
Univerzita Karlova v Praze, Filozofická fakulta
Katedra logiky

Jan Frauknecht

Koza a Prolog
Koza and Prolog
Bakalářská práce

Vedoućı práce: Mgr. Petr Švarný

2014

Děkuji Petrovi za odvahu a posléze za ocelové nervy.
Děkuji své rodině za nikdy nekonč́ıćı podporu.
A v neposledńı řadě děkuji Janě za to, že mě v nejvyšš́ı nouzi hnala do hor!

1

Prohlašuji, že jsem bakalářskou práci vypracoval samostatně a že jsem uvedl
všechny použité prameny a literaturu.

V Praze 2. ledna 2014

Jan Frauknecht

2

Abstract

Tato práce uvád́ı vztah umělé inteligence ke genetickému pro-
gramováńı a některé vlastnisti logického programováńı. Hlavńım ćılem
práce ovšem je naprogramovat algoritmus genetrického programováńı.
Tento program operuje s logickými programy. Algoritmus je imple-
mentován v SWI-Prologu. Práce obsahuje popis zdrojového kódu této
implementace a výsledky jej́ıho testováńı. Testováńı implementace
nab́ıźı několik možnost́ı budoućıho rozš́ı̌reńı práce.

Abstract

This paper introduces the artificial intelligence background of ge-
netic programming and some properties of logical programming para-
digm. However, the main task of this work is to create the genetic
programming algorithm that operates with the logical programming
paradigm. SWI-Prolog is used for the actual implementation of such
a program. This implementation is in detail described. The testing
of this implementation shows some possible path for the future work.

3

Contents
List of used acronyms 6

1 Prologue 7

2 Biologically inspired algorithms 8
2.1 Evolutionary algorithms . 8
2.2 Genetic algorithm . 9

2.2.1 Operators of reproduction 10
2.2.2 Operators of selection 11

2.3 Genetic programming . 12
2.4 Lamarckism . 13
2.5 PS2O . 14
2.6 Bee colony algorithm . 15

3 Logic and EA 17
3.1 Logical programming . 17
3.2 Prolog . 18
3.3 Motivation . 18

4 PROGP 20
4.1 Properties of LP in context of GP 20

4.1.1 Structure of the program 20
4.1.2 Variables . 21

4.2 PROGP vs. PROGA . 21
4.2.1 Alteration of PROGA 22

4.3 PROGP description . 22

5 Source code of PROGP 24
5.1 General idea of PROGP . 24
5.2 ga/0 . 25

5.2.1 initialise/12 . 25
5.3 runExistingPop/1 . 26

5.3.1 getPars/11 . 26
5.4 run/14 . 27

5.4.1 reproduce/12 . 28
5.4.2 xovers/10 . 28
5.4.3 mutation/10 . 30
5.4.4 lamarckian evolution/7 31

5.5 fitness/3 . 32
5.5.1 shapeError/2 . 32

4

5.5.2 curGraph2pl/2 . 32
5.5.3 loadInputs/4 . 32
5.5.4 runError/6 . 33
5.5.5 taxManager/5 . 33

6 Run of PROGP 34
6.1 First member . 34
6.2 Member . 36

6.2.1 Genome evolution example 37
6.3 Concatenate . 41

6.3.1 Experimental settings searching 41
6.3.2 Concatenate run . 43

7 Conclusion 44
7.1 Size of search space . 44
7.2 Why is PROGP unsuccessful? 46
7.3 PS2O application . 47
7.4 Prolog recursion handling . 47
7.5 Prolog failure and signal errors 48
7.6 Epilogue . 48

A List of attachments 49

B Translation algorithm 50

C Description of the attached files content 51

References 52

5

LIST OF USED ACRONYMS

List of used acronyms
PROGP PRolog Genetic Programming

PROGA PRolog Genetic Algorithm

BI Biologicaly Inspired

GA Genetic Algorithm

GP Genetic Programming

AI Artificial Inteligence

EA Evolutionary Algorithm

LP Logical Programming

I/O Input/Output

SLD Selective Linear Definite

6

1. Prologue

1 Prologue
This headline is the first, but not the last occurrence of a word that is pro-
nounced prolog. This particular occurrence is very specific because it refers
to the first chapter that introduces the following text. Every other occurrence
refers to the programming language.

The name of the work should evoke a connection to genetic programming.
John Koza is the author of the idea of genetic programming [Koza 1992].
The first section of this text introduces some examples of biologically inspired
algorithms. The rest of the text focuses mostly on genetic programming itself.

The goal of this thesis was to create a genetic programming implementa-
tion in Prolog (the result is called PROGP). Prolog is a programming lan-
guage which was first introduced in the 1970’s. Prolog was supposed to be
a breakthrough in artificial intelligence. However, the interest of program-
mers has gradually declined due to its inefficiency. Nowadays Prolog is a tool
mostly for logicians [Bratko 2001].

There has been an attempt to implement genetic programming for logi-
cal programming [Tang et. al. 1998]. It was designed in the programming
language Lisp and the result was compared with two other artificial intelli-
gence approaches. The genetic programming approach was significantly less
successful in the comparison. PROGP uses some suggestions to create better
fitness function from [Tang et. al. 1998].

The description and testing of PROGP are covered in the third and fourth
sections. The resulting program is an alteration of Olsson’s PROGA [Olsson
1996]. PROGA is a genetic algorithm implementation in SICSTUS Prolog.
The translation of PROGA into SWI-Prolog is part of the goal. PROGP is
also implemented in SWI-Prolog.

PROGP testing shows limits of the genetic programming approach. PRO-
GP was tested on three different tasks. Only the most basic one was success-
ful. PROGP also shows some limits to the SWI-Prolog distribution. Some
not documented Prolog errors occurred during the programming and testing
of PROGP.

7

2. Biologically inspired algorithms

2 Biologically inspired algorithms
Biology came with many general concepts that can be used as artificial intelli-
gence (AI) algorithms. These algorithms are called biologically inspired (BI)
algorithms. There are three large groups of BI algorithms. These are evo-
lutionary algorithms, ecologically inspired algorithms, and artificial swarm
intelligence algorithms [Binitha et. al. 2012].

There are four algorithms described in this section. These algorithms are
taken as examples and most of them are mentioned later on. All three groups
of BI algorithms are represented. First there are the evolutionary algorithms
(EA), whose examples follow the historical development of the idea. First
there was a general idea of using the evolution principle as an AI algorithm.
The genetic algorithm has been the first application of this principle. Genetic
programming is one of the latest results of EA.

The remaining two groups are represented only by one example. Ecolog-
ical algorithms are introduced by the PS2O algorithm. It is possible to ap-
ply the PS2O algorithm as an extension of genetic programming in logical
programming (i.e. PROGP) that will be introduced later. The last group
of BI algorithms includes swarm intelligence algorithms and it is represented
by the simulated bee colony algorithm.

All examples and algorithm definitions are taken from [Binitha et. al.
2012].

2.1 Evolutionary algorithms
The oldest and the best known BI algorithm is the evolutionary algorithm.
Evolution refers to Charles Darwin’s theory of evolution by natural selection.
This theory was the inspiration of 1950’s programmers like Holland, Ross,
Bremermann, and Friedberg [Back et. al. 1997].

For purposes of this work it is necessary to distinguish the genome and
the individual1. For the EA, the genome is the individual representation
stored in the computer memory (and it is this genome that is evolved). Fit-
ness can be counted only for an individual (not for the individual genetic
code). This distinction was not introduced by Charles Darwin. The discov-
ery of genotype was made in the 20th century2.

1Biology distinguishes the difference of phenotype and genotype. Evolution runs
on the level of genotype (the genetic code). Phenotype is the common name for every
actual expression of genome [Dawkins 2006].

2Heredity. (2014). In Encyclopaedia Britannica. Retrieved from
http://www.britannica.com/EBchecked/topic/262934/heredity
[Britannica 2014]

8

2.2 Genetic algorithm 2. Biologically inspired algorithms

The simulation of evolution is provided by an EA. The individuals usually
represent certain solutions of a problem. Although it is possible to think
of a self-reproducing program3, EA has usually an overlord4.

The general principle of an evolutionary algorithm is:

1. Make randomly the first generation of genomes.

2. Evaluate the whole population by a fitness function.

3. Check whether the goal was reached. If so, end with success. If not,
continue.

4. Make the next generation:

(a) use an operator of reproduction on the population.
(b) use an operator of selection on the population.

5. Go to point 2.

This is a general idea common to all EA. The overlord decides how often
the operators are used and it creates copies of the individuals.

The details in this paragraph are usually used but are not necessary.
The size of a population is fixed. The operators of reproduction are crossover
and mutation. The operator of selection is tournament. All these operators
are described in the following section.

The various EA differ mostly by their representation of the genome.

2.2 Genetic algorithm
The most basic (and the oldest) evolutionary algorithm is called genetic
algorithm (GA). The genome is in this case a binary vector of a certain
length. This binary vector can represent almost anything you can imagine,
for example the bag in the famous knapsack problem5.

3Such program creates a reproductions (copies) of itself. It should create copies
with some mistake or error (see section 2.2.1) to simulate evolution. Such program would
be in fact a new replicator as introduced in [Dawkins 2006]. It should start a new epoch
of evolution.

4The overlord is a computer program controlling the run of AI algorithm. In case
of the EA implementation, the overlord applies the operators and it controls whether
the goal was reached.

5The knapsack problem is one of the classical AI exercises. It belongs into the com-
plexity class NP. Imagine a set of items and a bag with limited weight. Each item has
weight and value. The knapsack problem asks what is the most efficient way of loading
the bag with given items.

9

2.2 Genetic algorithm 2. Biologically inspired algorithms

In the case of the knapsack problem, 1 means an item is loaded, 0 means
an item is not loaded. Fitness would represent whether the bag is under- or
overloaded and how much value is loaded. The GA solution of the knapsack
problem is used as an example of PROGA translation to SWI-Prolog (see
attachment C).

What remains to be described more precisely are the operators of repro-
duction and selection.

2.2.1 Operators of reproduction

The definitions of operators of reproduction are inspired by biology. Similar
processes take place during the reproduction of biological genome.

There are three different operators of reproduction: two types of crossover
and one type of mutation. These reproduction operators are usual and are
used in the PROGP and PROGA. It is possible to imagine some other op-
erators.

The first type of crossover is one point crossover. To perform the one
point crossover, it is necessary to choose two good (according to their fitness
value) parents and select randomly a point in their genome. Then take
the beginning of the genome to the selected point of the first parent and
connect it to the rest of the genome of the second parent (from the crossover
point till the end). The same thing is done with the other genome. Two
new offspring are created. This takes inspiration from biology and genotype
crossover.

The second type of crossover is a two point crossover. To perform the two
point crossover, choose two good parents (according to their fitness value)
and select randomly two points in their genome. Then do the same thing
as in the one point crossover. When the second crossover point is reached
change back to the first genome. Also in this case, two genomes are created.

There is an example of a two point crossover applied to parents with ge-
nomes 000000000000 and 111111111111 in Figure 1. The crossover points
were selected as 4 and 8.

Clearly the length of the genome is preserved by the crossover operator.
This operator also preserves a significant part of the genome with a good
fitness to the next generation. There is a good chance that the offspring will
have the good properties of its parents.

The operator of mutation applied to a binary vector is called bit mutation.
In this case, there is only one parent and one offspring. Bit mutation selects
randomly one point in the genome and changes it from 1 to 0 or the other way.
Bit mutation also preserves the good properties of the parent (it preserves
most of the genome to the next generation) but may lead to the creation

10

2.2 Genetic algorithm 2. Biologically inspired algorithms

000000000000 111111111111

0000 0000 0000 1111 1111 1111

0000 1111 0000 1111 0000 1111

000011110000 111100001111

Divide individuals at crossover points.

Actual crossover.

Concatenate to get new genomes.

Figure 1: Example of two point crossover

of a completely new genome.
The mutation operator was the probable beginning of biological evolution.

The first replicator was a single large molecule. It carried the information
about cloning itself. There would be no evolution possible if no mistakes or
errors occurred during the replication process. This error is usually called
mutation. The mutation of the first replicator could change the replicator’s
genome and so could create a completely new genome.

These operators are usually used together in EA. Both crossover oper-
ators have the tendency to end in local minima if they are not combined
with mutation. The mutation operator is a random search algorithm.

2.2.2 Operators of selection

The selection operator decides which genomes are going to survive to the next
generation. This operator is the equivalent of the concept of mortality in bi-
ology.

Individuals that are not fit enough or are too old die. In the case of EA
they are not selected to the next generation.

The simplest idea of the operator of selection would be an algorithm
that chooses the genome with best fitness yet. This idea is too simple to work.
It would lead to a decrease in population diversity. A low population diversity
would increase the probability of ending in some of the local extrema.

11

2.3 Genetic programming 2. Biologically inspired algorithms

One of the possible operators of selection is the tournament operator.
It chooses randomly a small part of the population and chooses the best in-
dividual in this part. This procedure is repeated until the size of a population
is reached.

There are several other possible operators of selection but the tournament
operator is the only relevant one for this work.

2.3 Genetic programming
The other possibility for a genome representation (other than a binary vector)
is a tree structure. The EA that use tree representation of the genome
are called genetic programming (GP). This improvement of GA was first
introduced by John Koza [Koza 1992]. It is possible to represent computer
programs, mathematical functions, or logic expressions by binary vectors,
but it is not very intuitive. A much more natural representation of such
structures is a tree.

A mathematical function represented as a tree has operations in nodes
of the tree and numbers or variables in its leaves.

The motivation for a tree representation is the predictability of the ge-
nome length. Generally, it is complicated to predict the length of a mathe-
matical function or even a computer program. It would be of course possible
to make the length of the binary vector variable. In case of more complicated
structures (such as mathematical functions), it will be probably necessary
to assign more bits of the vector to one term in a genome, which would lead
to some difficulties with both operators of reproduction (it will be necessary
to control the correctness6 of the newly created genomes).

The tree representation also allows the definition of simple operators
of reproduction for genomes of variable sizes. The operator of crossover
for the tree representation chooses randomly one node of each parent and
swaps the subtrees generated from these nodes between parents. The cross-
over defined for a tree representation takes two parents and creates two off-
spring again.

The operator of crossover used on mathematical functions swaps a subex-
pression (such that can be put in brackets without effect on the meaning
of the function) of one parent for a subexpression of the other parent.

The operator of mutation is more complicated than in the bit vector
representation. In the tree representation it is necessary to control whether

6There would have to be some sequence that controls whether the genotype has the phe-
notype representation (whether an application of operator on the level of a genome created
an individual).

12

2.4 Lamarckism 2. Biologically inspired algorithms

the chosen mutation point is in the node or in the leaf, and to respect this
point type.

The operator of mutation in a mathematical function replaces the number
or variable in the leaf with a different number or variable, or it replaces
the operation in a node with a different operation. It does not make sense
to change the operation in node into a variable.

2.4 Lamarckism
Jean Baptiste Lamarck created the first complete evolutionary theory. It was
introduced at the beginning of the 19th century7. Lamarck published his
work Philisophie zoologique in 1809 and died in 1829. Darwin was born
in 18098. Darwin published his work On the Origin of Species in 1859. One
part of Lamarck’s theory was used to optimize EA. The basic proposition
used here is widely known as Lamarckism. But Lamarck’s theory is complex
and contains many interesting thoughts. Lamarckism is considered disproved
by the majority of biologists today. Lamarckism can be briefly described
in this way: properties, gathered during a life of an individual, may be
passed to its offspring.

According to Lamarckism, a giraffe has a long neck because its parents’
necks were stretched during their reaching for high leaves. According to Dar-
winism, on the other hand, a giraffe with a longer neck has an advantage
in the competition with other giraffes and would have more offspring (with
longer neck) than giraffes with shorter necks.

How does Lamarckism work in EA? A deterministic search of the space
of all possible solutions is added to the normal EA. So we can adjust our
description of EA by adding point number 5:

1. Make randomly the first generation of genomes.

2. Evaluate the whole population by a fitness function.

3. Check whether the goal was reached. If so, end with success. If no,
continue.

4. Make the next generation:
7Jean-Baptiste Lamarck. (2014). In Encyclopaedia Britannica. Retrieved from

http://www.britannica.com/EBchecked/topic/328430/Jean-Baptiste-Lamarck
[Britannica 2014]
8Charles Darwin. (2014). In Encyclopaedia Britannica. Retrieved from

http://www.britannica.com/EBchecked/topic/151902/Charles-Darwin
[Britannica 2014]

13

2.5 PS2O 2. Biologically inspired algorithms

(a) use an operator of selection on population.
(b) use an operator of reproduction on population.

5. Go through the population and apply the local search algorithm.

6. Go to point 2.

Applying the local search algorithm has a great potential in shortening
the searching time. However, if applied on the whole population, it could
have a negative impact on its diversity9. To avoid the diversity problem, it is
possible to apply the local search algorithm on a part of the population or it is
possible to use the so called Baldwin effect. The Baldwin effect uses a local
search algorithm but does not replace the genome with its best neighbour,
it only changes the genome’s fitness function value for the fitness function
value of its best neighbour.

2.5 PS2O
The PS2O algorithm is not a usual EA. In fact, it belongs to a different group
of BI algorithms. It is an ecology inspired algorithm. Interactions between
species and the environment are the subject of ecology [Odum 1977].

In the PS2O algorithm, there are several randomly made species. Each
species has a population of a certain predetermined size. The populations
are made of genomes. Populations evolve via some evolutionary algorithm.
The fitness function rates all genomes of all species, therefore genomes of dif-
ferent species are comparable.

The motivation in biology is clear: this algorithm simulates the evolution
process of an ecosystem.

An example of PS2O is an evolution of mathematical functions repre-
sented as binary vectors. The species differ in the length of the genome.

It is necessary to define several new operators on the level of species.
The first possible operator changes the sizes of species populations. Species
with more successful individuals (according to the fitness values) have more
individuals than the ones with less successful individuals.

In our example, genomes of certain length would be more successful
than genomes of other lengths. The more successful length of genomes would
be more probable in the next generation.

Other possible operators change the definitions of species. In some in-
tervals, it is necessary to create a new species. The new species definition

9All genomes in the population could be similar. This has of course bad impact
on the evolution search.

14

2.6 Bee colony algorithm 2. Biologically inspired algorithms

might be fully random, or it might respect the successfulness of the existing
species (such operator must create more often species with similar definitions
as successful species).

It is easy to define such an operator for species distinguished by length
of binary vectors. It may be impossible to create a function with the de-
manded property in the first generation, because functions with the de-
manded property could have different length of the genome that functions
included in the first generation. After some generations, it is possible to cre-
ate new species by choosing a different length of binary vector.

The alteration of the EA looks like this:

1. Make randomly the first generation of genomes of several species.

2. Evaluate the whole population by a fitness function.

3. Check whether the goal was reached. If so, end with success. If not,
continue.

4. Use operators defined on the level of species.

5. Make a next generation:

(a) use an operator of selection on every species population.
(b) use an operator of reproduction on every species population.

6. Go to point 2.

2.6 Bee colony algorithm
The last group of BI algorithms includes swarm intelligence algorithms.
There is typically no overlord in the case of swarm intelligence. No pro-
gram controls the swarm. The solution space search is the work of a set
of simple agents. These algorithms are usually inspired by the life of social
insects, such as bees or ants.

The algorithm described here is inspired by a bee colony. One of the prob-
lems that a bee colony has to solve is the search for a food source. Bees
evolved a special kind of communication for this purpose.

The artificial bee colony algorithm is based on such a communication.
The size of the food source represents the quality of the solution of a de-
manded problem. To learn how good a food source is, it is necessary to count
a fitness function.

15

2.6 Bee colony algorithm 2. Biologically inspired algorithms

There are three different types of bees: scouts, employed bees, and on-
lookers. Scouts search the environment randomly. Employed bees use in-
formation gathered by scouts and search deterministically the solutions sug-
gested by scouts. Onlookers share the information and decide where to send
the employed bees.

The swarm intelligence algorithm is not in the main focus of this work.
It is introduced very briefly, here. More details of such a algorithm might be
found in [Binitha et. al. 2012].

16

3. Logic and EA

3 Logic and EA

3.1 Logical programming
Logical Programming (LP) is a programming language paradigm. LP is
based on Horn logic. The language of LP contains predicates, variables,
functions, and logical connectives (conjunction and implication)10.

Every line of a LP program is a Horn clause. Every clause is created
by predicates. Every predicate has a name and a set of variables. An example
of a predicate follows.

The predicate pred(V1, V2) is called pred and in its set of variables
are two members, which are V1 and V2.

The Horn clause is dividable into a head and a body. The head always
consists of one predicate. The body and the head are connected by an im-
plication. Predicates in the body are connected by a conjunction. A Horn
clause with only one predicate (it might be viewed as the head) is called
a fact.

The clause is supposed to be read this way:

If all predicates of the body are true, then the head is true.

Usually the implication is directed from the left side to the right. How-
ever, it is directed from the right side to the left in the syntax of LP. The head
of the predicate is on the left side and its body on the right side of the im-
plication that is directed from right to left. The symbol of implication is ‘:-’
and the symbol of the conjunction is ‘,’ in the syntax of LP.

An example of a Horn clause in classical logic (every predicate is for sim-
plification written without the set of variables).

body1 & body2 & body3→ head1

Translation of this Horn clause in the language of LP follows.

head1 :- body1, body2, body3.

LP program is a database of Horn clauses. A run of LP starts with asking
a question. This question is a predicate. The LP tries to prove the question
from the database. The proof is searched by Selective Linear Definite (SLD)
clause resolution. SLD clause resolution can be seen as the automatic proof
searching algorithm. The soundness and completeness are provable for SLD
clause resolution in LP. [Nilsson et. al. 2000]

10This particular definition of LP language is based on the lectures of RNDr Jan Hric
but can also be found in [Nilsson et. al. 2000]

17

3.2 Prolog 3. Logic and EA

3.2 Prolog
Prolog is a programming language. It is based on the LP paradigm. It was
implemented in France in the 1970’s. [Bratko 2001]

SWI-Prolog is an implementation of Prolog first designed by John Wiele-
maker in 1986. It is implemented in C. [Wielemaker 2014]

The language of Prolog is an extension of the language of LP. The lan-
guage is extended by logic operators cut and negation and one more logical
connective, the disjunction. But it is possible to look at disjunction only
as the abbreviation for another definition of a predicate. Therefore the dis-
junction connective is going to be overlooked in the following text.

3.3 Motivation
Creating a theory that suits some finite set of properties is simple. It is
enough to choose the finite set of properties as axioms. However, creating
a theory that generalises this finite set of properties is not a simple task. It is
the same problem as creating a finite theory for an infinite set of properties.
The creation of such theories might be indeed very complicated.

An attempt to use GP in a logical programming paradigm might be
viewed as an attempt to teach a computer to find such theories. The evolving
program is the searched theory in the case of this motivation. The question
asked by the program is a property that the theory should respect.

The control of how successful the GP has been is up to the program-
mer. For example, the control whether the theory solves the demanded task,
or whether the theory is complete. The results are of course conditioned
by the finite set of properties. The success of evolution searching depends
on definitions of the operators.

An attempt to create GP for the logical programming paradigm is pre-
sented in [Tang 1998]. This attempt was compared with GP for functional
programming and inductive logic programming. However, both attempts
at GP for logical programming and functional programming were imple-
mented in programming language Lisp. Inductive logic programming is EA
on the Horn clauses. Individuals are represented as strings. GP for logical
programming was significantly less successful than the other two approaches.
Generally, the GP for logical programming should not have worse results
than the other two approaches.

As previously stated, Prolog is an extension of logical programming, so
it is more natural to use Prolog as a programming language to implement
GP using logical programming. The main task of this work was to design
such a program. The resulted program is based on Olsson’s Prolog Genetic

18

3.3 Motivation 3. Logic and EA

Algorithm (PROGA) and is called Prolog Genetic Programming (PROGP).
PROGP is designed in SWI-Prolog.

Recall that PROGP is implemented in Prolog. However, PROGP is ge-
netic programming designed for the logical programming paradigm. The logic
operators (cut and negation) cannot be used in the evolving programs. More-
over, there is no connective of disjunction.

19

4. PROGP

4 PROGP

4.1 Properties of LP in context of GP
4.1.1 Structure of the program

It is necessary for GP to represent the genome as a tree graph. PROGP uses
the left to right, top to bottom orientation of the tree graph.

head1 :- body1, body2.
head2.
head3 :- body2.
...

Figure 2: LP

Figure 2 shows an example of the LP program.
When creating the graph, the first head of the first clause is the first

node. The left successor is the body of the clause. The body of the clause
is a list of predicates. If the body is empty (the head was a fact), the list
of predicates is empty and an empty node is added to the graph. The right
successor is the head of the next clause, etc.

head1

body1

body2

head2

∅ head3

body2 ...

Figure 3: Tree representation of LP

An example of the tree representation of the LP program is shown in Fig-
ure 3. Such graphs have some nice properties. The graph is always connected
and it is not cyclic (it is a tree). The graph grows wider only on the right
side. There is a path through the graph that is made only of binary nodes,
except the last one which is unary. Nodes that are not on this path are all
unary.

The Prolog representation of such a graph is simple. The representation
is a list of tuples. [Bratko 2001]

Figure 4 shows an example of the Prolog representation of the tree from
Figure 3.

20

4.2 PROGP vs. PROGA 4. PROGP

[[head1, [body1, body2]], [head2, ’fact’],
[head3, [body2]], ...]

Figure 4: Prolog representation of tree representation of LP

The node is the first member of the tuple and it is a predicate. The left
successor is the second member of the tuple and it is a list of clauses.
The atom ‘fact’ is used in the case that the list should be empty. The first
member of the next tuple is the right successor.

PROGP is GP since the representation of the LP program is a tree.

4.1.2 Variables

Until now there was no need to talk about the sets of variables of predicates.
Predicates (both their names and sets of variables) have been substituted
by a predicate name in every example of LP code.

Every predicate has its arity in Prolog and LP. The arity sets the number
of variables that the predicate uses. For simplicity reasons11, only predi-
cates with the same arity in PROGP are used. That is possible because
it is simple to add anonymous variables (such that do not affect the value
of the predicate) to the sets of variables that the predicate uses. A translation
algorithm (see attachment B) expands the Prolog program to one that has
only predicates with the same arity.

Every set of variables in PROGP should be clearly represented as Prolog
varable type list. However it is represented as the Prolog variable type atom.
Prolog allows simple manipulation between the Prolog variable type atom
and list12. The atom type is used because it allows easier manipulation
with the genome. The translated list form allows better mutation handling
and easier translation between genome and individual.

The arity of predicates has to be decided before PROGP run. It is simple
to decide the arity for such simple tasks as are presented in the section 6.
It might be necessary to use higher arity than seems to be necessary for some
more complicated tasks.

4.2 PROGP vs. PROGA
PROGA, as introduced by B. Olsson [Olsson 1996], is an implementation
of the classical genetic algorithm designed in SICSTUS Prolog. The genome

11mostly because of the correctness of operators (see section 2.3).
12The translation is possible because of the Prolog built-in predicate term to atom/2.

This predicate unifies the atom with a term and in reverse.

21

4.3 PROGP description 4. PROGP

is in this case a binary vector. It uses the two point crossover as an operator
of reproduction and the tournament or the roulette as operators of selec-
tion. The program consists of 6 files and 187 clauses. There is an example
of PROGA (translated into SWI-Prolog) applied on the knapsack problem
(see attachment C).

PROGP is the alteration of PROGA. It is an implementation of ge-
netic programming for the logical programming paradigm. It was designed
in SWI-Prolog. There are 177 clauses in two files. The program’s description
and examples of usage follows.

4.2.1 Alteration of PROGA

First it was necessary to translate PROGA to the SWI-Prolog language. This
translation is presented in the example of the EA solution of the knapsack
problem. Although there is a library in SWI-Prolog that should make all
SICSTUS code readable, there have still been some problems with PROGA
translation. The actual translation does not use this library and the PROGA
differs from the result in only a few predicates definitions.

The main difference between the PROGA and PROGP is in the represen-
tation of the genome. No part of PROGA that operates with genomes could
be used in PROGP. That includes the operators of reproduction (xover/9
and mutation/10). Of course, the original fitness function could not be used
nor could the Lamarckian evolution (fitness/3 and lamarckian_evolu-
tion/7). The operator of initialization also had to be altered (Create-
Graphs/6).

Some parts of the program were altered and reduced to make the code
more readable (initialise/15 and showPop/7). The user interface may
be less friendly because of such alterations. On the other hand, PROGP
is much shorter and it has even fewer clauses than PROGA (even though
PROGP operates with more complicated structures). The operator of se-
lection (select/8; although it has been reduced to only the tournament
operator) and the main cycle (ga/0 and run/14) are originals from PROGA
or with as little changes as possible.

4.3 PROGP description
PROGP consists of two files. The main one is GP.pl. This file contains
the main cycle and most of the program. The second file is called fitness.pl.
It is automatically consulted by GP.pl. It is necessary to alter the fitness.pl
file for every alteration of PROGP on a specific problem.

22

4.3 PROGP description 4. PROGP

Several text files are created during the run of the program. All these
files are stored in the same folder as the program. These files contain de-
tails on the evolution process. The results of the evolution themselves are
discussed later (see section 6).

The statistics of SWI-Prolog run are written on the screen after the cre-
ation of every new generation. These statistics contain the actual parameter
definitions, detail of SWI-Prolog memory usage and the time consumption
of the whole run.

Predicate ga/0 starts the evolution process.

23

5. Source code of PROGP

5 Source code of PROGP
The source code is widely commented. This section allows easier understand-
ing of PROGP’s principle without the technicalities. For example, the pred-
icates operating with the Prolog variable types are omitted. However, all
evolution-related predicates are mentioned and introduced here.

The only exception are two evolution-related predicates that are very
technical and the description of their run is omitted. The first is called
createGraphs/6, the second is called mutation/10. These predicates op-
erate with the structure of genome. This is the cause of the technicalities.
This section describes their impact on the genome.

There are two predicates that are placed in the file fitness.pl the first
is getPars/11, the second is fitness/3 (almost everything that is called
by this predicate is placed also in the fitness.pl file).

The evolution starts via calling the predicate ga/0.
The evolution of a certain existing population starts via calling the pred-

icate runExistingPop/1.

5.1 General idea of PROGP
Recall the general algorithm of EA with Lamarckism applied. PROGP
of course respects this general scheme.

1. initialise/12 makes randomly the first generation. run/14 starts
the main cycle of the program.

2. evaluate/3 runs the fitness function on every member of the popula-
tion.

3. showPop/7 checks whether the goal has been reached. If so, it ends
the program with success. If not, it lets the program continue.

4. To make the next generation:

(a) select/8 runs operator of selection.
(b) xover/6 and mutation/10 run operators of reproduction on pop-

ulation.

5. lamarckian_evolution/7 goes through the population and applies
the local search algorithm.

6. run/14 starts recursively in point 2 again.

24

5.2 ga/0 5. Source code of PROGP

This is the general idea of PROGP. Every predicate mentioned here is
described in detail later.

The PROGP has one little alteration in the code that differ such gen-
eral idea. The mutation operator is used after the operator of selection.
The number of mutated genomes in every population respects the parameter
of mutation probability (see section 5.3.1).

5.2 ga/0
ga/0 :-

initialise/12,
evaluate/3,
run/14.

The first generation is created by initialise/12. The population is
a list of tree representations as introduced in section 4.1.1.

The fitness function is applied on every genome via evaluate/3. This is
done by predicate fitness/2. The description of fitness function source code
is described in section 5.5. Some examples of fitness functions are described
in section 6.

The main cycle of PROGP is called run/14.

5.2.1 initialise/12

The predicate initialise/12 is called by ga/0.

initialise/12 :-
getPars/11,
createGraphs/14.

The parameters necessary for the run of PROGP are loaded from fitness.pl
by predicate getPars/11. The predicate is in detail described later (see
section 5.3.1).

Predicate createGraphs/6 works straightforwardly, but it is long and
fairly complicated. Details of individual steps are commented in the pro-
gram. This predicate creates a population. The created population is a list
of programs. Every program respects the representation as described earlier
4.1.1.

25

5.3 runExistingPop/1 5. Source code of PROGP

5.3 runExistingPop/1
runExistingPop/1 :-

loadPopulation/4,
getPars/11,
run/14.

Running PROGP from the existing population is possible via runExi-
stingPop/1. The population needs to be stored in a specific way. It is
possible to start with the population created by PROGP (the text file ‘gen
N.txt’ where N is a number of a given generation). To start with the user
defined population, it is necessary to create a file that respects the official
created population (including the objective and fitness values).

The parameters necessary to run PROGP are loaded from the file fit-
ness.pl by the predicate getPars/11. The predicate is described in detail
later (see section 5.3.1).

The main cycle of PROGP is called run/14. Its detailed description
follows (see section 5.4).

5.3.1 getPars/11

The predicate getPars/11 is called by initialise/12 and runExisting-
Pop/1. The predicate getPars/11 is placed in the file fitness.pl.

The predicate getPars/11 is responsible for the loading of 11 parameters
necessary for PROGP’s run.

The first parameter is called ShowTime and it is an integer. It refers
to the predicate showPop/7. Parameter ShowTime sets how often a generation
is saved as a callable file (of the format ‘gen N.txt’ where N is a number
of a given generation).

The second parameter is called Generations and it is an integer. It sets
the maximum amount of generations. Parameters Generations and Show-
Time are related. If the parameter ShowTime is not lower than Generations,
no callable generation is saved. It is recommended to choose the ShowTime
as divisor of the Generations.

The next two parameters refer to the list of variables used with each
predicate (as discussed in section 4.1.2.). The first of these parameters is
called NrVar and it is an integer. It sets how many different variables can be
used in the genome. The number is usually chosen as lower than 10.

The next parameter is called ListVar and it is a list. Each member
of the list is ‘Int’ or ‘List’ (with the simple quotes, it is a Prolog type
atom). The ListVar parameter sets both the length of the variables list and
each member type (integer or list).

26

5.4 run/14 5. Source code of PROGP

The fifth parameter is called NrPredicates and it is an integer. It sets
how many predicates can be used in the program. This number also sets how
long one line of the program can be (every predicate can be used only once
in the predicate’s body). Maximal length of a line is NrPredicates + 1.

The sixth parameter is called NrChromosomes and it is an integer. It sets
the size of the population.

The seventh parameter is called MaxDepth and it is an integer. MaxDepth
sets the maximal number of lines in the program.

The next two parameters refer to the reproduction operators. The first
is called TSize and it is an integer. TSize sets the size of the tournament
(how many genomes are going to compete with each other). TSize must be
lower than NrChromosomes. The second is called Xnr and it is an integer.
Xnr decides how many runs of the crossover operator there will be. Each run
of the crossover creates two new genomes. That means that the Xnr must be
lower than half of the NrChromosomes13.

The tenth parameter is called MutP and it is a real number from the inter-
val [0,1]. MutP it sets the probability of performing a mutation on a genome.

The last parameter is called LamP and it is a real number from the in-
terval [0,1]. It refers to the probability of performing Lamarckian evolution
on a genome.

There are two groups of these parameters. The first group contains pa-
rameters that cannot be changed while solving a certain task, or parame-
ters that do not affect the actual evolution process. This group contains
ShowTime, Generations NrVar, NrPredicates, ListVar, and MaxDepth.
These predicates affect the size of the searched space.

The second group of variables contains the parameters that affect the evo-
lution directly. These include the parameters TSize Xnr, MutP, and LamP.
The parameters define how much of the search space would be searched in one
generation.

The test of the effect of the second group of parameters on the evolution
process is presented in section 6.3.1.

5.4 run/14
The predicate run/14 is called by ga/0 and runExistingPop/1.

13Recall that every application of the crossover operator creates two offspring (see section
2.2.1).

27

5.4 run/14 5. Source code of PROGP

run/14 :-
showPop/7,
reproduce/12,
mutation/12,
lamarckian_evolution/12,
run/14.

Predicate run/14 represents the main cycle of PROGP. This predicate is
recursive.

The operators of selection and crossover are called by predicate repro-
duce/12.

The mutation operator is called by predicate mutation/12.
The Lamarckism is applied by predicate lamarckian_evolution/12.

5.4.1 reproduce/12

The predicate reproduce/12 is called by run/14.
reproduce/12 :-

xovers/10,
evaluate/3,
fillup/12.

5.4.2 xovers/10

The predicate xovers/10 is called by reproduce/12.
xovers/10 :-

select/8,
select/8,
xover/6,
xovers/10.

The operator of selection (the tournament operator) is called via the pred-
icate select/8. The operator works straightforwardly as described in 2.2.2.
Details about its code are described in the source code comments.

The predicate xover/6 creates two new genomes using the crossover op-
erator. Two definitions of crossover are used in PROGP. The first is called
xovera/9 and it exchanges the subtrees of a chosen node (see Figure 5).
The second is called xoverb/6 and it exchanges the bodies from a chosen
node (only left successors in the tree representation) (see Figure 6)14.

14The predicate xoverb/6 might be considered as special application of two point
crossover. The first point is the selected node. The second point is the right successor of
selected point.

28

5.4 run/14 5. Source code of PROGP

The second definition of crossover was added while testing PROGP for op-
timizing the evolution results.

Predicate evaluate/3 has been described before.
Predicate fillup/12 fills up the new population to the predetermined

population size with the fittest members of the previous population. The op-
erator of selection is used for choosing the fittest members.

head1

body1

body2

head2

∅ head3

body3 ...

head4

∅ head5

body4

body5

head6

body6 ...

head1

body1

body2

head6

body6 ...

head4

∅ head5

body4

body5

head2

∅ head3

body3 ...

First parent: Second parent:

First offspring: Second offspring:

Figure 5: Example of xovera aplication

29

5.4 run/14 5. Source code of PROGP

head1

body1

body2

head2

∅ head3

body3 ...

head4

∅ head5

body4

body5

head6

body6 ...

head1

body1

body5

head2

∅ head3

body3 ...

head4

∅ head5

body4

body2

head6

body6 ...

First parent: Second parent:

First offspring: Second offspring:

Figure 6: Example of xoverb aplication

5.4.3 mutation/10

The predicate mutation/10 is called by run/14.

mutation/10 :-
mutate/5,
fitness/3,
mutation/12.

The predicate mutation/10 mutates with a predetermined probability
a member of the population. The predicate is recursive. It works straight-
forwardly but is complicated. The process is commented in the program
in detail.

It is possible to mutate one of the existing predicates in the program.
To mutate a predicate means to create a new predicate and exchange it for
a chosen one.

30

5.4 run/14 5. Source code of PROGP

Other possibility is to mutate one of the variables from a set of variables.
First a set of variables is chosen, then the actual variable to mutate is selected.
In the case of integer type variable, a new variable is created. In the case
of a list type variable, it is possible to create a completely new list variable,
but it is also possible to divide the list and change one half of it and preserve
the other15.

5.4.4 lamarckian evolution/7

The predicate lamarckian_evolution/7 is called by run/14.

lamarckian evolution/7 :-
findall(permutation/2, or subSet/2,
evaluate1/4,
lamarckian_evolution/7.

The deterministic space search is provided by predicate Lamarckian_evo-
lution/7. The program decides whether to try all possible permutations16

of the program lines or whether to try some of possible subsets17 of the pro-
gram lines. The decision depends on the length of the genome: if the length
is higher than 5, then it tries the subsets. The reason for these numerical
limitations is the factorial complexity of finding all permutations of bigger
lists18.

The fittest permutation or subset is sent to the next generation (via
the predicate evaluate1/4).

The Lamarckian evolution as defined here is easily extendible on the Bald-
win effect. The individual would not be replaced with the fittest possible
neighbour, only the fitness value would be improved.

15Variable type list has in Prolog the structure of a tree (every node has zero, one,
or two successors. Zero successors in case of list containing an atom. One successors
in case of a list containing one another list. Two successors in case of Prolog head/tail
representation of list). In case of mutation as defined in PROGP it is possible to create
a completely new tree, or it is possible to look at the root of the tree and change one of its
successors.

16The predicate permutation/2 is a built-in SWI-Prolog predicate that unifies permu-
tation of a list.

17The predicate subSet/2 is a defined in PROGP and it unifies some subsets of a list.
It is not all subsets, because it unifies only subsets of items that follows each other (i.e.
for a three item list: [1,2,3], predicate subSet does not find a subset [1,3], because
item 3 does not directly follow item 1).

18For a set of length 8, there is 37 unifications of predicate subSet/2 and 40320 unifi-
cations of predicate permutation/2.

31

5.5 fitness/3 5. Source code of PROGP

5.5 fitness/3
The predicate fitness/3 is called by evaluate/3. The predicate fitness/3
is placed in the fitness.pl file.

fitness/3 :-
shapeError/2,
curGraph2pl/2,
loadInputs/4,
runError/6,
TaxManager/5.

The predicate fitness/3 translates a genome to the individual (trans-
lates the genotype to the phenotype) and evaluates individuals based on their
objective and fitness value. These values are related. The fitness value is
counted from the objective value. The objective value is a sum of all errors
that are recognised by the predicate fitness/3. Usually the fitness value
is in the interval [0, 1] where 1 means that the genome is the desired result
in EA.

5.5.1 shapeError/2

The predicate shapeError/2 is called by fitness/3.
Predicate shapeError/2 tests the properties of the genome (for this

test it is possible to use a non-translated genome). First, it is the length
of the genome. Length is tested by the predicate lengthError/2. A shorter
genome is better than a longer one. The predicate TypeCheck/2 examine
the number of facts in the genome and number of recursively called predi-
cates in the genome.

5.5.2 curGraph2pl/2

The predicate curGraph2pl/2 is called by fitness/3. It is placed in the file
GP.pl.

For other tests of the individual, it is necessary to translate the genome
of the individual to a form which would allow Prolog to load it into the current
database. Predicate curGraph2pl/2 is such a translation. This predicate
creates a list of lines of an LP program from the tree representation.

5.5.3 loadInputs/4

The predicate loadInputs/4 is called by fitness/3.

32

5.5 fitness/3 5. Source code of PROGP

Predicate loadInputs/4 unifies the I/O sets. The first two are designed
for testing the programs only with True or False outputs. These I/O sets are
lists of atoms. Every atom has the form of an input of arguments for the pred-
icate. There are no variables in the argument list. The first of these two sets
is the positive I/O set. It contains input that should end with True. The sec-
ond is the negative I/O set. It contains input that should end with False.

The other two are designed for testing programs that have other than True
or False output for the given input. This I/O set is a list of lists. Every
member of the I/O set has two members. The first member is the input
argument for the predicate. There is one variable in this input. The second
member is the output that should unify with the variable in the input after
the program has run. Again, the first of these sets is the positive I/O set
and the other is the negative I/O set.

5.5.4 runError/6

The predicate runError/6 is called by fitness/3.
Predicate runError/6 loads the individual (the translation of the ge-

nome) into the database. Then it tries to run the evolved program for every
input from the I/O sets. It sums the errors gathered during this run.

A very important part of this predicate is predicate unloadChrom0. This
predicate unloads individuals from the database of PROGP. This is prob-
lematic and results in fails in the run of PROGP19. This failure is further
discussed later (see section 7.5).

5.5.5 taxManager/5

The predicate taxManager/5 is called by fitness/3.
Predicate taxManager/5 sums all the gathered errors in ObjVal (the ob-

jective value) and counts Fitness (the fitness value) from it.
The fitness value is counted from the formula 1/(ObjV al + 1). It is not

possible to compare the masses of fitness values because of this formula.
That is the reason for using objective value in the charts in the section
6. The formula of course preserves the order of individuals (for every two
individuals if one has a higher objective value than the other, it has a lower
fitness value).

19the only red cut of PROGP is used while calling of this predicate.

33

6. Run of PROGP

6 Run of PROGP
The run of PROGP is demonstrated on three different tasks in this sec-
tion. Problems of increasing complexity were chosen. The first task is called
the First Member. The resulting theory says whether an item is a first
member of a list. The shortest solution has one predicate and it is a fact.
The second task is an extension of the first one. It is called the Member.
The resulting theory says whether an item is a member of a list. The shortest
solution has one fact and one recursive predicate. The third task is taken
from [Tang 1998]. It is called Concatenate. The resulting theory says whether
a third list is a concatenation of two lists. The shortest solution has one fact
and one recursive predicate. It is more complex because there is one more
variable added.

Details on how to experimentally measure the success of PROGP were
taken from [Tang 1998]. The results are measured in 20 runs of PROGP.
The parameter settings were tested manually. PROGP was successful in 50
generations only for the First Member task (see section 6.1). Only one run
of the Member task was successful. The rest of the runs were not successful
even in 100 generations (see section 6.2). This section also contains a further
test of time consumption of PROGP and examples of successful applications
of operators of reproduction (see section 6.2.1). The task Concatenate was
never successful in 100 generations (see section 6.3). This section also con-
tains a description of the experimental test of parameters (see section 6.3.1).

All I/O sets were defined randomly to fit the demanded solution.
The source code of all three tasks can be found in the attachement (see

attachment C).
Five runs out of 20 failed in case of PROGP for the task First Mem-

ber. Two runs out of 20 failed in the case of PROGP for the task Member.
Two runs out of 20 failed in the case of PROGP for the task Concatenate.
to sum it up 9 runs out of the total number of 60 failed. A failed run means
that PROGP ended with a Prolog error. The error that occurred was a not
very well documented error called Signal 22. It should have some connection
to the predicate retract/120.

6.1 First member
The size of the positive I/O set was 12. The size of the negative I/O set was
also 12. There were also 2 positive and 2 negative Input sets that were used

20SWI-Prolog built-in predicate retract/1 removes the clause from the current Prolog
database.

34

6.1 First member 6. Run of PROGP

to test the individual’s output. The highest possible number of countable
errors is 2821.

PROGP was set to run for 50 generations. It could use up to 5 variables
and 2 predicates. Every set of variables has 2 items and every item might be
a list. The maximum length of a genome in the first generation was 5 (an
individual in the first generation can have only 5 lines of LP code). There
were 200 individuals in every generation. The size of the tournament was 10
and the operator of crossover was applied 40 times. The operator of mutation
was applied with the probability of 0.5 and the operator of Lamarckism
with the probability of 0.1.

Every genome with length higher than 5 was disadvantaged by the fit-
ness function. If the application of the fitness function on the genome took
more than 0.1 seconds, the genome was also disadvantaged by the fitness
function22.

In the first generation the average objective value was 14.32. The best
individual had the objective value 0.05. That means, there was an individ-
ual with the demanded property in one of the first generations. The worst
individual objective value was 18. Half of all runs were successful in the 8th

generation. The last solution was found in the 50th generation. The second
last solution was found in the 28th generation.

The Figure 7 describes an average development of the objective value
in successful runs of the First Member task. For every generation there is
an average objective value of the best individual in every run, the average
objective value of all individuals, and the average objective value of the worst
individual in every run.

The creation and evaluation of the first generation takes approximately
one second. PROGP time demands are larger for every following generation
(see Figure 7 or it is visible in every other graph with time measurement).
There might be two reasons for such behaviour. The first reason might be
the recursive main cycle of PROGP and Prolog’s recursion handling. The sec-
ond reason might be higher time demands on the fitness function for every
next generation. More remarks about this behaviour are included in the next
section.

The best individuals were always created by the operator of mutation or
the operator of Lamarckism. Details about the reproduction operators are
described in sections 2.2.1 and 2.4.

21Without counting the errors gathered by predicate shapeError/2.
22These properties are called length and time control in the following section. Applica-

tion of such properties was proposed in [Tang et. al. 1998].

35

6.2 Member 6. Run of PROGP

0

5

10

15

20

O
bj

ec
tiv

e
va

lu
e

(-
)

0 5 10 15 20 25 30 35 40 45 50
Generation (n)

Min. obj Avg. obj Max. obj Time

0

7.5

15

22.5

30

T
im

e
(s)

Figure 7: First member

6.2 Member
The size of the positive I/O set was 11. The size of the negative I/O set was
10. There were 3 positive and 2 negative Input sets that tested the individ-
ual’s output. The highest possible number of countable errors is 2623.

PROGP was set to run 100 generations. Up to 3 variables and 1 predi-
cate could have been used in the program. Every variables list had 2 items.
The first item was an integer. The second item was a list. The maximum
length of individual in the first generation was 6. There were 200 individ-
uals in every generation. The size of the tournament was 6 and the oper-
ator of crossover was applied 30 times. Operator of mutation was applied
with probability 0.8 and operator of Lamarckism with probability 0.05.

The length and the time control was the same as in the First Member
task.

The Figure 8 describes an average development of the objective value
in successful runs of the Member task. The chart respects the setting from
the First Member task.

It is interesting to note that every significant improvement of the minimal
objective value took place before the 50th generation.

23Without counting the errors gathered by predicate shapeError/2.

36

6.2 Member 6. Run of PROGP

0

5

10

15

20

O
bj

ec
tiv

e
va

lu
e

(-
)

0 10 20 30 40 50 60 70 80 90 100
Generation (n)

Min. obj Avg. obj Max. obj Time

0

4

8

12

16

T
im

e
(s)

Figure 8: Member

The time demands are lower than in the First Member task. The dif-
ference is very high. The First Member time demands are almost twice
as high in the 50th generation as those of Member in the 100th generation.
The time consumption depends on settings and the size of the I/O sets.
The most significant is the difference in the Lamarckian evolution probabil-
ity and the number of crossover applications.

Every run that successfully reached the 50th generation was started again
with the same settings from the 50th generation with the same settings. It is
possible to compare the time spent on both possible runs in Figure 9. It is
clear that the higher time demands are caused mostly by Prolog’s recursion
handling (because the curve of time spent during the original 20 runs is very
similar to the curve of time spent on the runs from the 50th generation).

This particular result might be used to improve PROGP. It might be
possible to lower the time demands by using a non-recursive main cycle (see
section 7.4).

6.2.1 Genome evolution example

Only one run from all 20 has found the winner. The evolution of the winner
is described in this section. The genomes are translated into individuals.

Two of the output files created by running PROGP are used in this sec-

37

6.2 Member 6. Run of PROGP

0

5

10

15

20

O
bj

ec
tiv

e
va

lu
e

(-
)

0 10 20 30 40 50 60 70 80 90 100
Generation (n)

Time Time from 50 Avg. Obj. Avg. Obj. from 50

0

4

8

12

16

T
im

e
(s)

Figure 9: TimeMember

tion. The first is called results_parental_tree.txt. This file contains
details of how every genome was created. The second output file is called
results_pop.txt. This file contains all populations of all generations, in-
cluding the time spent on every population and the objective and fitness
values for every genome.

The first described individual was created in the 1st generation and its
objective value was 11.02.

pred0(V3, V2) :- pred0(3, [9]).
pred0(V0, [V0]).

In this particular run, it was not the best individual in the first generation,
but the best individual from the first generation did not survive to the second
generation. In the second generation, 11.02 is the minimal objective value.
The average objective value was 13.5 in the first generation. The maximal
objective value was 17.06. The following genome was created in the 5th

generation.

pred0(V3, V2) :- pred0(3, [9]).
pred0(V0, [V0| V1]).

Its objective value was 10.02 and it was the minimal objective value
of the generation. The average objective value of this generation was 11.59.

38

6.2 Member 6. Run of PROGP

The genome was created by the mutation operator from the first described
genome. The mutation took place in the variables list of the head of the sec-
ond line. The third described genome was created in the 8th generation.

pred0(V2, V2) :- pred0(3, [9]).
pred0(V0, [V0| V1]).

Its objective value was 9.02. It was again the minimal objective value
of the generation (another genome with objective value 9.02 was also found
in the 7th generation). The genome was again created by mutation from
the previously described genome. The mutation took place in the list of vari-
ables of the head of the first line. The fourth described genome was created
in the 16th generation.

pred0(V2, [10| V1]) :- pred0(V1, [9]).
pred0(V0, [V0| V1]).

Its objective value was 9.02. It was the minimal objective value of the gen-
eration. There were three mutations applied on the third described genome
to create the fourth, although it differs only on two positions of the first line.

The next operator used in this evolution was the operator of crossover.
It was the operator with definition xoverb. This crossover was applied
in the 21st generation. The first two lines of the table contain the parents,
the third and the fourth line of the table contain the offspring.

1st parent pred0(V2, [10| V1]) :- pred0(V1, [9]).
pred0(V0, [V0| V1]).

2nd pratent pred0(V3, [V1| 10]) :- pred0(2, [V0| 8]).
pred0(V0, [V0| V2]).

1st offspring pred0(V2, [10| V1]) :- pred0(2, [V0| 8]).
pred0(V0, [V0| V1]).

2nd offspring pred0(V3, [V1| 10]) :- pred0(V1, [9]).
pred0(V0, [V0| V2]).

The evolutionary process of the first parent is described earlier. The sec-
ond parent was created in the 18th generation and its objective value was
9.02. The evolution of the first offspring follows. Its objective value was
9.02.

The next operator used in this evolution was a crossover again. How-
ever, it was the operator with definition xovera. This crossover was applied
to the 28th generation. The table composition is the same as in the previous
crossover.

39

6.2 Member 6. Run of PROGP

1st parent pred0(V2, [10| V1]) :- pred0(2, [V0| 8]).
pred0(V0, [V0| V1]).

2nd pratent pred0(V3, [4| []]) :- pred0(2, [2|V0]).
pred0(V0, [V0| V2]).

1st offspring
pred0(V3, [4| []]) :- pred0(2, [2| V0]).
pred0(V0, [V0| V2]).
pred0(V0, [V0| V1]).

2nd offspring pred0(V2, [10| V1]) :- pred0(2, [V0| 8]).

The evolutionary process of the first parent was described earlier. The sec-
ond parent was created in the 23rd generation and its objective value was 9.02.
The evolution of the first offspring follows. Its objective value was 9.03 and
it was created in the 28th generation. In the same generation a mutation was
applied to the first offspring. This genome is the seventh genome described
here.

pred0(V3, [4| []]) :- pred0(2, [2| V0]).
pred0(V0, [V0| V2]).
pred0(V0, [0| V1]).

This genome had the objective value 7.03. As mentioned earlier, it was
created in the 28th generation. The mutation took place in the variables set
in the head of the third line. The value 7.03 is the minimal objective value
of the 28th generation. The eighth described genome was created in the 32nd

generation.

pred0(V3, [V3| []]) :- pred0(2, [2| V0]).
pred0(V0, [V0| V2]).
pred0(V0, [0| V1]) :- pred0(V2, [[]]).

Its objective value was 7.03. It was once again the minimal objective value
of the generation. The genome was created by two mutations from the pre-
viously described genome. The mutations took place in the list of variables
of the head of the first line and on the second predicate of the third line.
The ninth described genome was created in the 35th generation.

pred0(V0, [V0| V2]).
pred0(V0, [0| V1]) :- pred0(V2, [[]]).

Its objective value is 7,02. It was the minimal objective value of the gen-
eration. The chromosome was created by Lamarckism, which cut the first
line out. The tenth described chromosome was created in the 41st generation.

40

6.3 Concatenate 6. Run of PROGP

pred0(V0, [V0| V2]).
pred0(V0, [V2| V1]) :- pred0(V2, V1).

Its objective value was 6.02. It was the minimal objective value of the gen-
eration. The tenth genome was created by two mutations of the ninth.
The eleventh genome was the winner.

pred0(V0, [V0| V2]).
pred0(V0, [V2| V1]) :- pred0(V0, V1).

It was again created by mutation.

6.3 Concatenate
6.3.1 Experimental settings searching

It is necessary to set the parameters of evolution before every run of PROGP.
Is there a single setting of PROGP that solves any problem in the most
efficient way? If there is no such setting, then it is possible to extend PROGP
to a PS2O algorithm and let the evolution of species decide the best setting
(see section 7.3). However, the answer to this question is a task for future
work.

3 different settings were compared by an experiment in this section.
The comparison takes into account 2 values, the minimal objective value
and the run-time of every run. The 3 compared settings were chosen only
as examples and there might be a more efficient setting.

There are parameters that cannot be changed. These are the parameters
that decide how often the population is saved, the number of generations,
the number of variables used, the list of variables, the number of predi-
cates used, the size of the population, and the maximal length of a genome
in the first generation. All these parameters are set the same way for all
three settings.

Every 50th generation is saved, there are 50 generations, up to 5 variables
can be used, the list of variables contains 3 lists, there might be 2 predicates
used, the size of a population is 200, and the maximal length of the genome
in the first generation is 6. These parameters cannot be changed because
they are problem specific (the list of variables) or because the comparison
would not make sense. The three different settings description foolows

The I/O sets were defined the same way for all three settings. The positive
I/O set had 8 examples, the negative I/O set had 5 examples. Because
the program Concatenate would be probably more often used for searching
other output than True or False. Both the positive and negative input sets

41

6.3 Concatenate 6. Run of PROGP

that wait for the output have 4 examples. The highest possible number
of countable errors is 2124.

The first of the values that might be different for every setting was the size
of the tournament. But it was set to be 10 in every of the three settings.

The second value that actually differs amongst the settings was the num-
ber of crossovers made in every generation. In the first setting it was 20.
In the second it was 40. In the third setting it was 60.

The third value also differed amongst the settings. It is the probability
of mutation. In the first setting it was 0.7. In the second setting it was 0.5.
In the third setting it was 0.8.

The last parameter that was different for each setting was the probability
of Lamarckian evolution. In the first setting it was 0.01. In the second setting
it was 0.1. In the third setting it was 0.3.

The parameters in the second settings were the same as in the First
Member task.

The experimental measurement was applied on five runs of the three
settings described earlier. PROGP was run for the same random population
(the first population was the same in all 5 runs).

First settings Second settings Third settings

3.5

5.5

7.5

9.5

O
bj

ec
tiv

e
va

lu
e

(-
)

0 10 20 30 40 50
Generation (n)

0

33

66

99

T
im

e
(s

)

0 10 20 30 40 50
Generation (n)

Figure 10: Time comparison of three different settings

It is clear from Figure 10 that the best possible choice for gaining the best
result is the first or the second setting. The second setting has longer
run-time. Clearly the first setting has the best results in this experiment.
The first setting is used in the next section for further exploration.

It is unexpected that the solution with the highest time demands does
not search for the solution more efficiently than the other solutions. It is also
unexpected that the best solution has minimal time consumption.

24Without counting the errors gathered by predicate shapeError/2.

42

6.3 Concatenate 6. Run of PROGP

6.3.2 Concatenate run

The first setting described in the previous section is used for 20 runs of PRO-
GP for 100 generations.

0

5

10

15

20

O
bj

ec
tiv

e
va

lu
e

(-
)

0 10 20 30 40 50 60 70 80 90 100
Generation (n)

Min. obj Avg. obj Max. obj Time

0

2.5

5

7.5

10

T
im

e
(s)

Figure 11: Concatenate

Figure 11 shows that PROGP does not have any significant loss in search-
ing ability in this case; the average of minimal objective values decreases
in the 100 generations. The time consumption is higher for every next gen-
eration but no generation exceeds the 10-second limit.

It is difficult to compare the results of the Concatenate task with the re-
sults from [Tang et. al. 1998]. The results of the genetic logic programming
(GLP)25 are not as informative as the results introduced here. There is no
objective value improvement to compare. The only result that is comparable
is the number of successful individuals and there are no successful individuals
in either approach.

25The equivalent of PROGP implemented in Lisp and introduced in [Tang 1998].

43

7. Conclusion

7 Conclusion
The comparison of four BI algorithms (in section 2) results in finding two
common principles: The first one is some kind of a fitness function. The fit-
ness function as a general concept is used all over the AI. Its purpose is to say
how well a certain task is solved in comparison with other solutions.

The second is an idea of evolution defined in the widest possible way,
as described in [Dawkins 2006]. It is possible to evolve a genome (in the case
of evolutionary algorithms), an ecosystem (in the case of ecologically inspired
algorithms) or information26 (in the case of artificial swarm intelligence al-
gorithms).

The implementation of genetic programming in logical programming par-
adigm resulted in PROGP. PROGP is implemented in Prolog. It is based
on PROGA [Olsson 1996]. PROGA has to be translated to SWI-Prolog.
The translation was used for solving the knapsack problem. The source code
of translated PROGA is included in the attachments (see attachment C).
The source code of PROGP is very different from its inspiration. PROGP is
also included in the attachments (see attachment C), which also contain three
different fitness functions for three different tasks (as introduced in section
6).

A good property of PROGP is that it is not necessary to control whether
an individual is a correct LP program. The definition of operators of repro-
duction does not allow PROGP to create an individual that is not an LP
program. There is an exception in the source code of the fitness function
that catches the error while loading the individual into the database. This
exception did not appear while testing PROGP.

However, the PROGP implementation was not successful in solving even
the simplest tasks. Possible causes for such behaviour are discussed in section
7.1 and in section 7.2.

The section 7.3 contains one of the possible solutions of one of the causes.
Some of the interesting conclusions include the time demands and recur-

sion handling of Prolog. This is discussed in more detail in section 7.4.
Another interesting conclusion is the Prolog’s errors Signal 11 and Signal

22. This is further discussed in section 7.5

7.1 Size of search space
The size of search space might be too large for using evolutionary program-
ming algorithm. The search space depends largely on the variable types

26See the meme theory introduced in [Dawkins 2006]

44

7.1 Size of search space 7. Conclusion

used in the solution searching. For example, when searching for one variable
of the type integer, it is necessary to search only for size:

10 + NrV ar27

In the case of the List variable, the size of the search space is much
larger. at the beginning, there might be an integer or variable just like
in the previous case. However, this can be replaced by a singleton or a list
with two members. On every position of such lists, there can be an integer
variable, a singleton, or a list with two members again. The maximum size
of such list is set in PROGP to 228. This limitation describes how deep every
list type variable in the genome might be.

To search for one list variable means to search a space of size:

143 + 2×NrV ar.

Consider the First Member task. There is the list of variables with two
lists of variable types.

Searching for a set of variables means searching a space of size:

(143 + 2×NrV ar)2 = ListV ar

To search for one predicate of the LP program means search in space of:

(NrPred + 1)× ListV ar

To search for a Horn clause of the LP program means search in a space
of:

((NrPred + 1)× ListV ar + (NrPred + 1)2 × ListV ar).

The first addend refers to the head of the clause. The second addend
refers to the body of the clause.

The LP program might have several lines. The number of lines is limited
only in the first generation. The general formula for the First Member task
as defined in section 6.1 is as follows:

(MaxDepth× ((NrPred + 1)× ListV ar + (NrPred + 1)2 × ListV ar)
27During the creation of such variable it is possible to create it like an integer from 0

to 10 or it might be a variable.
28It is possible to increase the size. However, the size of the search space increases

exponentially.

45

7.2 Why is PROGP unsuccessful? 7. Conclusion

After substitution for variables:

6× (2× (2× (143 + 2× 5)) + 22 × (2× (143 + 2× 5))) = 11 016

The whole space would be searched by some of the deterministic search
in the 55th generation.

It is mentioned in the results of the previous section that half of all runs
found the result for this task in the 8th generation (with population size 200).

This result is not exact. In fact, it is a bit confusing. There is more
than one successful result in the search space defined by the First Member
task. For the Member task, the space is even smaller (there are only integer
variable type and list variable type in the list of variables), but the searching
algorithm does not reach the correct answer. The task is more difficult
because there are fewer successful results in the search space. However,
it seems that the search space is not the biggest problem of PROGP.

7.2 Why is PROGP unsuccessful?
Length control was suggested in [Tang 1998] as a possible improvement
of their algorithm. PROGP applies length control. However, PROGP does
not have significantly better results than the implementation introduced
in [Tang 1998]. For more expressive results it would be necessary to apply
more experiments and some further testing on PROGP and on the imple-
mentation from [Tang et. al. 1998].

There are several other possible explanations:
One of the reasons might be the insufficient size of I/O sets used in section

6. There is a relation between the size of an I/O set and the answer searching
[Tang 1998]. This might be the reason why PROGP is unsuccessful.

The I/O sets were very limited due the PROGP time consumption. There
was not observed much improvement with the change of the I/O sets sizes
during the testing of PROGP. The ‘quality’ of I/O set was much more de-
pending. The results are not statistically proved and it is possible to continue
with the work in this respect.

Another reason might be the inefficiency of operators of reproduction.
The operators were taken from usual GP definition. While testing PROGP,
the operator of crossover was extended to include the predicate xoverb/6
because the crossover definition was not successful enough during testing.
The new definition had a positive effect on the evolution process. However,
the effect was not positive enough.

Even the definition of mutation was changed during PROGP testing.
The definition of mutation of predicates is the same as at the beginning.

46

7.3 PS2O application 7. Conclusion

The change came with the definition of mutation of a set of variables. Origi-
nally the whole set of variables was replaced with a different one. The second
version changed one of the variables for a different one. The current version
changes even the first level of the list variable (for details see section 2.2.1).

It is possible to think of different definition of operators of reproduction
or it is possible to improve the impact of crossover and mutation by some
sort of local search algorithm (for example by trying several possible crossover
points and choosing the best one). According to the results, the crossover op-
erator is too general and searches the space too widely (since most of the suc-
cessful individuals were created by mutation).

PROGP might be very parameter depending. It is possible to evolve pa-
rameters via some ecological algorithm. For example, an expansion of PRO-
GP on the PS2O algorithm is suggested in section 7.3.

7.3 PS2O application
The run of PROGP is probably very parameter depending (there is no proof
of this claim). To make PROGP more general, it is possible to extend it on
PS2O algorithm. Different species would have different settings of properties.

Parameters from the second group (recall section 5.3.1) might create
species and help find the best possible parameters setting for a task. This
approach would even allow the usage of the same definition of fitness function
(that is necessary for PS2O).

PS2O algorithm might actually approximate the answer to the issue of pa-
rameter dependence. If the solution of PS2O algorithm was similar for every
task, it would lead to the contrary of the claim from the beginning of this
section.

7.4 Prolog recursion handling
The time demands of PROGP are a very interesting result on the level of Pro-
log (recall the result from section 6.2). The most natural experiment for test-
ing the time consumption would be to rewrite PROGP non-recursively and
consequently compare the time consumption of such program and PROGP.

This result is even more interesting because according to the on screen
written statistics there is no working memory usage that would increase
while PROGP runs. The only value that is increasing is the gained garbage
collection. The duration of gaining the garbage collection is also increas-
ing. However, while creating the next population took 2 seconds, gaining
the garbage collection took approximately one tenth of a second. This result
deserves future work.

47

7.5 Prolog failure and signal errors 7. Conclusion

7.5 Prolog failure and signal errors
Errors Signal 22 and Signal 11 occurred in the process of programming
PROGP. These errors have something in common. The signal 11 did not
appear after putting the predicate retract/1 into the catch/329 predicate.

The official documentation of SWI-Prolog does not include these errors.
There might be several causes of these Signal errors. The appearance of Sig-
nal 11 dropped after a roof of the length of the variable type list in the list
of variables was set. That would suggest that the cause was a memory prob-
lem. Signal 22 is very probably caused by predicate retract/1 which takes
care of the database handling. Some further work in this respect is definitely
possible.

7.6 Epilogue
Our implementation of genetic programming was based on the translation
of PROGA into the SWI-Prolog language. This translation was successful
and it solves the knapsack problem in few generations with adequate time
demands.

However, PROGP application was not a successful implementation of GP
for logical programming. This is not because the problem is too difficult.
There are several ways how to try to improve PROGP: finding the best
possible setting for a task, finding the best possible I/O set for a task, or
trying different operators of reproduction.

To compare PROGP with other GP programming, it would be neces-
sary to extend the genome language to the language of Prolog. The genome
of PROGP can only be used in the language of logical programming. The lan-
guage of Prolog contains operator of cut, operator of negation, and the lan-
guage of arithmetic. The extension of language of the genome would increase
the searching space and therefore probably lower the space searching capa-
bility of PROGP.

29The error handling Prolog predicate

48

A. List of attachments

A List of attachments
A List of attachments

B Translation algorithm (see section 4.1.2).

C Description of the attached files content

49

B. Translation algorithm

B Translation algorithm
The following algorithm translates any program in the language of log-
ical programming into the restricted language (there are only predicates
with the same arity).

1. Rename predicates with the same name but different arity.

2. Go through all predicates and make a list of couples. On the first
position of the tuple is the name of the predicate and on the second
position of the tuple is the sum of all arities that were gone through.
Every predicate is in the list only once. Store it as PredicateList.

3. Add the last predicate arity to the number assigned to the last predi-
cate. Store the number as NrVar.

4. Go through the program and for every predicate:

(a) Find the number assigned to it in the PredicateList.
(b) Substitute the predicate set of variables with set of variables start-

ing with anonymous variables until the found number is reached.
(c) Add the original variables.
(d) Fill the variables list with anonymous variables until NrVar is

reached .

Is such a program really correct translation?
Without loss of generality fix a LP program and call it original. Apply

Translation algorithm on the original program and call the resulting program
an extension.

The original program and its extension have clearly the same shape
of the graph (as introduced in section 4.1.1). The program and its extension
do not solve the same questions!

However, now it is simple to finish the translation:
To make a program solving the same questions, one would need to add

at the beginning (or at the end) of the database a translation between
the original and extended program.

To create such translation, recall the PredicateList used in the Translation
algorithm. Each member of the PredicateList creates one new predicate.
Head is the name of the predicate in the original program. Body is its
equivalent in the extension with extended variables list just like in point 3)
in the Translation algorithm.

This way for every input, the extension output is true only and only if
the original program output is true.

50

C. Description of the attached files content

C Description of the attached files content
There are two folderes on the attached CD-ROM (or in the downloadable
‘koza and prolog.zip’ file). The first is called PROGA. It contains the source
code of PROGA translated into the language of SWI-Prolog.

The second is called PROGP and contains three subfolders. Each of these
subfolders contains PROGP set for solving one of three tasks as described
in the section 6

The folder tree of the attached files follows:

PROGA\
fitness.pl
ga.pl
initialisation.pl
lamarckian.pl
misc.pl
parameters.txt
readinput.pl
reproduce.pl

PROGP\
concat\

fitness.pl
GP.pl

first member\
fitness.pl
GP.pl

member\
fitness.pl
GP.pl

51

REFERENCES References

References
[Nilsson 2000] Nilsson, U., Maluszynski, J. (2000). Logic, programming, and

Prolog (2nd ed., p. 276).

[Koza 1992] Koza, J. (1992). Genetic programming: On the programming
of computers by means of natural selection. Cambridge, Mass.: MIT
Press.

[Tang et. al. 1998] Tang, L. R., Califf, M. E., Mooney, R. J. (1998). An ex-
perimental comparison of genetic programming and inductive logic
programming on learning recursive list functions. In 8th Int. Work-
shop on Inductive Logic Programming.

[Olsson 1996] Olsson, B. (1996). PROGA - PROlog implementation of simple
Genetic Algorithms.

[Binitha et. al. 2012] Binitha, S., Sathya, S. S. (2012). A survey of bio in-
spired optimization algorithms. International Journal of Soft Com-
puting and Engineering, 2(2), 137-151.

[Dawkins 2006] Dawkins, R. (2006). The selfish gene (30th anniversary ed.).
Oxford: Oxford University Press.

[Back et. al. 1997] Back, T., Hammel, U., Schwefel, H. P. (1997). Evolu-
tionary computation: Comments on the history and current state.
Evolutionary computation, IEEE Transactions on, 1(1), 3-17.

[Wielemaker 2014] Wielemaker, J. (2014). SWI Prolog Reference Manual 7.1
(1. Aufl. ed.). Norderstedt: Books on Demand.

[Odum 1977] Odum, E. (1977). Uvod: Napln ekologie. In Zaklady ekologie
(3. vyd. ed., p. 733). Praha: Academia.

[Britannica 2014] Multiple articles (see details in the actual citation). (2014).
Encyclopaedia Britannica. Retrieved from www.britannica.com.

52

	List of used acronyms
	Prologue
	Biologically inspired algorithms
	Evolutionary algorithms
	Genetic algorithm
	Operators of reproduction
	Operators of selection

	Genetic programming
	Lamarckism
	PS2O
	Bee colony algorithm

	Logic and EA
	Logical programming
	Prolog
	Motivation

	PROGP
	Properties of LP in context of GP
	Structure of the program
	Variables

	PROGP vs. PROGA
	Alteration of PROGA

	PROGP description

	Source code of PROGP
	General idea of PROGP
	ga/0
	initialise/12

	runExistingPop/1
	getPars/11

	run/14
	reproduce/12
	xovers/10
	mutation/10
	lamarckian_evolution/7

	fitness/3
	shapeError/2
	curGraph2pl/2
	loadInputs/4
	runError/6
	taxManager/5

	Run of PROGP
	First member
	Member
	Genome evolution example

	Concatenate
	Experimental settings searching
	Concatenate run

	Conclusion
	Size of search space
	Why is PROGP unsuccessful?
	PS2O application
	Prolog recursion handling
	Prolog failure and signal errors
	Epilogue

	List of attachments
	Translation algorithm
	Description of the attached files content
	References

