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1. Introduction

1.1 Motivation and goals

Dynamic state estimation is an interesting and intensively researched topic due
to the variety of its applications. The task is to (formally) describe a system
that evolves in time and its states are not directly observable. Then we can
estimate the true state value in a certain time given some measurements or make
predictions about the future. Such systems can describe biological processes,
economy, robotics or be used in computer graphics.

We focus on the field of robotics and use real data from unmanned aerial
vehicles (UAVs) also known as drones. This kind of robots becomes increasingly
popular these days. There are a few commercial models available ([27], for in-
stance) and many low-cost, home-made ones. For autonomous control of a robot,
state estimation is crucial. A state typically consists of the position including
rotation angles and the current speed. These values can be measured by sen-
sors, but they usually provide noisy data. Moreover, some of the sensors may be
unavailable.

The most common approach is to maintain a probabilistic distribution of
the current state estimate and update it according to the model of the system
dynamics and measurement model. These models or their parameters may not
be known and learning of them is referred to as system identification.

Our goal is to design and implement a probabilistic model for state estimation
of a particular UAV. We focus on the tasks where some of the sensors are not
available and their values need to be predicted, which requires more accurate
model. We use EM algorithm to learn the parameters, Kalman filter and Particle
filter to provide estimates. We evaluate our models on separate datasets using
likelihood and mean square error (MSE) for predicting the missing values.

We design the methods to be general enough and easily applicable for other
types of robots. We test our implementation of Particle filter on a ground robot
position estimation task. This introduces a few more problems like asynchronous
measurements and misleading GPS values.

1.2 Structure of the thesis

Chapter 2 starts with a description of the dynamic state estimation problem. It
introduces three main tasks: filtering, smoothing and learning the model parame-
ters. It briefly summarizes the most common approaches to the filtering problem
and then focuses on two of them: Kalman filter and Particle filter. These algo-
rithms are described to a level of detail sufficient for implementation. A special
attention is devoted to learning the parameters by EM algorithm. Its application
for both Kalman filter and Particle filter is discussed.

Chapter 3 describes our models for state estimation of UAV. It first summa-
rizes the basic approaches of the system identification used by [7] and continues
with application of the methods from the previous chapter for this specific da-
ta, describes various models and adjustments of EM algorithm. Finally, a few
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evaluation experiments compare the methods we used and the final results are
presented.

In chapter 4, our analysis of other robotics datasets is presented. The first
dataset is from a special experiment Vicon that enables to analyze measurement
model more precisely. The second is a ground robot dataset, where our imple-
mentation of Particle filter is used to estimate the position of the robot based on
GPS and compass measurements.

More details of our MATLAB implementation are then discussed in chapter
5.
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2. Theoretical background

In this chapter we describe two approaches for the task of a dynamic system
state estimation. In the first section, we introduce the problem in general. Then
we describe Kalman filter, a method that assumes a linear model with Gaussian
distribution. The next part is devoted to the Particle filter approach. It is a Monte
Carlo type of state estimation and therefore an approximate method. However,
it is applicable for nonlinear and non-Gaussian problems. For both methods we
also derive EM-type algorithms for learning their parameters.

2.1 Problem definition and notations

2.1.1 Notation remarks

Throughout the text, we use uppercase to denote a variable and lowercase to
denote a value (both are usually vectors). If a time-dependant value has its time
index omitted, it stands for a vector of values for all considered time steps. xi:j
stands for the vector of values from time i to time j included. The time steps
indices are typically denoted t, T denotes the number of time steps.

2.1.2 Dynamic systems description

Our goal is the state estimation of a dynamic system. We assume discrete time,
which is the most common approach in this area. For each time step t, the sys-
tem is described by its state Xt. It is a vector of possibly continuous values. In
robotics, it usually contains position, speed and angles for each coordinate. We
denote the dimension of the state vector by n. These values are not directly ob-
servable and we try to estimate them using the measurements. The measurement
vector Zt contains the observations that are usually noisy. They are for instance
the values provided by the speed and position sensors. We denote the dimension
of Zt by m. Usually m ≤ n. Sometimes, especially in robotics, we have a separate
vector ut containing the control signals.

The system is then described by the state transition model and the measure-
ment model. The state transition model defines how the state vector evolves over
time. Here, we assume the Markov property, that is, the current state contains
all the information about the transition to the next state. In other words

p(Xt+1|X1 = x1, ..., Xt = xt) = p(Xt+1|Xt = xt). (2.1)

The state transition is not deterministic, but we suppose a noise in the transition.
Therefore, the state transition model is a function of the previous state and a noise
vector.

xt = ft(xt−1, wt). (2.2)

Here, we can see a general case where the transition function can change over
time. However, in the following we suppose there is a single transition function
for all the time steps. Generally, there are no constraints on this function, but
each estimation method introduces some constraints. Kalman filter assumes a
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linear function, for instance. The noise vector wt, called the process noise, is an
independent and identically distributed random variable, usually from the normal
distribution.

We can imagine the state transition process in an example. The next position
of a robot is determined by a formula based on some physical laws considering
the previous position, rotation angle and the previous speed. This outputs a
new position in the state Xt+1. However, there are some factors we do not model
exactly, like air resistance or slippery surface, that lead the robot to a bit different
(hardly predictable) position. This is modeled by adding a random noise wt to
that calculated position.

The measurement model describes how the (unknown) true state Xt is pro-
jected to the measured values.

zt = ht(xt−1, vt). (2.3)

Similarly, various methods add some constraints to this function. The interpreta-
tion of the measurement noise vt is that the sensors are not exact. By adjusting
its distribution, we try to model the sensor errors.

Figure 2.1: Dynamic system viewed as a Hidden Markov Model.

2.1.3 The tasks

Suppose we know both functions f and h. Then the main tasks are:

• Filtering: for each time step t, given a sequence of measurements up to t,
estimate the state in t. This requires computing p(Xt|Z0 = z0, ..., Zt = zt),
referred to as the posterior. Note that we have to be able to compute
the current state estimation online (knowing only measurements up to the
current time).

• Smoothing: given all the measurements up to T , estimate each state, that
is, p(Xt|Z0 = z0, ..., ZT = zT ) for each 1 ≤ t ≤ T . This can be performed
only offline and should provide more accurate (and smoother) results as it
has more information than a filter has.

In our thesis, the goal is the filtering task. However, we cannot assume that we
know the state transition and measurement models exactly. Therefore, there is a
separate task of learning these models. More precisely: assuming the structure
of the models, learning its parameters, given (offline) measurements. A structure
can, for instance, mean a linear model with a Gaussian noise (Kalman filter).
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Then the parameters to learn would be the parameters of that linear function,
mean and covariance of process and measurement noise. Similarly, we can assume
the functions to be mixtures of some certain nonlinear functions. That leads to
a more complicated model, but more accurate for nonlinear systems. We can
propose several structures of the model, learn the parameters for each and then
compare the accuracy of the filters.

We also deal with the smoothing task, because it is used in the algorithms for
learning the parameters.

2.1.4 Filtering methods overview

Kalman filter

Kalman filter assumes the posterior at each time step is Gaussian. It can be
proved [13] that if the posterior in time t is Gaussian, transition and measurement
models are linear and known functions with Gaussian noises of known parameters,
then the posterior in time t + 1 is also Gaussian. In this scenario, Kalman filter
provides the optimal solution. It is also very efficient (time complexity is linear
in T , space requires only current mean and covariance). However, the conditions
are often too restrictive.

Extended Kalman filter and Unscented Kalman filter

Extended Kalman filter (EKF, [15] [16]) does not require transition and mea-
surement models to be linear. They can be arbitrary differentiable functions.
The idea is that these functions can be approximated locally by linear functions.
This approximation is obtained by calculating the Jacobian at each time step for
the current predicted state. This process linearizes the nonlinear (transition or
measurement) function around the current estimate. Then Kalman filter can be
used.

Sometimes the linear approximation is not accurate. Unscented Kalman filter
[14] instead picks a set of points (called sigma points) from the current distribution
and applies the nonlinear function to each of them. Then, a new estimated mean
and covariance are computed from the transformed points. The choice of the
sigma points is deterministic and such that their mean and covariance is the
same as the mean and covariance of the current estimate (and the number of
points is minimal). The advantage of this method is that it does not have to
compute the Jacobian at each time step.

Both of these methods still represent the posterior as a Gaussian. Although
they can work with nonlinear models, the true posterior is not Gaussian in this
case and these methods provide only its approximation. If the true posterior is
bimodal or heavily skewed, it cannot be described well by a Gaussian [4].

Grid-based methods

Grid-based methods are optimal if the state space is discrete and final [4]. In-
tuitively, we can calculate the posterior as a sum over all possible states. This
method can be also used for continuous state space by discretizing the space.
Then it is obviously an approximate method.
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Particle filters

Particle filters are Monte Carlo approximation methods that represent the pos-
terior by a set of points in the state space called particles. This way, we can
represent arbitrary probability distribution assuming enough particles. Particle
filters do not have any constraints on the transition and measurement models
and can easily handle nonlinear and non-Gaussian models. There are several
instances of Particle filters with various methods of generating the new set of
particles from the previous. The most common approach is SIR Particle filter
[4]. It first transforms each particle according to the transition model and then
resamples the particles according to their probability given by the measurement
model.

Particle filters are less computationally efficient, their complexity is O(MT )
where M is the number of particles and T the number of time steps. Not enough
particles, however, leads to not accurate results.

2.2 Kalman filter

2.2.1 Definition

As already mentioned, Kalman filter assumes the posterior is Gaussian and the
model to is linear with Gaussian noise. The state transition model is described
by

xt+1 = Axt + wt, wt ∼ N(0, Q) (2.4)

and the measurement model equation is

zt = Hxt + vt, vt ∼ N(0, R), (2.5)

where A ∈ Rn×n, H ∈ Rm×n, Q ∈ Rn×n and R ∈ Rm×m.
In robotics, the transition model often considers control signals separately,

that is, uses the equation

xt+1 = Axt +But + wt, wt ∼ N(0, Q), (2.6)

where ut denotes the control signals vector for time t and B ∈ Rn×nu (nu denotes
the dimension of ut). However, equation (2.4) is general enough and we can
extend the state vector by variables describing the control signals. Then we must
consider the control signals being a part of observations, set the corresponding
part of the matrix H to be an identity and the corresponding part of Q to be
small. We can utilize this also if the control signals are noisy. Moreover, the
equations for the parameters learning simplify by that.

2.2.2 Algorithm

The goal of the filtering algorithm is to estimate the state for each time step.
Assuming the Markov property, we estimate the next state from the previous
state. Estimating a state (in Kalman filter) means to estimate its mean x̂t = E[xt]
and covariance Pt = E[(xt − x̂t)(xt − x̂tT )]. We start with an initial estimate x̂0
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and initial covariance P0. We either know these values or set them reasonably
(e.g. mean of the state space and high covariance).

Each estimate is made in two steps. The first is called time update (or predictor
step) and the second is called measurement update (or corrector step). The time
update calculates the apriori mean and covariance (noted with minus superscript)
according to the previous state, transition matrix A and process noise Q (and
control signals if not represented in the state) as follows:

x̂−t = Ax̂t−1 +But−1 (2.7)

P−t = APt−1A
T +Q. (2.8)

The measurement update corrects the apriori estimate using the measurement
zt. It adds a weighted difference of zt and the predicted measurement Hx̂−t to
the apriori mean:

x̂t = x̂−t +Kt(zt −Hx̂−t ) (2.9)

Pt = (I −KtH)P−t . (2.10)

The weight matrix Kt is chosen to minimize the posterior error covariance
(Pt). The resulting matrix is

Kt = P−t H
T (HP−t H

T +R)−1. (2.11)

The smaller the measurement covariance R, the more weighted the measure-
ment becomes (we trust the measurement if R is small). If P−t is small, measure-
ment is less weighted (because the apriori estimate is confident). [2]

The filtering process is summarized in Algorithm 1. Note that the posterior
estimate does not change after it is once calculated (it does not depend on future
observations unlike in Kalman smoother), so the algorithm could output this
value immediately if necessary.

Algorithm 1

function Kalman-filter(x̂0, P0, Z, u, θ = A,B,H,Q,R)
for t = 1 to T do

Calculate x̂−t and P−t according to (2.7) and (2.8).
Calculate Kt according to (2.11).
Calculate x̂t and Pt according to (2.9) and (2.8).

return x̂t for each t

2.2.3 Kalman smoother

Smoothing methods provide better estimate of the state in a given time, because
they use also the future measurements. This disables them to be used online
when current estimate is needed immediately. However, they can be used in the
process of learning the parameters of the model as described in Section 2.2.4.

Smoothing consists of two phases. The first is essentially the filtering (called
forward pass). The second (backward pass) passes from time T back to the start
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and updates the filter estimates. Again (but backwards), the state in a given
time is updated only according to the nearest time step, because for estimation
of Xt knowing Xt+1, states Xt+2:T provide no additional information [17].

We denote the smoothed mean of state in time t by x̂t|T and its covariance
Pt|T (emphasizing that the values are calculated using all data). The smoothed
estimate in time T is equal to the filter estimate. The algorithm then continues
from t = T − 1 downto t = 1 and calculates the smoothed estimate as follows:

Lt = PtA
T (P−t+1)−1 (2.12)

x̂t|T = x̂t + Lt(x̂t+1|T − x̂−t+1) (2.13)

Pt|T = Pt + Lt(Pt+1|T − P−t+1)LTt . (2.14)

Note that all the smoothed values required by the equations are already cal-
culated at the given time. The smoother also requires all prior estimates and
covariances, so the filter has to store these values.

2.2.4 EM Algorithm

This section is based on the slides in [3]. We try to provide further explanation
for individual steps mentioned there.

Likelihood

EM algorithm is the most common algorithm for learning the parameters of a
model. Here, we learn the values of A,H,Q and R (collectively denoted by θ),
given data Z = z1, ..., zT . The algorithm learns the parameters by maximizing
their likelihood. The likelihood of θ given Z is defined as

L(θ|Z) ≡ p(Z|θ). (2.15)

To justify why to maximize the likelihood, let us consider the Bayes formula:

p(θ|Z) =
p(Z|θ)p(θ)
p(Z)

. (2.16)

What we in fact would like to maximize is the left hand side of the equation, as
we are given the data and searching for the best parameters that explain it. If
we do not assume anything about the prior probability of θ, we just maximize
the likelihood.

However, we cannot maximize the likelihood directly, because it depends on
the hidden states. Therefore we consider the joint likelihood of X and Z

L(θ|X,Z) = p(X,Z|θ). (2.17)

As we do not know the values of X, we will maximize the expectation of the
joint likelihood over X, given Z. [5] proves that maximizing the expected joint
likelihood also maximizes the original likelihood.
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Log-likelihood for Kalman filter

We compute the logarithm of the likelihood and because log is growing monoton-
ically, the maximum is the same for both likelihood and log-likelihood.

logL(θ|x, z) = log p(x, z|A,C,Q,R) = log
T∏
t=1

p(xt|xt−1)p(zt|xt). (2.18)

We also suppose the prior state x0 is not known and define p(x1|x0) ≡ 1.
Using the rule that the logarithm of a product is the sum of logarithms, we get

T−1∑
t=1

log p(xt+1|xt) +
T∑
t=1

log p(zt|xt) (2.19)

Our model assumes that xt+1 is drawn from a normal distribution with mean
Axt and covariance Q. Similarly, zt ∼ N(Hxt, R). Multivariate (k-dimensional)
normal distribution N(µ,Σ) is defined by its probability density function

p(x) = (2π)−
k
2 |Σ−1|

1
2 e−

1
2

(x−µ)T Σ−1(x−µ). (2.20)

To calculate the logarithms in (2.19), we use this density function, that is a
product of 3 factors. Therefore the logarithm is a sum of 3 addends, one of which
is a constant (log(2π)−k/2). The exponential factor transforms to its argument.
We get

T∑
t=1

[
1

2
log |Q−1| − 1

2
(xt+1 − Axt)TQ−1(xt+1 − Axt)

]

+
T∑
t=1

[
1

2
log |R−1| − 1

2
(zt −Hxt)TR−1(zt −Hxt)

]
+ const.

(2.21)

The first part of each sum is not dependant on the sum, so we take it out
T − 1 (and T , respectively) times. Then we use a trick of adding a trace1.
(xt+1−Axt)TQ−1(xt+1−Axt) is in fact a scalar, despite xt is a vector. Tr(x) = x
when x is a scalar, therefore we have

T − 1

2
log |Q−1| −

T−1∑
t=1

(
1

2
Tr
[
(xt+1 − Axt)TQ−1(xt+1 − Axt)

])

+
T

2
log |R−1| −

T∑
t=1

(
1

2
Tr
[
(zt −Hxt)TR−1(zt −Hxt)

])
+ const.

(2.22)

In the following, we use these two basic rules: Tr(AB) = Tr(BA) and Tr(A)+
Tr(B) = Tr(A + B). Although the argument is a scalar, it is a product of
matrices, too.

T − 1

2
log |Q−1| − 1

2
Tr

[
Q−1

T−1∑
t=1

(xt+1 − Axt)(xt+1 − Axt)T
]

+

T

2
log |R−1| − 1

2
Tr

[
R−1

T∑
t=1

(zt −Hxt)(zt −Hxt)T
]

+ const.

(2.23)

1Trace of a matrix M , denoted Tr(M) is the sum of the elements on the diagonal of M .
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Finally, we just expand.

T − 1

2
log |Q−1| − 1

2
Tr

[
Q−1

T−1∑
t=1

(
xt+1x

T
t+1 − xt+1x

T
t A

T − AxtxTt+1 + Axtx
T
t A

T
)]

+

T

2
log |R−1| − 1

2
Tr

[
R−1

T∑
t=1

(
ztz

T
t − ztxTt HT −HxtzTt +Hxtx

T
t H

T
)]

+ const.

(2.24)

Maximizing of the log-likelihood

Maximizing the likelihood means to compute the partial derivatives of (2.24) with
respect to A,H,Q and R, set them equal to zero and solve the equations.

A derivative of a function f : Rn×m → R is a generalization of the standard
derivative of a function on the real numbers. The important identity here is

∂Tr(AB)

∂A
=
∂Tr(BTAT )

∂A
= BT . (2.25)

To calculate the new value for A, we consider all the parts of (2.24) containing
A (the rest differentiates to zero):

∂

∂A
logL(θ|x, y) =

∂

∂A

(
−1

2
Tr

[
Q−1

T−1∑
t=1

(
−xt+1x

T
t A

T − AxtxTt+1 + Axtx
T
t A

T
)])

.

(2.26)
We can split the argument of the trace into 3 parts and compute the sum of

3 derivatives. We also know that Q−1 is contained in each.

∂

∂A

[
Tr

(
T−1∑
t=1

−xt+1x
T
t A

T

)]
= −

T−1∑
t=1

xt+1x
T
t (2.27)

∂

∂A

[
Tr

(
T−1∑
t=1

−AxtxTt+1

)]
= −

T−1∑
t=1

(
xTt xt+1

)T
= −

T−1∑
t=1

xt+1x
T
t (2.28)

∂

∂A

[
Tr

(
T−1∑
t=1

Axtx
T
t A

T

)]
=

T−1∑
t=1

2Axtx
T
t . (2.29)

Therefore the final derivative is equal to

Q−1

T−1∑
t=1

(
xt+1x

T
t − AxtxTt

)
. (2.30)

We set this equal to zero and solve for A.

A =
T−1∑
t=1

(xt+1x
T
t )(xtx

T
t )−1. (2.31)

The case of H is calculated very similarly. The derivative is equal to

R−1

T∑
t=1

(
ztx

T
t −HxtxTt

)
(2.32)
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and the maximizing H is

H =
T∑
t=1

(ztx
T
t )(xtx

T
t )−1. (2.33)

Note, that the calculations so far can be viewed as a proof for a general rule

∂

∂A

[
(x− As)TW (x− As)

]
= −2W (x− As)sT , (2.34)

which we use also in Section 2.3.7.
The maximizing covariance matrices are

Q =
1

T − 1

T−1∑
t=1

(
xt+1x

T
t+1 − xt+1x

T
t A

T − AxtxTt+1 + Axtx
T
t A

T
)
, (2.35)

R =
1

T

T∑
t=1

(
ztz

T
t − ztxTt HT −HxtzTt +Hxtx

T
t H

T
)
. (2.36)

Expected likelihood

Now, we have to substitute all terms containing X by their expectations given
Z. We use the Kalman smoother here, because it outputs more precise results
and we are not limited by the online requirement in the process of learning the
parameters.

We assume that at each time step the probability distribution of the state
is Gaussian and the Kalman smoother outputs its mean and covariance. The
expected value of a normal distribution is its mean:

E[Xt] = x̂st (2.37)

To compute the expectation of xtx
T
t , we use the definition of covariance ma-

trix:

cov(Xi, Xj) ≡ E[(Xi − µi)(Xj − µj)] = E[XiXj]− E[Xi]E[Xj]. (2.38)

From that we directly have

E[XiXj] = cov(Xi, Xj) + E[Xi]E[Xj]. (2.39)

Our covariance matrix was denoted Pt|T and we have already derived the
expectation of xt. Therefore the expectation is

E[XtX
T
t ] = Pt|T + x̂t|T (x̂t|T )T . (2.40)

The replacement for xtx
T
t+1 is [3]

E[XtX
T
t+1] = x̂tx̂

T
t+1|T + Lt

[
Pt+1|T + (x̂t+1|T − x̂−t+1)x̂Tt+1|T

]
. (2.41)

Finally, as cov(A,B) = cov(B,A)T ,

E[Xt+1X
T
t ] = E[XtX

T
t+1]T . (2.42)

13



Algorithm

As usual in EM-type of algorithms, we set θ = {A,H,Q,R} to some initial
estimates and then repeat the 2 steps until θ converges.

1. E-step: using Kalman smoother with parameters θ and given measure-
ments Z = z1, ..., zT , compute the distributions for X1, ..., XT .

2. M-step: update θ using equations in (2.31), (2.33), (2.35) and (2.36) with
expectations used instead of the true state values (according to equations
(2.37), (2.40), (2.41) and (2.42)).

The algorithm converges to a local optimum.

2.3 Particle filter

2.3.1 Introduction

Particle filter has recently been one of the most popular approaches to the dy-
namic state estimation problem. Unlike Kalman filter, it does not constrain the
model to be linear nor Gaussian. The basic idea is to represent the posterior by
a set of particles. Each particle is a point of the state space (a vector) and has a
weight associated to itself. The more particles we use, the more computationally
complex the algorithm becomes, but the representation of the posterior is more
accurate.

Particle filter can be viewed rather like a family of algorithms. There are
multiple ways how to generate new set of particles from the previous one and
from the new measurements.

2.3.2 General algorithm derivation [4]

We denote the i-th particle in time step t by xit. In each time step, we have a set
of N particles. To derive the algorithm we assume each particle to have assigned
the history of the points it has represented since t = 0 (particles are initialized
according to prior x0). We denote it by xi0:t. Similarly, all measurements up to
time t are denoted by z1:t.

Let us assume we have a probability density q(x0:t|z1:t), called importance
density, from which we can generate samples easily. We want to draw the next
time step’s samples xi0:t ∼ q(x0:t|z1:t) from the previous set of samples xi0:t−1 ∼
q(x0:t−1|z1:t−1), therefore we choose the importance density to satisfy

q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1). (2.43)

We use a discrete approximation of the posterior, defined as

p(x0:t|z1:t) ≈
N∑
i=1

witδ(x0:t − xi0:t), (2.44)
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where δ(.) is the Dirac delta function2 and the weights are normalized such that
they sum up to one. As the samples xi0:k were drawn from the importance density,
the weights must be

wi ∝ p(xi0:t|z1:t)

q(xi0:t|z1:t)
. (2.45)

Now, we want to derive the update rule for the weights. Suppose we have the
previous weights wit−1. We express p(x0:t|z1:t) in terms of the previous posterior
p(x0:t−1|z1:t−1), measurement density p(zt|xt) and transition density p(xt|xt−1).
First, we use the Bayes’ rule.

p(x0:t|z1:t) =
p(z1:t|x0:t)p(x0:t)

p(z1:t)
. (2.46)

We can view p(z1:t|x0:t) as a probability of a conjunction and use the fundamental
rule in its conditioned form 3, splitting z1:t into zt and z1:t−1. We apply the same
(unconditioned) rule for p(z1:t) and get

p(zt|z1:t−1, x0:t)p(z1:t−1|x0:t)p(x0:t)

p(zt|z1:t−1)p(z1:t−1)
. (2.47)

Then, again the Bayes’ rule is applied, followed by the conditioned fundamen-
tal rule.

=
p(zt|z1:t−1, x0:t)p(x0:t|z1:t−1)

p(zt|z1:t−1)
(2.48)

=
p(zt|z1:t−1, x0:t)p(xt|x0:t−1, z1:t−1)p(x0:t−1|z1:t−1)

p(zt|z1:t−1)
, (2.49)

which can be simplified using the Markov property to

p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1)

p(zt|z1:t−1)
(2.50)

∝ p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1). (2.51)

Using (2.45) and (2.43) we have

wit ∝
p(xi0:t|z1:t)

q(xi0:t|z1:t)
(2.52)

∝
p(zt|xit)p(xit|xit−1)p(xi0:t−1|z1:t−1)

q(xit|xi0:t−1, z1:t)q(xi0:t−1|z1:t−1)
(2.53)

= wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xi0:t−1, z1:t)
. (2.54)

We can choose the importance density such that it depends only on the pre-
vious state and the current measurement, i.e,

q(xt|x0:t−1, z1:t) = q(xt|xt−1, zt). (2.55)

2Dirac delta function is defined such that it is zero everywhere except from at 0 and its
integral is 1.

3p(A,B|C) = p(A|B,C)p(B|C)
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Then we no longer need the history of the particles.
The general Particle filter algorithm, also called Sequential Importance Sam-

pling Particle Filter (SIS PF) is described in Algorithm 2. For each time step, a
new set of particles is generated from the previous in the way that the new i− th
particle is drawn from the importance density of the old i-th particle. Then the
weights are updated according to (2.54). Specific algorithms depend on the choice
of the importance density and other modifications.

Algorithm 2

function SIS-PF-step({xit−1, w
i
t−1 : 1 ≤ i ≤ N})

for i = 1 to N do
draw xit ∼ q(xt|xit−1, zt)

wit := wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xit−1,zt)

return {xt, wt}

In each time step, the expected state is (for normalized weights)

x̂t =
N∑
i=1

witx
i
t. (2.56)

2.3.3 Resampling

Definition

The major problem of Particle filters is the degeneracy problem, where the most
particles have very small weights. This typically happens after a few time steps.
One method to deal with this is good choice of importance density described in [4].
More common approach is resampling. This method eliminates the particles with
the smallest weights and adds more particles with higher weights. It is basically
generating a new set of particles by sampling with replacement from the current
set with probability of choosing xi equal to wi.

Algorithm

There are several possible ways how to implement resampling. The straight-
forward algorithm is the following. Let us assume the weights are normalized.
First, we calculate cumulated weights, which split the interval [0, 1] into N in-
tervals. We generate N times a random number between 0 and 1 and each time
choose the particle whose associated interval surrounds the generated number.
Finding the appropriate interval takes O(N) time, so this is O(N2) algorithm.
Sorting the particles according to their weights improves the complexity, but the
worst case remains the same.

There is a linear time resampling algorithm described in [20] and another in
[19]. We describe systematic resampling [18], which is a linear algorithm, too. It
moves along the [0, 1] interval in 1

N
-long steps, starting at a random position in

[0, 1
N

]. It keeps track of the current interval of the cumulated weights and as it
moves only forward, the interval does not have to be searched from start each
time. The random selection of the initial position guarantees a chance for each

16



particle to be selected and the equal steps along the cumulated weights assure
proportional sampling. The pseudocode is shown in Algorithm 3.

Algorithm 3

function Resample({xit−1, w
i
t : 1 ≤ i ≤ N})

c1 := 0
for i = 2 to N do

ci := ci−1 + wit
i := 1
step := 1

N

u1 := random uniform([0, step])
for j = 1 to N do

uj = u1 + step(j − 1)
while uj > ci do

i := i+ 1

xj∗t = xit
wjt = 1

N
return {x∗t , wt}

When to resample

A measure usually used to estimate degeneracy of particles is

N̂eff =
1

N∑
i=1

(wit)
2

. (2.57)

If N̂eff (called effective sample size) falls below a certain threshold (it is always
≤ N) resampling is performed.

Sample impoverishment

Resampling leads to another problem called sample impoverishment. The problem
is lack of diversity among the particles, often all the particles collapse into a single
point in the state space. The most severe is the case of small process noise. There
are several techniques to avoid sample impoverishment. One is the resample-move
algorithm [21], another is regularization [22]. [4]

2.3.4 SIR Particle filter

Sampling Importance Resampling (SIR) Particle filter is one of the most common
instances of the general Particle filter due to its straight-forward implementation.
Its choice of importance density is

q(xt|xt−1, z1:t) = p(xt|xt−1), (2.58)

which means that we draw new samples from the prior (transition model). This
is sometimes considered as the only way to implement Particle filter, but it is
useful to think about it as a particular choice of the importance density.
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Using the prior as the importance density leads to the following simplification
of the weights update.

wit ∝ wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xi0:t−1, z1:t)
= wit−1p(zt|xit) (2.59)

Moreover, the SIR PF performs resampling in each step, therefore the weights
are just p(zt|xit).

In the SIR Particle filter we need two functions modeling the problem:

• State transition model: given a particle, generate a particle for the next
step according to p(xit|xit−1).

• Measurement model: given a particle and a measurement for the corre-
sponding time step, return the probability of the measurement, i.e., p(zt|xit)
or at least up to proportionality (because the weights are normalized either).

There are no constraints on these functions.
Due to resampling at each step, SIR Particle filter often encounters loss of

diversity. Moreover, generating particles without knowledge of the observation
may lead to inefficient performance [4].

2.3.5 Alternative methods

There are several algorithms based on the Particle filter. Auxiliary SIR particle
filter proposed by [23] is less sensitive to outliers and has more even weights than
SIR in case of small process noise. However, with larger process noise it performs
worse.

[24] introduces a filtering method using Particle Swarm Optimization (PSO,
a general optimization method originally proposed by [25]). The idea is to move
the particles towards to regions with high likelihood and simultaneously not allow
them to move far from the prior. Multiobjective fitness function is used to achieve
these two goals. This function is then optimized by PSO at each time step and the
result is used for sampling and assigning the weights. Resampling is performed
when N̂eff reaches a threshold.

It is important to mention that all these PF variants are applicable for EM
learning of parameters as long as they provide the “interface” of weighted particles
for each time step.

2.3.6 Particle smoother

Similarly to Kalman smoother, particle-based methods can also provide smoothed
estimates using backward pass. In the backward pass, the weights are updated
for each particle, but the particles are not changed nor generated. The update is
performed according to equations

wit|T = wit

N∑
k=1

p(kt+1|xit)
vkt

, (2.60)

vkt =
N∑
j=1

wjtp(x
k
t+1|x

j
t). (2.61)

18



2.3.7 EM Algorithm

Likelihood and its expectation

Similarly as in Section 2.2.4, we would like to maximize the expected joint likeli-
hood of the measured data Z and hidden states X, over all possible parameters θ.
We denote it by Q(θ, θk), where θ is the free parameter for maximization and θk is
a fixed value (obtained from the previous EM iteration) over which we condition
the expectation (we use θk in the smoother). The space for the possible θ values
depends on how we model the problem (see Section 2.3.7).

In Kalman EM algorithm, we used the posterior mean and covariance cal-
culated by Kalman smoother to express the expectation of a state. Now, we
cannot assume Gaussian posterior and need to provide the expectation in a gen-
eral form. Expected value of a function g(x) is an integral over x, which can be
approximated by Particle smoother:

E [g(x)] =

∫
g(x)p(x)dx ≈

N∑
i=1

wig(xi). (2.62)

In our case, the function g is the joint log likelihood, i.e.,

T−1∑
t=1

log p(xt+1|xt) +
T∑
t=1

log p(zt|xt). (2.63)

The second sum’s expectation can be expressed as

Eθk

[
T∑
t=1

log pθ(zt|xt)|z1:T

]
=

T∑
t=1

∫
log pθ(zt|xt)pθk(xt|z1:T )dxt

≈
T∑
t=1

N∑
i=1

wit|T log pθ(zt|xit).

(2.64)

It is more complicated to express the expectation of log pθ(xt+1|xt), because
it leads to integration over all xt and xt+1 simultaneously. [5] proves that

Eθk [log pθ(xt+1|xt)|z1:T ] ≈
N∑
i=1

N∑
j=1

wijt|T log pθ(x
j
t+1|xit),

wijt|T =
witw

j
t+1|Tpθk(xjt+1|xit)

N∑
l=1

wltpθk(xlt+1|xlt)
.

(2.65)

Our approximation of Q(θ, θk) is the sum of the terms in (2.64) and (2.65).
Maximization of this function over θ can be performed either

• when having a closed form of the equation, solving it directly (as in Kalman
filter EM), or

• iterating using gradient as proposed in [5].
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Nonlinear models

[6] proposes an approach where nothing is known about the structure of the
measurement model. The function h(x(t), θ) is then modeled as a mixture of
Gaussians:

h(xt, θ) =
P∑
p=1

mpgp(xt) +Hxt + b. (2.66)

The parameters of this model are mp ∈ Rm for P being fixed, H ∈ Rm×n and b ∈
Rm. The functions gp are Gaussians with fixed means and covariance matrices.
The means are distributed over the range of the states and the covariances are
chosen to be identities for simplicity. The measurements are assumed to be drawn
from a normal distribution with mean h(xt, θ) and unknown covariance R.

The state transition model is assumed to be completely known (but nonlinear
with a non-Gaussian process noise). Then the EM algorithm estimates only mp,
H, b and R.

We denote

Φt ≡
[
g1(xt), g2(xt), ..., gP (xt), x

T
t , 1
]T

(2.67)

θ ≡ [m1,m2, ...,mP , A, b] . (2.68)

Then
h(xt, θ) = θΦt. (2.69)

Given the Gaussian distribution of the measurement model, we have

log pθ(zt|xt) = −1

2
(zt − θΦt)

TQ−1(zt − θΦt) +
1

2
log |Q|+ const. (2.70)

Maximizing the mixture of Gaussians measurement model

We want to maximize the expectation of (2.70) over θ. Using rule (2.34) leads to
its derivative with respect to θ being

T∑
t=1

Q−1(zt − θΦt)Φ
T
t . (2.71)

Solving for θ with the derivative equal to zero leads to the maximizing θ:

θk+1 = Eθk

[
T∑
t=1

(ztΦt)(ΦtΦ
T
t )−1

]
=

N∑
i=1

T∑
t=1

wit(ztΦ
i
t)
[
Φi
t(Φ

i
t)
T
]−1

. (2.72)

Similarly, for the covariance matrix R:

Rk+1 =
N∑
i=1

T∑
t=1

wit
[
ztz

T
t − θk+1Φi

tz
T
t

]
. (2.73)

A similar model could be used for estimation of state transition parameters.
Generally, this method is computationally impractical as its complexity grows
exponentially with the dimension of the state space (if no prior knowledge about
where to place the means of the Gaussian kernels).
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Algorithm overview

The algorithm iterates the expectation (E) and maximization (M) steps, until
the parameter θ converges, starting with an arbitrary initialization θk, k = 0.

• E-step: calculate Q(θ, θk). This value is parametrized by an unknown
value of θ, so by calculating Q, we mean estimating the probabilities of the
hidden states by the Particle smoother, which enables to express Q.

• M-step: assign θk+1 = argmax
θ

Q(θ, θk) using either closed form equations

or a gradient method.

The two steps are independent in sense that we can employ any particular
method of Particle filtering for the E-step.
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3. Application for unmanned
aerial vehicles

In this chapter we describe our design of probabilistic models for tasks based on
unmanned aerial vehicle (UAV) data. We describe several methods with focus
on learning the model parameters. We evaluate these methods and analyze the
results.

3.1 Data and tasks

The data was provided by the Czech Technical University in Prague (ČVUT).
We have received 4 files, each describing a single flight. The flights have various
length, approximately from 5 to 20 thousands records for a flight, 66 000 together.

All the flights were performed by the same UAV in the same conditions. A
static point (so called blob) was marked on the floor and the aim was to stay
above that point. Naturally, the UAV was oscillating around that spot and the
overall view of the speeds seems like a non-perfect sinusoid.

Currently, the flights are not performed in more complicated conditions (out-
side, for instance), because “the system is unstable, dangerous and easily dam-
ageable” [7].

3.1.1 Data description

A single record has the following format:

• pitch - rotation angle in the forward/backward axis (Bx)

• roll - rotation angle in the left/right axis (By)

• elevator - control signal for the forward motion, desired angle (By)

• aileron - control signal for the sideways motion, desired angle, (By)

• throttle - control signal for the elevation (height)

• x - position in the x axis (Gx)

• y - position in the y axis (Gy)

• yaw - rotation angle around the vertical axis (coordinate system I)

• xdot - speed in the forward axis (Bx)

• ydot - speed in the sideways axis (By)

• z - height from the ground measured in axes perpendicular to the plane of
the UAV

• time - time elapsed from the beginning.
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There are multiple coordinate systems used, as described on Figure 3.1. The
most important for us (regarding our tasks, see Section 3.1.2) is that pitch, roll,
elevator, aileron, xdot and ydot are all measured in the same coordinate system,
the one depending on the current pose of the UAV.

Figure 3.1: The coordinate systems of UAV. Credits: Tomáš Báča.

The records are sampled each 0.014 second (with minor variations). That
enables us to use discrete time.

The values are from multiple sensors and not perfectly synchronized. It is
assumed that the speed and angle are synchronized quite well position data is
about 0.5 second delayed.

It is further assumed that the axes x and y are independent [7]. Therefore
we can separately solve the problem for pitch, elevator, x, xdot and separately for
roll, aileron, y, ydot. Moreover, the axes should act very similarly, so we focus on
just one of them mostly.

Speed measurements are more noisy than others. Position and angle mea-
surements have instead small precision (values only with one decimal place) and
probably smaller sample rate. This causes the plots to consist of sequences of the
same values. Each sequence has from 3 to 10 identical records.

3.1.2 Tasks

For all tasks, the important state variables are pitch, xdot and x considering the
Bx axis. Control signals (i.e. elevator) are always available. The tasks vary in
the measurement vectors.
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Task Input Output
Task I pitch, xdot, x, elevator pitch, xdot, x
Task IIa xdot, elevator pitch
Task IIb pitch, elevator xdot

Table 3.1: Summary of the required tasks.

The first task (referred to as Task I) is the basic filtering task to estimate
position, speed and angles. Here, the most important is the speed estimation, as
its measurements are the noisiest. For all the variables in the state vector, there
is a measurement value in the measurement vector.

The second, more complex task, is the estimation of the state when one of
the sensors is not available (referred to as prediction). There is a configuration
currently used at ČVUT where there is not possible to measure the angles and
their estimate would be helpful. Moreover, in some cases the position is not
measured, too. Another configuration is missing the speed sensor.

Therefore, we define the Task IIa to consider the measurement vector of only
xdot and control signals of elevator. In Task IIb, the measurement vector consists
of pitch and x, control signals contain the elevator value.

The performance of the prediction can be measured comparing to the values
we have in the data.

We should design a single model capable of the state estimation or prediction
given either of the described inputs.

3.1.3 Currently used methods

For filtering the values, the exponential filter is currently used at ČVUT. Standard
exponential filter would be the following:

xdott+1 = α xdott + (1− α)Z(xdot)t+1 (3.1)

for α being typically 0.95 and Z denoting the measurement.
Taking the pitch value into account and knowing the model parameters (dis-

cussed in 3.2.2) enables us to get a slightly better performance. Therefore, the
best current solution (by ČVUT) is the following:

xdott+1 = α [p3 xdott + p2Z(pitch)t] + (1− α)Z(xdot)t+1. (3.2)

The performance of this model compared to our models is show on Figure 3.18
in Section 3.3.4.

In [7], simplified Kalman filter for a single variable (xdot) is also used.
There is currently no method used to predict the speed or angle without

knowing their measurements.

3.2 Applied methods

We describe a set of methods that can be used and configured easily for each of
the tasks and are general enough to be applied for other problems. The approach
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Figure 3.2: Using exponential filter for speed filtering. The blue line shows the
approach considering the pitch, red line is a simple exponential filter.

consists of multiple steps like preprocessing, design of the model structure, learn-
ing the parameters, filtering and smoothing. In each step we have a few options
to choose from. Some of the combinations are compatible and some are not. For
instance, if we choose a linear model, we can choose either Kalman filter or Par-
ticle filter. This is not possible for a nonlinear model. Similarly, any variation
of Particle smoother is compatible with EM algorithm as long as it provides the
particles and their weights.

3.2.1 Preprocessing

Missing values

Sometimes the sensors output an out of range value. A preprocessing step that
filters extreme values was already proposed by ČVUT. The preprocessing step
simply replaces an extreme value by the previously measured value. Online im-
plementation with preprocessing step would use fixed data ranges (learnt on the
offline data or user defined) and replace the outliers according to that. In the fol-
lowing, we use the preprocessed data, which also makes the plots more readable.

Another approach is to treat the outliers as missing values. The filtering
algorithm should be modified not to perform the correction step for these values
and likelihood calculation should not take them into account, too. However, the
portion of the outliers in our data is only about 0.2%.

Scaling

Another preprocessing step is scaling all the values to [−1, 1] interval. This im-
proves the performance of EM algorithm. The reason is that likelihood value
(which is a value of the probability density function) depends on the covariance
matrix. If one of the variables has significantly smaller range (and therefore the
covariance), the likelihood is affected more by this variable and EM algorithm
improves it at the expense of the other variables. The effect of scaling is tested
experimentally in Section 3.3.8.

3.2.2 Dynamic system description

From the underlying physical point of view, we know the causal relations between
the variables.
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Elevator affects pitch as it is a control signal defined as the desired pitch.
The pitch value however, does not respond immediately, nor exactly to the value
of elevator.

The speed is affected by the corresponding angle (xdot by pitch). This may
be not intuitive, but it is true for UAVs.

Finally, the position is determined by the previous position, speed and the
time difference, trivially from the definition of speed.

Therefore, we should find the parameters for the following equations:

pitcht = p1 pitcht−1 + p0 elevatort−1 (3.3)

xdott = p3 xdott−1 + p2 pitcht−1 (3.4)

xt = p4 xdott−1 + xt−1 (3.5)

The equation for x is only an approximation because xdot and x are measured in
a different coordinate system. This leads to negative values of p4 learnt by our
algorithms. Despite this fact, the position can be easily filtered using Kalman
filter (Figure 3.3).

Figure 3.3: Kalman filter for position.

Considering elevator as the last element of the state, the transition matrix A
would be

A =


p1 0 0 p0

p2 p3 0 0
0 p4 1 0
0 0 0 1

 (3.6)

As we focus on the task of prediction without x measurement, we decided to
omit the third row and column.

Moreover, we propose a model with a new variable xdotdot. The motivation
is to avoid the problem of learning algorithms outputting p3 > 1 (which leads to
unstable model as discussed further). The new variable stands between pitch and
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xdot in the causal relationship, i.e.,

pitcht = r1 pitcht−1 + r0 elevatort−1 (3.7)

xdott = r3 xdott−1 + r2 xdotdott−1 (3.8)

xdotdott = r4 xdotdott−1 + r5 pitcht−1. (3.9)

In conclusion, we mainly use the transition matrix

A =

p1 0 p0

p2 p3 0
0 0 1,

 (3.10)

and in Experiment C (Section 3.3.5) we use

A =


r1 0 r0 0
0 r3 0 r2

0 0 1 0
r5 0 0 r4

 . (3.11)

3.2.3 Learning parameters by linear regression

The first estimation of the parameters for equations (3.3), (3.4) and (3.5) can be
performed by least squares method on the data as used by [7]. For instance, to
estimate parameters in (3.4), we solve

xdot1 pitch1

xdot2 pitch2
...

...
xdotT−1 pitchT−1


[
p3

p2

]
=


xdot2
xdot3

...
xdotT

 (3.12)

using linear regression.
The problem is that the equations describe the transition model over the

hidden states and therefore using only the measured data can lead to wrong
results. If we had the information about the hidden states, the least squares
method would output the best possible parameters given Gaussian transition
noise. This information can be obtained by special experiments with more reliable
(typically external) sensors. An example of such an experiment is described in
4.1.

Preprocessing by smoothing the data

In the most cases, the hidden state values are not available and so it is with our
data. However, we can improve this method of parameter estimation. We can try
to define the hidden state and use it for learning the parameters. For instance, a
smoothed sequence of values will perform better in the least squares method then
the raw data. We can obtain smoothed data in the learning process, because we
can make use of the whole data.

The method used by [7] was polynomial fitting for noisy measurements. It
was used there for estimation of parameters for speed equation (3.4) in the way
that the input for the regression was the fitted function values instead of the
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Figure 3.4: Polynomial fit for the speed (xdot) measurement.

measurements. The speed measurements and their polynomial fit are shown in
Figure 3.4.

Although the measurements of pitch are not noisy, we try using the fitting
here, too. The approach is to replace the sequences of repeated measurements.

Polynomial fitting can be reasonably used only for small portions of training
data. In our implementation, we split the data into smaller parts and perform the
fitting for each part1. At the splitting points our fitting function is discontinuous,
but it does not affect the regression significantly. To address this problem, we
could use spline fitting [12]. However, our experiments showed that more than a
few hundred data points do not have much impact on the results.

As the speed measurements are very noisy, learning parameters directly from
them has poor results. However, the results of the regression using the fitted
function cannot be used either, because it sets p3 to be slightly higher than one.
That leads to exponential growing of the estimations over time, as also noted in
[7]. If correction step is not present (the configuration without the speed sensor),
setting p3 to 1.00 or smaller is necessary.

Conclusion

Standard machine learning methods (like linear regression) fit a function f(X)
from the given data points [X, y]. The points y may be noisy, but X are given
with a high confidence. In our case, the inputs X (previous xdot and pitch) are
noisy, too. Therefore, we need an approximation of them. Polynomial fitting can
be viewed as an approach to this. Another approach is the EM algorithm, which
calculates its own approximation (or smoothing) of the inputs. The approxima-
tion made by EM algorithm is the state estimate given the current parameters
estimate. Then, similarly to the regression, it minimizes the error. The smoothing
by EM algorithm is more plausible and performed iteratively.

1The coefficients of the fitted polynomials are very different for each part of data. We use
polynomials of degree 10 for sequences of 400 points. The function smooth data polyfit
can be found in the attached implementation.

28



3.2.4 Parameters of the model

Linear models

The simplest approach in this step is a linear model as described in 3.2.2. Here
we have to decide whether the parameters p0, ...p3 should be the only model
parameters, or each position in the matrix A should be free to tune. The first
option is more plausible, the second tends to provide an overfitted model as shown
in 3.3.

However, learning more positions in A can make the model more robust.
Parameters p0, ..., p3 describe the causal relationships between the state variables,
A(1, 2), for instance, represents the influence of xdot on pitch, which is not causal
(as we know from the physical background), but these variables are still coupled.
Knowing these non-causal relationships can improve the performance in scenarios
with higher uncertainties like missing sensor values (see the final learnt values of
A in equation 3.19 in Section 3.4).

Linear models with penalization

Another approach is to introduce penalization terms for model complexity. That
is, maximizing

L(A|Z)− κ
∑

(i,j)∈O

A(i, j)2 (3.13)

where L(A|Z) is likelihood of transition matrix A given measurements Z, O is
a set of positions in A different from the positions of p0, ...p3 and κ is a tradeoff
constant.

Calculating the derivative of (3.13)2, setting equal to zero and solving for
A leads to the following update of A in M-step of the modified EM algorithm
(compare to (2.31):

A =
T−1∑
t=1

(xt+1x
T
t )(xtx

T
t )−1 − κAO

T−1∑
t=1

Q−1(xtx
T
t )−1, (3.14)

where AO is the matrix A with zeros on each position not in set O.
Similarly, we have to consider the covariance matrices Q and R. Here, the

problem with our data is that EM algorithm would set the pitch variance too small
because the noise is not Gaussian (data contain sequences of identical values). We
would like to keep the variance sufficiently large and introduce the penalization
term

κ2(Qdef −Q)2, (3.15)

where Qdef is our estimate of Q that we do not want to go too far from. We
maximize Q as follows:

Qnew = QLLmax +
1

T
κ2(2Qdef −Qold), (3.16)

2Derivative of a scalar value in a matrix with respect to that matrix is a matrix with 1
at the corresponding position, derivative of a squared value is a matrix with the value on the
corresponding position.
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where QLLmax is the maximizing term from standard EM algorithm (equation
(2.35)).

The values for κ have to be determined empirically by comparing the perfor-
mance on validation sets.

Regarding the measurement matrix H, we always set it to identity because
we know that there is a direct mapping from states to sensor values (e.g. xdot to
xdot measurement).

Nonlinear extension

Sometimes we know the formula for the transition or measurement model, for
instance that a certain value in state changes with square of another. In our
data, we do not know this. We know that the linear model performs quite well,
but sometimes it is not absolutely accurate. Nonlinearity do not have to be the
reason behind this, however. [6] proposes a measurement model for cases where
the structure is completely unknown. We try to apply this idea to the transition
model.

xt+1 =
P∑
p=1

mpgp(xt) + Axt, (3.17)

where each gp is a Gaussian with a fixed mean and covariance. We spread the
means across the state space uniformly. The advantage of this model is that it
can be based on the linear part (Axt) that is known from the previous approaches
and shows which parts of the state space do not act linearly. If each mp is set
to 0, we have a linear model. The nonlinear parts are modeled by the sum of
Gaussians. The parameters of this model are the coefficients mp and A if we want
to further tune it.

3.2.5 Noise models

Transition and measurement noise is typically assumed to be Gaussian. This
perfectly fits for Kalman filter and can be easily implemented in Particle filter.
However, it is not always a correct assumption. We can see the measurement
noise distribution when we know the true values of hidden states (see 4.1 for such
an experiment). In our case, we can estimate the measurement error distribution
by first performing a filtering method and estimating the true states. Figure 3.5
shows a histogram of xdot measurement error using the filtered state estimates.
The noise is indeed Gaussian. However, that is not the case for pitch (see Figure
3.6.
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Figure 3.5: Measurement error histogram of xdot regarding to the best filtering
estimate of true state.

Figure 3.6: Measurement error histogram of pitch regarding to the best filtering
estimate of true state.

The advantage of Particle filter is that we can model the probability of a
measurement by an arbitrary function, but our models still approximate the error
by a Gaussian distribution and perform well.

3.2.6 Filter, smoother and EM algorithm

We implement both Kalman filter and SIR Particle filter (and smoothers) as
described in sections 2.2.2, 2.2.3, 2.3.3 and 2.3.6. The problem seem to have a
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linear structure so we focus on Kalman filter, which is computationally faster
and more accurate for this setting. For learning the parameters, we implement
Kalman EM algorithm with penalization model as described in 3.2.4. We can
also choose which parameters of the model should remain fixed.

In Section 3.3.6 we compare the performance of Kalman filter and Particle
filter both using the same linear model.

3.3 Experiments

3.3.1 Evaluation methods

Introduction

In our experiments, we compare various methods of modeling and learning the
parameters described in the previous section.

To compare the results of various learning methods, we need to compare the
performance on a validation set. That is, a set of data unseen by the learning
algorithm. For a better estimation of the performance, k-fold cross-validation is
typically used. However, for the sequential (time-dependant) data, we cannot
shuffle the records. The solution for this is known as forward chaining [28]. This
method splits the (sequential) data into k distinct folds so that concatenation of
the folds 1, 2, ..., k forms the original data. Then we use 1, 2 for training and 3
for validation, 1, 2, 3 for training and 4 for validation and so on.

Similar method is to use a fixed size training set. For instance 1, 2, 3 for
training, 4 for validation, 2, 3, 4 for training, 5 for validation and so on. To
avoid overfitting as much as possible, our approach is to choose the validation set
starting at a nonzero offset from the end of the training set. This should prevent
the cases where a data follows a pattern that may continue in the validation set.
Choosing the right training set size and validation set offset is discussed in Section
3.3.2.

It is also important to choose sufficiently large validation sets to test the sta-
bility of the model. Some models may predict well at the beginning and encounter
problems after a few hundreds of time steps and then cannot recover to the true
state (see Figure 3.7).

Summary of the used evaluation methods

The following procedure is performed for each learning method and repeated 5
times using different training sets.

1. We select a training set of a fixed size and learn a model from all the
data (pitch, xdot, elevator) in this set. The learning method also defines its
filtering method, which is Kalman filter in most of the cases and Particle
filter in Experiment D.

2. We take a validation set separate from the training set, starting at a given
offset from the end of the training set.
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Figure 3.7: Demonstration of a model that predicts well at the beginning, but
gets lost after a few hundreds of time steps. Model learnt by B5 was used with
p3 changed to 1.005. A similar scenario happens, for instance, for models of
Experiment A if p3 is not manually set lower. Therefore, this parameter is set to
0.997 for the most models.

3. We run the filtering method on a validation set, still with all measurements
available and calculate the expected likelihood according to equation (2.24)
and expectation according to (2.37), (2.40), (2.41) and (2.42). The likeli-
hood is normalized by the size of the validation set. 3.

4. We generate a plot of the filtering performance given all measurements.

5. We run the filtering algorithm on the validation set with pitch measure-
ments removed and calculate the prediction error as MSE, i.e.,

MSEpitch =
1

T
(pitchprediction − pitchmeasured)2. (3.18)

6. Similarly, we run the filtering algorithm with xdot measurements removed
and calculate the xdot MSE. We still use the same learnt model with the
correspondent rows of matrix H and rows and columns of R removed.

7. We generate a plot showing the prediction of pitch and a plot showing the
prediction of xdot.

For a few reasons, log likelihood serves only as an orientation measure. First,
it assumes Gaussian distribution, which is not satisfied by some of our variables.
Second, it cannot be compared between models with different size of the state
vector nor for Particle filter. Third, the filtering task can be solved easily (see Sec-
tion 3.3.3) and it is not so important as the prediction of missing measurements.
On the other hand, prediction errors can be compared across all the models.

All the training and validation sets are taken from a single flight (number 3).
We compare the average performance (among 5 iterations) of the methods and

3The values of log likelihood are usually negative. However, positive values are also correct,
because the likelihood is not calculated as a probability but as a value of the probability density
function, which can be greater than one for small covariances.
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select the best methods for the final evaluation. The final evaluation is performed
on the rest of the flights (1, 2 and 4). There is no learning from these flights, just
filtering and prediction.

3.3.2 Validation parameters

Training size

To estimate the best size for training, we performed our validation procedure
with various training set sizes (3 separate runs for each size from 80 to 4000).
Based on the resulting prediction errors (Figure 3.8 and 3.9) we decided to use
the training size of 1000 data records.

Figure 3.8: Learning curve of various methods. Prediction error of pitch depend-
ing on train size. Models with penalization terms do not learn with less than
1000 data records.
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Figure 3.9: Learning curve of various methods. Prediction error of xdot depending
on train size. Models with penalization terms do not learn with less than 1000
data records.

Validation set distance

We expected differences between various validation sets, mainly that the ones
near the training set would have smaller errors. We performed an experiment
where different distances from the training set were used (each distance for each
method 5 times). It is true for some of the methods that a certain distance from
the training set increases errors. Particularly method C2, which uses many free
parameters and does not use the penalization model is more sensitive to validation
set changes(see Figure 3.11). However, most of the methods do not depend on the
validation set distance much, so the setting of this parameter could be arbitrary.
We used distance 1000 mostly.
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Figure 3.10: Prediction error of pitch depending on distance from train set (mod-
els A2, B5, C2 and C3).

Figure 3.11: Prediction error of xdot depending on distance from train set (models
A2, B5, C2 and C3). Penalization models are more stable.

3.3.3 Experiment A - linear regression learning

In Experiment A we compared the preprocessing steps of learning the basic
parameters (p0, ..., p3) by linear regression. We were interested in the effect of
smoothing the values before applying the regression. The calculated the likeli-
hood and prediction was performed using the original data (smoothed data were
used only for learning).

• A1 - parameters p0, ..., p3 learnt by linear regression using the measured
data
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Method Train LL Validation LL pitch MSE xdot MSE
A1. 13.51469771 13.51585250 0.1547 0.1081
A2. 13.51469725 13.51585221 0.0196 0.1025
A3. 13.51469725 13.51585221 0.0275 0.1100
A4. 13.51469775 13.51585253 4.6059 0.1088

Table 3.2: Summary of the Experiment A.

• A2 - parameters p0, ..., p3 learnt by linear regression with smoothed xdot

• A3 - parameters p0, ..., p3 learnt by linear regression with smoothed xdot
and pitch

• A4 - parameters p0, ..., p3 learnt by robust linear regression[26] using the
measured data

For each method except for A1, value p3 was estimated > 1 and we manually
set it to 0.997. A1 did not learn reasonable values at all. The results suggest to
use A2 as the baseline method for further experiments and we also use its learnt
parameters as the initial values for EM algorithm. This basic method is also
sufficient for filtering when all measurements are available. However, its accuracy
in prediction can be improved by EM algorithm as shown in further experiments.
Robust linear regression performed even worse on pitch prediction, because it
learnt p1 to be exactly 1 (probably because the sequences of identical values in
data, steps were treated as outliers and assigned a small weight).

Figure 3.12: Filtering results of pitch for methods in Experiment A.
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Figure 3.13: Prediction results of pitch for methods in Experiment A.

Figure 3.14: Filtering results of xdot for methods in Experiment A.
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Figure 3.15: Prediction results of xdot for methods in Experiment A.

3.3.4 Experiment B - EM algorithm

The goal of Experiment B is to compare various configurations of EM algorithm.
We would like to test which parameters are worth learning and for which it is
better to keep their values fixed. The first reason is overfitting. Secondly, some
of the parameters do not satisfy the Kalman filter assumptions and learning
their values leads to wrong results. For instance, pitch does not have Gaussian
noise and Kalman EM (assuming that it has Gaussian noise) learns a very small
variance. Then the filtering results almost copy the measured values. In such
cases, likelihood is not an appropriate measure of accuracy. Generally, likelihood
is always the highest when all the parameters are free.

Our approach was first to try various configurations and propose new ones
according to the performance in prediction of missing measurements. We let
the EM algorithm learn all the parameters for various subsequences of the data
and then rejected the parameters that have different values for different data.
For example, we found out that all other positions in transition matrix A from
p0, ..., p3 are irrelevant, except for A(1, 2), which improves the xdot prediction
with missing measurements. The best approach, which deals with overfitting
automatically, seems to be the model B5.

In our model, we treat elevator as a measurement instead of control signal and
the state is extended by a new variable. The first idea was that the corresponding
line of the transition matrix nor variances should not be learnt because we should
expect the control signals to be arbitrary and not dependant on the current
state. However, trying to learn these parameters increases the performance when
used with penalization model (the effect of penalization can be seen in Section
3.3.5 comparing model C2 to C3). We can view the elevator state as “effective
elevator” and learning its parameters as learning some unknown properties of the
system. More variable data would help to evaluate this approach.

• B1 - EM for parameters p0, ..., p3 and variance of pitch and xdot
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• B2 - EM for parameters p0, ..., p3 and variance of only xdot

• B3 - EM for p0, ..., p3, A(1, 2) and variance of xdot

• B4 - EM for p0, ..., p3, A(1, 2) and row of Q and R corresponding to xdot

• B5 - EM for full matrices A,Q,R with penalization model

Figure 3.16: Filtering results of pitch for methods in Experiment B.

Figure 3.17: Prediction results of pitch for methods in Experiment B.
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Method Train LL Validation LL pitch MSE xdot MSE
A2. 13.515 13.516 0.019633 0.10255
B1. 13.964 13.965 0.02929 0.10355
B2. 13.403 13.404 0.022813 0.1035
B3. 13.390 13.391 0.016476 0.095054
B4. 13.375 13.376 0.016617 0.088698
B5. 14.735 14.737 0.018308 0.04536

Table 3.3: Summary of the Experiment B

Figure 3.18: Filtering results of xdot for methods in Experiment B.

Figure 3.19: Prediction results of xdot for methods in Experiment B.

3.3.5 Experiment C - extended model with EM algorithm

In this experiment, we evaluated our extended model described in Section 3.2.2
and transition matrix (3.20). This is the only model where parameters do not
have to be adjusted manually to be less than one (this was also true for a few
other models on particular data). EM algorithm learning all positions in the
transition matrix with penalization model leads to a stable model.
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Method Train LL Validation LL pitch MSE xdot MSE
C1. 16.665 16.667 0.024451 0.083317
C2. 20.172 20.174 0.076379 0.048347
C3. 17.735 17.737 0.019754 0.04366

Table 3.4: Summary of the Experiment C

• C1 - extended model, EM for parameters r0, ..., r5, A(1, 2) and covariance
matrices except for parameters corresponding to pitch and elevator

• C2 - extended model, EM for all A,R,Q except for pitch variance

• C3 - extended model, EM for all A,R,Q except for pitch variance with
penalization model

We can see that despite C2 has the greatest likelihood, C3 (which is the
same plus using penalization model) generalizes better and has more accurate
predictions.

Figure 3.20: Filtering results of pitch for methods in Experiment C.

42



Figure 3.21: Prediction results of pitch for methods in Experiment C.

Figure 3.22: Filtering results of xdot for methods in Experiment C.

Figure 3.23: Prediction results of xdot for methods in Experiment C.
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3.3.6 Experiment D - Particle filter

We used the same transition matrix, transition and measurement variances as
learnt by B5 and applied for Particle filter with 1000 particles. The results of
the Particle filter were almost the same, but slightly worse. The difference is not
only in approximating the posterior by particles, but our Particle filter does not
sample nor weights using full covariance matrices Q,R, just their diagonals.

Figure 3.24: Particle filter compared to C3 (using same model) in pitch filtering.

Figure 3.25: Particle filter compared to C3 (using same model) in pitch predic-
tion.
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Figure 3.26: Particle filter compared to C3 (using same model) in xdot filtering.

Figure 3.27: Particle filter compared to C3 (using same model) in xdot prediction.

3.3.7 Final evaluation

In the previous experiments we learnt the models and tuned them not to be
overfitted using validation sets. All the data (including the validation sets) used
so far was from the flight number 3. Now, we test the best models on separate
datasets, i.e., flights 1, 2 and 4. The models reached similar results as on the
validation sets. The various flights were not very different, the performance was
already well estimated by validation sets in flight 3. The results are summarized
in Table 3.5.
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Method pitch 1 pitch 2 pitch 4 xdot 1 xdot 2 xdot 4
A2. 0.0193 0.0359 0.0185 0.1862 0.667 0.5099
B4. 0.0173 0.0326 0.0176 0.1172 0.107 0.1352
B5. 0.0174 0.0332 0.0176 0.0569 0.0614 0.0403
PF 0.0212 0.0350 0.0202 0.0572 0.0625 0.0409
C3 0.0182 0.0353 0.0186 0.0570 0.0619 0.0401

Table 3.5: Prediction error results of flights 1, 2 and 4 for the best methods
including Particle filter (PF).

Figure 3.28: Prediction of pitch on unseen data from flight 1.

Figure 3.29: Prediction of xdot on the unseen data from flight 1.
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Method pitch error xdot error
C3 scaled data 0.0177 0.0433
C3 original data 2.648 0.0564

Table 3.6: Comparison of the prediction results using scaled and original data.

3.3.8 Other experiments

Scaling

To show the effect of scaling the data on EM algorithm, we used the same learning
method as C3 with its initial variances adjusted to fit the original data. We
compared the performance of B5 with all data scaled to [−1, 1] and the modified
C3 on the original data. In original data, pitch and elevator are in range [−10, 10]
and xdot in range [−1, 1], which makes a significant difference in the likelihood
function (it is sensitive to covariance matrices). As EM algorithm is a gradient
algorithm, it was misled by xdot variable. The comparison is summarized in
Table 3.6.

Estimating κ parameters

To estimate the tradeoff constants κ, κ2 and κ3 we tried various values and
compared the prediction performance on the validation sets. We started with
0.2 and continued with twice as large at each time step while the performance
was improving. Then we performed a binary search between the last two values
until a reasonable precision and convergence of the performance. We estimated
κ = κ2 = 80 and κ3 = 0 (it did not improve at all).

Measurement offset

We designed a model with nonzero means of the measurement noises. The tran-
sition matrix is extended by a new state variable that always remains one (the
corresponding positions were fixed for EM algorithm). The measurement matrix
is extended by a column of measurement noise means. The learnt values were
not significant and were different for various parts of the data, so we decided to
simplify the model and use zero measurement noises.

Adding random noise to particles

In Particle filter, we generated 5% of the particles at each step randomly (with
various distributions) in order to improve diversity. However, this modification
degraded the performance, so we use the standard SIR Particle filter.

Mixture of Gaussians model

Adding a mixture of nonlinear functions to the transition model is too complex
and we were not able to adjust the parameters in a reasonable time. The first
problem is to spread the means of Gaussians across the state space. As the
state space is at least 3 dimensional, it was too complex (especially for MATLAB
implementation) to find a solution with 4 Gaussians per dimension. Moreover,
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it is still necessary to tune their covariances and it is still very likely that such a
model would not generalize well.

Higher order Markovian system

We tried to learn a model that would predict the next state from k previous
observations (e.g. k = 20). We also tried to introduce nonlinearities to these
predictions using a feed-forward neural network. However, this model did not
maintain the current state distribution and performed poorly. This suggests that
transforming a dynamic problem into a static one with a sliding window is not
appropriate.

3.4 Conclusion

Best models description

The best models were shown to be B5 and C3. Both are learnt by EM algorithm
with penalization model (κ = κ2 = 80) on first 1000 data records of flight 3. Both
have all positions in transition and covariances matrices free to learn, except for
C3 having pitch variance fixed. B5 has state vector (pitch, xdot, elevator) and
transition matrix

A =

0.979574 −0.025133 0.028671
0.029254 0.994377 −0.008402
0.209937 −0.869643 0.091070

 . (3.19)

Model C3 has state vector (pitch, xdot, xdotdot, elevator) and transition matrix

A =


0.976291 −0.017484 0.037701 0.020246
0.011445 0.980655 −0.007368 0.330526
0.197686 −0.830580 0.133771 0.023545
0.047391 0.034580 −0.000572 0.115297

 . (3.20)

Covariance matrices of B5 are

Q =

0.001067 0.000042 0.000003
0.000042 0.001196 0.000005
0.000003 0.000005 0.176147

 , (3.21)

R =

 0.003341 −0.000077 −0.000101
−0.000077 0.018085 0.000766
−0.000101 0.000766 0.011445

 . (3.22)

Covariance matrices of C3 are

Q =


0.001000 0.000052 −0.000018 0.000014
0.000052 0.001336 0.000065 −0.000244
−0.000018 0.000065 0.170937 −0.000040
0.000014 −0.000244 −0.000040 0.001730

 , (3.23)

R =

 0.010000 −0.000179 −0.000095
−0.000179 0.016130 0.002276
−0.000095 0.002276 0.004952

 . (3.24)

Both models use identity as the measurement matrix H.
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Summary

The basic filtering task with all measurements available is solved by Kalman
filter. Its performance is better than using exponential filter, mainly because
exponential filter slowly accommodates to new values. From the theoretical point
of view, Kalman filter is more suitable as it describes the dynamic system more
properly. It outputs sufficient results also with parameters basically learnt by
linear regression, because the task is relatively easy with measurement correction
at each time step.

The parameters can be better tuned using EM algorithm. This improves the
model more significantly when prediction of missing measurements is required.
However, EM algorithm should be used carefully and only for the parameters
that satisfy its assumptions (mainly the Gaussian noise), or adapt a penalization
model to avoid overfitting.

Using Particle filter is possible, too. However, it does not improve the model
unless we know certain nonlinearities or non-Gaussian densities of the model.
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4. Other datasets

4.1 Vicon data

We received data from an experiment called Vicon. It was performed using a
special system for tracking objects. Three drones were flying in a room and a
set of external cameras were recording. The system can provide very accurate
positions of each drone for each time step.

Moreover, each drone has its own camera to detect other drones. This camera
system can detect black circle on a white background. Each drone carries this
sign hung on itself. The detection work as follows. It starts scanning the camera
image from the position of previously detected object. As soon as it finds the
object, it calculates its distance estimation based on its size and relative angle.
It outputs a new record with the distance estimation and x and y coordinates of
the object on the camera picture. This record is then joined with the drone’s real
position obtained by the Vicon system.

We have a file consisting of such records for each drone. The main data fields
of a record were the following:

• vicon time - system time in ms

• relative dist cam - estimated distance of an object seen by a drone’s
camera

• x coord cam - x coordinate where the object was seen by a drone’s camera

• y coord cam - y coordinate where the object was seen by a drone’s camera

• x vicon - x coordinate where Vicon detected the drone

• y vicon - y coordinate where Vicon detected the drone

• z vicon - z coordinate where Vicon detected the drone.

We do not know which drone was detected by the camera. However, we can
estimate that by joining the files. For each drone we create a joint log by joining
each its record with the closest (in time) records of both other drones. Let the
drones be called 1, 2 and 3. In a joint log, the other drones are denoted A and B,
A is the one with the smaller name (for instance in joint log of drone 3, drone 1 is
A and drone 2 is B). We compute the real distance of A and B from the current
drone (based on vicon coordinates). We get a joint record like this:

• vicon time

• vicon time A

• vicon time B

• dist cam

• dist A
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• dist B .

First, we checked if joining the data on time is valid. We calculated time match
errors, that is the differences between vicon time, vicon time A and vicon time B
for each record. On average, the time match error is 100ms, but most of them
are around 10ms. Therefore, we can consider this matching as valid.

Now, we can plot the data for each drone.

Figure 4.1: Real distances of drones and the estimates in time.

We can see that the detection module underestimates the distances by a con-
stant plus a small random noise. To plot a histogram of measurement errors, we
have to find out which drone was most probably seen. Let err A be the distance
error if the drone sees the drone A. That is dist cam−dist A. Similarly for seeing
drone B. Then we define the distance error as the one with smaller absolute value
from err A and err B. Note that the error is signed as we want to know also
if the measurements are underestimated or overestimated. This definition of the
distance error is not perfect, because we cannot be sure which drone was actually
seen. However, it should be sufficient enough to design the measurement model.
The distribution of the real distances is a Gaussian centered in a point with a
fixed offset from the measured value.

We also tried to learn a model that would predict the error from camera
coordinates (for instance, objects seen on the edges of the camera view have
less accurate distance calculations). However, there was not enough data to
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Figure 4.2: Histograms of distance errors for each drone.

distinguish various regions of the camera image. Almost all the records were
from the center of the image.

4.2 Ground robots

For testing our implementation of Particle filter on a different type of robot, we
used data from a ground robot. Our task was to filter the robot’s position using
its control signals, GPS and compass measurements. The robot was moving in
a town with a known map of streets. Using that, true location was provided for
us. We could learn the parameters of the model from that and we used it as a
measure of accuracy of our filter.

4.2.1 Problem description

The state of the robot is described by its position and orientation. The position
is measured in meters relative to a certain point (0, 0) in the town and the
orientation is in radians. Control signals consist of alpha, dist and beta. A single
control signal means that the robot is requested to rotate with angle alpha, then
move forward dist meters and then rotate with angle beta. Based on this we have
the following (nonlinear) transition model:
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xt+1 = xt + cos(anglet + alphat)distt

yt+1 = yt + sin(anglet + alphat)distt

anglet+1 = yt + alphat + betat.

(4.1)

The robot receives two kinds of measurements, GPS and compass. The mea-
surements are asynchronous, they do not come together, nor together with the
control signals. There is approximately 10 compass measurements and 10 control
signals for a single GPS measurement. Moreover, it takes some time to initialize
the GPS sensor, therefore there is no GPS data at the beginning (first 5%).

Compass shows the orientation of the robot (corresponds to the state variable
angle) in radians. GPS shows the latitude and longitude that can be easily
converted to our metric system during the preprocessing step1.

The data also contains the expected accuracy for each measurement of both
GPS and compass, but the analysis showed that these values are useless.

4.2.2 Data analysis

When true state values are provided, we do not need to use EM algorithm as
its estimation phases can never produce better estimate than we already have.
However, we should try to analyze the data and perform a single maximization
step based on that.

GPS

We plot the real position and GPS measurements first as a planar image to see the
trajectory in 2D (Figure 4.3). Then we plot the distance error in time (Figure
4.3). GPS shows wrong data in the middle part. For the rest of the time, it
provides a reasonable estimate of the position. 4.3 also shows that expected GPS
accuracy does not correspond to the real error. Finally, we generate a histogram
of GPS error (Figure 4.3). If we ignore the cases where the GPS is absolutely
wrong, the error can be approximated by a normal distribution.

Our first approach was to set the variance large enough so that the particles
with the correct position would have non-zero probability in case of GPS being
wrong. However, setting the variance low (5m) as it really is in case of GPS
working correctly leads to better performance. This approach works, because if
the GPS is working, it provides a better estimation and if it stops working, all the
particles have zero weights and are sampled just according to the control signals.
This assumes that the first sequence of GPS measurements is correct and that
the sequence of wrong measurements is not too long (control signals are sufficient
to lead the particles without correction). These properties hold in our data.

Compass

Compass values are given in radians. Some of the values from compass sensor
are greater than 2π so we have to compute the modulo value. We also have to
be careful with comparing angles near 0 (0.1 is close to 6.2 in radians).

1For the map projection details see [9]. In MATLAB implementation, we used a function
from [10]
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Figure 4.3: Real trajectory in 2D with measurements of GPS. The beginning of
the trajectory is not plotted as there is no GPS measurement available.

By plotting the real angles and compass values, we can propose the measure-
ment model for compass. Figures 4.6 and 4.7 show that there are 5 separate
regions of compass values, each with a different offset from the real value. Based
on this, we represent the measurement model with 5 normal distributions. For
example, measurements for real angles between 4.5 and 6 radians are distributed
normally with mean angle− 0.25. Histogram suggests low variances about 0.15,
but higher variances (e.g 1) work better in practice.

Identifying such regions may seem as overfitting. However, there is a recurring
region in our data, time 1500 to 2500 and then 3500 to 4500, and both of the
sequences have the same characteristics.

Representing the compass error distribution by a single gaussian requires ei-
ther a fixed averaged offset (0.5 radian) or higher variance (2 or 3 radians).

Transition model

The deterministic form of the transition model is described by equations (4.1).
There are two main method how to introduce uncertainty to this model. We can
either take the deterministic values of the new position and add a random noise
to each of them (x, y and angle), or add the noise to the control signals and
calculate the new position using these noised signals. For both of the method, we
can calculate the appropriate noise distributions using the real values. The first
method is more straight-forward but less plausible.

Using the first approach, we compare the real positions to the positions cal-
culated by our deterministic model. Figure 4.8 shows the error of the model.
The error is not Gaussian. The error is very close to zero in significantly more
cases. We propose a natural hypothesis that the error is dependant on the control
signals. The greater the distance to move or angle to rotate, the greater is the
expected error. The simplest approach is to handle the control signals with zero
distance or zero rotation separately and not to include any noise in these cases.
More generally, we try to learn the expected error given the control signals. We
use a linear regression to fit the parameters. The error plots suggest that the

54



Figure 4.4: GPS distance error in time with its expected accuracy (given as radius
of expected position). We see it does not correlate with the real error.

error may grow quadratically with the distance, therefore we added the distance
square to the predictors. Considering also the current angle did not prove useful.
Finally, we found the parameters that predict the absolute value of the error of x
and y coordinate given dist and dist2 and the error of angle given |alpha+ beta|.
We intend to use these predicted values as the variances in the transition model.
However, for better performance of the particle filter, multiplying the predicted
values by some hand-tuned constants is necessary.

In conclusion, each transition step computes the deterministic values of the
new position according to (4.1) and adds a random noise distributed normally
with zero mean and variance calculated based on the current control signals.

4.2.3 Asynchronous measurements

In the standard filtering task, we assumed we receive control signals and all
measurements at once and in a fixed sample rate. In a more general and more
realistic setting, the measurements are received asynchronously. That is, for a
given time there is a single message from one of the sensors or a control signal.
In our data we assume that no control signal is missing and the robot moves only
according to the control signals. There is no timestamp in either measurements
or control signals.

We used a modification of particle filtering algorithm that follows a simple set
of rules. Each input record can be either control signal or a measurement. If it
is a control signal, we perform a transition step for each particle and output our
state estimation. If it is a measurement, we perform a measurement step. That
is, we assign a weight to each particle according to the model of the corresponding
sensor (GPS or compass) and resample.

55



Figure 4.5: Histograms of the GPS error.

4.2.4 Results

Figure 4.9 shows the best performance of our particle filter. Compared to the real
positions, the filter has mean error of approximately 6 meters. It also depends
on the initialization. We use two types of initialization. The first (on the figure)
initializes the particle randomly a few meters around the real start position. The
second initializes the particles into a greater area, a rectangle covering all future
GPS measurements. That is 250 times 100 meters.

In conclusion, there are a few things that improved the performance the most.
First, setting the GPS variance low instead of setting it as a variance that includes
absolutely wrong measurements. Second, realizing that the orientation values
have to be compared in angle distance sense. Third, analyzing the compass error
and finding the best offset. Fourth, identifying the transition error dependance
on the control signals.
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Figure 4.6: Compass values and real orientation in time. The values are in
radians, values between 0 and 2 were moved to [2π, 2π + 2]
to improve the plot readability.
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Figure 4.7: Histogram of compass error. The error is signed, positive error means
greater measurement than real value.
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Figure 4.8: Histograms of the transition model error.
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Figure 4.9: The best filtering performance of our methods, 2D trajectory.
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5. Implementation

We implemented all the methods using MATLAB. In the following sections, we
describe the implementation of Kalman filter and smoother, Particle filter and
smoother, EM algorithm and evaluation methods. The last section summarizes
the scripts that are prepared for testing these methods.

5.1 Kalman filter

Function kalman filter(Z, A, H, Q, R, P, x, include backward)
serves as Kalman filter if include backward parameter is set to false and
as Kalman smoother if the parameter is true. Z is a matrix containing all the
measurements, each time in a single column. A, H, Q, R are standard Kalman
filter parameters (transition and measurement matrices and transition and mea-
surement error covariance matrices). P is the prior covariance and x is the prior
state (column) vector.

The function returns the following list: [X apr, X post, X smooth,
P post, P smooth, L smooth]. The first 3 output variables are matrices of
prior, posterior and smoothed (respectively) state estimates for each time step.
P post and P smooth are the posterior and smoothed covariances for each time
step (3 dimensional matrices with the last dimension of time). L smooth con-
tains matrices L for each time step, as described in Kalman smoother algorithm
(Section 2.2.3). All the output parameters are required as inputs for EM algo-
rithm. If not using this function within EM algorithm, X post is the filtering
output and X smooth is the smoother output and the rest of the output values
can be ignored.

Script run task I kalman demonstrates the usage of Kalman filter. The
script loads the data from a flight, prepares them into the matrix Z, creates some
default parameters and runs the filter. Then it prints the likelihood and plots the
filter results for pitch, xdot and x along with the measurements.

5.2 EM algorithm

EM algorithm is performed by function em(Z, A, H, Q, R, P, x, max iter,
variable params, main ind, kappa, kappa2, kappa3).

• The parameters Z, A, H, Q, R, P, x are identical to the parameters of
kalman filter, where A, H, Q, R are used as the initial parameters
for EM algorithm.

• max iter controls the maximum number of iterations of the algorithm.

• variable params is a function handle (pointer to a function) that re-
turns 4 lists: [A ind,H ind,Q ind,R ind]. Those are the indexes (to
corresponding matrices) of parameters that should be learnt. The rest of
parameters in matrices A, H, Q, R will remain fixed as given in the input
parameters. For instance, we usually set H ind to empty list and H to
identity matrix.
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• main ind are the indexes to matrix A describing the parameters to which
penalization should not be applied (penalization model is described in Sec-
tion 3.2.4). Penalization of matrix A is implicitly disabled by setting kappa
to 0.

• kappa, kappa2, kappa3 are the tradeoff constants for penalization
model of A, Q and R, respectively. Qdef and Rdef are set to be the input
parameters Q, R.

• The function returns the new learnt parameters [A,H,Q,R].

The algorithm internally calls kalman filter function (used as smoother),
helper methods maximize A, maximize H, maximize Q, maximize R to
perform the maximization steps and convergence(A, H, Q, R, A new,
H new, Q new, R new) that decides whether the algorithm has converged.
Convergence is here defined as sum of absolute changes of all parameters is below
a certain threshold. We set this value to 0.005, but it may be useful to tune it
for other applications.

Function log likelihood(X apr, X post, X smooth, Z, P smooth,
A, H, Q, R, L) computes the expected log likelihood normalized by the size of
the data. It is not used by EM algorithm, because it directly uses the maximizing
equations and does not need to calculate the actual likelihood value. We can use
this function as orientation measure. We can obtain all the input parameters by
calling kalman filter.

5.3 Particle filter

Filter and smoother

Particle filter does not constrain the model to be just matrices, but it can be
represented by arbitrary functions. We design the code to separate the main
algorithm from the functions defining the particular model. The main functions
required by particle filter are: (they should be passed as function handles)

• X new = transition model(u, X, params) - generates a new set of
particles given the current particles as rows of X, current control signal in
row vector u and some optional parameters params (cell array).

• W = measurement model(z, X, params) - returns a column vector W
of weights for given particles X, row vector of current measurements z and
some optional parameters params (cell array). The weights do not have
to be normalized.

• X = init particles(z, n, M) - creates the initial set of M particles of
size n (state vector size). For generating the particles, it may use the first
measurement (column) vector.

• p = transition probability(u, X, X new) - does not need to be
defined for filter, but is required for smoother. Calculates the probability
of transition from X to X new given control signals u.
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The main function for Particle filtering and smoothing is

particle filter(Z, u, n, M, transition model,
measurement model, transition prob,init particles, params,

do smooth).

Boolean parameter do smooth enables smoothing. Z is a matrix of all measure-
ment (row for each time step), similarly u for control signals. params is a cell
array that is passed to functions transition model, measurement model
and transition prob.

It returns the following variables:

• filtered - a matrix of filtered state estimates (row for each time step)

• smoothed - a matrix of smoothed state estimates (row for each time step)
or NaN if smoother disabled

• Xs - sets of particles for each time step (matrix M × n × T ) or NaN if
smoother disabled

• Ws - filtered weights for each time step (matrix M × n × T ) or NaN if
smoother disabled

• Wss - smoothed weights for each time step (matrix M × n × T ) or NaN if
smoother disabled

The output variables are required by function pf likelihood that calcu-
lates the normalized expected log likelihood.

Asynchronous filter

Function async particle filter(events, n, M, transition model,
measurement model, init particles, params) implements the asyn-
chronous version of Particle filter. It accepts events matrix that contains var-
ious types of events as its rows. The first item of an event is a number describ-
ing its type, 1 stands for a control signal. In this case, transition step is per-
formed on the current set of particles. Otherwise, measurement step (including
resampling) is performed. Measurement model should also distinguish between
various kinds of measurements. In our ground robot example, we use measure-
ment model ground measurement function, which either assigns the weights
for GPS or compass measurements (does not require all measurements at each
time).

Examples

Script run task I PF demonstrates usage of the Particle filter and plots sample
results. It uses functions that define the model in a simple and readable way, e.g.

X new(:, xdot i) = c0 * X(:, xdot i) + c1 * X(:, pitch i);

On the other hand, model defining functions we use in experiments are more
general and expect parameters matrices like Kalman filter in params cell array.
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Measurement models

To estimate the probability of a measurement z given a particle x, our models
use a helper function gaussian probability(z, x, sigma, prec) that
works for a single state variable and multiple particles. z is the measured value, x
contains the values of particles (used as the mean of the probability distribution).
The function calculates

p(z|x) = normcdf(z+prec/2, x,sigma)−normcdf(z−prec/2, x,sigma), (5.1)

where normcdf(z, x,sigma) is the probability of values less than z for a normal
distribution with mean x and variance sigma2. We use various precisions (prec)
for various sensors.

5.4 Evaluation

The main function for evaluating methods is evaluate with the following pa-
rameters:

• data - data to be used. The method parses the data and splits into train
and test sets as described below.

• train size - if using fixed train size method, used as the train size.
Forward chaining uses this as the size of one fold.

• test size - test set size.

• k - number of iterations. Each iteration uses different train and test set.

• learners - a cell array with function handles to learning methods to be
compared. The function interface is described below.

• chaining - a boolean parameter enabling forward chaining.

• test offset - distance of the start of test set from the end of train set.

Let us denote the size of learners by L. The output variables of evaluate
are as follows:

• Q train - normalized expected likelihood on the train set for all learners
and all iterations (matrix L× k)

• Q test - normalized expected likelihood on the test set for all learners and
all iterations (matrix L× k)

• pitch pred test - values of predictions of pitch for all learners and all
iterations (matrix test size× L× k)

• xdot pred test - values of predictions of xdot for all learners and all
iterations (matrix test size× L× k)

• pitch err - MSE of predictions of pitch for all learners and all iterations
(matrix L× k)
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• xdot err - MSE of predictions of xdot for all learners and all iterations
(matrix L× k)

• taskI test - filtered values (with known measurements) of pitch and xdot
on test set for all learners and all iterations (matrix 2×test size×L×k)

• test data - data used for tests (matrix test size × 12 × k, 12 is the
number of columns in a single data record).

Each learner is expected to implement the following interface. Its only
input is the training data. The outputs are

• params - a cell array of learnt params that will be passed to filtering
algorithm and likelihood evaluator.

• filter - function handle for a function that implements appropriate filter-
ing algorithm for the learner. A filter receives params and test data and
outputs predictions for and filtered results pitch and xdot. Most of the learn-
ers share the common function filter kalman B or filter kalman C
(depending on the model structure), but there is also the exponential fil-
ter implemented in function filter exponential and Particle filter in
function filter pf all.

• evaluator - function handle for a function that calculates the normalized
expected likelihood. Common evaluator is kalman evaluator B, for
instance. Particle filter also enables calculating the likelihood, but we usu-
ally comment this out and return NaN because the computation is very
slow. Exponential filter does not have a method for calculating likelihood.

Examples of using the evaluate method and implementing a learner can
be found in experiment scripts listed in Section 5.5.

5.5 List of scripts

1. run task I kalman

2. run task I PF

3. run task ground robots

4. run experiment distance

5. run experiment longer validation

6. run experiment scaling

7. run experiment A

8. run experiment B

9. run experiment C

10. run experiment D

11. run experiment final evaluation
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6. Conclusion

6.1 Summary

Our thesis summarizes the most important theoretical concepts of both filtering
and system identification problems in a single coherent text with a sufficient
level of detail. We implement Kalman filter, Particle filter and EM algorithm.
Using real data example of UAV, we provide general guidelines for designing a
probabilistic model and tuning its parameters based on given data.

UAV application

We solve the UAV problem successfully using Kalman filter and a model learnt by
EM algorithm. We use the same model for both filtering task and prediction of
missing sensor values. For the basic filtering task with all measurements available,
it is sufficient to learn only those parameters from transition matrix that describe
the underlying physical system. These parameters can be learnt also by linear
regression.

To predict missing values of a sensor, more complex models are required.
Here, we learn full transition and covariance matrices by EM algorithm. We show
that EM algorithm is useful in cases where the true values of hidden states are
unknown. We modify this algorithm by adding penalization terms for the model
complexity. This avoids overfitting and also deals with non-Gaussian variances,
which would otherwise be learnt wrongly. Our experiments show that this model
performs well on unseen data.

Filtering noised values of speed can be performed using exponential filter.
However, this filter leads to worse results than our Kalman filter, mainly because
it slowly accommodates to new values. Moreover, Kalman filter describes the
system more properly from the theoretical point of view.

We also applied Particle filter for this problem using a linear model learnt by
Kalman EM algorithm. The performance was slightly worse than Kalman filter.
Particle filter does not improve the model unless we know certain nonlinearities
or non-Gaussian densities of the model.

Ground robot dataset

The ground robot dataset in Section 4.2 shows the importance of Particle filter
for nonlinear problems. Here, we also propose a solution for dealing with mislead-
ing values of GPS, analyze the compass sensor and implement an asynchronous
Particle filter.

6.2 Future work

• All the available data followed a simple pattern of balancing above a given
point. The most helpful for improving the models would be to collect more
data in different conditions, including outdoor and more complex flights.
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• About 0.2% of our data contained missing values. As the portion was small,
we simply replaced a missing value by the previous value. A more proper
way of handling this should be used. For instance, the correction step in
the filtering algorithm should be skipped and these values should not be
reflected in the likelihood calculation.

• We learnt a single model that handles the configuration with all measure-
ments available as well as missing measurement. The model could be ex-
tended by variables indicating the availability of sensors so that various
parameters would be used for different configurations. An example of such
work is [29].

• EM algorithm could be also further examined. For instance, its depends
on the initialization and converges to local optima. [30] proposes a genetic-
based modification of EM algorithm.

• There are several ways to improve the standard SIR Particle filter, briefly
mentioned in Section 2.3.
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A. Content of the CD

The attached CD contains the following items:

• MATLAB source codes

• original data with legend

• PDF file with the thesis.
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