
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Marek Vlk

Dynamic Scheduling

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: prof. RNDr. Roman Barták, Ph.D.

Study programme: Informatics

Specialization: Theoretical Computer Science

Prague 2014

I would like to thank Mr. Roman Barták for supervising this thesis, and members
of the FlowOpt project for providing their source code.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague April 11, 2014 Marek Vlk

Název práce: Dynamic Scheduling

Autor: Marek Vlk

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı diplomové práce: prof. RNDr. Roman Barták, Ph.D., Katedra teoretické
informatiky a matematické logiky

Abstrakt: Jedńım z problémů rozvrhováńı výroby v reálném životě je dyna-
mičnost výrobńıch prostřed́ı zahrnuj́ıćı nové výrobńı požadavky a rozb́ıjej́ıćı se
zař́ızeńı během vykonáváńı rozvrhu. Prosté přerozvržeńı od nuly v reakci na
neočekávané události, které nastávaj́ı v provozu, může vyžadovat nadměrný
výpočetńı čas. Obnovený rozvrh může být nav́ıc neúnosně odchýlený od toho
prob́ıhaj́ıćıho. Tato práce podává přehled o stávaj́ıćıch př́ıstupech v oblasti dy-
namického rozvrhováńı a navrhuje postupy jak upravit rozvrh při vyrušeńı, jako
je např́ıklad selháńı zdroje, př́ıchod naléhavé objednávky nebo jej́ı zrušeńı. Důraz
je kladen na rychlost navržených procedur i na minimálńı modifikaci p̊uvodńıho
rozvrhu. Rozvrhovaćı model vycháźı z projektu FlowOpt, který je založen na
temporálńıch śıt́ıch s alternativami. Algoritmy jsou napsány v jazyce C#.

Kĺıčová slova: Rozvrhováńı, opravy rozvrh̊u, přerozvržeńı, pediktivńı-reaktivńı
rozvrhováńı

Title: Dynamic Scheduling

Author: Marek Vlk

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: prof. RNDr. Roman Barták, Ph.D., Department of Theoretical
Computer Science and Mathematical Logic

Abstract: One of the problems of real-life production scheduling is dynamics of
manufacturing environments with new production demands and breaking ma-
chines during the schedule execution. Simple rescheduling from scratch in re-
sponse to unexpected events occurring on the shop floor may require excessive
computation time. Moreover, the recovered schedule may be prohibitively devi-
ated from the ongoing schedule. This thesis reviews existing approaches in the
field of dynamic scheduling and proposes techniques how to modify a schedule
to accommodate disturbances such as resource failure, hot order arrival or order
cancellation. The importance is put on the speed of suggested procedures as well
as on a minimum modification from the original schedule. The scheduling model
is motivated by the FlowOpt project, which is based on the Temporal Networks
with Alternatives. The algorithms are written in the C# language.

Keywords: Scheduling, schedule updates, rescheduling, predictive-reactive
scheduling

Contents

Introduction 3

1 Terminology 5
1.1 Basic Definitions . 5
1.2 Rescheduling Framework . 5

1.2.1 Rescheduling Environment 5
1.2.2 Rescheduling Strategies . 5
1.2.3 Rescheduling Policies . 6
1.2.4 Rescheduling Methods . 6

2 Related Methods 8
2.1 Heuristics . 8
2.2 Meta-heuristics . 8
2.3 Artificial Intelligence Approaches 9
2.4 Minimal Perturbation Problem 9
2.5 Repair-DTP . 10

3 Basic Terms and Solving Techniques 11
3.1 Constraint Satisfaction Methods 11

3.1.1 Backtracking and Backjumping 11
3.1.2 Backmarking . 12
3.1.3 Conflict-Directed Backjumping with Backmarking 13

3.2 Temporal Reasoning . 15
3.2.1 Simple Temporal Networks 15
3.2.2 Incremental Full Path Consistency 15

4 Scheduling Model 17
4.1 Informal Description . 17
4.2 Formal Definition . 18

4.2.1 Scheduling Problem . 18
4.2.2 Schedule . 20

4.3 Rescheduling Problem . 20

5 Machine Breakdown 22
5.1 Complexity . 22
5.2 Right Shift Affected . 24

5.2.1 Reallocating Activities . 24
5.2.2 Constraint Repair . 27
5.2.3 Order of Activities . 28
5.2.4 Correctness . 29
5.2.5 Discussion . 31

5.3 STN-Recovery . 31
5.3.1 Skeleton of STN-Recovery 31
5.3.2 Swapping Resource Selections 32
5.3.3 Shifting Activities . 34
5.3.4 Updating STN . 35

1

5.3.5 Components Acquirement 35
5.3.6 Deallocation . 36
5.3.7 Allocation . 36
5.3.8 Correctness . 40
5.3.9 Discussion and Experimental Evaluation 41

5.4 Breakdown with Arbitrary Resource Groups 44
5.5 Breakdown at time tf > 0 . 46

6 Other Disturbances 49
6.1 Hot Order Arrival . 49
6.2 Order Cancellation . 49
6.3 Machine Repair . 50

Conclusion 54

Bibliography 55

A Input Data Acquisition 58
A.1 Random Model Generation . 58
A.2 Scheduling Model Solver . 58
A.3 Testing Machine . 59

B Evaluation Graphs 60
B.1 Right Shift Affected Heuristics . 60

B.1.1 Dependence on Model Size 60
B.1.2 Dependence on Constraint Density 63

B.2 STN-Recovery . 66
B.2.1 Dependence on Model Size 66
B.2.2 Dependence on Constraint Density 67
B.2.3 Dependence on Connected Component Size 70

2

Introduction

Scheduling is a decision-making process that is used in manufacturing and service
industries. It plays an important role in procurement and production, in trans-
portation and distribution, and in information processing and communication.
The aim of scheduling is to allocate limited resources to the activities, which has
to be done in such a way that the company optimizes its objectives and achieves
its goals. Resources may be machines in a workshop, runways at an airport, crews
at a construction site, or processing units in a computing environment. Activities
can be operations in a workshop, take-offs and landings at an airport, stages in
a construction project, or computer programs that have to be executed. Objec-
tives may take many different forms, such as minimizing the time to complete
all activities (makespan), minimizing the number of activities that are completed
after due dates, and so forth. [1, 2]

In manufacturing models, a resource is usually referred to as a machine, and
a task that has to be processed on a machine is often called a job. In production
processes, a job may be a single operation or a collection of operations that
have to be done on various machines. In manufacturing environment, developing
a detailed schedule of the tasks to be performed helps maintain efficiency and
control of operations.

In the real world, however, manufacturing systems face uncertainty due to
unexpected events occurring on the shop floor. Machines break down, operations
take longer than anticipated, personnel do not perform as expected, urgent orders
arrive, others are cancelled, etc. These disturbances render the ongoing schedule
infeasible. In such case, a simple approach is to collect the data from the shop
floor when the disruption occurs and to generate a new schedule from scratch.
Gathering the information and total rescheduling involve excessive amount of time
which may lead to failure of the scheduling mechanism and thus have far-reaching
consequences.

For these reasons, reactive scheduling, which may be understood as the con-
tinuous correction of precomputed predictive schedules, is becoming more and
more important. On the one hand, reactive scheduling has certain things in com-
mon with some predictive scheduling approaches, such as iterative improvement
of some initial schedule. On the other hand, the major difference between re-
active and predictive scheduling is the on-line nature and associated real-time
execution requirements. The schedule update must be accomplished before the
running schedule becomes invalid, and this time window may be very small in a
complex manufacturing environment.

The aim of this thesis is to propose a new technique to tackle disturbances,
such as machine breakdown and new order arrival, in the manufacturing system.
Given an ongoing schedule and an unexpected event occurring at a certain time
making the schedule infeasible, the intention is to find a feasible schedule as
similar to the original one as possible, and as fast as possible.

In this work we borrow the scheduling model from the FlowOpt project [3].
Simply said, a schedule consists of activities, resources and constraints. Activ-
ities require resources to process them and all resources may perform at most
one activity at a time. Possible positions of activities in time are restricted by

3

temporal constraints.
The scope of dynamic scheduling is miscellaneous and there is no standard

classification scheme. Moreover, some terms are used ambiguously. The following
chapter provides a short trip into the field of dynamic scheduling. The chapter 2
describes some existing schedule repair techniques. The chapter 3 explains some
existing techniques that are employed further in the algorithms. The formal
definition of our scheduling model is given in chapter 4. Complexity of resource
failure recovery and our proposed method are presented in chapter 5. Other
disturbances and their solutions are described in chapter 6, and summary and
future work suggestions are given in Conclusion.

4

1. Terminology

In this chapter we gather basic definitions concerning dynamic scheduling, and
contextualize this thesis.

1.1 Basic Definitions

According to [4] a manufacturing system is ”the collection of operations and
processes used to produce a desired product”.

A production schedule specifies, for each activity established to be executed,
the planned start and end times along with a set of resources, to which the activity
is assigned.

Scheduling is the process of creating a production schedule for a given set of
orders and resources.

Rescheduling is the process of updating an existing production schedule in
response to changes in the manufacturing system. This includes the arrival of
new orders, machine breakdowns, and machine repairs.

1.2 Rescheduling Framework

A rescheduling framework is presented in [5]. The framework includes reschedul-
ing environments, identifying the sets of jobs to schedule, rescheduling strategies,
describing whether or not schedules are generated, rescheduling policies, speci-
fying when to reschedule, and rescheduling methods, describing how to generate
and update schedules.

1.2.1 Rescheduling Environment

While static environments have a finite set of jobs, dynamic environments have
infinite set of jobs. Static environments can be either deterministic, where is no
uncertainty, or stochastic, taking into account uncertainty of variables.

Dynamic environments consider infinite set of jobs arriving over an infinite
time horizon. Each job must be scheduled before it can be executed. Dynamic
environments are divided according to variability in the arrival process. First, if
there is no uncertainty in the arrival process, jobs are known in advance, and the
production schedule is continuously repeated, we talk about cyclic production.
Second, if there is some uncertainty in job arrivals, but their routes through the
manufacturing system equal, and the arrival rate is steady, it is usually referred
to as flow shop. Third, job shops involve process flow variability as well as the
variability in job arrivals.

1.2.2 Rescheduling Strategies

There are two basic strategies for controlling production in dynamic environ-
ments with uncertain job arrivals. The first strategy does not create production
schedules, but decentralized production control methods dispatch jobs when nec-
essary, using information available at the moment of dispatching. Jobs waiting

5

for processing at a resource are chosen by using a dispatching rule or other heuris-
tics. This strategy is often referred to as completely reactive scheduling, on-line
scheduling, or dynamic scheduling. Note that this is not the prime scope of this
thesis, whose title Dynamic Scheduling has been picked to refer to non-static
scheduling approaches in general.

The second strategy is usually called predictive-reactive scheduling. It has two
primary steps. The first one generates a production schedule; the second one
corrects the schedule in response to disturbances and other changes within the
environment.

According to [6], predictive-reactive scheduling is based on schedule modi-
fications considering only shop efficiency. In such case the new schedule may
be fundamentally deviated from the original one, which may cause poor perfor-
mance owing to affecting other planning activities based on the original schedule.
Therefore, the two more following strategies (approaches) may be distinguished.

Robust predictive-reactive scheduling takes a focus on generating schedules to
minimize the impacts of disruptions on the performance. A usual solution is
to consider not only schedule efficiency, but mainly deviation from the original
schedule (termed stability).

In some cases the disruptions are predictable or even expected, which may
be exploited when computing a predictive (original) schedule. This is the aim
of robust pro-active scheduling. Such methods usually add some temporal slack
among operations of a job in order to absorb some level of uncertainty without
rescheduling.

To make matters more confusing, robust pro-active scheduling is also referred
to as robust predictive-reactive scheduling and then robust predictive-reactive
scheduling amalgamates with predictive-reactive scheduling.

1.2.3 Rescheduling Policies

Implementing a rescheduling strategy (except for a completely reactive approach)
requires a rescheduling policy. At least three policies may be distinguished. First,
periodic policy updates a schedule periodically according to a given frequency.
Second, event-driven policy reschedules the system when a disruption occurs. It
can happen repeatedly in dynamic environments, or it can be just a single event
to revise a schedule in a static system. Third, hybrid policy combines both former
approaches.

1.2.4 Rescheduling Methods

Rescheduling methods are divided into two groups: complete rescheduling, and
schedule repair. Complete rescheduling computes a new schedule from scratch.
This might principally give the best solution in terms of optimality, but this
solution may require excessive computation time that is usually unavailable, and
also may result in instability and lack of continuity, leading to extra production
costs.

The goal of this thesis is to propose a new schedule repair method in the field
of event-driven robust predictive-reactive scheduling, working as fast as possible

6

while giving reasonably good solution. For this reason, we review schedule repair
methods in the following chapter in more details.

7

2. Related Methods

When dealing with disturbances, reactive scheduling systems usually attempt to
revise only necessary parts of the ongoing schedule to avoid rescheduling from
scratch, because schedule repair methods have the advantage in terms of compu-
tation time and stability. Such methods are reviewed in this chapter, based on
the classification in [6, 7].

The predictive schedules are usually based on optimisation principles. It is
obvious that any correction will cause a deviation from the predictive schedule and
thus performance measures will no longer be optimal. Therefore, the focus has
been to find a technique that handles the schedule recovery without deterioration
in the quality.

On the other hand, the schedule must be recovered and ready to replace
the ongoing schedule while it is still active, i.e. before it becomes infeasible
or obsolete. Otherwise the manufacturing process fails. For these reasons, the
time span needed by the algorithm to react to unexpected events must also be
considered when evaluating the schedule repair performance.

2.1 Heuristics

Heuristic-based approaches do not guarantee to find an optimal solution, but
respond in a short time. The simplest schedule repair technique is the right shift
rescheduling. This algorithm shifts the operations globally to the right on the time
axis in order to cope with disruptions. When it arises from machine breakdown,
the method introduces gaps in the schedule, during which the machines are idle.
It is obvious that this approach results in schedules of bad quality, and can be
used only for environments involving minor disruptions.

The shortcomings of total rescheduling and right shift rescheduling gave rise
to another approach: affected operation rescheduling, also referred to as partial
schedule repair. The idea of this algorithm is to reschedule only the operations di-
rectly and indirectly affected by the disruption in order to minimize the deviation
from the initial schedule.

The Prec-rep algorithm proposed in [8] is worth mentioning although it is
designed not for the recovery of schedules being executed, but for repairing vi-
olated precedence and resource constraints in manually altered schedules. The
algorithm sweeps over the violated constraints and cures them in such a way that
the activity that is to precede another one is shifted to the left and the succeeding
one to the right. This gives significantly better results when compared to right
shift rescheduling.

2.2 Meta-heuristics

Meta-heuristics such as simulated annealing or genetic algorithms are high lev-
el heuristics guiding local search methods to escape from local optima. Local
search methods are based on probing into neighbourhoods, i.e. the algorithms
start from some given solution and iteratively improve it using move operators.

8

Thus, when such algorithm reaches a solution that cannot be directly improved,
which means that the algorithm gets stuck in a local optimum, it terminates.
Meta-heuristics help these techniques to jump from local optima by (occasion-
al) accepting worse solutions or by generating better initial solutions for local
probing in some sophisticated way.

Since the local search heuristics may be trapped in a poor local optimum,
using meta-heuristics is a good way to their enhancement. On the other hand,
meta-heuristics require higher computational effort, which holds especially for
genetic algorithms with an increasing problem size.

An example of integrating local search and heuristic procedures is the iterative
flattening search [9], which has been designed for finding predictive schedules
minimizing makespan. The algorithm iterates two steps. First, in the relaxation
step, some precedence constraints, which have been added into the model so as to
resolve resource restrictions, are retracted. Second, in the flattening step, some
precedence constraints are added into the model in order to make the schedule
feasible again. The iterative flattening search is reported to have been enhanced
by tabu search meta-heuristic technique to achieve fine-grained exploration, and
by introducing partial order schedules aimed at increasing temporal flexibility in
the temporary solutions [10].

2.3 Artificial Intelligence Approaches

Some techniques from the field of artificial intelligence and knowledge-based sys-
tems are also used in dynamic scheduling problems. Case-based reasoning [11]
is applicable to domain specific problems and allows continuous learning from
past cases, but requires an extensive experience database, which involves time-
consuming search through. Fuzzy logic [12] requires the knowledge of the domain
to be built into the algorithm and learning of the algorithm is impossible. Neural
networks [13] provide very fast responses and predict the repair strategy according
to past experience, which, however, may require excessive re-training time.

Another approach, which is rather an independent branch, is multi-agent based
architectures [14, 15]. In multi-agent systems independent agents cooperate in
order to achieve a common goal. Albeit this is one of the most promising ap-
proaches to building complex, robust, and effective scheduling systems owing to
their distributed, autonomous and dynamic nature, but the coordination among
the agents is hard to achieve.

2.4 Minimal Perturbation Problem

As mentioned above, predictive schedules are based on optimisation principles.
Regardless of what the optimisation objective is, it is often desired, in order to
handle changes in the model definition, to find a schedule that is as similar as
possible to the initial one. This problem is formulated as a minimal perturbation
problem [16].

The minimal perturbation problem is designed for example to reconstruct
school timetable when new requirements come, in such a way that the impact
of the timetable modification on people and lectures is minimized. Methods

9

seeing schedule repair as the minimal perturbation problem are described in [17].
Unfortunately, due to the huge computational burden, this approach cannot be
used in manufacturing systems in which the time frame for schedule update is
very small.

2.5 Repair-DTP

The algorithms discussed in the scheduling literature usually do not consider pres-
ence of temporal constraints (minimal and maximal time lags) in the scheduling
model. Therefore the methods described above cannot be simply implemented in
the manufacturing systems involving minimal and maximal distance constraints.

The Repair-DTP algorithm proposed in [18] tackles a problem the most sim-
ilar to ours, however, it is designed to correct violated constraints in manually
edited schedules. The model involves precedence constraints and synchronization
constraints, but not temporal distance constraints. Nonetheless, the Repair-DTP
algorithm employs simple temporal networks [19] and incremental full path consis-
tency algorithm [20] to reduce searching space. If a feasible correction exists, the
algorithm tries to find the most similar schedule to the initial one through only
shifting activities in time. Since the Repair-DTP algorithm does not try changes
in resource selection, it cannot be used to deal against machine failure. More-
over, the main shortcoming of the algorithm is searching through disjunctions,
introduced by hierarchical nature of the model and by resource unarity. This
leads to excessive (exponentially growing) amount of temporal networks that are
inspected, which requires unacceptable amount of time.

10

3. Basic Terms and Solving
Techniques

This chapter briefly describes basic concepts and methods that are employed in
this thesis.

3.1 Constraint Satisfaction Methods

A Constraint Satisfaction Problem (CSP) [21] is a triple (X,D,C), where

• X = {x1, ..., xn} is a set of variables,

• D = {D1, ..., Dn} is a set of nonempty domains of values for each variable,

• C = {C1, ..., Cm} is a set of constraints.

Each variable xi can take on the values from the domain Di. Constraint Cj

involves some subset of the variables and specifies the allowable combinations of
values for that subset. However, we work only with constraints concerning just
two variables (=a binary CSP).

A state of the problem is an assignment (or an instantiation) of values to
some or all of the variables (xi = ai, xj = aj, ...). An assignment that does not
violate any of the constraints is called feasible or consistent. An assignment that
includes all variables is called complete. A solution of a CSP is a complete and
feasible assignment.

CSPs are typically solved using a form of search. The most used techniques are
variants of backtracking (described next), and constraint propagation (of which
the aim is to prune the domains of variables).

3.1.1 Backtracking and Backjumping

Backtracking assigns variables one after another in the given order, and when
a particular variable has been unsuccessfully tried to assign all values from its
domain, it goes back to the most recently assigned variable and tries another
value, and so on. More formally, let x1, ..., xn be the variables and x1 = a1, ..., xi =
ai for i < n be the partial assignment. If all values of variable xi+1 have been
tried without finding a solution, there is no solution that extends the current
assignment x1 = a1, ..., xi = ai. Backtracking then goes back to the variable xi
and, if possible, changes its value, otherwise backtracks further.

The cause why variable xi+1 could not have been successfully assigned is
often not variable xi itself, so that attempting to assign other values to xi may be
pointless. There usually exists an index j < i such that the partial assignment
x1 = a1, ..., xj = aj cannot be extended to make up a solution with any value of
xi+1. In this case it is useful to try another value directly for xj instead of xi.

The efficiency of such a backjump depends on how far it is able to jump. It
is of course important not to skip any solution. If a backjump does not skip over
any solution, then it is called a safe jump. More precisely, if an algorithm jumps

11

back from xi+1 to xj such that x1 = a1, ..., xj = aj cannot be extended to form a
solution with any value of xi+1, the jump is safe.

Backjumping algorithms usually carry out the longest backjump that can
be proved to be safe. Various methods are used to determine safety of a jump.
Gaschnig backjumping [22] takes into account which constraints actually caused a
conflict, but jumps only once — when it succeeds in assigning a value to a variable,
it then goes back only one level like in chronological backtracking. Graph-directed
backjumping [23] can conduct a number of backjumps, but is directed only by
the structure of constraints, which means that it neglects satisfying or violating
a particular constraint.

Advantages of both methods are taken in the Conflict-directed backjumping
algorithm (CBJ) [24], which maintains a conflict set for each of variables. When
a value of the current variable xi conflicts with an assigned value of some past
variable xj, the variable xj is added to the conflict set of xi. When all values of
the current variable xi have been tried, the algorithm jumps back to the most
recently assigned variable xj in the conflict set of xi, and, also, the variables in
the conflict set of xi (except for xj) are added to the conflict set of xj, thus all
information about conflicts is kept.

3.1.2 Backmarking

Another way to speed up the näıve backtracking is to eliminate redundant con-
sistency checks. The point of backmarking [25] is firstly to avoid checking con-
sistency when it is known it would fail, and secondly to avoid consistency check
when it is known it would succeed.

Suppose consistency checking is conducted as follows. When a variable xi is
being instantiated, the variable x1 is checked against xi. If this succeeds, then x2
is checked against xi, and so on up to xi−1 is checked against xi, or until some
test fails. To reduce the number of consistency checks, two structures must be
introduced.

First, let Mark 1 be an n ×m array, where n is the number of variables, and
m is the size of the largest domain. All elements are initially set to 0. During the
computation, suppose xi is instantiated with value k, and xh (h < i) is checked
against xi. If the test fails, Mark[i, k] is set to h. If all tests succeed, Mark[i, k]
is set to i− 1. Therefore, if variable xi cannot be instantiated with value k, then
Mark[i, k] links to the lowest-indexed variable that precludes value k from being
assigned to variable xi.

Second, let BackTo2 be an array of size n, where n is the number of variables.
All elements are initially set to 0. During the computation, when we backtrack
from xi to xi−1, BackTo[i] is set to i − 1, and for all j, i < j ≤ n, BackTo[j] is
set to the minimum of BackTo[j] and i − 1. Therefore, BackTo[i] records the
lowest-indexed variable whose value has been re-instantiated since xi was last
instantiated.

When value k is assigned to variable xi, the following test is performed.

• If Mark[i, k] < BackTo[i], it follows that the consistency check has already
failed against some variable xh, where h < BackTo[i], and now the consis-

1Mark is in some literature denoted as mcl – maximum checking level
2BackTo is in some literature denoted as mbl – minimum backtracking level

12

tency check would fail again because xh has not changed its value. This is
in literature referred to as type A saving.

• If Mark[i, k] ≥ BackTo[i], it follows that the consistency checks have al-
ready passed with all variables xh, where h < BackTo[i], and that these
variables still have the same values, therefore the consistency checks have
to be conducted only for variables xg, where BackTo[i] ≤ g < i. This is
referred to as type B saving.

Consequently, thanks to these added comparisons, backmarking checks for
consistency with only such variables that the result is not known.

3.1.3 Conflict-Directed Backjumping with Backmarking

While the aim of backjumping is to reduce the number of nodes visited in the
search tree generated by a backtracking algorithm, the aim of backmarking is to
omit redundant consistency checks. Both these methods may be easily combined
into one [25]. However, in order to retain advantages of both methods to the best,
a slight modification is useful [26]. For this time, let BackTo be an n×m array,
where n is the number of variables and m the size of the biggest domain. Now each
Mark entry has a corresponding BackTo entry. The value of BackTo[i, k] points
to the lowest-indexed variable whose instantiation has changed since variable xi
was last assigned value k.

This algorithm, which is actually an underlying coat of a part of the STN-
recovery algorithm described later on, is depicted in algorithm 1.

The outer while cycle in the code ensures that all n variables are set – the
variable i serves as a pointer to the variable x[i] that is being assigned. The
array newV als stores for each variable a value that is to be assigned when the
corresponding variable is visited. Initially, newV als[i] is 0 for all i. In the inner
while cycle, the assignment attempt is conducted as follows. Firstly, the values of
Mark and BackTo are compared, as explained in the previous section, in order
to determine whether it makes sense to try to assign the value newV al to the
variable x[i]. If it is known that the consistency check would fail, the algorithm
proceeds to assigning the incremented value of newV al. Otherwise, the value is
assigned to variable x[i] and the consistency check is conducted in the for cycle.
If the consistency check fails, it, similarly, proceeds to another value, otherwise
the flag successful is set to true in order to jump out of the while cycle.

When the line behind the inner while cycle is reached, it may be because of
two causes. First, in case of fail, which means that all values from the domain
of variable x[i] have been unsuccessfully tried, the algorithm finds the maximum
element of cs[i] (which is a conflict set of x[i]), denoted j, merges cs[i] into
cs[j] except j, updates the values of BackTo, and, finally, jumps back to the
variable x[j]. Oppositely, in case of success, which means that some value has been
successfully assigned to variable x[i], the algorithm stores the variable newV al,
from which the search should continue in the case that x[i] is revisited, and
proceeds to the variable x[i + 1]. When the value of i exceeds the number of
variables n, it means that the solution has been found.

13

Algorithm 1 Conflict-Directed Backjumping with Backmarking

function CBJ-BM
i← 1
while i ≤ n do

newV al← newV als[i] . initially 0
successful← false
while ¬successful & newV al < m do

if Mark[i][newV al] < BackTo[i][newV al] then
cs[i]← cs[i] ∪ {Mark[i][newV al]}
newV al← newV al + 1
continue . type A saving

end if
x[i]← newV al
fail← false
for j ← BackTo[i][newV al] to i− 1 do . type B saving

if ¬Consistent(x[j], x[i]) then
cs[i]← cs[i] ∪ {j}
Mark[i][newV al]← j
fail← true
break

end if
end for
if ¬fail then

Mark[i][newV al]← i− 1
successful← true

end if
BackTo[i][newV al]← i
newV al← newV al + 1

end while
if ¬successful then

j ←Max(cs[i]) . latest index in cs[i] is where to jump
cs[j]← cs[j] ∪ cs[i] \ {j}
for k ← j + 1 to n do

for v ← 0 to m− 1 do
BackTo[k][v]←Min(BackTo[k][v], j)

end for
end for
while i > j do . jump back to j

newV als[i]← 0
cs[i]← ∅
i← i− 1

end while
else

newV als[i]← newV al
i← i+ 1

end if
end while

end function

14

3.2 Temporal Reasoning

3.2.1 Simple Temporal Networks

Simple Temporal Network (STN) [19] is a pair (V,C), where V is a set of time
points v1, ..., vn, and C is a set of constraints c1, ..., cm limiting time distance
between two time points. Each constraint can be written as vj − vi ≤ wij, where
vi, vj ∈ V and wij ∈ Z. The number wij is often called a weight of the constraint
and it expresses maximal time distance between the time points, i.e. vj occurs
at most wij time units after vi occurs. Minimal time distance between the time
points vi and vj can be obtained through reverse constraint, i.e. vj − vi ≥ −wji.

It is also useful to introduce a special time point v0 that constitutes the origin
of the time horizon. The time point v0 is referred to as the global predecessor. It
allows introducing unary constraints, i.e. vi − v0 ≤ w0,i means that the maximal
possible value of the time point vi is w0,i, and oppositely vi − v0 ≥ −wi,0 means
that the minimal possible value of vi is −wi,0.

The solution of an STN is an assignment of values to all variables in the set
V , such that all constraints C are satisfied. An STN is called consistent if it has
at least one solution.

An important term to define is an oriented path from vi1 to vih :

Pi1,ih = vi1 , vi2 , ..., vih

and its weight

w(Pi1,ih) =
h−1∑
k=1

wik,ik+1

It is often necessary to know the maximal distance of two time points even
if there is not a constraint between these time points. This is the motivation to
have the STN with a property all pairs shortest path (APSP), which means that
for each pair of distinct time points vi and vj the following holds. If there exists
a path from vi to vj, then cij ∈ c and wij equals the weight of minimal path from
vi to vj, i.e. wij = minPij

w(Pij); otherwise wij is infinity.

3.2.2 Incremental Full Path Consistency

Once we have an STN with the APSP property, it is also useful to be able to
add constraints to the STN while conserving the APSP property. This is what
the Incremented Full Path Consistency (IFPC) algorithm [20] does. It adds a
constraint to the STN and ensures that the modified STN still satisfies the APSP
property (see algorithm 2).

The input of the algorithm is a new constraint vb − va ≤ wNew (or the new
weight for the constraint already present in the STN). The algorithm in the first
for cycle updates the paths from vk to va and from vb to vk, i.e. the paths that
have the updated constraint at their start or at their end. In the second for cycle,
the algorithm updates all paths emanating from and emanating to the already
updated time points, i.e. paths that may contain the updated constraint at their
middle. Since the paths emanating to each of the time points in Jset include the
updated constraint, it suffices to update only the paths emanating to some time

15

point in Jset that traverse the time point va – it is guaranteed that the join of
the two paths includes the updated constraint.

Algorithm 2 Incremental Full Path Consistency

function IFPC(int a, int b, long wNew)
if w[a, b] ≤ wNew then

return redundant
end if
if wNew + w[b, a] < 0 then

return inconsistent
end if
w[a, b]← wNew
Iset← ∅
Jset← ∅
for k ← 0 to n do

if k 6= a & k 6= b then
if w[k, b] > w[k, a] + w[a, b] then

w[k, b]← w[k, a] + w[a, b]
Iset← Iset ∪ {k}

end if
if w[a, k] > w[a, b] + w[b, k] then

w[a, k]← w[a, b] + w[b, k]
Jset← Jset ∪ {k}

end if
end if

end for
for all i ∈ Iset do

for all j ∈ Jset do
if i 6= j & w[i, j] > w[i, a] + w[a, j] then

w[i, j]← w[i, a] + w[a, j]
end if

end for
end for
return consistent

end function

Owing to the nested loop, the worst case complexity of IFPC is quadratic
in the number of time points, but whether a constraint addition is consistent,
inconsistent or redundant, is decided in constant time via the first two conditions.

An STN with the APSP property is created through iterative adding the
constraints into the initially empty STN via the IFPC algorithm. This STN
build-up is done in O(mn2) time, where n is the number of time points in the
STN, and m is the number of constraints to be added.

16

4. Scheduling Model

This chapter describes the scheduling model we deal with.

4.1 Informal Description

The scheduling model is motivated by the FlowOpt project [3], which contains
a tool for designing and editing manufacturing workflows. Workflows in the
FlowOpt model match up the structure of Nested Temporal Networks with Al-
ternatives [27]. In this thesis, however, we take into consideration only activities,
so that it is not necessary to run into details of the workflows. Therefore, a
scheduling problem consists of activities that are planned to be executed.

Constraints

A mutual position in time of two distinct activities may be limited by a temporal
constraint. In the FlowOpt model, the constraints include precedences (one ac-
tivity has to be accomplished before the execution of another activity can begin),
synchronizations (one activity has to start/end exactly when another activity
starts/ends), and temporal distances (determining minimal or maximal time lags
between activities).

Notice that what these constraints do is imposing minimal and/or maximal
temporal distance between two activities. A precedence constraint between ac-
tivities A1 and A2 determines that the distance of the start time of activity A2

from the start time of activity A1 is at least the duration time of A1. As to syn-
chronizations, for example the constraint enforcing activities A1 and A2 to start
at the same time determines that the distance between the start time of activity
A1 and the start time of activity A2 is (at least and at most) 0. Other constraints
involve maximal and minimal distances in the same manner.

Further, as explained in section 3.2.1, a minimal distance between two time
points may be expressed as a maximal distance of two time points of a negative
value. More precisely, if a time point, say Start(A2), is set to occur at least w time
units after another time point, say Start(A1), i.e. Start(A2) − Start(A1) ≥ w,
then it is exactly the same as Start(A1)− Start(A2) ≤ −w. Therefore, in order
to simplify and generalize working with the constraints, we understand in the
rest of this thesis temporal constraints just as constraints determining maximal
distance between start times of two distinct activities.

There are also logical constraints in the FlowOpt model, which restrict mutual
occurrence of activities in the resulting schedule. However, since we take into
account only activities that are scheduled to be performed, logical constraints are
not of concern for our purposes.

Resources

Activities are processed on resources. A resource may be for example a worker,
a machine, a tool, etc. All resources are unary, which means that each resource
may perform no more than one activity at a time. This limitation is often referred
to as a resource constraint. An important feature in the FlowOpt model is that

17

an activity may require a number of resources to be executed. A resource that
can participate in performing an activity is called a resource dependency of the
activity. Resource dependencies of an activity are divided into disjoint subsets
called resource dependency groups of the activity. To make a schedule feasible,
exactly one resource dependency from each resource dependency group of an
activity must be selected.

Nevertheless, the fact that the activities may require more resources does not
make the problem harder. It may be modelled through disintegrating the activ-
ities. More formally, suppose activity A contains k resource dependency groups
{G1, ..., Gk}. Then, we can replace activity A by k activities such that A1 has
resource dependency group G1, and so on up to Ak having resource dependency
group Gk. Further, set the durations of activities A1, ..., Ak to equal the dura-
tion of activity A, and bound all these activities with (k − 1) synchronization
constraints to enforce that they start at the same time. As far as existence of a
feasible schedule is concerned, these models are obviously equivalent.

Consequently, in order to simplify the description and explanation of the
suggested algorithms, it is assumed throughout that each activity has only one
resource dependency group from which the activity requires one resource depen-
dency to be selected1.

4.2 Formal Definition

4.2.1 Scheduling Problem

Scheduling problem P is a triplet of three sets: Activities, Constraints, and
Resources.

• Activities = {all activities in P}

• Constraints = {all temporal constraints in P}

• Resources = {all available resources in P}

Each activity A is specified by its start time Start(A) and end time End(A),
which we will look for, and fixed duration Duration(A), which is part of the
problem specification.

Since we do not allow preemptions (interruptibility of activities), Start(A) +
Duration(A) = End(A) holds.

Temporal constraints

Constraints determine mutual position in time of two distinct activities. Con-
straint C ∈ Constraints is a triplet (Ai, Aj, w), where Ai, Aj ∈ Activities, w ∈ Z,
and the semantics is following.

Start(Aj)− Start(Ai) ≤ w (4.1)

1Although the algorithms on the attached CD are implemented and tested allowing multiple
resource dependency groups.

18

Now, some terminology from the graph theory deserves to be clarified in terms
of the scheduling model. Activities Ai and Aj are called adjacent if there exists
a constraint (Ai, Aj, w) or (Aj, Ai, w) for any w ∈ Z.

Two activities Ai and Aj are connected if there exists a sequence of activi-
ties Ai, Ai+1, ..., Aj−1, Aj such that Ai and Ai+1 are adjacent, Ai+1 and Ai+2 are
adjacent, ..., Aj−1 and Aj are adjacent.

A connected component is a maximal (in terms of inclusion) subset of activities
such that all activities from the subset are connected. Each activity as well as
each constraint belongs to exactly one connected component.

Resource Constraints

Let A ∈ Activities, then the set of resources that may process activity A is
denoted Resources(A). The set Resources(A) is often referred to as a resource
group.

Each activity needs to be allocated to exactly one resource from its re-
source group. Let A ∈ Activities, then a resource R ∈ Resources(A) is
selected if resource R is scheduled to process activity A, which we denote
SelectedResource(A) = R.

Each activity must have a selected resource to make a schedule feasible. For-
mally:

∀A ∈ Activities : SelectedResource(A) 6= null

All resources in a schedule are unary, which means that they cannot execute
more activities simultaneously. Therefore, in a feasible schedule for all activities
Ai 6= Aj the following holds.

SelectedResource(Ai) = SelectedResource(Aj)

⇒ End(Ai) ≤ Start(Aj) ∨ End(Aj) ≤ Start(Ai) (4.2)

Special cases

Real-life scheduling problems are usually designed in such a way that there are
subsets of resources that share certain capabilities and which then constitute
resource groups of activities. For example, having resources divided into two
groups: workers and pots, then boiling requires arbitrary pot, moulding requires
arbitrary worker and so on. It is worth defining at least two special cases according
to what conditions are fulfilled by all resource groups.

Nested The resource groups of a scheduling problem are nested [1] if one
and only one of the following conditions holds for any two resource groups
Resources(A1) and Resources(A2) of two distinct activities A1 and A2.

• Resources(A1) is equal to Resources(A2)
(Resources(A1) = Resources(A2))

• Resources(A1) and Resources(A2) do not overlap
(Resources(A1) ∩Resources(A2) = ∅)

19

• Resources(A1) is a subset of Resources(A2)
(Resources(A1) ⊂ Resources(A2))

• Resources(A2) is a subset of Resources(A1)
(Resources(A2) ⊂ Resources(A1))

Equivalent The resource groups of a scheduling problem are equivalent if one
and only one of the following conditions holds for any two resource groups
Resources(A1) and Resources(A2) of two distinct activities A1 and A2.

• Resources(A1) is equal to Resources(A2)
(Resources(A1) = Resources(A2))

• Resources(A1) and Resources(A2) do not overlap
(Resources(A1) ∩Resources(A2) = ∅)

If the resource groups are neither equivalent, nor nested, they are called arbi-
trary.

4.2.2 Schedule

A schedule S (sometimes referred to as a resulting schedule or a solution) is
acquired by allocating activities in time and on resources. Allocation of activi-
ties in time means assigning particular values to the variables Start(A) for each
A ∈ Activities. Allocation of activities on resources means selecting a particular
resource (SelectedResource(A)) from the resource group (Resources(A)) of each
activity A ∈ Activities.

To make a schedule feasible, the allocation must be conducted in such a way
that all the temporal constraints 4.1 as well as all the resource constraints 4.2 in
the model are satisfied.

4.3 Rescheduling Problem

The problem we actually deal with in the rest of this thesis is that we are given
a particular instance of the scheduling problem along with a feasible schedule,
and also with a change in the problem specification. The aim is to find another
schedule that is feasible in terms of the new problem definition. The feasible
schedule we are given is referred to as an original schedule or an ongoing schedule.

Formally, let R = (P0, S0, δ
+, δ−) be a rescheduling problem, which is given by

the original scheduling problem P0, the original feasible schedule S0, elements δ+

to be added to the problem P0, and elements δ− to be removed from the problem
P0. New scheduling problem P1 is then P0∪ δ+ \ δ−. The task of the rescheduling
problem R is then to find a schedule S1 for problem P1, of which the quality is
measured with respect to the original schedule S0.

The way the scheduling problem can be modified depends on the disturbance.
In case of a machine breakdown (chapter 5), we are given a resource that cannot
be used (from a certain time point) while the set of activities remains unchanged,
therefore δ+ = ∅ and δ− is the broken down resource.

20

As to other disturbances, a hot order arrival (chapter 6.1) adds a set of activ-
ities, which is referred to as an order, into the model, and the aim is to allocate
them the earlier the better. Thus δ+ is the set of activities in the new order and
δ− = ∅.

Oppositely, in an order cancellation (chapter 6.2), there is a set of activities
that are removed from the problem. In this case δ+ = ∅ and δ− is the set of
activities in the cancelled order. This is easy to solve because after the activities
are simply deallocated, the schedule is still feasible. However, it might be of
interest to squeeze the schedule to decrease total completeness or lateness.

Finally, a machine repair (chapter 6.3) adds a resource to the problem, which
may be used, again, to decrease total completeness or lateness. Hence δ+ is the
repaired resource and δ− = ∅.

As explained in previous chapters, regardless of what the optimization objec-
tive of the original schedule is, it seems to be wise to modify the schedule in such
a way that the new schedule is as similar to the original one as possible. For this
purpose we need to evaluate the modification distance.

Let us denote Activities(P) the activities in the scheduling problem P ,
and StartS(A) denote the start time of activity A in schedule S. Then
Activities(R) = Activities(P0) ∩ Activities(P1). In the rest of this thesis, we
distinguish the following distance functions.

f1 =
∑

A∈Activities(R)

|StartS1(A)− StartS0(A)|

f2 = |{A ∈ Activities(R) | StartS1(A) 6= StartS0(A)}|

f3 = max
A∈Activities(R)

|StartS1(A)− StartS0(A)|

21

5. Machine Breakdown

Given a formal definition of the model, we can now describe the most feared
disturbance: a machine breakdown. This disturbance, which is also referred to
as a machine or resource failure, may happen in the manufacturing system at
any point in time, say tf , and means that a particular resource cannot be used
anymore, i.e. for all t ≥ tf . This makes further questions arise, e.g., whether
the activities that were being processed at time tf are devastated and thus must
be performed from the beginning, whether their predecessors must be also re-
executed if there are only solutions violating temporal constraints, and scores
more.

For the sake of simplicity, let us assume that a resource fails at the beginning
of the time horizon (at time point t = 0), i.e. right before the schedule execution
begins. The resource that fails is in what follows also referred to as a forbidden
resource. Formally, let S0 be the schedule to be executed and Rf be the failed
resource; the aim is to find a feasible schedule S1, such that Rf is not used at any
point in time t ≥ 0. As mentioned in previous chapters, the intention is to find
S1 as fast as possible and, regardless of the initial objectives, the more similar
to S0, the better. S1 is referred to as a recovered schedule. The decision variant
of the described problem, which means determining whether or not there exists
a feasible recovered schedule regardless of any distance and objective function, is
what we call a resource failure recovery problem.

This chapter firstly discusses the complexity of this problem, and then we
suggest two different algorithms.

5.1 Complexity

The problem of existence of a feasible schedule is known to be NP-complete (which
also follows from the forthcoming theorem). However, one might think that
when we already have a feasible schedule solving the problem, then reallocating
activities from the forbidden resource requires only little (easy) correction of the
schedule. Nonetheless, we will show that the resource failure recovery problem is
still NP-complete. The proof exploits the idea from [28].

Theorem. Given a feasible schedule and one resource to which any activity can-
not be allocated anymore, deciding existence of any feasible recovered schedule is
NP-complete.

Proof. The problem is in NP, because testing feasibility of a recovered schedule
may be done in linear time in the number of constraints and resources. As to
NP-hardness, we shall show that an independent set problem (known to be NP-
complete) can be (in a polynomial time) reduced to a resource failure recovery
problem. In the independent set problem, there is an undirected graphG = (V,E)
on n vertices (v1, ..., vn) with m edges, and integer k. The question is whether
or not there exists a subset of vertices VI ⊆ V such that |VI | = k and for each
vi, vj ∈ VI : (vi, vj) /∈ E. We construct the resource failure recovery problem (see
figure 5.1) as follows:

22

Figure 5.1: Schedule to recover, built from the independent set problem.

• Let us have n+ 1 resources R1, ..., Rn; and Rf , which is to fail

• For i = 1 to n: create activities Ai and A′i such that Duration(Ai) =
1, Duration(A′i) = 3k − 2, Resources(Ai) = Resources(A′i) = {Ri},
SelectedResource(Ai) = SelectedResource(A′i) = Ri, Start(Ai) = 0, and
Start(A′i) = 2

• For i = 1 to k: create activity Bi such that Duration(Bi) = 3,
Resources(Bi) = {R1, ..., Rn, Rf}, SelectedResource(Bi) = Rf , and
Start(Bi) = 3(i− 1)

• Create dummy activities A0 and Amax

• For i = 1 to n: add precedence constraint between A0 and Ai, i.e. (Ai, A0, 0)

• For i = 1 to k: add precedence constraint between A0 and Bi, i.e. (Bi, A0, 0)

• For i = 1 to n: add precedence constraint between A′i and Amax, i.e.
(Amax, A

′
i,−(3k − 2))

• For i = 1 to k: add precedence constraint between Bi and Amax, i.e.
(Amax, Bi,−3)

• For i = 1 to n: add minimal distance constraint of value 1 between Ai and
A′i, i.e. (A′i, Ai,−2)

• For each edge (vi, vj) from E arbitrarily oriented: add maximal distance
constraint of value 2 between Ai and A′j, i.e. (Ai, A

′
j, 3)

• Add maximal distance constraint of value 3k+ 2 between A0 and Amax, i.e.
(A0, Amax, 3k + 2)

The schedule is constructed in such a way that activities B1, ..., Bk, allocated
to a resource that has broken down, must be reallocated to distinct resources be-
tween activities Ai and A′i (figure 5.2). It is easy to see that (indices of) resources

23

Figure 5.2: Recovered schedule and corresponding independent set.

selected to process activities B1, ..., Bk correspond to (indices of) vertices in V
making the independent set of size k. On the other hand, if activities B1, ..., Bk

cannot be reallocated without violating any temporal distance constraint, there
is not an independent set of size k in the given graph.

Notice that the allocation of activities in the original schedule in the reduction
did not actually play any role. It demonstrates that the original schedule may be
absolutely unhelpful.

Furthermore, the resource groups in the proof are nested. Motivated by the
nature of real-life scheduling problems and their need for speed, the following
algorithms assume that the resource groups are equivalent (see definition in 4.2.1).

5.2 Right Shift Affected

In this chapter we describe a greedy algorithm to tackle the machine breakdown
disruption. For each A ∈ Activities, it is assumed throughout that the forbidden
resource is deleted from the resource group of activity A, i.e. Resources(A) =
Resources(A) \ ForbiddenResource.

The algorithm is aimed at moving as few activities as possible, i.e. optimizing
in distance function f2. The idea is to reallocate activities from the forbidden
resource and then keep reallocating activities that violate some constraint until
the schedule is feasible.

We will now describe how to move (reallocate) the activities, how to repair
the constraints, and in what order to pick the activities to repair the constraints.

5.2.1 Reallocating Activities

Firstly, we discuss how to reallocate activities. Suppose the algorithm wants to
repair a constraint in such a way that an activity A should be reallocated to a
time point t. The natural idea was to reallocate the activity A exactly to the time
point t even if there is no resources available for the required Duration(A). Then,
when a repair function checks constraints satisfaction, it would have to check the

24

resource constraints too and then repair according to the resource constraint
violation. Unfortunately, there always turned out to be a model for which this
method gets stuck in an infinite loop, regardless of implementations of both the
constraint repairing and the sequence of activities to be repaired.

Consequently, the algorithm always allocates activity A in such a way that
it does not violate any resource constraint. This is achieved through seeking
a time point t∗ (which is greater or equal to time point t) where activity A
can be allocated without violating the resource constraints. Formally, when the
algorithm desires to allocate activity A to time point t, then activity A is allocated
to time point t∗, such that t∗ ≥ t and ∀t′ : t′ ≥ t ∧ t′ < t∗ activity A cannot be
allocated in t′ without overlapping some other activity on any resource from
Resources(A).

Checking resource availability

In order to express whether or not a resource is free at a specified time interval, let
us first define Impedimentary(A,R, t) as a set of activities that preclude activity
A from being allocated on resource R at time t.

Impedimentary(A,R, t) = {A′ | A′ ∈ Activities ∧R = SelectedResource(A′)

∧ (t < End(A′) ≤ t+Duration(A) ∨ t ≤ Start(A′) < t+Duration(A))}

Now we can define a set of resources where activity A can be allocated at time
t as such:

AvailableResources(A, t) = {R | R ∈ Resources(A)∧Impedimentary(A,R, t) = ∅}

Another question is which resource the algorithm should select if there are
more resources available. Since the resource groups in the model are assumed to
be equivalent, it seems useful to pick the resource on which the activity best fits
in terms of surrounding gaps. Therefore, the following heuristic is used.

Earliest Succeeding Start Latest Previous End (ESSLPE) Rule

Suppose activity A is about to be allocated at time t (see figure 5.3). The algo-
rithm picks the resource with the earliest (closest) occupied time after the time
point t+Duration(A) (= earliest succeeding start), which holds for the resources
number 3 and 4 in the figure 5.3. Like in this case, when there are more resources
with the same earliest succeeding start, then the algorithm picks the resource
with the latest (closest) occupied time before the time point t (= latest previous
end), which is met by the resource number 4 in the figure 5.3. A resource that
has at least some activity to process is always preferred to an empty resource.

To describe the rule formally, let us first define the earliest succeeding start
time as follows.

SuccStart(A, t) = min
A′∈Activities

{Start(A′) | t+Duration(A) ≤ Start(A′)

∧ SelectedResource(A′) ∈ AvailableResources(A, t)}

25

Then, let CandidateResources1(A, t) be the subset of
AvailableResources(A, t) with the earliest succeeding activities defined as
follows.

Candidate1(A, t) = {R ∈ AvailableResources(A, t)
| ∃A′ ∈ Activities : Start(A′) = SuccStart(A, t)

∧R = SelectedResource(A′)}

It may happen that Candidate1(A, t) is empty, because there may be no
succeeding activity (so that SuccStart(A, t) =∞). For this reason, assign:

CandidateResources1(A, t) =

Candidate1(A, t) if Candidate1(A, t) 6= ∅

AvailableResources(A, t) otherwise

As to the example in the picture 5.3, the set CandidateResources1(A, t) =
{3, 4}.

Further, let us define the latest previous end as such.

PrecEnd(A, t) = max
A′∈Activities

{End(A′) | t ≥ End(A′)

∧ SelectedResource(A′) ∈ CandidateResources1(A, t)}

Similarly, let CandidateResources(A, t) be the subset of
CandidateResources1(A, t) with the latest preceding activities defined as
follows.

Candidate2(A, t) = {R ∈ CandidateResources1(A, t)

| ∃A′ ∈ Activities : End(A′) = PrecEnd(A, t)

∧R = SelectedResource(A′)}

Analogously, it may happen that CandidateResources(A, t) is empty, because
there may be no preceding activity. For this reason, assign:

CandidateResources(A, t) =

Candidate2(A, t) if Candidate2(A, t) 6= ∅

CandidateResources1(A, t) otherwise

In the picture 5.3, the set CandidateResources(A, t) = {4}.
Finally, the algorithm picks arbitrary resource from

CandidateResources(A, t).

26

Figure 5.3: Illustration for ESSLPE rule

Reallocation

The procedure ReallocateActivity (see algorithm 3) obtains two parameters:
an activity to allocate (A) and a time point where it is desired to allocate the
activity (t). The seeking for an available resource starts at time t, but the activity
is ultimately allocated to the time point t∗, where an available resource is found.

Algorithm 3 Reallocating an activity

function ReallocateActivity(Activity A, TimePoint t)
SelectedResource(A)← null
Start(A)← null
t∗ ← mint′≥t{t′ | CandidateResources(A, t′) 6= ∅}
Start(A)← t∗

SelectedResource(A)← arbitrary from CandidateResources(A, t∗)
end function

5.2.2 Constraint Repair

Now we describe how the violated constraints are repaired. When a temporal
constraint between activities A1 and A2 of weight w is violated, it means that
the distance between Start(A1) and Start(A2) is greater than allowed. Then the
algorithm seeks for possible allocation of A1 from the minimal time point that
satisfies the constraint rightwards.

Here is where the title of the algorithm comes from. It repairs temporal con-
straints via moving activities to the right, which, of course, may cause violation
of other temporal constraints. An important property is that when the algorithm
picks an activity to be repaired, then it iterates over all temporal constraints
associated with the activity being repaired until the activity does not violate any
associated constraint.

Moving activities to the left, when trying to repair violated constraints, is
intuitively unsubstantiated, because if it was beneficial to allocate some activity

27

sooner in time, then the activity would have been allocated sooner (in the orig-
inal schedule1). However, as the rescheduling process proceeds, it may suitably
make some free space for moving activities leftwards. We tried several methods
involving moving to the left, but, again, the algorithm always came across a mod-
el that made it never end. Moreover, for the models the algorithm finished, the
improvement was negligible. Right shifting approach gives good tradeoff between
time-consumption and schedule similarity.

Regardless of the order, in which the activities are selected to be repaired, the
entire RightShiftAffected algorithm works as follows (see algorithm 4). First,
it goes through all activities in the model and checks whether the activity uses
the forbidden resource. In the positive case, the activity is reallocated through
the ReallocateActivity procedure (the seeking for available resources starts
at the original start time of the activity), and the activity is added to the set
affected. Now, none of the activities uses the forbidden resource and the set
affected contains activities that have been reallocated and therefore must be
checked for temporal constraint violation.

Next, the algorithm takes an activity from the set affected and proceeds to
repair all violated temporal constraints associated with the activity in question.
It repairs the constraints, as described, through moving activities to the right,
so that if another activity is moved, it is added into the set affected because it
must be then checked for constraint violation. Recall that ReallocateActivity
procedure always allocates an activity such that it does not violate any resource
constraint, so that only temporal constraints are checked here. If the activity
has been successfully healed, which means that the activity does not violate any
constraint, the algorithm proceeds to another one from affected. The order of
taking activities from affected will be discussed further.

5.2.3 Order of Activities

As shown in the code, the activities that are moved in time during the healing
process are added to the structure affected. Finally, we should discuss how to
pick activities from affected. We examined five strategies that found a feasible
schedule for any solvable model:

Left – Pick the leftmost activity, i.e. the activity with the minimum Start(A).

Right – Opposite, pick the rightmost activity, i.e. the activity with the maxi-
mum Start(A).

Queue – FIFO: pick the activity that has been in the structure for the longest
time (the least recently added).

Stack – LIFO: pick the activity that has been in the structure for the shortest
time (the most recently added).

Random – Pick activities uniformly at random.

1But it was not allocated there probably because of unavailability of resources or due to
some earliness objective – either reason is likely to persist in case of a machine breakdown

28

Algorithm 4 Right Shift Affected

function RightShiftAffected
affected← ∅
for all A ∈ Activities do

if SelectedResource(A) = ForbiddenResource then
ReallocateActivity(A, Start(A))
affected← affected ∪ {A}

end if
end for
while affected 6= ∅ do

A← PopFrom(affected)
while (A1, A2, w) ∈ V iolatedConstraints(A) do

ReallocateActivity(A1, Start(A2)− w)
if A1 6= A then

affected← affected ∪ {A1}
end if

end while
end while

end function

Comparison of these strategies is depicted in figure 5.4. The x-axis corre-
sponds to the size of the schedule in the number of activities. (For details how
the schedules are generated see appendix A). The y-axis corresponds to the value
of distance function f1. Other performance measures – i.e. distance functions f2
and f3, number of activities that swapped the resource to process them, deterio-
ration on makespan and total callings of ReallocateActivity – also show that
the best strategy is picking the rightmost activity. The explanation is that shift-
ing the rightmost activities rightwards makes consecutively free space for shifting
the activities allocated more on the left, which would otherwise have to creep
over one another. (For all results refer to appendix B.1.)

One might ask how the algorithm behaves with respect to the density of
constraints. This is depicted in figure 5.5. All scheduling models are of the same
size (2400 activities). The x-axis corresponds to the number of constraints within
one connected component (each consisting of at most 8 activities), the y-axis
corresponds to the run-time of the algorithm in milliseconds. (For information
about the testing machine refer to appendix A.3.) Again, other performance
measures also show that picking the rightmost activity is the best strategy.

5.2.4 Correctness

The soundness of the algorithm clearly follows from the fact that it keeps healing
the constraints until all constraints are satisfied and therefore the schedule is
feasible. Unfortunately, the question whether the algorithm always ends and
finds the solution, provided the schedule is recoverable, is still open.

29

0

100000

200000

300000

400000

500000

600000

1
0
4

1
6
0

2
1
6

2
7
2

3
2
8

3
8
4

4
4
0

4
9
6

5
5
2

6
0
8

6
6
4

7
2
0

7
7
6

8
3
2

8
8
8

9
4
4

1
0
0
0

1
0
5
6

1
1
1
2

1
1
6
8

1
2
2
4

1
2
8
0

1
3
3
6

1
3
9
2

1
4
4
8

1
5
0
4

1
5
6
0

1
6
1
6

1
6
7
2

1
7
2
8

1
7
8
4

1
8
4
0

1
8
9
6

1
9
5
2

2
0
0
8

2
0
6
4

2
1
2
0

2
1
7
6

2
2
3
2

2
2
8
8

2
3
4
4

2
4
0
0

f1

activities

Left

Right

Queue

Stack

Random

Figure 5.4: Comparison of schedule quality (measured using function f1) for
different activity selection heuristics

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ru
n

ti
m

e
 [

m
s]

constraints

Left

Right

Queue

Stack

Random

Figure 5.5: Comparison of schedule quality (measured in run-time) for different
activity selection heuristics

30

5.2.5 Discussion

If there is no feasible schedule recovery, the algorithm gets stuck in an infinite
loop. This is obviously the main shortcoming of the algorithm. One possible way
to detect unrecoverability of the schedule is by passing and checking a time limit.
Another way is to check where an activity is being allocated, and if the activity
is allocated at a time point exceeding a certain threshold, it may be considered
as an unsuccessful finding of a schedule.

Another drawback is that if the alternative resources for the broken-down
resource make a bottleneck, the affected activities (and subsequently all connected
components with them) are moved to the end of the schedule horizon. This
might lead to very poor performance in function f3, which is unacceptable when
the original schedule objective is related to lateness or tardiness. This is the
motivation for a different approach described in the following section.

5.3 STN-Recovery

In this chapter, a more sophisticated algorithm to tackle the machine breakdown
is given. This algorithm anticipates that moving a large number of activities
by small time is preferable to moving activities a lot in time. Since iterative
correcting tends to shift the activities to the end of the schedule horizon, it is
necessary to deallocate some set of already scheduled activities and then allocate
them back again. This is what is now meant by reallocation.

The point of the algorithm is to allocate connected components one after
another through conflict-directed backjumping. The allocation of an activity is
carried out such that the start time of an activity is continuously incremented
until an available resource at that time is found, or until the maximal value
of the start time (based on the start times of already allocated activities) is
exceeded. In the former case the algorithm proceeds to allocate the next activity,
in the latter case the algorithm goes back to reallocate some previous activity.
Since this allocation process might involve excessive computational burden, it
is useful to prune the search space based on the fact that a resource failure
leads only to deterioration of the schedule in the original optimization objective.
Moreover, the group of resources where the broken down resource belongs is now
likely to make a bottleneck. This assumption is used in such a way that the
activities are reallocated from the broken down resource to available resources
and then the activities are shifted so as they do not overlap each another – thus
the minimal potential start times for allocation are obtained – and then the
reallocation process can begin.

Firstly, the skeleton of the algorithm is given, and next, its particular steps
are described in more details.

5.3.1 Skeleton of STN-Recovery

The STN-recovery algorithm uses the structures and techniques described in
chapter 3. The STN (including the global predecessor) with the APSP prop-
erty is assumed to have already been computed from the temporal constraints in
the model; the resource constraints are not involved in the STN. Recall that the

31

APSP property of the STN provides us the two-dimensional array w, of which
the values say that Start(Aj)− Start(Ai) ≤ w[i, j], where Ai, Aj ∈ Activities.

A sketch of the STN-recovery algorithm decomposed into 6 steps follows.

1. Find activities allocated to the forbidden resource and change their resource
selection from the forbidden resource to an available resource, picking the
resource with the lowest usage. Now some activities allocated on the same
resource may overlap.

2. In order to find out which activities should be reallocated, do the following.
For each resource (to which some activity has been added in step 1) shift
the activities that overlap (to the right) so as they do not overlap, and add
them into the set affected. Include in affected also activities that were
not actually shifted but are allocated on the right of those shifted.

3. For the sake of pruning the search space of the forthcoming reallocation,
add STN constraints between the global predecessor and each activity in
affected so as to enforce that they can only start at the time they are
currently allocated or later.

4. For each activity A in affected, acquire the connected component the activ-
ity A belongs to, and for all activities in all acquired connected components
compute the values from which the allocation of the activity in the last step
will begin (= MinStart), which is the maximum of (i) its current start time
and (ii) its minimal distance from the global predecessor resulting from the
STN.

5. Deallocate all activities in all connected components acquired in step 4.

6. Take the leftmost (according to the MinStart values) non-allocated com-
ponent C and allocate all activities in C starting with its leftmost activ-
ity using conflict-directed backjumping with backmarking. The activities
within a connected component are allocated in the increasing order of their
MinStart values. Repeat this step until all connected components are al-
located.

The skeleton of the algorithm is depicted in algorithm 5.

5.3.2 Swapping Resource Selections

In the first step, the algorithm goes through all activities in the model and checks
whether the activity is scheduled to be processed on the forbidden resource. In
the positive case, the function SwapForbiddenSelection(Activity A) changes
resource selection of activity A to some allowed resource.

It is not important which resource is selected because the activity is most
likely going to be reallocated in the later steps. Nevertheless, the algorithm picks
the resource with the lowest usage, which is the sum of the durations of the
activities that are allocated to the resource in question.

Formally, let us first denote the set of activities that use resource R as such.

32

Algorithm 5 STN-Recovery

Require: The STN with the APSP property
function STN-Recovery

for all A ∈ Activities do
if SelectedResource(A) = ForbiddenResource then

SwapForbiddenSelection(A)
end if

end for

affected← ShiftOnResources

for all Ai ∈ affected do
IFPC(i, 0, −Start(Ai))

end for

components← AcquireComponents(affected)

DeallocateComponents(components)

while components 6= ∅ do
C ← GetLeftmostComponent(components)
AllocateComponent(C)
components← components \ {C}

end while
end function

33

ResourceActivities(R) = {A ∈ Activities | SelectedResource(A) = R}

The usage of resource R can be written as follows.

Usage(R) =
∑

A∈ResourceActivities(R)

Duration(A)

Then picking the resource with the lowest usage means this:

SelectedResource(A) = arg min
R∈Resources(A)

(Usage(R))

At this time being, some activities may violate resource constraints.

5.3.3 Shifting Activities

In the second step, the algorithm repairs the violated resource constraints. It
visits the resources one after another and shifts activities that overlap to the
right. Since the original schedule is assumed to have been feasible, only the
resources where some activities were added should be revised.

Procedure ShiftOnResources sweeps over the activities and conducts the
shifting as follows. If activity A0 overlaps activity A1 on a resource, the activity
with the later start time, say A1, is set its start time to the end time of A0. This
shift may cause activity A1 to overlap next activity, which is then set to start
at the end of activity A1 and so forth. The order of activities on the resource is
preserved. All activities from the first activity that has been shifted up to the
last activity (in terms of start times), even if some have not been shifted, are
added to the set affected.

Formally, let begin(R) be the start time of the first (earliest) activity that
overlaps with another activity on resource R.

begin(R)← min
A∈ResourceActivities(R)

{Start(A)

| ∃B ∈ ResourceActivities(R), B 6= A, Start(A) ≤ Start(B) < End(A)}

Further, let us denote Ri the i-th earliest activity allocated on resource R,
which means that the following holds.

1 ≤ i < j ≤ |ResourceActivities(R)| ⇒ Start(Ri) ≤ Start(Rj)

The activities on resource R are consecutively (from the leftmost activity)
shifted such that:

Start(Ri)← max{Start(Ri), End(Ri−1)}

Finally, the activities are added to the set affected as follows.

affected← {A ∈ Activities | Start(A) > begin(SelectedResource(A))}

34

Algorithm 6 Shifting activities on resources

function ShiftOnResources
for all R ∈ Resources do

begin(R)← minA∈ResourceActivities(R){Start(A)
| ∃B ∈ ResourceActivities(R), B 6= A, Start(A) ≤ Start(B) < End(A)}

for i← 2 to |ResourceActivities(R)| do
Start(Ri)← max{Start(Ri), End(Ri−1)}

end for
end for
Return {A ∈ Activities(A) | Start(A) > begin(SelectedResource(A))}

end function

The entire routine is depicted in algorithm 6.
This shifting may violate a large number of temporal constraints. The ac-

tivities in the set affected are going to be reallocated in the forthcoming steps.
The reason why the set affected includes the activities that have not been shift-
ed, but are allocated on the right of the shifted activities, is, that they would
otherwise preclude other activities from allocation.

5.3.4 Updating STN

In this step, the constraints determining the minimal distance of an activity from
the global predecessor are added to the STN so as to modify the MinStart values
of activities to be reallocated, according to the start time values set in the previous
shifting step. The IFPC algorithm is used because modifying the minimal start
time of an activity affects the minimal start times of other activities from the
same connected component.

Precisely, for each Ai ∈ affected, add to the STN via IFPC algorithm the
constraint (Ai, A0,−Start(Ai)), where A0 denotes the global predecessor.

The point of adding this constraints is to reasonably maintain similarity to
the original schedule, along with adequate pruning of the search space of the
upcoming reallocation process.

5.3.5 Components Acquirement

There is still a question which and in what order the activities should be real-
located. Because shifting one activity is likely to violate temporal constraints
emanating from or to the activity, it is necessary to reallocate the entire connect-
ed component. Therefore, procedure AcquireComponents(affected) acquires
the connected component that each activity A ∈ affected belongs to, and the
acquired connected component is added to the set components. After this step,
components = {C1, ...Ck}, where Cz for z = 1, ..., k is a connected component.

In addition, for each activity, the MinStart value, which is the maximum of
the current start time and of the minimal potential start time following from the
STN (computed via IFPC in the previous step), is computed. Precisely, for each
Cz ∈ components and for each Ai ∈ Cz, assign:

MinStart(Ai) = Max{Start(Ai),−w[i, 0]}

35

As to the order for upcoming allocation, it is suitable to allocate activities
in the increasing order of the MinStart values. The activity in a connected
component with the lowest MinStart value is referred to as the leftmost activity.
The leftmost connected component is the connected component of which the
leftmost activity has the lowest MinStart value among all connected components.
The algorithm always selects for allocation the leftmost component that has not
yet been allocated.

5.3.6 Deallocation

Since the best way for allocating activities turned out to be the way without vi-
olating resource constraints, it is necessary to deallocate all activities in the con-
nected components acquired in the previous step. Otherwise they would preclude
other activities from allocation. Procedure DeallocateComponent(components)

deallocates activities from each connected component C ∈ components, which
means that for each A ∈ C: Start(A) = null and SelectedResource(A) = null.
After this (fifth) step, all activities from components are deallocated.

5.3.7 Allocation

Allocating an activity again means searching for the time point when there is an
available resource for the required duration. The resources are selected according
to the ESSLPE rule described in 5.2.1.

The skeleton of the code for allocating a connected component (see algorithm
7) is constituted from the algorithm 1 which is explained in section 3.1.3.

In order to allocate a connected component, conflict-directed backjumping
with backmarking is used. When an activity cannot be successfully allocated, it
is necessary to jump back to the activity that is causing the conflict. This is the
reason why conflict-directed backjumping is used. For keeping the information
which activity is conflicting with the activity being allocated, the conflict set for
each activity is remembered. For this purpose, cs[i] is a set of activities conflicting
with Ai.

The activities are going to be allocated in the increasing order of their indexes
that are determined according to their MinStart values. Thus we can anticipate
that the connected component to be allocated, which is passed as a parameter,
consists of activities A1, ..., An. When two activities are compared, i.e. Aj < Ai,
it means that their indexes are compared (j < i).

There are two possible causes why an activity cannot be allocated: a temporal
conflict and a resource conflict.

Temporal conflicts

Temporal conflicts are handled in procedure UpdateBounds(Activity A) (see
algorithm 8), which is called at line 6, i.e. before activity Ai is going to be
allocated. In this procedure, the bounds of possible time allocation for activity Ai

are computed according to the STN and start times of already allocated activities.
The lower bound of an activity is initially set to the MinStart value acquired

in the previous steps. Then the procedure goes through the already allocated
activities within the connected component in the same order as they have been

36

Algorithm 7 Allocating an entire connected component

1: function AllocateComponent(Activities A1, ..., An)
2: i← 1
3: while i ≤ n do
4: newV al← newV als[i] . initially 0
5: if newV al = 0 then . tracking forward to new activity
6: UpdateBounds(Ai)
7: newV al← LowerBound(Ai)
8: end if
9: while SelectedResource(Ai) = null & newV al ≤ UpperBound(Ai)

do
10: if newV al ∈ Keys(Mark[i]) & Max(Mark[i][newV al]) <

BackTo[i][newV al] then
11: cs[i]← cs[i] ∪Mark[i][newV al]
12: newV al← newV al + 1
13: continue
14: end if
15: BackTo[i][newV al]← Ai

16: newConflicts← ∅
17: for all R ∈ Resources(Ai) do
18: newConflicts ← newConflicts ∪

Min∗(Impedimentary(Ai, R, newV al))
19: end for
20: if CandidateResources(Ai, newV al) 6= ∅ then
21: SelectedResource(Ai) ← arbitrary from

CandidateResources(Ai, newV al)
22: Start(Ai)← newV al
23: . newV al can be tried again
24: Keys(Mark[i])← Keys(Mark[i]) \ {newV al}
25: else
26: Keys(Mark[i])← Keys(Mark[i]) ∪ {newV al}
27: Mark[i][newV al]← newConflicts
28: end if
29: cs[i]← cs[i] ∪ newConflicts
30: newV al← newV al + 1
31: end while

37

32: if SelectedResource(Ai) = null then
33: Aj ←Max(cs[i]) . latest activity in cs[i] is where to jump
34: cs[j]← cs[j] ∪ cs[i] \ {Aj}
35: for k ← j + 1 to n do
36: for all key ∈ Keys(BackTo[k]) do
37: BackTo[k][key]←Min(BackTo[k][key], Aj)
38: end for
39: end for
40: while i > j do . jump back to j
41: newV als[i]← 0
42: i← i− 1
43: SelectedResource(Ai)← null
44: Start(Ai)← null
45: end while
46: else
47: newV als[i]← newV al
48: i← i+ 1
49: end if
50: end while
51: end function

Algorithm 8 Updating lower and upper bounds

function UpdateBounds(Activitiy Ai)
cs[i]← ∅ . clear conflict set
LowerBound(Ai)←MinStart(Ai)
UpperBound(Ai)←∞
for k ← 1 to i− 1 do

newV alue← Start(Ak)− w[i, k]
if LowerBound(Ai) < newV alue then

LowerBound(Ai)← newV alue
cs[i]← cs[i] ∪ {Ak}

end if
newV alue← Start(Ak) + w[k, i]
if UpperBound(Ai) > newV alue then

UpperBound(Ai)← newV alue
cs[i]← cs[i] ∪ {Ak}

end if
end for

end function

38

allocated and updates bounds of Ai. Precisely, for each k < i, if Start(Ak)
+ ”minimal distance from Start(Ak) to Start(Ai)” is greater than the current
lower bound, then increase the lower bound, and add Ak to the conflict set of
Ai. Similarly, if Start(Ak) + ”maximal distance from Start(Ak) to Start(Ai)” is
smaller than the current upper bound, then decrease the upper bound, and add
Ak to the conflict set of Ai. The reason why activity Ak is added to the conflict
set is that changing the start time of Ak creates (straight away or after a number
of steps) some new possible start time for Ai.

Resource conflicts

As far as resource conflicts are concerned, recall that Impedimentary(Ai, R, t),
which has been formally introduced in section 5.2.1, is a set of activities that
preclude activity Ai from selecting resource R at time t. To make it possi-
ble to allocate activity Ai on resource R at time t, all activities from the set
Impedimentary(Ai, R, t) would have to be reallocated. The question is, which
activity from Impedimentary(Ai, R, t) should be added to the conflict set of
activity Ai. The answer is, the activity that has been the least recently allocat-
ed (from the connected component being allocated), but if there is an activity
in Impedimentary(Ai, R, t) from another connected component, which means it
cannot be deallocated, then no activity is added to the conflict set.

This is exactly what Min∗ does (at line 18). Formally, let C be the connected
component being allocated. If Impedimentary(Ai, R, t) ⊆ C, then:

Min∗(Impedimentary(Ai, R, t)) = arg min
Ak∈Impedimentary(Ai,R,t)

{k}

Otherwise Min∗(Impedimentary(Ai, R, t)) = ∅.
For illustration, when the algorithm is allocating activity A7 and there are

activities A2, A4, and A6 inhibiting on a resource, then activity A2 is added to
the conflict set. If there is an activity from different, already allocated component,
then no activity is added to the conflict set.

Further, recall CandidateResources(Ai, t) is a subset of available resources
given by ESSLPE rule, and from which activity Ai may arbitrarily select one.
Regardless of the result of the search for an available resource, the conflicting
activities are merged into the conflict set of the activity being allocated, i.e. cs[i]
(line 29).

Backjump

When the algorithm is about to conduct a backjump (starting at line 32), which
happens when all possible start times of Ai have been tried, the most recently
allocated activity from the conflict set of Ai is found (line 33). Let us denote
this activity as Aj. Next, before deallocating activities that are jumped over, the
activities from the conflict set of Ai except activity Aj are added to the conflict
set of Aj.

Backmarking

The backmarking technique is implemented as follows. Firstly, the time hori-
zon is infinite so that the structures BackTo and Mark cannot be simple

39

two-dimensional arrays as described in 3.1.3 but arrays of dictionaries. Pre-
cisely, BackTo is an array of size n, BackTo[i] is a dictionary, where keys
are the (attempted) start times of the activity, and values are activities, i.e.,
BackTo[i][newV al] is the lowest-indexed activity whose instantiation has changed
since activity Ai was last tried to be allocated at time newV al.

As to the structure Mark, there is one difference. Notice that when the al-
gorithm cannot find an available resource for activity Ai at time newV al, not
only one, but a number of activities may be added to the conflict set of Ai.
Consequently Mark[i][newV al] is a set of activities, of which at least one must
be reallocated in order to make activity Ai allocatable at time newV al. There-
fore, when values BackTo and Mark are to be compared, it is firstly checked,
whether there is newV al among the keys of Mark[i], and in the positive case,
Max(Mark[i][newV al]) and BackTo[i][newV al] are compared (see line 10).

If Max(Mark[i][newV al]) < BackTo[i][newV al], it means that none of the
conflicting activities has been re-instantiated and thus it makes no sense to look
for an available resource. However, before proceeding to the next value of newV al,
it is necessary to merge the conflicting activities to the current conflict set (line
11) as if the search for an available resource was conducted – this is the reason
why Mark[i][newV al] must store the set of activities (and not just the most
recent activity).

Oppositely, if newV al is not presented among the keys of Mark[i] or
Max(Mark[i][newV al]) ≥ BackTo[i][newV al], the algorithm does look for an
available resource. If activity Ai is successfully allocated, the key newV al is re-
moved from Mark[i] (line 24), otherwise Mark[i][newV al] stores the conflicting
activities (line 27). Using this concept of allocation, we have not found an efficient
way to achieve type B saving.

Termination

Notice that the algorithm does not check for the recoverability of the disrupted
ongoing schedule, which means that if there is no feasible solution, the procedure
AllocateComponent(Component C) never terminates. This can be solved by
giving it a limited time (cut-off limit), or by detecting that the method got stuck
in a loop, which may be proven for example when it tries to allocate an activity
in time greater than the maximal estimate of makespan (which may be the sum
of the durations of all activities and of all minimal distances in the model).

5.3.8 Correctness

If a resource selection change at the first step causes a resource constraint vi-
olation, at least one of the activities involved in the conflict is shifted in time.
All activities that are shifted at the second step are then reallocated along with
the entire connected component they belong to. During the allocation process,
the activity is always allocated to such a time point that neither resource con-
straints, nor temporal constraints are violated. Therefore, if the algorithm finds
a schedule, it is feasible and hence the algorithm is sound.

As to completeness, the only nontrivial thing to realize is that, pro-
vided a schedule is recoverable, the process of allocating a component, i.e.

40

AllocateComponent(Component C), terminates and finds the solution. Here
comes an informal argumentation.

To the conflict set of an activity Ai, i.e. cs[i], there is always added such
an activity Aj, that Aj, having set its start time and having selected resource,
participates in the fact that Ai cannot be allocated. It follows that reallocating
activity Aj modifies (immediately or later) the domain of possible start times (in
case of temporal conflicts) or available resources (in case of resource conflicts) of
activity Ai.

When seeking for an available resource is avoided thanks to the backmarking
technique, that is because it is known the activity in question could not be really
allocated, and the conflict set is updated as if the search for an available resource
was conducted.

Further, when an activity Ai cannot be allocated, i.e. all possible start times
have turned out not to lead to solution, the backjump is conducted to the most
recently allocated activity that is contained in the conflict set ofAi and the conflict
sets are merged, so that no information about conflicts is lost and therefore all
jumps are safe, which means that no solution is overleaped. Hence, if there exists
a feasible solution, the algorithm will find it.

Unfortunately, the formal proof is yet to be done.

5.3.9 Discussion and Experimental Evaluation

Owing to the nature of the algorithm, it moves a lot of activities by a small
amount of time, which means that it should not be used when optimising in
distance function f2 (which is the number of shifted activities) as depicted in
figure 5.6. On the other hand, it performs very well in function f3 (which is the
biggest shift of an activity) as shown in picture 5.7, and also, when compared
to the Right Shift Affected algorithm, slightly better in function f1. For more
results refer to appendix B.2.

The Right Shift Affected algorithm is somewhat faster than STN-recovery
(figure 5.8), however, STN-recovery has the following advantage. The algorithm
always allocates the leftmost connected component that has not been allocated
yet, therefore, when the algorithm is allocating the connected component with
the leftmost activity that has the MinStart value t, the schedule is not going
to be modified before time point t. This allows the system to keep executing an
ongoing schedule even if it has not been completely recovered yet.

The dependencies on the density of constraints showed no tendency. However,
one might wonder how the algorithm performs as the size of connected compo-
nents increases. As depicted in figure 5.9, there are significantly longer run-times
for some sizes, however, exponential growth is not apparent.

As far as the backmarking technique is concerned, it brought some saving of
time as expected, because determining availability of a resource is carried out in
logarithmic time in the number of activities on the resource. On the other hand,
as the number of resources in the model decreases below a certain number, one
might expect backmarking to become counterproductive owing to the overhead
costs. However, according to the figure 5.10, backmarking pays regardless of the
number of resources in the model.

41

0

500

1000

1500

2000

2500

8

6
4

1
2
0

1
7
6

2
3
2

2
8
8

3
4
4

4
0
0

4
5
6

5
1
2

5
6
8

6
2
4

6
8
0

7
3
6

7
9
2

8
4
8

9
0
4

9
6
0

1
0
1
6

1
0
7
2

1
1
2
8

1
1
8
4

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
4

1
5
2
0

1
5
7
6

1
6
3
2

1
6
8
8

1
7
4
4

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
4

2
0
8
0

2
1
3
6

2
1
9
2

2
2
4
8

2
3
0
4

2
3
6
0

f2

activities

RSA

STN

Figure 5.6: Comparison of schedule quality (measured using function f2) for Right
Shift Affected and STN-recovery

0

200

400

600

800

1000

1200

1400

1600

8

6
4

1
2
0

1
7
6

2
3
2

2
8
8

3
4
4

4
0
0

4
5
6

5
1
2

5
6
8

6
2
4

6
8
0

7
3
6

7
9
2

8
4
8

9
0
4

9
6
0

1
0
1
6

1
0
7
2

1
1
2
8

1
1
8
4

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
4

1
5
2
0

1
5
7
6

1
6
3
2

1
6
8
8

1
7
4
4

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
4

2
0
8
0

2
1
3
6

2
1
9
2

2
2
4
8

2
3
0
4

2
3
6
0

f3

activities

RSA

STN

Figure 5.7: Comparison of schedule quality (measured using function f3) for Right
Shift Affected and STN-recovery

42

0

200

400

600

800

1000

1200

1400

1600

8

6
4

1
2
0

1
7
6

2
3
2

2
8
8

3
4
4

4
0
0

4
5
6

5
1
2

5
6
8

6
2
4

6
8
0

7
3
6

7
9
2

8
4
8

9
0
4

9
6
0

1
0
1
6

1
0
7
2

1
1
2
8

1
1
8
4

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
4

1
5
2
0

1
5
7
6

1
6
3
2

1
6
8
8

1
7
4
4

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
4

2
0
8
0

2
1
3
6

2
1
9
2

2
2
4
8

2
3
0
4

2
3
6
0

ru
n

ti
m

e
 [

m
s]

activities

RSA

STN

Figure 5.8: Comparison of run times for Right Shift Affected and STN-recovery

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

ru
n

ti
m

e
 [

m
s]

activities in one component

RSA

STN

Figure 5.9: Comparison of run times for Right Shift Affected and STN-recovery,
dependent on the number of activities in one component

43

0

100

200

300

400

500

600

700

800

6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

ru
n

ti
m

e
 [

m
s]

resources

CBJ

CBJBM

Figure 5.10: Comparison of run times for conflict-directed backjumping and
conflict-directed backjumping with backmarking

5.4 Breakdown with Arbitrary Resource

Groups

So far, the algorithms anticipated that the resource groups are equivalent. In
that case, the algorithms use the ESSLPE rule described in 5.2.1. If the resource
groups are not equivalent, the ESSLPE rule cannot be used because selecting one
resource may not lead to finding a feasible solution, while selecting some other
resource may lead to recovery. Here comes an example.

Consider the following model with two available resources, Resources =
{R1, R2}, and three activities, Activities = {A,B,C}. The attributes of the
activities are given in the following table.

A B C
Resources {R1} {R1, R2} {R1}
Duration 1 2 1

There is the end-to-start synchronization between A and B, and end-to-end
synchronization between B and C, which involves the following constraints.

• (A,B, 1)

• (B,A,−1)

• (B,C, 1)

44

Figure 5.11: Feasible schedule for the model

• (C,B,−1)

It is easy to see that there exists the feasible schedule given by the following
table and depicted in figure 5.11.

A B C
Start 0 1 2
SelectedResource R1 R2 R1

However, suppose STN-recovery is about to allocate this component, i.e.
AllocateComponent(A, B, C) is called. From the STN we get the following
MinStart values:

A B C
MinStart 0 1 2

Hence the order of activities for allocation is indeed [A,B,C]. When the
algorithm is allocating activity B, the ESSLPE rule always picks resource R1,
because it is non-empty, and then activity C cannot be allocated, therefore the
algorithm sticks in a loop, while selecting R2 would yield the feasible schedule at
a blow.

Consequently, to accommodate with arbitrary resource groups, the suggested
algorithms require some changes.

Right Shift Affected

As to the Right Shift Affected algorithm, the only necessary modification is, when
allocating an activity, select resource from the group uniformly at random instead
of according to the ESSLPE rule.

STN-Recovery

As far as STN-recovery is concerned, the required changes are somewhat more
involved. When the algorithm backtracks from activity Ai to activity Aj, then
before trying to reallocate Aj to another time point, it may be necessary to try
other resource selections first. It is handful to pass the reason for tracking back
from Ai to Aj. That is why the following surgery is required.

So far, a conflict set was simply a set of conflicting activities. Now, the conflict
set will be a set of conflicts, where conflict is, instead of being just an activity in

45

conflict, a pair of (i) the conflicting activity and (ii) a flag indicating the reason we
are jumping back: temporal or resource. More precisely, Conflict is a structure
containing two fields: Activity, and Type. If the conflict comes from a temporal
constraint, Type is set to 0. When the conflict comes from a resource constraint,
Type is set to 1.

When the algorithm determines where to jump, it searched for the most re-
cently allocated activity in the conflict set by comparing their indexes. There-
fore, it is now handful to redefine comparison operators. A resource constraint
violation has the priority to temporal constraint violation, which means that a
resource conflict between activities Aj and Ai is understood as more recent when
compared to a temporal conflict between activities Aj and Ai. Formally, when
two conflicts, say C1 and C2, are compared, then the result is defined as follows.

<

if C1.Activity = C2.Activity then

return C1.T ype < C2.T ype
else

return C1.Activity < C2.Activity
end if

≤
if C1.Activity = C2.Activity then

return C1.T ype ≤ C2.T ype
else

return C1.Activity ≤ C2.Activity
end if

Operators > and ≥ are defined analogously.
Finally, when we backtrack from activity Ai to Aj owing to a temporal con-

flict, Aj is deallocated, the value for time allocation (= newV al) is increased
and Aj is tried to allocate at (increased) newV al. When we backtrack owing
to a resource conflict, newV al remains unchanged and another resource from
AvailableResources(Aj, newV al) is selected. If all selections have been tried,
the algorithm proceeds as if we have just backtracked to Aj due to a temporal
conflict, newV al is increased, and so on.

5.5 Breakdown at time tf > 0

Up to now, we assumed that a machine breakdown occurs at the beginning of
the schedule horizon. This section describes one possible way to cope with the
problem when resource Rf fails at time point tf > 0. As mentioned at the very
beginning of this chapter, this brings further questions such as what happens to
the activity that is being processed at time tf on resource Rf , and so on.

Let us define that activity A is completed if End(A) ≤ tf , A is in progress if
Start(A) < tf and End(A) > tf , and A is untouched if Start(A) ≥ tf .

We have decided to implement the algorithms to tackle this problem as follows.
If activity A allocated to resource Rf is in progress, it must be processed again

46

from the beginning as if it has not been processed at all, i.e. for the time span
that equals Duration(A). Activities belonging to connected component C that
are completed or in progress (and not using Rf) do not have to be re-executed
even if there is no reallocation of other activities belonging to C such that all
constraints are satisfied. This means that violation of constraints, determining
the maximal time distance between an activity that is completed or in progress
and an activity that is untouched, is tolerated.

STN-Recovery

This solution required to modify the implementation of STN-recovery as follows.

• The forbidden resource selections are changed only for activities in progress
and untouched activities, i.e. for those of which End(A) > tf .

• Activities that are completed and activities in progress that are not allo-
cated to Rf are set to be pinned, i.e. Pinned(A)← true, which means that
these activities are not going to be deallocated and violations of temporal
constraints emanating from them are going to be tolerated.

• Before the shifting procedure, activities in progress that were allocated to
Rf are shifted to start at the time tf , i.e. Start(A) = tf .

• In the deallocation process, activities that are pinned are not deallocated.

• In the AllocateComponent procedure, when variable i points to a pinned
activity, it proceeds to the next one (i.e. i+ 1).

• In the UpdateBounds procedure, the pinned activities are not allowed to
modify the upper bound value, and thus are not added to the conflict set.

• Finally, if the set Impedimentary(A,R, t) contains an activity that is
pinned, none is added to the conflict set.

Right Shift Affected

The Right Shift Affected algorithm required the following changes.

• At the beginning, only activities in progress and untouched activities, i.e.
those of which End(A) > tf , are checked for using Rf , and reallocated in
the positive case.

• Activities that are completed and activities in progress that are not allo-
cated to Rf are set to be pinned, i.e. Pinned(A) = true.

• Constraint (A1, A2, w) ∈ Constraints is repaired (i.e. one of the activities
is reallocated), only if Pinned(A1) = Pinned(A2).

47

0

2000

4000

6000

8000

10000

12000

14000

16000

8

6
4

1
2
0

1
7
6

2
3
2

2
8
8

3
4
4

4
0
0

4
5
6

5
1
2

5
6
8

6
2
4

6
8
0

7
3
6

7
9
2

8
4
8

9
0
4

9
6
0

1
0
1
6

1
0
7
2

1
1
2
8

1
1
8
4

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
4

1
5
2
0

1
5
7
6

1
6
3
2

1
6
8
8

1
7
4
4

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
4

2
0
8
0

2
1
3
6

2
1
9
2

2
2
4
8

2
3
0
4

2
3
6
0

m
e

as
u

re
 o

f
vi

o
la

ti
o

n

activities

RSA

STN

Figure 5.12: Comparison of schedule quality (measured in constraints violation)
for Right Shift Affected and STN-recovery

Constraint Violation

In spite of the described modifications, the results regarding a machine breakdown
at time tf = 0 hold also for a machine breakdown occurring for example at time
tf = 30. However, since we allowed violating some constraints, it is suitable to
compare the algorithms in terms of measure of violation, which is computed this
way. For each temporal constraint (A1, A2, w) ∈ Constraints do the following:

• If Start(A2) − Start(A1) = b, and b > w, then increase the measure of
violation by b− w.

The results, as depicted in figure 5.12, show that the Right Shift Affected
algorithm is rather useless, whereas the measure of violation in STN-Recovery
can be, despite non-negligible fluctuation, regarded as constant for models large
enough, which is expected because the violated constraints occur only nearby
time tf .

48

6. Other Disturbances

6.1 Hot Order Arrival

Next to the machine breakdown, one of the most common disturbances bothering
manufacturing processes is an urgent order arrival, also called a hot order arrival.
When an urgent order comes during the schedule execution, say at time th, the
task is to correct the ongoing schedule in such a way that the activities of the
urgent order are scheduled after time th the earlier the better, to the detriment
of the other activities, which consequently have to be postponed.

To tackle this problem, it is suitable to exploit the STN-recovery algorithm
described in the previous chapter. Initially, among a few technical adjustments, it
is important to extend the STN to accommodate the activities of the urgent order
newly added to the scheduling model, and introduce the temporal constraints
among the activities to the STN through the IFPC algorithm.

The only necessary modification of STN-recovery is the first step. Instead
of changing resource selections from forbidden resource, do for each activity Ai

in the newly added order the following: From Resources(Ai) select the resource
with the lowest usage and set Start(Ai) to the current time (when the order
arrives) plus minimal time distance of activity Ai from the global predecessor
obtained from the STN, i.e. Start(Ai) = th − w[i, 0]. Now the activities of the
urgent order overlap some activities of the original schedule on chosen resources.
Afterwards, STN-recovery continues without any change.

Note that the way of tackling a resource failure at a non-zero time as described
in 5.5 leads to some constraint violation, which holds in the case of hot order
arrival too. It may be beneficial, at least for less urgent order arrivals, to avoid
the violation completely. This may be simply achieved by pinning the entire
connected components that are in progress.

The Right Shift Affected algorithm could be used too, with the only one
modification. At the beginning, instead of reallocating activities using forbidden
resource, the activities in the urgent order are allocated. Then the algorithm
proceeds the same way. Unfortunately, the higher the usage of resources, the
later in time the urgent order is likely to be accomplished, making thus the
algorithm useless if the order is hot indeed.

6.2 Order Cancellation

An order cancellation, which is actually the counterpart of the hot order arrival,
is another event that often occurs in manufacturing environments. The order
cancellation is usually ranked among so called minor disturbances, because simple
invalidating the cancelled activities along with letting empty holes on resources
at the places where the cancelled activities were allocated preserves feasibility of
the schedule, so that no modification is needed. However, when the objective
function is for example (total) lateness or completeness, it may be desired to
somehow exploit newly enabled spaces on resources.

When the order cancellation occurs, the intention is to improve the schedule
efficiency without significant schedule modification. The idea is to shift some

49

activities in time to the left without changing any resource selection and without
changing the processing order of activities on resources.

This may be achieved very simply through using the STN. As in the previous
chapters, the STN based on the temporal constraints is assumed to have been
computed. But now, we need to add the constraints into the STN so as to enforce
that the order of activities remains unchanged. For each two consecutive activities
on a resource, say Ai and Aj, add a constraint into the STN ensuring that Aj

cannot start sooner than Ai finishes, i.e. Start(Aj)−Start(Ai) ≥ Duration(Ai),
and propagate it via the IFPC algorithm. Then set the start times of all activities
to their minimal possible values.

Formally, let us define the set Consecutives containing pairs of activities that
are in a row on a resource as follows.

Consecutives = {(Ai, Aj) | Ai, Aj ∈ Activities
∧ SelectedResource(Ai) = SelectedResource(Aj) ∧ End(Ai) ≤ Start(Aj)

∧ (@Ak ∈ Activities : SelectedResource(Ai) = SelectedResource(Ak)

∧ End(Ai) ≤ Start(Ak) ≤ Start(Aj))} (6.1)

What the algorithm exactly does is the following. For each (Ai, Aj) ∈
Consecutives add to the STN the constraint (Aj, Ai,−Duration(Ai)) via IFPC,
and, when done, for each activity Ai set its start time to the minimal possible
distance from the global predecessor obtained from the STN. The entire squeezing
algorithm is depicted in algorithm 9.

Algorithm 9 The Squeezing Algorithm

function Squeeze
for all (Ai, Aj) ∈ Consecutives do

IFPC(j, i, −Duration(Ai))
end for
for all Ai ∈ Activities do

Start(Ai)← −w[i, 0]
end for

end function

6.3 Machine Repair

Another event that may be of interest in dynamic environments is introduction
of a new resource. Such a significant change in the model definition usually
requires special attention and is conducted when no schedule is executed or during
a maintenance-break. However, it often happens that a machine breaks down
temporarily, so that when it is fixed, it is desired to exploit the machine in order
to reduce the objective function without substantial schedule modification. For
this purpose, we suggest a very simple method that reallocates some activities
to the repaired machine and then runs the squeezing algorithm described in the
previous section.

50

Let us denote the resource newly added to the model as Rnew. Further, let
us assume that, for each activity A ∈ Activities, if A can be processed on the
resourceRnew, thenRnew is added to the resource group of A, i.e. Resources(A) =
Resources(A) ∪Rnew.

Then the reallocation of activities is carried out as follows. It seeks for the
earliest activity of which a selected resource can be swapped to Rnew. Formally:

Ar1 = arg min
A′∈Activities

{Start(A′) | Rnew ∈ Resources(A′)}

Activity Ar1 is then reallocated to Rnew, i.e. Selected(Ar1) = Rnew. The
next activity to be reallocated to Rnew must start at End(Ar1) or later so that
it does not overlap activity Ar1 . Formally, let us define NextAllowedStart as
the minimal allowed start time of the next activity to be reallocated. Suppose
that i activities has been reallocated to Rnew. Then NextAllowedStart may be
assigned as such:

NextAllowedStart = End(Ari)

Next activity to be reallocated to Rnew is then:

Ari+1
= arg min

A′∈Activities
{Start(A′) | Rnew ∈ Resources(A′)∧Start(A′) ≥ NextAllowedStart}

The question is how to suitably assign NextAllowedStart. If
NextAllowedStart is End(Ari) as just defined, then it probably does not lead
to any schedule improvement. Consider a schedule with only one resource, say
R1, and that the usage of R1 is 100 %, i.e. there are no gaps between any two
consecutive activities. Now, the resource Rnew is added, and, for each activi-
ty A, Resources(A) = {R1, Rnew}. In this case, setting NextAllowedStart to
End(Ari) causes that all activities are reallocated to Rnew while R1 becomes idle.
Learnt from that extreme case, some free time before the next activity to be
reallocated should be enforced.

FS One possible time point for NextAllowedStart is the start time of the ac-
tivity that follows activity Ari on the resource from which Ari is retracted (plus
one time unit). Formally:

NextAllowedStart = Start(Following(Ari)) + 1,

where Following(Ari) is the activity allocated in time just after Ari on the same
resource, i.e. (Ari , Following(Ari)) ∈ Consecutives. (See definition 6.1, in the
previous section.) Thus it is ensured that the activity succeeding Ari on the
resource is not reallocated. Let us refer to this heuristic as FS.

DR Another conceivable value for the time slack is the duration of activity Ari

divided by the number of resources from its resource group. Formally:

NextAllowedStart = End(Ari) + bDuration(Ari)/Resources(Ari)c

This is what we refer to as DR.

51

Finally, after the activities have been reallocated to Rnew, the squeeze method
from section 6.2 is called.

Suppose all activities in the scheduling model are sorted in the increasing
order of their start times. Then algorithm 10 depicts the heuristic DR.

These two heuristics may be compared using distance function f1. Since the
activities are moved only to the left, the function f1 corresponds to the decrease
in total completeness, which is now desired to be maximized. Therefore, the DR
heuristic seems to outperform FS (see figure 6.1). However, this may be because
of the random nature of the testing data, so that this result may no longer be
valid for the real life schedules.

Algorithm 10 Repaired machine utilization

Require: Activities A1, ..., An sorted increasingly in their start times
function UseRepairedResource(Resource Rnew)

NextAllowedStart← 0
for i← 1 to n do

if Rnew ∈ Resources(Ai) & Start(Ai) ≥ NextAllowedStart then
NextAllowedStart← End(Ai) + bDuration(Ai)/|Resources(Ai)|c
SelectedResource(Ai)← Rnew

end if
end for
Squeeze

end function

52

0

200

400

600

800

1000

1200

1400

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

f1

constraints

FS

DR

Figure 6.1: Comparison of schedule quality (measured using distance function f1)
for reallocation heuristics

53

Conclusion

The aim of this thesis was to handle certain unexpected disturbances that may
occur during a manufacturing schedule execution, which means finding quickly a
feasible schedule as similar to the ongoing one as possible. The main focus has
been taken on a machine breakdown, i.e. a disruption when a resource sudden-
ly cannot be used anymore by any activity. We proposed two wholly different
methods.

The first method takes the activities that were to be processed on a broken
machine, reallocates them, and then it keeps repairing violated constraints until
it gets a feasible schedule. This approach is suitable when it is desired to move
as few activities as possible; however, the question whether the algorithm always
ends is still open. The second method takes a number of activities, deallocates
them, and then it allocates one activity after another in suitable order in such a
way that no constraints are violated. This approach is useful when the intention
is to shift activities by a short time distance, regardless of the number of moved
activities.

The main shortcoming is that if there is no feasible recovery of the ongoing
schedule, neither of the algorithms is able to securely report it. The reason is
that deciding whether or not a schedule is recoverable, is NP-complete, therefore
it would take prohibitive amount of time. Justification to omit this step is that
in real-life environments the schedule recoverability after the breakdown of any
particular machine is obvious or can be computed before the schedule execution
begins.

Further, we described how to exploit these two suggested algorithms to tackle
another disturbance – hot order arrival. Other unexpected events are order can-
cellation and machine repair. We described the algorithm that simply squeezes a
schedule after these minor disturbances by shifting activities in time to the left.

Future work

In order to ease of the enormous computational burden, we omitted possibility of
selecting alternative branches, which are involved in the model in the FlowOpt
project. This might be of interest for future work. Further investigation is needed
also for determining the conditions under which a schedule is recoverable.

Next, it may be of interest to generalize the algorithms for models that for
example involve:

• Interruptibility of activities

• Various speeds of resources

• Setup times of resources

• Calendars of availabilities of resources

Oppositely, one might be interested in more efficient algorithms for models
somewhat simplified, for example models without time distance constraints.

54

Bibliography

[1] M. Pinedo, Scheduling. Theory, algorithms, and systems, New York:
Prentice-Hall, 2002.

[2] M. Pinedo, Planning and Scheduling in Manufacturing and Services, New
York: Springer, 2005.

[3] R. Barták, M. Jaška, L. Novák, V. Rovenský, T. Skalický, M. Cully, C.
Sheahan, D. Thanh-Tung, FlowOpt: Bridging the Gap Between Optimization
Technology and Manufacturing Planners, In Luc De Raedt et al. (Eds.): Pro-
ceedings of 20th European Conference on Artificial Intelligence (ECAI 2012),
pp. 1003-1004, IOS Press, 2012 (ISBN 978-1-61499-097-0, DOI:10.3233/978-
1-61499-098-7-1003).

[4] J.T. Black, Manufacturing systems, in Encyclopedia of Production and Man-
ufacturing Management, Paul M. Swamidass, editor, Kluwer, Norwell, Mas-
sachusetts, 2000.

[5] G.Vieira, J. Herrmann, E.Lin, Rescheduling manufacturing systems: a
framework of strategies, policies, and methods, Journal of Scheduling 6: 39-
62, Kluwer Academic Publishers, 2003.

[6] D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufacturing
systems, Journal of Scheduling, v.12 n.4, p.417-431, 2009.

[7] A. S. Raheja , V. Subramaniam, Reactive recovery of job shop schedules –
a review, International Journal of Advanced Manufacturing Technology, 19,
756-763, 2002.

[8] R. Barták, T. Skalický, A local approach to automated correction of violated
precedence and resource constraints in manually altered schedules, Proceed-
ings of the 6th International Workshop on Planning and Scheduling for Space
(IWPSS-09), Pasadena, USA, 2009.

[9] A. Cesta, A. Oddi, S.F. Smith, Iterative Flattening: A Scalable Method
for Solving Multi-Capacity Scheduling Problems, AAAI/IAAI, 17th National
Conference on Artificial Intelligence, pp. 742–747, 2000.

[10] A. Oddi, N. Policella, A. Cesta, S.F. Smith, Boosting the Performance of
Iterative Flattening Search, AI*IA 2007: Artificial Intelligence and Human-
Oriented Computing, LNCS 4733, pp. 447–458, Springer Verlag, 2007.

[11] P. Cunningham, B. Smyth, Case-Based Reasoning in Scheduling: Reusing
Solution Components, International Journal of Production Research, 35:
2947-2961, 1997.

[12] R. Ramkumar, Dr. A. Tamilarasi, Dr. T. Devi, Multi Criteria Job Shop
Schedule Using Fuzzy Logic Control for Multiple Machines Multiple Jobs,
International Journal of Computer Theory and Engineering, Vol. 3, No. 2,
ISSN: 1793-8201, April 2011.

55

[13] A. S. Jain, S. Meeran, Job-Shop Scheduling Using Neural Networks, Interna-
tional Journal of Production Research, 36(5), 1249-1272, May 1998.

[14] K. Kouiss, H. Pierreval, N. Mebarki, Using multi-agent architecture in FMS
for dynamic scheduling, Journal of Intelligent Manufacturing 8, 41-47, 1997.

[15] L. Zhang, T.N. Wong, S. Zhang, S.Y. Wan, A multi-agent system archi-
tecture for integrated process planning and scheduling with meta-heuristics,
Proceedings of the 41st International Conference on Computers & Industrial
Engineering, 2011.

[16] R. Barták, T. Müller, H. Rudová, Minimal Perturbation Problem – A Formal
View, Neural Network World, Volume 13(5), pp. 501-511, 2003.

[17] W. Kocjan, Dynamic Scheduling – State of the Art Report, SICS Technical
Report T2002:28, SICS.

[18] T. Skalický, Interactive Scheduling and Visualisation, Prague, 95 p. Master’s
thesis, Charles University in Prague, 2011.

[19] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intel-
ligence 49(1-3), 61–95, 1991.

[20] L.R. Planken, New Algorithms for the Simple Temporal Problem, Delft, the
Netherlands, 75 p. Master’s thesis, Delft University of Technology, 2008.

[21] S.C. Brailsford, Ch.N. Potts, B.M. Smith, Constraint satisfaction problems:
Algorithms and applications, European Journal of Operational Research 119,
557-581, 1999.

[22] J. Gaschnig, Experimental case studies of backtrack vs. waltz-type vs. new
algorithms for satisficing assignment problems, In Proceedings of the 2nd
Biennial Conference of the Canadian Society for Computational Studies of
Intelligence, pages 268-277, 1978.

[23] R. Dechter, Enhancement schemes for constraint processing: Backjump-
ing, learning, and cutset decomposition, Artificial Intelligence, 41(3):273-312,
1990.

[24] X. Chen, P. van Beek: Conflict-Directed Backjumping Revisited, Journal of
Artificial Intelligence Research, Volume 14, pages 53-81, 2001.

[25] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem, Com-
putational Intelligence, 9(3), 268-299, 1993.

[26] G. Kondrak, P. van Beek. A Theoretical Evaluation of Selected Backtracking
Algorithms, Artificial Intelligence 89, 365-387, 1997.

[27] R. Barták, O. Čepek. Nested Temporal Networks with Alternatives, Hans W.
Guesgen, Gerard Ligozat, Jochen Renz, Rita V. Rodriguez (Eds.): Papers
from the 2007 AAAI Workshop on Spatial and Temporal Reasoning, Techni-
cal Report WS-07-12, AAAI Press, pp. 1-8 (ISBN: 978-1-57735-339-3), 2007.

56

[28] Ch. Artigues, C. Briand, The Resource-Constrained Activity Insertion Prob-
lem with Minimum and Maximum Time Lags, Journal of Scheduling, v.12
n.5, p.447-460, 2009.

57

A. Input Data Acquisition

A.1 Random Model Generation

This section describes the generation of a scheduling problem, suitable for testing
the proposed algorithms.

Firstly, the routine introduces resources to the model. It creates 4 resource
dependency groups and 9 resources within each resource dependency group, i.e.
36 resources in total. Secondly, the orders are generated, each one containing
8 activities, initially without constraints. The durations of activities are chosen
uniformly at random from 1 to 15 time units. Each activity is assigned the
resource dependency groups as follows. First resource dependency group is chosen
uniformly at random. Next, the routine adds another resource dependency group
with probability 1

2
. In the positive case, the routine adds yet another resource

dependency group again with probability 1
2
. And finally, in the positive case,

the routine adds also the remaining resource dependency group with probability
1
2
. Hence the probability that an activity has all 4 resource dependency groups

equals 1
8
, and each activity has at least one resource dependency group.

Thirdly, the routine goes through all the orders in the model and tries to add
a given number of constraints into each order. Adding a constraint is conducted
as follows. Firstly, activity A1 and activity A2 are picked from the order uni-
formly at random. Then the algorithm introduces a constraint of a random type
between activities A1 and A2. The constraint is precedence constraint with prob-
ability 1

2
, temporal distance constraint with probability 1

4
, and synchronization

constraint with probability 1
4
. In case of temporal distance constraint, the type

is either minimal distance constraint or maximal distance constraint, either one
with probability 1

2
; the distance is chosen uniformly at random from 1 to 30 time

units. In case of synchronization constraints, the type is start-to-start, end-to-
end, or start-to-end, any one with probability 1

3
. The end-to-start type is omitted

because it is symmetrical case of start-to-end, i.e. achievable by interchanging
A1 and A2. Before the constraint is actually added to the model, it is checked
through the IFPC algorithm, whether the addition of the constraint is feasible,
and not redundant. The constraint is not added to the model if it would make
the STN infeasible as well as if the constraint is redundant. Note that adding the
constraint may make some other constraints redundant. If the algorithm exceeds
the limited number of attempts (100) before the desired number of constraints is
added to the order, it proceeds to another order.

There are 8 activities in one order, which means that in extreme case it may
happen that 8 activities requiring a resource from the same resource dependency
group must be in process at the same time point. For this reason, there are 9
resource dependencies within each resource dependency group, making it sure
that the ongoing schedule is always recoverable when a machine fails.

A.2 Scheduling Model Solver

Solving scheduling problems that are generated as described above is carried out
pretty much the same way as in STN-recovery. After the STN is computed,

58

the connected components are acquired, and all single connected components are
allocated using the procedure AllocateComponent (described in section 5.3.7),
allocating the activities in the increasing order of the MinStart values. Note
that there are no original start times of the activities, unlike in STN-recovery, so
that the MinStart value of the leftmost activity of each component is 0. Ties
are broken arbitrarily.

In such schedules, when attempting to introduce as many constraints as possi-
ble, the usage of resources fluctuates around 73 %. To obtain schedules with fully
loaded resources, it is inevitable to generate firstly a schedule, i.e. activities allo-
cated to resources, and then add constraints among the activities in such a way
that all constraints are satisfied. However, in real life scheduling environments it
is impossible to get 100% used resources for such big models.

A.3 Testing Machine

Processor Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz, 3701 Mhz, kernels: 4,
logical processors: 8

RAM 8,00 GB

OS Microsoft Windows 7 Professional 64-bit Version 6.1.7601 Service Pack 1
Assembly 7601

IDE Microsoft Visual Studio Ultimate 2012 Version 11.0.61030.00 Update 4

.Net Microsoft .NET Framework Version 4.5.50938

59

B. Evaluation Graphs

B.1 Right Shift Affected Heuristics

B.1.1 Dependence on Model Size

0

100

200

300

400

500

600

700

1
0
4

1
6
0

2
1
6

2
7
2

3
2
8

3
8
4

4
4
0

4
9
6

5
5
2

6
0
8

6
6
4

7
2
0

7
7
6

8
3
2

8
8
8

9
4
4

1
0
0
0

1
0
5
6

1
1
1
2

1
1
6
8

1
2
2
4

1
2
8
0

1
3
3
6

1
3
9
2

1
4
4
8

1
5
0
4

1
5
6
0

1
6
1
6

1
6
7
2

1
7
2
8

1
7
8
4

1
8
4
0

1
8
9
6

1
9
5
2

2
0
0
8

2
0
6
4

2
1
2
0

2
1
7
6

2
2
3
2

2
2
8
8

2
3
4
4

2
4
0
0

f2

activities

Left

Right

Queue

Stack

Random

Figure B.1: Comparison of schedule quality (measured using function f2) for
different activity selection heuristics

0

500

1000

1500

2000

2500

1
0
4

1
6
0

2
1
6

2
7
2

3
2
8

3
8
4

4
4
0

4
9
6

5
5
2

6
0
8

6
6
4

7
2
0

7
7
6

8
3
2

8
8
8

9
4
4

1
0
0
0

1
0
5
6

1
1
1
2

1
1
6
8

1
2
2
4

1
2
8
0

1
3
3
6

1
3
9
2

1
4
4
8

1
5
0
4

1
5
6
0

1
6
1
6

1
6
7
2

1
7
2
8

1
7
8
4

1
8
4
0

1
8
9
6

1
9
5
2

2
0
0
8

2
0
6
4

2
1
2
0

2
1
7
6

2
2
3
2

2
2
8
8

2
3
4
4

2
4
0
0

f3

activities

Left

Right

Queue

Stack

Random

Figure B.2: Comparison of schedule quality (measured using function f3) for
different activity selection heuristics

60

0

200

400

600

800

1000

1200

1
0
4

1
6
0

2
1
6

2
7
2

3
2
8

3
8
4

4
4
0

4
9
6

5
5
2

6
0
8

6
6
4

7
2
0

7
7
6

8
3
2

8
8
8

9
4
4

1
0
0
0

1
0
5
6

1
1
1
2

1
1
6
8

1
2
2
4

1
2
8
0

1
3
3
6

1
3
9
2

1
4
4
8

1
5
0
4

1
5
6
0

1
6
1
6

1
6
7
2

1
7
2
8

1
7
8
4

1
8
4
0

1
8
9
6

1
9
5
2

2
0
0
8

2
0
6
4

2
1
2
0

2
1
7
6

2
2
3
2

2
2
8
8

2
3
4
4

2
4
0
0

re
so

u
rc

e
s

ch
an

ge
d

activities

Left

Right

Queue

Stack

Random

Figure B.3: Comparison of schedule quality (measured by number of changed
resource selections) for different activity selection heuristics

0

100

200

300

400

500

600

700

800

900

1
0
4

1
6
0

2
1
6

2
7
2

3
2
8

3
8
4

4
4
0

4
9
6

5
5
2

6
0
8

6
6
4

7
2
0

7
7
6

8
3
2

8
8
8

9
4
4

1
0
0
0

1
0
5
6

1
1
1
2

1
1
6
8

1
2
2
4

1
2
8
0

1
3
3
6

1
3
9
2

1
4
4
8

1
5
0
4

1
5
6
0

1
6
1
6

1
6
7
2

1
7
2
8

1
7
8
4

1
8
4
0

1
8
9
6

1
9
5
2

2
0
0
8

2
0
6
4

2
1
2
0

2
1
7
6

2
2
3
2

2
2
8
8

2
3
4
4

2
4
0
0

d
u

ra
ti

o
n

 in
cr

e
m

e
n

t

activities

Left

Right

Queue

Stack

Random

Figure B.4: Comparison of schedule quality (measured using makespan incre-
ment) for different activity selection heuristics

61

0

500

1000

1500

2000

2500

3000

3500

1
0
4

1
6
0

2
1
6

2
7
2

3
2
8

3
8
4

4
4
0

4
9
6

5
5
2

6
0
8

6
6
4

7
2
0

7
7
6

8
3
2

8
8
8

9
4
4

1
0
0
0

1
0
5
6

1
1
1
2

1
1
6
8

1
2
2
4

1
2
8
0

1
3
3
6

1
3
9
2

1
4
4
8

1
5
0
4

1
5
6
0

1
6
1
6

1
6
7
2

1
7
2
8

1
7
8
4

1
8
4
0

1
8
9
6

1
9
5
2

2
0
0
8

2
0
6
4

2
1
2
0

2
1
7
6

2
2
3
2

2
2
8
8

2
3
4
4

2
4
0
0

re
al

lo
ca

ti
o

n
s

activities

Left

Right

Queue

Stack

Random

Figure B.5: Comparison of schedule quality (measured by number of realloca-
tions) for different activity selection heuristics

0

50

100

150

200

250

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

ru
n

ti
m

e
 [

m
s]

activities

Left

Right

Queue

Stack

Random

Figure B.6: Comparison of schedule quality (measured in run-time) for different
activity selection heuristics

62

B.1.2 Dependence on Constraint Density

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

f1

constraints

Left

Right

Queue

Stack

Random

Figure B.7: Comparison of schedule quality (measured using function f1) for
different activity selection heuristics

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

f2

constraints

Left

Right

Queue

Stack

Random

Figure B.8: Comparison of schedule quality (measured using function f2) for
different activity selection heuristics

63

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

f3

constraints

Left

Right

Queue

Stack

Random

Figure B.9: Comparison of schedule quality (measured using function f3) for
different activity selection heuristics

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

re
so

u
rc

e
s

ch
an

ge
d

constraints

Left

Right

Queue

Stack

Random

Figure B.10: Comparison of schedule quality (measured by number of changed
resource selections) for different activity selection heuristics

64

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

d
u

ra
ti

o
n

 in
cr

e
m

e
n

t

constraints

Left

Right

Queue

Stack

Random

Figure B.11: Comparison of schedule quality (measured using makespan incre-
ment) for different activity selection heuristics

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

re
al

lo
ca

ti
o

n
s

constraints

Left

Right

Queue

Stack

Random

Figure B.12: Comparison of schedule quality (measured by number of realloca-
tions) for different activity selection heuristics

65

B.2 STN-Recovery

B.2.1 Dependence on Model Size

0

50000

100000

150000

200000

250000

300000

350000

8

6
4

1
2
0

1
7
6

2
3
2

2
8
8

3
4
4

4
0
0

4
5
6

5
1
2

5
6
8

6
2
4

6
8
0

7
3
6

7
9
2

8
4
8

9
0
4

9
6
0

1
0
1
6

1
0
7
2

1
1
2
8

1
1
8
4

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
4

1
5
2
0

1
5
7
6

1
6
3
2

1
6
8
8

1
7
4
4

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
4

2
0
8
0

2
1
3
6

2
1
9
2

2
2
4
8

2
3
0
4

2
3
6
0

f1

activities

RSA

STN

Figure B.13: Comparison of schedule quality (measured using function f1) for
Right Shift Affected and STN-recovery

0

500

1000

1500

2000

2500

3000

3500

4000

4500

8

6
4

1
2
0

1
7
6

2
3
2

2
8
8

3
4
4

4
0
0

4
5
6

5
1
2

5
6
8

6
2
4

6
8
0

7
3
6

7
9
2

8
4
8

9
0
4

9
6
0

1
0
1
6

1
0
7
2

1
1
2
8

1
1
8
4

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
4

1
5
2
0

1
5
7
6

1
6
3
2

1
6
8
8

1
7
4
4

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
4

2
0
8
0

2
1
3
6

2
1
9
2

2
2
4
8

2
3
0
4

2
3
6
0

re
so

u
rc

e
s

ch
an

ge
d

activities

RSA

STN

Figure B.14: Comparison of schedule quality (measured by number of changed
resource selections) for Right Shift Affected and STN-recovery

66

0

50

100

150

200

250

300

8

6
4

1
2
0

1
7
6

2
3
2

2
8
8

3
4
4

4
0
0

4
5
6

5
1
2

5
6
8

6
2
4

6
8
0

7
3
6

7
9
2

8
4
8

9
0
4

9
6
0

1
0
1
6

1
0
7
2

1
1
2
8

1
1
8
4

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
4

1
5
2
0

1
5
7
6

1
6
3
2

1
6
8
8

1
7
4
4

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
4

2
0
8
0

2
1
3
6

2
1
9
2

2
2
4
8

2
3
0
4

2
3
6
0

d
u

ra
ti

o
n

 in
cr

e
m

e
n

t

activities

RSA

STN

Figure B.15: Comparison of schedule quality (measured using makespan incre-
ment) for Right Shift Affected and STN-recovery

B.2.2 Dependence on Constraint Density

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

f1

constraints

RSA

STN

Figure B.16: Comparison of schedule quality (measured using function f1) for
Right Shift Affected and STN-recovery

67

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

f2

constraints

RSA

STN

Figure B.17: Comparison of schedule quality (measured using function f2) for
Right Shift Affected and STN-recovery

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

f3

constraints

RSA

STN

Figure B.18: Comparison of schedule quality (measured using function f3) for
Right Shift Affected and STN-recovery

68

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

re
so

u
rc

e
s

ch
an

ge
d

constraints

RSA

STN

Figure B.19: Comparison of schedule quality (measured by number of changed
resource selections) for Right Shift Affected and STN-recovery

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

d
u

ra
ti

o
n

 in
cr

e
m

e
n

t

constraints

RSA

STN

Figure B.20: Comparison of schedule quality (measured using makespan incre-
ment) for Right Shift Affected and STN-recovery

69

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ru
n

ti
m

e
 [

m
s]

constraints

RSA

STN

Figure B.21: Comparison of schedule quality (measured in run-time) for Right
Shift Affected and STN-recovery

B.2.3 Dependence on Connected Component Size

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

f1

activities in one component

RSA

STN

Figure B.22: Comparison of schedule quality (measured using function f1) for
Right Shift Affected and STN-recovery

70

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

f2

activities in one component

RSA

STN

Figure B.23: Comparison of schedule quality (measured using function f2) for
Right Shift Affected and STN-recovery

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

f3

activities in one component

RSA

STN

Figure B.24: Comparison of schedule quality (measured using function f3) for
Right Shift Affected and STN-recovery

71

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

re
so

u
rc

e
s

ch
an

ge
d

activities in one component

RSA

STN

Figure B.25: Comparison of schedule quality (measured by number of changed
resource selections) for Right Shift Affected and STN-recovery

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

d
u

ra
ti

o
n

 in
cr

e
m

e
n

t

activities in one component

RSA

STN

Figure B.26: Comparison of schedule quality (measured using makespan incre-
ment) for Right Shift Affected and STN-recovery

72

	Introduction
	Terminology
	Basic Definitions
	Rescheduling Framework
	Rescheduling Environment
	Rescheduling Strategies
	Rescheduling Policies
	Rescheduling Methods

	Related Methods
	Heuristics
	Meta-heuristics
	Artificial Intelligence Approaches
	Minimal Perturbation Problem
	Repair-DTP

	Basic Terms and Solving Techniques
	Constraint Satisfaction Methods
	Backtracking and Backjumping
	Backmarking
	Conflict-Directed Backjumping with Backmarking

	Temporal Reasoning
	Simple Temporal Networks
	Incremental Full Path Consistency

	Scheduling Model
	Informal Description
	Formal Definition
	Scheduling Problem
	Schedule

	Rescheduling Problem

	Machine Breakdown
	Complexity
	Right Shift Affected
	Reallocating Activities
	Constraint Repair
	Order of Activities
	Correctness
	Discussion

	STN-Recovery
	Skeleton of STN-Recovery
	Swapping Resource Selections
	Shifting Activities
	Updating STN
	Components Acquirement
	Deallocation
	Allocation
	Correctness
	Discussion and Experimental Evaluation

	Breakdown with Arbitrary Resource Groups
	Breakdown at time tf > 0

	Other Disturbances
	Hot Order Arrival
	Order Cancellation
	Machine Repair

	Conclusion
	Bibliography
	Input Data Acquisition
	Random Model Generation
	Scheduling Model Solver
	Testing Machine

	Evaluation Graphs
	Right Shift Affected Heuristics
	Dependence on Model Size
	Dependence on Constraint Density

	STN-Recovery
	Dependence on Model Size
	Dependence on Constraint Density
	Dependence on Connected Component Size

