
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Ondřej Klejch

Development of a cloud platform for
automatic speech recognition

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Mgr. Ing. Filip Jurč́ıček Ph.D.

Study programme: Informatics

Specialization: Theoretical Computer Science

Prague 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CU Digital Repository

https://core.ac.uk/display/401769585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

First of all, I would like to thank my supervisor, Mgr. Ing. Filip Jurč́ıček Ph.D.,
for his guidance, invaluable advices and time he has invested in me. Also, I
would like to thank my colleagues Ing. Lukáš Žilka, Mgr. Ondřej Plátek and
Mgr. Ondřej Dušek for their valuable insights. Finally, I would like to thank all
of my family for their support during my studies.

Access to computing and storage facilities owned by parties and projects con-
tributing to the National Grid Infrastructure MetaCentrum, provided under the
programme ”Projects of Large Infrastructure for Research, Development, and
Innovations” (LM2010005), is greatly appreciated.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Development of a cloud platform for automatic speech recognition

Autor: Ondřej Klejch

Katedra: Ústav formálńı a aplikované lingvistiky

Vedoućı diplomové práce: Mgr. Ing. Filip Jurč́ıček Ph.D., Ústav formálńı a
aplikované lingvistiky

Abstrakt: Tato diplomová práce představuje cloudovou platformu pro automat-
ické rozpoznáváńı řeči, CloudASR, která je postavena na systému pro rozpoz-
náváńı řeči Kaldi. Platforma podporuje dávkový a online zp̊usob rozpoznáváńı
řeči a také obsahuje anotačńı prostřed́ı pro přidáváńı přepis̊u k odeslaným
nahrávkám. Mezi kĺıčové vlastnosti této platformy patř́ı škálovatelnost, přizp̊u-
sobitelnost a jednoduchý proces nasazeńı. Provedená měřeńı dokázala, že latence
platformy je porovnatelná s latenćı Google Speech API a přesnost přepis̊u na
omezených doménách může být dokonce lepš́ı. Dále bylo ukázáno, že je plat-
forma schopná zpracovat v́ıce než 1000 paralelńıch dotaz̊u, pokud má dostatek
výpočetńıch zdroj̊u.

Kĺıčová slova: cloud, rozpoznáváńı řeči, Kaldi

Title: Development of a cloud platform for automatic speech recognition

Author: Ondřej Klejch

Department: Institute of Formal and Applied Linguistics

Supervisor: Mgr. Ing. Filip Jurč́ıček Ph.D., Institute of Formal and Applied
Linguistics

Abstract: This thesis presents a cloud platform for automatic speech recognition,
CloudASR, built on top of Kaldi speech recognition toolkit. The platform sup-
ports both batch and online speech recognition mode and it has an annotation
interface for transcription of the submitted recordings. The key features of the
platform are scalability, customizability and easy deployment. Benchmarks of the
platform show that the platform achieves comparable performance with Google
Speech API in terms of latency and it can achieve better accuracy on limited
domains. Furthermore, the benchmarks show that the platform is able to handle
more than 1000 parallel requests given enough computational resources.

Keywords: cloud, automatic speech recognition, Kaldi

Contents

Introduction 3

1 Theoretical Background 4
1.1 Automatic Speech Recognition . 4

1.1.1 Acoustic Models . 4
1.1.2 Language Models . 5
1.1.3 Speech Decoding . 6
1.1.4 Evaluation . 6

1.2 Voice Activity Detection . 7
1.3 Open-Source ASR Tools . 7
1.4 Public ASR services . 8
1.5 Obtaining Manual Transcriptions 8

2 Used Technologies 10
2.1 Platform . 10
2.2 Continuous Integration & Delivery 11
2.3 Backend . 12
2.4 Frontend . 13

3 Implementation 15
3.1 Architecture . 15

3.1.1 Master . 15
3.1.2 Worker . 17
3.1.3 API . 17
3.1.4 Web . 18
3.1.5 Recordings saver . 19

3.2 Scalability . 19
3.3 Deployment . 19
3.4 Customizability . 21

3.4.1 Worker with New Kaldi Models 21
3.4.2 Worker with Arbitrary ASR System 21

3.5 Example of API Usage . 23

4 Evaluation 26
4.1 RTF of Batch Speech Recognition 26
4.2 Latency of Online Speech Recognition 26
4.3 Parallel Requests Benchmark . 27

Conclusion 29

Bibliography 31

List of Abbreviations 34

A Content of the CD 35

1

B User Documentation 36
B.1 Try Out the Demo . 36
B.2 Transcribe a Recording . 36
B.3 Create a CrowdFlower Job . 36
B.4 Select the Best Transcription . 37
B.5 Manage Running Workers . 37

C Programmer Documentation 38
C.1 Installation . 38
C.2 Deployment . 38
C.3 Batch API Usage . 39
C.4 Online API Usage . 40

C.4.1 Messages from Client to Server 40
C.4.2 Messages from Server to Client 40

C.5 SpeechRecognition.js Library Usage 41

2

Introduction

Speech is the most natural form of human communication. In order to be able to
talk with a computer, it is crucial to have a good Automatic Speech Recognition
(ASR) system. On one hand, there are several open-source ASR toolkits, however
deployment of such toolkits requires substantial knowledge, which makes them
difficult to use for common software developers. On the other hand, there are
a few web services that provide ASR, yet these web services do not solve all
problems - either they are paid, closed-source or they are not customizable. So
the first goal of the present thesis is to develop a cloud platform for
ASR that is easy to use both from user’s and maintainer’s point of view.

Although the quality of ASR systems is improving, these systems are still far
from perfect. One of the reasons is that the quality of ASR systems depends
heavily on the amount of the training data, and there is not enough publicly
available transcribed speech data for all languages. By providing free ASR web
service it is possible to collect vast amounts of recordings that can be manually
transcribed. Therefore, the second goal of the present thesis is to create
an annotation interface so that recordings obtained by CloudASR platform
can be annotated and given back to the community.

In the following text development and deployment of CloudASR platform and
its annotation interface are described. Chapter 1 introduces Automatic Speech
Recognition theory and tools related to CloudASR. In Chapter 2, tools used for
CloudASR development and deployment are presented. The implementation of
CloudASR platform is described in Chapter 3. Chapter 4 contains results of
conducted benchmarks. Finally, Chapter 5 concludes this thesis.

3

1. Theoretical Background

This chapter describes theory needed for the CloudASR platform. It starts with
Automatic Speech Recognition (ASR) section, which introduces concepts
such as acoustic models, language models, speech decoding or evaluation of ASR
systems. After that, Voice Activity Detection is described. Then, sections
Open-Source ASR Tools and Public ASR services present technologies re-
lated to CloudASR. Finally, this chapter ends with Obtaining Manual Tran-
scriptions section, which shows how manual transcriptions can be obtained with
crowd–sourcing.

1.1 Automatic Speech Recognition

The task of the automatic speech recognition system is to ”pick the most likely
word sequence Ŵ given the observed acoustic evidence A” [17]. Therefore, speech
recognition can be described as a following formula:

Ŵ = arg max
W

P (W |A) (1.1)

By using Bayes’ formula of probability theory, right-hand side of the Equa-
tion 1.1 can be rewritten in a following way:

Ŵ = arg max
W

P (A|W)P (W)

P (A)
(1.2)

Since the numerator P(A) is constant regarding the maximization, it can be
omitted to get the final equation:

Ŵ = arg max
W

P (A|W)P (W) (1.3)

Then, the probability P (A|W) is called acoustic model and the probability
P (W) is called language model. In the sections Acoustic Models and Lan-
guage Models computation of these probabilities will be described in more
detail. After that, Speech Decoding section will describe how the Formula 1.3
is used to find the desired word sequence.

1.1.1 Acoustic Models

The role of acoustic models P (A|W) is to capture all acoustic conditions, such
as pronunciation, background noise, reverberation or transmission channel condi-
tions, for all possible pairings of W and A. Traditionally, Hidden Markov Models
(HMM) are used for acoustic modelling, but there are also other approaches based
on artificial neural networks [23] or on dynamic time warping [32].

The acoustic model for a word sequence is a concatenation of HMM models for
the individual words, which belong to the recognized vocabulary. These smaller
models are built from the smaller HMMs for the basic building blocks of the
acoustic model systems - phonemes.

Training of the acoustic models, as described in [17], consists of several steps.
First, pronunciation, made up of the phonetic alphabet φ, of each word in the

4

vocabulary is added to the phonetic dictionary. Note that some words may have
several pronunciations, then every valid pronunciation has to be added to the
phonetic dictionary. Second, an elementary HMM is created for each symbol of
the phonetic alphabet φ. Third, for each word in the vocabulary an HMM is cre-
ated as concatenation of elementary HMMs according to the word pronunciation.
After that, these HMMs are concatenated with elementary HMMs corresponding
to silence and/or end of words symbols to make a composite model for a transcrip-
tion of some words sequence. Finally, these HMMs are trained with Baum–Welch
[37] algorithm, which is a variation of EM algorithm [3], on recordings with theirs
transcriptions.

Another way to train HMMs is to use Viterbi training algorithm [7], which ap-
proximates EM algorithm by choosing single best alignment and maximizing the
posterior probability for the chosen alignment. Furthermore, latest works show
that Viterbi training achieves the same performance as Baum-Welch algorithm
with much less computational resources [33].

1.1.2 Language Models

The task of the language model P (W) in speech recognition is to determine
how likely are the sequences of words w1, . . . , wm that sound alike by assigning a
probability to each sequence. Using the Bayes’ rule, P (W) can be seen as:

P (W) = P (w1, . . . , wm) =
m∏
i=1

P (wi|w1, . . . , wi−1) (1.4)

Since the probability P (wi|w1, . . . , wi−1) has just too many arguments and the
probability does not necessarily depend on the entire history, the history is put
into equivalence classes φ(w1, . . . , wi−1). This results into the following formula:

P (w1, . . . , wm) ≈
m∏
i=1

P (wi|φ(w1, . . . , wi1)) (1.5)

Traditionally, n-gram language models, which use the following history equiv-
alence classes φ(w1, . . . , wi−1) = wi−(n−1), . . . , wi−1, are used in speech recognition
tasks. Thus, the n-gram language model becomes:

P (w1, . . . , wm) ≈
m∏
i=1

P (wi|wi−(n−1), . . . , wi−1) (1.6)

There the probabilities P (wi|wi−(n−1), . . . , ww−1) are estimated from the rela-
tive frequencies of n-grams in the training data with the following formula:

P (wi|wi−(n−1), . . . , wi−1) =
c(wi−(n−1), . . . , wi)

c(wi−(n−1), . . . , wi−1)
(1.7)

Since the numerator of the Equation 1.7 can be zero due to data sparsity
problem, several smoothing techniques such as Jelinek–Mercer [16], Good–Turing
[8] or Kneser–Ney [19] are often used to estimate the higher n-gram relative
frequencies from the lower n-gram frequencies.

Recently, artificial neural networks have been also successfully used to tackle
the data sparsity problem [1]. For instance, the recurrent neural network based

5

language models yielded state-of-the-art results in terms of WER in speech recog-
nition [27].

1.1.3 Speech Decoding

Speech decoding is used to find the most likely word sequence Ŵ using the Equa-
tion 1.3. Because the space of all word sequences is astronomically large, the
search cannot be done by brute force.

One of the algorithms that can be used for speech decoding is the Viterbi
algorithm [4]. It is a dynamic programming algorithm for finding the most likely
sequence of hidden states in HMMs. Even though, it is not guaranteed that this
algorithm will find the most likely word sequence Ŵ , it achieves very good results.

Viterbi algorithm has a problem with large vocabularies, because the resulting
HMM has just too many states. As a result, states have to be pruned. There are
several ways how to do that [15]. First, only top n states with the highest prob-
abilities are kept. Second, only states with probability higher than the threshold
from the maximal state probability of this frame are kept. Or a combination of
these two methods can be used.

1.1.4 Evaluation

Word error rate (WER) is the most common metric used to evaluate the
performance of ASR systems. It is computed as a minimum edit distance on
words between one-best ASR output and a reference transcription divided by the
number of words in the reference transcription.

WER =
S +D + I

N
(1.8)

Where:

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• N is the number of words in reference

Metrics that are used to evaluate speed of ASR systems are Real Time
Factor (RTF) and Latency. RTF is computed as a time needed to process the
recording R by the ASR system divided by the length of the recording R. Latency
is the delay between the end of the recording and the end of the recognition.

RTF =
time(decode(R))

length(R)
(1.9)

6

1.2 Voice Activity Detection

Voice Activity Detection (VAD) is a technique used to detect presence or absence
of human speech in the recording. There are several ways how to implement
VAD, for example, support vector machines [26], gaussian mixture models [28] or
deep neural networks (DNN) [34] can be used. The last one, using deep neural
networks, will be described here.

The VAD using deep neural networks starts by extracting features every 10 ms
from a 25 ms analysis window. These features are then normalized and concate-
nated to a feature vector, which is used as an input to the DNN. The DNN then
returns the posterior probability of speech being present in the analysis windows.
This posterior probability is compared with a threshold, that is chosen, so that
false alarm and miss rates are equal on the test set, in order to yield decision
whether the analysis window contains speech/non-speech.

1.3 Open-Source ASR Tools

In the following section some of the open-source ASR tools will be described.
Namely, HTK, Julius, Kaldi and RWTH.

HTK [39] is the first toolkit, that will be described. HTK is a toolkit for
building and manipulating hidden Markov models. It consists of a set of library
modules and tools that provide sophisticated facilities for speech analysis, HMM
training, testing and results analysis. Furthermore, it supports HMMs using both
continuous density mixture Gaussians and discrete distributions and can be used
to build complex HMM systems.

The second toolkit is Julius [21], high-performance large vocabulary speech
recognition decoder that can perform almost real-time decoding with 60k words
in the vocabulary. It supports statistical n-gram language model and rule-based
grammars. And it uses Hidden Markov Model (HMM) as an acoustic model
Julius can be also used with models trained for HTK toolkit.

Next described toolkit is Kaldi [31] – a free, open-source toolkit for speech
recognition written in C++. Its speech recognition system is based on
finite–state transducers and it supports modelling of arbitrary phonetic-context
sizes, acoustic modelling with subspace Gaussian mixture models (SGMM) as
well as standard Gaussian mixture models and deep neural networks, together
with all commonly used linear and affine transforms.

Furthermore, there is also a Python wrapper for Kaldi called PyKaldi [30],
which supports the online speech recognition. CloudASR uses PyKaldi as a
default speech recognition system.

The last toolkit that will be described is RWTH [35], which is a publicly
available speech recognition toolkit developed at Aachen University. It includes
state of the art speech recognition technology for acoustic model training and de-
coding. Besides, its notable components are speaker adaptation, speaker adaptive
training, unsupervised training, a finite state automata library and an efficient
tree search decoder.

7

1.4 Public ASR services

In addition to these open sources ASR toolkits there are also several web ser-
vices that provide an API for speech recognition. Some of these services will be
described in the following section.

Google Speech API supports speech recognition for 39 languages and their
dialects. Its batch API, illustrated in Figure 1.1, is very simple and can be used for
transcription of the wave or flac files. Additionally, Google Speech API supports
the online speech recognition mode through JavaScript class SpeechRecognition
in Google Chrome web browser.1

curl -X POST --data-binary @recording.wav \

--header ’Content-Type: audio/x-wav; rate=16000;’ \

’https://www.google.com/speech-api/v2/recognize?lang=en-gb’

Figure 1.1: An example of Google Speech API batch speech recognition mode request
for a transcription of a recording in British English.

Nuance Dragon NaturallySpeaking2 is the second provider of the API
for speech recognition. It provides software development kits for Windows and
mobile applications. It also has a version that can be deployed on a server and
used as an API for other applications.

The last API provider that will be mentioned here is wit.ai3. It supports 11
languages via an API similar to Google Speech API, see Figure 1.2 for an example,
and in addition to speech recognition it also supports intent classification of the
submitted recordings, see Figure 1.3 for an exemplar response from the wit.ai.

curl -X POST --data-binary @recording.wav \

--header ’Content-Type: audio/x-wav; rate=16000;’ \

’https://www.google.com/speech-api/v2/recognize?lang=en-gb’

Figure 1.2: An example of wit.ai API request for a transcription of a recording.

1.5 Obtaining Manual Transcriptions

A large amount of transcribed recordings is needed in order to train a good ASR
system. But a manual transcription of the recordings by professional transcribers
is expensive and time demanding, typically, professional transcribers need 6 hours
to transcribe 1 hour of speech data [38]. Furthermore, it is difficult to find enough
professional transcribers to transcribe the required amount of speech data in a
short time.

Recently, it was shown that crowd-sourcing can be used for cheap, fast and
good enough manual transcription of speech data [29]. With crowd-sourcing,

1https://www.google.com/intl/en/chrome/demos/speech.html
2http://www.nuance.com/for-developers/dragon/index.htm
3https://wit.ai/

8

https://www.google.com/intl/en/chrome/demos/speech.html
http://www.nuance.com/for-developers/dragon/index.htm
https://wit.ai/

{

"msg_id" : "e83406f9-238c-40c8-9a99-6913b33b4301",

"_text" : "I’m looking for a bar",

"outcomes" : [{

"_text" : "I’m looking for a bar",

"intent" : "restaurantSearch",

"entities" : {

"search_query" : [{

"suggested" : true,

"value" : "bar",

"type" : "value"

}]

},

"confidence" : 0.912

}]

}

Figure 1.3: An exemplar response from wit.ai API with a recording of a sentence:
”I’m looking for a bar.”

speech data is split into small chunks that are then transcribed by several non-
professional transcribers. Their transcriptions are then used to select the best
transcription for the recording, for example with ROVER algorithm [24], and
used for training of new ASR systems. Also, transcriptions from non-professional
transcribers are only 6% worse than professional transcriptions and they cost only
1
30

of the cost of professional transcription [29]. Finally, services like Amazon
Mechanical Turk4 or CrowdFlower5 already support the speech transcription
tasks.

4https://www.mturk.com
5http://www.crowdflower.com/

9

https://www.mturk.com
http://www.crowdflower.com/

2. Used Technologies

In this chapter technologies that were used during development will be described.
Also, the motivation for the usage of these technologies will be explained.

2.1 Platform

In the following section technologies that were used to build a cloud platform
will be described. These technologies have made it possible to build a scalable
solution with an easy deployment.

Traditionally, a deployment of a such a complex system as CloudASR consists
of several steps during which necessary dependencies are installed, the applica-
tion environment is set up and finally the application is started. But this ap-
proach makes the maintenance of these systems difficult, because the deployment
is time consuming, error-prone and it is not replicable. The ultimate goal for the
CloudASR deployment was the exact opposite: fast and replicable deployment.

The most important tool used during the development was Docker [25] – a
portable, lightweight application runtime and packaging tool. It allows to specify
dependencies and environmental variables for a process and it allows to build an
image from this specification called Dockerfile (see Figure 2.1 for example). Once
this image is built it can be used on any machine with Docker installed, which
makes the deployment fast and replicable, because it is not necessary to install all
dependencies on every machine. Additionally, the usage of Docker images removes
bugs caused by different versions of libraries used in development and production
environment because developers use the same images in both environments.

FROM ubuntu

MAINTAINER Ondrej Klejch

RUN sudo apt-get update && sudo apt-get install python

ADD . /opt/app

WORKDIR /opt/app

CMD python run.py

Figure 2.1: An example of Dockerfile that creates an image from the base Ubuntu
image, installs python, copies all files in the Dockerfile folder and sets command python
run.py to be run, when the docker image is started.

When running an application in the cloud it is neccessary to monitor all servers
and handle failovers. But with an increasing number of servers, maintenance costs
grow rapidly. Therefore, it is not possible to manage the application manually.
The tool that allows CloudASR to run on many servers is Mesos [12]. It lets
users program against a set of machines in the same way as if it was a single
machine, which means that it is possible to run and scale an application on a
set of servers in a similar way as on a single machine. Mesos takes care of the
scheduling and high availability of the platform. Thus, whenever some part of the

10

Figure 2.2: A screenshot of a Marathon web interface with a running CloudASR
platform.

CloudASR crashes, Mesos will try to restart it. Finally, Mesos supports Docker
so the images that are used in development can be also used on a Mesos cluster.

Marathon1 is a framework built on top of Mesos whose main responsibility
is to launch long running applications. It is an entrypoint for running and scaling
the applications running on a Mesos cluster. It has a web user interface (see
Figure 2.2) and a REST API, through which applications can be started, scaled
or stopped easily.

Since the traffic of CloudASR platform can be very large, it is not possible to
process all HTTP requests by one application server. Therefore, CloudASR plat-
form uses HAProxy2 load-balancer to distribute workload between application
servers, but any other load-balancers can also be used with appropriate setup.

2.2 Continuous Integration & Delivery

Several practises were obeyed during the development, namely Continuous Inte-
gration and Continuous Delivery. For this a platform which consisted of Jenkins-
CI3 and Docker Registry4 was deployed.

The most important tool for Continuous Integration & Delivery of CloudASR
is Jenkins-CI. Its task is to watch CloudASR git repository and whenever a new
code is pushed into this repository it schedules a new build of the platform.
During this build, the most recent code is pulled from the repository and then
the new docker images are built. After that, tests are run to check that the new
code did not break anything. Finally, successfully built images are tagged with

1https://mesosphere.github.io/marathon/
2http://www.haproxy.org/
3https://jenkins-ci.org/
4https://github.com/docker/docker-registry

11

https://mesosphere.github.io/marathon/
http://www.haproxy.org/
https://jenkins-ci.org/
https://github.com/docker/docker-registry

current build number and pushed to the Docker Registry.
Docker Registry is a repository of Docker images. Even though, there are sev-

eral Docker Registry providers5, which are free for open-source projects, CloudASR
uses its own free Docker Registry in order to be able to use also proprietary soft-
ware that cannot be shared with public.

2.3 Backend

The main programming language used for backend development is Python6.
The web interface is built on top of Flask7 microframework and it uses Guni-
corn8 for production deployment. MySQL9 is used as a database, but any other
SQL database can be used instead, because the database is accessed through
SQLAlchemy10.

The CloudASR architecture consists of several nodes which need to commu-
nicate between each other. CloudASR uses ZeroMQ11 for this communication
because of its simple design, high performance and support for every modern
language. With ZeroMQ, it is possible to create many messaging patterns, but
CloudASR uses only two: request-reply and push-pull. In the request-reply mes-
saging pattern a sender sends a message and then waits for a reply, after that
another sender can send next message and wait for a reply. On the other hand,
in the push-pull messaging pattern senders just send messages and do not wait
for replies.

In order to be able to send complex messages via ZeroMQ sockets, messages
have to be serialized. CloudASR uses Google Protocol Buffers12, because they
have support in many languages, allow specification of various message types (See
Figure 2.3 for example) and serialize messages in very compact way (See Table 2.1
for a comparison of different serializations).

raw file size 56146
bytes protobuf 56118 0.999x

base64 74872 1.333x
json array 158590 2.824x

Table 2.1: The table shows comparison of different serialization used to serialize a
wave file into a message for the CloudASR online mode. As can be seen from the results
Google Protocol Buffers achieved the best result.

CloudASR uses Pykaldi [30] as a Python wrapper for the Kaldi speech
recognition toolkit [31]. Because CloudASR should be able to process very long
recordings, possibly infinite, with limited computational resources, it is necessary
to split the recordings into smaller chunks. For that purpose CloudASR uses
voice activity detector implemented in Theano [2] to detect silences in a speech.

5https://hub.docker.com/, https://quay.io/
6https://www.python.org/
7http://flask.pocoo.org/
8http://gunicorn.org/
9https://www.mysql.com/

10http://www.sqlalchemy.org/
11http://zeromq.org/
12https://developers.google.com/protocol-buffers/

12

https://hub.docker.com/
https://quay.io/
https://www.python.org/
http://flask.pocoo.org/
http://gunicorn.org/
https://www.mysql.com/
http://www.sqlalchemy.org/
http://zeromq.org/
https://developers.google.com/protocol-buffers/

message HeartbeatMessage {

required string address = 1;

required string model = 2;

required Status status = 3;

enum Status {

STARTED = 0;

WAITING = 1;

WORKING = 2;

FINISHED = 3;

};

}

Figure 2.3: An example of Google Protocol Buffer message specification with three
fields. Fields address and model are just strings and the status is an enum with four
possible values.

2.4 Frontend

The frontend uses several well-known open-source libraries, namely, Twitter
Bootstrap13 for CSS styling of the web, jQuery14 and Angular.js15 for inter-
active elements on the web.

Figure 2.4: Screen of the Web Demo.

Modern web browsers support WebAudio API16, which is a high-level JavaScript
API for processing and synthesizing audio in web applications. One of the things
that can be done with this API is audio recording. Thus, it is possible to create a

13http://getbootstrap.com/2.3.2/
14https://jquery.com/
15https://angularjs.org/
16http://webaudio.github.io/web-audio-api/

13

http://getbootstrap.com/2.3.2/
https://jquery.com/
https://angularjs.org/
http://webaudio.github.io/web-audio-api/

web demo for the CloudASR online mode. The demo is based on Recorder.js17

library, which can record output of WebAudio API and return it as a PCM
chunks.

The next step is to send these chunks to the API. Because the demo demon-
strates the online speech recognition mode, it is not possible to wait for the whole
recording to be recorded and then send it to the API via HTTP POST request.
Thus, CloudASR uses Socket.IO18 to send stream of chunks to the API and to
receive stream of results from the API.

17https://github.com/mattdiamond/Recorderjs
18http://socket.io/

14

https://github.com/mattdiamond/Recorderjs
http://socket.io/

3. Implementation

This chapter describes the implementation of the CloudASR platform. The plat-
form provides API for both batch and online speech recognition mode and it has
an annotation interface for adding transcriptions to submitted recordings. The
implementation was also affected by the following requirements:

• Scalability - because the speech recognition is a demanding process in
terms of computational resources, it is not possible to handle many parallel
requests on one machine. Therefore the CloudASR architecture had to be
designed to be able to scale across many machines.

• Easy deployment - complex systems as CloudASR is have many depen-
dencies and a difficult deployment process, which makes their maintenance
hard. CloudASR should have as few dependencies as possible and only one
command deployment.

• Customizability - there are already several web services that provide an
API for speech recognition, but they are not easily customizable. Thus,
the second requirement was to be able to host any Kaldi model on the
CloudASR platform. Moreover, the CloudASR platform should be able to
run any ASR system, if the users implement a wrapper for that system.

3.1 Architecture

In order to meet the aforementioned scalability requirement the platform had to
be designed from the very beginning to be able to run on many machines. As
a result, the architecture consists of several nodes that communicate with each
other by sending messages over ZeroMQ sockets (each node acts as an actor as
described in [11]).

The architecture was also affected by the fact that it is not possible to start an
ASR system when the user sends a request, because the ASR systems need some
time to load decoding graphs in the memory, which would add some unnecessary
latency. To solve this problem the platform uses Master-Worker architecture,
which also makes it possible to handle requests for various languages at the same
time.

The CloudASR architecture as described in Figure 3.1 consists of several types
of nodes that can run on different machines. These nodes are Master, Worker,
API, Web, and Recordings Saver. In the following section each node will be
described in detail.

3.1.1 Master

The main task of Master is to keep track about running workers and to schedule
tasks to them. In order to be able to handle requests for various languages
Master monitors state of each worker and it has a queue of waiting workers for
each language, so that when API asks for a worker Master can return an address
of an available worker.

15

MASTER

WORKER

WORKER

WORKER

API

DB

HAProxy

API

WEB

SAVER

Figure 3.1: An overview of the CloudASR architecture. The most important node is
Master to which Workers send heartbeats with their state. The client requests are
handled by API which communicates with Master and Workers. The processed record-
ings are sent to Saver which saves them and serves them via HTTP. An annotation
interface and an online demo are hosted by Web. Finally, there are also two external
nodes: HAProxy which load-balances requests between particular application instances
and DB which stores information about processed recordings.

The workers can be in four different states: started, waiting, working and
not responding and they send four different heartbeats, small messages with
an information about their state, to Master: started, waiting, working and
finished.

The life cycle of the worker as described in Figure 3.2 starts in the started
state, after that it moves to the waiting state by sending the waiting heartbeat.
The worker remains in the waiting state until Master assigns a tasks to it, then
it moves to the working state where it remains as long as it is working. In the
working state worker sends working heartbeats periodically, to inform Master
that it is working and it did not fail. At the end of the task the Worker sends
finished heartbeat and Master changes the state of the Worker to the waiting
state.

Additionally, when a worker crashes during the processing of the task and it
gets restarted, it sends started heartbeat again, which informs Master, that the
worker was restarted and it adds it to the queue again. When a worker does
not send any heartbeat for 10 seconds, the master sets the worker state to not
responding. But as soon as the worker sends any heartbeat, the master will set
the worker to the appropriate state.

Unfortunately, Master is a single point of failure of the CloudASR platform.

16

STARTED WAITING

WORKING

WAITING

WAITING

STARTED
MASTER ASSIGNS WORK

WORKING

FINISHED

Figure 3.2: The life cycle of the worker starts in in the started state, after that it
moves to the waiting state by sending the waiting heartbeat. The worker remains in
the waiting state until Master assigns a tasks to it, then it moves to the working
state where it remains as long as it is working. In the working state worker sends
working heartbeats periodically, to inform Master that it is working and it did not fail.
At the end of the task the Worker sends finished heartbeat and Master changes the
state of the Worker to the waiting state.

When Master stops working no speech recognition requests can be processed,
because the API containers will not know to which worker they can forward the
request. But as soon as Master starts working the platform should be available
again.

3.1.2 Worker

Worker acts as a wrapper for an ASR system. By default Pykaldi is used but
any other ASR system can be used if the user implements a python wrapper for
that system. Because CloudASR should be able to process very long recordings
in the online speech recognition mode, it is necessary to split the recordings into
smaller chunks that can be processed with limited computational resources. For
that purpose VAD component from Alex Statistical Dialogue Systems Framework
[18] is used to detect silence in a speech, because the speech can be split at that
point without any large negative effect on the accuracy of the transcriptions.

3.1.3 API

The main task of API is to forward requests from the clients to the workers.
When API receives a request from a client, it sends a message to Master with
a request for a worker address for the given language. If there is any available

17

worker, Master returns its address, otherwise Master returns an error which is
forwarded back to the client. Then API sends the submitted recording to the
worker, which processes it and sends back either interim results for the online
speech recognition mode or final results for the batch speech recognition mode.
Finally, API sends a response with the results to the client.

The API is built on top of Flask framework with enabled asynchronous pro-
cessing which allows single API container to process many parallel requests, be-
cause there are no blocking operations in the API container - it just receives
requests from clients and forwards them via ZeroMQ to the workers.

3.1.4 Web

CloudASR platform has a web interface with an online demo and an annotation
interface. The online demo (See Figure 3.3) allows users to try out CloudASR
directly in their web browsers. It has two modes, namely, dictation mode, which
only shows the best transcription of the recording, and evaluation mode, which
also allows users to confirm that the transcription of the recording is correct.

Figure 3.3: Screen of the Web Demo.

Even though the annotation interface allows anonymous users to add tran-
scriptions to recordings, the users are encouraged to log in via their Google Ac-
count, because then it is possible to track their transcriptions and make useful
insights about the quality of their transcriptions.

The annotation interface distinguishes between two types of user roles: users
and administrators. Normal users are only allowed to add transcriptions (See
Figure 3.4) to the recordings selected by CloudASR, but administrators can view
every recording with its transcriptions.

In order to get the most of the normal user transcriptions, a recording, which
should be transcribed by the user, is selected randomly from all recordings for
the given language with confidence lower than 0.8, because it is not necessary
to transcribe recordings with correct transcriptions. This allows to collect tran-
scriptions for all recordings uniformly and then it is up to the administrator to
decide which transcription is the best.

18

Figure 3.4: Screen of the Annotation Interface.

3.1.5 Recordings saver

The main task of the Recordings saver is to save and serve recordings processed
by workers. When the worker finishes recognition it sends the recording with its
n-best hypotheses to the Recording saver via ZeroMQ socket. The saver saves
the wave file to the file system and it saves the n-best hypotheses to the database
so that they can be used in the future.

3.2 Scalability

As mentioned before, one of the key requirements for the CloudASR platform
was scalability. To successfully fulfill this requirement architecture was split in-
to smaller nodes, which communicate with each other by sending messages over
ZeroMQ sockets. This enables the platform to run on several machines. Addi-
tionally, the heartbeating makes it possible to scale workers dynamically without
need to stop the platform. Finally, load-balancing allows to run several API
nodes and spread the load between. Yet, this solution is limited by the network
capacity, but it is possible to deploy the CloudASR to a different data center and
load balance between data centers. This makes the CloudASR platform almost
infinitely scalable.

3.3 Deployment

The CloudASR platform supports two types of deployment: single host and mul-
ti host. Single host deployment allows users to run CloudASR directly on their
machines with just one dependency installed - Docker. Whereas multi host de-
ployment allows users to run CloudASR on a set of machines with Mesos installed.

Users can specify which workers they want to run in a configuration file, see
Figure 3.5 for an example. In this file they can specify names of Docker images
for the workers, number of instances of these workers and a model name with

19

which the worker will be available for speech recognition. Also, users have to
specify runtime variables such as IP address of a slave where the Master should
run, MySQL connection string and a domain name that HAProxy will use to
route requests to the running platform. Finally, users have to specify credentials
for Marathon if they want to run the platform on a Mesos cluster. After that
they can run CloudASR locally with make run locally command or on a Mesos
Cluster with make run on mesos command.

{

"domain": "cloudasr.klejch.eu",

"marathon_url": "marathon_url",

"marathon_login": "marathon_login",

"marathon_password": "marathon_password",

"master_ip": "master_ip",

"connection_string": "mysql connection string",

"workers": [

{

"image": "ufaldsg/cloud-asr-worker-cs-alex",

"model": "cs-alex",

"instances": 5

}

{

"image": "ufaldsg/cloud-asr-worker-en-towninfo",

"model": "en-towninfo",

"instances": 5

}

]

}

Figure 3.5: An example of the CloudASR configuration deployment/cloudasr.json

that specifies how to run 5 cs-alex workers and 5 en-towninfo workers using respec-
tive Docker image. With this configuration file the CloudASR platform can be run
locally with command make run locally or on a Mesos cluster with command make

run on mesos.

In order to ensure quality and stability of the CloudASR platform, two prac-
tises were used during the development: Continuous Integration [6] and Con-
tinuous Delivery [13]. The goal of these practises is to build, test and deploy
the CloudASR platform as often as possible, to get feedback from the real usage.
To achieve that the CloudASR platform uses Jenkins-CI server that watches the
CloudASR git repository and on every push to the repository it builds Docker
images, tests the code and pushes the built Docker images to the Docker Reg-
istry. After that it is possible to deploy the CloudASR platform with a specific
version and it is also possible to switch back to the older versions when anything
goes wrong. To minimize failures CloudASR is deployed first to the develop-
ment environment, where the users can test it and then it can be deployed to the
production environment.

To ensure stability of CloudASR all crucial parts of the platform are covered
with tests, namely unit tests, integration tests and end-to-end tests.

20

Each node was implemented with two main design patterns in mind, namely
Dependency Injection [5] and Factory Method [9]. Usage of these patterns to-
gether with message oriented architecture made it possible to unit test the whole
platform easily, because it enabled to pass test doubles into the nodes and then
send fake messages needed to test a correct behaviour of the node. A typical unit
test structure of the CloudASR platform node looks like a test in Figure 3.6.

In addition to unit tests there are also integration tests, which test the factory
methods that create production ready nodes, and end-to-end tests, which test
that both batch and online recognition mode requests are handled correctly. This
test suite ensures that developers do not break anything and it also gives them
confidence to change the code without fear.

def test_worker_sends_heartbeat_after_finishing_task(self):

messages = [

{"frontend": self.make_frontend_request("message 1")}

]

self.run_worker(messages)

self.assertThatHeartbeatsWereSent(["STARTED", "FINISHED"])

Figure 3.6: An example of unit test that tests communication between nodes.

3.4 Customizability

The second requirement for CloudASR is customizability in terms of acoustic
and language models. The platform supports creating new workers with various
acoustic and language models and it also supports creating new workers with
arbitrary ASR systems. An overview on the customization process is described
in the following section.

3.4.1 Worker with New Kaldi Models

In order to create a new worker with new Kaldi models a worker Docker image
has to be made. The image is created in several steps. First, users have to create
a script download models.sh that will download all necessary files from their
server, see Figure 3.7 for example. Second, they have to create a configuration
file config.py with an appropriate configuration for the downloaded models, see
Figure 3.8. Finally, they have to copy a Dockerfile (see Figure 3.9for example)
for the worker and build the docker image with the appropriate command. After
that users can use the new worker in their application in the similar way as they
use other models.

3.4.2 Worker with Arbitrary ASR System

Even though CloudASR supports only Kaldi out of the box, other ASR systems
can be used too. Again, the only thing that the users have to do is to create a
worker docker image with their ASR system. The only step that differs from the

21

#!/bin/bash

DOMAIN=vystadial.ms.mff.cuni.cz

PATH=/download/alex/applications/PublicTransportInfoCS/hclg/models/

URL=https://$DOMAIN/$PATH

mkdir /opt/models

wget -O /opt/models/mfcc.conf $URL/mfcc.conf

wget -O /opt/models/tri2b_bmmi.mdl $URL/url/tri2b_bmmi.mdl

wget -O /opt/models/tri2b_bmmi.mat $URL/tri2b_bmmi.mat

wget -O /opt/models/HCLG_tri2b_bmmi.fst $URL/HCLG_tri2b_bmmi.fst

wget -O /opt/models/words.txt $URL/words.txt

Figure 3.7: An example of download models.sh script.

models_dir = ’/opt/models’

wst_path = ’%s/words.txt’ % models_dir

kaldi_config = [

’--config=%s/mfcc.conf’ % models_dir,

’--verbose=0’, ’--max-mem=10000000000’,

’--beam=12.0’, ’--lattice-beam=2.0’,

’--acoustic-scale=0.2’, ’--max-active=5000’,

’--left-context=3’, ’--right-context=3’,

’%s/tri2b_bmmi.mdl’ % models_dir,

’%s/HCLG_tri2b_bmmi.fst’ % models_dir,

’1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20’,

’%s/tri2b_bmmi.mat’ % models_dir

]

Figure 3.8: An example of config.py script.

previous process is that the users have to implement and add to the Dockerfile
a script asr.py with their own create asr method that returns ASR class with
these methods:

• reset() - this method is called after every request and it can be used to
reset the underlying ASR system.

• recognize chunk(pcm) - this method is used to process small chunks of
recordings. The method should accept pcm chunks with frame rate 16000
and it should return an interim hypothesis in the form of a tuple (confidence,
transcript).

• get final hypothesis - this method is called at the end of every re-
quest, it should return a list of n-best hypotheses in the form of a tuple
(confidence, transcript).

The creation of such a script is illustrated in Figure 3.10 on the DummyASR
class, which will also be used for benchmark purposes in the Chapter 4.

22

FROM ufaldsg/cloud-asr-worker

MAINTAINER Ondrej Klejch

WORKDIR /opt/app

ADD . /opt/app

RUN bash download_models.sh

ENV model cs-alex

Figure 3.9: An example of worker Dockerfile.

import time

def create_asr():

return DummyASR()

class DummyASR:

def recognize_chunk(self, chunk):

time.sleep(float(len(chunk)) / 16000 / 2)

return (1.0, ’Dummy interim result’)

def get_final_hypothesis(self):

time.sleep(0.2)

return [(1.0, ’Dummy final result’)]

def reset(self):

pass

Figure 3.10: An example of alternative ASR implementation.

It is important to note that the new worker Docker images will be available
only on the machine where they were built. If the users want to use these workers
on multiple machines, they have to push them to their docker registry or they
can update Jenkins scripts build workers.sh and push workers.sh and Jenkins
will do that for them.

3.5 Example of API Usage

The CloudASR platform supports both batch and online speech recognition. In
the batch mode users send wave files to the API using HTTP POST request and
they receive a json with n-best transcriptions. Users can specify which worker
they want to use in lang parameter. The batch mode has a similar interface to
Google Speech API, which enables users to switch to CloudASR seamlessly. An
example of batch recognition API usage is illustrated on a simple curl command
in Figure 3.11 and a response from the API is shown in Figure 3.12.

In contrast to batch mode in online mode users send PCM chunks of a record-

23

curl -X POST --data-binary @recording.wav \

--header ’Content-Type: audio/x-wav; rate=16000;’ \

’http://api.cloudasr.com/recognize?lang=en-towninfo’

Figure 3.11: An example of batch speech recognition mode request for an en-towninfo
worker using curl.

{

"result": [

{

"alternative": [

{

"confidence": 0.5549500584602356,

"transcript": "I’M LOOKING FOR A BAR"

},

{

"confidence": 0.14846260845661163,

"transcript": "I AM LOOKING FOR A BAR"

},

],

"final": true

}

],

"result_index": 0

}

Figure 3.12: An example of batch recognition mode response.

ing while the recording is being recorded. Users can send these chunks as often
as they want but it is advised to send a chunk four times per second to achieve
a smooth experience. Chunks are sent to the server via Socket.IO technology en-
coded as JSON messages. Because JSON does not support encoding of a binary
data, it is necessary to encode PCM chunks into a string. Base64 proved itself to
be a sensible compromise between the message size increase and the implemen-
tation complexity. The CloudASR platform comes with a JavaScript library for
online speech recognition mode. Figure 3.13 shows how this library can be used
for speech recognition in Google Chrome web browser.

24

var speechRecognition = new SpeechRecognition();

speechRecognition.onStart = function() {

console.log("Recognition started");

}

speechRecognition.onEnd = function() {

console.log("Recognition ended");

}

speechRecognition.onError = function(error) {

console.log("Error occured: " + error);

}

speechRecognition.onResult = function(result) {

console.log(result);

}

var lang = "en-wiki";

$("#button_start").click(function() {

speechRecognition.start(lang);

});

$("#button_stop").click(function() {

speechRecognition.stop()

});

Figure 3.13: JavaScript code that can be used for speech recognition in Google Chrome.

25

4. Evaluation

In order to show that the CloudASR platform is ready for the production usage
several benchmarks were made. First, real time factor (RTF) of the batch speech
recognition mode was measured and compared with Google Speech API. Second,
latency of the online speech recognition mode was measured. Finally, number of
parallel requests for batch speech recognition mode was measured to show that
CloudASR is scalable.

4.1 RTF of Batch Speech Recognition

In the first benchmark RTF of CloudASR batch mode was compared with RTF
of Google Speech API using test set from the Czech Public Transportation Infor-
mation Domain [20]. WER and RTF of both APIs were measured with following
results: Google Speech API had 60% WER and RTF 0.3 whereas CloudASR had
22% WER and RTF 0.22. Request times of both APIs are displayed in Figure 4.1.

This benchmark shows that RTF of CloudASR batch mode is lower than
RTF of Google Speech API. Moreover, the benchmark shows that the CloudASR
platform can achieve better accuracy than Google Speech API on limited domains
if the used decoding graphs are customized for those domains.

0 5 10 15 20 25 30
Recording Length [s]

0

2

4

6

8

10

12

R
eq

ue
st

 T
im

e
[s

]

CloudASR
Google Speech API

Figure 4.1: Batch recognition benchmark.

4.2 Latency of Online Speech Recognition

In the second benchmark latency of CloudASR online mode was measured. Low
latency is crucial for successful usage of speech recognition in dialogue systems,
but there are not so many web services that provide online speech recognition
mode. Therefore, support for online speech recognition mode can be seen as a
key feature of the CloudASR platform.

26

The reason why the online speech recognition mode is better suited for dia-
logue systems is that it is possible to get the results while the speech is being
recorded. Thus, dialogue systems can react quickly. Results, plotted in Fig-
ure 4.2, show that the latency of the online speech recognition mode remains
small even for long recordings which is in contrast to the increasing latency of
the batch speech recognition mode.

0 5 10 15 20 25 30
Recording Length [s]

0

2

4

6

8

10
La

te
nc

y
[s

]

CloudASR Batch Mode
CloudASR Online Mode

Figure 4.2: A latency comparison for CloudASR online and batch mode.

4.3 Parallel Requests Benchmark

Because the main bottleneck of the CloudASR platform is a number of running
workers, workers with dummy ASR engine (described in Figure 3.10) were used
to be able to test how many parallel requests can CloudASR handle. As a result,
1000 dummy workers could run on a Mesos cluster with 5 slaves (4CPU, 16GB
RAM). Also, workload was spread across 5 API containers with a load-balancer.

seq 1 100 | xargs -P100 -I {} \

curl -X POST --data-binary @resources/test.wav \

--header "Content-Type: audio/x-wav; rate=16000;" \

-s -w "%{time_total}\n" \

http://api.cloudasr.com/recognize?lang=dummy

Figure 4.3: A simple benchmark script that sends 100 parallel requests to the
CloudASR API and prints out request time for each request.

Then several benchmarks were run to show how RTF of the batch recognition
mode changes with different number of parallel requests. The platform was tested
with a different number of parallel requests (50, 250, 500, 750 and 1000) and with
files with different lengths (5s, 10s, 20s, 30s, 40s, 50s and 60s). To be able to run
so many parallel requests, a simple benchmark, shown in Figure 4.3, was run on

27

200 400 600 800 1000
Parallel Requests

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
&

Pl
at

fo
rm

 L
at

en
cy

 [s
]

5s
10s
20s
30s
40s
50s
60s

Figure 4.4: The graph shows platform & network latency for recordings with various
lengths given the number of parallel requests.

5 machines. Each machine sent one-fifth of the total number of parallel requests
ten times and then the average latency was computed across all machines.

Results, summarized in Figure 4.4, show that CloudASR platform adds just
a very little overhead compared to the raw dummy worker for small recordings.
But the latency increases rapidly for large recordings with more than 500 parallel
requests. This is probably caused by network capacity of the servers that run the
benchmark and it should not affect the platform with the real usage. Moreover,
this will not affect the online speech recognition mode because it sends only very
small messages. Therefore, the platform should be able to handle much more
parallel requests with appropriate number of workers.

28

Conclusion

Goals of this thesis were to develop a cloud platform for ASR, CloudASR, and an
annotation interface for annotating speech data. These goals were successfully ac-
complished. Furthermore, in addition to the original requirement to create batch
speech recognition mode, online speech recognition mode was also implemented.

In the following sections all important results of this thesis are summarized
and at the end ideas for future work are proposed.

Cloud platform for ASR

The first goal of this thesis was to develop a cloud platform for ASR, CloudASR,
that would provide API for batch speech recognition mode of the submitted wave
files. This API is similar to Google Speech API, which enables users to switch to
CloudASR seamlessly. In addition, CloudASR provides an API for online speech
recognition. The CloudASR comes with a web demo, where the users can try out
the online speech recognition in various languages. Furthermore, the platform is
scalable, customizable and easily deployable.

In terms of scalability, the platform is able to run both on a single machine
and a multi-machine setup and it allows to scale the number of running workers
according to the users’ needs. The benchmarks show that the platform is able to
handle more than 1000 parallel requests.

The platform can handle requests for various languages at the same time.
Users can create workers for new languages using Pykaldi or they can even create
workers for an arbitrary ASR systems if they provide a Python wrapper for that
system.

CloudASR is easily deployable, it uses Docker for creating and running appli-
cation containers on a single machine and it uses a Mesos cluster to run CloudASR
on multiple machines.

Annotation interface

The second goal of this thesis was to create an annotation interface for annotating
submitted recordings. Its responsibility is to collect and store submitted speech
recordings together with their transcriptions. Then users can rate the automatic
transcriptions of the recordings or they can provide their own transcriptions if
they think that none of the automatic transcriptions is correct. The annotation
interface allows the administrators to choose the best transcription from several
manual transcriptions that were obtained for the recording. Additionally, external
service, such as CrowdFlower, can be used to obtain manual transcriptions of the
selected recordings.

Future work

• Since manual transcription of recordings is expensive it would be good to
make users transcribe only parts of the recordings in which ASR system

29

was not confident enough [36]. This idea could be used for both user tran-
scription and CrowdFlower transcription.

• With manually transcribed recordings from CloudASR platform it is possi-
ble to continuously improve the accuracy of the underlying ASR system by
adapting the language model to the type of language that the users of the
CloudASR really use. Thus, CloudASR could provide an option to auto-
matically update language model when a certain amount of new transcribed
recordings was collected.

• Because running CloudASR platform is expensive in terms of the costs for
the server hosting, it would be good to optimize the usage of the individual
workers. Spare workers should be shut down when there is no need for
them and new workers should be started when the traffic arise. This can be
achieved either by a feedback control based system [14] or by using machine
learning techniques [10].

• As CloudASR platform provides an API for speech recognition, it could
also be used for another speech related tasks like Language Identification,
Speaker Identification or Voice Activity Detection.

30

Bibliography

[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin, A
neural probabilistic language model, The Journal of Machine Learning Re-
search 3 (2003), 1137–1155.

[2] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio, Theano: A CPU and GPU math compiler in Python, Proc.
9th Python in Science Conf, 2010, pp. 1–7.

[3] Arthur P Dempster, Nan M Laird, and Donald B Rubin, Maximum likelihood
from incomplete data via the em algorithm, Journal of the royal statistical
society. Series B (methodological) (1977), 1–38.

[4] G David Forney Jr, The viterbi algorithm, Proceedings of the IEEE 61
(1973), no. 3, 268–278.

[5] Martin Fowler, Inversion of control containers and the dependency injection
pattern, 2004.

[6] Martin Fowler and Matthew Foemmel, Continuous integration, Thought-
Works) http://www.thoughtworks.com/Continuous Integration. pdf (2006).

[7] Michael Franzini, K-F Lee, and Alex Waibel, Connectionist viterbi training:
A new hybrid method for continuous speech recognition, Acoustics, Speech,
and Signal Processing, 1990. ICASSP-90., 1990 International Conference on,
IEEE, 1990, pp. 425–428.

[8] William Gale and Geoffrey Sampson, Good-turing smoothing without tears,
Journal of Quantitative Linguistics 2 (1995), no. 3, 217–237.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
patterns: Abstraction and reuse of object-oriented design, Springer, 1993.

[10] Zhenhuan Gong, Xiaohui Gu, and John Wilkes, Press: Predictive elastic re-
source scaling for cloud systems, Network and Service Management (CNSM),
2010 International Conference on, IEEE, 2010, pp. 9–16.

[11] Carl Hewitt, Viewing control structures as patterns of passing messages, Ar-
tificial intelligence 8 (1977), no. 3, 323–364.

[12] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Antho-
ny D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica, Mesos: A Plat-
form for Fine-Grained Resource Sharing in the Data Center., NSDI, vol. 11,
2011, pp. 22–22.

[13] Jez Humble and David Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation, Pearson Education, 2010.

[14] Philipp K. Janert, Feedback control for computer systems, O’Reilly Media,
2013.

31

[15] Jyh-Shing Roger Jang and Shiuan-Sung Lin, Optimization of viterbi beam
search in speech recognition, International Symposium on Chinese Spoken
Language Processing, 2002.

[16] Frederick Jelinek, Interpolated estimation of markov source parameters from
sparse data, Pattern recognition in practice (1980).

[17] Frederick Jelinek, Statistical methods for speech recognition, MIT press, 1997.

[18] Filip Jurč́ıček, Ondřej Dušek, Ondřej Plátek, and Lukáš Žilka, Alex: A Sta-
tistical Dialogue Systems Framework, Text, Speech and Dialogue, Springer,
2014, pp. 587–594.

[19] Reinhard Kneser and Hermann Ney, Improved backing-off for m-gram lan-
guage modeling, Acoustics, Speech, and Signal Processing, 1995. ICASSP-
95., 1995 International Conference on, vol. 1, IEEE, 1995, pp. 181–184.

[20] Matěj Korvas, Ondřej Plátek, Ondřej Dušek, Lukáš Žilka, and Filip Jurč́ıček,
Vystadial 2013–Czech data, (2014).

[21] Akinobu Lee, Tatsuya Kawahara, and Kiyohiro Shikano, Julius—an open
source real-time large vocabulary recognition engine, (2001).

[22] K-F Lee, H-W Hon, and Raj Reddy, An overview of the SPHINX speech
recognition system, Acoustics, Speech and Signal Processing, IEEE Transac-
tions on 38 (1990), no. 1, 35–45.

[23] Richard P Lippmann, Review of neural networks for speech recognition, Neu-
ral computation 1 (1989), no. 1, 1–38.

[24] Matthew Marge, Satanjeev Banerjee, and Alexander I Rudnicky, Using
the amazon mechanical turk for transcription of spoken language, Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE International Confer-
ence on, IEEE, 2010, pp. 5270–5273.

[25] Dirk Merkel, Docker: lightweight linux containers for consistent development
and deployment, Linux Journal 2014 (2014), no. 239, 2.

[26] Nima Mesgarani, Malcolm Slaney, and Shihab A Shamma, Discrimination
of speech from nonspeech based on multiscale spectro-temporal modulations,
Audio, Speech, and Language Processing, IEEE Transactions on 14 (2006),
no. 3, 920–930.

[27] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and San-
jeev Khudanpur, Recurrent neural network based language model., INTER-
SPEECH 2010, 11th Annual Conference of the International Speech Com-
munication Association, Makuhari, Chiba, Japan, September 26-30, 2010,
2010, pp. 1045–1048.

[28] Tim Ng, Bing Zhang, Long Nguyen, Spyros Matsoukas, Xinhui Zhou, Nima
Mesgarani, Karel Veselỳ, and Pavel Matejka, Developing a speech activity
detection system for the darpa rats program., INTERSPEECH, 2012.

32

[29] Scott Novotney and Chris Callison-Burch, Cheap, fast and good enough: Au-
tomatic speech recognition with non-expert transcription, Human Language
Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, Association for Computa-
tional Linguistics, 2010, pp. 207–215.

[30] Ondřej Plátek and Filip Jurč́ıček, Free on-line speech recogniser based on
Kaldi ASR toolkit producing word posterior lattices, 15th Annual Meeting of
the Special Interest Group on Discourse and Dialogue, 2014, p. 108.

[31] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukáš Burget, Ondřej Glem-
bek, Nagendra Goel, Mirko Hannemann, Petr Motĺıček, Yanmin Qian, Petr
Schwarz, et al., The Kaldi speech recognition toolkit, (2011).

[32] Lawrence Rabiner and Stephen E Levinson, Isolated and connected word
recognition–theory and selected applications, Communications, IEEE Trans-
actions on 29 (1981), no. 5, 621–659.

[33] Luis Javier Rodŕıguez and Inés Torres, Comparative study of the baum-welch
and viterbi training algorithms applied to read and spontaneous speech recog-
nition, Pattern Recognition and Image Analysis, Springer, 2003, pp. 847–857.

[34] Neville Ryant, Mark Liberman, and Jiahong Yuan, Speech activity detection
on youtube using deep neural networks., INTERSPEECH, 2013, pp. 728–731.

[35] David Rybach, Christian Gollan, Georg Heigold, Björn Hoffmeister, Jonas
Lööf, Ralf Schlüter, and Hermann Ney, The RWTH Aachen University Open
Source Speech Recognition System, Interspeech, 2009, pp. 2111–2114.

[36] Matthias Sperber, Graham Neubig, Satoshi Nakamura, and Alex Waibel,
On-the-Fly User Modeling for Cost-Sensitive Correction of Speech Tran-
scripts, Spoken Language Technology Workshop (SLT), 2014.

[37] Lloyd R Welch, Hidden markov models and the baum-welch algorithm, IEEE
Information Theory Society Newsletter 53 (2003), no. 4, 10–13.

[38] Jason D Williams, I Dan Melamed, Tirso Alonso, Barbara Hollister, and
Jay Wilpon, Crowd-sourcing for difficult transcription of speech, Automatic
Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on,
IEEE, 2011, pp. 535–540.

[39] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw,
Xunying Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al.,
The HTK book, vol. 2, Entropic Cambridge Research Laboratory Cambridge,
1997.

33

List of Abbreviations

API Application Programming Interface

ASR Automatic Speech Recognition

DNN Deep Neural Network

HMM Hidden Markov Model

RTF Real Time Factor

SGMM Subspace Gaussian Mixture Model

VAD Voice Activity Detection

WER Word Error Rate

34

A. Content of the CD

The attached CD contains the following items:

• CloudASR source codes

• PDF file with the thesis

• PDF file with the user documentation

• PDF file with the programmer documentation

35

B. User Documentation

This documentation describes several use cases for the users and the administra-
tors of the CloudASR platform.

B.1 Try Out the Demo

Users that want to try the CloudASR demo can do that in Google Chrome web
browser.

• Click on the Demo link in the top menu.

• Allow the demo to use your microphone.

• Select a language that you want to use.

• Click on the microphone icon to start recording.

• At the end, click on the microphone to stop recording.

• During recording, you can switch between the Dictation Mode and the
Evaluation Mode. In the Evaluation Mode you can confirm correctness
of the transcription or you can add your own transcription.

B.2 Transcribe a Recording

Users that want to help us by transcribing some of the submitted recordings can
do so with the following steps:

• Click on the Transcribe link in the top menu.

• Select a language that you want to transcribe and click on the corresponding
Transcribe button.

• Listen to the recording and add your own transcription.

• After you submit your transcription, you can continue with next recording.

B.3 Create a CrowdFlower Job

Users can also help us by creating a transcription job on CrowdFlower.

• Click on the Transcribe link in the top menu.

• Select a language, for which you want create a CrowdFlower job.

• Click on the corresponding Create CrowdFlower Job button.

• Follow the instructions on that page.

• Submit the obtained transcriptions on the Upload Results page.

36

B.4 Select the Best Transcription

Administrators can choose the best manual transcription with the following pro-
cedure:

• Click on the Transcribe link in the top menu.

• Select a language that you want to manage and click on the corresponding
Recordings button.

• Find a recording, for which you want to select the best manual transcription.

• Click on the corresponding Transcriptions button.

• Select the best transcription and click on the Accept this transcription
button.

B.5 Manage Running Workers

Administrators can manage labels of the running workers in the following way:

• Click on the Transcribe link in the top menu.

• Select a worker that you want to manage and click on the corresponding
Edit description button.

• Fill in the name and the description of the worker. Note that you can use
html in the description. You can check your description on a preview at the
bottom of the page.

• Save the description with the Save button.

37

C. Programmer Documentation

This documentation describes the installation and the deployment of the CloudASR
platform. Also, it shows how CloudASR batch and online API can be used. Fi-
nally, it shows how SpeechRecognition.js library can be used to provide speech
recognition capabilities directly in the web browsers.

C.1 Installation

Docker has to be installed in order to be able to run CloudASR locally. You can
follow the install instructions at http://tinyurl.com/install-docker. Ad-
ditionally, if you want to develop CloudASR, it is neccessary to install python
requirements for testing with command pip install requirements-pip.txt.

To be able to run CloudASR on multiple machines, a Mesos cluster has to
be installed. The instructions for installation of a Mesos cluster can be found at
http://tinyurl.com/install-mesos

C.2 Deployment

CloudASR deployment can be configured in the cloudasr.json file. In this file,
you can specify:

• Tag and source of the CloudASR Docker images

• Workers that you want to run

• Address of the Marathon and Master server

• Address of the MySQL server

• Credentials for Google Analytics

{

"domain": "cloudasr.com",

"registry": "registry.hub.docker.io",

"tag": "latest",

"marathon_url": "http://127.0.0.1:8080",

"marathon_login": "<marathon login>",

"marathon_password": "<marathon password>",

"master_ip": "127.0.0.1",

"connection_string": "<mysql connection string>",

"google_login_client_id": "<google login client id>",

"google_login_client_secret": "<google login client secret>",

"ga_tracking_id": "",

"workers": [

{

"image": "ufaldsg/cloud-asr-worker-en-wiki",

"model": "en-wiki",

38

http://tinyurl.com/install-docker
http://tinyurl.com/install-mesos

"instances": 4

}

]

}

With this configuration file you can run the CloudASR platform on your ma-
chine with make run locally command. After that, you can use CloudASR API
at http://localhost:8000, monitor running workers at http://localhost:

8001 and open the CloudASR website at http://localhost:8003.
Also, you can use this configuration file to run CloudASR on a Mesos cluster

with make run on mesos command. After that, it is neccessary to start a load-
balancer on a server associated with the domain specified in the configuration.
You can do that by typing:

docker run -d -p 80:80

-e MARATHON_URL=localhost:8080

-e MARATHON_LOGIN=login

-e MARATHON_PASSWORD=password

choko/haproxy

Then, you can use CloudASR API at http://api.cloudasr.com, view run-
ning workers at http://monitor.cloudasr.com and open the CloudASR website
on http://www.cloudasr.com.

C.3 Batch API Usage

Batch API is compatible with Google Speech API, but it supports only wave files
and json output. Users can use parameter lang to specify which language they
want to use for speech recognition. Currently, these languages are available now:

• en-towninfo - English (VYSTADIAL TownInfo AM+LM)

• en-wiki - English (TED AM+Wikipedia LM)

• cs - Czech (VYSTADIAL AM + Wikipedia LM)

• cs-alex - Czech (VYSTADIAL AM + PTIcs LM)

For example, if you want to transcribe English speech in a recording.wav

file you can send the following curl request:

curl -X POST

--data-binary @recording.wav

--header ’Content-Type: audio/x-wav; rate=16000;’

’http://localhost:8000/recognize?lang=en-towninfo’

And you should get a response similar to this:

39

http://localhost:8000
http://localhost:8001
http://localhost:8001
http://localhost:8003
http://api.cloudasr.com
http://monitor.cloudasr.com
http://www.cloudasr.com

{

"result": [

{

"alternative": [

{

"confidence": 0.5549500584602356,

"transcript": "I’M LOOKING FOR A BAR"

}

],

"final": true

}

]

}

C.4 Online API Usage

Online API uses Socket.io library to transfer PCM chunks to the CloudASR
server. Messages have following format:

C.4.1 Messages from Client to Server

• First, you have to start the recognition by sending the information about
the used language.

socketio.emit(’begin’, {’lang’: ’en-GB’})

• After that, you can send PCM chunks to the server. Every chunk is a
Base64 encoded 16 bit PCM string.

socketio.emit(’chunk’, {

’chunk’: ’base64 encoded string’,

’frame_rate’: 16000

})

• Finally, you end the recognition by sending following message

socketio.emit(’end’, {})

C.4.2 Messages from Server to Client

Server responds to every chunk with a message with interim results:

{

"status": 0,

"final": false,

"result": {

"hypotheses": [

{"transcript": "I AM LOOKING"}

40

]

}

}

At the end of the recognition server sends the message in the same format,
but with final: true and n-best hypotheses.

C.5 SpeechRecognition.js Library Usage

If you want to use speech recognition on your website, you can use our JavaScript
library. Please add the following scripts to your html:

• http://www.cloudasr.com/static/js/socket.io.js

• http://www.cloudasr.com/static/js/Recorder.js

• http://www.cloudasr.com/static/js/SpeechRecognition.js

Then you can use SpeechRecognition in following manner:

var speechRecognition = new SpeechRecognition();

speechRecognition.onStart = function() {

console.log("Recognition started");

}

speechRecognition.onEnd = function() {

console.log("Recognition ended");

}

speechRecognition.onError = function(error) {

console.log("Error occurred: " + error);

}

speechRecognition.onResult = function(result) {

console.log(result);

}

41

http://www.cloudasr.com/static/js/socket.io.js
http://www.cloudasr.com/static/js/Recorder.js
http://www.cloudasr.com/static/js/SpeechRecognition.js

	Introduction
	Theoretical Background
	Automatic Speech Recognition
	Acoustic Models
	Language Models
	Speech Decoding
	Evaluation

	Voice Activity Detection
	Open-Source ASR Tools
	Public ASR services
	Obtaining Manual Transcriptions

	Used Technologies
	Platform
	Continuous Integration & Delivery
	Backend
	Frontend

	Implementation
	Architecture
	Master
	Worker
	API
	Web
	Recordings saver

	Scalability
	Deployment
	Customizability
	Worker with New Kaldi Models
	Worker with Arbitrary ASR System

	Example of API Usage

	Evaluation
	RTF of Batch Speech Recognition
	Latency of Online Speech Recognition
	Parallel Requests Benchmark

	Conclusion
	Bibliography
	List of Abbreviations
	Content of the CD
	User Documentation
	Try Out the Demo
	Transcribe a Recording
	Create a CrowdFlower Job
	Select the Best Transcription
	Manage Running Workers

	Programmer Documentation
	Installation
	Deployment
	Batch API Usage
	Online API Usage
	Messages from Client to Server
	Messages from Server to Client

	SpeechRecognition.js Library Usage

