storages are limited to a consumer-grade
hard disk or slow network and the user has instrumented functions, that are often
called. User can limit, how often should be the measured data written. This is
used in SpeedLimiterFilter.

4.1.3 InitialDropFilter

Another idea is to omit some first measurements. The main cause for this decision
is, that the startup behaves differently, when compared with running the program
for the longer periods of time.

Caches are waiting to be filled and are not fully utilized and some parts of
program can still reside on disk being only mapped to memory and waiting to
be read. Moreover, PMF runs under JVM and targets programs running under
JVM. These are translated to native code, that is not heavily optimized. After
getting some statistics about code execution and after considering the methods,
that are expected to be ran more often, JVM compiles the optimized version ??.

To avoid this, one can use InitialDropFilter, that can filter out the specified
number of samples. However, even this number of samples do not have to suffice,
as the storage itself needs to be compiled by JIT compiler. Therefore, if one
requires strict omission of warm-up, he should sample it and remove the samples
from the provided results.

4.1.4 TeeFilter

When the data are sampled and traversing pipeline, it does not allow multiple
filters connected with OR clause. Each consecutive filtering results in logical
AND clause. Furthermore, user sometimes require multiple outputs to divide
the measurement to burst data to be written to high speed storage and slower
samples to be written to slower, but bigger storage. The described items were
only about branching, that is provided by TeeFilter.

24

M
a
s
s
T

ra
n

s
fo

rm
e
r(

re
m

o
v
e
d

)

T
e
e
F

il
te

r

−t
e
e
E

le
m

e
n
t

:P
ip

e
lin

e
E

le
m

e
n
t

F
ir

s
tF

e
w

F
il
te

r

−s
k
ip

C
o
u
n
t

:I
n
te

g
e
r

S
p

e
e
d

L
im

it
e
rF

il
te

r

−n
a
n
o
s
e
c
o
n
d
s
F

o
rS

a
m

p
le

:l
o
n
g

A
b
s
tr
a
c
tP

ip
e
li
n
e
E
le
m
e
n
t

+
n
e
x
t

:P
ip

e
lin

e
E

le
m

e
n
t

<
<

in
te

rf
a
c
e

>
>

P
ip

e
li
n

e
E

le
m

e
n

t

+
n
o
ti
fy

E
v
e
n
tR

e
g
is

te
re

d
(e

v
e
n
tN

a
m

e
:E

n
ti
ty

N
a
m

e
,e

m
d

:E
v
e
n
tM

e
ta

D
a
ta

):
v
o
id

+
tr

a
n
s
p
o
rt

(r
e
c
o
rd

:E
v
e
n
tR

e
c
o
rd

,e
v
e
n
tN

a
m

e
:E

n
ti
ty

N
a
m

e
):

v
o
id

c
d

:
P

ip
e
lin

e
E

le
m

e
n
t

Figure 4.2: PipelineElement as in original work

With another implementation, it would be also possible to turn the storage
on and off. Such implementation could use big slow storage, such as HDD to
save all samples during the measurement and user would turn on the detailed
sampling, when he would decide ”something is going on”. Earlier versions of
PMF did not allow this without editing of storages. It could be avoided by not

25

turning some parts of instrumentation ”off”, but that will not allow oversight
from administrator.

The implementation of TeeFilter expects immutability of the data, as we do
not want to defensively deep-copy each element sent. The reason of our decision
was purely based on performance. Without copying and by data-sharing, one
branch of execution could see the modified data although there were no element
modifying them in the path from root to that branch. A care must be taken to
avoid data modification.

4.1.5 MassTransformer

The concept of ”tee” does not rigorously define the next element in the row and
therefore, no one can be sure about the ordering of these actions. Possibly parallel
implementation only highlights the possibility of problems.

When one path after tee contains the part transforming data and the order-
ing of these actions is not well-defined, the other part of tee can also see the
transformed data, but does not have to. With the parallel execution of both
branches, results can be not only incorrectly transformed, but also completely
incorrect. Parallel execution enables bots branches to be ran with one rewriting
the source data of another. In fact, long value rewrite is not guaranteed to be
atomic[jls], hence new unseen values, that were never sampled, can be observed.

MassTransformer was implemented as a PipelineElement, that was designed
to change the data based on user requirements. More details can be seen in
Figure 4.2. As it was written in previous paragraph and in Chapter 4.1.4, it is
hard to implement consistent and predictable behavior without special status of
TeeFilter or MassTransformer. As a solution, one can duplicate every record
send thru TeeFilter, but it is useless when nothing is changed, it puts more load
on garbage collector and it also brings in extra overhead.

The alternate solution based on providing custom ValueHandles means allo-
cation of something of arbitrary length, where the data should reside during the
calls. As sampled data size can change, this is not the best idea, as this should
generate some garbage. Furthermore, tracking of the data by programmer cannot
be done in a timely fashion. Where more records are transported, then traversing
them, cloning them and replacing part of the data does not seem to be an efficient
move.

Consequently, MassTransformer was removed from the implementation to
bring something predictable and efficient, which can be used even by the user not
knowing the implementation.

4.1.6 Configuration

Configuration resides in default jpmf.conf, which is by default in jpmfconf.xml.
There is a new pipeline configuration. Each pipeline should end with sink.

Enforcement of this rule restricts users, but helps to ensure there are be no
pipelines only consuming computing power without any valuable output.

Example of the configuration is displayed in Listing 4.1.
By default, default pipeline is called default, like here. It can be set as user

wants, only with configuration of jpmf.pipeline. This enables multiple output

26

<?xml version=” 1 .0 ” encoding=” utf−8”?>
<a : c o n f i g u r a t i o n

xmlns:a=” ht tp : // jpda . dsrg . ow2 . org / jpmfcon f i g . xsd”>
< !−− source and event c o n f i g u r a t i o n are

l i k e they were , noth ing changed here . . . −−>
< !−− . . . −−>

<p i p e l i n e name=” d i r e c t o u t ”>
<s ink type=” jpmf . indexed ”>
<property name=” f i l e ”>eventdata</ property>

</ s ink>
</ p i p e l i n e>

<p i p e l i n e name=” d e f a u l t ”>
< f i l t e r type=” s p e e d l i m i t ”>
<property name=” nspersample ”>10</ property>

</ f i l t e r>
<t e e>
<property name=” output ”>d i r e c t o u t</ property>

</ tee>

< f i l t e r type=” f i r s t f e w ”>
<property name=” count ”>1000</ property>

</ f i l t e r>
<s ink type=” jpmf . xml”>
<property name=” f i l e ”>eventdata . xml</ property>

</ s ink>
</ p i p e l i n e>

</ a : c o n f i g u r a t i o n>

Listing 4.1: Example JPMF configuration

27

. . .
< f i l t e r type=” tee ”>

<property name=” output ”>d i r e c t o u t</ property>
</ f i l t e r>

. . .

Listing 4.2: Alternative specification of tee

configuration per one file.
This configuration configures pipeline direct out, that saves its data directly

to jpmf.indexed. Properties are passed to classes. In the example, by default,
first filter to be applied is a speedlimit. It limits, how many nanoseconds is
required between samples. Sampling too often is often unproductive, because
almost nothing can change in a short time and it just increases I/O load. This
filter solves that problem.

Next filter is tee. It was described earlier, so this is the special form of
TeeFilter in configuration file. There is an another way to accomplish the same
tee shown in Listing 4.2.

These two ways — with the tag and then itself — are interchangeable. Tag
tee is interpreted exactly like a filter with type tee. This is true only for tee;
there are no other exceptions for other types.

4.1.7 Further extensions

Custom filter implementation can be done by extending VirtualDataTrans-

formerProvider and adding the class to service loader META-INF. That means
editing the file of its service.

4.2 Virtual data source

As described in TeeFilter (Chapter 4.1.4), the pipeline expects immutable ele-
ments. It cannot be accomplished as long as there are elements in pipeline, that
are allowed to change sampled data.

The VirtualDataSource was implemented as a replacement for MassTrans-
former. No transformer can transform the data, if the whole pipeline is designed
to behave predictable and some of its parts, like TeeFilter and MassTransformer

are not be taken specially. Note that it is not only the matter of changing them,
we would also like to aggregate them, which means removal of some data from
the user viewpoint. More about this problem is described in Chapter 4.1.5.

The problems with MassTransformer can be leveraged by a new implementa-
tion of DataSource. The DataSource should provide changing and aggregating,
based on already existent DataSources.

Therefore, one provides the data, for example raw performance counters of
multiple CPUs. User should get one performance counter, that could provide the
sum of these performance counters, their average or an another function of the
statistics. Consequently, this should be done on the DataSource level.

28

VirtualDataProbe owned by VirtualDataSource creates its own Measure-

mentContext (Figure 4.3) and it samples the data required. Then, the data are
transformed, even multiple times and eventually, they are sent to output as one
number under given virtual sensor. This number can be sampled like any other
numbers.

A bit more detailed view showing synchronous calls can be found in Figure 4.4.
Synchronous calls were the only way to maintain independence of pipeline stages
while preserving call speed. Synchronization itself can be slow when associated
with cache ping-pong and MESI algorithm; our implementation should therefore
avoid it, if possible. Intel CPUs since Core2Duo correctly predict returns in depth
up to 16 [28] and so, the idea of implementation with call stack depth up to 16
will not suffer from branch misprediction. Our pipeline is not expected to be
longer than few entries, so it this return stack buffer will preserve correct branch
prediction even with our implementation.

Note that in case someone opts to make time-consuming aggregation, the ver-
sion with one thread per PipelineElement could be more effective. The inter-
face was designed to allow changes in the internal workings of PipelineElement.
Changing the internal workings of method by using asynchronous transport()

call will not affect that interface nor its callers.
As said, VirtualDataSource samples the data itself and outputs their aggre-

gation. This aims to reduce bandwidth between two sides and it also helps to
reduce I/O bandwidth. Reducing I/O bandwidth by editing ValueHandles was
mentioned in assignment. They hold the data, while transporting them further.
Yet, they allow multiple data types. Therefore, the aggregation interface should
be provided for all of them.

As far as comparable data is concerned, nothing uses StringValueHandle.
This ValueHandle is hard to aggregate. Despite this, the aggregation mecha-
nism was implemented for each data type. Another still unused data type is
DoubleValueHandle and it will not need to be aggregated.

Remaining data types can be all handled as long value with the special care
for unsigned long values. This is because IntValueHandle holds integers, that can
be losslessly converted to longs and LongValueHandle are long themselves. This
can simplify implementation, together with our ParserUtil.setHandleInteger.

The interface is made of transform calls, where the user of Performance mea-
surement framework supplies the ValueHandle he wants to transform. Trans-
formed results are not returned, but the correct output has to be set beforehand.

We are aware any independent settings outside constructor are discouraged,
because programmers can forget calling it, but it simplifies the overall implemen-
tation with the possibility of reduced overhead. In this matter, we are getting
information, how many outputs are provided for given input and then set out-
puts and next inputs accordingly, so that there is no more configuration required
and every Transformer gets its temporary storage based on input. Thus, thanks
to the exact fitting, there will not be unused space allocated just for case the
Performance measurement framework could need it.

29

4.2.1 Configuration

Configuration of VirtualDataSource is similar to the configuration of other Lin-
ux probes. Programmer has to define and describe, what he is going to do and
which value types should be used. The configuration should be placed under
etc/probeconfig.d/ and the name should end with .xml.

Here is an example of configuration. There is a sensor group called netststs

and sensors bytes and packets. Value-kind, name and long descriptions are
provided only for user getting metadata. The name should be unique, but now,
it does not affect framework internal workings.

There are two used properties used to set VirtualDataSource. One is used as
a specification, where should be the data obtained and the other specifies, what
should be done with them.

More precisely on configuration level, the first one is called sources. It is a
space separated list of all sources programmer wants to aggregate to the given in-
stance. URI-like sensor naming in form of datasource/probe/sensor#instance
is used. The instance part can be omitted, but it should be avoided, if one does
not want to get the unstable sampling. There are computers with USB net-
work cards, which fail in this example in the case sum would be ready for only
exact number of inputs. When the card is disconnected, the network interface
disappears.

Specification of the instance is therefore generally recommended. Note that
it is not the ultimate solution in case hardware can vary.

The second property is aggregators, that contains space-separated aggre-
gators in the order they should be ran. Numbers of inputs, outputs and their
types should match. The number of ValueHandles accepted by the first aggre-
gator should match the number of sources specified in properties. When they do
not match and the problem cannot be solved by omitting some of the records,
an exception will be thrown. We considered throwing an exception every time
the expected input does not match the real input, but that makes this sampling
unstable. More about this instability is described further in the text.

The configuration shown in Listing 4.3 should be placed somewhere under
etc/probeconfig.d with the extension .xml.

This is the first part of the configuration. The other part is much easier.
Programmer needs to add a text to etc/probeconfig.d/probeconfig.xml while
preserving its XML structure. Fortunately, it is not hard. Moreover, any other
record can be copied and modified according to required configuration. Resulting
configuration is shown in the Listing 4.4.

The group here should be the same as the group in sensor configuration.
Otherwise, the DataSource will not match the proper data together and the
group will not be offered.

4.3 Mapping data source

The last and the most omitted of the changes is MapDataSource. It is not a real
DataSource, that would get the data from the operating system and provide it
to the other parts.

30

<?xml version=” 1 .0 ” ?>
<a : con f i gRoot

xmlns:a=” ht tp : // jpda . dsrg . ow2 . org / c o n f i g . xsd”>

<sensorCfg group=” n e t s t s t s ”>
<i n s tanceCfg f o r=” bytes ”

value−type=” ulong ” value−kind=”gauge”>

<name>Al l bytes</name>
<l ongdesc>Sum of a l l bytes</ longdesc>
<property name=” aggrega to r s ”>sum avg</ property>
<property name=” sourc e s ”>

l i nux . j n i / n e t s t a t s / rx byte s#eth0
l i nux . j n i / n e t s t a t s / tx byte s

</ property>
</ ins tanceCfg>
<i n s tanceCfg f o r=” packets ”

value−type=” ulong ” value−kind=”gauge”>

<name>Al l packets</name>
<l ongdesc>Avg o f a l l packets</ longdesc>
<property name=” aggrega to r s ”>avg</ property>
<property name=” sourc e s ”>

l i nux . j n i / n e t s t a t s / tx packe t s
l i nux . j n i / n e t s t a t s / rx packe t s

</ property>
</ ins tanceCfg>

</ sensorCfg>

</ a : con f i gRoot>

Listing 4.3: Sensor configuration in the new VirtualDataSource

. . .
<v i r t u a l group=” n e t s t s t s ”>

< i d e n t i f i e r>n e t s t a t s</ i d e n t i f i e r>
<name>Network s t a t s</name>

</ v i r t u a l>
. . .

Listing 4.4: Data source config in the new VirtualDataSource

31

<?xml version=” 1 .0 ” ?>
<a : con f i gRoot
xmlns:a=” ht tp : // jpda . dsrg . ow2 . org / c o n f i g . xsd”>

<sensorCfg group=” n e t s t s t s ”>
<i n s tanceCfg f o r=” rxbytes ” value−type=” ulong ”

value−kind=”gauge”>
<name>Al l bytes</name>
<l ongdesc>Sum of a l l bytes</ longdesc>
<s ou r c e I n s t a nc e s for−i n s t ance=” d e f a u l t ”>

l i nux . j n i / n e t s t a t s / rx byte s#eth0
l i nux . j n i / n e t s t a t s / tx byte s

</ so u r c e In s t an c e s>
</ ins tanceCfg>
<i n s tanceCfg f o r=” txbytes ” value−type=” ulong ”

value−kind=”gauge”>
<name>Al l packets</name>
<l ongdesc>Avg o f a l l packets</ longdesc>

<s ou r c e I n s t a nc e s for−i n s t ance=” d e f a u l t ”>
l i nux . j n i / n e t s t a t s / tx packe t s
l i nux . j n i / n e t s t a t s / rx packe t s

</ so u r c e In s t an c e s>
</ ins tanceCfg>
</ sensorCfg>

</ a : con f i gRoot>

Listing 4.5: Configuration for MapDataSource

It is dedicated to mapping names, when multiple sets of names are provid-
ed. Although VirtualDataSource provides aggregation, that could replace this
data source, the configuration cannot be so usable, as it is much more generic.
Furthermore, when glued together, it cannot be so fast.

On the one hand, VirtualDataSource own the storage and can save whatever
there. It can transform everything into different value, but the transformation
costs CPU time. With MapDataSource, everything can be mapped and there will
be zero overhead after the initial cost.

On the other hand, MapDataSource reads the descriptions of other Data-

Sources and mimics them. It provides new names for the contents, that are still
to be sampled. However, after providing sampling context, all requests are sent
directly to the real DataSources, without any redirection.

Configuration is shown in Listing 4.5. Note the sourceInstances tag, that is
used for quick grouping of values. It could not be used in VirtualDataSource,
as there was more configuration to save.

32

l o ck . l o ck () ;
{

// The b u f f e r ’ s empty . . .
i f (f i r s t F i l l e d I t e m < 0) {

l o ck . unlock () ;
return fa l se ;

}

l i n e = f i r s t F i l l e d I t e m ;
}
l o ck . unlock () ;
//
// something wi th b u f f e r
// . . .
l o ck . l o ck () ;
{

occupiedCount−−;
i f (occupiedCount == 0) {

f i r s t F i l l e d I t e m = −1;
} else {

f i r s t F i l l e d I t e m =
(f i r s t F i l l e d I t e m + 1) \% c a p a c i t y ;

}
}
l o ck . unlock () ;

Listing 4.6: Triggering race condition in the original implementation

4.4 Bugs in the old implementation

4.4.1 Race condition

Old implementation was tried and benchmarked before we started working on it.
After the first benchmarks, random bug causing cycling appeared.

That seemed to be a race condition, that was already mentioned in this chap-
ter. The bug was found in SingleContextMemoryStore, more precisely in its
read() method. The locking was used to synchronize the access, but its use
was incorrect, as it did not cover whole critical section (bug in similar area was
predicted in Section 2.5.5).

The snippet in Listing 4.6 shows, how to trigger bug with synchronization.
This part of code contains ”Time of check to time of use” (TOCTOU) bug.

Variable occupiedCount is subtracted every time, but the program never checks,
whether it is negative. From here, if there is only one free item to take, two
threads can proceed to the line called ”something with buffer”. Afterward, the
crash is inevitable, if there are not be more threads to save this. The first exiting
thread sets occupiedCount to 0 and sets firstFilledItem, so that no one
can pass the first check. Yet, the second thread have already passed first check
and it is there to subtract one from occupiedCount, so it will be negative. The

33

condition will result in illegal state of application, because firstFilledItem

is set to something positive and therefore other parts think there is something
new to consume. When summed up, improper use of synchronization results in
repetitive writing of some events, that ends, when the hard disk is filled.

Something similar was found in the function record(). We decided to not
reimplement it, but only to fix the synchronization to get proper results from
following benchmarks.

4.4.2 Measurement of time taken

Benchmarking PMF and Kieker revealed the significant differences in sampling
speed. The cause was found to be extra 2 calls of System.nanoTime(), that were
not used in current code base. It was designed to serve with sampling time, but
as measurement of sampling time increased the time itself by factor of 3, it was
removed.

It can be explained by the way Java gets system time. In Linux JDK, syscall
is issued, which results in reduced performance.

34

tr
:V

ir
tu

a
lD

a
ta

T
ra

n
s
fo

rm
e
r

u
n
d
e
rl
y
in

g
C

o
n
te

x
t

:M
e
a
s
u
re

m
e
n
tC

o
n
te

x
t

m
c

:M
e
a
s
u
re

m
e
n
tC

o
n
te

x
t

m
a
n
a
g
e
r

:M
a
n
a
g
e
r

jp
d
a

:J
p
d
a

d
p

:V
ir
tu

a
lD

a
ta

P
ro

b
e

s
d

:
S

a
m

p
lin

g
 u

s
in

g
 V

ir
tu

a
lD

a
ta

P
ro

b
e

1
)

.g
e
tM

a
n
a
g
e
r

()
:x

1
)

g
e
tM

a
n
a
g
e
r

2
)

.c
re

a
te

M
e
a
s
u
re

m
e
n
tC

o
n
te

x
t

2
)

m
c

lo
o

p
()

3
)

.s
a
m

p
le

()
:x

3
)

s
a
m

p
le

5
)

.d
e
c
o
d
e

()

5
)

d
e
c
o
d
e

8
)

.d
e
s
tr

o
y

()

8
)

d
e
s
tr

o
y

4
)

.s
a
m

p
le

()
:x

4
)

s
a
m

p
le

6
)

.d
e
c
o
d
e

()

6
)

d
e
c
o
d
e

7
)

.t
ra

n
s
fo

rm

7
)

Figure 4.3: Example of sampling as VirtualDataProbe

35

tr2 :VirtualDataTransformertr1 :VirtualDataTransformerunderlyingContext :MeasurementContext

sd: VirtualDataProbeDetail

1) .transform

1)

2) .transform

2)

Figure 4.4: Example of sampling as VirtualDataProbe

36

5. Evaluation

When a new program is programmed or the valuable parts are changed, not
only its output is interesting, but also the performance. That means the time
required to process input and provide output. The performance and overhead of
the implementations have to be compared and evaluated to reveal performance
regressions and to recognise the faster implementation.

There are multiple performance-related measurements parts to be evaluated.
We would like to compare the performance difference between the old a the new
implementation. Also, the results of JPMF should be compared with the results
of different programs providing similar services.

5.1 Experiment design

Measurement of overhead is not an easily and objectively solvable problem. First,
there needs to be a benchmark, that will run a benchmarked portion of code. An
ideal benchmark should perform operations similar to real-life programs, so that
similarity in benchmark results correlates with the similarity of real programs.

Furthermore, measurement of overhead only does not provide usable example.
Overhead in certain situation could be 1% or 100%, but we cannot say, whether
the improvement was significant. Therefore, we decided to compare the perfor-
mance with another program, that was built with similar ideas in the mind. That
should give us usable results, which program is better.

To compare competiveness, it is a great idea to compare it with another
tool described here - Kieker. Kieker itself offers benchmark MooBench. The
benchmark is not full-fledged. It consists of simple cycling and busy waiting till
benchmark time ends. However, it provides the results in CSV format. As it is
the part of Kieker, we do not have to edit Kieker to work with it.

Judging the performance should be done on the same level. There is no
point in comparing PMF utilizing all features with Kieker using only basics. As
optimized and built for MooBench, Kieker offers only sampling, that consists of
method name, method entry time and method leave time. PMF configuration
was therefore edited to provide only the same amount of information.

Even after edit, PMF provides more robust output formats, that allows turn-
ing sensors on and off. This could bring in some slowdown, that we cannot
measure precisely without changing the whole architecture.

In spite of that, Kieker provides ability to be ran without any output. With
the output omitted, all other parts would send all the data as if output was used.
This helps, when comparing overhead of whole framework with the overhead of
I/O. We have also implemented the output called EmptyTransportProvider just
to measure, how many time is spent on formatting and writing the data.

5.1.1 Possible errors

As we are measuring something, we should not forget to mention, where are the
possible errors, even systematic ones. One problem are disk writes. If one cannot
reduce them, sampling results will be biased in favor of the one, who writes less.

37

That seems to be fair, but when writing less affects possible extensions, it should
be avoided. It is known, that Kieker uses more effective data format - it writes
everything in simple CSV.

One more systematic error arises from use of different instrumentation. PMF
uses ASM to instrument the bytecode; Kieker uses AspectJ and does not instru-
ment repeated function entries. When recursive method calls are used, Kieker
will instrument and measure only the first invocation of the recursive function.
On the other hand, PMF will instrument every invocation, even when it is nested.
This is not the case of comparing old PMF with new PMF.

5.1.2 Independence

One unexpected result was unprovable independence. Data looked like self-
correlated when seen by eye, but mathematical methods used when finding self-
correlation did not lead to any usable results. Self-correlation was observed on
the range bigger that is allowed for lag.plot and was unstable, i.e. period was
oscillating around one value.

Without independence, we cannot claim anything about a real distribution
hidden behind the data, if we are missing the real dependencies. We should say,
that the independence was not explicitly denied by data nor we could prove we
are missing it. Therefore, we will try to expect it.

We can compare means, medians or standard deviations and if the data are
dependent in the same way, we can get some results.

Comparison of means, medians and possibly also extremes can help us when
comparing two unknown distributions, but it cannot lead us to difference in an
underlying distribution. With standard deviation and Chebyshev’s inequality,
we can put limit on probability the value will be outside certain bounds. More
precisely, we can say,

P (|X − µ| ≥ kσ) ≤ 1

k2

5.2 Experiment setup

We measured the performance using Intel(R) Xeon(R) CPU E5320 @ 1.86GHz,
Linux 4.0.4-303.fc22.x86 64, 8175472 kB MemTotal. The benchmark ran from
tmpfs to eliminate waiting for I/O. First 10 000 values were dropped, because
state during the warmup does not make the overall image of the system.

There are some problems with measurement evaluation. All the benchmarks
used in evaluation are built to return one number stating, how long did the
benchmarking take to complete. This is a good predictor, as it sums up to
everything from benchmark – how long will it take for the program to complete.

There are also some downsides. We cannot assume anything about the data
and so, we should not mathematical theorems.

5.2.1 Kieker

We have downloaded Kieker, that provides dynamic software analysis and appli-
cation monitoring, just like our Performance Measurement Framework.

38

Kieker contains a benchmarks MooBench and is configured to work with it, so
we decided to use it.

Kieker, as is, does not provide sampling sensors in its microbenchmark. When
we oversimplify it, it just writes method entry time, leave time and its signature
to log file. The disadvantage is, that sensors without sampling are not used
and we won’t get the bottleneck, if it is in non-measured part. However, this is
also an advantage, as we can localize bottlenecks more easily. This solution of
not providing any additional details was also used by JPMF to measure really
minimal overhead, without arguable additional options, that can be turned on
and off.

5.2.2 MooBench

MooBench is a benchmark provided by Kieker. It is calling measured function in a
rapid succession, hence the measured overhead is exaggerated. It is also not real-
world and balanced test, but as we are comparing overhead of our implementation
and we cannot move other limits (like I/O), it could serve as a help in comparison
of loss of overall performance.

We measured Kieker and PMF using the same MooBench benchmark. Full
Kieker benchmark can be found in
kieker-examples/OverheadEvaluationMicrobenchmark/MooBench

in complete Kieker sources. Full benchmark including our changes to sources can
be found inside the distribution package. It is not our work, we have only done
some changes.

We changed the sampling in benchmark.sh. Now, it should benchmark also
PMF in the similar way like Kieker did it.

5.2.3 DaCapo

Another benchmark suite is called DaCapo [29]. It should solve the problems
with only very synthetic load. DaCapo tries to emulate real-world problems and
therefore is closer to the real-world programs. It contains more subbenchmarks,
that will be mentioned later.

Slow sampling

DaCapo uses custom startup to get stable results. It tries to eliminate overhead
by the special preparations like multiple warm-up rounds. However, when they
are used, thousands of samples cannot be collected, as it would took too long. To
avoid the issues and to get more samples in reasonable time, we do not strictly
follow the ideal way to benchmark the differences.

When benchmarking in the preferred way, we should measure the biggest data
possible to eliminate overhead. DaCapo usually provides small, default, large and
huge datasets. When preparing the benchmark to be run, we tried to run it and
single run with default dataset took 51 second, small run took 21 seconds. If we
required multiple measurements to avoid distortions by JIT, even 21 seconds of
benchmarking is too long, so we have chosen the small dataset.

Furthermore, in benchmarking, warmup rounds should be left to warm bench-
mark up and we should measure only final results. This solution would take plenty

39

of time, as with 10 warmup rounds and single measurement rount, it would take
minutes to get a single result. Therefoe we use also warm-up rounds with the
first few warm-up rounds cropped.

We were deciding, which part of rounds should be cropped. Java JIT in
Hotspot runs after 10 000 iterations[30], but we do not have capacity to handle
at least ten thousands of iterations. If we took the result from preparation, it
is 10 000 iterations, 21 seconds each, that makes almost two and half days of
computation of useless results. Then, useful results would still be awaited.

In that matter, we have lowered our requirements. We are making only 10 000
iterations and we will throw away the first 10%. We are aware this computation
can bring in systematic error. With 14 benchmarks to perform, choice is harder.

Randomly incorrect results

DaCapo uses sampling and verification of results based on checksums to ensure the
correct code was run. However, it revealed the problems in 6 of 14 benchmarks,
that were not returning the correct results seldomly both with Kieker and PMF.
The completion time of benchmark were then incorrectly reported to be few
milliseconds instead of thousands of milliseconds.

Thus, we remove the results of the following subbenchmarks from comparison:

• Avrora – random missing files, some successful attempts

• Batik – random missing files, failed digest verification of result, some suc-
cessful attempts

• Eclipse – some classes not found, failed digest verification of result

• FOP – missing files, failed digest verification of result, no successful at-
tempts

• H2 – failed digest verification of result

• Jython – missing files, some successful attempts

• LUindex – DacapoException: cannot write to index directory

Drawbacks

One of the major drawbacks is the basic property of all benchmarks. When
programmer gets the benchmark, he tends to optimize benchmarked program, but
the optimization is not based on real performance, but only on the benchmark.
It is hard to assess, how this affects the overall performance of Kieker, but we
should bear it in mind as a source of systematic error.

On the other hand, during benchmarking, we noticed we are slower than
Kieker and investigated it. We found out, that we are doing extra two calls
of System.nanoTime(), that are not necessary. It was two times on entry and
two times on exit, that means four extra calls to the function, which result is
never used. These four times were used to measure time spent during the whole
measurement. Kieker does nothing like that and no one used it in our system,
so we have removed it. Further investigation did not reveal the exact cause

40

except something well-known - syscalls are slower than the other calls. Our JVM
initializes reading for once by assigning value to its own pointer to function and
therefore is doing virtual call. Under that, Linux gettimeofday() is called, that
should not cause the slowdown. However, we should bear in mind, that slowdown
could be almost unnoticeable — the time difference caused by measurement was
just bigger, than other slowdowns.

5.2.4 JPMF

Comparison of two JPMF implementations was done using MooBench. It pro-
vided everything required and was an independent benchmark, which was JPMF
not tuned. Therefore, we believe its results can be trusted.

5.3 Measurement

5.3.1 Kieker vs PMF – MooBench

This measurement will be orientational and will also provide data from non-
instrumented run to be compared with the other data.

Hypothesis

We tried to use bootstrapping, but is not the silver bullet and therefore, we
decided to use non-parametric tests on hypothesis:
H0: Kieker runs in less time than PMF.
H1: Kieker runs in equal or greater time than PMF.

Measurement

As described in Chapter 5.2.1, we have disabled all sensors and used only fields
in this benchmark.

PMF and Kieker were compared, while their default configuration was being
used. That means Kieker is instrumented using AspectJ and PMF is instrument-
ed using ASM.

We have multiple measurements - dependence between the overhead and the
time taken in our test method. We sampled the time taken with respect to in-
method time. Sampling was performed in steps of 5000 nanoseconds starting
from 0 nanoseconds to 0.5 milliseconds in steps of 5000 nanoseconds.

Evaluation

The distribution is heavily right skewed by outliers. That means we are without
possibility to approximate something, as we are not working with the normal
distribution. We can find Var or σ, that are big and so unusable. We decided to
use subsampling and bootstrapping techniques.

Note that results and improvements differ with different settings. Default
configuration uses longer in-method time, that decreases proportional part of the
overhead. This can be approximately seen in the plot comparing run without
instrumentation (average) with runs with instrumentation (again average).

41

When the results are evaluated, it can be seen the bigger execution time is,
the less overhead will the instrumentation have. This is predictable — extra
instrumentation code should execute in the almost constant time, that does not
directly losses from the execution duration. There can be a correlation, as a short
run does not get enough time to get its own working set to all caches.

There were troubles with recognition between PMF and Kieker results, when
we used different types of plots. The plot with 95% confidence intervals is dis-
played in Figure 5.1. Confidence interval of Kieker is the red and dark red, PMF
is the green and dark green. We can clearly see the distinction, although it is not
on the the whole range.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

1
e

+
0

5
2

e
+

0
5

3
e

+
0

5
4

e
+

0
5

5
e

+
0

5

Time inside method

T
im

e
 s

p
e

n
t

Figure 5.1: Showing almost constant overhead of Kieker and PMF after boot-
strapping

These confidence intervals were calculated from resampling to 1000 samples
using mean.

These hypotheses were tested using two sample Kolmogorov-Smirnov tests
(ks.test) and also double sided Wilcoxon Rank Sum test. Wilcoxon Rank sum
test could not get reliable evidence against H0 with 0 wait time, resulting in
p-value of 0.6462.

42

For all other times and also with the wait time of 0, Kolmogorov-Smirnov test
showed very strong evidence against H0 and refused hypothesis on α = 0.01 using
Wilcoxon Rank Sum tests and also Kolmogorov-Smirnov test. R data analysis
suite showed p-values ≤ 2.2e-16 for all of the tests except one noted.

The performance of different outputs in PMF and Kieker was also compared
to assess overall slowdown. This disproved the prediction the overhead is almost
constant. Some plots can be found in benchmarks. The first there is Kieker,
that is noticeable slower from the others. The second one is a measurement of
sampling time, when there was no instrumentation. Therefore, the overhead can
be seen, even without any comparisons with Kieker. The next one is PMF doing
everything, but without output to disk. The another one is our XmlFileDataS-

torage and the final one is IndexedFileDataStorage. Complete plots are in
MooBench byMethodTime/tmp/graf*.png, some of them for the extreme values
follow.

(a) Function execution 0ms (b) Function execution 0.5ms

Figure 5.2: Comparison of Kieker, nothing, PMF without output, PMF/ASCII
and PMF/BIN performance

We also provide ”speedup plot” to compare speedups of the two implemen-
tations with no instrumentation whatsoever. As you can see in Figure 5.3, using
instrumentation and performance measurement causes negative speedup (slow-
down). The slowdown vanishes with in-method times increasing. By comparing
the performance data of PMF and Kieker, using PMF with binary logging causes
average slowdown of 13µ seconds, while using Kieker causes average slowdown of
17µ seconds. When we compare speedup of Kieker compared to PMF, we get the
Figure 5.4.

5.3.2 Kieker vs PMF – DaCapo

DaCapo contains multiple benchmarks: LUsearch, PMD, Sunflow, Tomcat, Trade-
beans, Tradesoap and Xalan. Other were discarded in part Experiment setup
(5.2). To simplify naming and to avoid repetitive writing, we will use X as a
placeholder for one of these benchmarks.

43

Figure 5.3: Speedup of Kieker and PMF per method time

Figure 5.4: Speedup of Kieker with PMF as base per method time

Hypothesis

The hypothesis:
H0: Kieker runs in less time than PMF in benchmark X.
H1: Kieker runs in equal or greater time than PMF in benchmark X.

Measurement

Measurement took more than one week to complete, so our approximation of
long-running benchmark was true. Benchmark provided values, that were later
used. Medians of results are in Table 5.1.

44

Table 5.1: Overview comparing running times in ms.

Median (Kieker) Median (PMF)
LUsearch 246 247
PMD 12 12
Sunflow 701 687
Tomcat 1303 1293
Xalan 122 137
Tradebeans 672 678
Tradesoap 3125 3144

Table 5.2: Results of tests as p-values

KS test Wilcox
LUsearch 0.991 1
PMD 0.99 0.9522
Sunflow <2.2e-16 <2.2e-16
Tomcat <2.2e-16 <2.2e-16
Xalan 1 1
Tradebeans 0.9999 1
Tradesoap 1 1

Evaluation

Kolmogorov-Smirnov test (KS test) and Wilcox test (Wilcox) were used to eval-
uate the results. The results are in Table 5.2, depicted values are p-valus using
the given tests. Highlighted values disprove the hypothesis H0 at α = 0.01.

The measurements show two statistially significant results, but due to the
issues mentioned in setup (5.2) and small differences between the values reported,
it is hard to draw a conclusion from it. Bottleneck of DaCapo was mentioned to
be in kernel and therefore, we cannot get significant differences between the two
datasets.

5.3.3 Kieker vs PMF – with DiSL

Hypothesis

Hypotheses used:
H0: CDF of PMF with DiSL does not lie below the CDF of Kieker with DiSL.
H1: CDF of PMF with DiSL lies below the CDF of Kieker with DiSL.

Measurement

It was found out, that the instrumentation of Kieker is slower when compared
to PMF. One possible reason would be wrong instrumentation framework, as
Kieker uses AspectJ and PMF uses ASM. To avoid the issue, we decided to
compare performances of Kieker and PMF by a new implementation of DiSL [31]
to the both tools.

45

Kieker already implemented DiSL supporting class, that was designed to work
out of box. However, it did not run with new DiSL, because private class vari-
ables as constants were used and DiSL failed when running it. After fixing the
bug by inlining the constants by hand and the another bug with NullPointerEx-

ception bug caused by unexpected bootstrap ClassLoader (getClassLoader()
was returning null), the benchmark could be finally ran.

PMF did not provide the support out of box, hence it had to be implemented.
The implementation had some drawbacks, that were caused by state, that had to
be preserved across the calls. DiSL implements @ThreadLocal annotation with
the fast local variable access to facilitate state preservation, but in PMF, the state
of sampling can be accessed from multiple threads. With the use of custom hold-
ers, org.ow2.dsrg.jpmf.agent.disl.DiSLClass and DiSLEventSource from
the same package were produced.

This fix in Kieker suffered from some problems, as the severe errors were
printed to console:

SEVERE: Failed to add new monitoring record to queue. Queue is full.

Either increase ’QueueSize’ or change ’QueueFullBehavior’ for the con-

figured writer

We could reconfigure Kieker, but we think reconfiguration would bring in
more parameters and additional bias, that cannot be fully explained. Therefore,
everything was measured using the old implementation.

Evaluation

Results are shown in Figure 5.5 and Figure 5.6. As one can easily see without
complete evaluation, the performance is comparable when comparing medians,
but the difference is shown with means. That shows we achieved one of our
requirements – getting stable results.

Figure 5.5: Comparing medians of PMF and Kieker with DiSL deployed

46

Figure 5.6: Comparing means of PMF and Kieker with DiSL deployed

Table 5.3: Comparing p-values when testing results of benchmarking of PMF and
Kieker with DiSL

Running time [µs] KS Wilcox
0 1 1
50000 <2.2e-16 <2.2e-16
100000 <2.2e-16 1
150000 <2.2e-16 <2.2e-16
200000 <2.2e-16 <2.2e-16
250000 <2.2e-16 <2.2e-16
300000 <2.2e-16 <2.2e-16
350000 <2.2e-16 <2.2e-16
400000 <2.2e-16 <2.2e-16
450000 <2.2e-16 <2.2e-16

Although K-S test is used when comparing CDF, we made Table 5.3 com-
paring also p-values of Wilcox test to compare populations instead of only their
CDFs. Bold values are significant and therefore disprove H0 on α = 0.01.

From the table and also plots, PMF is faster in all times except when the
function finishes immediately. It is because of the implementation of DiSL in
PMF, that uses lazy loading of instrumented functions. Therefore, the first run is
slower, but in the consecutive runs, PMF wins (Wilcox show one more exception).

The results and benchmarks were in favour of this setting instead of the orig-
inal one. We should note that DiSL uses

Sampling time was reduced even when compared with original ASM. Another
interesting result to note is the stable returned output and outliers.

47

5.3.4 The new PMF vs the old PMF – same configuration

As PMF was edited, the performance impact of the edits should be measured.
For simplicity, we will call PMF before our edits ”old PMF” and performance
after our edits ”new PMF”.

Hypothesis

First, the tests were used as noted before. We took:
H0: Old PMF completes the benchmarking in less time than new PMF.
H1: Old PMF completes the benchmarking in equal or greater time than new
PMF.

Measurement

First, the technical preparations. We provided XML with changed configuration,
so we have to compare it with something similar. We should not use features like
TeeFilter. Everything can be simply reverted to the time, when our changes
were only in our local repository.

Some changes, that could affect performance, like newer ASM, were also per-
formed. After all, we would like to compare the real-life performance. Newer
architecture is designed in order to withstand higher load, but it cannot be guar-
anteed. Therefore, measurements serve as an insurance, that no performance
regressions were introduced.

This benchmark should be useful, as the execution time of sampled program
is measured, while the benchmark is not slowing the measurement down by per-
forming notoriously known slow operations, such as I/O load.

After fixing the bugs in original implementation, the benchmark returned the
expected values.

Evaluation

To compare them, non-parametric tests (wilcox, KS) outlined in the previous
subchapter were used.

Both non-parametric tests finished with p-value ≤ 2.2e-16, that is the rigorous
signal old PMF is not faster.

To assess the difference, mean-based bootstrapping was used again. The 95%
confidence interval provided by bootstrapping was, that for running time zero, old
measurement took 185.708 to 185.848 ns while the new implementation completed
the benchmark in 135.096 to 135.181 ns. The difference can be seen as 2̃7%
speedup in the new PMF.

With the biggest wait settings, old PMF could perform its task in 637515 to
637846ns and new PMF in 587010 to 587142 ns. Everything is still based on
bootstrap and 95% CI. That shows a stable trend, that the newer PMF is about
50µs faster. The difference is small, but it means noticeably lower overhead when
sampling functions, that runs only for a short time.

48

6. Conclusion

There were multiple changes, that lead us to the conclusion about completed
goals.

We have implemented PipelineElement, that is used during data processing.
Except that, VirtualDataSource and MapDataSource were implemented to serve
the goals, that could be accomplished by PipelineElement, but with the various
implementation and performance issues.

Pipeline had to provide an aggregation, that could be hard to access without
dedicated data source. The aggregating datasource was implemented as Virtu-

alDataSource.
Renaming of the values from multiple datasources predicted in the JPMF

thesis [26] was accomplished by MapDataSource. The main reason to design it
was improving the performance.

We have compared performance of data harvesting in JPMF with an anoth-
er framework providing the similar possibilities, Kieker. Comparison yielded a
result of advantage of using JPMF. The validity of comparison also led to the
idea of DiSL instrumentation. That instrumentation was also implemented and
sucessfully tested against the other framework with the similar load. Our imple-
mentation was faster in the majority of input values.

Furthermore, we have compared the old implementation before the changes
were introduced with the new implementation containing pipeline. Evaluation
shows the statistically significant difference in favour of the new implementation.

Therefore, we have implemented new configurable and extensible system for
performance data sampling and filtering, that provides aggregation and sensor
renaming. Despite extending the framework, we have not sacrificed the perfor-
mance. Moreover, we have helped framework to get more consistent results, which
everyone will profit from.

49

Bibliography

1 WWW.PLUSKA.SK. Vlanaǰśı kolaps danového systému stál Slovensko aspon 10
miliónov eur. 2013. Available also from WWW: 〈http://www.pluska.sk/s
pravy/z-domova/vlanajsi-kolaps-danoveho-systemu-stal-slovensko-

aspon-10-milionov-eur.html〉. ISSN 1336-9776.

2 TVARDZÍK, Jozef. Daniari vymenili systém za desiatky miliónov. Predošlý pokus
stál za pádom vlády. www.etrend.sk. 2015. Available also from WWW: 〈http:
//www.etrend.sk/ekonomika/daniari-vymenili-system-za-desiatky-

milionov-predosly-pokus-stal-za-padom-vlady.html〉. ISSN 1336-2674.

3 ŠPINNER, Vladimı́r. Kolaps na danovom úrade? — košice:dnes. 2015. Available
also from WWW: 〈http://www.kosicednes.sk/kolaps- na- danovom-
urade/〉. ISSN 1339-7605.

4 TOMA, Branislav. Daniarom viazne nový systém - Pravda.sk. Pravda.sk. 2015.
Available also from WWW: 〈http://spravy.pravda.sk/ekonomika/clano
k/352491-daniarom-viazne-novy-system/〉. ISSN 1335-4051.

5 HEALTHCARE.GOV. Health Insurance Marketplace. 2015. Available also from
WWW: 〈http://healthcare.gov〉.

6 LEVINSON, Daniel R. An Overview of 60 Contracts That Contributed to the
Development and Operation of the Federal Marketplace Report (OEI-03-14-
00231) 08-26-2014. Oig.hhs.gov. 2015. Available also from WWW: 〈http :
//oig.hhs.gov/oei/reports/oei-03-14-00231.asp〉.

7 OBAMA, Barack. Obama addresses healthcare website glitches - BBC News. 2015.
Available also from WWW: 〈http://www.bbc.co.uk/news/world-us-
canada-24613022〉.

8 ORACLE. sar - system activity reporter. 2015. Available also from WWW: 〈http:
//docs.oracle.com/cd/E26505_01/html/816-5165/sar-1.html〉.

9 MICROSOFT. Perfmon. 2015. Available also from WWW: 〈https://technet.
microsoft.com/en-us/library/bb490957.aspx〉.

10 BARTH, Wolfgang. Nagios: System and Network Monitoring. San Francisco, CA,
USA: No Starch Press, 2006. ISBN 1593270704.

11 OLUPS, Rihards. Zabbix 1.8 Network Monitoring. 2010. ISBN 184719768X.

12 REN, Gang; TUNE, Eric; MOSELEY, Tipp, et al. Google-Wide Profiling: A
Continuous Profiling Infrastructure for Data Centers. IEEE Micro. 2010, vol.
30, no. 4, pp. 65–79. Available also from WWW: 〈http://dx.doi.org/10.
1109/MM.2010.68〉. ISSN 0272-1732.

13 MARS, Jason; VACHHARAJANI, Neil; HUNDT, Robert; SOFFA, Mary Lou.
Contention Aware Execution: Online Contention Detection and Response. In.
Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. Toronto, Ontario, Canada: ACM, 2010, pp.
257–265. CGO ’10. Available also from WWW: 〈http://doi.acm.org/10.
1145/1772954.1772991〉. ISBN 978-1-60558-635-9.

14 OPENGROUP. ARM. 2015. Available also from WWW: 〈https://collaborat
ion.opengroup.org/tech/management/arm/〉.

50

http://www.pluska.sk/spravy/z-domova/vlanajsi-kolaps-danoveho-systemu-stal-slovensko-aspon-10-milionov-eur.html
http://www.pluska.sk/spravy/z-domova/vlanajsi-kolaps-danoveho-systemu-stal-slovensko-aspon-10-milionov-eur.html
http://www.pluska.sk/spravy/z-domova/vlanajsi-kolaps-danoveho-systemu-stal-slovensko-aspon-10-milionov-eur.html
http://www.etrend.sk/ekonomika/daniari-vymenili-system-za-desiatky-milionov-predosly-pokus-stal-za-padom-vlady.html
http://www.etrend.sk/ekonomika/daniari-vymenili-system-za-desiatky-milionov-predosly-pokus-stal-za-padom-vlady.html
http://www.etrend.sk/ekonomika/daniari-vymenili-system-za-desiatky-milionov-predosly-pokus-stal-za-padom-vlady.html
http://www.kosicednes.sk/kolaps-na-danovom-urade/
http://www.kosicednes.sk/kolaps-na-danovom-urade/
http://spravy.pravda.sk/ekonomika/clanok/352491-daniarom-viazne-novy-system/
http://spravy.pravda.sk/ekonomika/clanok/352491-daniarom-viazne-novy-system/
http://healthcare.gov
http://oig.hhs.gov/oei/reports/oei-03-14-00231.asp
http://oig.hhs.gov/oei/reports/oei-03-14-00231.asp
http://www.bbc.co.uk/news/world-us-canada-24613022
http://www.bbc.co.uk/news/world-us-canada-24613022
http://docs.oracle.com/cd/E26505_01/html/816-5165/sar-1.html
http://docs.oracle.com/cd/E26505_01/html/816-5165/sar-1.html
https://technet.microsoft.com/en-us/library/bb490957.aspx
https://technet.microsoft.com/en-us/library/bb490957.aspx
http://dx.doi.org/10.1109/MM.2010.68
http://dx.doi.org/10.1109/MM.2010.68
http://doi.acm.org/10.1145/1772954.1772991
http://doi.acm.org/10.1145/1772954.1772991
https://collaboration.opengroup.org/tech/management/arm/
https://collaboration.opengroup.org/tech/management/arm/

15 HOORN, André van; WALLER, Jan; HASSELBRING, Wilhelm. Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Analy-
sis. In. Proceedings of the 3rd ACM/SPEC International Conference on Per-
formance Engineering. Boston, Massachusetts, USA: ACM, 2012, pp. 247–
248. ICPE ’12. Available also from WWW: 〈http://doi.acm.org/10.1145/
2188286.2188326〉. ISBN 978-1-4503-1202-8.

16 JÚNOŠ, Peter. Extending Java Performance Monitoring Framework with Support
for Linux Performance Data Sources. 2012.

17 DRÁB, Martin. Extending Java Performance Monitoring Framework with Sup-
port for Windows Performance Counters. 2012.

18 MYTKOWICZ, Todd; DIWAN, Amer; HAUSWIRTH, Matthias; SWEENEY,
Peter F. Evaluating the Accuracy of Java Profilers. In. Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. Toronto, Ontario, Canada: ACM, 2010, pp. 187–197. PLDI ’10.
Available also from WWW: 〈http://doi.acm.org/10.1145/1806596.
1806618〉. ISBN 978-1-4503-0019-3.

19 ORACLE. OpenJDK: jmh. 2015. Available also from WWW: 〈http://openjdk.
java.net/projects/code-tools/jmh/〉.

20 KNUTH, Donald E. Structured programming with go to statements. Computing
Surveys. 1974, vol. 6, pp. 261–301.

21 MACEACHERN, Doug. SIGAR - System Information Gatherer And Reporter.
2015. Available also from WWW: 〈https://support.hyperic.com/displa
y/SIGAR/Home〉.

22 DÖHRING, P. Visualisierung von Synchronisationspunkten in Kombination mit
der Statik und Dynamik eines Softwaresystems. 2012. Available also from
WWW: 〈http://kieker-monitoring.net/download/synchrovis/〉.

23 NETZER, Robert H. B.; MILLER, Barton P. What are race conditions? some
issues and formalizations. LOPLAS. 1992.

24 HUNT, John. The Unified Process for Practitioners: Object-Oriented Design,
Uml and Java. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2000.
ISBN 1852332751.

25 MICHAEL, Maged M. Hazard Pointers: Safe Memory Reclamation for Lock-Free
Objects. IEEE Trans. Parallel Distrib. Syst. 2004, vol. 15, no. 6, pp. 491–504.
Available also from WWW: 〈http://dx.doi.org/10.1109/TPDS.2004.8〉.
ISSN 1045-9219.

26 BULEJ, Lubomı́r. Connector-based Performance Data Collection for Component
Applications. 2007.

27 IEEE, The; GROUP, The Open. Single Unix Specification version 4 - tee. 2013.
Available also from WWW: 〈http://pubs.opengroup.org/onlinepubs/
9699919799/utilities/tee.html〉.

28 FOG, Agner. The microarchitecture of Intel, AMD and VIA CPUs: An optimiza-
tion guide for assembly programmers and compiler makers. [online]. [Visited
on 2014-08-07]. Available from WWW: 〈http://www.agner.org/optimize/
microarchitecture.pdf〉.

51

http://doi.acm.org/10.1145/2188286.2188326
http://doi.acm.org/10.1145/2188286.2188326
http://doi.acm.org/10.1145/1806596.1806618
http://doi.acm.org/10.1145/1806596.1806618
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://support.hyperic.com/display/SIGAR/Home
https://support.hyperic.com/display/SIGAR/Home
http://kieker-monitoring.net/download/synchrovis/
http://dx.doi.org/10.1109/TPDS.2004.8
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/tee.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/tee.html
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

29 BLACKBURN, S. M.; GARNER, R.; HOFFMAN, C., et al. The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In. OOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications. Portland, OR, USA: ACM
Press, 2006, pp. 169–190. Available also from WWW: 〈http://dx.doi.org/
http://doi.acm.org/10.1145/1167473.1167488〉.

30 CLICK, Cliff. The Art of (Java) Benchmarking. 2009. Available also from WWW:
〈http://www.azulsystems.com/events/javaone_2009/session/2009_J1_
Benchmark.pdf〉.

31 MAREK, Lukáš; VILLAZÓN, Alex; ZHENG, Yudi, et al. DiSL: A Domain-
specific Language for Bytecode Instrumentation. In. Proceedings of the 11th
Annual International Conference on Aspect-oriented Software Development.
Potsdam, Germany: ACM, 2012, pp. 239–250. AOSD ’12. Available also from
WWW: 〈http://doi.acm.org/10.1145/2162049.2162077〉. ISBN 978-1-
4503-1092-5.

*

52

http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488
http://www.azulsystems.com/events/javaone_2009/session/2009_J1_Benchmark.pdf
http://www.azulsystems.com/events/javaone_2009/session/2009_J1_Benchmark.pdf
http://doi.acm.org/10.1145/2162049.2162077

List of Tables

5.1 Overview comparing running times in ms. 45
5.2 Results of tests as p-values . 45
5.3 Comparing p-values when testing results of benchmarking of PMF

and Kieker with DiSL . 47

7.1 Overview of contents on attached CD 56

53

Listings

4.1 Example JPMF configuration . 27
4.2 Alternative specification of tee . 28
4.3 Sensor configuration in the new VirtualDataSource 31
4.4 Data source config in the new VirtualDataSource 31
4.5 Configuration for MapDataSource 32
4.6 Triggering race condition in the original implementation 33

54

List of Figures

2.1 Synchroviz example from [22] . 9
2.2 JPMF modules from [22] . 9
2.3 Most important classes when processing performance data 11
2.4 Saving data in old versions of PMF 13

3.1 Saving data in proposed version of PMF 16
3.2 Concept of pipeline (simplified) 18
3.3 Expected interaction of pipeline (simplified) 19
3.4 Proposed map data source (high-level view) - compare to Figure 3.5 20
3.5 Proposed virtual data source (high-level view) - compare to Figure 3.4 21

4.1 Showing TransportPipeline – the base part of Pipelines 23
4.2 PipelineElement as in original work 25
4.3 Example of sampling as VirtualDataProbe 35
4.4 Example of sampling as VirtualDataProbe 36

5.1 Showing almost constant overhead of Kieker and PMF after boot-
strapping . 42

5.2 Comparison of Kieker, nothing, PMF without output, PMF/ASCII
and PMF/BIN performance . 43

5.3 Speedup of Kieker and PMF per method time 44
5.4 Speedup of Kieker with PMF as base per method time 44
5.5 Comparing medians of PMF and Kieker with DiSL deployed . . . 46
5.6 Comparing means of PMF and Kieker with DiSL deployed 47

55

7. Attachments

Attachments for this thesis are provided on an enclosed CD. Folder structure is
described in Table 7.1.

Table 7.1: Overview of contents on attached CD

thesis.pdf Text of this thesis with clickable references
jpmf Complete JPMF sources.
jpmf.diff Diff of sources between the original sources and the sources after

this thesis was completed.
benchmarks Benchmarks used. Benchmarks are not completely written in

this thesis

56

	Introduction
	Background
	JPMF Overview
	Goals

	Analysis
	Profiling
	Benchmarking
	Microbenchmarks

	Monitoring
	Original JPMF implementation for user
	Application-driven subsystems
	Externally-driven subsystems

	Event processing
	Event source
	Java performance data access
	Memory recorder
	Writing to disk
	Synchronization

	Goals revisited
	Configurable pipeline
	Pipeline filtering
	Virtual data source

	Design
	Processing pipeline
	Simplified data flow
	Reduced amount of synchronization
	Buffer resizing requirements

	Division of virtual data source
	MapDataSource
	VirtualDataSource

	Implementation
	Pipeline
	Overview of pipeline elements
	SpeedLimiterFilter
	InitialDropFilter
	TeeFilter
	MassTransformer
	Configuration
	Further extensions

	Virtual data source
	Configuration

	Mapping data source
	Bugs in the old implementation
	Race condition
	Measurement of time taken

	Evaluation
	Experiment design
	Possible errors
	Independence

	Experiment setup
	Kieker
	MooBench
	DaCapo
	JPMF

	Measurement
	Kieker vs PMF – MooBench
	Kieker vs PMF – DaCapo
	Kieker vs PMF – with DiSL
	The new PMF vs the old PMF – same configuration

	Conclusion
	Attachments

