
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Marek Leibl

Modular and Ontogenetic Evolution
of Virtual Organisms

Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. Franti²ek Mráz, CSc.

Study programme: Informatics

Specialization: Theoretical computer science

Prague 2014

I would like to express my sincere gratitude to my supervisor RNDr. Franti²ek
Mráz, CSc.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Modular and ontogenetic evolution of virtual organisms

Autor: Marek Leibl

Katedra: Kabinet software a výuky informatiky

Vedoucí diplomové práce: RNDr. Franti²ek Mráz, CSc., Kabinet software a výuky
informatiky

Abstrakt: R·st vypo£etního výkonu umoº¬uje v sou£asné dob¥ automatizo-
vat mnoho praktických problém· pomocí po£íta£ových program·. Automati-
zace zahrnuje i problémy jako je návrh virtuálních chodích robot·, na základ¥
kterých je v n¥kterých p°ípadech moºné zkonstruovat reálného robota. Tato
práce porovnává dva odli²né p°ístupy k vývoji virtuálních robotických organis-
m·: um¥lou ontogenezi (arti�cial ontogeny), kdy virtuální organismus nejprve
vyroste um¥lým ontogenetickým procesem, a p°ímé metody bez ontogenetického
procesu. Dále je na základ¥ srovnání r·zných p°ístup· navrºena nová metoda
pro vývoj virtuálních robotických organism·: Hypercube-based arti�cial ontoge-
ny, která je kombinací um¥lé ontogeneze a Hypercube-based neuroevolution of
augmenting topologies (HyperNEAT).

Klí£ová slova: Evoluce, Virtuální organismy

Title: Modular and Ontogenetic Evolution of Virtual Organisms

Author: Marek Leibl

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Franti²ek Mráz, CSc., Department of Software and Computer
Science Education

Abstract:

Increase of computational power and development of new methods in arti�cial
intelligence allow these days many real-world problems to be solved automat-
ically by a computer program without human interaction. This includes au-
tomatized design of walking robots in a physical virtual environment that can
eventually result in construction of real robots. This work compares two dif-
ferent approaches to evolve virtual robotic organisms: arti�cial ontogeny, where
the organism �rst grows using an arti�cial ontogenetic process, and more direct
methods. Furthermore, it proposes a novel approach to evolve virtual robotic
organisms: Hypercube-based arti�cial ontogeny that is combination of arti�cial
ontogeny and Hypercube-based neuroevolution of augmenting topologies (Hyper-
NEAT).

Keywords:

Evolution, Virtual organisms

Contents

1 Introduction 3

1.1 Structure of The Thesis . 4

2 Background 5

2.1 Overview of existing projects . 5
2.2 Evolving virtual organisms . 7

2.2.1 Introduction . 8
2.2.2 Evolving morphology . 8
2.2.3 Evolving control system 10

2.3 NeuroEvolution of Augmenting Topologies 10
2.3.1 Historical marking . 12
2.3.2 Mutating networks . 13
2.3.3 Mating networks . 13
2.3.4 Speciation . 14
2.3.5 Incremental growth . 16

2.4 Hypercube-based NEAT . 17
2.4.1 Generative encoding . 17
2.4.2 Advantages of generative encoding and its applications . . 18

2.5 Arti�cial Ontogeny . 19
2.5.1 Morphological Structure 19
2.5.2 Neural Control system . 20
2.5.3 Growth from a Single Cell 21
2.5.4 Neural Growth . 22
2.5.5 Genetic Regulatory Network 23
2.5.6 Representation in the Genotype 25

3 The First Proposed Method: Evolving Morphological Structure

using Directed Graphs 28

3.1 Evolving Morphology . 28
3.1.1 Morphological Structure 29
3.1.2 Representation in The Genotype 31

3.2 Evolving Control System . 32
3.2.1 Sensors and E�ectors . 34
3.2.2 Structure of Control System 34
3.2.3 Generative Representation 36

4 The Second Proposed Method: Hypercube-based Arti�cial On-

togeny 41

4.1 Motivation to the Proposed Method 41
4.1.1 Indirect Encoding and Regularities 42
4.1.2 Level of Abstraction . 42
4.1.3 Skipping Developmental Process 43
4.1.4 Advantages of the Developmental Process 43

4.2 Structure of the Proposed Method 44
4.3 Developmental Process . 45

1

4.4 Genetic Regulatory Networks . 50
4.5 Hypotheses to the Proposed Methods 51

5 Distributed computing 52

5.1 Modular architecture overview . 52
5.2 Theoretical approach to performance increase with multiple runners 53

5.2.1 Preliminary assumptions and de�nitions 54
5.2.2 Asymptotic analysis of distributed computing with a large

population . 56
5.2.3 Asymptotic analysis of distributed computing with a large

population and homogeneous runners 58
5.2.4 Analysis of distributed computing with �xed population size 58

5.3 Experiments . 59
5.3.1 Method used in performance test 60
5.3.2 Experimental results . 60
5.3.3 Conclusions . 62

6 Experiments 64

6.1 Physical Validation . 64
6.2 Evolving Locomotion . 64

6.2.1 Measuring Quality of Organisms 65
6.2.2 Experimental Setting . 65
6.2.3 Results . 66

6.3 Evolving Light Following and Block Pushing 67
6.4 Summary . 69

7 Conclusions and Future Work 70

7.1 Conclusions . 70
7.2 Future Works . 70

Bibliography 72

2

1. Introduction

Increase of computational power and development of new methods in arti�cial
intelligence allow these days many real-world problems to be solved automatically
by a computer program without human interaction. This includes even some
problems that require creativity such as art or design. Another example of such
problems is designing walking robots capable of e�ective movement in various
environments.

The evolutionary algorithms, method inspired by natural selection, are promis-
ing for automatized design of walking robots in a physical virtual environment
that can eventually result in construction of real robots. They can often provide
an e�ective solution that would not be discovered by a human. The methods for
evolving walking robots can be also used for di�erent applications that include
designing physically realistic creatures in computer games or movies. Some more
biologically accurate methods may provide further understanding of processes in
biology.

Several approaches to evolve virtual robotic organisms have been introduced in
previous works. The �rst important work that evolved virtual robots was Sims`s
Evolving virtual creatures [7] 1994 that inspired many later works. More recent
works [2, 4] enhanced original method using advanced neuroevolution methods
NEAT [1] and HyperNEAT [8]. More biologically accurate approach, arti�cial
ontogeny was proposed by Bongard and Pfeifer [5] that developed method, where
a mapping from genotype to the phenotype is realized using an arti�cial ontoge-
netic process.

This work combines results from several works related to evolving virtual
organisms to develop two new methods that are compared through series of ex-
periments. The �rst method, here referred as Modular representation, is based
on bachelor`s thesis of the author of this thesis [12], where morphology of or-
ganisms is represented using directed graphs as proposed by Sims and control
system is evolved using HyperNEAT generative encoding inspired by Haasdijk,
Rusu and Eiben [4]. The proposed method extends control system of the previous
work enhancing generative encoding of neural networks, while method of evolving
morphology is adopted from the previous work.

The second method, referred as Hypercube-base arti�cial ontogeny (Hyper-
AO), shares method for evolving control system with the �rst proposed method.
It introduces a novel concept to evolving morphology of virtual organisms that
combines two di�erent approaches: arti�cial ontogeny and HyperNEAT genera-
tive representation. The proposed method is designed to combine advantages of
both approaches: (1) a developmental process provides possibility of additional
adaptability, (2) HyperNEAT generative encoding reduces dimension of a search
space and allows evolving regularities and most importantly (3) representation
of morphological structure using arti�cial neural networks allows using various
neuroevolution methods to evolve morphology of virtual organisms.

This work includes a distributed implementation of both proposed methods
and experiments, where the proposed methods are compared. In the experiments,
organisms are evolved for walking in a virtual physical 3D-world, where the qual-
ity of evolved organisms is measured as the walked distance for a �xed time. The

3

distributed solution for evaluating quality of organisms reduced duration of ex-
periments from several weeks to a few days.

In summary, the primary goals of this thesis are: (1) compare developmental
methods, arti�cial ontogeny in particular with other methods that evolve virtual
organisms and (2) develop a new method that combines two di�erent approaches:
arti�cial ontogeny and Hypercube-based neuroevolution of augmenting topologies
(HyperNEAT) to represent morphological structure using arti�cial neural net-
works that allows applying neuroevolution method to the morphology of virtual
organism.

1.1 Structure of The Thesis

The thesis is divided into �ve main chapters. First, Chapter 2 overviews exist-
ing works and provides detailed description of selected methods that are related
to the methods in the following chapters. Next, Chapter 3 describes the �rst
proposed method based on the previous work of the author of this thesis. The
chapter includes description of the control system that is common for both pro-
posed methods. Chapter 4 summarizes results from previous works that are used
as a motivation for the second proposed method, HyperAO, followed by a descrip-
tion of the method and formulation of hypotheses. Chapter 5 provides a descrip-
tion and analyzes distributed evaluation in a physical simulation and provides
suggestions to e�ective distributed evaluation. Chapter 6 compares the proposed
methods in series of experiments and shows that HyperAO is outperformed by the
the �rst proposed method based on bachelor`s thesis. Finally, Chapter 7 discuss
results and argues that HyperAO still provides several advantages and suggest
possible extensions.

4

2. Background

This chapter describes some of existing projects and methods for evolving virtual
organisms. Note that di�erent projects use di�erent term for virtual organism
(e.g. virtual creatures, robotic organisms, etc.), we will use these terms inter-
changeably in the following text (however sometimes the used term can suggest
possible application in virtual reality, animations or robotics).

First, Section 2.1 gives an overview of some existing projects. The following
sections focus deeper on methods used in these projects. Section 2.2 describes
basic principles for evolving morphology and control system of virtual organism
in simulated environment. Next, we describe in-depth the NEAT algorithm in
Section 2.3 and the algorithm based on NEAT � the HyperNEAT algorithm in
Section 2.4. Finally, Section 2.5 focuses on arti�cial ontogeny � combination
of evolutionary algorithms with ontogenetic development and di�erential gene
expression.

2.1 Overview of existing projects

The primary inspiration for this work is Evolving virtual creatures (1994) [7]
by Karl Sims, which inspired many other later projects. In this work virtual
creatures are evolved to perform various tasks (e.g. walking, swimming, jump-
ing, following light, etc.) in various simulated environments in three-dimensional
physical world. Both control system and body is represented together as a direct-
ed graph, which is evolved using an evolutionary algorithm. Figure 2.1 [7] shows
some examples of evolved creatures in Evolving virtual creatures.

More recent works [2, 4] use the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm (see Section 2.3) instead of or combined with original method
by Sims. As suggested by Kr£ah, [2] NEAT is suitable for evolving neural network
control system of virtual organisms. Kr£ah created modi�cation of NEAT to
evolve virtual creatures capable of performing tasks similar to Evolving virtual
creatures. In his work [2] he showed that NEAT improves performance of the
original method by Sims. Figure 2.2 shows some robotics organism evolved in his
work.

Haasdijk, Rusu and Eiben [4] evolved robot control for multi-robot organ-
isms using the HyperNEAT algorithm (see Section 2.4). Here, each body part
is considered as a single robot or agent, where each robot has its own controls
system, which can communicate only with other directly connected robots (i.e. no
central control system is used). Control system of all robot units is represented
indirectly by a single neural network (CPPN), which generates control system
for each robot based on its position. Therefore, control system of robots forming
a multi-robot organism often have some regularities generated with CPPN.1

Bongard and Pfeifer [5] used an evolutionary algorithm combined with onto-
genetic development and di�erential gene expression to evolve virtual organism

1For more details of regularities generated by CPPN see Section 2.4.

5

(a) Creatures evolved for jumping.

(b) Creatures evolved for walking (c) Creatures evolved for swimming.

Figure 2.1: Examples of evolved virtual creatures in various environments by Sims [7].

Figure 2.2: Examples of virtual creatures evolved for running by Kr£ah [2].

6

Figure 2.3: Examples of virtual organisms evolved for block-pushing task by Bongard and
Pfeifer [5]. The block is not shown, but lies to the left of the organism. The color of spheres
indicates presence of sensor and motor neurons. The white and light grey units have both
sensors and motors, but the light grey units do not use their motors (either because there are
no input connections to the motor neuron, or because there is no joint within this unit). The
dark gray units indicate the presence of sensor neurons, but no motor neurons. The black units
indicate the unit contains neither sensor nor motor neurons.

with ability to �grow� from a single unit. Unlike other mentioned methods, in
their method refered as arti�cial ontogeny (AO) both morphology and control
system is represented by a single genetic regulatory network (GRN).

GRN controls amount of generated gene products based on current amounts
simulated in continuous manner. Gene products are simultaneously di�used in-
side each body parts and into other body parts. Some gene product stimulate or
inhibit organism`s growth or growth of some speci�c phenotype parts (e.g. sensors,
e�ectors). The growth is simulated for a given time interval and when growth
is �nished, control system of the organism is started to perform a block-pushing
task.

All these works evolve virtual organisms in 3D virtual physical world, but
often with di�erent motivation. Sims evolved creatures for animations, Kr£ah
and Haasdijk, Rusu and Eiben focus more on applications in robotics, Bongard
and Pfeifer focus on repeated structure and complexity of resulting phenotype.
The following sections describe the methods used in these papers.

2.2 Evolving virtual organisms

In this section we describe original method introduced by Karl Sims [7] for evolv-
ing both morphology and robot control simultaneously using evolutionary al-
gorithm. This method is later used as reference method and basic for some
modi�cations or extensions.

First, Section 2.2.1 gives an overview of basic principles in evolving virtual
organisms. Next, Section 2.2.2 describes robots body and its representation in
genotype and �nally, Section 2.2.3 focuses on robot control.

7

2.2.1 Introduction

Virtual organism consists of multiple interconnected rigid elements (modules).
Modules can have sensors (e.g. touch sensor, light sensor, velocity sensor, etc.)
and e�ectors (e.g. applying physical force to the module). Robot movement
is realized by applying forces to its modules. Neural network control system
is placed into each module to coordinate robot movement, additionally cental
control system is used to coordinate local control systems.

Both robot body (morphology) and control system is encoded in the geno-
type. Robot morphology is represented by directed graph and control system by
nested graph in this graph. Each node has instructions for creating corresponding
module or neuron (for node in nested graph). Phenotype is then constructed by
recursive visiting of connected nodes.

When the phenotype is complete, robot is placed into virtual environment
designed for a particular task. The environment is usually simple virtual 3D
physical world containing only objects needed for the current task. The robot
receives a score (�tness) based on its behavior in virtual environment. Common
tasks are robot locomotion in di�erent environments, swimming, jumping, follow-
ing light, etc. Simulation is typically restricted to some �xed time, while physical
simulation is usually computationally-expensive.

2.2.2 Evolving morphology

Robot body is represented in the genotype as a directed (multi)graph with one
starting node (morphological graph). Each node describes rigid part properties
(e.g. shape) and each edge describes parameters of connection between parts
(e.g. joint type, degrees of freedom, placement of child module etc.).

To create a phenotype from the graph, �rst, the starting node is used to
create the root body part. Then, for each connected node in morphological graph
new rigid part is created and connected to the organism. If the graph contains
reachable directed cycles, the organism could have in�nite body, therefore, limits
for maximum number of body part created from a node are added (recursive
limit).

Encoding an organism body as a graph allows to evolve organisms with re-
peated body parts, while nodes can be used multiple times. Resulting phenotype
robot consists of three-dimensional rigid parts, which form a tree structure. Ad-
ditionally each edge can have a terminal-only �ag, which indicates that, edge will
be used only when recursive limit is reached.2 Figure 2.4 shows some sample
genotypes and corresponding phenotypes.

Mutating morphological graphs includes (1) structural mutations (e.g. adding
or removing nodes and connections, reconnecting nodes) of the graph and (2)
uniform mutation of parameters of each node and connection. Boolean param-
eters reverts their values, scalar parameters add a small number from a normal
distribution when mutation occurs.

There are two alternative ways of mating � crossover and grafting. When
mating is applied, one of them is chosen randomly (with the same probability).

2This allows to evolve for instance structures similar to a human arm.

8

(segment)

(leg
segment)

(body
segment)

(head)

(body)
(limb
segment)

Genotype: directed graph. Phenotype: hierarchy of 3D parts.

Figure 2.4: Designed examples of morphological graphs and corresponding morphologies.
Paremeters of body parts and control system are not shown. Texts in the nodes are not
included in the genotype, they only suggest possible interpretation of the body part type.

When the �rst mating type, crossover, was chosen, nodes of the two parents
are �rst aligned in a row. Then, one or more crossover points are made to switch
the source, which is copied to the o�spring.3 All nodes and connection reachable
from the copied nodes are then also copied (i.e. the transitive closure is made).
Finally, if some part of the graph becomes unreachable from starting node, it is
removed.

Second mating type, grafting is similar to a mutation. The parent with high-
er �tness is copied into an o�spring. Next, random connection is chosen and
reconnected to a random node of the second parent. All nodes and connections
that become reachable are also copied and those, which becomes unreachable are
removed in the same way as in crossover.

Note that (unlike crossover in GA) only one child is produced during both
types of mating. After mating, mutation with lower magnitude is applied to the
o�spring. Example of crossover and mating is shown in Figure 2.5.

3This approach is similar to crossover in genetic algorithms.

9

a. Crossover : b. Grafting:

parent 1

parent 2

child

parent 1 parent 2

child

Figure 2.5: Two methods for mating directed graphs � crossover and grafting.

2.2.3 Evolving control system

The control system of the virtual organism consists of multiple arti�cial neural
networks (ANNs) distributed over the organism`s body. Two types of networks
are used � the network placed in each module (local ANN) and the network for
coordination and synchronization of local controls (central ANN).

Instead of summed input and sigmoid activation function, here it is used set
of prede�ned functions (e.g. sum, sin, cos,min,max, divide, if, etc.). Each neuron
has the number of inputs corresponding to its activation function. Activation
function of each neuron is evaluated in each time step.

Local ANNs process inputs from sensors in the module and outputs from
neighboring local ANNs and central ANN. Their output is used to control ef-
fectors in the module (e.g. applying force to the module) and as input value to
neighbouring local ANNs and central ANN. Local ANNs are represented in geno-
type as nested graphs for each module. Since recurrent connection are allowed,
organism can use them as short-term memory, which is suitable for some tasks
(e.g. robot locomotion).

Unlike Local ANNs, Central ANN is not associated with any module and its
sensors or e�ectors. Thus, it is not represented as nested graph, but separate
graph, which is used in the phenotype only once. It is used to coordinate dis-
tant modules as an analogy of a central brain. Figure 2.1 [7] shows example of
evolved genotype and corresponding phenotype morphology and control system.
Haasdijk, Rusu and Eiben [4] shown that Central ANN is not necessary to evolve
control system of the virtual organism, however, evolving control system without
central control is more di�cult task.

2.3 NeuroEvolution of Augmenting Topologies

Evolving network topology removes the need for adjusting it experimentally, ide-
ally the most suitable topology is discovered by the evolution. On the other hand,
when evolving topology it can be di�cult to �nd a proper way for representing
networks in genotype and their mating. Therefore, evolving neural network topol-
ogy requires more complex and sophisticated solution. Here, we describe popular
method for evolving neural network topology called NeuroEvolution of Augment-
ing Topologies (NEAT) [1], which evolves neural networks topologies together
with connection weights.

10

J0

J1

E0

E1

>

+

saw

wav

itp

wav

mem

abs

(a) The nested graph genotype.

(b) The phenotype morphology.

J0

J1

J0

J1

J0

J1

J0

J1

Saw

Wav

itp

Wav

mem

abs

>

+

>

+

Wav

mem

abs

>

+

>

+

1.95

1.40

1.97

1.54

1.99

1.68

2.01

1.82

-1.00
-1.60
0.00

1.00
-0.93
-1.09

-0.86
0.12
-0.43

1.62
1.19
0.32

-1.00
-1.87

-0.59

1.42
0.02

-0.58
-1.43

1.37
0.03

-0.58
-0.55

3.27
0.15
0.32

-1.10
-1.87

-0.59

1.33
0.04

-0.58
0.33

1.27
0.05

-0.58
0.00

Sensors Neurons Effectors

(c) The phenotype control system.

Figure 2.6: Example of genotype and corresponding phenotype of evolved virtual organism
by Sims [7]. (a) shows evolved nested graph genotype. The outer graph (morphological graph)
in bold describes a creature's morphology (picture (b)). The inner graph describes its neural
control system (picture (c)), where J0 and J1 are joint angle sensors, and E0 and E1 are
e�ector outputs. The dashed node represents central control, which is not associated with any
body part. (b) shows the phenotype morphology generated from the evolved genotype. (c)
describes the phenotype control system generated from the evolved genotype.

11

The NEAT algorithm is based on three principles � historical marking of
genes, protecting innovations through speciation and incremental grow from min-
imal structure4. It has been shown that all these principles are dependent on each
other [1, 2]. When one of them is removed, the algorithm will most likely have a
lower performance compared to using all three principles simultaneously.

This section describes in-depth the NEAT algorithm. First, Section 2.3.1
focuses on representation of a network in genotype using historical marking. Next,
Section 2.3.2 and Section 2.3.3 describe mutations and mating of networks using
the historical marking. Section 2.3.4 introduces measuring similarity of network
genotypes and protecting innovation through speciation. Finally, Section 2.3.5
describes incremental grow from the minimal structure.

2.3.1 Historical marking

Unlike evolving neural network weights with a �xed topology, when we evolve
neural network topology there are several possibilities for representing structure
and weights in genotype. Two di�erent approaches can be used � direct encoding,
when information about each connection and weight is stored in the genotype,
and indirect encoding, when genotype consists of rules for construction of the
network.

The main advantages of indirect encoding are (1) compact representation
(i.e. lesser search space compared to direct encoding), (2) possible reuse of genet-
ic information to build a phenotype network with some repeated or symmetric
structure and (3) often simple realization of mating. However, according to Braun
and Weisbrod (1993) [3] indirect encoding might restrict phenotype networks to
some suboptimal class of topologies.

NEAT uses a direct encoding, where each part of the network is stored in a
genotype. The genotype of a network consists of lists of neurons and connections.
Each neuron contains information about type of the neuron (input, output or hid-
den), connections are represented using connected neurons, a connection weight,
enabled bit and an innovation number. The enabled bit determines whether the
connection in genotype is used in the corresponding phenotype. The innovation
number (or historical mark) can be interpreted as historical origin of the gene.

When a new structural element (i.e. node or connection) arises, it receives a
unique number � the innovation number. Genes of the same historical origin
(i.e. with a common ancestor where the genes arose by a mutation) most likely
have the same or similar role. Therefore, they are suitable to be combined by
mating. Innovation numbers are then used for multiple purposes in the algorithm
(e.g. mating and measuring similarity of two genotypes), which are described in
the further text. The example genotype together with the corresponding pheno-
type is shown in Figure 2.7 [1].

4These principles are also used in some methods extending or similar to the NEAT algorithm
(e.g. HyperNEAT � see Section 2.4)

12

Node 1
Sensor

Node 2
Sensor

Node 3
Sensor

Node 4
Hidden

Node 5
Output

In 1
Out 4
Weight 0.7

Enabled
Innov 1

In 2
Out 4
Weight−0.5

Enabled
Innov 3

In 2
Out 5
Weight 0.5

DISABLED
Innov 4

In 3
Out 5
Weight 0.2

Enabled
Innov 5

In 4 In 5

Out 5 Out 4
Weight 0.4 Weight 0.6

Enabled Enabled
Innov 6 Innov 10

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3

4

5

Figure 2.7: Example of a genotype and the corresponding phenotype network in NEAT. The
network consists of three input (sensory) neurons, one hidden and one output neuron (the �rst
list � node genes). The second list (connection genes) stores connections and their properties
sorted by innovation numbers. The genotype contains altogether six connections, one of them
is disabled, thus not used in the phenotype.

2.3.2 Mutating networks

Mutating networks includes both changes of weights and structural changes. Mu-
tating weight is realized by adding small random number with normal distribution
to its value, for each weight independently. Two structural mutations are used
� add neuron and add connection.

Mutation add neuron splits randomly selected connection into two connections
with added neuron between them. During the mutation the original connection is
deactivated (but not removed from the genotype), the connection to newly added
neuron is initialized with unit weight and the connection from added neuron has
the same weight as the original connection. Thus, the �nal computed function
is changed only slightly by adding a non-linear transformation. Mutation add
connection connects two random previously unconnected neuron. Connection can
be added only if the network remains non-recurrent after adding the connection.
Both types of structural mutations are shown in Figure 2.8 [1].

2.3.3 Mating networks

Common problem of direct encoding is mating genotypes of network with di�erent
topology. In this case, it might be di�cult to recognize which connections carry
similar functional role to transfer genetic information of both parents into possibly
better children. NEAT solves this problem by using innovation numbers (see
Section 2.3.1). The following text describe mating of two genotypes in the NEAT
algorithm.

Mating two parental network from the same species (see Section 2.3.4) pro-
duces a single network. First, the connections with matching innovation numbers
are selected with one or more random crossing points (similar to mating in GA)
and copied into the child network.

Next, disjoint connections (non-matching connections with innovation num-

13

1 2 3

4

5

1 2 3

4

5

1 2 3

4

5

1 2 3

4 6

5

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>5

2−>5

2−>5

2−>5

3−>5

3−>5

3−>5

3−>5

4−>5

4−>5

4−>5

4−>5

3−>4

3−>6 6−>5

DIS

DIS

DIS

DIS DIS

1

1

1

1

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 2.8: Two types of structural mutations in NEAT. Top �gure shows add connection

mutation creating new connection (7) and appending it on the end of the list of connections.
Bottom �gure demonstrates add neuron mutation creating new neuron (6), where the split
connection (5) is disabled and two new connections are added (8 and 9) to replace the previous
connection. Note that only the innovation numbers and the connected neurons (but not the
weights) are shown here.

ber not larger than maximum innovation number in the genotype with smaller
maximum innovation number) from parent with higher �tness5 and all excess con-
nections (remaining non-matching connections) are copied into the child network.
Additionally some disabled connection are enabled � each with 25% probability.
Figure 2.9 [1] shows an example of mating two networks.

2.3.4 Speciation

When a network with a new topology arises through mutation or mating it will
have most likely low �tness until its weights are optimized. To prevent extinction
of networks with some innovative topology before their weights are optimized,
NEAT uses a speciation. Population is divided into multiple subpopulations
with similar individuals. The di�erence between two individuals is measured on
network genotypes � connections and their weights and it is de�ned as a weighted
sum of the three factors, given by the following formula:

δ =
c1E

N
+
c2D

N
+ c3 ·W, (2.1)

where
5Alternatively one of parents is chosen randomly, where parent with higher �tness is more

likely to be chosen.

14

1 2 3

4

5

1

1

2

2

3

3

4

4

5

5

6

6

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

2−>5

2−>5

2−>5

2−>5

2−>5

3−>5

3−>5

3−>5

4−>5

4−>5

4−>5

4−>5

4−>5

6−>4

6−>4

6−>4

1−>6

1−>6

1−>6

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

DISAB

1

1

1

1

1

2

2

2

2

2

4

4

4

4

4

5

5

5

6

6

6

6

6

8

8

8

7

7

7

3

3

3

disjoint

disjoint

excessexcess

Parent1 Parent2

Parent2

Offspring

Parent1

Figure 2.9: Mating two networks in NEAT. First, top �gure shows two parent networks �
both genotype and phenotype are shown. Next, the creation of the child genotype is shown.
The connections with matching innovation numbers are placed under each other. Rest of the
connections are marked with disjoint or excess signs. Color of each connection indicates from
which of the two parents was the connection used. Finally, the resulting phenotype network
is shown on the bottom �gure. Note that only connections and their innovation numbers are
shown here, connection weights are copied together with the connections.

15

E is the number of exess genes,

D is the number of disjoint genes,

W is the average absolute weight di�erence of matching genes,

N is the size of larger genotype,

c1, c2, c3 are positive constants (importance of particular factors).

Lower di�erence δ means that the measured genotypes are more similar.

When the next generation is produced it is divided into multiple species ac-
cording to the following rules. (1) Initial population forms a single species. (2)
When new genotype is created it is compared with random genotypes � each
from di�erent existing species and placed to the �rst species with the random
genotype being less di�erent than some threshold. The threshold value is adjust-
ed each generation (increased if too many species was created and decreased if
too few species exists).

When no similar genotype is found, new species containing the genotype is
created. The species is then protected for some number of generations through
species elitism, when the best genotype within the species is copied into the next
generation. When the protection expires, species can be removed if its genotypes
was not able to optimize itself during the time.

To maintain diversity in population, �tness of genotypes is scaled to reduce
the number of similar genotypes in the population. Scaling is realized by explicit
�tness sharing, where similar genotypes share their �tness.6 The scaled �tness is
given by the following formula:

f̃j =
fj∑

i sh(δ(i, j))
,

where

fj is the �tness value of the jth genotype,

f̃j is the scaled �tness value of the jth genotype,

δ(i, j) is the di�erence between the genotypes i and j, computed according
to 2.1,

sh(x) is the indicator function for similar genotypes,

sh(x) =

{
1 for x < θ,
0 for x ≥ θ,

θ is the threshold indicating how di�erent genotypes are still considered
similar.

2.3.5 Incremental growth

When we evolve topology of the network, it is usually desirable to �nd the net-
work with minimal size capable of solving some particular problem since larg-

6This is analogy of sharing resources by a species in the nature.

16

er networks are more computationally-intensive and have larger weights search
space. Therefore, it is more di�cult to optimize their weights.

NEAT uses approach suitable for �nding network of a minimal size. First, an
initial population is formed by networks of minimal possible size (no hidden neu-
rons are used). Then, during the evolution, the size of networks is incrementally
growing by mutations until larger networks have some evolutionary advantage
(i.e. they are capable of performing better than networks with lower size, there-
fore they have larger �tness value). In an ideal case the network of minimal size
capable of solving the problem is found.

Another advantage of the incremental growth is lower weights search space
from begining. Therefore, if a solution requiring only a small network exists it is
likely to be found in �rst few generations.

2.4 Hypercube-based NEAT

The NEAT algorithm is suitable for evolving and �nding the suitable topology for
the networks with small or medium size. However, some problems might require
larger networks, which would be di�cult evolve using the NEAT algorithm if
search space becomes too large. Therefore, the possible solution for large networks
is to use an indirect encoding, which would reduce the size of the search space.

This section describes the Hypercube-basedNEAT (HyperNEAT) algorithm7 [8]
that uses an indirect generative encoding, which allows evolving large neural net-
works with �xed topology. First, generating weights of evolved network using
Compositional Pattern Producing Network is described in Section 2.4.1. Next,
advantages of generative encoding and its possible applications are discussed
in Section 2.4.2.

2.4.1 Generative encoding

Gauci and Stanley [8] argued that phenotypes in nature typically exhibits higher
complexity than their genotypes. They suggested a method that could discover
high complexity phenotypes (e.g. large-scale neural networks) through a mapping
from genotype to the phenotype that translates few dimensions into many dimen-
sions.

In the HyperNEAT algorithm, a large-scale neural network with �xed topology
(substrate) is represented in genotype using smaller neural network � Compo-
sitional Pattern Producing Network (CPPN), which is evolved using the NEAT
algorithm. The following text describes the representation of substrate`s weights
using a CPPN network.

The substrate network is placed into p-dimensional space, where each neuron
has an unique position. The positions of the neurons should re�ect the geometry
of the problem, then as argued by Gauci and Stanley [8], this information could

7�Hypercube-based� means that NEAT is used here to evolve a mapping from k-dimensional
hypercube to 1-dimensional hypercube (i.e. interval [−1, 1]), which represents a phenotype
network using an indirect encoding.

17

Substrate CPPN

x1 y1 x2 y2 dx dy

w
[x2, y2]

x

y
w

[x1, y1]

Figure 2.10: An example of computing connection weight in HyperNEAT. In this example
the substrate is placed into two-dimensional space, thus, each neuron has two coordinates x
and y. The weight of the connection from the neuron with coordinates [x1, y1] to the neuron
with coordinates [x2, y2] in substrate is computed using CPPN. The following values are used as
CPPN inputs: positions of two neurons (x1, y1, x2 and y2) and di�erences in each coordinate
(dx and dy, where dx = x2 − x1, dy = y2 − y1). The output of CPPN is then used to set the
connection weight.

be an advantage for an evolution, when regularities in the solution could be ex-
ploited.

To determine weights in the substrate network, CPPN query each potential
connection in substrate and determine its presence and weight if connection is
used.This is realized by, �rst, using coordinates of two neurons (and additionally
their di�erences or other parameters) as inputs of CPPN. Then, the output of
CPPN is computed and used as the weight of the connection. If the absolute
value of the weight is below some prede�ned threshold, the connection is not
used. This can reduce number of connections of the substrate without signi�cant
change of computed function. Figure 2.10 shows computing of a single connection
weight in an example substrate network.

2.4.2 Advantages of generative encoding and its applica-

tions

HyperNEAT inherits advantages from NEAT such as reduced search space in ini-
tial generations and increasing complexity of the phenotype during the evolution.
Furthermore, the size of CPPN is independent on the size of substrate (i.e. a sin-
gle CPPN can be used to generate weights for neural networks of di�erent sizes).
Thus, CPPN can be �rst evolved using smaller substrate (which is computed is
faster) to compute the �tness of the CPPN and then, when CPPN is evolved, it
can by used for larger substrate.

Gauci and Stanley [8] argued that HyperNEAT is suitable for discovering
regularities (e.g. repeating motifs) in the phenotype and it is able to generalize

18

signi�cantly better than direct encoding for some types of problems. Moreover,
as shown by Haasdijk, Rusu and Eiben [4], HyperNEAT can develop a control
system for virtual organisms, where a single CPPN is used to generate local
neural control of each module. The CPPN then generates similar controls with
variations based on the modules positions.

2.5 Arti�cial Ontogeny

The methods described in the previous text used a directed graph to represent
and evolve morphology of the virtual organism. This approach allowed to evolve
several interesting virtual creatures. However, Cheney, Nick, et al. [16] argued
that despite nearly two decades of work since the method proposed by Sims [7],
evolved morphologies are not obviously more complex or natural, and the �eld
seems to have hit a complexity ceiling. Therefore, new approaches should be con-
sidered to develop methods that will produce more complex organisms capable
of solving complex real-world tasks.

This section provides a detailed description of a developmental method for
evolving virtual organisms � arti�cial ontogeny that is the main inspiration for
further methods described in this work. Arti�cial ontogeny was introduced by
Bongard and Pfeifer in their work [5,15] that combines an evolutionary algorithm,
ontogenetic development and di�erential gene expression.

Unlike directed graphs, arti�cial ontogeny uses more indirect representation
of an organism body compared to the directed graphs. A mapping from a geno-
type to the phenotype is realized via an ontogenetic process, where an organism
grows from a single structural unit (that is an analogy of a cell) to a complete or-
ganism. Main role in ontogenetic process plays gene product that are abstraction
of gene product in the biology. They have two roles � they a�ect construction
of phenotypic elements and a�ects expression of other genes.

The section is divided into six subsections that describe arti�cial ontogeny
from the structure of the phenotype to the representation in the genotype. First,
the phenotype of the organism is described � Section 2.5.1 describes its mor-
phology and Section 2.5.2 its control system. Next, Section 2.5.3 focuses on the
growth of organism`s body based on the actual concentrations of gene products.
Further, Section 2.5.4 describes growth of neural control system using a cellu-
lar encoding [5]. The following section, Section 2.5.5 describes genetic regulatory
network and related di�usion of gene products over organism`s body. Finally, the
structure of the genotype is described in Section 2.5.6.

2.5.1 Morphological Structure

Similarly to the other works [2, 7], the organism in arti�cial ontogeny consists
of multiple body parts � modules. Here, due to a biological analogy, it is more
accurate using term �cells� instead of �modules�. The architecture of the organ-
ism`s phenotype described in the following text is not used in this work, thus
some details are skipped to provide a basic overview of organism`s morphology

19

P

2

PP

0

1 23

0

1

2

3

03

1

[2][1] [3]

Figure 2.11: Rotational joints in arti�cial ontogeny. The �gure shows cell 1 attached
to cell 0 and cells 2 and 3 attached to cell 1. Sub�gures [1] � [3] show di�erent rotations of
cell 1. The rotation occurs through the plane described by cells 0,1 and 2. Cell 1 contains
proprioceptive sensor that emits a value negatively correlated to the angle described by cells
0,1 and 2 (dashed arc). The emited value of the sensor is zero for Sub�gure [0], positive for
Sub�gure [2] and negative for Sub�gure [3].

and control system.

An organism consists of one of more cells of a spherical shape that are con-
nected using rotational joints. Each cell contains 6 places (located to the north,
south, west, east, up and down from the center of the cell), where another cell can
be attached using a rotational joint with one degree of freedom. Figure 2.11 [5]
shows possible rotation of an attached cell.

Each place, from which another cell can be attached, has associated a di�usion
site, where the concentrations of gene products are simulated. Di�usion sites are
located at a half distance between the center of the cell and the position on the
cell boundary, where new cells can be attached.

During the growth, each cell can grow in size depending on the concentrations
of gene products. When a cell reaches twice radius of an initial size, it is split into
two cells with the initial size. Splitting the cell is realized by resetting radius of
the original cell to the initial value and attaching a new cell to one of 6 positions.8

2.5.2 Neural Control system

Organism`s control system is realized using a single neural network with its neu-
rons distributed over the organism`s body. Each neuron is associated with a par-
ticular di�usion site and each di�usion site can contain zero or more neurons.
Synaptic connections can connect two neurons (1) within a di�usion site, (2) be-
tween two di�erent di�usion sites within a cell or (3) between two di�usion sites
located in di�erent cells.9

The neural network consists of three types of neurons � (1) sensory neurons

8In case that the attachment place is already used (i.e. another cell is connected to this
place), existing cell is reconnected to the newly created cell.

9Note that the synaptic connections can connect also neurons that may be located in very
distant cells (e.g. a sensory neuron and a motor neuron).

20

(propriceptive, touch and light sensor), (2) internal neurons and (3) motor neu-
rons. There is no restriction on the number of the neurons, thus each type of
neurons may be present in a di�usion site zero of more times.

Motor neurons control movement of the cells, where they are placed. When
no motor neuron is present in a cell, the associated rotational joint is passive
(i.e. �xed). When more than one motor neuron is included in a cell, the aver-
age output is used to control movement of the rotational joint. The organism`s
movement is achieved by applying a torque to its cells to a desired angle that is
determined by outputs from motor neurons and scaled to range [−π

2
, π
2
].

Internal neurons are further divided into three subtypes. They are used to
(a) propagate a signal from sensory to motor neurons (hidden neurons) or (b)
they emit a constant maximum positive value (bias neurons) or (c) they emit
a sinusiodal output (oscilatory neurons). Bias neurons have no inputs, oscilatory
neurons have one or more inputs that determine frequency10 of their outputs.

The output of each neuron is computed at each time-step, when the neural
network is evaluated. The outputs are then stored and used as inputs in the next
time-step. Thus, recurrent connections can be evolved and used as a short-term
memory that can be useful for some tasks (e.g. locomotion in the virtual envi-
ronment). Output of the neurons (except for bias, oscillatory and input neurons)
is computed using the following activation function: σ(x) = 2

1+e−λx
− 1. Thus,

outputs of the neurons range from −1 to 1. The control system is activated in
the moment when its growth is complete to initiate organism`s movement. Ex-
amples of organisms evolved using arti�cial ontogeny are shown in Figure 2.3 [5].

2.5.3 Growth from a Single Cell

Both morphology and control system described in the previous text are simulta-
neously constructed during the growth of the organism. The growth is realized
by T discrete time-steps, where in each step (1) concentrations of gene products
are changed and (2) new phenotypic elements can be created. This subsection
describes construction of the phenotype based on concentration of gene products
concentrations during the growth process.

Gene products can be viewed as an abstraction of gene products in nature.
Amounts of gene products that are present in di�usion site are represented using
values from range [0, 1]. These values can be interpreted as concentrations of
gene products in the nature linearly scaled to range [0, 1], where 0 indicates that
a gene product is not present in a di�usion site and 1 indicates maximum possible
concentration.11

There is totally 24 di�erent types of gene products, where each of them has
a prede�ned role. Two gene products a�ect growth of cells (grow enhancer, grow
repressor), more gene products are used for development of control system and

10The frequency is given by the sum of inputs, where higher input values cause higher fre-
quency.

11Note that the sum of the gene product concentrations can exceed value 1. We assume that
(not scaled) maximum possible concentration are much lower than 1. Therefore, concentration
of a single gene product is not directly a�ected by concentration of di�erent gene product

(however, they can a�ect each other indirectly via genetic regulatory network described in
further text).

21

rest of them have no direct phenotypic e�ect. All types of gene products are
also used as gene regulators (i.e. they a�ect production of other gene products as
described in Section 2.5.5).

Concentrations of gene products are simulated in discrete time-steps within
the organism during its growth. Each gene product is simulated in each di�usion
site with only local interactions between neighbouring di�usion sites that are
(1) all pairs of di�usion sites within a cell except opposite sites (e.g. north and
south di�usion sites are not considered neighbors) and (2) nearest di�usions sites
of two connected cells.

The growth starts with creating a single cell. During the growth new pheno-
typic elements (i.e. cells and neural structure) are added to the existing phenotype
or existing phenotypic elements are altered, where each new part of the phenotype
is associated with a particular di�usion site. As a result, the phenotype grows
in size during the process of development.

When a new cell is created, it can grow in size depending on concentrations
of grow enhancer and grow repressor gene products within the cell. As mentioned
in the previous text, when a cell reaches twice a size of its initial radius, a new
cell is created and size of the original cell is set to the initial size. The new cell
is attached in the direction corresponding to the di�usion site with maximum
concentration of grow enhancer within the parent cell. Growth of the organism
is terminates after prede�ned T time-steps, when the organism is considered
to be �adult�.

2.5.4 Neural Growth

Bongard and Pfeifer [5] intercorporated cellular encoding by Gruau at al. [13] into
their method to evolve and grow neural control system of the organism simultane-
ously with the morphological structure. The cellular encoding is a developmental
encoding that allows evolving both topology and weights of a neural network.
This work uses a CPPN encoding instead of cellular encoding that is used in ar-
ti�cial ontogeny, thus some technical details are skipped to provide description
of basic concepts that can be compared with other approaches in further chapters.

As described in the previous text, the neural control system has neurons placed
inside di�usion sites within the organism, where synapses can connect neurons
between di�erent di�usion sites and also between di�erent cells. The pheno-
type neural control is constructed using cellular encoding operations [15] during
the growth of the organism that alter neural structure, synaptic weights, types
of neurons and their placement inside di�usion sites within the organism.

Cellular encoding operations are related to di�usion sites inside the organism.
They are applied simultaneously to each di�usion site at each time-step based
on the concentrations of gene products within the di�usion site. Completely 17
cellular encoding operations is used, where each operation is triggered by di�erent
gene product. Thus, each cellular encoding operation has asociated its gene prod-
uct. An operation is triggered when the corresponding gene product concentration
reaches a treshold value 0.8. When more than one operations are triggered for
a particular di�usion site in a single time-step, they are applied in a prede�ned
order.

22

C 2

C 3

C 1

C 4

C 2

C 3

C 1

C 4

TSTS

M M

Figure 2.12: An example of two neighboring cells in arti�cial ontogeny. Only 4 of 6
di�usion sites are shown (denoted as C1 � C4) in the cells. Dotted lines indicate di�usion
between neighboring di�usion sites. Both cells contain touch sensor neuron (TS) and motor
neuron (M) that are located in di�usion sites C1 and C2 respectively and the synapse from the
sensor to the motor with an unit weight.

There are two types of cellular encoding operations : (1) operations applied to
neurons and (2) operations applied to synapses within a di�usion site. Operations
applied to neurons include serial and parallel duplication, deletion, migration
of a neuron between di�usion sites and changing type of a neuron. Operations
applied to synapses includes duplication and deletion of synapse, increase and
decrease of a synaptic weight and reconnecting a synapse to a di�erent neuron.

As described in the previous text, a di�usion site can contain more than one
neurons or synapses. Thus, two additional pointers are maintained for each di�u-
sion site that indicate which neuron and the synapse will be used for an operation.
Cellular encoding operations also include moving these pointers. Table 2.1 [15]
shows complete list of used cellular encoding operations in order they are ap-
plied.12

Initially, when a new cell is created, it contains two neurons � a touch sensor
neuron (TS) and a motor neuron (M) as shown in Figure 2.2. These neurons
are placed in opposite di�usion sites (di�usion sites 1 and 2 in Figure 2.2) and
connected using a synapse from TS to M with a unit weight. Additionally, when
a new cell is created from an existing cell, all neurons from the di�usion site
of the parent cell, from which the new cell was created, are moved to the neigh-
boring di�usion site of the new cell, where all existing connections are kept. This
may lead to a directed migration of neurons across the cells, where connections
even between distant cells remain maintained. Furthermore, this method allows
evolving recurrent neural networks that propagate a signal from sensors to motors.

2.5.5 Genetic Regulatory Network

This text describes a genetic regulatory network and related di�usion of gene
products within the organism that a�ect concentrations of gene products inside
the di�usion sites during the growth of the organism. Genetic regulatory net-

12Note that if a di�usion site has no neural structure, no operation is applied.

23

Table 2.1: Cellular encoding operations in arti�cial ontogeny.

Operation Description

Serial duplication
of a neuron

Split the current neuron into two neurons. Move the output synapses of
the original neuron to the new neuron. Connect the original neuron to
the new neuron with a synapse of positive weight.

Parallel duplication
of a neuron

Split the current neuron into two neurons. Copy the input and output
synapses to the new neuron. Connect the two neurons to each other
using two synapses of positive weight.

Neuron migration
to the previous
di�usion site

Move the current neuron to the previous di�usion site within the cell.

Neuron migration
to the next
di�usion site

Move the current neuron to the next di�usion site within the cell.

Change target of
a synapse

Move the head of the current synapse to the current neuron.

Change source of
a synapse

Move the tail of the current synapse to the current neuron.

Increase a synaptic
weight

Increment the weight of the current synapse by 0.01.

Decrease
a synaptic weight

Decrement the weight of the current synapse by 0.01.

Duplication of
a synapse

Duplicate the current synapse.

Delete of a neuron Delete the current neuron, including any ingoing and outgoing synapses.

Delete of a synapse Delete the current synapse.

Move the neuron
pointer to the next
neuron

Move the neuron pointer to the next neuron at the current di�usion site.

Move the neuron
pointer to the
previous neuron

Move the neuron pointer to the previous neuron at the current di�usion
site.

Move the synapse
pointer to the next
synapse

Move the synapse pointer to the next synapse at the current di�usion
site.

Move the synapse
pointer to the
previous synapse

Move the synapse pointer to the previous synapse at the current di�usion
site.

Change the type
of the current
neuron

Change the type of the current neuron to the next neuron type in the
following order: (1) Touch sensor, (2) Propriceptive sensor, (3) Light
sensor, (4) Bias neuron, (5) Oscillatory neuron, (6) Internal neuron and
(7) Motor neuron. Note that the last type is changed to the �rst type.

Change the type
of the current
neuron in reverse
order

Change the type of the current neuron to the previous neuron type in
the following order: (1) Touch sensor, (2) Propriceptive sensor, (3) Light
sensor, (4) Bias neuron, (5) Oscillatory neuron, (6) Internal neuron and
(7) Motor neuron. Note that the �rst type is changed to the last type.

24

work abstracts some properties of biological genetic regulatory networks such as
interaction between DNA segments. It can be also viewed as an intermediate
step in transition from genotype to the phenotype and it plays a fundamental
role in arti�cial ontogeny.

There are three factors a�ecting gene product concentrations during the growth
� (1) genetic regulatory network (GRN), (2) di�usion to the neighboring di�u-
sion sites and (3) di�usion outside the organism. Di�usion to the neighboring
di�usion sites and outside the organism is not directly a�ected by the genotype.
Genetic regulatory network increases concentrations of some gene products (i.e. it
produces new gene products) at each time-step and each di�usion site simultane-
ously based on the current concentrations of gene products in the di�usion sites
within the cell.

Genetic regulatory network consists of rules for production of gene products
that we denote as GRN rules. Unlike the developmental rules described in the
previous text that are related to di�usion sites, GRN rules are applied to cells,
where at each time-step for each cell a subset of GRN rules is applied to the cell.

GRN rules have the following structure: Each GRN rule has speci�ed its
regulating gene product, concentration domain and target di�usion site that are
encoded in the genotype. A rule is applied if its target di�usion site has the
regulating gene product concentration within the concentration domain. Each
GRN rule has also speci�ed produced gene product and amount of concentration
which is produced to the target di�usion site when the rule is applied. The con-
centration domain is either: (1) an interval [l, u] ⊆ [0, 1] or (2) its complement
(i.e. [0, 1] \ [l, u]), where l indicates lower and u indicates upper bound for a gene
product concentration.

Di�usion to neighboring di�usion sites is realized by moving some amount
of gene products from the site with higher concentration to the site with lower
concentration that is done at each time-step of the growth. The transfered amount
of gene product is linearly correlated to the di�erence of two concentrations.
A higher amount is di�used to neighboring sites within the cell and a smaller
amount to neighboring di�usion site in the neighboring cell.

Di�usion out of the organism decreases concentration of each gene product by
a small ratio. Thus, a di�used amount of gene product is linearly correlated to the
absolute concentration. This causes an exponential descease of the concentrations
during the growth of the organism.

2.5.6 Representation in the Genotype

A genotype in arti�cial ontogeny encodes a genetic regulatory network described
in the previous text.13 The genotype consists of a sequence of values from range
[0, 1] that is evolved using a real-valued genetic algorithm. The genetics algorithm
uses an asymmetric crossover, thus it evolves genotypes with a variable length and
allows evolving genotypes with increasing length during the evolution. The fol-
lowing text describes representation of genetic regulatory network in the genotype.

13Therefore, the genotype in arti�cial ontogeny is also referred as a GRN genotype.

25

Table 2.2: Structure of a single gene in arti�cial ontogeny

Pr is promotor site indicator, it determines if the following 7 values form a gene,

P1 determines if the concentration domain for the regulation gene product is an in-

terval (values higher that 0.5) or its complement (values lower that 0.5),

P2 represents index of the regulating gene product,

P3 represents index of the gene product that is produced in target di�usion site,

P4 represents index of target di�usion site,

P5 determines an amount of the produced gene product,

P6 is the lower bound for the concentration domain of the regulating gene product,

P7 is the upper bound for the concentration domain of the regulation gene product.

The values in the genotype either encode GRN rules or have no phenotypic
e�ect. GRN rules are encoded using continuous blocks (genes) in the genotype,
where each gene consists of 7 values that encode a single GRN rule. Genes can
start on any position in the genotype (except of positions at the end of the geno-
type). Starting position of a gene is determined by a promotor site that is a po-
sition in the genotype, which indicates that the following 7 positions form a gene.

To construct genetic regulatory network from the genotype, �rst promotor
sites are found. A position in the genotype is a promotor site if both (1) it is
not part of a previous gene or at the end of the genotype and (2) its value is
below n

l
, where n is a prede�ned average number of genes that should be used

in each initial random genotype and l is prede�ned length of genotypes in the
initial population. Thus, each genotype in the initial random population will
have on average approximately n genes.

The structure of a single gene is following. We denote parameters that form
a gene as P1, . . . ,P7 and a value on the promotor site position as Pr. Each param-
eter in the gene corresponds to a single parameter of the GRN rule. Lower and
upper bounds for the concentration domain are represented directly by the val-
ue in the gene (P6,P7). A value at the position that encodes produced amount
of a gene product (P5) is linearly scaled to range [0, 0.01].

To determine both regulating and target gene product, the corresponding value
in the gene (P2,P3) is multiplied by the number of used gene products and then
rounded to an integer value that is treated as an index of a gene product.14

As a result, each gene product has an equal probalility in the initial random
population.

A similar approach is used to encode indexes of di�usion sites in the gene (P4).
One more parameter (P1) is used to indicate wheter the concentration domain
is an interval determined by lower and upper bounds (values higher than 0.5)
or its complement (values lower than 0.5). Figure 2.13 [5] shows an example of
a genotype and Table 2.2 includes complete list of parameters forming a gene.

14Gene products are indexed as 0, . . . , p − 1, where p indicates the number of used gene

products.

26

G1 G2 G 3 G 4 G n

0.500.03 (1) (22) (3) (1) 0.37 0.0P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P7

P7

P6

C 2

C 3

C 1

C 4

C 2

C 3

C 1

C 4

TSTS

M M

. . .

Pr

Pr

0.08 (0) (3) (22) 0.91 0.50 0.99(4)

1.0 1.0

Figure 2.13: An example of a genotype in arti�cial ontogeny. The �gure shows
the situation as in Figure 2.12. Additionally, a genotype is included (on the top) that consists
of n genes G1, . . . ,Gn (only genes G1 and G3 are shown in details). The values in parentheses
indicate integer or binary values (e.g. indexes of di�usion sites or gene products). Light grey
color indicates positions in the genotype that do not encode genes.

27

3. The First Proposed Method:

Evolving Morphological Structure

using Directed Graphs

This chapter describes a proposed method for evolving virtual organism that
includes evolving morphological structure and control system of the organism.
The proposed method is based on the previous work of the author of this the-
sis [12], where evolving morphological structure is adopted without any modi�-
cations. On the opposite, control system was improved and extended to evolve
organisms capable of more e�cient locomotion that exploits potential of the mor-
phology.

The proposed method evolves morphology and control system of the organism
simultaneously, where the morphological structure is represented using directed
graphs as proposed by Sims [7]. Unlike Sims, the control system is evolved using
the HyperNEAT algorithm [8] with inspiration by the method proposed by Haas-
dijk, Rusu and Eiben [4]. In addition to Haasdijk, Rusu and Eiben, a central
control system is used to coordinate organisms movement.

The HyperNEAT generative encoding provides several advantages in addition
to the original Sim`s method: (1) it reduces search space of the control system by
using a single compositional pattern-producing network (CPPN) that represents
weights of local networks, moreover, (2) additional CPPN inputs also allow mod-
ule di�erentiation based on the module position within the organism, as a result,
evolved neural network most likely exhibits similarities such as repetition with
variations, �nally (3) HyperNEAT inherits advantages of NEAT such as sensible
crossover, speciation and growth from a minimal structure that increase e�ciency
of the evolution of virtual organisms as shown by Kr£ah [2].

This chapter is divided into two sections: First section, Section 3.1 describes
morphological structure of the organisms and its representation in the genotype
that are adopted from the previous work of the author of this thesis. Second
section, Section 3.2 describes the neural networks that form the control systems
of the organism including sensor, e�ectors and HyperNEAT-generative represen-
tation.

3.1 Evolving Morphology

The morphological structure of virtual organisms in this work is similar to or-
ganisms evolved in the Sim`s work [7]. However, unlike Sims, organisms in this
work consist of homogeneous modules (i.e. modules of identical shape and phys-
ical properties) connected to each other using joints that have a single degree
of freedom or are �xed. Moreover, unlike most of previous works, modules are
here allowed to intersect each other for reasons discussed further in this section.

This section describes a morphological structure of virtual organisms and its
representation in the genotype. The section includes following two subsections:

28

M2

pivot

M1

M2 axis

M1 axis

M1 M2

M2 axis

pivot

M1 axis

ξ
r

r

φ

Figure 3.1: Two 2-dimensional projections of possible pivot positions. Both pictures
show the situation, where module M2 is attached to module M1. Bold dashed circle (left
picture) and lines (right picture) indicate possible pivot positions. Plane of the left picture is
perpendicular to the axis of module M1 and the plane of the right picture is parallel to the
module axis and one of module faces. The pivot position has constant distance r from M1

axis. The angle ξ between the line from the center of M1 to the pivot and M1 axis is from the
range [π4 ,

3π
4] (dotted lines on the right picture correspond to the minimal and maximal angle).

Second angle φ determines rotation around M1 axis (left picture). Both angles are stored in
the organism`s genotype. The axis of module M2 is determined by the pivot position and the
center of module M2.

First, Section 3.1.1 describes a structure of organism body, connections of at-
tached modules and their movement. Next, Section 3.1.2 describes representation
of morphological structure in the genotype including construction of the pheno-
type morphology for a given genotype.

3.1.1 Morphological Structure

The organism consists of modules connected to each other that form a tree struc-
ture (morphological tree). Modules are connected using a �xed joint or a rotational
joint with one degree of freedom. Modules that form an organism are homoge-
neous � they have the same physical properties (e.g. weight, friction, etc.) and
an identical cube shape. However, they may di�er in their control systems as de-
scribed in the next section. The following text describes attaching modules using
�xed and rotational joints.

Attaching a module to its parent in the morphological tree includes the follow-
ing procedure. For better clarity we denote attached module asM2 and its parent
module asM1. To determine moduleM2 position, �rst, position of the pivot that
is the center of the rotation of the attached module, is determined. The pivot is
placed in constant distance r from the module axis that is one of 3 lines crossing
the center of the module and perpendicular to its 2 faces. The �nal pivot position
is determined by two angles φ and ξ encoded in the genotype. The possible pivot
positions are shown in Figure 3.1.

Once position of the pivot is determined, the attached module M2 is placed
in the same direction as the pivot (from the center of module M1), but in double
distance (i.e. pivot is placed in the middle between the centers of two modules).
Additionally, if a rotational joint is used, the attached module can be rotated
around the pivot by applying force to the module, where the plane of rotation
is determined by an angle encoded in the genotype. Figure 3.2 shows rotation
of the attached module. Desired rotation of the attached module is determined

29

pivot

M1

v2

v1

M2
M2

β

α

M2

Figure 3.2: Rotation of attached
module around its pivot. Picture shows
module M2 attached to its parent module
M1 using a rotational joint. Two unit vec-
tors v1 and v2 together with the pivot po-
sition and �xed distance from the pivot de-
�nes a circle, where is module M2 (its cen-
troid) rotated. Vector v1 is determined by
the center of M1 and the pivot position.
Vector v2 is determined by angle β, which
is stored in the genotype, and determines a
plane in whichM2 is rotated. Angle α then
determines rotation of module M2 around
the pivot (α = 0 if the center of M2 has
a common line with the pivot and the cen-
ter of M1). For a �xed joint, α has a con-
stant value α = 0. Note that length of the
joint is increased here for better clarity.

by local control system of the module and it is given by the following formula:

α[A, ω, φ](t) = Az sin(ωt+ φ), (3.1)

where

t is time in the simulation,

A is an amplitude (determined by the control system),

z is a bipolar value (i.e. 1 or −1) inverting movement of a cloned module
(see Section 3.1.2) that is determined by the genotype,

ω is an angular speed (determined by the control system),

φ is a phase (determined by the control system).

When a desired angle for a rotational joint is determined, the force is applied to
the module in the direction to the desired angle. The desired angle is determined
by outputs from the control system (amplitude, angular speed and phase) and
current time in the simulation. For �xed outputs from the control system is
the desired angle a sinusoidal function of time in the simulation. As a result
evolved organisms exhibit a periodical motion that is suitable for tasks such
as locomotion or swimming.1

Unlike other works [2,5,7] that evolve virtual organisms, modules are allowed
to intersect themselves during motion of the organism . This might not be prac-
tical for construction of real-word robots. However, the modules intersections
can be often reduced by a slight modi�cation of the phenotype (e.g. replacing
intersected modules with a single larger and heavier module). Moreover, it is
believed [12] that more freedom to the morphology could allow evolving various
types of organisms that could not be evolved otherwise. To prevent massive in-
tersections of the modules, some mechanisms can be used to penalty organisms
with a high amount of module intersections in the �tness.

1However, this might prevent evolution from �nding successful organisms with di�erent types
of motion.

30

3.1.2 Representation in The Genotype

Morphology of the organism is represented using the morphological graph de-
scribed in the previous chapter. The morphological graph indirectly encodes mor-
phology of the organism that is constructed using breadth-�rst search applied on
the graph followed by depth-�rst search to create symmetries in the organism`s
body. The following text provides more detailed description of the method in-
cluding a complete list of used genetic operators.

The used representation is designed to evolve organisms that exhibit sym-
metries2 to reduce search space and allow evolving larger organisms. The used
symmetries was proposed in the previous work of the author of this thesis [12] with
inspiration by living organisms in the nature that often exhibit a mirror (plane)
symmetry (e.g. two symmetrical arms and legs), which allows them an e�ective
movement in their natural environment.

The following text describes construction of the phenotype morphology based
on the morphological graph stored in the genotype. First, the module correspond-
ing to the starting vertex in the morphological graph is created (root module).
Then, breadth-�rst search (BFS) from the starting vertex is used to create corre-
sponding morphological tree that forms body of the organism, where each vertex
can be visited multiple-times (determined by module-limit for each vertex).

To evolve organisms that exhibits symmetries two types of edges are included
in themorphological graph � simple edges and double edges. The edges marked as
a double edge (that is a symmetry indicator) are treated during the breadth-�rst
search as two separate edges � the original edge and its clone that has exactly
the same parameters as an original edge only with a di�erence that it is marked
as a clone edge.

When module-limit is reached for a vertex during BFS, the vertex can be
still visited until the height of the constructed morphological three is increased.
This approach has advantage that the resulting organism`s morphology is not
dependent on order in which vertexes are visited. Furthermore, the clone of
a subtree (i.e. the subtree ofmorphological tree that was created during BFS using
a clone edge) has always the same number of modules as the original subtree.

During the construction of a morphological tree, each attached module is
placed to the position relative to its parent that is determined by parameters
in the corresponding edge as described in the previous text. When the mor-
phological tree is constructed, it is searched using depth-�rst search (DFS) from
root module, where each cloned subtree is mirrored using a plane determined by
symmetry-type stored in the genotype. Complete list of parameters of vertexes
and edges in morphological graph is shows in Table 3.1.

Morphological graph is evolved during the evolution using genetic operations
described in the previous chapter that include two types of mating (crossover and
grafting) and mutations. Genotypes are produces by (1) �rst mating followed by
mutation or by (2) mutation with higher mutation rate. Probability of mating
starts at 20% and it is continuously increased during the evolution to 50%3. When

2This does not limit possible evolved organisms to only organisms with symmetries. However,
organisms with symmetries are more likely to be evolved.

3From the beginning of the evolution mutations usually performs better compared to matting

31

Table 3.1: Parameters of vertexes and edges in morphological graph.

Vertex param. Description

module-limit determines the maximum number of modules that can be

created from a vertex (note that this limit can be exceeded

as described in the text above),

Edge param. Description

location determines the position of the pivot relative to the parent

module,

rotational-joint-indicator determines whether a joint is rotational or �xed,

connection-type determines whether a plane symmetry is used,

symmetry-type determines one of three possible planes of symmetry,

movement-symmetry determines (1) whether rotation of the root module of

the cloned subtree will be inverted (i.e. z = −1 in Formula

3.1) and (2) whether movement of non-root modules in

the cloned subtree will be inverted,

axis-rotation determines the angle (β in Figure 3.2) that de�nes

a plane, where the module is rotated.

two genotypes are mated, crossover or grafting is randomly selected with equal
probability.

Applied mutations include mutation of parameters and structural graph mu-
tations. Structural mutations adds or remove vertexes in morphological graph or
alter connections between them. Mutations of parameters of vertexes and edges
correspond to the type of the parameter. Table 3.2 includes all used structural
mutations and Table 3.3 includes all used mutations of parameters.

3.2 Evolving Control System

Evolving morphology of the virtual organism usually also requires co-evolving
control system to allow (1) coordinated movement of the modules and (2) inter-
action with objects in the virtual world. Additionally, some methods to evolve
robot controllers that are described in this section can be also used to encode and
evolve morphology of the organism as shown in the next chapter.

This section describes proposed neural control system of the organism inspired
by Haasdijk, Rusu and Eiben [4]. In addition to Haasdijk, Rusu and Eiben, two
extension to the control system are added: (1) connections between local mod-
ule controllers and (2) a central controller to coordinate organism movement.
The connections between modules and central controller includes a short memo-
ry that can by useful for some tasks such as evolving robot locomotion. As argued
by Haasdijk, Rusu and Eiben, this should make evolving control system easier
than using isolated agents (i.e. modules) with reactive controller.

that is equivalent to a large mutation. On the other hand, at further generations mating allows
gene exchange of evolved genotypes that may include an useful information.

32

Table 3.2: Structural mutations of morphological graph.

Mutation Description

add-random-connected-vertex creates a new random vertex that is connected

to an existing vertex using a new random edge,

remove-random-vertex removes a randomly chosen existing vertex in-

cluding its incident edges (note that starting ver-

tex can not be removed),

remove-random-unreachable-vertexes uniformly removes unreachable vertexes,

swap-vertexes swaps parameters of two randomly selected ex-

isting vertexes (except starting vertex),

add-random-edge creates a new random edge between two random-

ly selected existing vertexes (note that source

and target vertexes can be already connected or

the same vertex),

remove-edge removes a random existing edge,

change-edge-target selects a random existing edge and changes its

target vertex to another randomly selected ex-

isting vertex.

Table 3.3: Mutations of vertexes and edges.

Mutation Description

increase-module-limit increases module-limit by 1,

decrease-module-limit decreases module-limit by 1 (applied only if module-

limit is at least 2),

move-pivot moves the pivot alongside module axis by a random

value from normal distribution (i.e. adds a random val-

ue to ξ in Figure 3.1),

rotate-pivot rotates the pivot around module axis by a random an-

gle from normal distribution (i.e. adds a random value

to φ in Figure 3.1),

rotate-movement-plane adds a random value from normal distribution to the

angle determining the plane of the module rotation

(β in Figure 3.2),

change-edge-type changes simple edge to double edge and double edge to

simple edge,

change-joint-type changes joint type (i.e. whether the joint is rotational

or �xed),

change-symmetry randomly changes the plane of symmetry,

change-movement-symmetry changes the inverse movement indicators.

33

This section is further divided into three following subsections: First, Sec-
tion 3.2.1 describes all used sensors of the organisms and its e�ector that realize
movement of the modules. Next, Section 3.2.2 describes structure of the con-
trol system that includes description of communication between particular con-
trollers and evaluation of the neural networks. Finally, Section 3.2.3 describes
HyperNEAT generative representation of the neural networks including placing
of neurons in the substrate space.

3.2.1 Sensors and E�ectors

Sensors of the organism are distributed over its body to sense collision with ob-
jects in the virtual environment and its own state. Some sensors are designed for
a particular task (e.g. light following) and they are disabled for other tasks. There
are two types of sensors � (1) locals sensors stored in each non-root module and
(2) central sensors associated with whole organism.

Local sensors include collision detection, relative module rotation sensor, mod-
ule velocity sensor and optional light sensor for light-following task. Central sen-
sors include a velocity sensor and optional light sensor that are an analogy of
the local sensors related to whole organism. Outputs from sensors are directly
connected to corresponding neural network controllers, where output values range
from −1 to 1. This is achieved by linear scaling of inputs with bounded range
(e.g. rotation of the module) and scaling using a sigmoidal function inputs with
unbounded values (e.g. velocity). The following sigmoidal function is used:

σ(x) =
2

1 + e−λx
− 1. (3.2)

Complete list of local sensors is included in Table 3.4.

E�ectors of the organism determine parameters of module periodical motion,
where desired angle is achieved by applying physical forces to modules as de-
scribed in the previous section. In some cases a periodical motion of the modules
may produce successful locomotion even using an initial random control system.
As a result initial random population often contains organisms that are capable of
a simple movement. However, more e�cient locomotions usually require setting
parameters of the periodical motion during the locomotion.

3.2.2 Structure of Control System

Haasdijk, Rusu and Eiben [4] used HyperNEAT generative encoding to evolve dis-
tributed control system for multi-robot organism consisting of simple connected
robots (that correspond to modules in this work), where a single CPPN encodes
control system of all robots within the multi-robot organism. Using additional
inputs to the CPPN for the module positions within the organism allows modu-
lar di�erentiation, where local neural networks in two modules may di�er in their
weights.

In contrast to Haasdijk, Rusu and Eiben, evolving distributed control system
is not goal of this work. Thus, additional central neural network connected to

34

Table 3.4: Organism`s local sensors.

Sensor Output values

rotation-
sensor

module rotation around its pivot (α in Figure 3.2) linearly
scaled to the range [−1, 1],

collision-
sensor

the value s(t) determined by the time from the last collision.
The value is computed as follows:

s(t) =

−
(
tmax−t
tmax

)2
for t ∈ [0, tmax],

0 otherwise,

where t indicates the time from from the last collision and
tmax is a prede�ned constant value,

velocity-
sensor

values σ(x), σ(y), σ(z), σ(v), where (x, y, z) indicates the ve-
locity vector of the module, v indicates size of the velocity
vector and σ is sigmoidal function given by Formula 3.2,

light-sensor
(optional)

values cos(α), sin(α), where α indicates angle between actual
module velocity vector and direction to an object speci�c
for a particular task (e.g. followed object or an obstacle),
note that this sensor is enabled only for some speci�c tasks
(otherwise it returns zero values).

each local network and further connections between local neural networks are
added that should allow (1) faster propagation of information between distant
modules and more importantly (2) possibility of evolving centralized organism
control.

The following text describes realization of the control system that consists
of local neural networks for each non-root module and a single central neural
network. Local and central neural networks are layered neural networks that
have a single hidden layer and sigmoidal activation function given by formula 3.2.
The hidden layer includes a �xed prede�ned number of neurons, number of neu-
rons in input and output layers depends on number of neighboring modules.

The system of connected local and the central neural networks is equivalent
to a single recurrent network. The communication between networks is following:
Similarly to Haasdijk, Rusu and Eiben [4], each local control receives output from
collision sensors of its neighbor non-root modules. Additionally, three more input
and output neurons for each neighboring local control are used to propagate signal
between neighboring modules.

As indicated in the previous text, local networks are connected to the central
network. The communication with the central network is realized using the same
number of neurons as with a neighboring local network. Therefore, the number
of neurons within the central network is linearly correlated to the number of
non-root modules.

The neural networks are evaluated in prede�ned equidistant time-steps of
the simulation. The evaluation consists of three substeps that are performed

35

sensors

effectors

sensors

effectors

sensors

effectors

 global
sensors

central
control

local
controls

Figure 3.3: Structure of the neural control system. The �gure shows control system of
an organism that consists of 4 modules (a single root module and three non-root modules). Each
non-root module has its local control (gray squares on the right). The root module is associated
with the central control (blue square on the left). The arrows indicate communication between
modules, sensors and e�ectors. Note that for clarity only a single couple of arrows in shown for
communication between the central network and each local network.

in the following order: First, inputs of local networks are initialized by evaluating
local sensors and from stored memory that contains output values from the pre-
vious time-step (zero values in the �rst time-step). Next, when inputs of local
networks are initialized, their outputs can be computed. The outputs of neurons
that are associated with input neurons of the neighboring local networks and
the central network are stored for the next time-step, other outputs determine
parameters of the module rotation. Finally, central network is evaluated and its
outputs stored in the memory of local networks. The described communication
between neural networks, sensors and e�ector is shown in Figure 3.3.

3.2.3 Generative Representation

The control system of the organism is represented in the genotype using Hyper-
NEAT generative encoding, where a separate CPPN is used to represent each
type of networks � local CPPN represents the local neural network and central
CPPN represents the central neural network. As a result, the genotype of the
organism consists of completely 3 components � (1) morphological graph that
represents a robot body, (2) local CPPN that represents weights of the local net-
works and (3) central CPPN that represents weights of the central control, where
each is mutated and mated separately. The following text describes placing neu-
rons in the substrate spaces.

This work uses more dimensions for neuron positions in substrate space com-
pared to Haasdijk, Rusu and Eiben [4]. This increases a freedom of the evolved
controllers by adding more inputs to the evolved CPPN. Substrate space of local
neural networks includes completely 5 following dimensions: First dimension cor-
responds to the layer of the network. Next dimension is associated with a group
of neurons in the layer. Last three dimensions store additional information spe-
ci�c for the group of neurons that usually corresponds to a position or a direction
in the 3D-world. For instance, vector inputs such as velocity are represented
by a single group of neurons, where each input corresponds to a neuron with
a di�erent position (i.e. they di�er in the last three coordinates).

36

Figure 3.4: Local neural network control placed into 5-dimensional space. Only
�rst two coordinates (x1, x2) that determine group or neurons are shown, where x1 corresponds
to the layer and x2 corresponds to the position of group in the layer. Each group of neurons may
contain one or more neurons that di�er in other three coordinates. Note that drawn synapses
show only an illustration of possible connections between groups of neurons.

10-1

1

0

-1

10-110-1

Input layer Output layerHidden layer

bias bias

light
sensor

velocity
sensor

control
local

control
local

control
local

control
local

control
local

control
local

hidden hidden

hidden hidden

x1 = -1 x1 = 0 x1 = 1

Figure 3.5: Central neural network control placed into 6-dimensional space. Only
�rst three coordinates are shown here. First coordinate (x1) corresponds to the layer and second
two coordinates (x2, x3) correspond to group of neurons within the layer. Note that synapses
between layers are not shown for clarity.

37

The number of CPPN inputs is linearly correlated to the substrate dimension.
Each dimension in the substrate corresponds to the following 3 inputs in local
CPPN : (1) source neuron coordinate, (2) target neuron coordinate and (3) their
di�erence (i.e. yi − xi, where x indicates source neuron position and y indicates
target neuron position).

To allow di�erentiation of local controllers, an approach adopted from Haas-
dijk, Rusu and Eiben [4] is used, where local CPPN includes additional 4 inputs
for module positions: a normalized relative module position (i.e. an unit vector)
related to the root module position (in the moment the phenotype was created)
and the distance from the root module. Positions of neurons in the local neural
network are shown in Figure 3.4 and further described in Table 3.5.

When organism`s morphology exhibits symmetries (e.g. bilateral symmetry)
the control system should re�ect these symmetries in order to allow e�ective loco-
motion. Therefore, in addition to regularities in the local neural controls that are
result of HyperNEAT generative encoding, control system includes a mechanism
to re�ect symmetries of the morphology in the control system: when a subtree
of the morphological tree is cloned to create a symmetrical part of the organ-
isms, each local control within the subtree is also cloned, thus the clone of the
subtree includes identical local neural controllers with possibility of inversion of
movement as described in the previous section (see Section 3.1.2). This produces
symmetrical organisms that exhibit a symmetrical locomotion of the symmetrical
parts.

The central neural network is usually larger compared to the local neural
networks, it has been also allowed more freedom to the evolve more complex
high-level control. This is achieved by adding one more dimension to its sub-
strate space compared to local neural networks. The substrate space includes
completely 6-dimensions, where each dimension corresponds to 3 inputs as in lo-
cal neural networks. Unlike local networks, no CPPN inputs for di�erentiation
are needed. Position of the neurons in the central control substrate space are
shown in Figure 3.5 and further described in Table 3.6.

The described con�guration of neurons in the substrates is result of sever-
al augmentations of the initial con�guration of the author of this thesis [12].
Resulting substrates con�guration signi�cantly improves evolved organisms com-
pared to previous method of the author. Two additional enhancements have
been realized from the previous work: (1) CPPN neurons includes a parameter
that determines used activation function to evolve control systems that exhibits
regularities as proposed in the HyperNEAT algorithm [8] and (2) local neural net-
works in neighboring modules are connected to propagate information through
the organism as described in the previous section. List of activation functions is
included in Table 3.7.

38

Table 3.5: Structure of local neural networks.

Neuron group Position in the substrate (x3, x4, x5 coordinates)
rotation-sensor single neuron with zero coordinates,

collision-sensor single neuron with zero coordinates for collisions of the
module of this local control and one additional neuron for
each neighbor module collision, where position of the neu-
ron corresponds to the relative position of the neighbor
module,

velocity-sensor four neurons with coordinates [1, 0, 0], [0, 1, 0], [0, 0, 1] for
a velocity vector and [0, 0, 0] for its size,

light-sensor two neurons with coordinates [1, 0, 0] and [0, 0, 1] for cos(α)
and sin(α) (see Table 3.4), respectively,

bias, hidden 8 neurons with coordinates [±1,±1,±1] (i.e. vertexes of
a 3D-cube)

module-rotation three neurons with coordinates [1, 0, 0], [0, 1, 0] and [0, 0, 1]
that correspond to phase, angular velocity and amplitude,
respectively (i.e. φ, ω and A in Formula 3.1),

central-control three neurons with coordinates [1, 0, 0], [0, 1, 0] and [0, 0, 1]
for communication with the central neural control,

neighbor-control a single neuron for each neighbor module local neural con-
trol, where position of the neuron corresponds to the rela-
tive position of the neighbor from this module.

Table 3.6: Structure of the central neural network.

Neuron group Position in the substrate (x4, x5, x6 coordinates)
velocity-sensor four neurons with coordinates [1, 0, 0], [0, 1, 0], [0, 0, 1] for

a velocity vector and [0, 0, 0] for its size (note that unlike
local networks this sensor is related to the organism`s center
of the mass),

light-sensor two neurons with coordinates [1, 0, 0] and [0, 0, 1] for cos(α)
and sin(α) (see Table 3.4), respectively (note that unlike
local networks this sensor is related to the organism`s center
of the mass),

bias, hidden 8 neurons with coordinates [±1,±1,±1] (i.e. vertexes of
a 3D-cube)

local-control a single neuron for each non-root module, where position
of the neuron corresponds to the relative position of the
corresponding module (i.e. completely three neurons are
used for communication with local modules).

39

Table 3.7: CPPN activation functions.

Activation function De�nition

sigmoidal function 1 f(x) =
2

1 + e−x
− 1

sigmoidal function 2 f(x) =
1

1 + e−x

linear function f(x) =

−1 for x ∈ (− inf,−1),

x for x ∈ [−1, 1],

1 for x ∈ (1, inf),

harmonic function f(x) = sin(x)

,
exponential function f(x) =

{
ex for x ∈ (− inf, 1),

e for x ∈ (1, inf),

gaussian function f(x) = e−x
2

absolute value f(x) =

{
|x| for x ∈ (−1, 1),

1 otherwise,

40

4. The Second Proposed Method:

Hypercube-based Arti�cial

Ontogeny

Existing methods using arti�cial ontogeny seem to be outperformed by meth-
ods using more direct encoding with higher level of abstraction such as NEAT
or HyperNEAT for evolving neural structure and directed graphs for evolving
morphology. However, even very successful methods such as HyperNEAT are not
capable of evolving complex structures that can be seen in the nature. Thus, more
biologically inspired methods could provide a solution to develop new advanced
methods for both neuroevolution and evolving morphology.

This chapter introduces a new method for evolving virtual organism denot-
ed as Hypercube-based arti�cial ontogeny (HyperAO) that combines two methods
described in the previous text: arti�cial ontogeny and Hypercube-based neuroevo-
lution of augmenting topologies (HyperNEAT). The new method focuses primary
of morphology of the organism. The main innovation of the new method is using
a powerful method of neuroevolution � HyperNEAT to evolve genetic regulatory
network (GRN) that determines organism`s morphology through an ontogenetic
process. This should take an advantage of HyperNEAT generative encoding to
evolve regularities in GRN that might improve evolved phenotypes.

The chapter is divided into �ve sections. Section 4.1 compare results from
various works related to both developmental methods (in particular arti�cial on-
togeny) and other methods for evolving virtual organisms. Section 4.2 describes
a high-level overview of the proposed method and provides a comparison with oth-
er methods. Section 4.3 describes a mapping from a genotype to the phenotype
that is realized via a developmental process. Section 4.4 focuses on genetic reg-
ulatory network represented using HyperNEAT generative encoding. Section 4.5
formulates hypotheses related to the proposed method.

4.1 Motivation to the Proposed Method

There is a trade-o� between developmental systems such as arti�cial ontogeny
and methods using more direct representation. Even though several studies have
been made [6,10,11] in developmental systems, it seems that they are still poorly
understood. This section discusses and summarizes results from several studies
related to developmental systems (in particular arti�cial ontogeny) and more
direct methods for evolving virtual organisms that are motivation for the proposed
method.

The section is divided into four subsections. First section, Section 4.1.1 com-
pares direct and indirect encoding. Next section, Section 4.1.2 focuses on level of
abstraction of biologically inspired methods and Section 4.1.3 overviews a recent
developmental method for evolving morphology that skips simulation of a devel-
opmental process. Finally, Section 4.1.4 discusses advantages of a simulation of
developmental process.

41

4.1.1 Indirect Encoding and Regularities

Roggen and Federici [10] argued that for smaller search spaces the direct encoding
usually performs better compared to indirect encoding (e.g. developmental encod-
ing) that typically su�er from gene reuse (pleiotropy), when one gene a�ects two
or more unrelated phenotypic traits. Thus, improving a particular phenotypic
trait may corrupt another phenotypic trait that is a�ected by the same gene.
Unlike indirect encoding, direct encoding can evolve each part of the solution
independently.

As a number of evolved parameters increases, due to �combinatorial explosion�
of possible phenotypes, evolving a solution using a directed encoding becomes
much harder. In this case, indirect encoding has an advantage of reduced search
space. Indirect encoding may be also specialized for some particular problem do-
main, when an initial knowledge of a problem may be useful for designing suitable
encoding of the solution. On the other hand, it may restrict possible phenotypes
to some suboptimal subset of the all phenotypes that could be expressed using
a direct encoding.

For some problems a solution that exhibits some regularities is necessary to
solve the problem. Such problems include evolving complex structures similar
to structures seen in the nature (e.g. human brain). Gauci and Stanley [8, 9]
argued that most important regularities are: symmetry (in particular bilateral
symmetry), repetition, imperfect symmetries, imperfect repetition and hierarchi-
cal structures. Regularities are result of gene reuse, where one or more genes are
used several-times during the construction of the phenotype. Obviously, it is not
possible (or unlikely) to evolve phenotypes that exhibit such regularities using
a direct encoding. Therefore, indirect encoding has to be used to evolve complex
structures that exhibit such regularities.

4.1.2 Level of Abstraction

To design new evolutionary methods capable of producing complex phenotypes
that exhibit regularities, biology can provide a valuable inspiration. Similarly to
direct and indirect encoding, there is a trade-o� between �less indirect� methods
(i.e. higher level of abstraction) and �more indirect� methods (i.e. lower level of
abstraction). It may be di�cult to determine suitable level of abstraction for
a problem. Low level of abstraction usually results in computationally-intensive
simulation (e.g. developmental process, simulation of cells). On the other hand,
high level of abstraction might loose some bene�cial biological properties includ-
ing lack of regularities and other properties discussed further in this section.

Level of abstraction in arti�cial ontogeny proposed by Bongard and Pfeifer [5]
is lower (i.e. it is more biologically realistic) compared to the most of the methods
that evolve virtual organisms that use more direct parametric encoding schemes
(e.g. Sims [7]). Unlike these more direct methods, arti�cial ontogeny includes
a developmental process that is realized through repeated division of units that
form its body, which is similar to biological cellular development.

42

On the other hand, arti�cial ontogeny uses a higher level of abstraction com-
pared to more biologically accurate models of cellular developments. Model of
growth used in AO is inspired by cellular development to create relatively con-
tinuous transition from genotype to the phenotype. It was shown by Bongard
and Pfeifer that arti�cial ontogeny is capable of evolving organisms with hierar-
chical repeated structures that are part of fundamental properties for biological
systems.

4.1.3 Skipping Developmental Process

Creating a large number of cells during the process of development in Arti�-
cial ontogeny may result in computationally-intensive simulation. However, new
developmental methods [16, 17] have been recently introduced that can produce
phenotype directly � without simulation of the development.

The more recent method (Cheney, Nick, et al. [16]) evolves phenotypes that
consist of soft material voxels inside a 3D grid. The phenotype in created from
multiple types of voxel, where some of them undegro periodic volumetric actu-
ations to realize movement of the organism. The method represents genotypes
using a single CPPN that for each voxel in the grid directly determines whether
a voxel will be included in the organism and its type (i.e. material). Thus, con-
struction of the phenotype is signi�cantly less computationally-intensive com-
pared to simulation of developmental process.

Furthermore, this approach allows resolution of the organisms to be easily
scaled. Then, it is possible to �rst evolve organisms with lower resolution which
is less computationally-intensive and in later generations increase the resolution to
optimize organisms for the �nal resolution. Figure 4.1 [16] illustrates construction
of the phenotype for a given CPPN and shows examples of evolved organism by
this method.

4.1.4 Advantages of the Developmental Process

The described method that skips process of growth provides further abstraction
over a developmental process. Yet it is still capable of producing phenotypes
that exhibit some properties of developmental methods (e.g. repeated structures
with variations, symmetries, etc.). Despite the ability of evolving regularities,
simulating of developmental process might still provide some advantages.

An important property of developmental process in the nature is ability to
express a single genotype into di�erent phenotypes for di�erent environments.
Both arti�cial ontogeny and the CPPN representation can be modi�ed to be
adaptive on the environment. However, adaptive extension of arti�cial ontogeny
is (1) more straightforward compared to the CPPN representation that seems to
be more limited as argued in the following text.

The CPPN representation of the organism uses only a local information (i.e. po-
sition on the grid) to determine a phenotypic element at the corresponding po-
sition. This allows to skip a developmental process, on the other hand, it also
limits possible adaptation that could be realized during the growth. For instance,
AO has an ability to alter trajectory of the growth when it discover some physical
constraint (e.g. obstancle in the direction of the growth). This is not, however,

43

Figure 4.1: Organisms evolved by Cheney, Nick, et al. [16] The �gure shows organisms
evolved using the CPPN-NEAT encoding. Left picture illustrates mapping from genotype
(i.e. CPPN) to phenotype. To create a phenotype a CPPN is queried for each voxel and its
output values determine presence of voxels and their material. Right picture shows examples
of evolved organisms.

possible with CPPN representation that uses only a local information.
Morphological adaptation to the environment is not limited to the initial

growth of the organism. Bongard [14] showed that if an organism has an ability
to exhibit morphological change during its lifetime, it can accelerate the evolution
and evolved organisms are more robust compared to organisms evolved without
this ability. Extending AO with such ability could be very bene�cial. However,
developing such method capable of morphological change during the organism`s
lifetime combined with a developmental process would require further investiga-
tion.

4.2 Structure of the Proposed Method

This section provides an overview of the proposed method that is a combina-
tion of two approaches described in the previous text: (1) HyperNEAT develop-
mental encoding [8] � powerful developmental method without developmental
process that is used in the �rst proposed method to evolve control system of
the organism that include module di�erentiation based on module position and
(2) arti�cial ontogeny [5] � more biologically accurate developmental method
that uses an ontogenetic development to grow morphology and neural network
control of the organism. The following text describes main principles integrated
into the proposed method and di�erences from the arti�cial ontogeny proposed
by Bongard and Pfeifer.

The proposed method aims to combine advantages of several approaches: pos-
sibility of adaptation during the growth process (or additional morphological
adaptation during the lifetime), evolving high degree of regularities using Hyper-

44

NEAT generative encoding (that also includes advantages of NEAT: speciation,
growth from minimal structure and sensitive mating) and hierarchical repeated
structure using genetic regulatory network.

To achieve this, the proposed method is combination of: (1) control system of
the �rst proposed method that consists of local and a single central neural net-
works, (2) ontogenetic process, where organisms grows based on concentrations
on gene products and (3) HyperNEAT generative encoding for evolving genetic
regulatory networks. The following text provides more detailed description of
used methods.

The main di�erence from the original arti�cial ontogeny by Bongard and
Pfeifer [5] is realization of the genetic regulatory network (GRN). Instead of �if-
then� rules (i.e. GRN rules) that are applied in case that their regulating gene
product concentration lies within a given range, GRN in HyperAO is realized by
a system of neural networks, where each module includes a single neural network.
Furthermore, unlike AO, the neural net woks may di�er more two modules, this
should give evolved GRN more �exibility compared to AO.

In addition to the neural network placed in modules, GRN includes an an-
other neural network that can be thought of as an analogy of the central neural
control in the control system described in the previous chapter. To distinguish
between these two types of networks, neural networks placed in the modules will
be further denoted as local GRNs and the additional neural network as central
GRN. The central GRN is an experimental enhancement of the genetic regula-
tory network that might contribute to evolving high-level components or other
regularities in the morphology.

Each type of the neural networks that realize genetic regulatory network are
represented using a Compositional pattern-producing network (CPPN) that en-
code their weights and allows di�erentiation of local GRNs that is similar to mod-
ule di�erentiation in the control system. As a result genotype of the organism
consists of four CPPNs that are mutated and mated independently. Generative
representation of local GRNs and central GRN is further described in Section ??.

The next important di�erence from the original arti�cial ontogeny is using
morphological graph from the �rst proposed method that allows evolving ad-
ditional symmetries in the phenotype morphology. In the process of growth,
�rst morphological graph is constructed that is continuously expressed during the
growth to the phenotype, where the morphological graph is expressed to the �nal
organism using the same method as described in the previous chapter. This al-
lows evolving all symmetries realized in the �rst proposed method that include
bilateral symmetry and other plane symmetries. More detailed description of the
developmental process in included in Section 4.3. Figure ?? shows comparative
shema of three representations: arti�cial ontogeny, directed graphs and HyperAO.

4.3 Developmental Process

This section describes the developmental process that uses genetic regulatory net-
works to create morphologial graph, which is translated to the complete organism
using the method described in the previous chapter (see Section ??).

45

GRN rules GRN

Morphological
graph

CPPN Soft-material

Developmenal
process

CPPN GRN

Morphological
graph

Developmenal
process

CPPN
GRN

Artificial
ontogeny

Genotype PhenotypeIntermediate products

CPPN
encoding

Morphological
graph

artificial
ontogeny

Hypercube
-based

Central

voxels

Rigid body
elements

Rigid body
elements

Rigid body
elements

Figure 4.2: Comparing di�erent approaches of evolving morphology. This �gure pro-
vides comparison of four approaches to evolve morphology of the virtual organisms: Arti�cial
ontogeny by Bongard and Pfeifer [5], Morphological graph used by Sims [7], CPPN-NEAT en-
coding proposed by Cheney, Nick, et al. [16] and Hypercube-based arti�cial ontogeny proposed
in this work. Columns compare particular aspects of these methods: Column Genotype indi-
cates structure that is directly encoded in the genotype, column Phenotype indicates a physical
realization of the phenotype morphology and column Intermediate products indicates addition-
al substeps that are used to create a phenotype. Note that some details of described methods
are omitted for clarify.

The developmental process is an interative process that consists of a number
of substeps � growth iterations, where the number of growth iterations is stored
in the genotype.1 During the growth morphological graph is constructed from
a single initial (root) vertex. Unlike the method proposed in the previous chapter,
morphological graph in HyperAO is always a tree. Thus, no module limits are
needed to for in�nite phenotypes. Each vertex has a single associated module �
non-clone module that is expressed from the vertex. To reduce computational
intensity of the growth, gene products are simulated only for non-clone modules
denoted as GRN modules. Each GRN module (and there fore each associated
morphological vertex) includes completely 27 di�usion sites with positions the
following positions on a unit sphere:{

(x, y, z)

|(x, y, z)|
: x, y, z ∈ {−1, 0, 1}

}
in the local module coordinates, where [0, 0, 0] is centroid of the module.

Each di�usion site has its growth potential computed as di�erence of two gene
products concentrations described further in this section. When some of di�usion
sites within the module reaches a prede�ned threshold a new vertex is attached
to the morphological graph, where parameters of created edge are determined
based on the concentration of gene products. The di�usion site with maximum
growth potential is then associated with the attached vertex and it is connected
with a prede�ned di�usion site (di�usion site with coordinates [−1, 0, 0]) in the

1Note that alternatively other method could be used to determine whether the growth should
be terminated. This would require further investigation.

46

new vertex. Note that di�usion site in the center of the module is not allowed to
create new vertexes, furthermore each di�usion site not allowed to create more
that one vertex.

In addition to di�usion sites, each GRN module includes local GRN that
a�ects gene products concentrations within the module. The local GRN is cre-
ated when new vertex is attached to morphological graph. To determine synaps-
es weight of local GRN using a CPPN, position of the module must be known,
therefore a phenotype based on the actual morphological graph is created.2 When
a new vertex is attached central GRN is updated, when a single input and out-
put neurons are added for each gene products. Both types of GRNs are further
described in the next section.

The di�usion of gene products within the organism is similar to di�usion
in arti�cial ontogeny, it includes the following factors: (1) production of gene
products by local GRN and the central GRN based on the actual concentration,
(2) di�usion between neighboring di�usion sites and (3) di�usion out of the or-
ganism. Unlike arti�cial ontogeny, here concentrations are allowed to be negative,
where concentration of each gene product ranges from [−1, 1]. Negative concen-
trations can be thought of as a positive concentration of an another gene product
with exactly opposite e�ect. As a result di�used amount of gene product can be
negative and di�usion out of the organisms is realized by decreasing of absolute
concentration by a small ratio.

Di�usion between neighboring sites depends on distance of two di�usion sites.
Higher amount is di�used between di�usion sites withing a module and small-
er amount is di�used between di�usion sites placed in two di�erent modules.
A neighboring di�usion sites within the module forms a 3D grid that is trans-
formed into a sphere in order to have same distances of di�usion site of the
centroid of the module. Di�usion of gene products within the organism is show
in Figure ??.

During construction of morphological graph gene product concentrations are
used to: (1) determine whether a new vertex will be attached and (2) in case
when a new vertex is created they determine parameters of the edge that con-
nects the vertex to its parent. Completely 15 gene products are used, where
some of them encode edges properties and rest of them have no direct phenotypic
e�ect. To describe encoding of edges parameters using the gene product concen-
trations, we use the following notation: We denote gene product concentrations as
[gene product name] (e.g. [growth enhancer] indicate concentration of the growth
enhancer gene product that is one of 15 used gene products). Complete list of
edges parameter encoded using gene product concentrations is included in Ta-
ble 4.1. The main steps of the described developmental process are summarizes
in the following pseudocode.

2Constructing a phenotype morphology based on the actual morphological graphs can be
also used for visualization of the growth that is useful for analysis of the growth process and
adjusting its parameters.

47

Central GRN

Local GRNLocal GRNLocal GRN

Figure 4.3: Di�usion in the organism. Figure shows a sample organism with two plane
symmetries. Grey modules indicate GRN modules, where a di�usion process is realized. Bold
cycles around modules indicate corresponding vertexes in the morphological graph.

Algorithm 1: DevelopmentalProcess
morphGraph ← create a morphological graph with a single vertex;
iteration ← 0;
while iteration < growthIterations do

GrowthIteration;

create a physical organism and its control system;

Procedure GrowthIteration
/* Updating gene products concentrations. */

compute local GRNs outputs;
compute central GRN outputs;
apply changes to gene products concentrations;
compute amount of di�used gene products concentrations;
perform di�usion;

foreach vertex ∈ morphGraph do

di�Sites ← DiffusionSites (vertex);
maxGP ← max{GrowthPotential(ds) : ds ∈ di�Sites};
if maxGP > threshold then

/* Adding new vertex to the morphological graph. */

attach a new vertex to the vertex;
determine parameteres of the edge depending on
concentrations in the di�usion site;
connect corresponding di�usion sites of two vertexes;
compute position of module that corresponds to the new
vertex;
create local GRN for the new vertex;
add new neurons to the central GRN;

48

Table 4.1: Representation of morphological edges in HyperAO.

Edge param. Encoding by gene products concentrations

location direction of an attached module is given by the unit vector

de�ned by the following formula:∑
d∈DS position(d) · growpotential(d)∑

d∈DS growpotential(d)
, where

growpotential = [growth enhancer]− [growth repressor],

rotational-joint-indicator the joint is rotational if [rotational enhancer] ≥ −0.1, it is

�xed otherwise,

connection-type a plane symmetry is used in case that

[symmetry enhancer] − [symmetry repressor] + α − βn > 0,
where α, β are predetermined constant values

n indicates number of edges that uses a plane symmetry,

symmetry-type three gene products are used to encode symmetry-type, cho-

sen symmetry corresponds to the gene product with maxi-

mum concentration,

movement-symmetry two indicators of movement inversion are determined by two

gene products: root movement inv. and subtree movement

inv., inversion is used in case that the corresponding gene

product concentration is negative,

axis-rotation axis-rotation angle is determined by an angle between vector:

([rotation-x], [rotation-y]) and unit vector (1, 0).

49

4.4 Genetic Regulatory Networks

As indicated in the previous text, in this method GRNs are realized using neural
networks that are encoded by two CPPNs. This approach has several advantages:
(1) representation of GRN using a neural network allows use of neuroevolution
method to evolve GRNs, (2) it also allows evolving more complex GRNs than
�if-then� rules and �nally (3) using HyperNEAT allows di�erentiation of GRNs
based on their position in the organism that can be interpreted as analogy of
chemical concentrations in the organism.

Central GRN and Local GRNs are layered networks with a single hidden layer.
Architecture of Local GRNs is identical (except that synapses with small weights
are removed), where for each di�usion site and each gene product within the
di�usion site a single input and output neuron is used. Unlike Local GRNs that
are �xed, Central GRNs grows during a developmental process. Central GRN
includes a single input and output neuron for each gene product of the central
di�usion site (i.e. difuusion site with position [0, 0, 0]) within each GRN module.
Therefore, size of the Central GRN is smaller than Local GRNs until size of the
organism reaches 27 modules.3

Generative representation of GRNs is similar to neural network in the control
system. Local GRNs are placed into 7-dimensional substrate space, where the �rst
coordinate indicates layer of the network, next three dimensions indicate position
of a gene product and the last three dimensions corresponds to the position of
di�usion site in the module.

Positions of gene products are identical within the organism and they are
evolved together with GRNs. In the initial population a position is chosen ran-
domly for each gene products from interval [−1, 1]3. Mutations and mating gene
products positions are performed independently for each gene product. Mutation
is realized by adding a random vector from a 3D-normal distribution to the po-
sition. Mating is realized by computing a random (uniform) convex combination
of two positions.

Central GRN is placed into 6-dimensional substrate space, where �rst three
coordinated correspond to positions of gene products and last three positions to
the relative position of module from the root module.

The resulting genotype in HyperAO consists of: (1) four CPPNs (from which
two represent control system and two morphology), (2) a single integer value
that represents number of growth iterations and (2) positions of gene products
(i.e. 27 vectors from range [−1, 1]3), where each component is mutated and mated
independently.

3 Note that the Central GRN is inspired by both the central neural control described in the
previous chapter and CPPN-NEAT encoding [16] that produce phenotypic elements based on
their position in the organism. However, unlike CPPN-NEAT encoding, where CPPN directly
determine phenotypic elements based on positions in the organism, central GRN a�ects phe-
notypic elements more indirectly � through the following intermediate products: (1) CPPN is
used to produce substrate (i.e. central GRN) and (2) the substrate that produce gene products
that are responsible for growing new phenotypic elements.

50

4.5 Hypotheses to the Proposed Methods

It is believed that this modi�cation to the initial arti�cial ontogeny might improve
original method. Furthermore, HyperAO might also outperform method proposed
by Sims [7] for some tasks. This leads to the following hypotheses:

Hypothesis 1. Hyper-cube based arti�cial ontogeny produces signi�cantly better
organisms than the original arti�cial ontogeny.

Hypothesis 2. Hyper-cube based arti�cial ontogeny is capable of producing com-
parable or better organisms compared to the �rst proposed method that evolves
morphological structure using directed graphs.

Note that the stated hypotheses are tested in later chapter (see Section ??)
through performing series of experiments.

51

5. Distributed computing

Fitness evaluation in evolutionary robotics is in most cases computationally de-
manding task. However, population to be evaluated can be easily divided into
multiple subpopulations and the �tness evaluation for each subpopulation can be
realized independently. Therefore, the developed application uses distributed �t-
ness evaluation to decrease evaluation time and allow more complex simulations
in shorter time.

In this chapter we focus on how the time for an evaluation can be decreased
with various degrees of distribution. First, we describe structure of the developed
application in Section 5.1, which is the basis for the following sections. Next, in
Section 5.2 we develop a theoretical model of the �tness evaluation time with
varying degree of distribution. The �nal Section 5.3 compares this theoretical
model with the performance obtained in real experiments.

5.1 Modular architecture overview

This section introduces two main components of the developed application � an
evolution application and runners.

The runner is a program designed for a �tness evaluation of virtual organisms.
It receives a genotype from the evolution application, creates a phenotype and
then evaluates a �tness value in a simulated physical environment. The evaluation
of a single genotype consists of the following steps:

(a) the runner receives a genotype from the evolution application,

(b) a phenotype is created,

(c) the complete organism is simulated in a physical virtual environment,1

(d) the runner sends score to the evolution application, and

(e) waits for a next genotype.

Multiple instances of the runner is usually used (therefore multiple genotypes
can be evaluated simultaneously). To run evolution application at least one run-
ner is required.

The evolution application is the application, where the core evolutionary al-
gorithm is implemented. It has two logical phases:

(i) producing a new generation (i.e. selection, mating and mutations) and

(ii) the �tness evaluation.

1Genotype receives a score based on its behavior on a speci�c task, �tness value is usually
weighted sum of score and some other organism properties (see [[odkaz na �tness evaluation]]).

52

The �rst phase is not distributed (i.e. no runners are used) and it takes
usually less than a second. The second phase takes usually from several minutes
to a few hours.2 Therefore, we focus on the second phase � the �tness evaluation,
which is in most cases far more computationally-intensive than producing a new
generation.

EvolutionRunner

Runner

Runner

Runner

Runner

Runner Runner

local machine

remote machine remote machine

Application
Runner

Runner

Runner

remote machine

Figure 5.1: Communication between the evolution application and runners on
local and remote machines.

To evaluate a �tness value of each genotype, the evolution application uses
the runners. It sends a genotype to a runner and waits for a score obtained for
a particular task. When a score is received from a runner, the evolution applica-
tion sends another genotype to this runner to be evaluated. When scores from all
genotypes from the current generation are received, a new generation is created.
Figure 5.1 illustrates the communication between the evolution application and
the runners.

The following sections focus on approximating the evaluation time with re-
spect to the number of runners � both theoretical models and experimental
results are considered. We show that performance increases almost linearly with
the number of runners.

5.2 Theoretical approach to performance increase

with multiple runners

Ideally �tness evaluation speed increases linearly with the number of runners.
However, there are some limitations and factors that might reduce the e�ciency
of an evaluation with multiple runners (e.g. limited communication bandwidth,
an overhead associated with distributing genotypes to the runners).

2The time depends on degree of parallelization, performance of used computers and proper-
ties of the experiment (e.g. complexity of simulated environment, time duration of simulation,
number of repeating etc).

53

In this section we describe three di�erent approaches to analyze e�ectivity
of distributed �tness evaluation. First, Section 5.2.1 develops a simple model of
distributed �tness evaluation with certain simplifying assumptions. Further text
focuses on various properties and special cases of this model � Section 5.2.2 fo-
cuses on asymptotic performance of an evaluation with large populations, Section
5.2.3 applies results from the previous section on runners with the same perfor-
mance. Finally, in Section 5.2.4 we analyze parralel �tness evaluation for running
time of a population with �xed size and various number of runners with the same
performance.

5.2.1 Preliminary assumptions and de�nitions

First, we de�ne the following properties:

Tgen the time for processing one generation

Ttotal total running time for N generations

N the number of generations

We assume that the running time for each generation is the same,3 therefore

Ttotal = N · Tgen.

Now we can focus on running time of a single generation.

We further divide Tgen into the �tness evaluation time and the time for pro-
ducing a new generation.

Tgen = Teval + Tevol.

Teval the �tness evaluation time

Tevol the time for producing a new generation (without �tness evaluation)

As mentioned in the previous section, producing the next generation takes far
less time in comparison to the �tness evaluation.4 Therefore, we do not distribute
it thus, producing a new generation is not in�uenced by the number of runners.
We focus primary on �tness evaluation time in the following text.

We denote:
3As organisms become larger or more complex during the evolution, physical simulation

might become more computationally-intensive. Therefore, it could take more time to evaluate
whole generation than takes it to evaluate the initial population.

4This might not be satis�ed for very large population sizes. Later, we show that Teval =
Θ(n

ptotal
), where ptotal is the total performance of the runners. However, computing similarity

of genotypes has quadratic asymptotic complexity i.e. Tevol = Θ(n2) (for more details see
[[odkaz]]). Hence, producing a new generation could be more computationally-demanding than
a �tness evaluation for a large population size. However, while population size is lower than
500 genotypes (maximal population size in our experiments), the time for producing a new
generation remains insigni�cant in comparison to the time for a �tness evaluation. Thus, it is
not considered in further text.

54

m the number of runners

n the number of genotypes in a single population (i.e. population size)

ni the number of genotypes evaluated by ith runner, obviously
∑

i ni = n

ti total time for sending, evaluating and receiving the statistics of evaluation
of a single genotype by the ith runner

T ieval the time for an evaluation of ni genotypes by the ith runner (including
the time for communication)

We assume the times for an evaluation of all genotypes by the ith runner to be
equal.5 Therefore, the evaluation time for ni genotypes by the ith runner is the
time for an evaluation of single genotype multiplied by the number of genotypes
evaluated by the runner

T ieval = niti .

Total running time for a �tness evaluation of a single generation is equal to
the maximum time of evaluation of a single runner

Teval = max
i∈{1,...,m}

T ieval .

The time for an evaluation of a single genotype can be further divided into
evaluation time in simulation and communication time (i.e. sending genotype to
the runner and receiving statistics from the evolution application).

ti = tieval + ticomm ,

T ieval = ni · ti = ni · (tieval + ticomm).

tieval the time for an evaluation of a single genotype by the ith runner (time
for sending genotype is not included)

ticomm total time for sending a single genotype from evolution application to
the ith runner and sending an evaluation score from the ith runner to
evolution application

We de�ne performance as the average number of genotypes evaluated by a
runner in a �xed time.6

pi = (ti)
−1 the performance of the ith runner

ptotal =
∑

i pi the total performance

p̃i = pi
ptotal

the proportional performance of the ith runner (i.e. normal-
ized performance to the total performance)

5As mentioned before, when organisms become more complex during an evolution, it could
take more time to evaluate them in comparison to genotypes from the initial population.

6If the time ti is measured in seconds, pi can be interpreted as an average number of geno-
types evaluated per second.

55

Note that ni (the number of evaluated genotypes by the ith runner) can be
viewed as function of n (i.e. ni = ni(n)). As mentioned in the previous section,
when an evaluation score is received from a runner, evolution application sends
back next genotype immediately (whenever there is any genotype to be evaluat-
ed). Therefore, if the population size is increased by one genotype, only ni with
the lowest T ieval will be incremented, other ni will remain unchanged.

Now, we show a simple example for clari�cation of the previous de�nitions.
We consider the following situation. We have population of 100 genotypes and we
use 80 runners with the same performance c > 0 (i.e. n = 100, m = 80, pi = c, i =
1, . . .m). Therefore, �rst 80 genotypes is evaluated � each runner evaluates one
genotype. Next, the rest of 20 genotypes is evaluated by 20 runners (we assume
that runners 1, . . . , 20 are chosen) and other 60 runners are waiting.

Our parameters have the following values

ptotal = mc,

ti =
1

c
, i = 1, . . .m,

p̃i =
1

m
, i = 1, . . .m,

and

ni =

{
2 for i = 1, . . . 20,
1 for i = 21, . . .m.

Therefore,

Teval = max
i∈{1,...,m}

T ieval = T 1
eval = n1t1 =

2

c
.

It is apparent that the number of runners m = 80 is not appropriate for the
population size of n = 100 genotypes. We could use only 50 runners to achieve
the same total running time or use population size of 180 genotypes instead.

In the following text we analyze our model for various population sizes and
various numbers of runners with the same or di�erent performances.

5.2.2 Asymptotic analysis of distributed computing with a

large population

Now, we focus on asymptotic time for an evaluation of large populations in gen-
eral case, when runners can have di�erent performances. Later in this chapter,7

we use these results to determine an optimal population size for a distributed
�tness evaluation.

First, we show that for a large population of size n and �xed runners (with
�xed performances pi, i = 1, . . . ,m, where in general pi 6= pj for i 6= j) the
proportion of evaluated genotypes by ith runner is asymptotically equal to the
proportion of ith runners performance

ni
n

∼ p̃i, for i = 1, . . . ,m.

7See Section 5.3.3 in the following section.

56

Proof. Without loss of generality, assume that p̃i ∈ Q (i.e. p̃i is rational). Thus,
there is a smallest number of runners n∗ ∈ N such that

p̃in
∗ ∈ N, i = 1, . . . ,m.

Then we have
n∗i = p̃in

∗.

and
ni
n

= p̃i if and only if n = kn∗, k ∈ N.

Note that the population size n∗ can be also interpreted as the time for an
evaluation of n∗ genotypes, where the evaluation time for a single genotype is one
time unit (i.e. ti = 1, i = 1, . . . ,m).

Now, we have
n = knn

∗ + cn

where
kn ∈ N ∪ {0}, cn ∈ {0, . . . , n∗ 1}

The number of evaluated genotypes by ith runner ni = ni(n) is apparently non-
decreasing function of n, thus:

knn
∗
i ≤ ni ≤ (kn + 1)n∗i

i.e.
knn

∗p̃i ≤ ni ≤ (kn + 1)n∗p̃i

thus
knn

∗

n
p̃i ≤

ni
n
≤ (kn + 1)n∗

n
p̃i.

Now, it is su�cient to show that

knn
∗

n
→ 1 and

(kn + 1)n∗

n
→ 1 as n→∞.

We have
lim
n→∞

knn
∗

n
= lim

n→∞

knn
∗

knn∗ + cn
= lim

n→∞

1

1 + cn
knn∗

= 1

and

lim
n→∞

(kn + 1)n∗

n
= lim

n→∞

(
knn

∗

n
+
n∗

n

)
= lim

n→∞

knn
∗

n
+ lim

n→∞

n∗

n
= 1 + 0 = 1.

Therefore
ni
n
→ p̃i as n→∞

Consequently, we get that the time for an evaluation of ni genotypes by ith
runner is asymptotically equal to the number of evaluated genotypes divided by
performance of the runner

T ieval = ni · ti =
ni
pi

∼
n

ptotal

57

and therefore the total time for an evaluation is asymptotically equal to the popu-
lation size divided by the total performance of runners (i.e. for a large population
size evaluation speed is approximately linear function of runners performance)

Teval ∼ T ieval ∼
n

ptotal
.

5.2.3 Asymptotic analysis of distributed computing with a

large population and homogeneous runners

Now, we focus on a typical case, when runners have equal performance (e.g. run-
ners are distributed uniformly on computers of equal con�guration8).

Under these assumptions, we have

pi = p and ti = t, i = 1, . . . ,m.

Therefore, the total performance is ptotal = mp and we get, that

Teval ∼
n

m
t

i.e. the total time for an evaluation of population with n genotypes is asymp-
totically equal to the time for an evaluation of n genotypes on a single runner
divided by the number of the runners.

5.2.4 Analysis of distributed computing with �xed popula-

tion size

Now, we focus on the time for an evaluation of a population with �xed size and
various number of runners. We continue assuming homogeneous runners (i.e.
runners with equal performance).

If the population size is divisible by the number of runners (i.e. n = km, k ∈
N) each of m runners evaluates k = n

m
genotypes, thus

Teval =
n

m
t.

Otherwise, if the population size is not divisible by the number of runners

i.e. n = km+ c, k ∈ N, 0 < c < m

then m − c runners evaluate each k = b n
m
c genotypes and c runners evaluate

each k + 1 = d n
m
e. Therefore, generally we have

Teval =
⌈ n
m

⌉
t.

8Note that using multiple runners on one computer is mostly more e�ective than using only
one runner per computer. The optimal number of runners can vary on various hardware and
can be determined experimentally.

58

We get that the optimal numbers of runners with equal performance are
numbers such that the population size is divisible by this numbers of runners,
i.e. the population size is a multiple of the number of runners.

Figure 5.2 shows the evaluation time Teval with several �xed population sizes
and various numbers of runners.

 0 50 100 150 200 250 300 350 400

T
h
e
 t

im
e
 f

o
r

a
n
 e

v
a
lu

a
ti

o
n

The number of runners

n=80
n=200
n=500

tn/m

Figure 5.2: The total time for an evaluation of populations with typical sizes: 80, 200 and
500 genotypes and varying numbers of runners. The black dashed hyperbolic curve represents
a lower bound for a time, which is achieved if the population size is divisible by the number of
runners.

Note that points on the graph in Figure 5.2, where function decreases, forms a
Pareto frontier9 with points of two types. First, there are points which represent
the �tness evaluation time for the number of runners such that population size
is divisible by the number of runners (i.e. m | n). And second, there are points
such that population size is not divisible by the number of runners (i.e. m - n).10

In the following text, we compare the above theoretical results with data from
real experiments.

5.3 Experiments

In this section we measure the time for a �tness evaluation in real experiments.
Measured data are then compared with the theoretical results from the previous

9The Pareto frontier are points (i.e. pairs (Teval,m)) such that there is no other point with
(T ′eval,m

′) < (Teval,m) (i.e. T ′eval ≤ Teval ∧ m′ ≤ m ∧ (T ′eval < Teval ∨ m′ < m)) for a given
population size.

10Examples of these points could be the following. Let us have a population of n = 80
genotypes. Then, point of the �rst type is (Teval = 20t,m = 4), point of the second type is
(Teval = 27t,m = 3), where t is the time for an evaluation of a single genotype. Both these
points lie on the Pareto frontier, but for example a point (Teval = 2t,m = 41) is not in the
Pareto frontier, it is dominated by (Teval = 2t,m = 40).

59

section. Experiments show that the theoretical model is suitable for the evalua-
tion time with a typical population size and number of runners.

First, Section 5.3.1 describes the method of performing experiment, used set-
ting and properties of used machines. Next, Section 5.3.2 analyzes measured data
� an evaluation time and performance. Finally, Section 5.3.3 summarizes results
from this chapter and applies them to determine appropriate population size and
runners.

5.3.1 Method used in performance test

In our experiment we measure the time for an evaluation of a single generation
of 300 random genotypes. Each genotype is simulated in a virtual environment
for 90 second of simulated time. Table 5.1 shows mentioned properties used in
the experiments.

Measuring the time for a �tness evaluation starts after creation of initial ran-
dom population and terminates when an evaluation score from the last genotype
is received. Measured time includes:

• the time for creating connection between the evolution application and run-
ners,

• sending genotypes from evolution application to runners,

• simulation in a virtual environment, and

• sending statistics from runners to the evolution application.

Initial creation of random population and processing evaluated population is
not included in the measured time.

Multiple experiments with various numbers of runners were performed to
estimate evaluation time for a given number of runners. For each runner, a
single remote computer was used. Therefore, the performance of a runner is not
a�ected by another runner running on the same computer.

Used computers are divided into groups with an identical hardware con�g-
uration. Totally 8 groups of equal con�gured computers were used. We used
incrementally from 1 to 4 computers from each group (i.e. from 8 to 32 runners).
Each experiment for a given number of runners was repeated �ve times to min-
imize random factors a�ecting the measured time. Hardware con�gurations of
the used computers are described in Table 5.2.

5.3.2 Experimental results

The Figure 5.3 shows both the measured times for an evaluation and the corre-
sponding performance for di�erent numbers of runners. The evaluation times are
�tted with a hyperbolic curve, performances (i.e. average numbers of genotypes

60

Table 5.1: Setting used in the experiment.

Parameter Value Description

Population size 300 the number of evaluated genotypes

Simulation time 30s the simulation time for a single evaluation

Number of evaluations 3 the number of iterations of an evaluation for a

given genotype (i.e. total simulation time for

a genotype is 90s)

Table 5.2: Hardware con�guration of used computers in the experiment.

Type PC (x86-64) PC (x86-64) PC (x86-64)

Processor Intel Core i7 920
(4x 2.66 GHz)

Intel Core2
Quad Q9550
(4x 2.83 GHz)

AMD Athlon II
X4 640
(4x 3 GHz)

Memory 6 GB RAM 4 GB RAM 4 GB RAM

Graphics Nvidia GeForce 210 Nvidia GeForce 9400GT AMD Radeon HD 4250

OS Gentoo Linux Gentoo Linux Gentoo Linux

Groups 1-4 5-7 8

Total Count 16 (4x4) 12 (3x4) 4 (1x4)

evaluated in a constant time) are �tted with a line.

We focus primary on evaluation times. As we can see from the graph, dif-
ferences between measured times within a group of experiments with the same
number of runners are very small (i.e. variance is very low).

The measured times are �tted11 with a following hyperbolic function

y =
a

x− b
+ c.

Table 5.3 shows estimated parameters. According to the model from the previous
section, the time for an evaluation of a single generation should decrease with the
number of runners according to the following formula

Teval =
α

m
,

where α = nt. From Table 5.3 we can see that estimated values b and c are close
to zero (the di�erence is not statistically signi�cant). Therefore, the experimental
data are not in a con�ict with the model.

Now we can estimate value α from experimental data. We have

α̂ = a = 4681.18,

i.e. estimation for the time for an evaluation of a generation with a single runner.
11Method of least squares is used to estimate parameters.

61

 0

 100

 200

 300

 400

 500

 600

 8 16 24 32

E
v
a
lu

a
ti

o
n
 t

im
e
 (

s)

Number of runners

Evaluation time with multiple runners

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 8 16 24 32

E
v
a
lu

a
ti

o
n
 s

p
e
e
d
 (

g
e
n
o
ty

p
e
s

/
1

 m
in

u
te

)

Number of runners

Performance with multiple runners

Figure 5.3: Evaluation time and performance with multiple runners.

We can also estimate the time for an evaluation of a single genotype:

t̂ =
α̂

n
=

4681.18

300
.
= 15.6s,

i.e. in this experiment 90 seconds of simulated time corresponds to approximately
15.6 second of real time.

The following section summarizes results from this chapter and determines
appropriate number of runners and the population size.

5.3.3 Conclusions

In this section we �rst summarize both theoretical and experimental results on
distributed computing and we use the results to determine the optimal number
of runners and the population size for distributed �tness evaluation.

We have shown that for a typical population size and computers with the same
performance, evaluation of genotypes is optimally distributed if the population

62

Table 5.3: Estimated values in experimental data.

Param. Estimated
value

Standard
Error

Value according
to the model

Description

a 4681.18 +-321.9
(6.875%)

t > 0 the time for an evaluation with a
single runner

b 11.67 +-10.26
(87.88%)

0

c -0.0015 +-0.42
(28670%)

0

size is a multiple of the number of runners. In this case, the performance increases
linearly with the number of runners.

Generally, when computers with di�erent performances are used, it can be
more di�cult to determine the optimal numbers of runners and population size.
However, we can use similar approach as in the proof of linearity of asymptotic
evaluation time in the Section 5.2. Assuming we have multiple computers with
varying performances and each computer is running one or multiple runners, we
can use the following method to determine the optimal population size:

• We estimate the proportional performance of runners on each computer p̃i.

• We choose population size as n∗ satisfying p̃i ·n∗ ∈ N, for all i = 1, . . . ,m.12

• If the population size n∗ would be too large, we can round normalized
performances and repeat the previous step to get lesser population size.

Note that if n∗ is the optimal population size, then each multiple kn∗, k ∈ N
is also optimal population size for a distributed computing.

Now we can determine the optimal population size for given runners with
some particular performances or vice versa. However, the assumptions we have
made in the previous section might not be always satis�ed.

We can assume connection speed to be fast enough most of the time in a
typical experiment since genotypes are relatively small. Another assumption
that evaluation of a single genotype requires a �xed time might not be satis�ed
in some experiments (e.g. evaluation of more complex genotypes could require
more time than evaluation of initial genotypes).

12We can assume that p̃i is a positive rational number (we can measure performances only
with �nite precision). Thus, we have p̃i = ai

bi
for some ai, bi ∈ N and the least common multiple

of bi, i = 1, . . . ,m is the least number n∗ satisfying the condition.

63

6. Experiments

This chapter compares two proposed methods on a sample task, where organisms
are evolved for locomotion in a virtual environment. The methods are compared
based on (1) �tness of the best evolved genotypes and (2) strategy and appearance
of evolved organisms. The second proposed method, HyperAO is also compared
with original arti�cial ontogeny proposed by Bongard and Pfeifer [5]. To reduce
duration of performed experiments, the distributed �tness evaluation is used that
is described the previous chapter.

The chapter consists of four sections. Section 6.1 describes limitations of
a physical simulation and physical validations for evolved organisms. Section 6.2
provides a description of the locomotion task including measuring quality of or-
ganisms and experimental results. Section 6.3 describes advanced tasks designed
to evolve organisms for light following and block pushing. Section 6.4 summarizes
results from this chapter and provides conclusions for the stated hypotheses.

6.1 Physical Validation

As described in the previous text, virtual organisms are evolved in a physical
virtual 3D-world. The physical simulation is realized using a game engine �
jMonkeyEngine [?] that includes JBullet [?], a java port of open source Bullet
Physics Library [?]. Simulation of virtual organisms includes several random fac-
tors that e�ect a measured quality of the genotypes (i.e. �ntess). Thus, estimating
quality of organisms requires more that one repeated evaluation in the simulation.

In addition to random factors, the physical simulation includes other lim-
itations. The limited accuracy of the simulation often causes an evolution to
discover a class of organisms that exploit a physically-unrealistic or unwanted
behavior such as resonating modules caused by a harmonic oscillation. This be-
havior often leads to a high �tness, thus, it dominates the population in a few
generations.

To prevent evolution from evolving such organisms, a physical validations are
used that penalize physically-unrealistic organisms in �tness. The physically-
unrealistic behavior is detected based on velocity of the modules. When a maxi-
mum measured velocity of some module exceeds a prede�ned threshold, an organ-
isms is penalized in the �tness accordingly. Velocities close to the threshold are
only slightly penalized, on the opposite, organisms with extremely high velocities
of their modules are given a minimum possible �tness.

6.2 Evolving Locomotion

To compare proposed methods a sample task is used, where organisms are evolved
for locomotion in a virtual environment. The virtual environment consists of a �at
surface and a virtual organism, no other objects are present in the environment.
The following text provides a description of the performed experiments.

64

6.2.1 Measuring Quality of Organisms

Evolved organisms in preliminary experiments often exhibit (1) a large number
of intersecting modules and (2) low center of mass that result in poor locomotion.
To increase locomotion capabilities of organisms, additional two factors are incor-
porated into the �tness � variability of module positions during the simulation
and average height of the organism`s center of mass. The quality of organisms is
computed as:

fitness =
(
α · distance2 + β · path + γ

)
(height + variability + δ) ,

where

distance indicates maximum distance from an initial position during the
simulation,

path indicates length of the walked path during the simulation (note
that path ≥ distance),

height indicates average height of the organism`s center of mass during
the simulation,

variability indicates variability of modules positions during the simulation
computed as: √

σ̂2
x + σ̂2

y + σ̂2
z ,

where σ̂2
x, σ̂

2
y and σ̂2

z indicate average variance of module positions
in coordinates x, y, z during the simulation,

α, β, γ, δ indicate constants values (α, β = 0.5, γ, δ = 0.1).

Note that the position of the organism indicates its center of the mass.

In the initial generations, including path into �tness helps evolving moving
organisms. However, evolved organisms may exhibit walking around the initial
position. In later generations, second power of distance exceeds length of the
walked path. As a result organisms walking in the direction from the initial
position are preferred.

6.2.2 Experimental Setting

The following text describes parameters of the performed experiments. For each
proposed method a single series of experiments is performed to evolve organisms
locomotion in the virtual environment. Each series consists of 6 evolution runs
that last for 100 generations and then are terminated. While genotypes include
a relatively large number of parameter, the population size is set to 500 genotypes
that provides a high probability of evolving successful organisms. To reduce
random factors in �tness each evaluation is repeated.

A simulation of organisms in a virtual environment have duration of 30 second
for each evaluation (this does not include growth in HyperAO method), when the
walked distance and other factors that contribute to the �nal �tness are mea-
sured. These factors are then averaged from all evaluations and the �nal �tness

65

Table 6.1: Parameters of performed experiments

Parameter Value

Number of generations in a single evolution 100

Genotypes in a single generations 500

Number of repeated evaluations 2

Duration of a single simulation 30 seconds

Evolution runs for each series of experiments 6

is computed. Described parameters are listed in Table 6.1.

To reduce time duration of the performed experiments, distributed �tness
evaluation described in the previous chapter is used. The distributed evaluation
allows performing each series of 6 evolution runs in approximately 10 hours using
completely 22 computers. Thus, each evolution run takes less than 2 hours.1

Computers used for the distributed �tness evaluation are listed in Table 6.2.

Table 6.2: Hardware con�guration of used computers in the experiments.

Type PC (x86-64) PC (x86-64) PC (x86-64)

Processor Intel Core i7 920
(4x 2.66 GHz)

Intel Core2
Quad Q9550
(4x 2.83 GHz)

AMD Athlon II
X4 640
(4x 3 GHz)

Memory 6 GB RAM 4 GB RAM 4 GB RAM

Graphics Nvidia GeForce 210 Nvidia GeForce 9400GT AMD Radeon HD 4250

OS Gentoo Linux Gentoo Linux Gentoo Linux

Total Count 10 7 5

6.2.3 Results

The results of performed experiments are shown on Figure ?? and Figure ??,
where the �rst �gure shows �tness of best genotypes in generations for each
evolution run and the second �gure shows average �tness in generations for each
evolution run.

Based on experimental results, HyperAO performs slightly better on the lo-
comotion task in the initial generations. However, in later generations HyperAO
exhibits stagnation, while Modular representation produces increasingly better
organisms. As a result, best genotypes produced by Modular encoding signi�-
cantly outperform best genotypes produced by HyperAO.

The second �gure indicates that HyperAO produces higher average �nesses.
This is most likely caused by a single evolution run with extremely high average
�nesses. This might of losing variability and early convergence of the population

1Note that performing both series of experiments without distributed �tness evaluation
would require approximately 20 days of computing.

66

●
●●

●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●●

●

●

●

●
●

●
●

●

●●
●●●

●

●

●

●

●

●●●
●

●●

●

●

●
●

●

●

●
●●

●●
●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●●●

●

●

●

●●

●

●

●●

●

●

●

●●
●●

●
●●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●●●

●
●●

●
●

●
●●

●●●

●
●●

●
●

●

●
●

●●
●

●●
●

●●●
●

●

●

●●

●
●

●●

●
●●

●●

●
●

●

●

●●●●●●●●●
●

●
●

●
●●

●
●

●
●

●●
●

●
●●●

●

●●●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●
●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●●
●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●●

●

●
●

●

●

●
●

●
●

●

●
●●

●
●

●

●
●

●

●
●●

●
●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●●
●

●

●
●●

●
●

●●●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●●

●●

●
●

●

●
●

●

●
●

●●
●●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●
●●●●●

●
●●●●●

●

●

●●●●

●

●

●●

●●
●

●●

●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●
●

●●
●●●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●●
●●

●
●

●

●

●●●

●●

●

●
●●

●
●●

●

●
●

●

●

●

●●
●●

●
●

●

●●
●

●

●

●

●

●●

●

●
●●●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●●

●●

●

●
●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●●
●

●●●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●
●

●●

●

●

●

●

●

0

20000

40000

60000

0 25 50 75 100
generation

fit
ne

ss

Method

●

●

HyperAO

Modular

Figure 6.1: Fitness of best genotypes in generation. The �gure shows �tness of best
genotypes in generation for each evolution run (red and blue points), where the color corre-
sponds to the used method � red color indicates Hypercube-based arti�cial ontogeny and blue
color indicates Modular representation. Two �tted curves estimate average �tnesses of best
genotypes, where the averages are estimated using local polynomial regression (loess). Dark
gray areas indicate con�dence intervals for both methods. We can see that Modular represen-

tation performs signi�cantly better in later generations.

in later generations. The following text focuses on locomotion strategy produced
by these two methods.

The evolved organisms in the experiments di�er in several aspects. Modu-
lar representation produces organisms with a higher speed of locomotion, thus
they achieve higher �tness compared to the HyperAO. Organisms produced by
HyperAO usually have larger number of modules and they exhibit more continu-
ous movement that in some cases resemble tentacles of jelly�sh. Other produced
organisms are relatively similar for both method. Some organism evolved using
HyperAO seem to be similar to the organisms evolved by original arti�cial on-
togeny proposed by Bongard and Pfeifer [5], however, they usually exhibit more
symmetries.

6.3 Evolving Light Following and Block Pushing

In addition to the locomotion task, two other tasks � light following and block
pushing task are implemented to test the proposed control system that is com-

67

●●●●●●●●
●

●

●

●

●
●

●
●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●

●●●
●

●

●●

●

●
●

●
●

●●●

●
●●

●

●

●●●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●●●

●●
●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●
●

●
●

●●●●●
●

●

●●●

●●●

●

●●
●

●●

●

●●
●

●●
●

●
●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●●
●

●

●

●

●

●

●●●●●●●
●●●●●●●●●●

●
●●●

●●●●●●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●●●●

●

●

●

●

●●

●
●

●

●●
●

●

●

●
●

●

●

●●●●●
●

●

●●●

●

●

●●
●●

●

●

●

●

●

●●●●●●
●●●●●●

●●●●●●●
●

●●●

●
●

●
●

●
●

●
●

●●●●●●●
●●

●●
●

●●●●
●●

●
●

●●

●

●
●●●

●
●●

●●
●

●●

●
●

●

●

●●●
●●

●

●

●●●

●

●

●

●
●

●●●

●

●
●●

●

●
●

●
●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●
●

●
●●●

●●●

●●●●●●●●●●●●●
●●●●●●●●

●●
●

●
●●

●●●
●●

●
●

●

●●●●
●

●

●
●●

●

●

●
●

●●
●

●

●
●●●

●

●

●

●
●

●
●

●●

●●●
●

●●●●
●

●
●●●●

●●●
●●

●
●

●●●●
●

●
●

●
●

●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●

●●●●
●

●●
●●●●●●●

●●
●●

●
●

●●●●●●
●

●
●

●●●●●

●●
●●

●●
●

●
●●

●●●●●●●

●

●
●

●
●●

●
●

●
●●●●

●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●

●
●●●

●
●●

●
●●

●●●
●

●
●

●●●●●●●●●●●●
●●●●●

●
●

●●●
●●●

●
●

●●●
●

●●
●

●●
●●●●●●●●

●
●●

●●●

●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●
●●

●●●
●

●●●
●

●●●●
●●

●
●

●
●●

●
●

●●
●

●●

●
●

●

●●●
●

●●●●●●
●

●

●
●●●

●
●●

●
●

●

●
●●●

●●
●●

●●
●●●●

●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●

●●●●●
●

●●
●

●
●

●●
●

●
●●●●●●●●

●

●●

●●●●●●

●

●
●●●●

●●
●●●●●

●
●●

●
●

●
●●

●

●
●

●●●●●●
●

●
●

●
●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●●

●

●●

●

●●●
●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●

●
●●●

●●●
●

●
●●●●●

●

●
●

●
●●●

●●●

●●

●
●

●
●●●●●

●
●

●●
●●

●●
●●

●●
●●●●

●●

●
●●●●

●
●●

0

5000

10000

15000

20000

0 25 50 75 100
generation

fit
ne

ss

Method

●

●

HyperAO

Modular

Figure 6.2: Average �tness in generation. The �gure shows average �tness in generation
for each evolution run. The same method as in the previous �gure is used to estimate aver-
ages from performed evolution runs. Here, in contrast to the previous �gure, average �tness
of HyperAO is signi�cantly higher compared to Modular representation. This is most likely
caused by an evolution run with high average �tnesses that might indicate low variability in
the population.

Figure 6.3: Sample evolved organisms. The �gure shows two organisms evolved for
locomotion in the �nal generation. Top line shows an organism evolved using HyperAO and
bottom line shows an organism evolved using Modular representation.

68

mon for both methods.

The light following task is designed to evolve organisms that follow an object in
the environment (i.e. source of light), where light sensor provides an information
about direction to the object position. The �tness is here a weighted sum of the
following factors: (1) walked distance from the initial position, (2) walked path
as in the locomotion tasks and (3) walked distance to the average distance from
the followed object.

The block pushing task is designed to evolve organisms that move a large cube
(i.e. block) from its initial position to any direction. The �tness is maximum
distance of the block from its initial position.

Preliminary experiments indicate that the proposed control system, which
is common for both proposed method is not capable of solving these two tasks.
Evolved organisms do not exhibit a locomotion to the followed object (light source
or block) in any of preliminary experiment. This may be caused by (1) insu�cient
in�uence of light sensors to the organisms locomotion and (2) di�culty of the
problem. However, detailed analysis would require further investigation.

6.4 Summary

Based on produced organisms from the locomotion task and compared with or-
ganisms evolved for locomotion by Bongard and Pfeifer [5] it seems that evolved
organisms using HyperAO might performs better on this task compared to the
original arti�cial ontogeny proposed by Bongard and Pfeifer. This could be re-
sult of using additional symmetries in the phenotype. On the other hand, unlike
arti�cial ontogeny, HyperAO is not capable of solving block pushing task that
requires a light sensor to adjust direction of movement to the position of the
followed object. This may be caused by a poor in�uence of the light sensors to
the organism`s movement.

This indicates that based on evolved organisms the following hypotheses might
apply to the locomotion in the simulated environment:

Hypothesis 3. Hyper-cube based arti�cial ontogeny produces signi�cantly better
organisms than the original arti�cial ontogeny.

However, more accurate comparison would require further investigation.

Experiments also show that HyperAO is outperformed on locomotion task by
the �rst proposed method, Modular representation. Based on the experimental
data this indicates that the following stated hypothesis does not apply to the
locomotion task:

Hypothesis 4. Hyper-cube based arti�cial ontogeny is capable of producing com-
parable or better organisms compared to the �rst proposed method that evolves
morphological structure using directed graphs.

Note that despite better results produced by the �rst method both meth-
ods are capable of producing organisms capable of locomotion in the simulated
environment.

69

7. Conclusions and Future Work

7.1 Conclusions

This work proposes two methods compared in series of experiments. The experi-
mental results show that the �rst proposed method, Modular representation that
is based on bachelor`s thesis of the author signi�cantly outperforms the second
proposed method, Hypercube-base arti�cial ontogeny (HyperAO) on sample tasks,
where organisms are evolved for locomotion to the maximum distance from the
initial position.

HyperAO represents a proof of concept of a novel approach that combines
arti�cial ontogeny and HyperNEAT generative encoding. It is based on a theo-
retical comparison of developmental methods with other methods evolving virtual
organisms provided in this work. The main innovation to the original arti�cial
ontogeny is realization of genetic regulatory network using a system of arti�cial
neural networks represented using HyperNEAT generative encoding that allows
di�erentiation based on the position in the organism.

HyperAO seems to perform better in evolving organisms for locomotion task
compared to original arti�cial ontogeny proposed by Bongard and Pfeifer [5].
While Hypercube-base arti�cial ontogeny presents concept of a new approach
rather that a complete method (i.e. it is a proof of concept), it requires many
parameters to be optimized. Thus, even performance on the locomotion task
that is on some evolution runs comparable with the �rst method can be consid-
ered as a success. As a result, goal of this thesis have been successfully ful�lled.

7.2 Future Works

The following text provides suggestions for the future extensions of Hypercube-
base arti�cial ontogeny. Unlike original arti�cial ontogeny, where a physical or-
ganisms grow during the ontogenetic process, HyperAO constructs a physical
phenotype after the �nal grow iteration, when an organism is considered to be
adult. Extension of HyperAO to construct physical phenotype during the on-
togenetic process could allow adaptation to the virtual environment, when the
growing phenotype can discover physical constrains or can be adapted to various
physical conditions such as growing in water of a lower gravity.

Next suggested extensions are related to HyperNEAT generative encoding. In-
stead of evolving positions of neurons in GRN substrate, extension ES-HyperNEAT
of HyperNEAT could be used. Evolvable-substrate HyperNEAT (ES-HyperNEAT)
is a method proposed by Risi, et al. [18] that in addition to HyperNEAT auto-
matically determines positions of hidden neurons based on information stored
in evolved CPPN. This could by bene�cial to HyperAO that uses CPPNs to
represent both morphology and control system. Note that modi�cation of ES-
HyperNEAT that also evolves position of neurons corresponding to gene products
could be even more bene�cial.

This leads to further extension of ES-HyperNEAT referred as Adaptive ES-
HyperNEAT proposed by Risi, et al. [19] that enhanced ES-HyperNEAT with

70

ability to learn. ES-HyperNEAT might be used to realize a morphological adap-
tation during the lifetime of the organism. As a result, further adaptation might
increase robustness of evolved organisms as argued by Bongard [14]. Thus, we
can conclude that the most signi�cant advantage of HyperAO are its possible
extensions.

71

Bibliography

[1] STANLEY, Kenneth O.; MIIKKULAINEN, Risto. Evolving neural networks
through augmenting topologies. Evolutionary computation, 2002, 10.2: 99�
127.

[2] KR�AH Peter. Towards e�cient evolutionary design of autonomous robots.
In: Evolvable Systems: From Biology to Hardware. Springer Berlin Heidel-
berg, 2008. p. 153�164.

[3] BRAUN, Heinrich; WEISBROD, Joachim. Evolving neural feedforward net-
works. In: Arti�cial Neural Nets and Genetic Algorithms. Springer Vienna,
1993. p. 25�32.

[4] HyperNEAT for locomotion control in modular robots [[TODO upravit podle
normy ISO 690]]

[5] BONGARD, Josh C.; PFEIFER, Rolf. Repeated structure and dissociation of
genotypic and phenotypic complexity in arti�cial ontogeny. In: Proceedings
of the Genetic and Evolutionary Computation Conference. 2001. p. 829�836.

[6] INDEN, Benjamin. Stepwise transition from direct encoding to arti�cial on-
togeny in neuroevolution. In: Advances in Arti�cial Life. Springer Berlin
Heidelberg, 2007. p. 1182�1191.

[7] SIMS, Karl. Evolving virtual creatures. In: Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. ACM, 1994. p.
15�22.

[8] GAUCI, Jason; STANLEY, Kenneth. Generating large-scale neural networks
through discovering geometric regularities. In: Proceedings of the 9th annual
conference on Genetic and evolutionary computation. ACM, 2007. p. 997�
1004.

[9] STANLEY, Kenneth O. Exploiting regularity without development. In: Pro-
ceedings of the AAAI Fall Symposium on Developmental Systems. Menlo
Park, CA: AAAI Press, 2006. p. 37.

[10] ROGGEN, Daniel; FEDERICI, Diego. Multi-cellular development: is there
scalability and robustness to gain? In: Parallel Problem Solving from
Nature-PPSN VIII. Springer Berlin Heidelberg, 2004. p. 391�400.

[11] HARDING, Simon; MILLER, Julian F. A comparison between developmental
and direct encodings.

[12] LEIBL, Marek. Evolutionary development of robotic organisms. Bachelor's
thesis, Charles University in Prague, 2012.

[13] GRUAU, Frederic; WHITLEY, Darrell; PYEATT, Larry. A comparison be-
tween cellular encoding and direct encoding for genetic neural networks. In:
Proceedings of the First Annual Conference on Genetic Programming. MIT
Press, 1996. p. 81�89.

72

[14] BONGARD, Josh. Morphological change in machines accelerates the evolu-
tion of robust behavior. Proceedings of the National Academy of Sciences,
2011, 108.4: 1234�1239.

[15] BONGARD, Josh C.; PFEIFER, Rolf. Evolving complete agents using arti-
�cial ontogeny. In: Morpho-functional Machines: The New Species. Springer
Japan, 2003. p. 237�258.

[16] CHENEY, Nick, et al. Unshackling evolution: evolving soft robots with mul-
tiple materials and a powerful generative encoding. In: Proceeding of the
�fteenth annual conference on Genetic and evolutionary computation con-
ference. ACM, 2013. p. 167�174.

[17] HILLER, Jonathan D.; LIPSON, Hod. Evolving Amorphous Robots. In: AL-
IFE. 2010. p. 717�724.

[18] Risi, Sebastian, Joel Lehman, and Kenneth O. Stanley. Evolving the place-
ment and density of neurons in the hyperneat substrate. Proceedings of the
12th annual conference on Genetic and evolutionary computation. ACM,
2010.

[19] Risi, Sebastian, and Kenneth O. Stanley. A uni�ed approach to evolving
plasticity and neural geometry. Neural Networks (IJCNN), The 2012 Inter-
national Joint Conference on. IEEE, 2012.

73

	Introduction
	Structure of The Thesis

	Background
	Overview of existing projects
	Evolving virtual organisms
	Introduction
	Evolving morphology
	Evolving control system

	NeuroEvolution of Augmenting Topologies
	Historical marking
	Mutating networks
	Mating networks
	Speciation
	Incremental growth

	Hypercube-based NEAT
	Generative encoding
	Advantages of generative encoding and its applications

	Artificial Ontogeny
	Morphological Structure
	Neural Control system
	Growth from a Single Cell
	Neural Growth
	Genetic Regulatory Network
	Representation in the Genotype

	The First Proposed Method: Evolving Morphological Structure using Directed Graphs
	Evolving Morphology
	Morphological Structure
	Representation in The Genotype

	Evolving Control System
	Sensors and Effectors
	Structure of Control System
	Generative Representation

	The Second Proposed Method: Hypercube-based Artificial Ontogeny
	Motivation to the Proposed Method
	Indirect Encoding and Regularities
	Level of Abstraction
	Skipping Developmental Process
	Advantages of the Developmental Process

	Structure of the Proposed Method
	Developmental Process
	Genetic Regulatory Networks
	Hypotheses to the Proposed Methods

	Distributed computing
	Modular architecture overview
	Theoretical approach to performance increase with multiple runners
	Preliminary assumptions and definitions
	Asymptotic analysis of distributed computing with a large population
	Asymptotic analysis of distributed computing with a large population and homogeneous runners
	Analysis of distributed computing with fixed population size

	Experiments
	Method used in performance test
	Experimental results
	Conclusions

	Experiments
	Physical Validation
	Evolving Locomotion
	Measuring Quality of Organisms
	Experimental Setting
	Results

	Evolving Light Following and Block Pushing
	Summary

	Conclusions and Future Work
	Conclusions
	Future Works

	Bibliography

