
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Lukáš Krížik

Bobox Runtime Optimization

The Department of Software Engineering

Supervisor of the master thesis: RNDr. Filip Zavoral, Ph.D.
Study programme: Informatics

Specialization: Software Systems

Prague 2014

I would like to thank my family and friends for a persistent support in studies. I
would also like to thank the supervisor for the patience and helpful advice.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Bobox Runtime Optimization

Autor: Lukáš Krížik

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Filip Zavoral, Ph.D.

Abstrakt: Cílem této diplomové práce je vytvořit nástroj na optimalizaci kódu
pro paralelní prostředí Bobox. Nástroj redukuje počet krátce a dlouze běžících
úloh na základě statické analýzy kódu. Některé případy krátce běžících úloh způ-
sobují zbytečné přeplánování. Pokud plánovač nemá dostatek informací o dané
úloze, plánovač může úlohu naplánovat, i když tato úloha nemá všechna potřeb-
ná vstupní data. Pro odstranění krátce běžící úlohy nástroj analyzuje použití
vstupních dat a informuje plánovač. Dlouze běžící úlohy můžou v některých pří-
padech potlačit paralelismus. Větší granularita úloh může znatelně vylepšit časy
běhu v paralelním prostředí. Pro odstranění dlouze běžících úloh nástroj musí
být schopen vyhodnotit složitost kódu a vložit příkaz pro přeplánování na vhodné
místo.

Klíčová slova: bobox, statická analýza kódu, optimalizace, složitost kódu, clang

Title: Bobox Runtime Optimization

Author: Lukáš Krížik

Department: The Department of Software Engineering

Supervisor: RNDr. Filip Zavoral, Ph.D.

Abstract: The goal of this thesis is to create a tool for an optimization of code
for the task-based parallel framework called Bobox. The optimizer tool reduces a
number of short and long running tasks based on a static code analysis. Some cas-
es of short-running tasks cause an unnecessary scheduling overhead. The Bobox
scheduler can schedule a task even though the task does not have all input data.
Unless, the scheduler has enough information not to schedule such task. In order
to remove such short-running task, the tool analyses its input usage and informs
the scheduler. Long-running tasks inhibit a parallel execution in some cases. A
bigger task granularity can significantly improve execution times in a parallel
environment. In order to remove a long-running task, the tool has to be able to
evaluate a runtime code complexity and yield a task execution in the appropriate
place.

Keywords: bobox, static code analysis, optimization, code complexity, clang

Contents

1 Introduction 4
1.1 Goals . 4
1.2 Structure of the thesis . 4

2 Bobox 6
2.1 Design and terminology . 6
2.2 Boxes . 7
2.3 Usage . 8
2.4 Cooperative scheduling . 8

3 Static code analysis 10
3.1 C++ tooling . 10
3.2 GCC - the GNU Compiler Collection 11
3.3 Elsa: The Elkhound-based C/C++ Parser 11
3.4 VivaCore/OpenC++ . 12
3.5 Static code analysis tools . 14

3.5.1 Clang Static Analyzer . 14
3.5.2 Clang Format . 15
3.5.3 OCLint . 15
3.5.4 Cppcheck . 16
3.5.5 Summary . 17

3.6 Related work . 17
3.6.1 Scout . 17

3.7 Summary . 17

4 Clang and tooling 19
4.1 Abstract Syntax Tree . 19

4.1.1 Traversal . 19
4.2 Source-to-source transformation 20

4.2.1 Rewriter . 20
4.2.2 Replacements . 20
4.2.3 TreeTransform . 21

4.3 LibClang . 21
4.4 Plugins . 21
4.5 LibTooling and AST matchers . 22

4.5.1 Internals . 22
4.5.2 Usage . 24

4.6 Optimizer implementation . 24

5 Prefetch method 26
5.1 Restrictions to optimization . 27

5.1.1 Overriding initialization step 28
5.2 Searching for values in code . 28

5.2.1 Divide and conquer . 30
5.2.2 Loop with fixed number of iterations 31

1

5.2.3 Exceptions . 31
5.3 Searched values . 32

5.3.1 Available inputs . 32
5.3.2 Prefetched inputs . 32
5.3.3 Used inputs . 33

5.4 Performance . 33
5.5 Summary . 34

6 Yield complex method 35
6.1 Complexity . 35
6.2 Control flow graph . 36

6.2.1 Block complexity . 37
6.2.2 Path complexity . 37
6.2.3 Quality of CFG . 39
6.2.4 Additional data structures in optimizer 40
6.2.5 Optimization algorithm . 41
6.2.6 Default threshold . 42
6.2.7 Code injection . 42

6.3 Further improvements . 43
6.3.1 Runtime checks . 44
6.3.2 Probabilities . 44
6.3.3 Identify producers . 44
6.3.4 Deep analysis . 44

7 Optimizer 45
7.1 Design . 45
7.2 Working modes . 46

7.2.1 Optimizer output . 47
7.3 Coding style detection . 48
7.4 Configuration . 49

8 Results 51
8.1 Prefetch method . 51

8.1.1 Model . 51
8.1.2 Benchmarks . 52
8.1.3 Optimizer tweak . 53
8.1.4 Conclusion . 53

8.2 Yield complex method . 54
8.2.1 Model . 54
8.2.2 Benchmarks . 55
8.2.3 Conclusion . 57

9 Conclusion 58
9.1 Future work . 59

References 60

List of Figures 63

2

List of Tables 64

Listings 65

List of Abbreviations 66

Appendix A 67

Appendix B 68

Appendix C 70

3

1. Introduction
The Bobox project is a task-based framework for parallel computing. In such a
framework, short-running tasks cause bigger CPU consumption by the framework
itself and long-running tasks can inhibit the parallel execution. A static code
analysis can be used to detect and eliminate such execution paths in the user
code. Since the core and interface language of the Bobox framework is C++,
static code analysis becomes more difficult in proportion to the lack of tools.
This has been the biggest pitfall for any static analysis of C++ code. However, it
has become less marginal with a growing support for tooling in the Clang compiler
front-end [14]. Clang exposes C++ code as a user-friendly Abstract Syntax Tree
(AST) [17] structure.

1.1 Goals
Apart from this text, the main asset of this thesis is a tool for optimizing code
using the Bobox framework. By analysing AST, the tool is able to diagnose and
potentially transform user code to eliminate both short and long execution paths.
There is an implementation of the two different patterns of unoptimized usage in
the context of this thesis. However, the tool is designed to be easily extensible
with new optimization methods. Both implemented optimization methods are
able to inject new code to give the Bobox internal facilities information about
the user code structure. The tool is implemented using the Clang tooling inter-
face [15]. Therefore, it inherits all the Clang limitations, such as its platform
support.

1.2 Structure of the thesis
The second chapter begins with a brief description of the Bobox framework,
in order to familiarize a reader with its underlying mechanisms. The reader
should understand why the user code can be optimized using the transformations
mentioned later in chapters related to specific optimization methods.

The third chapter describes the problems of static code analysis first of all in
general, and then specifically for the C++ language since it is the core and inter-
face language of the Bobox framework. The chapter also describes the possible
approaches to a static code analysis of C++ code, their advantages and disadvan-
tages, the internal implementation, and the user interface and limitations. The
last section in this chapter addresses related work.

Because the chosen approach to implement the optimizer tool was the Clang
tooling interface, Chapter 4 is dedicated to its detailed description. Tools imple-
mented on top of the Clang front-end are equipped with an abstract syntax tree
representation of code. One section describes the design of this data structure,
and the possibilities of its traversal. Possibilities of source-to-source transforma-
tions are described in the following section. The Clang front-end itself provides
multiple interfaces for an implementation of static code analysis tools.

The next two chapters introduce implemented optimization methods. Each

4

chapter contains sections with information related to the Bobox framework, a
detailed description of the algorithms used to detect an unoptimized usage of the
framework and other details of the implementation.

Chapter 7 offers a high-level look at the tool design and some details of op-
timizer implementation. The following chapter contains achieved results of the
described scenarios. The last chapter discusses conclusions and the future work.

5

2. Bobox
Nowadays, increasing performance comes with an increasing number of compu-
tational units due the attainment of the physical limits of current technologies.
Parallel programming becomes more and more important in the development of
performance expensive software to use all the silicon hardware provides. The
thread-based approach to achieve parallelism creates a lot of complexity for a
programmer to maintain, and it is also not well scalable. It becomes important
to abstract the underlying parallel environment to a programmer. The Bobox
framework [4, 5] addresses this issue by providing an interface for task-based
parallel programming. Such an approach relieves the programmer of handling
thread-based programming problems such as synchronization, most technical de-
tails (e.g., cache hierarchy, CPU architecture) and communication. Apart from
that, task-based programming also allows for better hardware utilization.

According to Bednárek et al. [1], the Bobox framework is "more useful for
data processing scenarios, like database query evaluation or stream processing".
Without further details, under the hood, the framework has been equipped with
a fixed number of worker threads, each one with an own scheduler, and two
task queues for every computational unit for a better utilization of CPU caches,
using the task stealing mechanism. Communication between tasks uses a column-
based data model, the most significant implementation detail that favours data
processing problems. Each task has zero or more inputs and zero or more outputs.
A single output can be connected to zero or more inputs. A task is scheduled to
be executed when it has an unprocessed input.

The Bobox framework provides a C++ library as the interface to its runtime
environment. Task granularity is represented by classes derived from the Bobox
base class for a task. This base class is called a box.

2.1 Design and terminology
The runtime environment handles the implementation details of the task-based
parallel environment such as scheduling and the parallel execution of tasks, data
transport and control flow. A programmer uses a declarative way to provide the
environment with a model which defines the way individual tasks are intercon-
nected. The model is used to create amodel instance which is the base for creating
a user request. The user request contains only very little additional information
compared to the model instance.

After a programmer provides the environment with a user request, he no
longer has control over its execution. The framework provides only information
about whether it has finished executing the request. The provided user request
is divided into individual tasks. When a task is ready to be executed, it is added
to the task pool. A worker thread then retrieves the task from the task pool and
invokes it.

The basic element of model instance is an element representing a task, called
a box. In every model instance, there is a special box called an initialization box.
This box is responsible for the creation of the initialization input data of all the
other boxes in the model. The framework executes this task at the beginning of

6

a request evaluation, and its only goal is to send data to its only output.
Data is sent using an envelope, a column-based data structure. An empty

envelope is a special type of envelope called a poisoned pill. When a box receives
a poisoned pill in its input, there will be no more data sent to this input. All
the paths of model instances are required to end in another special type of box
called a termination box. When this box receives a poisoned pill, the execution
is finished and the pipeline is deallocated.

2.2 Boxes
Boxes, as the representation of Bobox framework tasks, are executed in three
steps.

1. The first step is the prologue, when the box creates a snapshot of its in-
puts and stores this snapshot in member variables so the user code can
access it. The prologue communicates with the runtime environment, and
synchronization is needed.

2. The second step called action is the main place for a user code execution.
User code can communicate with the runtime environment using only spe-
cific member functions, e.g., it can send an envelope to its output. This
approach creates a transparent parallel environment for programmers, re-
lieving them of issues related to the parallel execution.

3. The last step is the epilogue. The step handles the scheduling of the next
task based on two criteria. A task is scheduled again,

(a) if it has got an unprocessed input and it has processed some input in
the action step.

(b) if it requested to be scheduled again.

There is a reason why box is not scheduled again if it has got unprocessed
input and it has not processed any input during the execution. It will most
likely wait for another input, e.g., the join operation in a database when a
task is not executed until it has received data from both inputs. The option
to explicitly request another scheduling is there for cases when a single box
creates a large output. A task should not run for a long period of time.
It can create a large output, and thus congest internal buffers used for
communication. A task running for a long time on a single worker thread
can also create a bottleneck for a parallel execution when many other tasks
wait for the input from this task.

Boxes are main objects of the interest for optimization, because they are
the main location for the user code. Based on the static analysis of the action
step, additional code can be injected to provide Bobox internal facilities with
information about the task.

7

2.3 Usage
To implement a Bobox task, a programmer has to inherit from the basic_box
base class. The action step is represented by one of the virtual member func-
tions from Listing 2.1. A programmer is expected to override one of them. The
synchronous version is called when all prefetched envelopes are available. The
asynchronous version is called when the envelope on the input which is being
listened is available.

Listing 2.1: The code representations of the box action step.
virtual void sync_body ();
virtual bool async_body (inarc_index_type inarc);

A programmer can also associate names to particular inputs and outputs
using helper macros from the Bobox library, see Listing 2.2. The code is easier to
comprehend and maintain when box inputs or outputs are referred to by names
instead of using indexes.

Listing 2.2: The helper macros for mapping of names to inputs and outputs.
define BOBOX_BOX_INPUTS_LIST (...)
define BOBOX_BOX_OUTPUTS_LIST (...)

The implementation of a task is straightforward for a C++ programmer using
only C++ core language features. Unfortunately, C++ syntax is not convenient
for expressing a definition of the whole execution model. The language developed
to such purpose is called Bobolang [6]. Listing 2.3 shows an example of a model
definition in the Bobolang language.

Listing 2.3: An example of the Bobolang usage.
model main <()><()> {

bobox :: broadcast <() > <() ,() > broadcast ;
Source <()><(int)> source1 (odd=true), source2 (odd= false);
Merge <(int),(int)><(int)> merge;
Sink <(int)><()> sink;

input -> broadcast ;
broadcast [0] -> source1 ;
broadcast [1] -> source2 ;
source1 -> [left]merge;
source2 -> [right]merge;
merge -> sink -> output ;

}

2.4 Cooperative scheduling
Due to the character of the framework scheduler, the user code directly affects
the scheduling of tasks and thus the overall performance of an execution. The
framework provides ways of manipulating the task scheduling. For example, a

8

task can give up its execution before it finishes naturally. A task can also inform
the scheduler that it should not be executed before all the input data is available.
Based on the static code analysis of the user code, the optimizer tool can inject
function calls into the user code to affect framework scheduling.

9

3. Static code analysis
Detection of errors in code early in the development process is important for the
reduction of development costs. The most commonly used process for detecting
errors as soon as possible is called a code review.

The static code analysis can be considered to be an automated code review.
One of the biggest pitfalls of a code review is its high price. Two or more people
read the code looking for a way to improve it, finding and fixing errors, per-
formance issues, or potential errors which can become actual errors in future.
The quality of a code review decreases with the time spent reading the code.
Developers need to rest in order to increase the quality of their code review.

Compiler warnings can be considered to be a very basic static code analysis. A
compiler warns a programmer about suspicious parts of code which it has detected
in the compilation process. It is good practice to turn on all compiler warnings
and compile the code without any detected. The most commonly used compilers
provide a switch to consider warnings as errors. Software development companies
often create rules to force programmers to produce a warning-less code, or use
the mentioned compiler switch in their development environment to implicitly
remove compilation warnings.

Compilers cannot do much to diagnose more complex errors. It is not their
primary goal, which is code compilation, and a more advanced diagnostic could
increase compilation times. Furthermore, there is no need to produce any binary
when analysing code. Most developers of tools for static code analysis would like
to access an output of the semantic analysis. It is up to programmers whether
they reuse a compiler front-end, or implement their own.

This chapter covers some of possible approaches to creating static code analy-
sis tools. The chapter also describes the implementation of some popular analysis
tools.

3.1 C++ tooling
Due to the complexity of the C++ core language, there are only very few fully
C++ compliant, open-source and freeware1 compilers. The two most known are
GCC, the GNU Compiler Collection [18], and Clang/LLVM [14]. Apart from the
standard syntax for procedural programming, C++ includes the Turing-complete
template meta-programming language. A compiler needs to execute code in order
to generate code which is eventually compiled into native code.

Based on the given facts, it would be extremely difficult and unwise to in-
dividually implement your own C++ front-end. The optimizer tool should use
some existing front-end for the static code analysis. The set of available C++
front-ends is very limited, and some of them are not suitable for tool implemen-
tation.

1Proprietary compilers could do the job just as well, but freeware compilers are preferable.

10

3.2 GCC - the GNU Compiler Collection
GCC is a compiler with a great 26 years old history and is well established in the
C++ software development world. Many helper tools for build environments sup-
port GCC in some way, and yet programmers have been struggling with writing
static code analysis tools for C++. There are multiple reasons why programmers
have not started using GCC. As an example, a citation from Sparse FAQ [8]
covers their reasons for avoiding GCC:

"Gcc is big, complex, and the gcc maintainers are not interested in other uses
of the gcc front-end. In fact, gcc has explicitly resisted splitting up the front and
back ends and having some common intermediate language because of religious
license issues - you can have multiple front ends and back ends, but they all have
to be part of gcc and licensed under the GPL."

The first sentence, especially the first few words, is the main reason program-
mers have not started using the GCC front-end to create tools for a static code
analysis. Some of the disadvantages in using GCC for tooling are:

• It is very hard to learn for beginners.

• Even though GCC consists of front-end, middle-end and back-end, it still
appears to be monolithic. It is very difficult to decouple front and back
ends.

• GENERIC and GIMPLE2 representations of code are not intuitive.

• GCC does not keep track of tokens locations in source code, e.g., it does not
keep track of macro expansions. Therefore, it is very difficult to refactor
the code correctly.

• The code is optimized when it is parsed so the abstract syntax tree does not
correspond to the source code, e.g., x-x is optimized to be 0. It is extremely
difficult to refactor the code based on such an optimized abstract syntax
tree.

3.3 Elsa: The Elkhound-based C/C++ Parser
Even a smaller group of developers is able to create a relatively nice C++ compiler
front-end. Elsa [20] is such an example. It provides a programmer with a user-
friendly AST representation of code, which is designed to be easily extensible
without writing a single line of C++ code. The front-end provides a mechanism
designed as the visitor pattern for the AST traversal. The other way to traverse
a tree is to traverse the tree manually. The visitor pattern is useful for the
context-insensitive traversal.

The biggest disadvantage of Elsa is that its development stopped long time
ago, in 2005, when a different project called Oink [21] started. Oink uses the Elsa

2GENERIC and GIMPLE are names for different representations of AST. GIMPLE is a
subset of GENERIC for code optimizations.

11

front-end. Later, the Oink development stopped before the year 2011 when C++
experienced its renaissance with the new approved standard, which introduced
big changes to the core language and the library. Therefore, there is almost no
support for new C++11 language features. Oink, just like Elsa, does not have
an integrated preprocessor so it is extremely difficult to map AST with locations
in source code. Elsa also suffers from a lower speed, but this would only be a
negligible disadvantage for smaller projects.

3.4 VivaCore/OpenC++
The VivaCore [23] library was developed as the basis for the PVS-Studio [22]
static code analyser for C/C++. The library is derived from the older OpenC++
(OpenCxx) [25] library. The idea of using OpenC++ appeared when the team
was implementing the Viva64 [23] library. They were making many changes to
OpenC++ and because of the lack of resources, they did not continue to improve
the library3. Instead, they developed their own library. The VivaCore library
has become popular. It has been used as a base by other popular tools such
as VisualAssist by Whole Tomato Software, Doxygen, Gimpel Software PC-Lint,
Parasoft C++test and others.

Figure 3.1 shows the library design. The library uses an external preprocessor.
Without an integrated preprocessor, it is extremely hard to track macro expan-
sions and the actual locations of symbols in source code. Thus, source-to-source
transformations are correspondingly difficult.

A preprocessed input is passed to the library. Two library subsystems process
the code before it reaches the lexical analysis. The first is the input subsystem
responsible for putting preprocessed code into internal data structures. Internal-
ly, the second subsystem is called the Preprocessor, but it does not preprocess
an input in the meaning of the C++ preprocessor. It is responsible for two
operations:

• Splitting the code into strings and separating them into two logical groups.
One group is for system libraries, the other group is for user code. Library
users can choose whether they want to analyse the system code or just the
user code

• Removing compiler specific constructions not related to C/C++ languages,
e.g., SA_Success and SA_FormatString are present in Visual Studio‘s head-
ers.

The next step is the lexical analysis. An output of Lexer can be used for
basic metrics or syntax highlighting. VivaCore allows modifications to the set of
tokens for the lexical analysis.

VivaCore provides a user with parse tree (PT), called also derivation tree
(DT), as an output of the syntactic analysis. The parse tree differs from an
abstract syntax tree in the way it contains nodes representing the derivation
rules used in the syntactic analysis. The word abstract comes from the reasoning

3Many changes did not fit into "general OpenC++ ideology" [24] so they would need to adapt
and allocate new resources for such process.

12

External
preprocessor

Preprocessor
subsystem

Lexer

Parser

PT Walker

Metaprogram
subsystem

C/C++
Analysis

Library and
Utilities

VivaCore
Figure 3.1: The design of the VivaCore library.

that the structure hides the rules used in its construction. It is actually possible
to traverse PT as if it was AST. VivaCore‘s PT defines two basic sets of nodes
with ancestors in NonLeaf and Leaf base classes, which have PTree4 class as their
common ancestor declaring the only pure virtual member function. It is the only
function which must be overridden in inherited classes, allowing their design to
be more flexible.

Probably the most interesting part of the library interface is tree traversal.
Three different walker classes have been implemented for this purpose.

Walker is responsible for walking over basic C++ constructions.

ClassWalker handles C++ class specific features.

ClassBodyWalker traverses a body of a C++ class.

It is possible to traverse PT multiple times. Users can traverse the code for
measurements at first. Later, in further traversals, they may modify PT. The
modification of tree nodes can trigger a tree rebuild.

4PTree has LightObject as its base class used in GC.

13

The VivaCore library is one of the best libraries for the static analysis of
C++ code. A relatively high number of very popular tools for code analysis
based on the library reflects its quality. Its development is still in progress and
the library is still being updated. Developers have also implemented support for
new features introduced to new approved language standards. However, the goal
of the optimizer is not only to analyse code, but also to transform user code. An
external preprocessor is a major issue in using the VivaCore library.

3.5 Static code analysis tools
Code quality in large projects is hard to maintain using only a code review.
If there are many code related commits every day (e.g., Crysis 2 multiplayer
had ∼100-150 code related commits every day collecting 130 different developers
over the last year of the development [9]), providing human resources for a code
review would be inefficient. Instead of that, companies use tools for a static code
analysis and the diagnostic is reviewed further. However, not many companies
trust tools enough to let them perform source-to-source transformations, apart
from formatting or simple refactoring.

This section describes some popular static code analysis tools, in order to
familiarize a reader with solutions already used to implement such tools. Even
though their final goal differs from the goal of this thesis, they all have to achieve
the common goal of understanding source code to some extent.

3.5.1 Clang Static Analyzer
The static analyser is a part of the Clang project implemented on top of the Clang
tooling interface. The analyser is easily extensible by implementing checkers, even
though their interface may not be intuitive. Authors demonstrate how to write
a simple checker for Unix stream API in the presentation called "How To Write
a Checker in 24 Hours" [10]. When writing a checker, the developer needs to
understand how the analyser works under the hood.

The core of the analyser performs a symbolic execution of the code, ex-
ploring every possible path, tracking all the variables and constructing a Con-
trol Flow Graph (CFG). Checkers participate in CFG construction. Essential-
ly, checkers are visitors which react to a specific set of events while traversing
AST (e.g., checkPreStmt, checkPostCall functions) and eventually creating
new CFG nodes.

The analyser aims to solve path-sensitive problems, e.g., problems related to
the resource acquisition and release, such as resource leaks and resource usage
after release. The CFG construction is the core of such analysis. Actually, the
development manual page of the analyser contains important advice which dis-
courages developers from implementing path-insensitive checkers [11]:

"Some checks might not require path-sensitivity to be effective. Simple AST
walk might be sufficient. If that is the case, consider implementing a Clang com-
piler warning. On the other hand, a check might not be acceptable as a compiler
warning; for example, because of a relatively high false positive rate."

14

3.5.2 Clang Format
Consistency in code formatting is very important in large projects. It increases
readability and the code becomes better machine-editable. Even though con-
sistent code formatting is very important, there are not many tools which sup-
port automatic code formatting for C++, e.g., BCPP, Artistic Style, Uncrustify,
GreatCode, Style Revisor.

The reason why companies allow the usage of automatic formatting tools is
that those tools guarantee they will not change the code semantic, i.e., they edit
only white space characters, literals and comments. Therefore, they will not break
a compilation. There was a proposal to let clang-format reorder file includes, but
it was not approved because such a change can break a compilation. The main
challenges for clang-format developers based on their design document [12] were:

• A vast number of different coding styles has evolved over time.

• Macros need to be handled properly.

• It should be possible to format code that is not yet syntactically correct.

It was a hard decision for clang-format developers whether they use lexer or
parser to implement such a tool. Both have their advantages and disadvantages
in terms of performance, macro management or type information. In the end,
they decided to keep the implementation based on lexer, but there is still an
ongoing discussion about adding AST information. However, this discussion is
leaning towards creating a separate tool using AST, which already has the name
clang-tidy [26].

3.5.3 OCLint
OCLint [27] is a tool implemented on top of the Clang tooling interface. It tries
to create a generic framework for code diagnostic. Main parts of OCLint are
Core, Rules and Reporter.

Core controls a flow of the analysis, dispatches tasks to another modules and
outputs results. It parses code, builds AST and provides modules with access to
this AST. While parsing code, it creates various metrics such as:

• Cyclomatic complexity.

• NPath complexity.

• Non-commenting source statements.

• Statement depth.

Rules can provide RuleConfiguration, which defines limits for metrics. When
limits are exceeded, Core emits a violation. There are two main approaches for
the modules in handling the diagnostic:

Line based is when modules are provided with lines of code.

AST based provides modules with an access to AST using two approaches:

15

• Using the visitor design pattern to explore AST.
• Defining matchers for suspicious code patterns.

Modules are separated from Core code, so they can be loaded in runtime. The
basic diagnostic can be represented as a set of code patterns. The last task which
must be performed is reporting a discovered diagnostic using Reporter.

However, pattern matching is not a mechanism strong enough to catch even a
slightly more complex error such as a resource leak. Supported approaches other
than AST matchers do not really help more than just using the Clang tooling
interface directly.

3.5.4 Cppcheck
An example of a tool which does not use any compiler front-end to process source
code is Cppcheck [28]. The tool performs the code parsing and the analysis on
its own, but the quality of understanding the source code is lower than in well-
established compiler front-ends. The input for code checks is the output of the
lexical analysis. Thus, it can be very difficult to implement more advanced checks.
The fact that the code analysis passes only the lexical analysis phase also means
that the tool is not even able to catch syntactic errors. Fortunately, Cppcheck im-
plements classes such as Scope or SymbolDatabase with the functionality which
their names indicate.

The simplified version of a Cppcheck execution from documentation for pro-
grammers can be written in eight steps [13]:

1. Parse the command line.

2. ThreadExecutor creates necessary CppCheck instances.

3. CppCheck::check processes every file.

4. Preprocess a file inside the check member function.

• Comments are removed.
• Macros are expanded.

5. Tokenize a file using Tokenizer.

6. Run all checks on the Tokenizer output called a token list.

7. Simplify a token list.5

8. Run all checks on a simplified token list.
5There are various simplifications applied to a token list. Every simplification passes the

whole token list looking for patterns and potentially changes this list. For example, the first
applied simplification changes "string"[0] to ’s’. Another example is removing of std::
tokens from a specific set of function calls.

16

3.5.5 Summary
Three out of four described code analysis tools are implemented on top of the
Clang front-end. Cppcheck parses code by itself and cannot be considered to be a
full-featured front-end. Cppcheck understands code enough to implement simple
checks, but more complex analysis could become very difficult to implement.

Nonetheless, each one of the three analysis tools implemented on top of Clang
has a different goal and a different view of code from the other two tools. Such a
variability indicates that the Clang front-end exposes a lot of information gathered
during a compilation to tools. Thus, its tooling library is a good candidate for
the library used in implementing the optimizer.

3.6 Related work
There are not many tools for front-end optimization. The main reason is that it
has been difficult to implement any front-end tool in general. Furthermore, most
optimizations have already been implemented in compilers. However, this thesis
aims to optimize the specific framework.

3.6.1 Scout
The front-end optimizer tool, called Scout [29], is being developed in TU Dresden.
It is supposed to do transformations for front-end SIMD optimizations, e.g., loop
auto-vectorization, a very similar task to what most current compiler back-end
optimizers do. It will transform C code into optimized C code with compiler in-
trinsics. Naturally, auto-vectorization is done by a compiler back-end optimizer,
but there are limits to what the compiler can do. It needs to use the extensive
dependency and alias analysis to verify the correctness of the vectorization and
often rejects more complex loops. Some compilers allow programmers to anno-
tate loops with pragma directives, leaving programmers responsibility for keeping
some loop invariants. A compiler can skip those checks before vectorization, thus
accepting more loops. Unfortunately, the measurement with the specific Intel
compiler using pragma directives gave insufficient results. For example, the com-
piler rejected loop vectorization after the loop variable type was changed from
unsigned int to signed int. Actually, Scout provides a semi-automatic vec-
torization, where programmers have to annotate loops using pragma directives
to enable the vectorization of a given loop.

The tool provides a command line interface as well as a graphical user inter-
face. It uses Clang to build AST from C code. AST is then transformed into
a different AST which represents optimized code. Finally, this optimized AST
is transformed back to C code. The tool can be configured with a set of used
intrinsics, i.e., SSE2, SSE4, AVX, AVX2 or ARM NEON.

3.7 Summary
All the tools for a static code analysis described in this chapter were implemented
by a group of programmers. Without a good library for parsing C++ code,
implementing any tool for an analysis of C++ code is an extremely difficult task.

17

The requirement for a code transformation makes the task even harder. The lack
of the C++ tooling support has been generally mentioned by programmers as
being one of the biggest drawbacks of using the C++ language. The situation
has changed with the increased support of tooling at the Clang front-end and
it is possible to implement a relatively complex tool for front-end optimizations
individually or using a small group of people. The Scout tool is an example of
this.

The Clang front-end has intentionally been omitted from this chapter, as the
optimizer tool uses its tooling interface to analyse and transform code. The whole
of the next chapter covers the Clang tooling interface in detail. The Scout tool
is the main inspiration for the decision to use the Clang front-end for analysis
and transformation since the tool has a very similar goal and its major part is
implemented by a single programmer.

18

4. Clang and tooling
A support for creating static code analysis tools for C++ was very subtle before
Clang developers increased its support for tooling. All compiler front-ends were
cumbersome to use, and implementing a new front-end individually is extremely
difficult. The situation has changed with Clang providing API for access to C++
code represented as the user-friendly abstract syntax tree structure. Actually,
Clang does not provide single tooling API, instead it provides multiple APIs with
differences in usage. The differences mainly affect the way in which a tool accesses
AST, the range of accessed information, and compatibility with older versions.
Tool developers can decide whether they want to sacrifice compatibility to all the
information provided by front-end internals. As Clang is being developed, there
is no guarantee that interfaces in their code base will not change.

The tooling interface indicates that Clang focuses on diagnostic, code com-
pletion and refactoring tools. The support for source-to-source transformation is
subtle. Even though there are multiple ways to transform code, most of them are
deprecated.

4.1 Abstract Syntax Tree
The structure Clang provides is not only an abstract syntax tree of code. It is a
graph with AST nodes, but with more edges than those in AST. Clang provides
mechanisms for traversing this graph as if it was AST. With access to the AST
node, programmers are able to traverse a graph in more ways than they would
be able to do with just the AST structure. It allows developers to optimize their
analysis code or perform a more complex context-sensitive traversal.

Unusually, the class hierarchy of nodes does not have a common ancestor.
There are two large hierarchies with common ancestors in Decl and Stmt classes,
some important ones with ancestors in Type and DeclContext classes, and many
classes accessible only from specific nodes.

4.1.1 Traversal
The template responsible for the AST traversal is called RecursiveASTVisitor.
It is implemented as a Curiously Recurring Template Pattern (CRTP) combined
with the visitor design pattern where a programmer is able to either react on
the AST node visit or manipulate a traversal. Due to the character of the AST
nodes class hierarchy, the implementation of the visitor template is cumbersome,
with the extensive usage of macros. Therefore, the template has been nicknamed
macro monster. It has been promised that it will be reimplemented some time so
there is no guarantee that the interface will not change, even though the visitor
is widely used in tools. The other approach for traversing AST is to follow the
edges. It is more useful in a context-sensitive traversal.

19

4.2 Source-to-source transformation
Even the simplest case of a code transformation such as symbol renaming is dif-
ficult to implement in C++. Before the lexical analysis starts, with some excep-
tions1, there is the text-preprocessing phase when source code text is transformed
into a different source code text. A preprocessor does not know anything about
language syntax or semantics, it is defined as a set of operations on text. During
the preprocessing phase, symbols may be created, copied, or erased. Tracking
the symbol’s origin from the output of the syntactic analysis to a source code
location before preprocessing is a difficult task. Clang uses an integrated prepro-
cessor, so looking up a source location from AST is simpler than it would be with
an external preprocessor.

There are multiple approaches to perform source-to-source transformations.
If a tool is supposed to support operations such as symbol renaming or code
completion, Clang allows a programmer to rewrite source code as text. The
Rewriter class provides such functionality. For greater control over code changes
in specialized tool wrappers, there is the Replacement class. Furthermore, if a
tool is supposed to be used in a build process, the best solution is to transform
AST and output code from this transformed AST for the next build step, see
Section 4.2.3.

4.2.1 Rewriter
For basic source code transformations on the level of text editing, there is the
Rewriter class. A programmer can create as many instances as necessary, passing
them just a reference to SourceManager. A user is then allowed to do operations
such as an insertion, a removal or a replacement of text using SourceLocation
or SourceRange objects. Both objects can be gathered directly from most of
the AST nodes. Text transformations are far from ideal in C++. However, it
is sufficient for renaming symbols or code completion in text editors, where a
programmer can immediately repair any compilation errors caused.

4.2.2 Replacements
The special wrapper for greater control over operations in the Rewriter class
is called Replacement. The callback function in the AST matchers interface is
provided with Replacements, which is a container of Replacement objects. The
callback is free to manipulate this set, e.g., mainly by adding new objects, but
it is not prohibited from removing or editing existing items. At the end of an
analysis, a tool tests whether the analysis has finished correctly. Then it checks
Replacement objects for validity and if all tests pass, the tool applies those objects
to the Rewriter object. After all the Replacement objects have been successfully
applied to the Rewriter object, the last step is to save the affected files.

A programmer should implement all mentioned steps for the correct usage of
the Rewriter class. The problem arises when a developer wants to refactor a
code with compilation errors. RefactoringTool will not save any changes when

1The token paste operator ## must be handled when the lexical analysis is happening.

20

a compilation fails. Thus, refactoring tools integrated to a source code text editor
cannot use these facilities.

4.2.3 TreeTransform
The most correct approach to AST transformations, according to Clang develop-
ers, is to use the TreeTransform class. If a programmer has access to mutable
nodes, they often provide member functions for a manipulation with edges to
other nodes. The Scout tool (Section 3.6.1) manipulates AST nodes and edges
directly, even though Clang developers deprecate the direct manipulation of AST.
The problem is that nodes and edges actually create a more complex structure
than AST. It is difficult to manipulate this structure without having a detailed
knowledge of it, i.e., a knowledge at the level of a Clang developer. A developer
has to know the lifetime of a node and all the possible edges coming to and from
a node. It is not advisable to try to modify AST manually.

On the other hand, Clang itself internally transforms AST multiple times
during a compilation process. For example, a template instantiation is done on
the constructed AST, effectively transforming it into a different one. Since a
template instantiation can break the code semantic, the newly-created AST must
be tested in the semantic analysis represented by the Sema class. This process is
handled by the TreeTransform class. Even though its interface is simple, using
the CRTP pattern, it is hard to use TreeTransform in tools. None of Clang
tooling interfaces provide access to the Sema object which is necessary for the
construction of the TreeTransform object.

4.3 LibClang
The first mentioned, but the least suitable tooling API for achieving the thesis
goal is LibClang [30], a library with an interface in the C language. Its major
advantage presented by Clang developers is that it is supposed to be relatively
stable and backward compatible. For some developers those features can be
crucial, but they are not important for achieving the thesis goal.

Even though LibClang provides an interface in a different language than Clang
internals, it does not try to hide the way code is represented there. It provides
access to Clang AST2 in the form of an abstraction called Cursor, which represents
a single AST element. A tree traversal is achieved using the visitor design pattern.
A part of the library supports code completion, so the library fits well as a basis
for source code text editors tools.

4.4 Plugins
Clang allows a developer to step into a compilation process in the form of plu-
gins [31], dynamic libraries loaded in runtime and running their actions on pro-
cessed code. It is simple to integrate the plugins into a build environment where
Clang is used as the compiler. They can be used to break a compilation (e.g.,
coding rules are broken) or they can produce some output (e.g., code statistics).

2It is necessary to mention that access is very limited relative to Clang internal AST.

21

Because plugins are already a part of a single compilation step, they are not
suitable for source-to-source transformations. Unlike when using LibClang, the
developer of Clang plugins has full access to AST.

Even though the purpose of this thesis is to create a tool used mainly in a
build environment, it should not be limited to environments where Clang is used
as the compiler, or to force build environments to integrate Clang in any way.

4.5 LibTooling and AST matchers
LibTooling [32] aims to write standalone tools such as checkers or refactoring
tools. It is easier to run a standalone tool on a single file or a specific set of files.
On the other hand, it is harder, but definitely possible, to integrate such a tool
into a build environment where it can be triggered by dependency changes.

The library interface provides a developer with full access to the AST struc-
ture. Even though the interface tries to hide other compiler internals, it is a part
of the compiler code and the developer has access to them. The developer can
take advantage of other powerful facilities in the compiler such as Lexer, Parser,
Sema, SourceManager or TreeTransform.

AST matchers [33] aim to solve the very fundamental operation of matching
patterns in AST. Most tools do not invoke an action on every single node in AST,
rather they invoke an action only on specific nodes, e.g., nodes representing a
member call expression on a specific class. Without AST matchers, a programmer
has to traverse a whole tree looking for patterns, and eventually invoke an action
on matching nodes. Clang provides an extensive library of matcher classes which
are designed to be combinable. For example, matchers for the if statement
and the function call expression can be combined into the matcher for the if
statement where the condition is a function call expression.

Both libraries are part of Clang source code and unlike LibClang, these li-
braries do not abstract internal compiler structures. They only represent the way
those structures are accessed. Therefore, both libraries can be used interchange-
ably, e.g., developers can use AST matchers to seek nodes in AST, and then they
can run a front-end action on a sub-tree using LibTooling.

4.5.1 Internals
Every compiler front-end uses some powerful facilities in the compilation process.
With access to these facilities, a developer has access to more information about
source code. More information allows the implementation of more complex al-
gorithms. If compiler internals are accessed before their invocation, the tool can
also affect the compilation process.

Preprocessor

The Preprocessor module closely cooperates with the lexer in the transformation
of source code text into lexical tokens. The Lexer class should see the code
as a single source file. It should not handle code preprocessing actions such
as resolving file includes and macro expansions. The integrated preprocessor
makes Clang tooling libraries more suitable for the implementation of tools which

22

perform source-to-source transformations than other libraries. The integrated
preprocessor allows better tracking of macro expansions and searching for source
code locations from AST nodes. Some useful information provided by the Clang
preprocessor is:

• A list of all predefined macros.

• Access to an immediate macro name for a source code location.

Lexer

The Lexer class provides a simple interface for the transformation of the text
buffer into the stream of tokens. Only forward lexing is supported. The class
provides:

• The source location just past the end of the token specified by the provided
source code location.

• The token string for the provided source location.

Parser

The compiler parser is implemented in the Parser class. The class implements
the parser for the C family of languages, i.e., C, Objective C, C++ and Objective
C++. Clang implements its own hand-written recursive-descent parser as several
other C and C++ front-ends do3. The recursive-descent implementation and the
complexity of the C++ grammar makes Parser a relatively large class in terms
of member functions count. However, it is not an interesting class for tools. The
majority of member functions handle the grammar rules resolution.

Sema

Parser feeds the Sema object with information using the Action interface. Es-
sentially, Parser notifies Sema when code is being parsed. Based on notifications,
the Sema object constructs the AST structure. After an entire translation unit
is parsed, the ActOnEndOfTranslationUnit action is invoked and Sema provides
ASTConsumer with constructed AST. This is the point where plugins and LibTool-
ing libraries start a code analysis by providing own ASTConsumer implementation
through the FrontendAction interface.

Sema is one of the most interesting classes for tools from outside of the AST
library. It provides information related to:

• Name lookup.

• Semantic checks.

• Code completion.
3GCC used the generated Bison/YACC parser, but authors implemented own hand-written

parser in the end. Elsa uses the recursive-descent parser as well.

23

SourceManager

The class essential for tools performing source-to-source transformations is called
SourceManager. It is responsible for source code management on top of a filesys-
tem. It handles the loading and caching of source code. Furthermore, the class
is able to translate abstract SourceLocation objects into spelling and expansion
locations. A spelling location is a location where bytes for a specified token come
from, and an expansion location is a location where a programmer can see them.
For a macro expansion, a spelling location is a location in a macro definition, and
an expansion location is a location where a macro was expanded. SourceManager
provides some useful information such as:

• Spelling and expansion line and column numbers.

• Whether a location is in a system header.

• Whether a location is in the main translation unit file.

• Whether a location is in a macro expansion.

• The memory buffer for translation unit source code.

• Various macro expansion information.

4.5.2 Usage
Clang, just like most other compilers, can receive compilation options such as
predefined macros, include directories, forced includes or a diagnostic level as
command line arguments. A standalone tool must be able to feed the compil-
er internally with this kind of data. Since a tool can have its own command
line arguments, it would be hard to distinguish tool and compiler arguments.
LibTooling tools gather compilation options from a file with the special name
compile_commands.json. A tool tries to lookup the file with this name in the
parent directories of a currently compiled file. If it succeeds, it uses the file to
build a compilation database.

4.6 Optimizer implementation
The LibClang‘s advantage in the backward compatibility and stability is negligi-
ble in achieving the optimizer goal. Even though LibClang creates a new layer
on top of compiler internals, it still provides enough information to implement
the optimizer tool. However, access to information provided by the compiler in-
ternals could allow the optimizer to implement more complex algorithms or new
optimization methods.

Clang plugins limit the tool to environments with the Clang compiler. Clang
plugins also cannot be interactive. They cannot interrupt the compilation process
to wait for a user input. An easy integration into a build environment is an
obvious advantage.

LibTooling and AST matchers libraries provide the possible implementation
of the standalone tool. Furthermore, such tool has access to compiler internals.

24

The drawback of the backward compatibility is not an issue, since any interface
changes can be handled easily, as the tool is not expected to have a large code
base. The stability depends on the stability of Clang libraries. One only needs to
follow the Clang development more closely. The real issue lies in the integration
of the new tool into a build environment.

In overall, LibTooling and AST matchers libraries provide more advantages
than disadvantages for the development of the optimizer tool. Furthermore, Clang
plugins, LibTooling and AST matchers libraries use the same code base. There-
fore, building the tool as a Clang plugin requires a small amount of specific code
that differs from the code used to build the optimizer as a standalone tool.

25

5. Prefetch method
Tasks in the Bobox framework are represented in form of boxes, which can have
zero or more inputs. The boxes are elements of a model. Based on terms defined
in Section 2.1, before an execution of the model, a model instance is created,
later decomposed to tasks, which are then scheduled and executed. The problem
is that the scheduler lacks information about a box execution, specifically about
processing of its inputs. There are three cases of input data requirements for a
meaningful task execution:

1. A task does not need data from any input at all.

2. A task needs data only from some inputs out of multiple inputs.

3. A task needs data from all inputs.

An execution of a task from the second and the third case without necessary
input data adds significant overhead to a model instance execution. Scheduling
itself does not have a negligible overhead. Synchronization is necessary before and
after the task execution. If a task is executed before it has all necessary input
data, it finishes its execution immediately. In such case, scheduling consumes all
CPU time.

However, a developer can provide the scheduler with information about the
necessity of data from a specific input using the basic_box base class member
function. All overloads of this member function are listed in Listing 5.1.

Listing 5.1: basic_box prefetch member function overloads.
bool prefetch_envelope (input_index_type input ,

unsigned count = 1);
bool prefetch_envelope (input_index_type input ,

inarc_index_type offset ,
unsigned count = 1);

bool prefetch_envelope (inarc_index_type inarc ,
unsigned count = 1);

The function informs the scheduler about a number of envelopes on a specific
input necessary for a meaningful box execution. Ideally, a programmer with a
good knowledge of the box design adds function calls with correct values to the
code.

For the case where a single envelope from all inputs is necessary, the good
design solution is to use class inheritance and implement a common base class
that calls the prefetch member function for all its inputs. Programmers need to
remember that they implement this special case of a box and they should derive
from this base class. Class inheritance may not be as useful for cases where only
data from some inputs is necessary. On the contrary, using class inheritance to
achieve code reuse in these cases is a bad design.

The goal of the optimizer is to search for a usage of box inputs and inject
prefetch member function calls accordingly.

26

5.1 Restrictions to optimization
The optimization cannot be applied to the source code when some restricting
conditions are satisfied. The algorithm for the prefetch optimization does not
produce any runtime checks, but the static analysis checks various conditions
whether it is safe to apply changes to the source code. Firstly, the analyser tests
a box class for various conditions whether it can be optimized at all, then it tests
all box inputs one by one for another set of conditions. If a box and its input pass
all tests, the box input is prefetched. Therefore, some restrictions can completely
inhibit the box optimization, some of them can inhibit the optimization of a single
input.

The optimization of a box is discarded if at least one of these restrictions is
satisfied:

(global.1) There are no functions with the user code for the action step, see
Section 2.2, i.e., a class does not override any of functions representing the
action step listed in Listing 2.1.
Rationale: If there is no user code in a class, there is no usage of any input
in a context of this class. Improbable case, but it has to be taken into an
account.

(global.2) There are no inputs.
Rationale: Nothing to optimize.

(global.3) There is no mapping of names to inputs created by using the Bobox
helper macro, see Listing 2.2.
Rationale: Currently, the optimizer identifies inputs by names associated
to them by using the Bobox helper macro. If there is no such mapping, the
optimizer does not detect any input on a box1.

(global.4) A definition of the overridden init_impl member function is inac-
cessible.
Rationale: This member function represents the initialization step of a box
execution and it is the location for prefetch calls. If the analyser cannot
access its definition, there is no place to put function calls. The definition
may be inaccessible due to various reasons such as it is defined in a different
translation unit.

(global.5) The corresponding init_impl in the base class is private.
Rationale: The analyser is able to override the initialization member func-
tion, but a programmer may assume that the corresponding initialization
function from the base class is called. Therefore, there has to be a call to
the base class corresponding function in the newly overridden function def-
inition. However, if the function is inaccessible due to the protection level,
the function call would break a compilation.

1Since the optimizer does not implement any complex constant expression evaluation, it is
expected that programmers use a named helper to refer to an input or output rather than a
numeric constant.

27

Single input optimization restrictions:

(single.1) There is already the prefetch call for the input.
Rationale: A programmer already handles the optimization.

(single.2) The optimizer cannot detect whether data from the input is likely to
be necessary.
Rationale: The decision to prefetch such input is as good as the decision
not to. It can happen when data from an input is necessary only in a single
branch of the code or not at all.
Note: The important word in the restriction wording is likely. The analysis
does not have to prove that data from the input is necessary rather just
assume. The requirement for the proof that data from the input is necessary
would inhibit a big portion of possible optimizations. For example, such an
assumption can be that a loop body is executed at least once.

5.1.1 Overriding initialization step
Prefetch calls are placed in the box initialization step. If there is an accessible
implementation of the initialization function, prefetch calls are injected into this
definition. If the initialization function is not overridden, the optimizer is able
to inject the overridden implementation by itself. The problem with an injection
of the completely new overridden initialization function is that the previously
overridden initialization function can prefetch inputs itself. Fortunately, if the
prefetch call on the same input is called multiple times, only the last call has
effect as it overrides the previous call. Therefore, the injected function calls
prefetch functions on the beginning of the definition and the call to the previous
overridden initialization function as the last statement, see Listing 5.2.

Listing 5.2: The generated box initialization function definition.
virtual void init_impl ()
{

// prefetch_envelope for desired inputs
some_base :: init_impl ();

}

Calling the previous corresponding init_impl function as the last statement
ensures that if there is a prefetch call, it is the one that counts.

5.2 Searching for values in code
To check the restriction (single.1), the analyser must search for prefetch calls on
inputs in a code likely to be executed in the box initialization step. Furthermore,
the restriction (single.2) describes searching for a usage of a box input in the box
action step. Basically, the analyser must search for values2 that are present on all
paths or paths likely to be executed in Control Flow Graph (CFG) of a specific

2A value is a too abstract notion. For example, such a value can be the name of a callee in
a call expression represented by the CallExpr AST node.

28

function definition. Clang tooling libraries provide a developer with AST, but it is
also possible to construct CFG using Clang static analyzer code, see Section 3.5.1.

Fortunately, the construction of CFG from AST is not necessary since a slight-
ly modified default AST traversal can achieve the same result. Section 4.1.1 re-
lated to the AST traversal mentions that a developer can override a tree traversal
when using the visitor pattern approach. In more details, the RecursiveASTVisitor
template provides member functions with names starting with Traverse*3, which
are responsible for a traversal of the internal graph structure. Actually, these
functions are responsible for traversing the structure kept internally in Clang as
if it was AST. Those member functions can be overridden using CRTP.

Figure 5.1 and Figure 5.2 show an example of a traversal of the same code in
CFG and AST structures. Figure 5.1 shows CFG of the code with a single if
statement with non-empty then and else branches followed by a non-empty block.
B represents the condition expression block, B1 and B2 represent then and else
branches of the if statement, and C is the last non-empty block on both paths
from Entry to Exit blocks. Figure 5.2 shows the AST representation of the same
code combined with nodes and edges from Figure 5.1 with the simplification that
IfStmt is followed by the block C in the CompoundStmt node. Entry and Exit
nodes and dashed edges do not exist in AST. The only shared edges between CFG
and AST are dashed-dotted edges from B to B1 and from B to B2. For example, if
the analyser searches for a value on the path passing through block B1, assuming
it starts in CompoundStmt, it visits node by node in the graph depth-first search
algorithm:

1. CompoundStmt

2. IfStmt

3. Block B

4. Returns to IfStmt

5. Block B1

6. Returns to IfStmt

7. Returns to CompoundStmt

8. Block C

9. Returns to CompoundStmt and finishes

The exactly same sequence of code blocks that would be searched in CFG:
block B, block B1 and block C. Entry and Exit blocks are empty thus not inter-
esting for the optimization process.

3* represents a type of an AST node such as TraverseStmt for a statement or
TraverseCallExpr for a call expression.

29

Entry B C Exit

B1

B2

Figure 5.1: The CFG representation of a code with a single if statement.

Entry IfStmt C Exit

CompoundStmt

B1B B2

Figure 5.2: An example of a tree traversal.

5.2.1 Divide and conquer
When searching a value in CFG, it would be necessary to either traverse the same
path multiple times or remember which nodes and paths were already processed.
On the other hand, divide and conquer algorithm design paradigm fits perfectly
to the described custom AST traversal.

The implementation of the search algorithm in the optimizer tool enhances
RecursiveASTVisitor functionality as it has already the well-established inter-
face using the widely known pattern. The problematic part is to identify which
AST nodes can affect a control flow of a program and handle their traversal in
the implemented template. There are relatively many classes for AST nodes.
However, sections 5 Expressions and 6 Statements in the C++ standard [7]
cover all constructs that can affect a control flow. Statements and expressions
that affect a control flow are listed in Figure 5.3. Both sections from the C++
standard can be relatively precisely mapped to Clang AST nodes in the Stmt
class hierarchy and its Expr sub-hierarchy.

Searching for a value in a linear program flow is straightforward. The algo-
rithm visits node by node testing whether it contains a searched value. If the
search algorithm encounters a selection statement, it runs itself on every branch.
If a searched value is found in all branches, it is found for a current selection
statement. If it encounters an iteration statement, it can continue searching in a
loop body based on a tool configuration. Jump statements stop searching. A val-
ue is searched only in the left-hand side expression of logical expressions because
of a short-circuit evaluation.

30

• 5 Expressions
– 5.14 Logical AND operator
– 5.15 Logical OR operator
– 5.16 Conditional operator

• 6.4 Selection statements
– 6.4.1 The if statement
– 6.4.2 The switch statement

• 6.5 Iteration statements
– 6.5.1 The while statement
– 6.5.2 The do statement
– 6.5.3 The for statement
– 6.5.4 The range-based for statement

• 6.6 Jump statements
– 6.6.1 The break statement
– 6.6.2 The continue statement
– 6.6.3 The return statement
– 6.6.4 The goto statement

• try-block

Figure 5.3: Expressions and statements that affect a control flow.

5.2.2 Loop with fixed number of iterations
It was already mentioned that loop bodies are searched for values by default since
they will likely be executed. But this option is configurable in the optimizer tool.
A user can choose to disable search in loop bodies that cannot be proven to be
executed at least once.

The simple case of a loop where it can be proven that its body is executed at
least once is a for loop with a fixed number of iterations which was widely used
in an old C code, see Listing 5.3.

Listing 5.3: A for loop with a constant number of iterations.
for (int i = INIT_CONSTANT ; i < COUNT_CONSTANT ; ++i) {...}

If the analyser can prove that i is not modified in the initialization state-
ment and the condition expression, it can evaluate the condition as a constant
expression. The tool is implemented on top of the compiler, which already has
facilities necessary for operations such as the constant expression evaluation or
the constant unfolding optimization. Clang exposes functions related to the con-
stant expression evaluation in the Expr class. For example, it can evaluate an
expression as a boolean condition, but it succeeds only if an expression is really
constant for the compiler, which is not in this case. The tool can trick the compil-
er by setting temporarily the variable initialization declaration to be a constant
expression. The same trick can be used to analyse even more complex loops, see
Listing 5.4.

5.2.3 Exceptions
The try-block statement in the list in Figure 5.3 deserves a more detailed descrip-
tion. Exceptions are a powerful language mechanism which can change a control
flow at almost any time. The algorithm for searching values in a code recognizes

31

bool loop = true;
/* loop is not modified */
while (loop)
{

...
if (condition) loop = false ;
...

}

Listing 5.4: Another example of a loop with at least one body execution.

them to very little extent. It searches in a try-block statement and ignores catch
statements. Catch statements represent handles of a program in an erroneous
state, a state which is not expected to happen, and its transition to the normal
state.

5.3 Searched values
The previous section describes how values, what is a bit abstract notion, are
searched on all paths in CFG. This section describes what values are searched
and reveals other abstract notions from Section 5.1 such as "input is likely to be
used".

5.3.1 Available inputs
Inputs in box member functions are referred using input_index_type which
is constructed with an index of an input, or inarc_index_type which can be
gathered from input_index_type using the specific basic_box member function.
The Bobox framework also provides a helper macro for the assignment of names
to inputs.

Currently, the optimizer works only with names of static member functions
generated by the helper macro and identifies inputs by these names. In a future
implementation, it can identify inputs by indices, but it requires a more complex
implementation with an extensive usage of the constant expression evaluation.

5.3.2 Prefetched inputs
For already prefetched inputs, the overridden init_impl function is searched.
The optimizer searches for prefetch_envelope member function calls. It checks
function calls whether a callee is the one from the basic_box4 class and collects
input names that could be resolved from the first parameter. The first parameter
is expected to be a call to the related static member function generated by the
helper macro. Actually, a prefetch call is expected to look exactly as the injected
prefetch call by the optimizer, see Listing 5.5.

4A function with the same name but a different signature can be implemented. Such function
hides the base implementation.

32

prefetch_envelope (inputs :: left ());

Listing 5.5: An injected prefetch call for an input called left.

5.3.3 Used inputs
Two member functions on a box are searched for a usage of inputs, sync_body
and sync_mach_etwas. These member functions represent the action step. When
a member function with such name is found, it is tested whether it overrides the
basic_box member function.

There are two cases when data from input is considered to be necessary:

1. If there is a call to the pop_envelope function on the basic_box class. The
name of an input is resolved from the first parameter.

2. If there is a helper variable of the type input_stream<> for working with
a box input and there is a call to any member function on this variable.
Listing 5.6 shows a small snippet of the code with the described situation.

Listing 5.6: An example of a used input.
input_stream <> left(this , input_to_inarc (inputs :: left ()));
...
if (left.eof ())
{

...
}

5.4 Performance
Actually, the analysis does not traverse whole bodies of functions for every input.
Instead of that, it traverses a function body only once, collecting values and using
set intersection and join operations on selection statements. For example, on the
if selection statement it traverses then and else branches collecting values (i.e.,
names of inputs) and creates the intersection of both sets of names found in these
branches.

Therefore, the analysis is very fast. Even though the set intersection operation
itself creates a complexity of n ∗ m2, where n is the number of branches created
by selection statements and m is the number of box inputs5, neither of values is
expected to be high. The rest of the search algorithm has the linear complexity
to the number of nodes in AST.

5A set of collected values from a single code branch is sorted before the intersection is created.

33

5.5 Summary
The only concern about achieved results is the possible big number of false pos-
itives when assuming data from an input is necessary as it is described in the
second case in the Section 5.3.3. An example in Listing 5.6 shows the situation
when input is probably necessary only in the single branch of the code, which is
not a strong assumption. It was necessary to make such soft assumption in order
to make the optimization get the expected result on some tested scenarios. The
analysis can be vastly enhanced in this particular part in future.

34

6. Yield complex method
The Bobox scheduler is a cooperative scheduler, thus it inherits its behavior.
The efficiency of programs running in a parallel environment with cooperative
scheduling tightly depends on the user code. A task must finish or give up its
execution in order to execute a different task on the same CPU. If tasks depend
on each other in some way, they should keep balanced execution times as much as
possible. Furthermore, too little execution times cause that scheduling exceeds
the real execution in the CPU consumption1, big execution times can inhibit
parallelism by keeping dependent tasks out of an execution. Big execution times
of tasks producing data can also congest framework internal structures.

This optimization method aims to resolve big execution times. The main goal
is to detect complex tasks and yield their execution in appropriate places in the
code. Listing 6.1 contains the signature of the basic_box member functions for
such purpose.

Listing 6.1: The signature of the yield execution function.
void yield ();

6.1 Complexity
There are multiple ways to measure the code complexity. Ideally, if we know
input data, we run a program with this data and measure its performance. This
process is called profiling. The quality of optimizations based on profiling is very
high, but it requires human resources to analyse data and update the code2.
There are various techniques used for measurements such as statistical sampling
with the hardware support which is very fast, or instrumentation which is more
intrusive thus affecting an application performance, but given information is more
precise. Instrumentation is useful for applications with a repetitive step with a
limit for minimum execution time, or to keep execution times of a step as stable
as possible. It helps to find cause of spikes. Such applications are computer
games, many sorts of simulations or GUI applications.

Another approach for measuring the complexity is to compile the code and
consider the number of generated instructions as the magnitude of the complexity.
This assumption is naive and imprecise. The main source of the complexity in
most applications comes from loops, repeatedly executed code paths, and this
information is not present in such metric. For snippets of a code without a loop,
this method is precise enough even if there are multiple execution paths. In bigger
code samples, there is probably a bigger amount of loops, thus the code is more
complex, but the number of instructions reflects it less and less precise.

1The prefetch optimization method described in the previous chapter aims to reduce a
number of such executions.

2Most popular compilers provide a feature for optimizations based on profiling data, Profile
Guided Optimizations (PGO) [35], but this approach cannot replace the higher level look on
algorithms used in an application provided by a programmer.

35

The complexity can be also measured based on an indentation in the source
code. A bigger maximal indentation usually means more complex code. This
approach makes assumptions about source code formatting. Its preciseness tightly
depends on these assumptions and how the source code follows them.

Company programming rules often contain a rule related to the concept called
cyclomatic complexity [36]. It measures the logical complexity, the number of
linearly independent paths through the code. This optimization method aims to
reduce a different kind of the code complexity. More code branches decreases
readability for a human, but it has almost no effect on runtime.

6.2 Control flow graph
The optimizer has to be able to estimate the complexity of all paths in the control
flow graph passing through every graph node representing a code block to find
the proper place for a call to the yield member function. The goal is to cut
long execution paths exceeding some predefined threshold. For simplification,
the analyser assumes that all paths have the same probability. Since multiple
execution paths often pass through a specific code block represented by a graph
node, the insertion of the yield call into this code block cuts all paths passing
through this block. In other words, in order to reduce execution time of a single
path, such action can cause too little execution times for some other paths. The
benefit can be lower than the cost.

Figure 6.1 shows an example of the described situation. The single long
execution path is the thinner dashed curved path. Thicker lines represent multiple
short execution paths. The yielded block cuts many short paths in order to
get rid off the single long path. More short paths mean a lower probability of
the long path being taken, thus a lower probability of the optimization benefit.
Furthermore, it causes more scheduling so it can even slow down the overall
performance.

Figure 6.1: An example of a wrong yield placement into a block shared by multiple
short paths and a single long path.

Entry

yield

Exit

many short

many short

long

long

36

6.2.1 Block complexity
In order to measure complexities of paths in CFG, the optimizer must be able to
measure the complexity of the basic construction element of a path, a code block.
Only single execution path passes through a code block. Statements in a code
block are executed one by one. When a control flow enters a block, if no exception
occurs, each statement is executed exactly once until the control flow exits the
block. For such code block, the best approach to measure the complexity is an
approach similar to measuring the complexity of code by the number of generated
instructions, see the second paragraph in Section 6.1.

Code blocks consist of statements. Most statements generate zero or more in-
structions with constant execution time. Problematic statements are call expres-
sions, because they effectively transfer an execution out of CFG. Their complexity
is unknown. The used solution is to estimate their complexity and assign fixed
values for different types of call expressions. A block complexity is then a sum of
complexities of all statements in this block using values from Table 6.1. The value
is searched from the top to the bottom of the table for the first matching row.
Trivial, constant and inline call expressions create a subset of call expressions
which create a subset of statements. The tool allows a user to change all values
by providing a custom configuration. Since trivial call expressions generate no
instructions, their default complexity is zero. A compiler evaluates constant call
expressions during a compilation and does not generate any instructions for them,
thus their default complexity is also zero. The complexity of inlined functions
and the rest of call expressions cannot be stated precisely. Even though com-
plexities of such functions vary, their values are very probably in some reasonable
sized range. Values for inlined call expressions and the rest of call expressions
in Table 6.1 were calculated based on statistics gathered from a code used in
benchmarks, see Chapter 8. The function complexity is calculated simply as a
number of statements in its body. Appendix C contains complete statistics of
measured functions complexities.

Table 6.1: Complexities of statements in a block.

Trivial call expression
A function body does not generate any instruction, the body is empty. 0
Constant call expression
A function defined as a constant expression. 0
Inlined call expression
A function is decided to be inlined by the compiler. 10
Call expression 40
Statement 1

6.2.2 Path complexity
A code block is the basic construction element of a code path. With the definition
of the code block complexity, it is possible to define a code path complexity as
well. Every CFG constructed in Clang analyzer contains two specially designed

37

empty blocks, i.e., Entry and Exit blocks. Control flow enters a graph through
the Entry block and leaves a graph through the Exit block. However, if there are
loops in CFG, there is an infinite number of paths from Entry to Exit blocks.

Therefore, loop bodies are evaluated as independent CFG making source CFG
acyclic. When a path enters a node with a loop statement as a terminator, this
path creates a new path for every path in the loop body. The path that skips a
loop body is omitted from the analysis. This path has a very low probability, but
it affects results significantly. New paths behave as they skip a loop body, but
their complexity is a sum of the source path complexity, block complexity and
body path complexity multiplied by a predefined constant from Table 6.2. The
optimizer allows users to provide their custom values using a custom configura-
tion. Values in Table 6.2 were calculated based on tool code and its execution on
code used in benchmarks, see Chapter 8. Appendix C contains measurements of
loop body executions for all for loops and all while loops. Basically, values in
Table 6.2 are averages of an average number of loop body executions.

Table 6.2: Multipliers for loop body complexities.

for statement 5
while statement 15

Figure 6.2 shows an example of a part of CFG with a for loop statement
and an if selection statement in the body of this loop, see Listing 6.2 for C++
code. Numbers next to edges represent paths complexities and numbers in graph
nodes represent blocks complexities. There is a single path with the complexity
of 5 entering the node with the for statement terminator. The loop body itself
contains two different paths with complexities of 2 and 3. Two paths leaving the
block with the for statement terminator have complexities of 16 and 21. The
calculation for those paths is the for loop multiplier * the body path complexity +
the entering path complexity + the complexity of the block with the for statement
terminator, see Equations (6.1) and (6.2) for paths leaving the for statement
from Figure 6.2.

(5 ∗ 2) + 5 + 1 = 16 (6.1)
(5 ∗ 3) + 5 + 1 = 21 (6.2)

Listing 6.2: A loop statement and a selection statment in a loop body.
for (...)
{

if (/* the complexity is 1 */)
{

/* the complexity is 2 */
}
else
{

/* the complexity is 1 */
}

}

38

1

5

16, 211

0

1 2

0

2, 3

1 1

2 3

Figure 6.2: A path passing through a node with the for statement terminator
and a selection statement in its body, see Listing 6.2 for the code example.

6.2.3 Quality of CFG
Briefly, the algorithm to reduce a number of complex paths tries to inject the
yield function call into some CFG block to make it better than source CFG. Such
algorithm needs a value to quantify the CFG quality to compare source and result
graphs.

The goal of this optimization method is to reduce a number of complex paths
in long-running tasks. For simplification, any path with complexity bigger than
some predefined constant is considered to be too complex. Figure 6.3 shows one
approach for the CFG quality evaluation. The top horizontal line represents ei-
ther Entry block or a block with the yield call expression, i.e., a block where a
control flow enters CFG. Vertical lines represent different paths and line lengths
represent paths complexities. The threshold horizontal line represents the con-
stant complexity value to distinguish too complex paths. Parts of paths exceeding
a threshold are highlighted. Thus, the goal is to minimize the length of highlight-
ed parts of paths. The highlighted part of a path exceeding a threshold is called
penalty.

Figure 6.3: The penalty approach to evaluate a CFG quality.

Paths
Entry/yield

Threshold

Penalty

39

When the algorithm to reduce a number of complex paths places a call to
the yield function into some block, it cuts one or more paths. A new call to the
yield function adds a work for the scheduler and does not remove any work from
a task. Thus, a number of new calls to the yield function should be minimized.
Unfortunately, there are situations when a placement of the yield function call
is equally good for multiple CFG blocks. The simple situation with a single
path exceeding a threshold by a single statement is an example. The algorithm
can place a call to the yield function into any block passed by this path and it
would minimize its penalty to zero. In some edge scenarios, the algorithm could
potentially cut only the last statement of the path. It is not the desired behavior
since one statement cannot inhibit parallelism significantly. The path should be
cut close to its middle or not at all if the yield function call affects other paths
negatively.

The solution is to take also other paths than only those too complex into an
account in the CFG quality evaluation. Then, the algorithm calculates a sum
of distances of path complexities from a threshold value, see Figure 6.4. This
approach takes into an account also the disadvantage of placing the yield call
expression into some block. The optimizer achieves very good results with such
metric of the CFG quality.

Figure 6.4: The distance from threshold approach to evaluate the CFG quality.

Paths
Entry/yield

Threshold

6.2.4 Additional data structures in optimizer
The analyser needs to keep additional data to CFG when calculating paths com-
plexities. Fortunately, each block in CFG has a unique identifier. Additional data
for each block is stored in a map with a block identifier as the key.

Data about every path is stored for every block it passes. Every path has its
own unique identifier. Because many paths share their beginnings, information
about their complexities from the Entry block to a block they pass is shared
between these paths in the structure called path_data_type with:

• Set of path identifiers.

• Complexity.

40

Block data consists of:

• Set of path_data_type structures.

• A yield state of a block with three different states:

No There is no yield call expression in this block.
Planned The optimizer plans to put yield into this block.
Present Source code already includes the yield call expression.

Note: Distinguish between Present and Planned states is to simplify the
final code transformation.

• A map of a path identifier as the key and the complexity as a value for
blocks with a loop statement terminator. A map holds complexities of loop
body paths.

This data is an input for the CFG quality evaluation. The optimization
algorithm changes yield states of blocks to the Planned state in order to increase
the CFG quality.

6.2.5 Optimization algorithm
With a metric for the CFG quality, it is possible to describe the algorithm for
the yield complex optimization formally and in more details, see Figure 6.5. The
algorithm runs the optimization step on CFG until this optimization step returns
CFG with a better quality. The distance variable is a sum of distances of paths
complexities from a threshold value, a metric described in Section 6.2.3. The
algorithm tries to minimize this distance value. The optimization step places zero
or one yield into data representing CFG. Data returned from the optimization
step is then evaluated and tested whether its quality increased.

Figure 6.5: The algorithm for the yield complex optimization method.

1. cfg = Build CFG data.

2. distance = Calculate the quality of cfg.

3. temp_cfg = Run the optimization step on cfg.

4. temp_distance = Calculate the quality of temp_cfg.

5. If temp_distance < distance then

5.1. distance = temp_distance.
5.2. Swap cfg with temp_cfg.
5.3. Continue in the step 3.

6. Else finish, cfg is optimized.

41

Complexities calculation and quality evaluation

The optimizer uses the depth-first search algorithm to analyse CFG and calculate
complexities. The analysis has to handle yield calls in blocks, which are already
in the code or are planned for an insertion by the optimizer. Inputs of the
analysis are CFG and data structures described in Section 6.2.4. The CFG quality
evaluation gets paths and their complexities as an input and calculates a value
representing the CFG quality described in Section 6.2.3.

Optimization step

The only goal of the optimization step is to decrease the distance value repre-
senting the quality of CFG. The optimizer uses brute force to achieve the goal.
Firstly, it collects all blocks where at least one path ends, i.e., the Exit block
and blocks with the Planned or the Present yield state. Then, it processes every
block with at least one path with complexity higher than the threshold value and
calculates what happens if the yield call expression is placed into that block. A
block with the best outcome has its yield state set to Planned.

The complexity of such algorithm tightly depends on the complexity of the
user code and on the structure of its CFG. Every block is visited twice in each
optimization step. All paths complexities are recalculated3 for every block with at
least one path with complexity higher than the threshold value. However, the next
optimization step is executed only if the previous optimization step has changed
the yield state of one block into the Planned state. Thus, the optimization step
has increased a number of paths, but greatly decreased a number of blocks with
too complex paths.

6.2.6 Default threshold
A presence of loops reflects the code complexity the most. However, a loop body
has to be appropriately complex to make the whole loop complex. The only
non-trivial metric used in this optimization method for the complexity is again a
loop. If both loops are for loops, then based on values from Tables 6.1 and 6.2,
the inner loop body must be more complex than a single inlined call expression.
Otherwise, the inner loop would have the complexity of 50, approximately as big
as a single non-inlined call expression with the complexity of 40. I have decided
for two non-inlined call expressions since only one is the minimal case and five of
them is basically another inner loop with one call expression.

Using values from Tables 6.1 and 6.2, the default value for threshold is calcu-
lated as the execution of five inner for loops with two non-inlined, non-trivial,
non-constant call expressions, see Equation 6.3.

5 ∗ 5 ∗ 2 ∗ 40 = 2000 (6.3)

6.2.7 Code injection
The last step of the optimization process is the injection of the yield call expression
to blocks with the Planned yield state. A block with such yield state can be

3A recalculation of a path complexity means one subtraction from its complexity.

42

empty, it can contain a single statement in a condition expression of a selection
statement, the right-hand side expression in a binary expression, the else branch
in a conditional expression, or any other language structure where the C++
language grammar does not allow to chain statements.

The easy solution is to find a compound statement, where the injection of the
yield call expression is as good as the injection directly to the chosen block. The
injection of the yield call expression into a compound statement is then simple
and safe. For reminder, the prefetch optimization method already does inject a
code into compound statements.

Firstly, the optimization method collects all compound statements in the func-
tion body compound statement4. Then, the optimizer collects all blocks with the
Planned yield state. For every collected block, the optimizer checks all com-
pound statements whether the relation of the collected block and the compound
statement matches any of special cases, see Figure 6.6.

1. If the block with the Planned yield state is the condition expression of the
if, switch or while statement that is a child statement of the compound
statement, the yield call expression is injected just before the if, switch
or while statement.

2. If the block with the Planned yield state is the initialization statement or the
condition expression of the for statement that is a child of the compound
statement, the yield call expression is injected just before the for statement.

3. If the block with the Planned yield state is the incremental expression of
the for statement and the compound statement is its body, the yield call
expression is injected as the last statement of the compound statement.

Figure 6.6: The injection of the yield call for some special cases of statements.

1
if/switch/while (cond) {}

2
for (init ; cond ; inc)
{

...
3

}

6.3 Further improvements
The current state of the optimization method can be still improved. Some in-
dications about further improvements were already mentioned, e.g., producers

4The function body compound statement is included in this set

43

can congest internal framework structures in the introduction of this chapter, or
different path probabilities in the introduction of Section 6.2.

6.3.1 Runtime checks
If auto-vectorization back-end optimizers cannot prove that operations in a loop
body do not overlap in the compilation process, they generate runtime checks
and both versions of a loop, original and vectorized. Although there is nothing to
prove mentioned in the yield complex optimization method description, there is a
lot of estimations such as call expression complexities or loop body multipliers. It
would be possible to handle suspicious cases more precisely using runtime checks.

6.3.2 Probabilities
The optimization method considers that all paths in CFG have the same proba-
bility. It is a simplification. For example, functions often contain multiple checks
of their arguments on the beginning of their bodies, but the analysis can assume
that these branches will not be taken in majority of function calls because inputs
are expected to be correct. What probabilities should be assigned to paths is a
very complex task beyond a scope of my thesis. Developers of branch predictors
on modern processors confront the similar task [37]. Some ideas for a branch
prediction could be reused for the static analysis, but most mechanisms used for
predictions are based on runtime information.

6.3.3 Identify producers
There are multiple drawbacks of long-running tasks mentioned in the introduction
of this chapter. One of them is the possible congestion of framework internal
structures. The analysis can assign more weight to paths that produce data for
other tasks in order to ease their yield. Loops producing data deserves more
recognition than loops performing calculations.

6.3.4 Deep analysis
Probably the simplest case of an improvement for the optimizer is the deeper
analysis of statements in CFG blocks. Complexities of call expressions are esti-
mated, but some of them can be calculated more precise. All categories of call
expressions can be analysed deeper if the analysis has an access to the body of
a callee. It would be unbearable to count in CFG of the function definition, but
some heuristic based on a callee definition can be helpful. The possible result of
such heuristic can be in form of the depth of the most nested loop.

44

7. Optimizer
The tool is implemented on top of Clang using LibTooling and AST matchers
libraries, see Section 4.6. The current implementation provides two different
methods for the optimization of code using the Bobox framework. However, the
tool design allows an easy implementation and an integration of new optimization
methods.

The optimizer is able to perform source-to-source transformations only on the
text level. It is designed to be used for the diagnostic purpose or in the build
process.

7.1 Design
User code of a Bobox task is placed in a class derived from the basic_box
class. Before the optimization starts, the optimizer looks up all boxes defined
in source code. The AST matchers interface fits this purpose the best. The cen-
tral optimizer class is the callback from the AST matchers library. The class
also provides all optimization methods with various information. The next step
is to distribute handles to boxes to all optimization methods and providing them
with tool runtime data by providing a handle to the optimizer object.

Based on the command line parameter that defines the optimization level1,
the optimizer object allocates objects representing optimization methods. The
optimizer object is responsible for their lifetime. Optimization methods have to
implement a simple interface, which accepts a handle to the AST node represent-
ing a box and handle to the Replacements object provided by the AST matchers
library, see Figure 7.1. The optimizer object also injects a handle to itself into
every instantiated method so methods can access tool runtime data.

Figure 7.1: The class diagram for the optimizer core.

basic_method

optimize(CXXRecordDecl, Replacements)
get_optimizer() : optimizer

prefetch yield_complex

optimizer

get_mode() : modes
verbose() : bool
get_diagnostic() : diagnostic
get_compiler() : CompilerInstance

The implementation and the integration of a new optimization method con-
sists from two steps:

1. Implement the basic_method interface, which consists from the single mem-
ber function to invoke a box optimization.

1Similar to what modern C++ compilers support, e.g., GCC and Clang/LLVM -Ox com-
mand line option and Microsoft Visual C++ /Ox command line option.

45

2. Register the method factory function in the method_factory class. The
method factory function has to create the optimization method object giv-
ing up its ownership.

The AST matchers interface does not provide the access to Clang compiler
internals. It provides a developer with a handle to the matched node, ASTContext
and SourceManager. It was necessary to implement own wrappers for the front-
end action and the AST consumer to catch the handle to the compiler main object
of the CompilerInstance type, see Figure 7.2. The other approach to get the
access to compiler internals would be to directly change Clang source code. This
approach would introduce significant problems. In such case, tool source code
has to be distributed with modified Clang source code. Also, resolving potential
changes in the Clang tooling interface semantic is easier in separate code base
rather than merging or updating Clang code base.

Figure 7.2: The class diagram for wrapping of Clang tooling API.

FrontendActionFactory

create() : FrontendAction

optimizer_frontend_action_factory
factory : FactoryT
optimizer : optimizer

optimizer_frontend_action
factory : FactoryT
optimizer : optimizer

FrontendAction

CreateASTConsumer(CompilerInstance, StringRef) : ASTConsumer

FactoryT

This is a private
local class.

The place where the
CompilerInstance
object is caught

<<creates>>

7.2 Working modes
The tool is primarily supposed to be used as the front-end optimizer when it is
quietly executed in a build process. Yet, the optimizer can operate in another
two modes, diagnostic and interactive. Both modes differ in a verbosity from the
mode used in a build process. The tool in these modes outputs reasoning behind
the optimization process.

The tool supports three different modes. The text in bold is the command
line argument used to switch to the desired mode.

-build The tool runs quietly, transforming source code. The only output is
the Clang compiler diagnostic output. There is a rationale behind the

46

Clang compiler diagnostic output in the tool. If there is a compile error, a
user should be able to see why the optimizer does not work. Furthermore,
developers should not ignore compile errors and warnings. If developers do
not want the compiler diagnostic output, they can filter it out.
Even though it is not necessary to make transformed code look pretty for
a human eye because transformed code is supposed to be immediately pro-
cessed by the compiler, this mode injects code with the correct indentation
and line endings.

-diagnostic The diagnostic mode is a verbose mode that does not perform any
code transformations. The optimizer outputs problematic parts of user
code and rationale behind suggestions. The output also contains pointers
to highlight the most important part of the printed code snippet. The
diagnostic output is similar to the Clang diagnostic output. However, it is
implemented separately.
The rationale behind implementing such mode is that programmers still
hesitate to use code transformation tools for C++ apart from formatters
and simple refactoring tools. Unless the optimizer output is not too verbose
and programmer can process it, it is safer to allocate human resources for
the optimization process. A programmer can resolve optimizer suggestions
directly in code base. Then, it is not necessary to use the optimizer in a
build process, thus making the process faster.
Another reason for this mode is that the tool can be used in environments
where source code is read-only. The Perforce [38] revision control system
is such an example. Perforce does not allow a programmer to edit source
code until he marks it as checked-out. Checking-out whole code base for
editing a couple of files is performance demanding for the server side of the
revision control system.

-interactive This mode is equivalent to the diagnostic mode with one additional
feature. Each optimizer suggestion comes with yes/no type of a question.
A programmer answers whether he desires to apply the transformation on
code immediately.
The rationale behind this mode is to make processing of the optimizer
diagnostic by a programmer faster. If a programmer sees that a suggestion
is relevant, he does not need to switch to another environment to write
what he already sees on a screen.
The decision granularity is on the level of optimizer suggestions. The single
optimization method may produce multiple suggestions for a single box. A
programmer can pick which of them will be applied.

7.2.1 Optimizer output
The tool tries to emulate the Clang diagnostic output as much as possible. The
output is based on pointing out specific parts of code snippets, see Listing 7.1.
Tool diagnostic code functions receive a location in source code together with a
text message and a type of a message. There are three different types of messages.

47

info General information about source code.

optimization A general message about the optimization process.

suggestion A suggested transformation to source code.

Listing 7.1: An example of the tool diagnostic output.

boxes.hpp :60:32: info: missing prefetch for input declared here:
BOBOX_BOX_INPUTS_LIST (left ,0, right ,1);

^~~~~

The tool diagnostic is aware of macro expansions, see Listing 7.1. Yet, it does
not show the whole stack of the macro expansion as the Clang diagnostic does.
It outputs spelling locations only. Outputs for both optimization methods are
more precisely described in Appendix B.

7.3 Coding style detection
The optimizer injects new code the way it tries to follow a coding style as much
as possible. An indentation is probably the most visible property of a coding
style. Many indent styles have evolved over time. The currently implemented
optimization methods try to follow the style of whitespace characters on the
beginning of lines only.

The coding style detection algorithm runs over a class definition. Informa-
tion from a whole memory buffer that represents a whole translation unit would
be misleading since a translation unit can consist of many files from different
libraries. A class definition is the big enough example to detect the coding style.
The tool also detects the style of line endings, whether it is line feed (LF) only,
or it is paired with carriage return (CR).

The algorithm to detect the indentation processes the memory buffer of a box
definition from the start location of a class to its end location. The algorithm
can be described by the following seven steps:

1. Set the empty indentation as the last line indentation.

2. If the algorithm has not yet reached the end location of a class, continue in
the next step, otherwise continue in the step 7.

3. Find the first non-whitespace character.

4. If the current line contains only whitespace characters or it is a comment,
move to the next line and continue in the step 2.

5. Increase occurrences count for the difference between the last remembered
indentation and the current line indentation.

6. Remember the current line indentation, move to the next line and continue
in the step 2.

48

7. Pick the most occurred difference. If there is no clear winner, pick tabs.

The similar algorithm is used to detect an indentation of member function
declarations in a class definition. The algorithm remembers whitespace characters
on the beginning of lines with a member function declaration or definition. It
picks the one with the most occurrences as the result.

7.4 Configuration
The yield complex optimization method tightly depends on multiple constants.
Their values affect the quality of the result. Also results of the prefetch optimiza-
tion method can vary if the method searches for the used inputs in a loop body
or not.

Clang/LLVM code base does not provide any configuration facilities. It was
necessary to write it from scratch2. Thus, requirements are accordingly low. At
minimum, it is necessary to store values of different types paired with a name
used as the key. Names must be unique in some scope. Every configuration
variable has to be assigned to a configuration group. Every configuration group
has a name unique in the global scope.

Figure 7.3: The class diagram for configuration code.

config_variable
name : string
value : T
default_value : T
parser : ParserT
get() : T {query}

T
ParserT

basic_config_variable

get_name() : string {query}
set(string value) : void
default_value() : string {query}

config_group
name : string
map : map<string, basic_config_variable>
get_variable(string) : basic_config_variable {query}
variables_begin() : variable_iterator {query}
variables_end() : variable_iterator {query}

config_map
map : map<string, config_group>
get_group(string) : config_group {query}
groups_begin() : group_iterator {query}
groups_end() : group_iterator {query}

The class diagram on Figure 7.3 shows the hierarchy of classes in configu-
ration code. The class hierarchy also defines the scope of the uniqueness for
configuration elements, i.e., a configuration variable has to have a unique name
in the configuration group scope. The config_map class uses the Meyers3 sin-
gleton pattern. The class is used as the gateway to all configuration groups and
variables.

Four types of a line can appear in the configuration file. Every type of a line
is defined by a regular expression.

1. A line representing a configuration group.
\[[a-zA-Z0-9_]+\] e.g. [group name]

2LLVM CommandLine 2.0 library served as the inspiration for the design because of simi-
larities with the goal of the configuration library.

3Drawbacks of the Meyers singleton are not present in this usage.

49

2. A line representing a configuration variable.
[a-zA-Z0-9_]+\s*:\s*.* e.g. variable: value

3. An empty line or line that consists from whitespace characters only.
\s*

4. A comment where the first non-whitespace character is #.
\s*#.*

Every configuration variable has to be defined with a default value. The tool
is able to generate a configuration file with default values.

50

8. Results
Both optimization methods described in previous chapters should optimize code
for the Bobox framework to some extent. This chapter covers performance eval-
uation of optimized and unoptimized code for both methods. However, each
method is evaluated separately. There is a specific use case for each method,
when it should stand out.

8.1 Prefetch method
The goal of this optimization method is to reduce a number of short-running tasks.
Specifically, tasks that are scheduled even though they do not have all input data
for a meaningful execution. The gain in a speedup with this optimization method
is the scheduling overhead. It only matters how often this situation occurs in user
code.

In order to measure the scheduling overhead, it is necessary to maximize the
number of wrongly scheduled tasks. A wrongly scheduled task has to have at least
two inputs and there has to be some delay between getting data to its inputs.
A bigger delay increases the possibility of the task being scheduled without all
necessary data.

Furthermore, a parallel environment is not necessary in order to measure the
scheduling overhead. It is harder to achieve the situation when a wrong scheduling
matters with more logical threads. Wrong scheduling on free logical threads does
not affect the overall performance. Thus, measurements are done on a single
thread.

8.1.1 Model
There has to be a box with more than one input for the wrong scheduling and
there can be more such boxes for a bigger effect. Now, it is necessary to create
some mechanism to maximize the number of situations when a box is scheduled
wrongly. This mechanism consist from a chain of boxes where each one creates
input data for one specific input on all boxes that are supposed to be scheduled
wrongly. All boxes from this chain, apart from the last box, then trigger schedul-
ing of the next box in the chain that will create data for a different input on
wrongly scheduled boxes.

Figure 8.1 shows the model used in measurements. However, the number of
distribution and collection boxes as well as the number of their inputs and outputs
may vary. The figure shows only a pattern used in the model construction. If
all collection boxes prefetch only the first input or no input at all, the expected
scheduling in the execution of a model instance constructed from the model in
Figure 8.1 is:

1. control_box

2. distribution_box

3. Three times collection_box - pop data from the first input and wait

51

4. distribution_box

5. Three times collection_box - pop data from the second input and wait

6. distribution_box

7. Three times collection_box - pop data from the last input and produce an
output

8. sink_box

Figure 8.1: The model used in measurements of the prefetch method optimization
with three distribution and three collection boxes.

distribution_box distribution_box distribution_box

control_box

collection_box collection_box collection_box

sink_box

If all collection boxes prefetch their all input data, step 3 and step 5 are
skipped. These prefetch calls can save up to six schedules when boxes do nothing
meaningful.

8.1.2 Benchmarks
There are two boxes in the model without any description. The control box
repeatedly produces data for distribution boxes. It yields each time after data is
produced. The sink box is there for a debugging purpose. All boxes do minimal
work apart from a communication with the Bobox framework to maximize the
impact of the scheduling.

Figure 8.2 shows results for the model with ten distribution and ten collection
boxes. The dashed line shows times for not optimized code, the solid line shows
times for optimized code. X-axis represents the number of iterations in the control
box. Y-axis represents execution times.

Even though the graph does not show it well, optimized code is very slightly
faster in most measurements. However, the gain in a speedup is negligible even

52

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

10

20

30

40

50

60

Iterations

T
im

e
(s
)

not optimized
optimized

Figure 8.2: Benchmarks for the prefetch optimization method with ten distribu-
tion and ten collection boxes.

for a bigger number of iterations or a bigger number of collection and distribution
boxes. Furthermore, the gain in a speedup is approximately the same for a bigger
number of iterations as for a lower number of iterations. The speedup appears
to be constant for measured results. These results do not correspond with the
expected behavior.

8.1.3 Optimizer tweak
It is necessary to look more into details of the presented model in Figure 8.1 and
the Bobox framework implementation to understand why there is a negligible
speedup from unoptimized to optimized code. Both distribution and collection
types of boxes are stateless. The Bobox framework allocates some objects of
stateless boxes, initializes them by calling the init_impl member function and
reuses those allocated objects all over again. But, init_impl is not called again
when object is reused. Thus, prefetch calls added by this optimization method
do not help anymore when the framework reuses boxes.

The prefetch optimization method is enhanced to add all prefetch calls for
all used inputs to the end of the box execution member function body. This
option is configurable and turned off by default. Figure 8.3 shows results with this
optimization tweak turned on compared to not optimized code. The improvement
in a speedup is clearly visible.

8.1.4 Conclusion
The Bobox scheduler is greatly optimized. Even in the presented scenario with
approximately 10 boxes scheduled 9 times out of 10 wrongly, the speedup with
1 million iterations is only 5,767 seconds from 59,718 seconds to 53,951 seconds.
Furthermore, tests were measured on a single logical thread. It is much harder to
achieve this scenario with multiple logical threads. The scenario itself is artificial

53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

10

20

30

40

50

60

Iterations

T
im

e
(s
)

not optimized
optimized

Figure 8.3: Benchmarks for the prefetch optimization method with ten distri-
bution and ten collection boxes and the attach to execution body tweak turned
on.

to showcase the optimization potential. On the other hand, there are software
products where every second matters and there is no reason to turn off this
optimization.

However, there is still one factor that is not tested well in the presented sce-
nario, cache usage. Since all boxes do not work with data excessively, their cache
usage is minimal. Most data can be probably held in cache the whole execu-
tion time. On the other hand, a scheduled box without all input data probably
immediately reschedules. Thus, its impact on a cache is negligible anyway.

8.2 Yield complex method
The goal of this optimization method is to reduce a number of long-running tasks.
Such tasks can inhibit a parallel execution, thus vastly increase execution times.
On the other hand, long-running tasks are more cache friendly, but the speedup
from a parallelism should be much bigger than the one from a better cache usage.

8.2.1 Model
Measurements are done on a model with one important task. This task is essential
for a parallel execution and it should run as often as possible. But, there are
also long-running tasks which prevent scheduling of this essential task, thus they
inhibit parallelism.

Figure 8.4 shows an example of a model with one important task. The source
box is a box that computes data for a parallel processing and distributes this
data to worker boxes. Worker boxes process data in parallel. If there is the same
number of worker boxes as the number of logical threads, there is a big possibility
that the scheduler immediately schedules all worker boxes to all logical threads.

54

The worker box is the long-running task. Thus, all worker boxes keep the source
box out of an execution. This source box creates the bottleneck for a parallel
execution.

Figure 8.4: The model used in measurements of the yield optimization method
with four logical threads.

worker_box

work

work

worker_box

work

work

worker_box

work

work

worker_box

work

work

source_box

If worker boxes finish approximately at the same time, the source box is
scheduled and until it finishes, nothing runs in parallel. But, if one worker box
yields its execution and let the source box to run, data for the next bunch of
parallel worker boxes is ready sooner. Even thought the particular worker box
ends later, it does not inhibit parallelism as there are always data for other
workers. A bigger task granularity greatly helps in this particular model example.

8.2.2 Benchmarks
Measurements were done on a parallel environment with eight logical threads.
Therefore, the model consists of eight stateless worker boxes and single source
box. The worker box calculates for ten seconds and the source box calculates for
five seconds. There would be different overall times measured for different times
of a boxes execution, but the ratio between optimized and unoptimized code is
expected to be the same. This optimization method causes the worker box to
yield after five seconds. Figure 8.5 shows measured results.

But, measured results in Figure 8.5 are a bit different from the expected
outcome. If the source box is the bottleneck of an execution, it should inhibit the
parallel execution for five seconds each iteration. So the speedup for ten iterations
should be approximately fifty seconds. The measured result is approximately
twenty seconds.

The problem is the implementation of the source box for these particular
measurements. The source box calculates something for five seconds, then it
sends envelopes to all worker boxes and it yields immediately. But, the Bobox
scheduler does not schedule all worker boxes immediately after the source box
yields. The source box is often scheduled with the bunch of worker boxes and

55

2 3 4 5 6 7 8 9 10 11
20

40

60

80

100

120

Iterations

T
im

e
(s
)

not optimized
optimized

Figure 8.5: Benchmarks for the yield optimization method with eight logical
threads and eight worker boxes, the naive implementation.

delays an execution of one of them. However, there is still a significant speedup
in the execution.

The source box has to do some additional work before it yields to achieve
the described behavior. It gives time to the Bobox scheduler to schedule seven
worker boxes and the yield in the source box schedules the last worker box.
Figure 8.6 shows measured results with this described implementation and the
speedup approximately matches expected numbers.

Figure 8.6: Benchmarks for the yield optimization method with eight logical
threads and eight worker boxes.

2 3 4 5 6 7 8 9 10 11
20

40

60

80

100

120

140

160

180

Iterations

T
im

e
(s
)

not optimized
optimized

56

8.2.3 Conclusion
The presented model lacks a good parallel design in the first place and a more
skilled programmer would not probably write such code. But, this model can be
hidden in more complex models.

Long-running tasks can occur in a longer development process, when program-
mers extend a task to do more and more work with increasing requirements for
application features. There may be various reasons such as a lack of time or even
laziness to write code directly to an existing task. A programmer can also develop
a long-running task because the work done by this task is monolithic and it is
natural to write such code in a single function. This programmer may not realize
consequences of such code to parallelism and forget to yield its execution. There
are multiple ways how long-running tasks can occur in a code. This paragraph
mentions only some of them.

The bigger granularity can greatly speedup an application execution. Fur-
thermore, results of the prefetch optimization method show that even excessively
short-running tasks that run excessively often affect execution times only very
little. This optimization method can definitely speedup an application with very
low risks.

57

9. Conclusion
The Bobox project is a framework for task-based parallel computing. The task-
based approach relieves a programmer from various issues necessary to handle
in the thread-based approach. It is definitely an approach that will be primarily
used in the future. Nowadays, most parallel computing software has already made
the transition to the task-based implementation. The rest is encouraged to do
so.

However, parallel computing is not for free even in the task-based environ-
ment. The environment handles programming issues related to parallel computing
and it does bring some overhead. This overhead concentrates in times when a
task starts and finishes its execution. Thus, tasks should run for enough time to
make this overhead negligible. The prefetch optimization method tries to reduce
special cases of short-running tasks. Running a task without necessary input data
causes this task to finish almost immediately. This method detects such tasks
and informs the Bobox framework about their input requirements. The analysis
makes some assumptions, which can result in false positives. However, if a task
accesses input data using some of expected ways, this method detects it. The
scheduling mechanism in the Bobox framework is greatly optimized. The gain
in a speed is not overwhelming even in cases where this optimization method
excessively reduces an amount of unnecessary scheduling. On the other hand,
there is no reason to refuse any gain in an application speed.

The Bobox cooperative scheduling of tasks brings another responsibility on
a task developer. A task should not run for a long time. If a task produces
data for other tasks, it can inhibit the parallel execution, because other tasks
wait until this task finishes. It can also congest internal framework structures.
Such task should yield its execution after some time. The yield complex opti-
mization method detects complex tasks and injects yields to appropriate places
in code. Measuring a complexity by the static analysis is a hard task since the
real complexity tightly depends on input data. The analysis has to make many
assumptions about code, thus it results in more false positives. Nonetheless, the
yield operation is not harmful to a performance. On one side, it can greatly help
an application performance, on the other side, it will not hurt its performance
unless its excessive usage. The method analyses general C++ code and the only
related operation to the Bobox framework is the yield call. Thus, anyone who
is interested in the code complexity can reuse the algorithm. This optimization
method shows a great potential in the measured use case. Even though, the
use case is artificial, it can appear in some context in more complex models.
Furthermore, there are more use cases where a bigger task granularity helps.

The only concern for both methods is the possible high ratio of false positives.
Both methods make assumptions about code, e.g., a loop body is executed at least
once. Therefore, the prefetch method can introduce prefetch of some input data
even though a task is able to do some work without it. The yield complex method
can place yield after a loop whose body is not executed, thus introduce a short-
running task. A user of the tool should know about these drawbacks and use it
carefully. However, the tool provides diagnostic and interactive modes, which are
very useful and harmless.

58

9.1 Future work
The tool is designed for further enhancements like adding new optimization meth-
ods or improving the implementation of current ones. Some ideas for future
improvements of the yield optimization method are mentioned in Section 6.3.

Furthermore, the tool is implemented as a standalone tool, but because it is
implemented on top of LibTooling and AST matchers libraries, it can be easily
implemented as a Clang plugin, sharing a big part of codebase. There are al-
so possibilities of improvements in the internal tool implementation. The tool
currently uses the Rewriter class for source-to-source transformation, but the
recommended approach is to use the TreeTransform class. In the tool usage,
diagnostic messages can be more verbose. Even though data from an analysis is
available in the tool, there is no simple way to display them to a user. One issue
was also encountered during the development. The tool cannot run in parallel,
which can be major issue when using the tool in a build environment.

However, when the tool was designed, most of mentioned issues and missing
features were already known so they are included in the design. During the
development, the main focus was on the implementation of the optimization
methods and used algorithms. The future work consist mainly from fixing issues,
improving the implementation and the interaction with a user.

59

References
[1] Bednárek, David. – Dokulil, Jiří. – Yaghob, Jakub. – Zavoral, Fil-

ip. Parallelization Framework for Data Processing. Advances in Information
Technology and Applied Computing. ISSN: 2251-3418, 2012.

[2] Bednárek, David. – Dokulil, Jiří. – Yaghob, Jakub. – Zavoral, Filip.
Data-Flow Awareness in Parallel Data Processing, in Intelligent Distributed
Computing IV, Springer. ISBN: 978-3-642-32523-6, 2012.

[3] Dokulil, Jiří. – Bednárek, David. – Yaghob, Jakub. The Bobox Project:
Parallelization Framework and Server for Data Processing. Technical report
no. 2011/1. Department of Software Engineering, 2011.

[4] Bednárek, David. – Dokulil, Jiří. – Yaghob, Jakub. – Zavoral, Filip.
Bobox: Parallelization Framework for Data Processing. Accepted for publica-
tion in Advances in Information Technology and Applied Computing. ISSN:
2251-3418, pp. 189-194, 2012.

[5] Bobox [online]. A highly parallel framework for data processing. [cit. 2014-
02-28] URL: <http://www.ksi.mff.cuni.cz/cs/sw/bobox.html>.

[6] Falt, Zbyněk. – Bednárek, David. – Kruliš, Martin. – Yaghob, Jakub.
– Zavoral, Filip. Bobolang - A Language for Parallel Streaming Applica-
tions. In Proceedings of the 23rd International ACM Symposium on High-
Performance Parallel and Distributed Computing, Vancouver, ACM. ISBN:
978-1-4503-2749-7, pp. 311-314, 2014.

[7] ISO/IEC 14882. Working Draft, Standard for Programming Language C++.
JTC1/SC22/WG21. Document number: N3797. Date: 2013-10-13.

[8] Sparse FAQ [repository]. 66b24573e9cb5eaa0c41dc4164f81f3b83b9cb41:FAQ.
URL: <https://git.kernel.org/pub/scm/devel/sparse/sparse.git>.

[9] Hall, Peter. Crysis 2 Multiplayer : A Programmer’s Postmortem [online].
GDC Europe 2011. [cit. 2014-02-26]. URL: <http://www.gdcvault.com/
play/1014887/Crysis-2-Multiplayer-A-Programmer>.

[10] Zaks, Anna. – Rose, Jordan. How to write a checker in 24 hours [online].
Clang Static Analyzer. [cit. 2014-02-26]. URL: <http://llvm.org/devmtg/
2012-11/Zaks-Rose-Checker24Hours.pdf>.

[11] Clang Static Analyzer [online]. Development manual. [cit. 2014-02-26]. URL:
<http://clang-analyzer.llvm.org/checker_dev_manual.html>.

[12] Design: clang-format [online]. Design document. [cit. 2014-02-
26]. URL: <https://docs.google.com/document/d/1gpckL2U_
6QuU9YW2L1ABsc4Fcogn5UngKk7fE5dDOoA>.

[13] Cppcheck doxumentation [online]. Generated by Doxygen. [cit. 2014-02-26].
URL: <http://cppcheck.sourceforge.net/devinfo/doxyoutput>.

60

http://www.ksi.mff.cuni.cz/cs/sw/bobox.html
https://git.kernel.org/pub/scm/devel/sparse/sparse.git
http://www.gdcvault.com/play/1014887/Crysis-2-Multiplayer-A-Programmer
http://www.gdcvault.com/play/1014887/Crysis-2-Multiplayer-A-Programmer
http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
http://clang-analyzer.llvm.org/checker_dev_manual.html
https://docs.google.com/document/d/1gpckL2U_6QuU9YW2L1ABsc4Fcogn5UngKk7fE5dDOoA
https://docs.google.com/document/d/1gpckL2U_6QuU9YW2L1ABsc4Fcogn5UngKk7fE5dDOoA
http://cppcheck.sourceforge.net/devinfo/doxyoutput

[14] "Clang": a C language family frontend for LLVM [online]. Clang homepage
[cit. 2014-03-25]. URL: <http://clang.llvm.org/>.

[15] Clang 3.5 documentation [online]. [cit. 2014-02-28]. URL: <http://clang.
llvm.org/docs/index.html>.

[16] "Clang" CFE Internals Manual [online]. Clang 3.5 Documentation. [cit. 2014-
02-27]. URL: <http://clang.llvm.org/docs/InternalsManual.html>.

[17] Wikipedia. Abstract syntax tree — Wikipedia, The Free Encyclopedia [on-
line]. [cit. 2014-02-28]. URL: <http://en.wikipedia.org/w/index.php?
title=Abstract_syntax_tree&oldid=595980085>.

[18] Free Software Foundation, Inc. GCC, the GNU Compiler Collection
[online]. Last revision 2014-04-22, [cit 2014-04-26]. URL: <http://gcc.gnu.
org/>.

[19] Comeau Computing. Comeau C/C++ [online]. Last revision 2013-07-28,
[cit 2014-03-31]. URL: <http://www.comeaucomputing.com/>.

[20] McPeak, Scott. Elsa: The Elkhound-based C/C++ Parser [online].
[cit. 2014-03-31]. URL: <http://scottmcpeak.com/elkhound/sources/
elsa/>.

[21] Oink: a Collaboration of C/C++ Tools for Static Analysis and Source-
to-Source Transformation [online]. [cit. 2014-03-31]. URL: <http://
daniel-wilkerson.appspot.com/oink/index.html>.

[22] PVS-Studio [online]. Static Code Analyzer for C/C++/C++11. [cit. 2014-
03-31]. URL: <http://www.viva64.com/en/pvs-studio/>.

[23] VivaCore library [online]. [cit. 2014-03-31]. URL: <http://www.viva64.
com/en/vivacore-library/>.

[24] The essence of the VivaCore code analysis library [online]. [cit. 2014-03-31].
URL: <http://www.viva64.com/en/a/0013/print/>.

[25] Chiba, Shigeru. OpenC++ [online]. [cit. 2014-03-31]. URL: <http://
opencxx.sourceforge.net/>.

[26] The Clang Team. Clang Tidy [online]. [cit. 2014-04-26]. URL: <http:
//clang.llvm.org/extra/clang-tidy.html>.

[27] Qi, Longyi. OCLint [online]. [cit. 2014-04-26]. URL: <http://oclint.
org/>.

[28] Cppcheck [online]. A tool for static C/C++ code analysis [cit. 2014-04-26].
URL: <http://cppcheck.sourceforge.net/>.

[29] Krzikalla, Olaf. Scout, A Source-to-Source Transformator for SIMD-
Optimizations [online]. last revision 2013-07-24, [cit. 2014-04-26]. URL:
<http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/
zih/forschung/projekte/scout/index_html_en?set_language=en>.

61

http://clang.llvm.org/
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/InternalsManual.html
http://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=595980085
http://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=595980085
http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.comeaucomputing.com/
http://scottmcpeak.com/elkhound/sources/elsa/
http://scottmcpeak.com/elkhound/sources/elsa/
http://daniel-wilkerson.appspot.com/oink/index.html
http://daniel-wilkerson.appspot.com/oink/index.html
http://www.viva64.com/en/pvs-studio/
http://www.viva64.com/en/vivacore-library/
http://www.viva64.com/en/vivacore-library/
http://www.viva64.com/en/a/0013/print/
http://opencxx.sourceforge.net/
http://opencxx.sourceforge.net/
http://clang.llvm.org/extra/clang-tidy.html
http://clang.llvm.org/extra/clang-tidy.html
http://oclint.org/
http://oclint.org/
http://cppcheck.sourceforge.net/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/scout/index_html_en?set_language=en
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/scout/index_html_en?set_language=en

[30] The Clang Team. libclang: C Interface to Clang [online]. [cit. 2014-06-24].
URL: <http://clang.llvm.org/doxygen/group__CINDEX.html>.

[31] The Clang Team. Clang Plugins [online]. [cit. 2014-04-26]. URL: <http:
//clang.llvm.org/docs/ClangPlugins.html>.

[32] The Clang Team. LibTooling [online]. [cit. 2014-04-26]. URL: <http:
//clang.llvm.org/docs/LibTooling.html>.

[33] The Clang Team.AST Matchers reference [online]. [cit. 2014-04-26]. URL:
<http://clang.llvm.org/docs/LibASTMatchersReference.html>.

[34] Kitware. CMake [online]. [cit. 2014-04-26]. URL: <http://www.cmake.
org/>.

[35] Wikipedia. Profile-guided optimization — Wikipedia, The Free En-
cyclopedia [online]. Last revision 2014-04-22, [cit. 2014-04-26]. URL:
<http://en.wikipedia.org/w/index.php?title=Profile-guided_
optimization&oldid=605306183>.

[36] Wikipedia. Cyclomatic complexity — Wikipedia, The Free Ency-
clopedia [online]. Last revision 2014-04-19, [cit. 2014-04-26]. URL:
<http://en.wikipedia.org/w/index.php?title=Cyclomatic_
complexity&oldid=604847346>.

[37] Wikipedia. Branch predictor — Wikipedia, The Free Encyclopedia [online].
Last revision 2014-06-10, [cit. 2014-11-15]. URL: <http://en.wikipedia.
org/w/index.php?title=Branch_predictor&oldid=612349563>.

[38] Perforce, Version Control System [online]. [cit. 2014-04-26]. URL: <http:
//www.perforce.com/>.

62

http://clang.llvm.org/doxygen/group__CINDEX.html
http://clang.llvm.org/docs/ClangPlugins.html
http://clang.llvm.org/docs/ClangPlugins.html
http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibASTMatchersReference.html
http://www.cmake.org/
http://www.cmake.org/
http://en.wikipedia.org/w/index.php?title=Profile-guided_optimization&oldid=605306183
http://en.wikipedia.org/w/index.php?title=Profile-guided_optimization&oldid=605306183
http://en.wikipedia.org/w/index.php?title=Cyclomatic_complexity&oldid=604847346
http://en.wikipedia.org/w/index.php?title=Cyclomatic_complexity&oldid=604847346
http://en.wikipedia.org/w/index.php?title=Branch_predictor&oldid=612349563
http://en.wikipedia.org/w/index.php?title=Branch_predictor&oldid=612349563
http://www.perforce.com/
http://www.perforce.com/

List of Figures
3.1 The design of the VivaCore library. 13

5.1 The CFG representation of a code with a single if statement. . . 30
5.2 An example of a tree traversal. 30
5.3 Expressions and statements that affect a control flow. 31

6.1 An example of a wrong yield placement into a block shared by
multiple short paths and a single long path. 36

6.2 A path passing through a node with the for statement terminator
and a selection statement in its body, see Listing 6.2 for the code
example. 39

6.3 The penalty approach to evaluate a CFG quality. 39
6.4 The distance from threshold approach to evaluate the CFG quality. 40
6.5 The algorithm for the yield complex optimization method. 41
6.6 The injection of the yield call for some special cases of statements. 43

7.1 The class diagram for the optimizer core. 45
7.2 The class diagram for wrapping of Clang tooling API. 46
7.3 The class diagram for configuration code. 49

8.1 The model used in measurements of the prefetch method optimiza-
tion with three distribution and three collection boxes. 52

8.2 Benchmarks for the prefetch optimization method with ten distri-
bution and ten collection boxes. 53

8.3 Benchmarks for the prefetch optimization method with ten distri-
bution and ten collection boxes and the attach to execution body
tweak turned on. 54

8.4 The model used in measurements of the yield optimization method
with four logical threads. 55

8.5 Benchmarks for the yield optimization method with eight logical
threads and eight worker boxes, the naive implementation. 56

8.6 Benchmarks for the yield optimization method with eight logical
threads and eight worker boxes. 56

63

List of Tables
6.1 Complexities of statements in a block. 37
6.2 Multipliers for loop body complexities. 38

64

Listings
2.1 The code representations of the box action step. 8
2.2 The helper macros for mapping of names to inputs and outputs. . 8
2.3 An example of the Bobolang usage. 8
5.1 basic_box prefetch member function overloads. 26
5.2 The generated box initialization function definition. 28
5.3 A for loop with a constant number of iterations. 31
5.4 Another example of a loop with at least one body execution. . . . 32
5.5 An injected prefetch call for an input called left. 33
5.6 An example of a used input. 33
6.1 The signature of the yield execution function. 35
6.2 A loop statement and a selection statment in a loop body. 38
7.1 An example of the tool diagnostic output. 48

65

List of Abbreviations
API application programming interface
AST abstract syntax tree
CFG control flow graph
CR carriage return
CRTP curiously recurring template pattern
DT derivation tree
GCC GNU compiler collection
JSON JavaScript object nation
LF line feed
PT parse tree
PGO profile guided optimization
RAII resource acquisition is initialization
SIMD singe instruction, multiple data

66

Appendix A
Content of attached media

<Optical medium>

doc . Documentation
thesis . Thesis TEX files and the pdf file.
doxygen .Doxygen generated documentation

src . Optimizer source code

67

Appendix B
Output of prefetch method
The diagnostic of the prefetch optimization method outputs information only if
there is anything to optimize and the optimizer is not in the build mode. Firstly,
the method introduce itself and points out to a box definition in source code.

[prefetch] optimization of box merge_box
boxes .hpp :55:7: info: declared here:
class merge_box : public bobox :: basic_box {

^~~~~~~~~

Then, for every input that can be optimized by adding prefetch calls, there
is a message pointing to the helper macro, the name of the input, and the list of
locations where data from this input is likely to be used.

boxes .hpp :60:24: info: missing prefetch for input declared here:
BOBOX_BOX_INPUTS_LIST (left ,0, right ,1);

^~~~
boxes .hpp :99:11: info: used here:
left.eof () && !right.eof ()) {
^~~~~~~~~
boxes .hpp :112:11: info: used here:
left.eof ()) {
^~~~~~~~~

The message with the optimization suggestion looks different for the case
when there is init_impl overridden in the optimized box or the case when it is
not. If there is the overridden initialization function, it points to its location and
it suggests adding the call to prefetch member function.

boxes .hpp :68:18: suggestion : prefetch input in init:
virtual void init_impl ();

^~~~~~~~~

If there is no initialization function, the optimizer suggests to override it
together with prefetch calls.

boxes .hpp :55:7: suggestion : override init_impl () in box with
prefetch call(s):
class merge_box : public bobox :: basic_box {

^~~~~~~~~

The output described above is common for diagnostic and interactive modes.
The interactive mode additionally asks a user with the yes/no type of a question
whether he wants the optimizer to execute the proposed suggestion and transform
code. In the build mode there are no questions and a code transformation is
always applied.

68

Output of yield complex method
Diagnostic and interactive modes are verbose modes with the same diagnostic
output. The problematic part is the diagnostic output itself. Unfortunately, it
is very hard to express the reasoning of the optimization algorithm in the text
format. The result is that the diagnostic shows only suggestions with information
where to put the yield member call expression.

[yield complex] optimization of box merge_box

boxes .hpp :70:18: info: method takes too long time on some paths:
virtual void sync_mach_etwas () BOBOX_OVERRIDE

^~~~~~~~~~~~~~~
boxes .hpp :87:9: suggestion : placing yield () call just before
statement :
for (int l = 0; l < 100; ++l)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is up to a programmer to lookup the place in code and investigate why
previous code is complex and why it is worth to yield an execution. In the
interactive mode, there is also the yes/no type of a question whether a user
wants to let the optimizer to update code. The chosen answer obviously does not
affect the next algorithm work since it only allows a user to select suggestions
from the already pre-calculated result. The algorithm has already finished its
work.

69

Appendix C
Optimizer loop execution statistics

ID for while
Executions Body Average Executions Body Average

0 87 84 0.97 0 0 0.00
1 28 54 1.93 0 0 0.00
2 25 0 0.00 0 0 0.00
3 13 0 0.00 0 0 0.00
4 13 0 0.00 13 153 11.77
5 13 0 0.00 0 0 0.00
6 0 0 0.00 1 18 18.00
7 0 0 0.00
8 0 0 0.00
9 0 0 0.00
10 0 0 0.00
11 39 78 2.00
12 0 0 0.00
13 39 468 12.00
14 8 58 7.25
15 0 0 0.00
16 0 0 0.00
17 2178 2033 0.93
18 21 22 1.05
19 25 287 11.48
20 287 690 2.40
21 690 106 0.15
22 25 287 11.48
23 287 690 2.40
24 680 2178 3.20
25 491 67 0.14
26 68 137 2.01
27 22 242 11.00
28 22 242 11.00
29 218 518 2.38
30 8 8 1.00
31 8 22 2.75
32 22 22 1.00
33 25 92 3.68
34 25 287 11.48
35 5 11 2.20
36 39 468 12.00
37 468 2340 5.00
38 18 22 1.22
39 1 18 18.00
40 1 1 1.00
41 0 0 0.00
42 0 0 0.00
43 0 0 0.00
44 0 0 0.00
45 1 6 6.00
46 1 1 1.00
47 1 1 1.00
Average 4.19 14.88

70

Optimizer functions complexities statistics

Inlined functions

Functions 4456
Minimal complexity 1
Maximal complexity 473
Average complexity 11.457

50 100 150 200 250 300 350 400 450 500

0

500

1,000

1,500

2,000

Non-inlined functions

Functions 978
Minimal complexity 3
Maximal complexity 369
Average complexity 41.4141

50 100 150 200 250 300 350 400

0

50

100

150

71

	Introduction
	Goals
	Structure of the thesis

	Bobox
	Design and terminology
	Boxes
	Usage
	Cooperative scheduling

	Static code analysis
	C++ tooling
	GCC - the GNU Compiler Collection
	Elsa: The Elkhound-based C/C++ Parser
	VivaCore/OpenC++
	Static code analysis tools
	Clang Static Analyzer
	Clang Format
	OCLint
	Cppcheck
	Summary

	Related work
	Scout

	Summary

	Clang and tooling
	Abstract Syntax Tree
	Traversal

	Source-to-source transformation
	Rewriter
	Replacements
	TreeTransform

	LibClang
	Plugins
	LibTooling and AST matchers
	Internals
	Usage

	Optimizer implementation

	Prefetch method
	Restrictions to optimization
	Overriding initialization step

	Searching for values in code
	Divide and conquer
	Loop with fixed number of iterations
	Exceptions

	Searched values
	Available inputs
	Prefetched inputs
	Used inputs

	Performance
	Summary

	Yield complex method
	Complexity
	Control flow graph
	Block complexity
	Path complexity
	Quality of CFG
	Additional data structures in optimizer
	Optimization algorithm
	Default threshold
	Code injection

	Further improvements
	Runtime checks
	Probabilities
	Identify producers
	Deep analysis

	Optimizer
	Design
	Working modes
	Optimizer output

	Coding style detection
	Configuration

	Results
	Prefetch method
	Model
	Benchmarks
	Optimizer tweak
	Conclusion

	Yield complex method
	Model
	Benchmarks
	Conclusion

	Conclusion
	Future work

	References
	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	Appendix A
	Appendix B
	Appendix C

