
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

Vojtěch Vondra

Webová aplikace pro analýzu a
vizualizaci legislativńıho procesu

postavená na principech Linked Data

Katedra softwarového inženýrstv́ı

Vedoućı bakalářské práce: Mgr. Martin Nečaský, Ph.D.

Studijńı program: Informatika

Studijńı obor: Programováńı

Praha 2014

I wish to thank my supervisor, Martin Nečaský, Ph.D., for his introduction to the

world of Linked Data and for his advice during the development of the ontology

and dataset. I appreciate the effort made by the developers of Payola to make

Linked Data more accessible to the public.

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně a výhradně s

použit́ım citovaných pramen̊u, literatury a daľśıch odborných zdroj̊u.

Beru na vědomı́, že se na moji práci vztahuj́ı práva a povinnosti vyplývaj́ıćı ze

zákona č. 121/2000 Sb., autorského zákona v platném zněńı, zejména skutečnost,

že Univerzita Karlova v Praze má právo na uzavřeńı licenčńı smlouvy o užit́ı této

práce jako školńıho d́ıla podle § 60 odst. 1 autorského zákona.

V Praze dne 21.5.2014

Název práce: Webová aplikace pro analýzu a vizualizaci legislativńıho procesu

postavená na principech Linked Data

Autor: Vojtěch Vondra

Katedra: Katedra softwarového inženýrstv́ı

Vedoućı bakalářské práce: Mgr. Martin Nečaský, Ph.D.

Abstrakt: Ćılem této práce je vytvořit sémantickou databázi návrh̊u zákon̊u

schvalovaných v českém parlamentu. Pro popis legislativńıho procesu je vytvořena

ontologie popisuj́ıćı jednotlivé kroky schvalováńı a stavy návrh̊u zákon̊u. Databáze

i ontologie použ́ıvá RDF jako nástroj pro sémantizaci dat poskytovaných Posla-

neckou sněmovnou. Práce využ́ıvá existuj́ıćı ontologie, např. FRBR, pro reprezentaci

dat s užš́ım významem. Výsledná databáze bude prezentována pomoćı open-

source nástroje pro správu Linked Data, Payola, do kterého budou vytvořeny

pluginy pro vizualizaci dat pomoćı technologíı HTML5.

Kĺıčová slova: Linked Data, sémantický web, RDF, ontologie, legislativa, HTML5

Title: Web application for legislative process analysis and visualization built on

top of Linked Data principles

Author: Vojtěch Vondra

Department: Department of Software Engineering

Supervisor: Mgr. Martin Nečaský, Ph.D.

Abstract: The aim of this thesis is to create a new dataset containing bills being

passed in the Czech Parliament. It creates an ontology describing the legislative

process and the individual stages of passing the bill. Both the dataset and ontol-

ogy will use RDF to semanticize public exports provided by the Czech Chamber of

Deputies. To create the ontology, it is attempted to specialize existing ontologies

such as FRBR to describe data with a narrower domain. Resources representing

bills are linked to other ontologies to connect the dataset into the Linked Data

cloud. For practical presentation of the created dataset, new visualization plug-

ins are programmed into Payola, an open-source Linked Data management tool,

using HTML5 technologies.

Keywords: Linked Data, Semantic Web, RDF, Ontology, legislation, HTML5

Contents

Introduction 2

1 Technologies 3

1.1 Semantic Web . 3

1.1.1 Extending the current web 3

1.1.2 Linked Data . 4

1.2 RDF . 5

1.2.1 RDF serialization . 7

1.2.2 RDF Schema . 10

1.3 Web ontologies . 10

1.3.1 OWL . 11

1.3.2 Dublin Core . 13

1.3.3 FRBR . 14

1.3.4 FOAF . 15

1.3.5 SKOS . 16

1.3.6 Eurovoc . 17

1.4 Apache Jena . 17

2 Source data for the legislative process 20

2.1 Scope of source data . 20

2.1.1 Bills . 20

2.1.2 Amendments . 21

2.1.3 Members of Parliament and Political parties 21

2.1.4 Votes . 22

2.2 Chamber of Deputies exports . 22

2.2.1 Format of export files . 23

3 Ontology definition 24

3.1 Resource URIs . 24

3.2 Class and property definitions . 25

3.2.1 Bills . 26

3.2.2 Enumerated types as property values 28

3.2.3 Parliament members, parties and parliament 30

3.2.4 Votes . 31

1

4 Linked Data converter application 32

4.1 RDF converter . 32

4.2 Datasource API . 33

4.2.1 PSPDownloader . 33

4.2.2 PSPExport . 34

4.2.3 ExportDatabaseLoader . 34

4.3 Importer API . 38

4.4 Building and continuous deployment 40

4.5 Serving Linked Data over SPARQL 40

4.5.1 Updating the dataset . 41

5 Visualizations 42

5.1 Payola . 42

5.2 Statistical visualization . 42

5.3 Identifying non-standard legislative procedure 44

5.4 Timeline visualization plugin . 46

5.4.1 Implementation of the Timeline plugin 47

5.4.2 Using the Timeline plugin to display the legislative process 49

5.5 Public analyses . 50

Bibliography 51

List of Abbreviations 54

A Attached media 55

B Running the converter 56

2

Introduction

Laws affect our lives and behavior every day. Their codification defines our rights

and our responsibilities. At all times, we must adhere to them and take them

into account during our decision making. Laws can also be considered a dataset,

easily classified, structured, searchable, changing in time. Creating a dataset and

an ontology for bills, which are predecessors of laws, is the goal of this thesis.

In recent years, making government data accessible to the public has become a

major topic. Especially in the Czech Republic we see a rise in public participation

and an interest in transparency of official institutions. Benefits of the movement

are easy to find, more transparency means more accountability and an increase in

public participation reduces potential for corruption and brings new topics into

discussion. Creating a datasource for the legislative process can benefit both the

private and public sector.

In order to make the ontology usable and effective I will try to connect the

new data to existing ontologies which are being worked on in the Department of

Software Engineering of the Faculty of Mathematics and Physics. To promote

usage of the ontology, I will create visualizations of selected metrics and statistics.

To create them, I will use Payola, an open-source tool for analyzing and visualizing

RDF data. A side-product of this thesis should be visualization plugins usable

for any Linked Data dataset.

In the first part of the thesis I would like to present Linked Data which is

chosen as the platform for publishing the legislative process. Connecting the data

with semantic relationships is crucial and we will describe various tools which are

available to create them in Linked Data and RDF, the underlying technology.

Technologies used to create the ontology and dataset will be introduced. In the

second chapter, the scope of the dataset will be defined and individual entities will

be presented. Once the scope has been defined, the third chapter will describe

how the ontology was created and how all entities were mapped into Linked Data.

The fourth chapter is developer documentation for the converter application used

to parse the provided exports from the Chamber of Deputies website into RDF.

In the fifth and last chapter created visualizations will be presented.

3

1. Technologies

In this chapter, the goals and fundamental principles of Linked Data which is

chosen as the method for publishing legislative process data will be described.

Linked Data is a broader concept and technologies such as RDF on which it

relies will be explained on a level which is necessary to understand how the data

will be stored and structured.

1.1 Semantic Web

One of the main sources of information consumed and reused on an everyday basis

is the World Wide Web accessed through the Internet. The elementary building

blocks of the Web are individual Web pages and documents which are connected

together with hyperlinks. These links can be used to point to related topics or

transclude other documents using a simple reference. There are no limitations

how much or how little data individual documents can hold. Together, documents

with links make the Web a decentralized platform continuously extended and

revised in a worldwide collaborative effort. Web documents and links together

form a graph traversable by both human beings using Web browsers and machines

which can follow and download the links found in documents.

However, documents and hyperlinks based on the original WWW proposal[4]

and used at large today are usually unstructured and omit much of their semantic

value which makes automated processing of their relations and meaning difficult.

The World Wide Web Consortium (W3C), led by the creator of the World Wide

Web, Tim Berners-Lee, has addressed this problem in the Semantic Web activity.

From December 2013, Semantic Web is now part of W3C’s Data Activity1. One of

the solutions is to extend current languages used for representing Web documents

and add structure and semantic information to already published data. The

enriched resources and links are called Linked Data, the decentralized graph they

form is called the Linked Data cloud2.

1.1.1 Extending the current web

Documents on the hypertext Web are written in HTML (Hypertext Markup

Language) and use untyped hyperlinks represented by the HTML anchor (<a>)

1http://www.w3.org/blog/data/2013/12/13/welcome/
2http://lod-cloud.net/

4

http://www.w3.org/blog/data/2013/12/13/welcome/
http://lod-cloud.net/

element for connections. HTML by itself does not provide a way to describe the

type or contents of the document in a standardized way. The same applies for the

semantics of hyperlinks. There are many conventions or unstandardized formats

which can be used, but usually, they solve a specific use-case, e.g. enriching

results from search engines.

One of the multiple attempts to extend HTML, so it can convey this meta-

data, are microformats which target common components of documents, e.g.

contact information, event details, product information on e-commerce websites

etc. In Example 1.1 a business card type element on a Web page enriched with

microformats is shown.

<ul class="vcard">

<li class="fn">John Student

<li class="org">MFF

<li class="tel">604 -555 -1234

Example 1.1: An example of HTML markup enriched with the hCard microformat

Microformats are not the work of a standards body, but exist thanks to large

Web service providers which pledge support for the format (Google, Microsoft,

and Yahoo in this case [3]). They are useful for identifying meaningful snippets

of content containing structured data, but fail to describe the documents as a

whole and address the hyperlink issue.

Similar solutions exist and usually solve a single use-case or issue. HTML

documents can contain elements in their header called meta tags. Common meta

tags contain keywords, descriptions, author information, and similar information.

Large media providers such as Google or Facebook create proprietary formats3,4

to specify metadata which they are able to display. These approaches fail to

achieve the necessary universality and granularity to describe arbitrary docu-

ments. Linked Data tries to approach this issue.

1.1.2 Linked Data

Web pages on the Internet can be identified and accessed by their Uniform Re-

source Identifier (URI). Linked Data promotes the idea to give all individual

resources unique URIs down to the smallest parts of web page. The selected

URIs should be available through HTTP, so they can be accessed by the wide

3OpenGraph for social data https://developers.facebook.com/docs/opengraph/
4Google+ Author profiles https://support.google.com/webmasters/answer/2539557?

hl=en

5

https://developers.facebook.com/docs/opengraph/
https://support.google.com/webmasters/answer/2539557?hl=en
https://support.google.com/webmasters/answer/2539557?hl=en

public. Availability on the web is still not enough though, an open license al-

lowing usage and modification should be chosen for the data. Now, when the

user or machine can access the documents, it is preferable to choose a machine-

readable standardized format and link to other documents so the user can learn

more related information. Tim Berners-Lee has summarized this in four rules in

his article about designing Linked Data[1].

In the aforementioned documents Tim Berners-Lee introduces a quick five-

star test, shown in Table 1.1, which gives a quick glance of how well published

data conforms to Linked Data principles.

? Available on the web (whatever format) but with an
open licence, to be Open Data

?? Available as machine-readable structured data (e.g. ex-
cel instead of image scan of a table)

? ? ? as (2) plus non-proprietary format (e.g. CSV instead of
excel)

? ? ?? All the above plus, Use open standards from W3C (RDF
and SPARQL) to identify things, so that people can
point at your stuff

? ? ? ? ? All the above, plus: Link your data to other people’s
data to provide context

Table 1.1: Five-star test for Linked Data, source: http://www.w3.org/

DesignIssues/LinkedData.html

Even though the beginning of this chapter uses conventional Web pages writ-

ten in HTML as examples where semantic data can appear, the only limiting

common foundational block should be the Web and HTTP as the transport layer.

Bills collected and published as Linked Data in this thesis will exist in the RDF

format which will be explained in the next chapter and a HTML version of the

source data will be an application of the data for end users.

1.2 RDF

The Resource Description Framework is a W3C technology intended to represent

information about Web resources and is the primary technology used to create

Linked Data. RDF copies the nature of the Web by creating a graph-based data

model. It solves deficiencies mentioned in Chapter 1.1 by adding data types,

semantic links between documents and unambiguous URI identifiers of resources.

Information stored with RDF is intended to be read by computers.

There are various formats and programming languages in which RDF can be

represented. All of the formats follow the abstract model shown in Figure 1.1.

6

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

Every object in the graph data model is a RDF resource identified by a URI or

a literal value. The triple is often called a statement or arc.[10]

Figure 1.1: RDF triple

• Subject, which is the RDF resource being described.

• Predicate, which denotes a trait or aspect of the subject and is a RDF

resource itself.

• Object is another RDF resource or literal5 which is the value of the Pred-

icate.

RDF can be incorporated into a new technology by specifying a syntax which

is translatable into the graph model. The most common formats for storing and

representing RDF data will be described in Chapter 1.2.1.

The subject can be part of another triple as the predicate value. A subject

will typically have multiple properties as shown in Figure 1.2 and adding the same

property multiple times is also possible. Properties in the form of resources will

become useful later on during defining of schemas and ontologies. As an example,

the firstName resource in the figure should be a FunctionalProperty (having a

unique value) and its Domain should be a resource whose type is Person. Person,

Domain and FunctionalProperty would all be other RDF resources with defined

meaning.

In the world of Linked Data, anyone can say anything about a resource. This

allows extending existing descriptions of documents and enables Linked Data to

work on a global scale[11]. There is no authority which would control what can be

published or which would make any editorial changes. The drawbacks of such an

approach appear immediately. When designing applications working with RDF

data, care must be taken to account for inconsistencies, incorrect or false data,

or incomplete information.

5for some values, e.g. dates or numerical values, it is more convenient to represent them
in their original form instead of referencing them by a URI. Literals can be typed with the
ˆˆoperator, e.g. ”2014-05-05”ˆˆxsd:date.

7

Figure 1.2: Defining multiple properties of a single resources

Namespaces

RDF uses URIs to identify resources. Resources and properties of a common

topic typically reside in a namespace. In the world of RDF, this means they

share the same prefix in their URI. In the following chapters, several RDF vo-

cabularies will be introduced and in each one of them their resources have the

same URI prefix. All resources in the core RDF specification are in the following

namespace: http://www.w3.org/1999/02/22-rdf-syntax-ns#, often abbrevi-

ated rdf:. Namespaces are language constructs of different RDF storage formats,

but in the most common formats as RDF/XML or N3, the common URI prefix

is simply replaced by an arbitrary identifier and when using it, a colon is inserted

between the identifier and the suffix. The URI is then resolved by substituting

the identifier with the prefix and appending the suffix as shown in Example 1.2.

This follows the same rules as QNames in XML.[12]

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix dcterms: <http :// purl.org/dc/terms/> .

@prefix lb:

<http :// linked.opendata.cz/ontology/legislation/bill#> .

<http :// linked.opendata.cz/resource/legislation/cz/bill /2012/758 >

a lb:Bill ;

dcterms:identifier "2012/758" ;

lb:introductionDate "2012 -07 -26" ;

dcterms:title "Novela z. o pojistovnictvi" .

Example 1.2: RDF namespaces in the TTL format

1.2.1 RDF serialization

The general concept of the graph model has been now explained. In order to use

RDF data in the real world, a storage format must be chosen. Data then can

8

be transferred from memory representations into files or streams which can be

sent over the Internet. The act of persistently storing the graph model is called

serialization.

There are two common formats used, RDF/XML and N3. RDF/XML uses

XML, a wide spread Web technology with a rich ecosystem of documentation,

development tools, editors, and parsers. XML is notorious for its complexity and

N3 on the other hand is easier to write by hand and more comprehensible for

reading by humans, while still preserving machine readability.

Converters exist between RDF/XML and N3 (and its variants) and tools

which hold the graph in memory often provide methods to export to multiple

formats. Persistent storage backends with the capability of serializing RDF state-

ments are called triplestores.

RDF/XML

XML is a general purpose markup language for storing and transferring data.

It is a both human and machine readable text format with Unicode support.

Many protocols rely on XML as the format used for transport.6 Arbitrary data

structures can be converted into XML and back. A well-formed XML document

consists of a tree of XML elements. Those start and end with a tag and can

contain multiple XML elements as children or text content as shown in Exam-

ple 1.3. Elements can have additional properties such as author in the figure

called attributes.

<books>

<book author="Herman Melville">Moby Dick</book>

<book author="Mark Twain">Adventures of Huckleberry

Finn</book>

</books>

Example 1.3: Sample XML document

RDF/XML is a syntax for writing XML which transforms the RDF graph

into a tree structured XML document.[13] RDF graphs can be more complex

than trees by having circular references, multiple parents, or multiple edges. A

graph can be decomposed into a number of paths. Since the RDF graphs are

composed of subject-predicate-object triples, the paths always contain an alter-

nating sequence of nodes and properties. In Example 1.4 we see an example of

6e.g. the Extensible Messaging and Presence Protocol (XMPP) used for instant messaging
or RSS and Atom used for syndicating content on blogs or news websites.

9

a resource representing a deputy in the Chamber of Deputies which is the sub-

ject of three RDF statements: his first and last name, whose values are RDF

literals, and membership of a political party. The party is another RDF resource

serialized deeper in the document. The party is a subclass of foaf:Group which

is defined in the FOAF RDF vocabulary described in chapter 1.3.4. Instead of

repeating the definition of the foaf:Group resource, only a reference by its URI

is made.

<rdf:Description

rdf:about="http: //ld.opendata.cz/resource/psp.cz/person /237">

<foaf:firstName >Bohuslav </foaf:firstName >

<foaf:lastName >Sobotka </foaf:lastName >

<foaf:member >

<rdf:Description rdf:about

="http: //ld.opendata.cz/resource/psp.cz/group/CSSD">

<foaf:name >Česk á strana soci áln ě

demokratick á</foaf:name >

<dcterms:identifier >CSSD</dcterms:identifier >

<rdf:type

rdf:resource="http:// xmlns.com/foaf /0.1/ Group"/>

</rdf:Description >

</foaf:member >

</rdf:Description >

Example 1.4: RDF/XML serialized fragment (without root element with names-
paces)

Another possible abbreviation in RDF/XML is listing objects which share the

same subject and predicate next to each other. In Figure 1.4, if the Deputy was

a member of another group or organ, the organ’s resource could be present under

the foaf:member element. By traversing all non-overlapping paths in the RDF

graph we obtain its RDF/XML serialization. The representation in XML is not

unambiguous, multiple serialized documents can represent the same graph.

N3 and Turtle

N3 is a non-XML RDF serialization format and a assertion and logic language

as well. Its notation is much shorter than RDF/XML and human readability

was taken into account during its design.7 Tim Berners-Lee, one of the major

opinion leaders in the Semantic Web and Linked Data movement, works on its

development. N3 contains syntactic sugar for common idioms to ease writing and

to group related information.[14] N3 goes beyond capabilities of RDF in repre-

senting data and Turtle is the RDF-only subset of N3. Any Turtle serialization is

7http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/#intro

10

http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/#intro

valid N3.[15] Turtle is chosen as the format in which the Bill ontology is written

for its friendliness when written by hand and expressiveness when being read.

To re-use the example from the description of RDF/XML, the same entity

represented in Turtle is shown in Example 1.5. Further examples in subsequent

chapters will use Turtle for legibility and consistency.

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

@prefix dcterms: <http :// purl.org/dc/terms/> .

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

<http :// linked.opendata.cz/resource/psp.cz/person /237>

foaf:firstName "Bohuslav" ;

foaf:lastName "Sobotka" ;

foaf:member

<http :// linked.opendata.cz/resource/psp.cz/group /153> .

<http :// linked.opendata.cz/resource/psp.cz/group/CSSD >

a foaf:Group ;

dcterms:identifier "CSSD" ;

foaf:name "Ceska strana socialne demokraticka" .

Example 1.5: Turtle (N3) serialization

1.2.2 RDF Schema

Until now, RDF was described as a very loose way of representing data where

structure is at the discretion of the creator. Structuring and classifying data is

useful for obvious reasons, it makes querying and updating of batches easier. It

also allows to set expectations about resources and make assertions based on their

type.[16]

RDF Schema, often referred to as RDFS or RDF(S), introduces resources

which are similar to terms known from the object oriented programming paradigm,

examples are shown in Table 1.2. RDF resources become instances of classes

which are resources themselves. In RDF statements, predicates are resources

called properties which have a range and domain. Both classes and properties

can have subclasses and subproperties which narrow their scope.

Many components of RDF Schema were included and used in the more com-

plex Web Ontology Language (OWL) which brings more powerful schematic and

semantic features.

11

Classes used in RDF Schema
rdfs:Resource is the universal class, every resource in RDF is of

this type
rdfs:Class is used to create custom classes for other resources
rdfs:Literal is a literal string or integer value, it can have an

additional datatype
rdf:Property is used to create property classes

Properties used in RDF Schema
rdfs:subClassOf is used to organize class hierarchy
rdf:type is used to denote a resource is an instance of a class
rdfs:domain is assigned to rdf:Property instances and specifies

the subjects which can use it
rdfs:range is assigned to rdf:Property instances and specifies

the allowed values when using the property as a
predicate

Table 1.2: Examples of RDF Schema vocabulary, not exhaustive

1.3 Web ontologies

Generally, ontologies in computer science are declarative definitions of knowledge

about a certain domain. Ontologies define known subjects (individuals, such as

a person or object), both concrete and abstract, list known properties of sub-

jects and possible relationships between them. In addition, ontologies can define

constraints on these relations and properties.[20]

In Linked Data, with ontologies we can require RDF resources to have proper-

ties (even with a specific data type or belonging to a selected domain) by giving

them a class and defining known subject-property-object triples for that class.

Using this, we can also require RDF resources to connect to other resources, en-

couraging extending of existing RDF datasets. On any dataset described by an

ontology reasoners can be used to infer additional statements not defined explic-

itly. One of the main goals of this thesis is to create an ontology for bills passed

in the Parliament and link it to ontologies describing legal documents including

laws.

In the following sections, several established ontologies will be described. Most

of them are general purpose and can be used to create more specialized ones

with finer constraints and domain and range limitations. An example is the

FRBR ontology, which will be used to represent the process of passing a bill as a

document.

12

1.3.1 OWL

The OWL Web Ontology Language is a project endorsed by the W3C which

brings vocabulary necessary to implement ontologies for RDF data.

OWL extends RDFS and introduces concepts well-known from object-oriented

programming like classes and subclasses. When describing objects with RDF it

is useful to define more abstract classes and assign common properties to them,

more specialized subclasses will only have properties which are appropriate just

for them.

OWL uses vocabulary from RDFS and adds more complex restrictions and

semantic value. To give an example, in RDFS we could define two classes, Cat and

Dog, both subclasses of Animal. Nothing prevented us from creating a resource,

which would be an instance of both as shown in Example 1.6.

OWL has several variants, OWL Lite, OWL DL and OWL Full. Each sub-

language is a valid subset of the next one. OWL Lite provides features for class

hierarchy support and simple constraints, OWL DL adds more semantic expres-

siveness while maintaining decidability8 and OWL Full gives syntactic freedom

which does not guarantee decidability.[20] For example, in OWL Full a class can

be also treated as an instance or a collection of instances.9

@prefix ex: <http :// www.example.org > .

<ex:catdog >

dcterms:title "CatDog" ;

rdf:type <ex:Cat > ;

rdf:type <ex:Dog > .

Example 1.6: A resource which is an instance of two disjoint classes

With OWL, we can use the owl:disjointWith property to denote that some-

thing can be either a Cat or a Dog, but not both at once. OWL also provides

support for property cardinality description, versioning, annotation or set opera-

tions.10 In this section, those used in the bill ontology will be explained. In the

examples below, owl: refers to the http://www.w3.org/2002/07/owl# names-

pace.

Classes

First of all, OWL provides classes to establish a new ontology and define its

metadata with the owl:Ontology class. User-defined classes are instances of

8for every statement about resources, it is possible to decide if it holds or not
9http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties

10http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2

13

http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2

owl:Class, a subclass of rdfs:Class. OWL introduces owl:Thing, a parent of

every userland individual item, and owl:Nothing, an empty class.

Since RDFS vocabulary is a part of the OWL specification, we can use all the

features mentioned in Table 1.2.

Properties

Different types of properties affect the behavior of predicates in RDF triples,

several of them are used in the bill ontology.

• owl:ObjectProperty – object properties are relationships between two

class instances.

• owl:DatatypeProperty – values of datatype properties are RDF literals

XML schema datatypes, e.g. strings, integers, or dates.

• owl:FunctionalProperty – indicates that the value of the predicate is

unique for each subject, e.g. a car can only have one date of manufacture.

Each property can have a defined range and domain narrowing down what

subjects can use it and what objects can be the value of the property. Rela-

tions can be established on properties with the following property characteristics.

These allow reasoning on the data model, e.g. deducing new statements based

upon existing ones.

• owl:TransitiveProperty – if P is a transitive property, x, y and z are

resources, and both P (x, y) and P (y, z) are true, then also P (x, z) can be

deduced.

• owl:SymmetricProperty – let P be a symmetric property and x and y

resources. P (x, y) holds true if and only if P (y, x)

• owl:inverseOf – if a property P is marked as an inverse of property P2,

then we can deduce P (x, y) from P2(y, x) for resources x and y.

1.3.2 Dublin Core

When representing resources on the web, be it images, documents, videos, or

whole pages, it can be observed that most of them have several common prop-

erties such as a title, a creator, a date of publishing or subject of the resource.

14

Additionally when representing an object in RDF, it is useful to tell what for-

mat it is stored in, under what license terms it is provided or what language it is

written or spoken in. We can refer to this information as the resource’s metadata.

The Dublin Core Metadata Initiative provides a set of vocabulary terms which

describe these common properties. In order to avoid duplication of semantically

identical relationships in Linked Data, Dublin Core terms can be used as a shared

and interoperable vocabulary. The Dublin Core Metadata Element Set contains

fifteen base metadata elements.1112

The base metadata elements are available under two common namespaces:

the older http://purl.org/dc/elements/1.1/ and the newer http://purl.

org/dc/terms/. The first one was created before RDF and lacks definitions

of domains and ranges. Later, the second namespace was introduced in order to

avoid backward incompatible changes, containing all fifteen original elements and

multiple new ones, with a better definition.13 The bill ontology uses the newer

definitions.

Advantages of this approach are obvious, an RDF object is identified primarily

by its URI but in the real-world we would like to display a human-friendly name.

If the dataset uses Dublin Core, we can look for the triplet which contains the

predicate dcterms:title and find the appropriate name.

1.3.3 FRBR

The Functional Requirements for Bibliographic Records model was created with

the intention to classify bibliographic records but covers a much wider range

of intellectual and artistic works. It covers three group of entities, intellectual

works themselves, their authors and custodians and subjects of the the intellectual

endeavor of the first two.[2] The FRBR RDF vocabulary enables to use this model

as an ontology for RDF data. FRBR will be used to organize bills and their

individual revisions.

The first group entities defined by FRBR contains four classes:

• Work

• Expression

• Manifestation

• Item

11http://dublincore.org/documents/dces/
12http://tools.ietf.org/html/rfc5013
13http://wiki.dublincore.org/index.php/FAQ/DC_and_DCTERMS_Namespaces

15

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://dublincore.org/documents/dces/
http://tools.ietf.org/html/rfc5013
http://wiki.dublincore.org/index.php/FAQ/DC_and_DCTERMS_Namespaces

Figure 1.3: Basic FRBR classes and their relations

The Work class represents the the artistic work as a whole, be it a book title,

a musical piece, or a painting. The Work is not connected to a materialized form.

Instances of Expression are individual realizations of the Work. When talking

about a book, a first edition and a second revised edition of the same title would

be two different Expressions of one Work, the same applies for the original and a

translation. Beethoven’s Fifth is a Work, its arrangement for an orchestra is an

Expression but the arrangement played by two different orchestras would create

two separate Manifestations of it. Items are physical copies of expressions,

exemplars in your local library or CD recordings of a concert14.

This is general and flexible enough to describe revisions of a document in

time and include the participants present at each step. It isn’t necessary to use

all of the provided classes. In the case of bills, each bill is considered a Work, its

individual revisions are Expressions, Parliamentary Press containing the revision

would be a Manifestation and in the printed form an Item.

14http://archive.ifla.org/VII/s13/frbr/frbr1.htm#3.2

16

http://archive.ifla.org/VII/s13/frbr/frbr1.htm#3.2

1.3.4 FOAF

The Friend of a Friend ontology is used to describe people, information about

them, and relationships between them.[17] FOAF defines classes such as foaf:

Agent and its direct subclasses, foaf:Person or foaf:Group. Alongside classes

representing agents it defines useful properties describing information about them,

e.g. foaf:firstName and foaf:surname, and describing relationships between

them, e.g. foaf:knows or foaf:member.

FOAF was created to present information about authors on the Web and

properties in its vocabulary often reflect this goal, but thanks to its attempt to

generalize the properties it defines and despite the term friend in its title, it can be

used in other contexts, e.g. the Parliament or political parties can be considered

as groups and their respective members can be classed as people. It can also

be used as a base for a more complex organizational structure vocabulary, since

frameworks intended for use with RDF might provide specialized handling for the

better known ontology, in this case, FOAF.

1.3.5 SKOS

SKOS, short for Simple Knowledge Organization Scheme, is a W3C recommen-

dation for organizing classification systems like taxonomies or thesauri, SKOS

refers to them in general as concept schemes. It enables the creator to establish

semantic relationships between defined terms, these relationships are not limited

to synonyms, broader and narrower terms, associations, or translations.

SKOS will be used to define known states of bills and to enable properties

such as who is the bill’s sponsor to be typed.

SKOS Core is the component defining the RDF vocabulary used for organizing

concept schemes. The fundamental unit is called a concept.[18] This can be an

idea, object, class or a whole category of them. For example Emotions could be

a SKOS concept and PositiveEmotions and NegativeEmotions could be narrowed

terms, Example 1.7 shows this example in SKOS written in TTL.

Using SKOS proved to be a good idea for enumerable values. Sometime during

the end of 2013, the exported data started to distinguish which region proposed

the bill as a sponsor. Data converted before the change used the http://linked.

opendata.cz/resource/legislation/bill-sponsors#RegionalAssembly prop-

erty as the value for the bill sponsor. When entries for each region were added, the

vocabulary was extended with properties for each region and a skos:narrower

relationship was added between them.

17

http://linked.opendata.cz/resource/legislation/bill-sponsors#RegionalAssembly
http://linked.opendata.cz/resource/legislation/bill-sponsors#RegionalAssembly

@prefix ex: <http :// www.example.com/> .

@prefix skos: <http :// www.w3.org /2004/02/ skos/core#> .

ex:emotion rdf:type skos:Concept;

skos:prefLabel "Emotion"@en.

ex:positiveEmotion rdf:type skos:Concept;

skos:prefLabel "Positive Emotion"@en;

skos:broader ex:emotion.

ex:negativeEmotion rdf:type skos:Concept;

skos:prefLabel "Negative Emotion"@en;

skos:broader ex:emotion.

ex:Happy rdf:type skos:Concept;

skos:prefLabel "Happy"@en;

skos:definition "feeling pleasure and enjoyment because of

your life , situation , etc."@en ;

skos:broader ex:positiveEmotion .

Example 1.7: SKOS concept scheme for emotions

1.3.6 Eurovoc

A notable application of SKOS is Eurovoc, a multi-lingual thesaurus managed by

the European Union. It covers topics which are subject to European legislation,

legislation from the European Parliament in particular.

Equality of every official and working language of the European Union is

established in its very first piece of legislation.15 Finding appropriate translations

and usages of terms in other languages than the one in which the document is

drafted can be a difficult task. Sometimes direct translations do not produce the

correct term and at times, multiple equivalent translation can exist, in which case

it is important to stay consistent and use the same one in multiple places. This is

one of the goals of Eurovoc is to solve the mentioned problems by using a SKOS

concept scheme providing information about the covered subjects in different

languages and in the correct context.

Another usage of Eurovoc, directly related to Linked Data, is categorizing

resources by subject. A bill can use relation properties from SKOS to tag which

SKOS concept it is related to. A simple query to the Linked Data cloud can then

return all documents covering a subject, e.g. if a law is related to income tax,

the following RDF triple in Example 1.8 can be stated.

15http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1958R0001:

20070101:EN:PDF

18

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1958R0001:20070101:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1958R0001:20070101:EN:PDF

<ld:resource/legislation/cz/bill /2000/1234 >

<skos:relatedLabel >

<http :// eurovoc.europa.eu/1326>

Example 1.8: Adding a Eurovoc thesaurus term to a RDF resource

1.4 Apache Jena

Jena is a framework written in Java providing an API for working with RDF data.

Features range from basic model manipulation such as creating and modifying

individual statements (RDF triples) to reasoning based on an OWL ontology.[22]

Originally developed by HP Labs, it is now a top-level project of the Apache

Software Foundation and is under active development.16

Core API

The core API is designed to create and read RDF graphs. Operations on created

graphs such as unions or intersections are supported and enable the program-

mer to combine several datasources. Common vocabularies, e.g. FOAF, RDFs,

VCARD, are included in the source code.

Person p;

com.hp.hpl.jena.rdf.model.Model model;

...

Resource person = model.createResource(p.getRdfUri ());

person.addProperty(RDF.type , FOAF.Person);

person.addProperty(RDF.type , VCARD.NAME);

person.addProperty(DC.title , p.getFirstName () + " " +

entity.getLastName ());

person.addProperty(FOAF.firstName , entity.getFirstName ());

person.addProperty(FOAF.family_name , entity.getSurname ());

person.addProperty(FOAF.member ,

model.createResource(parliament.getRdfUri ()));

Example 1.9: Creating an RDF resource for a Deputy

In the core API, Jena supports simple querying by subject, predicate or object

as shown in Example 1.10. For more advanced data querying, SPARQL support

is implemented in the Jena ARQ component.

TDB Triple Store

The core API deals with managing the data model in memory. In order to achieve

persistence, Jena provides a triple store called TDB. It allows to serialize graphs

16http://jena.apache.org/about_jena/about.html

19

http://jena.apache.org/about_jena/about.html

import com.hp.hpl.jena.rdf.model .*;

Model model;

StmtIterator it;

it = currentModel.listStatements(null , RDF.type , FOAF.Person);

Example 1.10: Listing resources of RDF type Person from the FOAF vocabulary

into a custom directory and read them on the next execution of the program.

Datasets created by TDB are binary compatible across 32-bit and 64-bit sys-

tems.17

In addition to storage, TDB provides SPARQL support. SPARQL is query

language created for RDF data. It understands the concept of triples and allows

querying over the graph supporting filtering, aggregation, negation, set opera-

tions or expressions. Other SPARQL specifications support updating of the the

dataset, however knowing about features for reading graphs is sufficient for the

understanding of data manipulation done in this thesis.[9]

The two basic queries are SELECT and CONSTRUCT. The first returns

a table-like result set, the latter builds a RDF graph. Example 1.11 shows a

SELECT query which returns a table with bill URIs in the first column and their

names in the second.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX dc: <http :// purl.org/dc/elements /1.1/>

SELECT ?b ?t

WHERE {

?b dc:title ?t .

?b rdf:type

<http :// linked.opendata.cz/ontology/legislation/bill#Bill >

}

Example 1.11: SPARQL SELECT query for bills with their names

Ontology API

In Chapters 1.2.2 and 1.3.1 we introduced two common languages for structur-

ing RDF data, RDF Schema and OWL. Jena’s Ontology API tries provides a

language agnostic interface for working with languages like RDFS and OWL.

The main two components of the API are intended for creating the ontology and

making deductions, a process called reasoning, based on known properties

Manual writing by hand was chosen for the bill ontology instead of using

a programming API. There was no need for multiple language support because

17http://jena.apache.org/documentation/tdb/architecture.html

20

http://jena.apache.org/documentation/tdb/architecture.html

OWL was chosen as the primary language. The ontology, when written in a read-

able manner, can also serve as documentation for advanced users of the ontology.

Automatically generated code usually lacks organization and is harder to read by

humans.

21

2. Source data for the legislative

process

In this chapter, the scope of the processed data will be defined. Bills are the

primary subject of this work, but in order to create usable applications it is

necessary to collect related information. Examples of such information are votes

and the representatives who cast them, political parties and their members or

organs which make the appropriate decisions for passing a bill.

The primary source of collected data are public database exports of the Czech

Chamber of Deputies. The format of collected data will be described and the

method of collecting, parsing and updating will be explained.

2.1 Scope of source data

2.1.1 Bills

Before laws are passed an declared, they are called bills and go through the

legislative process. This has several stages and a set of rules which define how

the bill passes between them.

First, the bill is proposed by one of the following parties: a representative in

the Chamber of Deputies, a group of representatives, the government, a regional

assembly, or by the Senate. The text of the bill is distributed among all represen-

tatives and a first reading is held. The bill sponsors introduces the proposal and

after discourse it is either dismissed or advanced to committees for consideration.

Two more readings follow, during which amendments can be proposed and ac-

cepted by the deputies. At the end of the third reading a final vote is held and

in case of success the bill is sent to the Senate. The part of the process taking

place in the Senate is outside the scope of this ontology model. After the Senate,

the president signs the bill and it is enacted into law. Both the Senate and the

president can veto the bill which a majority of all deputies (101) can override.[19]

Figure 2.1: Legislative process in the Czech Republic, source: http://www.psp.
cz/sqw/hp.sqw?k=331

22

http://www.psp.cz/sqw/hp.sqw?k=331
http://www.psp.cz/sqw/hp.sqw?k=331

Information about the bill is passed between stages in the form of Parliamen-

tary Press. Each bill has a unique identifier in the form of serial number / re-

vision. This number is unique during one parliamentary term. The revision

numbering starts at 0 and is incremented when the bill reaches any new stage.

It is intended to represent all stages of passing a bill, e.g. to analyze how long

it stays in certain stages, which stages have the most intermediate changes, or in

case a bill is passed to link it with the RDF resource of the law which it becomes.

2.1.2 Amendments

During the first three readings in the Chamber of Deputies changes to bills can

be proposed in the form of amendments. Since many crucial changes are made

during at this point, it is necessary to include them in the RDF model as well.

Amendments can be used to solve flaws of the first proposal which the original

proponent has planned for, but they can also be used to modify the bill in favor

of a private group or company. The act of convincing a legislator to put together

such an amendment is called lobbying and can be illegal if something is provided

in exchange.

Proponents of the amendments should be stored, a real-world use case could

be listing bills with amendments for each deputy, allowing to identify potential

lobbying targets. The actual content of amendments is out of the scope of this

thesis, as their format varies strongly and machine comprehension of the changes

is a complex task by itself.

2.1.3 Members of Parliament and Political parties

One of the most common bill sponsors are representatives in the Chamber of

Deputies or groups of them. Deputies vote in each stage of the legislative pro-

cess. A RDF resource will be created for each representative and their party

and parliamentary membership will be included. FOAF and vCard will be ex-

tensively used to provide contact information and mention academic degrees and

other achievements.

A single representative often keeps his post after an election and during their

lifetime, he or she could be part in several parliaments, a separate resource will

be created for each parliament to easily distinguish them. The Parliament exists

independently on the Government and Prime Minister, which can change multiple

times between elections. In the scope of the collected data, only the terms between

elections will be taken into account, individual governments which existed during

23

them will not be regarded.

2.1.4 Votes

Votes are held in multiple stages of passing a bill and in several different organs.

Plenary votes of the whole chamber are held during readings and when overriding

Senate and Presidential vetoes. Technical details of voting may vary on different

occasions, but the concept can be easily generalized. In the bill ontology, a OWL

class intended for representing votes is created and covers the possible outcomes

of a vote and includes the individual ballots.

Naturally, every participant can vote in favor or against a proposal. A third

common option is to abstain from voting. If a participant is not present at a vote,

the absence is marked and the procedure is same as when abstaining. Depending

on what type of bill is being proposed, a quorum1 of votes is necessary. For

ordinary laws, the quorum is half of the present deputies. For constitutional

laws, three-fifths of the whole chamber must vote for the proposal in order for it

to pass.

2.2 Chamber of Deputies exports

The primary source of data for the ontology and model are machine readable

exports from the public website of the Czech Chamber of Deputies (http://www.

psp.cz). The Chamber of Deputies started to publish information in machine

readable formats at the end of 2012 with archive files containing bill data and

deputies. Over the next year, relations to the collection of laws and proposals of

changes in laws were added.

At the time of the writing of this thesis, Eurovoc vocabulary descriptors for

individual bills are not included in exported data and in order to include them

in the dataset, scraping of the Chamber of Deputies website would have to be

used.2

Data provided by the Chamber of Deputies is provided free of charge and

the only licensing terms are providing a reference to the source of the data and

possibly the date of the processing3. To comply with the terms, a link to the

1the total number of votes necessary to make a decision
2I have tried to contact technical administrators of the psp.cz website asking if descriptor

IDs could be publicized. The response was negative citing licensing issue. Unfortunately even
with explanation and persuasion that referring to a URI does not violate any license terms the
descriptors were not added.

3http://www.psp.cz/sqw/hp.sqw?k=1300

24

http://www.psp.cz
http://www.psp.cz
http://www.psp.cz/sqw/hp.sqw?k=1300

source is included in the header section of the packaged serialized RDF data.

2.2.1 Format of export files

Provided data probably come from a relational database management system.

Datasets are normalized tabular data. This means data is organized into multiple

tables to reduce redundancy and dependency. Since the data is almost prepared

to be imported into a relational database management system, for more complex

datasets such as bill stages, some of the data was imported into an temporary

database and extracted with SQL into a format more suitable for creating RDF

resources. Extraction with SQL is described in Chapter 4.2.3.

Each dataset is a plaintext file encoded in the Windows-1250 character set.

Columns are separated with a vertical bar and backslashes are used as escape

sequences. An example of one of the files is provided in Figure 2.2.

12||Česká republika|Czech republic||1|

18|12|Prezident| ||39|

6|12|Politická strana|Party||14|

11|12|Parlament|Parliament||10|

1|11|Klub|Political Group|1|400|

3|11|Výbor|Committee|3|100|

Figure 2.2: The first six lines of the dataset contained in the typ organu table

Several issues were encountered when parsing the data. Fields are only

sometimes trimmed of whitespace. Internally, all string data is converted from

Windows-1250 to UTF-8. Some export files contain a wide variety of data. An

example is the archive with entries for individual bills which contains bills old

as the early 1920s. Only data from the year 1993 and onward is processed. Ex-

tending the resource model to older bills could be a subsequent project to this

thesis.

Taking the defined scope into account, the expected size of the dataset is

several million triples. The largest contributor to this number are individual

ballots cast for votes since for every vote, there are circa 200 ballots. Excluding

ballots, the dataset contains small hundreds of thousands of statements.

25

3. Ontology definition

Once the scope of the the source data has been defined, it needs to be converted

with the help of RDF and existing and new ontologies into Linked Data. This

chapter will describe the ontology whose domain are bills passed by the Czech

Parliament. Preferably, the resulting ontology should be general enough to cover

similar processes in other countries using an analogical legal system.

Several challenges have to be taken into account such as the changing and

evolving nature of bills. A common requirement will be to query documents

which are in the process of being passed (or rejected) and new events happen

regularly. It is desirable to link resources to laws which are already represented

as RDF resources and which they become after the legislative process comes to a

successful end. And last but not least directly linking bill resources and legislative

process phase resources to the votes which passed or rejected them.

As mentioned before, OWL has been chosen as the platform for writing this

legislative ontology. Classes and properties used from OWL were explained in

Chapter 1.3.1. The ontology consists of class definitions for new entities, property

definitions, concept schemes for state values and semantic restrictions which check

exported data follows the legislative process. It is written by hand and not

generated by a program.

3.1 Resource URIs

One of the local Czech advocates of Linked Data is the OpenData.cz initiative

project which aims to provide datasets about public administration in the Czech

Republic and collect applications based upon them.1 More than a dozen of

datasets have already been published, including those about laws.2 Since it is

planned to publish the created dataset alongside them, it is desirable to use a

common format of URIs, which are a fundamental property of each RDF resource.

Developers of ontologies and datasets from OpenData.cz have created a set

of basic principles to design URIs[5]. To start with the beginning of the URI,

two domains are used. http://linked.opendata.cz is the common prefix for

all finished and clean datasets. The http://ld.opendata.cz prefix is used for

work in progress datasets and developing ontologies.

Resources are then categorized into three types with different URI prefixes:

1http://opendata.cz/en
2http://cz.ckan.net/group/opendata-cz

26

http://linked.opendata.cz
http://ld.opendata.cz
http://opendata.cz/en
http://cz.ckan.net/group/opendata-cz

• Non-information resources or real-world objects – http://linked.opendata.

cz/resource/

• Ontology resources and vocabulary resources – http://linked.opendata.

cz/ontology/

• Information resources (documentation) – http://linked.opendata.cz/

page/

With this in mind, the following URI prefixes were used for the core ontology

and associated SKOS schemas:

@prefix lb:

<http://linked.opendata.cz/ontology/legislation/bill#> .

@prefix sponsors:

<http://linked.opendata.cz/ontology/legislation/bill-sponsors#> .

@prefix billstages:

<http://linked.opendata.cz/ontology/legislation/

bill-legislative-stages#> .

@prefix decisions:

<http://linked.opendata.cz/ontology/legislation/vote-decisions#> .

Formats of resource URLs are described in the next sections which describe

each type.

3.2 Class and property definitions

The bill ontology builds upon several existing vocabularies and ontologies which

are described in Chapter 1.3. Whenever possible it tries to reuse existing classes

and properties either by using them directly or by creating subclasses and sub-

properties. A class diagram of used classes is shown in Figure 3.1;

For brevity, the following namespace prefix declarations are assumed in all

examples in this chapter.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

27

http://linked.opendata.cz/resource/
http://linked.opendata.cz/resource/
http://linked.opendata.cz/ontology/
http://linked.opendata.cz/ontology/
http://linked.opendata.cz/page/
http://linked.opendata.cz/page/

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix frbr: <http://purl.org/vocab/frbr/core#> .

@prefix lb:

<http://linked.opendata.cz/ontology/legislation/bill#> .

@prefix sponsors:

<http://linked.opendata.cz/ontology/legislation/bill-sponsors#> .

Figure 3.1: Class diagram of RDF classes in the bill ontology

3.2.1 Bills

Bills are the core feature of this ontology model. As previously mentioned in

Chapter 1.3.4, the FRBR vocabulary will be used to represent them. This way,

the semantic relationship between individual stages of the legislative process and

between them and the legislative process can be established in RDF. Another

advantage is that frameworks which are capable of working with FRBR data can

work with this legislative dataset as well. The reference implementation used was

the Lex Ontology[6] described in the next section.

The topmost entity is the legislative proposal which corresponds to the

frbr:Work class. According to FRBR, a Work is a distinct intellectual creation.3

In order to add custom properties, frbr:Work is sub-classed and the proposals

are instances of the Bill class.

As the proposal goes through the legislative process, we gain more informa-

tion about it in each step. The primary goal and intention of the proposal still

3http://archive.ifla.org/VII/s13/frbr/frbr1.htm#3.2

28

http://archive.ifla.org/VII/s13/frbr/frbr1.htm#3.2

stays the same though. With this reasoning, the individual steps can be identi-

fied as realizations of the proposal. In FRBR vocabulary this means individual

revisions are instances of frbr:Expression. To capture the sequence of revisions

in the legislative process the FRBR’s revisionOf property which points to the

previous phase is used. To mark that the expression is a realization of the bill,

the realizationOf property is used. Since revisionOf and realizationOf are

defined as inverse properties, mentioning them in one of the resources involved

suffices.

Whenever properties from other vocabularies with greater support and with

an unambiguous meaning are available, e.g. titles and dates from Dublin Core,

they are preferred over custom properties defined in the ontologies vocabulary.

In case a property from another vocabulary is used, its label, domain and range

are specialized for the specific context. Example 3.1 shows an example of reusing

the dcterms:date property for representing the introduction date of bills. Ta-

ble 3.2 shows the properties defined on the Bill class and properties from other

vocabularies which are used.

dcterms:date a owl:FunctionalProperty ;

rdfs:label "Datum předlo žen ı́ ná vrhu zákona"@cs , "Date of

proposal of the bill"@en ;

rdfs:domain lb:Bill ;

rdfs:range xsd:date ;

rdfs:isDefinedBy lb:

.

Example 3.1: Reusing a property from a different vocabulary in a specialized
context

dcterms:identifier year and serial number of the bill
lb:billSponsor indicates which group or entity proposed the bill

to the Parliament
dcterms:title short variant of the proposal’s title

dcterms:description full variant of the proposal’s title
dcterms:date the date when the bill was proposed
lb:enaction the value of this property is the act as which the

bill was enacted into law
lb:eurovocDescriptor values are Eurovoc thesaurus entries which are re-

lated to this proposal

Example 3.2: Properties used on instances of Bill

29

Lex Ontology

The fifth star in Tim Berners-Lee five-star rating system mentioned in Chap-

ter 1.1.2 was for linking your data to other people’s data. Bills are predecessor of

acts for which an ontology already exists. The Lex Ontology4 developed by the

XRG research group as part of the OpenData.cz initiative contains definitions for

legal documents including laws. Example 3.3 shows a RDF resource representing

a bill (2012/752 to be specific), the law enacted because of this proposal is al-

ready represented by a RDF resource from the Lex Ontology as http://linked.

opendata.cz/resource/legislation/cz/act/2013/47-2013[6]. Therefore, we

provide is as the value of the lb:enaction property.

<http :// linked.opendata.cz/resource/legislation/cz/bill /2012/752 >

a lb:Bill ;

dcterms:identifier "2012/752" ;

lb:billSponsor sponsors:RepresentativeGroup ;

lb:introductionDate "2012 -07 -13" ;

dcterms:title "Novela z. o specifick ých zdravotn ı́ch

slu žbách" ;

dcterms:description "Návrh poslanc ů Jana Chvojky ,

Jaroslava Kr ákory , Pavla Anton ı́na a dal š ı́ch na vyd ánı́

zákona , kter ým se měnı́ zákon č. 373/2011 Sb., o

specifick ých zdravotn ı́ch slu žbách , ve zn ěnı́

pozd ějš ı́ch př edpis ů "@cs ;

rdfs:seeAlso

"http ://www.psp.cz/sqw/historie.sqw?o=6&t=752"

lb:enaction

<http :// linked.opendata.cz/resource/legislation/

cz/act /2013/47 -2013 >

Example 3.3: Example of a bill resource

3.2.2 Enumerated types as property values

Some of the values of properties of lb:Bill and frbr:Expression come from a

finite and relatively small domain. To be specific, they are:

• lb:billSponsor, a property of lb:Bill containing the person who intro-

duced it

• lb:legislativeProcessStage used in frbr:Expression instances

• lb:outcome also used in frbr:Expression to store the final decision made

in a specific stage

4https://code.google.com/p/lex-ontology/

30

http://linked.opendata.cz/resource/legislation/cz/act/2013/47-2013
http://linked.opendata.cz/resource/legislation/cz/act/2013/47-2013
https://code.google.com/p/lex-ontology/

To enumerate all possible values SKOS concept schemes are created for each

one. The range of the listed properties defined with rdfs:range are then in-

stances of concepts from the created schemes.

Defining the range in OWL is not straightforward though. The value of a

rdfs:range property must be a class. OWL provides six ways to describe a

class: using a URI reference, with property restrictions, by enumeration and

by set operations (intersection, union and complement) on other descriptions.
5 Since each value is an instance of skos:Concept, the first method does not

provide the necessary specificity because other unrelated concepts could be pro-

vided as values. The first attempted approach was to use property restrictions as

shown in Example 3.4. This states that the value of lb:billSponsor must be a

skos:Concept and at the same time that concept must have the skos:inScheme

property with sponsors: as the value. Specifying multiple classes as the value

of rdfs:range effectively means their intersection.

sponsors: a skos:ConceptScheme ;

rdfs:label "Concept scheme for possible types of bill

sponsors"@en .

.

sponsors:Representative a skos:Concept ;

skos:inScheme sponsors: ;

skos:prefLabel "Member of Parliament"@en ;

skos:topConceptOf sponsors:

.

lb:billSponsor a owl:FunctionalProperty ;

rdfs:range skos:Concept , [

a owl:Restriction ;

owl:onProperty skos:inScheme ;

owl:hasValue sponsors:

]

.

Example 3.4: Use OWL Property Restrictions to define a property range

This approach is verbose and introduces anonymous classes which are better

to avoid as one cannot refer to them after they are defined. The second ap-

proach which solved these issues involves subclassing skos:Concept and typing

all concepts as instances of this new class as shown in Example 3.5.

Enumeration with owl:oneOf could be used, but it is unnecessarily verbose

and changes in the concept scheme would propagate further than necessary into

property definitions. SKOS is used not only for enumerating values, but also

to organize them. For example, in the concept scheme containing stages of the

5http://www.w3.org/TR/owl-ref/#ClassDescription

31

http://www.w3.org/TR/owl-ref/#ClassDescription

sponsors:Sponsor a owl:Class ;

rdfs:subClassOf skos:Concept .

sponsors: a skos:ConceptScheme ;

rdfs:label "Concept scheme for possible types of bill

sponsors"@en

.

sponsors:Representative a sponsors:Sponsor , skos:Concept ;

skos:inScheme sponsors: ;

skos:prefLabel "Member of Parliament"@en ;

skos:topConceptOf sponsors:

.

lb:billSponsor a owl:FunctionalProperty ;

rdfs:range sponsors:Sponsor

.

Example 3.5: Creating a subclass to define a property range

legislative process, there are concepts for an override of a veto from the Senate

and for an override of a presidential veto. Both are subconcepts of a broader term

indicating overriding any veto in general. This could be useful to simplify queries

looking for types of bills being often returned to the Chamber of Deputies.

3.2.3 Parliament members, parties and parliament

FOAF and vCard are the most popular vocabularies used for describing people

and groups6 and both are used in the bill ontology. Every deputy is an instance

of foaf:Person. Deputy resources are also vcard:Name instances which provides

support for formal honorifics and a property for the date of birth. Both are shown

in Example 3.6

<http :// linked.opendata.cz/resource/psp.cz/person /5917> a

foaf:Person , vcard:name ;

dcterms:title "Leo š Heger" ;

foaf:name "Leo š Heger" ;

foaf:lastName "Heger" ;

foaf:homepage "http :// www.leosheger.cz/" ;

vcard:honorific -prefix "doc. MUDr." ;

vcard:honorific -suffix "CSc." ;

foaf:mbox <mailto:hegerl@psp.cz > ;

foaf:member

<http :// linked.opendata.cz/resource/psp.cz/group/TOP09 >

.

Example 3.6: A complete resource representing a Czech deputy

6http://prefix.cc/popular/all

32

http://prefix.cc/popular/all

foaf:Group is used for two types of entities, political parties and for each

parliamentary session. The reason behind the decision to create resources for each

session instead of the parliament as an organ is that laws being passed are strongly

related to the current majority and real-world applications might want to take

this into account. However, every resource describing a parliamentary session is

linked to http://linked.opendata.cz/resource/cz/authority/parliament

which represents the parliament as an organ of authority which is defined in the

Metadata about law documents published by the Parliament of the Czech Republic7

from the OpenData.cz data catalog. The first parliamentary session in the Czech

Republic in RDF is shown in Example 3.7.

<http :// linked.opendata.cz/resource/psp.cz/group /165>

a foaf:Group ;

foaf:name "Poslaneck á sn ě movna 06.06.1992 - 06.06.1996" ;

owl:sameAs

<http :// linked.opendata.cz/resource/cz/authority/parliament >

.

Example 3.7: The 1992 - 1996 parliamentary session in RDF

3.2.4 Votes

All votes, meaning the event when voting was held, are instances of

lb:VoteInParliament. No other suitable vocabulary was found to represent

them, so all properties and the class are defined in the ontology. The following

properties are introduced and their ranges are instances of foaf:Person which,

not coincidentally, we use to represent deputies.

• lb:hasSupporter and its inverse lb:votedFor

• lb:hasOpponent and its inverse lb:votedAgainst

• lb:hasAbstainee and its inverse lb:abstained

• lb:hasAbsentee and its inverse lb:absentAt

Inverse properties are defined using the owl:inverseOf property. Both are

present in the ontology, because it seemed more natural to define the properties

on a class that is introduced in the ontology (a vote has a supporter), but when

directly looking at the dataset it is more convenient to list the individual voters

as values of the inverse properties defined in statements on the vote resource.

7http://cz.ckan.net/dataset/metadata-k-z-kon-m-z-psp-cz

33

http://linked.opendata.cz/resource/cz/authority/parliament
http://cz.ckan.net/dataset/metadata-k-z-kon-m-z-psp-cz

4. Linked Data converter

application

In this chapter, the methods and infrastructure used for converting raw data ex-

ports of bills and related information into RDF will be described. An application

written in Java with capabilities of creating and updating the model was created

for this task. Its architecture and key transformation methods will be shown. At

the end of the chapter, it will be shown how the generated model is published in

the Linked Data cloud.

4.1 RDF converter

The converter is a standalone Java application which in one pass collects all the

necessary data from remote sources and dumps them in RDF. The application

can be separated into two main components. The first handles fetching exported

data and an API for reading them, the second uses this API to convert data

into RDF. All of the code is in the cz.vojtechvondra.ldbill package and its

subpackages.

Requirements and dependencies

The required language version is Java 7 SE (Standard Edition). The main reason

for choosing Java as the programming language of the converter is the existence

of the Apache Jena library. Similar implementations exist in different languages1,

but Apache Jena enjoys the largest support. Choosing Java also means the ap-

plication has multi-platform support.[22]

Dependencies, packaging, and building are managed by Maven. The applica-

tion has the following dependencies with minimum versions:

• Apache Jena 2.11.0 – provides a RDF API and triplestore

• zip4j 1.3 – a library for handling ZIP compressed archives

• h2 1.3 – an embedded relational database system

• MySQL JDBC connector 5.1.29

• log4j 1.2 – a library for runtime logging

1e.g. RAP RDF API for PHP or RDFLib for Python

34

• jUnit 4 – unit testing framework

The application can be built with Maven by running mvn clean install in

the project root. Maven should download all dependencies, generate necessary

sources and package the application.

A JAR file containing the converter is produced and copied to the target/

directory with other JAR dependencies.

4.2 Datasource API

Classes from the datasource API are located in the cz.vojtechvondra.ldbill.

psp package. They are meant for downloading and accessing raw data from the

Chamber of Deputies archives.

4.2.1 PSPDownloader

On the website of the Czech Chamber of Deputies several ZIP files are provided,

each containing a number of datasets. The PSPDownloader service provides a two

public methods, getDataset which returns a reference to a local file containing

the specified dataset and getKnownDatasetNames which returns a list of possi-

ble parameters for getDataset. Internally, it contains a hashmap which maps

datasets to the containing archives.

ZIP archives are requested through HTTP and extracted with the zip4j library.

To save bandwidth, ZIP files are cached in the temporary directory of the user

under which the program is executed. This way, if multiple datasets from the

same archive are requested, the archive is downloaded only once. Execution time

is also faster when running the program repeatedly. Example 4.1 shows how to

download a dataset file.

PSPDownloader downloader = new PSPDownloader ();

try {

File exportFile = downloader.getDataset("osoby");

// Prints "/tmp/ldbill/osoby.unl"

System.out.println(exportFile.getAbsoluteFile ());

} catch (IOException e) { }

Example 4.1: Downloading a dataset

35

4.2.2 PSPExport

The PSPExport service is a wrapper on top of PSPDownloader. It is able to parse

the individual lines from the export file and sanitize them. It handles loading the

downloaded file with the correct encoding. Example 4.2 shows how to load an

export file line by line.

PSPExport export = new PSPExport(dataDownloader , "osoby");

while ((data = export.getLine ()) != null) {

Deputy d;

try {

d = Deputy.createFromLine(data);

} catch (IllegalArgumentException ignored) {

/* Not a valid entity in the export file , log and

continue */

continue;

}

addEntityToModel(currentModel , entity);

}

try {

export.close();

} catch (IOException e) {

/* Log error */

}

Example 4.2: Importing deputies using the PSPExport service

4.2.3 ExportDatabaseLoader

As mentioned in Chapter 2.2.1 about the format of the export files, the provided

archives are raw dumps from a relational database management system. In simple

cases like deputy members and political parties the data can be extracted directly

as no related data is stored in other tables.

In the case of bills and the stages of the legislative process, it is much simpler

and safer in terms of data consistency to re-import the data into a relational

database, query it with SQL and convert the result set into RDF.

For votes and ballots, the reason to re-import the plaintext dumps into a

relational database is performance. Ballots reference votes by ID and a non-

indexed searches for corresponding resources for all ballots would take several

hours.

36

Choice of RDBMS

In order not to introduce dependencies on other running services, H2, a small

embedded solution was chosen. It has a very small footprint (.jar dependency is

about 1MB). It can store a database in-memory which is ideal for this use-case

because no data is persisted, only the querying features of the database engine

are needed.

Unfortunately, this choice underestimated the size of the dataset and the mem-

ory necessary for a single run of the converter reached several GB and the JVM

often crashed on a OutOfMemoryError exception because the garbage collecting

overhead was too high. This was caused by not having enough space on the heap

and the necessity of aggressive garbage collecting.

It was necessary to persist the data on disk to overcome the memory issues.

H2 performance during insertion seemed slow, so another RDBMS MySQL was

chosen. Setup of the development environment was more complicated as MySQL

cannot be embedded into the application but it can handle the ten million records

the dataset consists of.

Since both adapters use JDBC, a Java SE data access interface which isolates

the storage implementation with an abstraction, the process of switching the

storage backend was very simple. Support for H2 was kept in the sources and

can be enabled by calling the ConnectionFactory appropriately.

ExportDatabaseLoader provides two public methods. importData imports

the provided PSPExport into the database. A static helper, importAll uses

PSPDownloader::getKnownDatasetNames to run an import on all known datasets.

An example of importing all known datasets is shown in Example 4.3 The im-

porter API then can use the relational data if queries the same java.sql.

Connection.

try (Connection con = ConnectionFactory.create(

ConnectionFactory.JdbcDrivers.MySQL

)

) {

ExportDatabaseLoader.importAll(con , dataDownloader);

}

Example 4.3: Importing all known datasets into a temporary database

Importing batches of data

As mentioned in the previous section about choosing the right database system,

performance issues when inserting millions of rows were encountered. Optimiza-

37

tions for importing multiple rows at once were used.

A safe and efficient way to execute queries is to use Prepared Statements which

can often be sent to the database server beforehand and compiled. Prepared

Statements are parametrized and for each row, where only the values which are

inserted differ, the parameters will be those values.

In a loop, the statement will be filled with parameters and added to a batch

with PreparedStatement.addBatch(). Every n-th loop iteration, the batch will

be executed with PreparedStatement.executeBatch() and a commit command

will be called on the connection so everything is sent to the database server. In

the data loader, the batch is executed every 100th iteration.

If explicit transactions are not used, the database server can commit data

after each statement which costs time. In order to avoid this, auto commit is set

to false before the batch insert and restored after it finishes in a finally block.

A complete example can be see in Example 4.4.

Generating database tables

Documentation for table schemas, which include column names, data types, and

table names, is provided for all the table exports from the Chamber of Deputies2.

To generate the tables which will contain the imported data a set of classes

under the cz.vojtechvondra.ldbill.psp.tables package is generated. All are

subclasses of the abstract TableDefinition which provides convenience methods

for formatting SQL queries for creating tables and getters for column names. To

generate these classes, a small script written in PHP3 is used and is stored in the

scripts/ directory of the main application repository. It can be run with the

following command:

cd scripts/

php generateTableSchemas.php

This creates a class for each dataset in a temporary directory which can

be copied to the package folder in the Java source code. The application then

uses Reflection to access the table definition during runtime when importing the

dataset.

2http://www.psp.cz/sqw/hp.sqw?k=1300
3PHP is a server-side scripting language (similar to Python or Perl) primarily used for web

development but it can be used as a programming language for general purpose scripting,
especially its I/O and string handling APIs are very simple to use though not robust as for
example Java

38

http://www.psp.cz/sqw/hp.sqw?k=1300

PreparedStatement stmt;

PSPExport export = ...;

String insertSql = "INSERT INTO table VALUES(?, ?)";

try {

conn.setAutoCommit(false);

stmt = conn.prepareStatement(insertSql);

} catch (SQLException e) {

logger.error("Could not create prepared statement", e);

return;

}

try {

while ((data = export.getLine ()) != null) {

stmt.setInt(1, data.key);

stmt.setString(2, data.value);

stmt.addBatch ();

if ((batchCount + 1) % 100 == 0) {

stmt.executeBatch ();

conn.commit ();

stmt.close();

stmt = conn.prepareStatement(insertSql);

batchCount = 0;

}

batchCount ++;

}

stmt.executeBatch ();

conn.commit ();

} catch (SQLException e) {

logger.error("SQL error when loading data into table.", e);

} finally {

try {

stmt.close();

conn.setAutoCommit(true);

} catch (SQLException e) {

logger.error("Could not close prepared statement.", e);

}

}

Example 4.4: Executing prepared statements in batches

39

Calling of the generating script is included in Maven’s configuration by using

the exec Mojo4 of the exec-maven-plugin. It is configured to run the PHP script

during the generate-sources phase of the build lifecycle. The target directory

for the generated sources is set to the correct location inside the source directory,

so no additional copying is needed.

Generated sources should not be commited in version control systems, the

contents of the package directory containing generated table definitions is ignored

in Git. The maven-clean-plugin is also configured to delete the contents of the

directory during the clean phase of the build.

4.3 Importer API

The importer is a collection of independent classes which incrementally extend

the graph model. All import classes implement the ImportStep interface which

contains a single method extendModel. The goal of each implementation is to

take a single part of the dataset and extend the RDF model with new data.

Two abstract classes implementing ImportStep exist. FileImportStep pro-

vides basic functionality for import steps which directly insert data from the

plain-text files. JdbcImportStep is the common ancestor for classes which access

the database to insert data into the model.

The design of the individual import steps tries to reflect the nature of Linked

Data. Resources can link to incomplete information and knowledge about a

resource is gathered gradually. Together, resources reference each other by URIs

and a resources’ description can always be completed later.

FileImportStep implementation

Each class which extends FileImportStep must implement two abstract meth-

ods:

• createEntity – based on a line from the raw database dump, this methods

returns a POJO5 which validates and sanitizes the string data and converts

them into a reasonable Java representation (e.g. converts string dates to

java.util.Date). The class type of the entity is the generic parameter of

FileImportStep which is specified in the extending class.

4Maven term for implementation of a single plugin goal
5Plain Old Java Object – a class which does not inherit from framework or Java object

model classes

40

• addModelToEntity – this method accepts the created entity and adds it to

the RDF model extending the graph. In the application, this is an instance

of Jena’s com.hp.hpl.jena.rdf.model.Model which is passed around the

application.

Each import step is passed an instance of PSPExport and the current RDF

model in the constructor. It then uses the datasource API to go through the file

line-by-line and tries to call createEntity on each one. If the implementation

does not support the contained data6, it returns a runtime IllegalArgument

Exception which is logged and the import continues with the next line.

Ontology import

The ontology itself is an RDF graph an needs to be imported as well. Since the

ontology was written by hand in TTL format, it seemed most straightforward

to use Jena’s API for reading serialized RDF files (specifically RDFReader). The

RdfImportStep class was created for this task and accepts a File or InputStream

in its constructor from which it loads the data. RDFReader loads the input stream

into an existing model, so conventiently the one being extended is used directly.

Since the ontology is imported every time and is part of the application’s

version, it is packaged as a resource in the resulting jar file. When a Java appli-

cation is packaged as a jar, one must use Class.getResourceAsStream() instead

of Class.getResource(). This is because the jar is a ZIP file in which the re-

source is packaged and a file URL does not make sense. However, Java can

provide a Stream leading to the file in the archive. If an attempt to access a

URI returned by getResource is made from an executed jar, Java throws a bit

misleading exception: URI is not hierarchical.

Logging

Each import step logs in detail action it performs and reports any unexpected

circumstances. Log4j is used as the logging library and with the default con-

figuration, logs are printed to standard output. The most detailed output can

be obtained by observing the Debug logging level. Possible errors in parsing the

data are logged on the Warning level. During subsequent runs of the converter

during testing, most of them were eliminated by fixing bugs in the conversion

process. An example are undocumented legislative process stages recognized by

the BillRevision class or missing dates in rows containing data for the revisions.

6this can happen when the dataset contains multiple entities, e.g. the organy dataset con-
tains both parliamentary sessions and political parties

41

4.4 Building and continuous deployment

The application is built and published using a Jenkins7 instance, an open-source

continuous integration server. It takes care of some common tasks associated with

development and allows multiple developers to work synchronously on the project.

Jenkins is notified about any changes in git from the Github project (when any

change is pushed) and runs a full build with Maven including unit tests. If a

build was successful, it publishes the compiled jar and library dependencies as

artifacts and plots data about testing.

Unit tests currently cover only part of the application, but code which was

created at the end of development should be covered more. During development

test-driven development was attempted, but the main problem was complicated

mocking of the resource model. Some unit tests were added as regression tests,

to verify a bug encountered during usage was fixed.

Building and artifact archivation is the task of the first job: ld-bill. A second

downstream job exists, called ld-bill-convert which uses the converter from the

first one and runs the import. If the import succeeds, it promotes the linked

data to the public server which serves it (mentioned in the next section). It also

archives the serialized data as a build artifact.

The server is public and is located at http://ci.vojtechvondra.cz. Anony-

mous users are given read-only access to build jobs related to the bill ontology

and can download artifacts produced for each changeset.

4.5 Serving Linked Data over SPARQL

As mentioned in the previous section, Jenkins promotes the converted data to

SPARQL server called Fuseki. It is open-source as well and maintained by the

Apache Foundation as part of the Jena project. It is a HTTP server providing

support for the SPARQL 1.1 Query protocol8 and allows anyone to make queries

on the dataset.

In the attached materials (as described in Appendix A) a configuration file for

Fuseki is provided. It is also written in TTL which is a suitable language for the

declarative nature of configuration files.9 It loads the dataset from the converted

TTL file and makes a queryable SPARQL endpoint available. The server can be

7http://jenkins-ci.org/
8it provides support for writing as well, but the instance used for the bill dataset does not

enable them
9More information about syntax of configuration can be found in the Fuseki documentation:

http://jena.apache.org/documentation/serving_data/#fuseki-configuration-file

42

http://ci.vojtechvondra.cz
http://jenkins-ci.org/
http://jena.apache.org/documentation/serving_data/#fuseki-configuration-file

run with the following command:

fuseki-server --config=config.ttl

4.5.1 Updating the dataset

When approaching the task of finding a way to keep the dataset up-to-date with

the latest changes in legislature, the first proposed solution was to find a way to

incrementally add changes since the last generation of the dataset. There is no

simple way to detect the individual changes however, as from experience during

development, amendments to the tables holding the data were made propagating

back into history10. This approach also seemed generally error-prone and in case

of a software bug, a complete re-conversion would have to be made to ensure

consistency of data.

During testing, the average duration of a complete conversion process with

an initial import into a temporary relational database was around two hours on

a server with a single CPU and 2GB of RAM. This seemed as an acceptable

task running time for it to be run regularly. As mentioned in Chapter 4.4 about

continuous deployment an integration server with a scheduled job running the

converter was set up. The ld-bill-convert11 job runs nightly and produces the

whole dataset. Using the Jenkins Promoted Builds plugin12 it automatically,

right after the build finishes, copies the resulting dataset into the Fuseki directory

and reloads the server.

In case of failure, a number of previous builds is kept to have copies of correctly

coverted Linked Data datasets available.

10e.g. adding of voting data from 26th June 2013 as noted in the changelog http://www.

psp.cz/sqw/hp.sqw?k=1340
11http://ci.vojtechvondra.cz/job/ld-bill-convert/
12https://wiki.jenkins-ci.org/display/JENKINS/Promoted+Builds+Plugin

43

http://www.psp.cz/sqw/hp.sqw?k=1340
http://www.psp.cz/sqw/hp.sqw?k=1340
http://ci.vojtechvondra.cz/job/ld-bill-convert/
https://wiki.jenkins-ci.org/display/JENKINS/Promoted+Builds+Plugin

5. Visualizations

This chapter will show the practical applications of the generated data model.

To demonstrate possible usages of the dataset created in this thesis, several visu-

alizations usable and comprehensible for average users have been created. Some

re-use rendering capabilities of existing systems and some use a newly created

timeline viewer.

5.1 Payola

All visualizations are created and managed through an application called Payola.

A student project from the Charles University, it aims to be an application for

displaying and analyzing RDF data. One of the main goals is to make it possible

for users without knowledge of SPARQL to extract and analyze data. It then

offers ways to share analyses with other users1.

In Payola, the user can define datasources and run analyses on them. Results

of existing analyses can be used as datasources as well. Analyses produce a graph

or SPARQL query row set which can subsequently be rendered using a number of

plugins (e.g. force directed graph, grouped triples or map visualization)[8]. Join-

ing of multiple datasources is supported and a mouse-controlled visual interface

for creating analyses is available. One of the goals of this thesis was to enhance

Payola by creating a new way to visualize analyses and to promote it by creating

a new Open Data dataset.

Payola is written primarily in Scala and Javascript. What more, the client side

accessed by a web browser is written in Scala but compiled to client Javascript by

a custom compiler called s2js. Objects such as HTML DOM elements have their

counterparts in Scala and the architecture is smart enough to convert memory

objects from Scala to the appropriate Javascript representation including support

for pre-defined functions. The system will be explained in more detail in the next

section.

5.2 Statistical visualization

The first statistical visualization results in a column graph showing the number

of proposed bills by year. The existing column graph plugin in Payola accepts a

1A comprehensive list of features can be found in the User Guide: https://github.com/

payola/Payola/blob/master/docs/user_guide.md

44

https://github.com/payola/Payola/blob/master/docs/user_guide.md
https://github.com/payola/Payola/blob/master/docs/user_guide.md

specially structured graph with several nodes that have three outgoing edges: a

connection to a common root node, the value and the label. Recognition of which

value is which is done only by type detection. The SPARQL SELECT query used

to construct the graph is shown in Figure 5.1 and uses many SPARQL language

constructs. The core is an aggregation SELECT query which groups bills by the

date part of their proposal date and is wrapped by a CONSTRUCT query which

creates the graph described.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

CONSTRUCT {

?uuid rdf:type <node :// columnroot >.

?uuid rdf:type ?count .

?uuid rdf:type ?sy

} WHERE {

SELECT

?y (UUID() as ?uuid)

(STR(?y) as ?sy)

(COUNT (?s) as ?count)

{

?s rdf:type <http :// linked.opendata.cz

/ontology/legislation/bill#Bill > .

?s <http :// purl.org/dc/terms/> ?d

FILTER (

STRDT (?d, xsd:date) >=

"1993 -01 -01"^^xsd:date

)

} GROUP BY (YEAR(STRDT (?d, xsd:date)) AS ?y) ORDER BY ?y

}

Example 5.1: SPARQL query for Payola column graph displaying proposed bills
by year

Originally, the converter application did not use typed literals to represent

the dates so the STRDT function which produces a typed literal is used to make

sure date functions such as YEAR will understand the value. A FILTER clause is

used to filter only modern day bills. Since the construct query requires an IRI in

the first place of the statement, UUID is used to generate a random IRI for each

aggregated count.

The resulting graph is shown in Figure 5.1. The values can be interpreted in

terms of political events. An example is the lower amount of proposed laws in

the years 1998 and 2006. In 1998 a caretaker government with Josef Tošovský as

Prime minister was appointed and in 2006 Mirek Topolánek’s first government

did not pass a vote of confidence after the summer elections. The 1998 number

however does not correspond to the number in 2009 where 200 bills were proposed

45

during the Jan Fischer caretaker government. A possible expansion of the dataset

which could give an explanation would be to assign bills with the parliamentary

session and/or government during they which they were presented. This could

be part of a future public administration or political system ontology.

Figure 5.1: Bill proposals by year

5.3 Identifying non-standard legislative proce-

dure

Using SPARQL, it is possible to analyze the data and identify possible occurrences

of non-standard legislative procedure. One such case are bills which were passed

hastily and the time passed between the second and third reading (during which

amendments can be proposed) is shorten than usual[7, p. 14]. Interpretation and

result filtering is not the goal of this thesis but this analysis is a shown concrete

real-world example and will be shared on the live Payola site as a base for others.

The query in Example 5.2 returns bills proposed in 2013 ordered ascending

by the length of the interval between the two readings.

46

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

PREFIX lb: <http :// linked.opendata.cz/ontology/legislation/bill#>

PREFIX frbr: <http :// purl.org/vocab/frbr/core#>

PREFIX dcterms: <http :// purl.org/dc/terms/>

PREFIX billstages: <http :// linked.opendata.cz/ontology/

legislation/bill -legislative -stages#>

SELECT DISTINCT ?name ?ident ?datesr ?datetr ((? datetr -

?datesr) AS ?interval)

WHERE

{

?bill a lb:Bill .

?bill dcterms:date ?billdate .

?bill dcterms:title ?name .

?bill dcterms:identifier ?ident .

?sr frbr:realizationOf ?bill .

?tr frbr:realizationOf ?bill .

?sr lb:legislativeProcessStage billstages:SecondReading .

?tr lb:legislativeProcessStage billstages:ThirdReading .

?sr dcterms:date ?datesr .

?tr dcterms:date ?datetr .

FILTER (YEAR(? billdate) = 2013)

} ORDER BY ?interval

Example 5.2: SPARQL query returning list of bills from 2013 ordered by interval
between second and third reading

The interval field is returned by the SPARQL query engine in xs:duration2

format. This is due to RDF being closely related to XML and re-use of XML

datatypes which are defined using XML Schema (XSD). For example, the YEAR

function from Example 5.2 is the equivalent of XPath’s year-from-dateTime.

Unfortunately, the SPARQL equivalent of XPath days-from-duration3 does

not exist and string manipulation must be used.

Name Second Third interval
2013/1058 2013-08-13 2013-08-16 P3DT0H0M0.000S
2013/1121 2013-08-13 2013-08-16 P3DT0H0M0.000S
2013/13 2014-02-11 2014-02-14 P3DT0H0M0.000S
2013/53 2014-02-11 2014-02-14 P3DT0H0M0.000S
2013/887 2013-05-10 2013-05-15 P5DT0H0M0.000S
2013/888 2013-05-10 2013-05-15 P5DT0H0M0.000S
2013/891 2013-05-10 2013-05-15 P5DT0H0M0.000S
2013/896 2013-05-10 2013-05-15 P5DT0H0M0.000S

Table 5.1: Result of query from Example 5.2 (only selected columns)

2http://www.w3.org/TR/xmlschema-2/#duration
3http://www.w3.org/TR/xpath-functions/#func-days-from-duration

47

http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xpath-functions/#func-days-from-duration

5.4 Timeline visualization plugin

The TimelinePluginView class encapsulates a new visualization plugin render-

ing resources which have a date description in chronological order with distance

between them proportional to the time elapsed between them. An existing

Javascript library was chosen and the task of the plugin is to convert the Graph

stored in Payola’s memory into a representation comprehensible for the library.

When choosing the library several aspects were taken into account. The first

requirement was a HTML5 and Javascript implementation (no Flash or other

technologies requiring additional runtime dependencies). The second requirement

was for the project to be open-source and usable under a Open Source license4.

Functional requirements included: the ability to display both points and ranges,

to display auxiliary info in a tooltip or in the timeline item’s description. As

for design, it should be possible to seamlessly integrate it into Payola’s interface.

Since Payola is not designed responsively, responsiveness of the timeline’s markup

was only an optional feature.5

The first candidate was the Timeline visualization from Google Charts (https:

//developers.google.com/chart/interactive/docs/gallery/timeline).

Rendering charts with HTML5 and SVG, it met the technology requirements. It

is however primarily intended to draw Gantt charts and single timeline points

(with no duration) couldn’t be drawn. Additionally, Google Charts is only an

API and the Terms of Service do not allow the library to be downloaded and used

offline6. This disqualified Google Charts from the selection.

The second candidate was the SIMILE Timeline Web Widget (http://www.

simile-widgets.org/timeline/). It meets the technology requirements as well,

is released under the very liberal BSD license and can be used offline. It distin-

guishes timeline points and ranges and would be acceptable solution. The third

candidate however, Timeline JS, matched the features of the previous widget

and seemed to have more traction in development and community contributions.

Visually appealing, it is simpler to configure than the previous widget while main-

taining the same feature set[21].

4one of OSI approved licenses: http://opensource.org/licenses
5the recommended screen width is at least 1440px https://github.com/siroky/Payola/

blob/develop/docs/installation_guide.md#system-requirements
6https://developers.google.com/chart/interactive/faq#offline

48

https://developers.google.com/chart/interactive/docs/gallery/timeline
https://developers.google.com/chart/interactive/docs/gallery/timeline
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://opensource.org/licenses
https://github.com/siroky/Payola/blob/develop/docs/installation_guide.md#system-requirements
https://github.com/siroky/Payola/blob/develop/docs/installation_guide.md#system-requirements
https://developers.google.com/chart/interactive/faq#offline

5.4.1 Implementation of the Timeline plugin

The plugin is a subclass of the PluginView class and the second chart type

plugin (next to the Column Chart7). Similarly to the Chart Plugin, the Timeline

Plugin expects the graph to have a certain structure. Effort was made to make

the necessary structure prerequisites less rigid than for the Column Chart which

for example requires all edges to be instances of rdf:type although it defies its

semantic meaning.

A graph node is called an event node if it has one label edge and one date

edge. Possible property types are listed below. It can also contain any number of

other properties different from the listed. The edge URIs are enumerated in the

cz.payola.common.rdf.Edge class.

• Label edge

– http://www.w3.org/2000/01/rdf-schema#label

– http://purl.org/dc/terms/title

– http://purl.org/dc/elements/1.1/title

• Date edge

– http://purl.org/dc/terms/date

– http://purl.org/dc/elements/1.1/date

The value of the node at the origin of the date edge should be a valid date as

specified by xsd:date. The plugin expects to find one node which has multiple

incoming edges where the origin is an event node and it is required that it has

a label. The type of the incoming edges is irrelevant. It can have additional

outgoing edges as well, containing auxilliary data. An example of such a graph

is shown in Figure 5.2.

When rendering the timeline, the value of the label node is used as the head-

line for the event and the value of the date node is used to place the event onto

the timeline. Any statements of a type different than label or date are rendered

as a HTML list under the headline. The resulting visualization is shown on Fig-

ure 5.3. rdf:type, lb:legislativeProcessStage, frbr:realizationOf and

lb:outcome are additional properties of the event which where selected in the

analysis.

7https://github.com/siroky/Payola/blob/develop/docs/developer_guide.md#

chart-plugins

49

https://github.com/siroky/Payola/blob/develop/docs/developer_guide.md#chart-plugins
https://github.com/siroky/Payola/blob/develop/docs/developer_guide.md#chart-plugins

Figure 5.2: Structure of the analysis graph for the Timeline plugin

Figure 5.3: Legislative process visualization with Timeline JS

Making the root node optional

Received feedback from Payola developers included that the root node should

not be mandatory. The plugin was generalized so it supports receiving a non-

connected graph with multiple event nodes. First all vertices are scanned and

event nodes are filtered, then, in a second pass, potential root nodes for the legend

are found and the one with the most outgoing edges is selected.

The ASK SPARQL query in Example 5.3 will answer yes or no depending on

if the supplied graph is in a format supported by the generalized plugin.

50

PREFIX dc: <http :// purl.org/dc/elements /1.1/>

PREFIX dcterms: <http :// purl.org/dc/terms/>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

ASK {

{

?s ?labelprop ?l .

?s ?dateprop ?d .

FILTER(

(? labelprop = dc:title || ?labelprop = dcterms:title ||

?labelprop = rdfs:label)

&&

(? dateprop = dc:date || ?dateprop = dcterms:date)

)

OPTIONAL {

?legend ?labelprop ?ll .

?s ?anyprop ?legend

}

}

}

Example 5.3: SPARQL ASK query determining Timeline visualization support

5.4.2 Using the Timeline plugin to display the legislative

process

For the general public, it is more convenient to find laws by their number assigned

to them when they are enacted. To illustrate on a concrete example, let’s assume

we want to see the legislative process for the highly controversial law about Al-

ternative energy sources support (Zákon o podporovaných zdroj́ıch energie a o

změně některých zákon̊u in Czech) enacted as 165/2012 Coll. The RDF resource

representing the Act was created in the Lex Ontology project from the Czech

OpenData initiative and can be found online at http://linked.opendata.cz/

resource/legislation/cz/act/2012/165-2012. This will serve as the input

parameter for the analysis.

The first branch of the analysis will select the Bill resource which lead to

this Act by using the Filter plugin and the lb:enaction property. Then, the

Property selection plugin will be used to add the title and bill sponsor to the

result by selecting the lb:billSponsor and dc:title properties. This does not

give the process yet, these are added using a second branch. With the Typed

plugin, resources of type frbr:Expression are selected to create the root of the

second branch. Their title, date and legislative process stage are added with the

Property selection plugin. Finally, the two branches are merged using an inner

Join plugin. The join is made using the frbr:realizationOf property. This

gives us a graph which matches the requirements of the Timeline plugin as it has

one root node (the Bill resource) with a label connected to several event nodes.

51

http://linked.opendata.cz/resource/legislation/cz/act/2012/165-2012
http://linked.opendata.cz/resource/legislation/cz/act/2012/165-2012

5.5 Public analyses

The timeline plugin with the legislative process displayed and statistical queries

can be found on the Payola demo website. My public account profile at http://

live.payola.cz/profile/vojtavondra@gmail.com lists created visualizations

related to the Bill Ontology and a public datasource where the dataset is available

through a SPARQL query endpoint.8

8Direct links are not guaranteed to work, but are generally stable. The following link
leads directly to a rendering of the timeline plugin: http://live.payola.cz/analysis/

06bc11da-b34a-440f-a53e-148449702920#viewPlugin=cz_payola_web_client_views_

graph_visual_TimelinePluginView

52

http://live.payola.cz/profile/vojtavondra@gmail.com
http://live.payola.cz/profile/vojtavondra@gmail.com
http://live.payola.cz/analysis/06bc11da-b34a-440f-a53e-148449702920#viewPlugin=cz_payola_web_client_views_graph_visual_TimelinePluginView
http://live.payola.cz/analysis/06bc11da-b34a-440f-a53e-148449702920#viewPlugin=cz_payola_web_client_views_graph_visual_TimelinePluginView
http://live.payola.cz/analysis/06bc11da-b34a-440f-a53e-148449702920#viewPlugin=cz_payola_web_client_views_graph_visual_TimelinePluginView

Bibliography

[1] Berners-Lee, Tim. Linked Data. In: W3 Design Issues

[online]. 2006, 2009-06-18 [cit. 2013-11-15]. Available from:

http://www.w3.org/DesignIssues/LinkedData.html

[2] IFLA Study Group on the Functional Requirements for Bibli-

ographic Records. Functional Requirements for Bibliographic Records.

Mnichov: K.G. Saur Verlag, 1998. UBCIM publications ; new series, 19.

ISBN 978-3-598-11382-6.

[3] Goel, Kavi and Pravir Gupta. Introducing schema.org: Search en-

gines come together for a richer web. In: Official Google Webmaster

Central Blog [online]. 2011, 2011-06-02 [cit. 2013-12-02]. Available

from: http://googlewebmastercentral.blogspot.cz/2011/06/introducing-

schemaorg-search-engines.html

[4] Berners-Lee, Tim and Robert Cailliau. WorldWideWeb: Proposal for a

HyperText Project. World Wide Web Consortium (W3C) [online]. 1990 [cit.

2013-12-02]. Available from: http://www.w3.org/Proposal.html

[5] Knap, Tomáš and Jakub Kĺımek. Zasády pro tvorbu datových URI

Prague, 2014. Available from: https://docs.google.com/document/d/

187nVDaKn_e24goqnwExCyiDZowDfnEoqauRWyu55G7M/

[6] The LEX Core Ontology Cookbook. lex-ontology. [online]. 3.1.2014 [cit.

2014-05-08]. Available from: https://code.google.com/p/lex-ontology/

wiki/LEXCoreOntologyCookbook

[7] Zelený kruh s.s. Poslanecké pozměňovaćı návrhy: Analýza Ze-

leného kruhu. 2014. Available from: http://www.rekonstrukcestatu.cz/

publikace/analyza-pozmenovaci-navrhy---zeleny-kruh.pdf

[8] Helmich, Jǐŕı, Jakub Kĺımek a Martin Nečaský.

http://payola.github.io/Payola/ [online]. 2014 [cit. 2014-05-09]. Avail-

able from: https://github.com/payola/Payola

[9] SPARQL 1.1 Query Language. W3C. W3C [online]. 2013, 2013-03-21 [cit.

2014-05-09]. Available from: http://www.w3.org/TR/sparql11-query/

[10] RDF 1.1 Primer. W3C. W3C [online]. 2014, 2014-02-25 [cit. 2014-05-09].

Available from: http://www.w3.org/TR/rdf11-primer/

53

https://docs.google.com/document/d/187nVDaKn_e24goqnwExCyiDZowDfnEoqauRWyu55G7M/
https://docs.google.com/document/d/187nVDaKn_e24goqnwExCyiDZowDfnEoqauRWyu55G7M/
https://code.google.com/p/lex-ontology/wiki/LEXCoreOntologyCookbook
https://code.google.com/p/lex-ontology/wiki/LEXCoreOntologyCookbook
http://www.rekonstrukcestatu.cz/publikace/analyza-pozmenovaci-navrhy---zeleny-kruh.pdf
http://www.rekonstrukcestatu.cz/publikace/analyza-pozmenovaci-navrhy---zeleny-kruh.pdf
https://github.com/payola/Payola

[11] Resource Description Framework (RDF): Concepts and Abstract Syntax.

W3C. W3C [online]. 2004, 2004-02-10 [cit. 2014-05-09]. Available from:

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[12] Namespaces in XML 1.0 (Third Edition). W3C. W3C [online]. 2009, 2009-

12-08 [cit. 2014-05-09]. Available from: http://www.w3.org/TR/REC-xml-

names

[13] RDF/XML Syntax Specification (Revised) [online]. 2004, 2004-02-10 [cit.

2014-05-09]. Available from: http://www.w3.org/TR/REC-rdf-syntax/

[14] Berners-Lee, Tim. Notation 3 Logic. In: W3 Design Is-

sues [online]. 2005, 2005-09-27 [cit. 2014-05-09]. Available from:

http://www.w3.org/DesignIssues/Notation3.html

[15] Berners-Lee, Tim. Turtle - Terse RDF Triple Language

[online]. 2011, 2011-03-28 [cit. 2014-05-09]. Available from:

http://www.w3.org/TeamSubmission/turtle/

[16] RDF Schema 1.1 [online]. 2014, 2014-02-25 [cit. 2014-05-09]. Available from:

http://www.w3.org/TR/rdf-schema/

[17] Brickley, Dan; Miller, Libby. FOAF vocabulary specification

0.98. Namespace Document, 2010, 9. [cit. 2014-05-09]. Available

from: http://ontogenealogy.com/documents/2012/08/foaf-vocabulary-

specification-0-98-20100809.pdf

[18] SKOS Simple Knowledge Organization System Primer [online]. 2009,

2009-08-18 [cit. 2014-05-09]. Available from: http://www.w3.org/TR/skos-

primer/

[19] Legislativńı proces projednáváńı návrh̊u zákon̊u. Poslanecká sněmovna: Par-

lament České republiky [online]. 2013 [cit. 2014-05-09]. Available from:

http://www.psp.cz/sqw/hp.sqw?k=331

[20] OWL 2 Web Ontology Language Document Overview (Second Edi-

tion) [online]. 2012, 2012-12-11 [cit. 2014-05-09]. Available from:

http://www.w3.org/TR/owl2-overview/

[21] NUKnightLab/TimelineJS. Northwestern University

Knight Lab . [online]. 2013 [cit. 2014-05-09]. Available from:

https://github.com/NUKnightLab/TimelineJS

54

[22] An Introduction to RDF and the Jena RDF API. Apache

Jena [online]. 2011 [cit. 2014-05-09]. Available from:

http://jena.apache.org/tutorials/rdf api.html

55

List of Abbreviations

API Application Programming Interface, specifies how programs communicate

with each other

DC Dublin Core, a RDF vocabulary to describe basic metadata

FOAF Friend of a Friend, a RDF vocabulary for describing people

FRBR Functional Requirements for Bibliographic Records, a RDF vocabulary

to describe bibliographical records and artistic works

HTML Hypertext Markup Language used to create websites

HTTP Hypertext Transfer Protocol, a network protocol for transmitting data

over the Internet

IRI Internationalized resource identifier, the same as URI with Unicode support

OWL Web Ontology Language, a RDF standard to create ontologies

PSP The Czech Chamber of Deputies

RDBMS Relational database management system

RDF Resource Description Framework, a language to describe Semantic Data

RDFS RDF Schema, a language to validate and structure RDF data

SKOS Simple Knowledge Organization System is a set of standards for describ-

ing taxonomies in RDF

SQL Structured Query Language, which is used to read and write data from

relational database management system

URI Uniform Resource Identifier, which is used to identify resources on the web

W3C World Wide Web Consortium, an international standards institution for

the Web

XML Extensible Markup Language, a markup language used for encoding doc-

uments

56

A Attached media

The attached electronic version contains the following files:

thesis.pdf

An electronic version of this document.

doc/

Project documentation and generated Javadoc API documentation. The

documentation index can be displayed by opening index.html in a web

browser.

ontology/

The ontology in TTL format and a generated dataset.

src/

Source files for the converter application.

dist/

Built JAR from the source files.

conf/

In the fuseki/ directory it contains the configuration file for Apache Jena

Fuseki. In the jenkins/ directory, configuration files for the build and

converter jobs are stored.

payola/

Contains submitted patches to Payola accepted by the developers. Patch

#55 is a fix for the column chart plugin and #56 contains the timeline vi-

sualization.9. Github provides a easy-to-read diff view at https://github.

com/payola/Payola/pull/55/ and https://github.com/payola/Payola/

pull/56/.

9the Timeline JS patch contains a copy of the TimelineJS plugin, original licenses and
attribution were retained

57

https://github.com/payola/Payola/pull/55/
https://github.com/payola/Payola/pull/55/
https://github.com/payola/Payola/pull/56/
https://github.com/payola/Payola/pull/56/

B Running the converter

The converter can be executed by running the following command:

java -jar ld-bill.jar -i -n "dbhost/dbname" -u "dbuser" -p "dbpass"

-o "data.ttl"

Parameters

-n

MySQL database hostname and database name. The format is hostname/db-

name. The database must be in utf-8.

-u

Database user

-p

Database password

-o

Target output file for dataset

-i

Import data into MySQL for conversion. This parameter can be ommited

in subsequent runs if only output formatting is changed.

Building from source

Make sure Maven and Java SE 7 JDK is installed and run the following command

in the src/ directory:

mvn clean install

All dependencies should be downloaded automatically and a JAR file will be

produced in the src/target directory.

58

	Introduction
	Technologies
	Semantic Web
	Extending the current web
	Linked Data

	RDF
	RDF serialization
	RDF Schema

	Web ontologies
	OWL
	Dublin Core
	FRBR
	FOAF
	SKOS
	Eurovoc

	Apache Jena

	Source data for the legislative process
	Scope of source data
	Bills
	Amendments
	Members of Parliament and Political parties
	Votes

	Chamber of Deputies exports
	Format of export files

	Ontology definition
	Resource URIs
	Class and property definitions
	Bills
	Enumerated types as property values
	Parliament members, parties and parliament
	Votes

	Linked Data converter application
	RDF converter
	Datasource API
	PSPDownloader
	PSPExport
	ExportDatabaseLoader

	Importer API
	Building and continuous deployment
	Serving Linked Data over SPARQL
	Updating the dataset

	Visualizations
	Payola
	Statistical visualization
	Identifying non-standard legislative procedure
	Timeline visualization plugin
	Implementation of the Timeline plugin
	Using the Timeline plugin to display the legislative process

	Public analyses

	Bibliography
	List of Abbreviations
	A Attached media
	B Running the converter

