
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Pavel Kalvoda

Implementace a evaluace protokolu
CBOR

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. David Bednárek, Ph.D.

Study programme: Computer Science

Specialization: General Computer Science

Prague 2015

First and foremost, I would like to thank my supervisor, Dr. David Bednárek, for

his steady support and the overwhelming amount of his feedback that has been

invaluable for improving this thesis.

None of my work would be possible without the foundations build with the

monumental effort of all my predecessors and peers, both known and unknown.

I would like to thank the open source community for the tools and services I was

provided with.

I want to thank thank my proof readers, Julia Hezinova and David Hewitt,

for their tireless help with this text. I also owe my gratitude to Petr Bělohlávek,

my friend and fellow student, for the sheer amount of his help.

Finally, I am grateful to my family, who have supported me through my

studies. Thank you!

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that

the Charles University in Prague has the right to conclude a license agreement

on the use of this work as a school work pursuant to Section 60 paragraph 1 of

the Copyright Act.

In Prague, May 21, 2015 signature

Název práce: Implementace a evaluace protokolu CBOR

Autor: Pavel Kalvoda

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. David Bednárek, Ph.D.

Abstrakt: CBOR (RFC 7049) je nový protokol pro binární serializaci dat. Nevy-
žaduje definici schémat a je podobný JSON či BSON. Přichází s několika nový-
mi koncepty, především explicitní podporou proudového zpracování a rozšiřitel-
nou sémantikou. Tato práce předkládá robustní generickou implementaci pro
C odpovídající standardu a její rozhraní pro jazyk Ruby. Implementace i sám
protokol jsou kriticky analyzovány na teoretickém i experimentálním základu.
Z měření plyne, že implementace výkonem překoná relevantní alternativy, přestože
zachovává bohaté rozhraní. CBOR nabízí srovnatelnou nebo lepší efektivitu
a funkcionalitu vzhledem k alternativám; systémy s omezenými zdroji i ty s vy-
sokou propustností by z něho mohly benefitovat. Některé jeho aspekty se ovšem
ukázaly být nepraktické či zbytečně složité, proto jsou předloženy korekční návrhy.
Je popsáno a zhodnoceno i několik dalších možných přístupů k implementaci.

Klíčová slova: CBOR, serializace dat, binární reprezentace

Title: Implementation and evaluation of the CBOR protocol

Author: Pavel Kalvoda

Department: Department of Software Engineering

Supervisor: RNDr. David Bednárek, Ph.D.

Abstract: CBOR (RFC 7049) is a recent binary schema-less data serialization
protocol similar to JSON and BSON. It introduces several novel concepts, such as
explicit streaming support and extensible semantics. A robust, generic, standard-
compliant implementation for C is developed and presented, along with its bind-
ing for the Ruby language. Both the implementation and the protocol itself
are critically evaluated by both experimental and theoretical inquiries. The
measurements show that the implementation achieves performance superior to
relevant alternatives while still providing a rich set of features. CBOR offers
functionality and efficiency on par with or superior to the alternatives. Both high-
volume applications and constrained node systems might benefit from CBOR.
Some of its features, however, were shown to be needlessly complex or impractical.
Suggestions addressing these deficiencies are presented. Several other approaches
to implementing CBOR are proposed and discussed.

Keywords: CBOR, data serialization, binary representation

Contents

1 Introduction and related work 5
1.1 An overview of the CBOR format 6

1.1.1 General information and background 6
1.1.2 Design objectives . 6

1.2 Comparison to similar formats . 6
1.2.1 Relevant aspects . 7
1.2.2 JSON . 8
1.2.3 XML . 9
1.2.4 CBOR . 10
1.2.5 BSON . 11
1.2.6 MessagePack . 12
1.2.7 UBJSON . 13

1.3 Motivation . 14
1.3.1 Unique features . 15
1.3.2 Compactness & performance 17
1.3.3 Simplicity of integration 17

1.4 Goals . 17

2 Analysis 19
2.1 A closer look at CBOR . 19

2.1.1 Data types . 19
2.1.2 Functionality . 31

2.2 Key properties of the CBOR format 33
2.2.1 The notions of validity and well-formedness 33
2.2.2 Nested data items . 35
2.2.3 Hash map keys . 35
2.2.4 Indefinite data items . 36

2.3 Existing implementations . 37
2.3.1 RIOT OS . 37
2.3.2 cn-cbor . 37
2.3.3 cbor-ruby . 37

2.4 Other related work . 38
2.4.1 Noteworthy implementations of other formats 38
2.4.2 Generated parsers . 39

2.5 Summary . 39

3 Implementation 41

1

3.1 Design overview . 41
3.2 Technology and supported platforms 43

3.2.1 C99 . 43
3.2.2 Ruby FFI . 44

3.3 libcbor . 44
3.3.1 Design overview . 45
3.3.2 Data structures . 48
3.3.3 Ownership and reference counting 51

3.4 libcbor-rb . 53
3.4.1 Design overview . 54
3.4.2 Memory management . 56

3.5 Tools, processes, and quality assurance 56
3.5.1 Building, packaging, and installation 56
3.5.2 Versioning . 57
3.5.3 Correctness . 57
3.5.4 Memory correctness verification 58

3.6 Summary . 58

4 Using the implementation 60
4.1 Using the C component . 60

4.1.1 Data items API . 60
4.1.2 Streaming API . 61

4.2 Using the Ruby component . 61
4.2.1 Traditional API . 62
4.2.2 Streaming API . 62

4.3 Building custom encoders and decoders 62
4.3.1 Schema-based codecs . 63

4.4 Existing applications . 64
4.5 Linking to other languages . 64
4.6 Summary . 64

5 Evaluation 66
5.1 Performance . 66

5.1.1 Measurement methods . 66
5.1.2 Testing inputs . 68
5.1.3 Decoding to memory . 68
5.1.4 Encoding . 71
5.1.5 Manipulation . 71
5.1.6 Event emitting . 73

5.2 Encoding efficiency . 73
5.3 Memory usage . 75
5.4 Complexity . 76
5.5 Summary . 77

6 Discussion 78
6.1 CBOR semantics . 78

6.1.1 Unclear distinction between well-formedness and validity . 79

2

6.1.2 Too complex map keys . 79
6.1.3 No signed numeral type 79
6.1.4 Combination of null and undefined value 79
6.1.5 Lack of no-op-like construct 79
6.1.6 Unspecified relationship between definite and indefinite items 80
6.1.7 Implementation complexity 80

6.2 Proposed improvements . 80
6.2.1 Unclear distinction between well-formedness and validity . 80
6.2.2 Too complex map keys . 80
6.2.3 No signed numeral type 81
6.2.4 Combination of null and undefined value 81
6.2.5 Lack of no-op-like construct 81
6.2.6 Unspecified relationship between definite and indefinite items 81
6.2.7 Implementation complexity 81

6.3 Appropriate use cases . 82
6.3.1 Web applications . 82
6.3.2 REST-style APIs . 82
6.3.3 Internet of things . 83
6.3.4 Piggybacking on other protocols 83
6.3.5 Creating new protocols . 83

6.4 Alternative implementation designs 83
6.4.1 Flat memory representation 84
6.4.2 Flat memory representation with parse trees 84
6.4.3 Purely event-driven parser 84
6.4.4 Advanced memory control 85

6.5 Summary . 85

7 Conclusions and future work 87
7.1 C implementation . 87
7.2 Ruby implementation . 88
7.3 Evaluation . 89

Bibliography 90

List of tables 93

List of listings 94

List of figures 96

Glossary 97

Attachments 99

Appendices 100

A Benchmark data showcase and description 101
A.1 citylots . 101

3

A.2 numbers . 102
A.3 cards . 102
A.4 glossary . 103
A.5 instruments . 103
A.6 blobs . 104

B Memory profiles 105

C libcbor usage examples 110

4

Chapter 1

Introduction and related work

CBOR (RFC 7049) is a recent binary schema-less data serialization protocol

similar to JSON and BSON. It introduces several novel concepts, such as explicit

streaming support and extensible semantics.

In this chapter, we present a short overview of this thesis, followed by an

inquiry into the technical and historical background of the CBOR format. We

explain the motivation for introduction of a new data serialization format, as well

as a detailed comparison with similar relevant standardized formats.

The aforementioned background information will then serve as a basis for

explaining our motivation and setting the goals for both our implementation and

the subsequent investigation of the CBOR format itself.

The second chapter consists of an in-depth analysis of the CBOR format, its

existing implementations, and several notable implementations of other formats.

In the third chapter, we describe the design and technical details of our implemen-

tation. The fourth chapter showcases how the implementation may be used. The

fifth chapter consists of benchmarks and evaluations of the implementation. In

the sixth chapter, we discuss the findings from the previous chapters and propose

possible improvements, as well as address the suitability of CBOR for different

domains. Finally, the seventh chapter summarizes the whole thesis and presents

a perspective for the future.

5

1.1 An overview of the CBOR format

1.1.1 General information and background

CBOR [7] aims to be a compact, schema-less data serialization format. Being

akin to MessagePack [22], it strives to provide a simple, regular representation

of existing data formats used in today’s Internet standards while maintaining

simplicity of encoders and decoders.

1.1.2 Design objectives

The following extract from the original RFC [7, s. 1.1] provides a succinct

overview of the design goals:

1. The representation must be able to unambiguously encode most

common data formats used in Internet standards.

2. The code for an encoder or decoder must be able to be com-

pact [. . .].

3. Data must be able to be decoded without a schema description.

4. The serialization must be reasonably compact [. . .].

5. The format must be applicable to both constrained nodes and

high-volume applications.

6. The format must support all JSON data types for conversion to

and from JSON.

7. The format must be extensible, and the extended data must be

decodable by earlier decoders.

1.2 Comparison to similar formats

Despite the fact that the CBOR standard declares different goals and design

criteria than all of the formats mentioned in this section, they still share significant

overlaps in functionality and usage. A brief overview of the key similarities and

differences will be helpful both to those evaluating different alternatives from

6

a practical standpoint as well as to those trying to understand the theoretical

motivations and limits.

The formats were selected based on the following criteria:

• Genericity – is the format reusable across many different applications and

domains?

• Standardization – is there a formal specification or an official reference

implementation available?

• Adoption – is the format used in real-world applications?

• Absence of schemata – does the format require payloads to be defined

upfront?1

We intentionally include both binary and text-based formats, as many of

them are commonly used together either in cooperation or as alternatives. XML

is included predominantly because it is the de facto standard for generic cross-

platform data serialization, with a multitude of very mature implementations

readily available, and can therefore serve as a reference for the other formats. We

do acknowledge that, due to its nature, it is not comparable to the JSON family

in most aspects.

1.2.1 Relevant aspects

In order to meaningfully compare and contrast the formats, we have chosen a set

of high-level aspects that are likely to interest most prospective users. These are

• Character and origin

• Available data types and constructs

• Extensibility

• Availability and support

• Functionality

• Common applications & domains
1This option is available for most of the listed formats. It is, however, not mandatory.

7

1.2.2 JSON

1.2.2.1 Character and origin

JSON (JavaScript Object Notation) is a simple text-based data-interchange for-

mat that originated from a subset of the JavaScript programming language. The

format itself is independent from text encoding (either UTF-8, UTF-16, or UTF-

32 are allowed) [12, s. 8.1].

1.2.2.2 Available types and constructs

JSON’s constructs are based on the primitive types of JavaScript. These include:

signed integers, floats (excluding NaN and Infinity) [12, s. 6], text strings,

arrays, objects (hashmaps with string keys), and three literal values (true,

false, null).

It is worth noting that the range of representable integers, as well as the

float precision, are not defined by the standard. Application developers are often

forced to circumvent this limitation by using application-specific semantics and

conversions [2].

1.2.2.3 Extensibility

There is no standard mechanism for future extensions.

1.2.2.4 Availability and support

JSON is very widely supported by both ubiquitous JavaScript engines and a wide

variety of standalone codecs for virtually all platforms and languages. The official

web page alone lists some 178 implementations [36].

1.2.2.5 Functionality

No additional functionality is defined by the standard. Non-standard extensions

for streaming exist [61].

8

1.2.2.6 Common applications & domains

JSON is used extensively in interactive web applications as a more efficient

alternative to XML [64]. Data stores based on JSON emerged as a result of

the wide adoption of web-related technologies, prominent examples being Apache

CouchDB [3], RethinkDB [50], and MongoDB [5].

It is also commonly reused in other protocols and formats. For example,

JSON-RPC [27] is a remote procedure call protocol based on JSON serialization.

1.2.3 XML

1.2.3.1 Character and origin

XML (Extensible Markup Language) is a part of the W3C technologies suite. It is

an extensions of SGML (Standard Generalized Markup Language [33]) intended

for general use.

XML is a text-based format with strong affinity towards Unicode encoding. It

has a flexible, tree-like structure that can be specified and extended using XML

schemata. All common data structures can be easily expressed using XML.

A standard mechanism of linking XML documents, as well as other types

of data, is available. XML also supports verbatim, unescaped sections and

comments. A binary-encoded version is partially standardized [38].

1.2.3.2 Available types and constructs

XML does not specify data types per se. Instead, it has a general hierarchical

structure with text-only data. The application itself must define the mapping

between the XML document tree and its data types. The format itself does not

deal with specifics of e.g. numeric types.

1.2.3.3 Extensibility

The self-describing nature of the format is sufficient for expressing any structured

textual data. Binary data are generally not supported.

DTDs (Document Type Definitions) and XSDs (XML Schema Definitions)

allow for standardized, publicly shared declarations of element types.

9

1.2.3.4 Availability and support

XML is extremely widespread, with both generic and application-specific codecs

available for all major platforms and languages.

1.2.3.5 Functionality

The declarative, self-describing nature of XML could be considered a functional-

ity, since it allows almost arbitrary extensions of the data model.

Streaming is available via the loosely defined family of SAX (Simple API for

XML) implementations [13].

1.2.3.6 Common applications & domains

XML is often used as a base for deriving custom formats. Examples include SVG

for vector graphics [20], Office Open XML for office productivity applications [48],

and SOAP for remote procedure calls.

XML is also often used for storing application configuration and saved state

of applications. Many of these documents are, at least to some degree, generated

automatically from other data.

Finally, early interactive web application used XML as an integral part of the

XMLHttpRequest API for asynchronous communication. This usage has been

largely superseded by JSON (see 1.2.2.6).

1.2.4 CBOR

1.2.4.1 Character and origin

CBOR (Concise Binary Object Representation) is a fairly recent (2013) schema-

less binary data serialization format. It is designed for a wide variety of use

cases.

1.2.4.2 Available types and constructs

CBOR contains primitive data types similar to those of JSON (detailed in 2.1.1),

with the addition of binary data. The precision and semantics of numeric types

are thoroughly defined by the specification. It also supports some commonly used

10

singular values, such as NaN, null, undefined. Content metadata are available

as well.

1.2.4.3 Extensibility

Extensibility both on the standard level and the application level is a part of

the core design goals of CBOR. The standard specifies how the format will

be extended, including considerations for forward- and backwards-compatible

applications. Content metadata ‘tags’2 can be publicly shared via a centralized

repository, mimicking the DTD mechanism of XML. Rigid message definitions

(CDDLs, currently a IETF draft specification [60]) are also available.

1.2.4.4 Availability and support

CBOR availability does not match that of JSON or XML. The official web page

lists several implementations [8], most of which declare themselves to be either

experimental or purpose-specific.

1.2.4.5 Functionality

Unlike text-based formats, CBOR can provide effective lazy decoding features.

Seek-to and selective decoding is available in fixed-length documents. Streaming

support is given a thorough consideration in the specification. Binary data type

enables clients to embed resources efficiently, without escaping or encoding.

1.2.4.6 Common applications & domains

Although CBOR has many potential use cases (as discussed in section 6.3), there

are no known existing production-stage applications yet.

1.2.5 BSON

1.2.5.1 Character and origin

BSON (Binary JSON) is a conceptual extension to JSON that was originally

developed as a data serialization format for the MongoDB database [44]. It is
2Please refer to subsection 2.1.1.9 for more details.

11

binary and schema-less, while largely mirroring the structure of JSON in other

areas.

1.2.5.2 Available types and constructs

BSON supports all the structures found in JSON, and adds fixed-width numerals,

binary content, and several constructs specific to database applications. These

include: Iterator pointer, UUID, and so called ObjectID (MongoDB’s primary

key type).

1.2.5.3 Extensibility

There is no standard mechanism for future extensions. No ad-hoc extensions are

known at the time of writing.

1.2.5.4 Availability and support

Besides its use in MongoDB and the products related to it, BSON has codecs for

several major platforms and languages. It is more widely supported than CBOR,

but significantly less widespread than JSON or XML.

1.2.5.5 Functionality

BSON does not offer any additional features.

1.2.5.6 Common applications & domains

There are very few applications other than MongoDB that use BSON .

1.2.6 MessagePack

1.2.6.1 Character and origin

MessagePack (often abbreviated as MsgPack) is a lightweight, schema-free binary

format. It had a strong influence on the design CBOR; many CBOR constructs

share structure with their MsgPack counterparts.

12

1.2.6.2 Available types and constructs

MessagePack offers all the structures found in JSON, with the addition of binary

content and fixed-width numerals. The length of all elements is fixed. There

is an ambiguity between binary and text data that remains unresolved and

implementation-specific [12, E.2].

1.2.6.3 Extensibility

There is no standard mechanism for future extensions.

1.2.6.4 Availability and support

There are mature implementations available for most major platforms and lan-

guages [23].

1.2.6.5 Functionality

Streaming is not explicitly mentioned in the specification. The reference Ruby

implementation supports streaming [25] to a certain degree.

1.2.6.6 Common applications & domains

MessagePack is often used for RPC-like applications and distributed computing

protocols. It is also a popular choice for compressed structured logging (including

Fluentd, the syslog-like log collector), and is supported by Redis, the popular data

structure server.

1.2.7 UBJSON

1.2.7.1 Character and origin

UBJSON (Universal Binary JSON) is yet another binary evolution of JSON. It

was introduced to reduce the size of JSON payloads sent over the network while

still maintaining the simplicity of JSON.

13

1.2.7.2 Available types and constructs

UBJSON’s data model is a one to one copy of JSON. Binary data was excluded

on purpose [BZ, s. 5] to maintain the isomorphic mapping.

1.2.7.3 Extensibility

There is no standard mechanism for future extensions.

1.2.7.4 Availability and support

UBJSON arguably has the least adoption of all the listed formats. Generic codecs

for some major languages are available, although none of them is documented.

1.2.7.5 Functionality

UBJSON allows streaming arrays and maps. It also features no-op, a data item

with no meaning that is intended to be used during long network polling sessions

as a means of preventing automatic network timeouts.

1.2.7.6 Common applications & domains

There are no known existing production-stage applications.

1.3 Motivation

In the previous section, we have have discussed several formats that are, to

some degree, similar to CBOR in terms of functionality and design. We have

to ask ourselves what exactly sets CBOR apart from them, and what will be the

significance of these differences for real-world applications.

To grasp the matter in a structured and succinct manner, we will present

three separate sections with the reasons why exploring the CBOR format is a

worthwhile endeavor.

14

1.3.1 Unique features

The CBOR format has a unique set of features that is not found in any other of

the aforementioned alternatives. The slow adoption of seemingly similar formats

suggests there is a mismatch between the expectations of the general audience and

the features of available formats. On the other hand, the vast number of attempts

to create an efficient universal JSON-like data serialization format suggests that

there is demand for such a format.

CBOR offers an approach that is rather similar to the existing ones, which

means it will be easy to understand and work with for professionals with back-

ground in other technologies, yet it also also delivers several key features that

have not been combined together yet.

This combination could be useful, especially in the context of ubiquitous

Internet-enabled mobile devices, where efficiency and versatility of application-

level communication protocols still remains one of the limiting factors due to both

constrained network resources and limited power.

Streaming Lazy dec. Bin. content Format ext. User ext.
JSON Ad-hoc No No No No
XML SAX No No N/A Yes
CBOR Yes Yes Yes Yes Yes
BSON No Yes Yes No No
MessagePack Ad-hoc Partial Yes No No
UBJSON No No Optional No No

Table 1.1: Feature comparison matrix

1.3.1.1 Streaming

With the widespread adoption of the WebSockets API for HTTP clients [29] and

the inclusion of the SPDY protocol features [6] in HTTP/2.0, it is clear that

streaming will play a crucial role in the technological foundation of the next-

generation interactive and real-time web applications. Unlike the alternatives,

CBOR provides a solid foundation for building streaming-based applications.

15

1.3.1.2 Lazy decoding

There are many performance optimizations lazy decoding can enable. For exam-

ple, both JSON and MessagePack are often used for storing structured log data.

Searching these data often involves decoding of large sequences. Counted format

with lazy decoding allows us to deserialize only the relevant parts, presumably

leading to substantial performance gains.

1.3.1.3 Binary content

Binary content support is an important feature since it enables binary resource

embedding. This is especially useful when building JSON-based web APIs for

environments where multiple network transmissions may be expensive (i.e. mobile

devices). The gain in efficiency may noticeably decrease power consumption.

{
"entry": [

{
"id": "15342888",
"hash": "5eb6f7e271e6c6b46d08c9b86a2b7443",
"requestHash": "5eb6f7e271e6c6b46d08c9b86a2b7443",
"profileUrl": "http://gravatar.com/pavelkalvoda",
"preferredUsername": "pavelkalvoda",
"thumbnailUrl": "https://secure.gravatar.com/avatar/5eb..",
"photos": [

{
"value": "https://secure.gravatar.com/avatar/5eb6...",
"type": "thumbnail"

}
],
"name": [],
"displayName": "pavelkalvoda",
"urls": []

}
]

}

Listing 1.1: A typical REST API response from the Gravatar service which
provides users’ profile images based on their emails. Most clients will make a
second request to fetch the image from thumbnailUrl. Embedding the thumbnail
content directly could save the unnecessary connection.

16

1.3.1.4 Extensibility

Unlike most of the alternatives mentioned in section 1.2, the CBOR standard

defines future extension points and migration paths. Should it become widely

used, this aspect will be of immense value when the specification is updated or

extended.

1.3.2 Compactness & performance

Unlike BSON or UBJSON, CBOR empathizes efficient encoding of common

values. This leads us to believe that it will be more space-efficient than the

alternatives. This presumption is analyzed and verified in section 5.2.

1.3.3 Simplicity of integration

Based on the survey of CBOR’s features and constructs conducted in section 1.1,

it is clear that CBOR is – in the sense of semantics – a superset of JSON. This will

enable the potential users to easily leverage their existing knowledge of JSON, as

well as greatly simplify the integration of CBOR with any existing JSON-based

tools and applications.

1.4 Goals

Having discussed the background and the motivation, we will now outline the

goals of this thesis. While we have discussed the reasons why CBOR might have

the potential to become widely adopted, it will not be until we have carefully

examined it in more detail that we will be able to support our speculations by

measurements and a comprehensive analysis. More precisely, this thesis should

examine

• the space efficiency of CBOR,

• the encoding and decoding performance that can be achieved,

• the resources required for encoding and decoding, and

• the extent to which CBOR is suitable for various applications niches,

17

all while critically reflecting on the design decisions made in the standard with

respect to the aforementioned aspects.

At the time of writing, there is no general purpose implementation for the C

language. As Foreign Function Interfaces (FFIs) for C are available for virtually

all languages, meaning that a C implementation would be remarkably easy to

reuse, we will proceed to implement a generic CBOR library in C. The goals are

• full standard compliance,

• well-structured and easy to use API, including the streaming features,

• verifiable correctness,

• flexible and safe memory management,

• robustness and safety (since the inputs will often be produced by external

sources), and

• performance that at least matches that of popular JSON implementations

Furthermore, we realize that the target application niches for CBOR often

make use of productivity-oriented languages rather than systems languages such

as C. We will therefore create a binding that will connect the aforementioned

library with Ruby, a popular programming language often used for developing

web applications. We will strive for

• an easy to use streaming API,

• an idiomatic design that will enable CBOR to be used as a drop-in replace-

ment for e.g. JSON, and

• seamless interoperability with other libraries across all common runtime

environments.

18

Chapter 2

Analysis

In this chapter, CBOR is analyzed from the implementation viewpoint. This

includes a detailed survey of its data types, features, and semantics, as well as

an exploration of the existing implementations and the techniques they employ.

We also entertain the possibility of using state machine compilers or other similar

tools that are commonly used for implementing new formats and protocols.

2.1 A closer look at CBOR

In order to better grasp the structure of CBOR, a brief overview of all its

constructs is provided, along with examples, including several corner cases or

degenerate inputs.

2.1.1 Data types

CBOR refers to a semantic unit of data as data items. There are eight major

types of data items [7, s. 2.1]. Data items of the same major type share the

same major type byte, which serves as a header used for determining the major

type. Items of the same type have largely similar structures1.

The semantics of CBOR data items are defined in terms of bits and bytes, a

byte being 8 bits. All well-formed items consist of 1 or more full bytes of data.

The length of most data items can be determined from their headers.

To prevent any possible confusion, we will use the standard C-like notation
1With the exception of major type 7

19

for numbers throughout this text. Numerals starting in 0x are to be interpreted

as hexadecimal, those starting in 0b as binary. The terms ‘low-order bits’ and

‘high-order bits’ is used with their standard meaning, low-order bit being the

leftmost ones in the natural representation.

2.1.1.1 Diagnostic notation

Since CBOR data items represented by series of bytes are not easily read by

humans, the CBOR standard introduces a diagnostic notation to express the

data items. The notation follows the JSON convention, making it quite natural.

Several examples are presented in listing 2.1; full description of the notation is

available in the RFC [7, s. 6].

An indefinite array of numbers:
[_ 1, 2, 3]
A tagged string:
24("foo")
A map with an indefinite map as a key:
{{_}: "value" }

Listing 2.1: Diagnostic notation showcase

2.1.1.2 Encoding the major type

The first byte of a data item (the major type byte) consists of 3 low-order bits of

information specifying the major type according to their value. The remaining

5 high-order bits (called additional information) are used to either store the

item’s value, or to specify the magnitude of size of the item.

Decimal Hexadecimal Binary First 3 low-order bits
10 0xa 0b1010 0b101
255 0xff 0b1111 0b111
962 0x3c2 0b11_1100_0010 0b111

Table 2.1: Illustration of the numerical notation

To illustrate this concept, let us consider the data item with major type byte

0x9e. This is equivalent to 0b1001_1110. The 3 low-order bits are 100, therefore

the major type of this item is 4. The remaining five bits carry an additional

information value of 0x1e. We might also write the aforementioned byte as

20

0b100_11110 in order to more clearly separate the major type and the additional

information.

An overview of all the major data types along with examples follows. Note

that their numbers directly correspond with their respective major type headers.

2.1.1.3 Major type 0 - unsigned integers

Items of this type are used for unsigned integers in the range from 0 to 264 − 1.

Depending on the actual value, the 5-bit additional information has different

meanings as defined in the following table.

Value range Additional information Comments
[0, 23] 0x00 .. 0x17 Corresponding to the value

[24, 28 − 1] 0x18 uint_8t follows
[28, 216 − 1] 0x19 uint_16t follows
[216, 232 − 1] 0x1a uint_32t follows
[232, 264 − 1] 0x1b uint_64t follows

Table 2.2: Additional information values for Major type 0

Small unsigned integers are encoded in the additional 5 bits, which allows

very compact encoding of small numbers. This principle is used in the following

data types as well.

Another important property that should not go unnoticed is the fact that the

same logical value can be encoded in multiple ways. For instance, 42 can be cor-

rectly represented in four different ways: 0x18_2a, 0x19_002a, 0x1a_0000002a,

or 0x1b_00000000_0000002a. The implications of this property are discussed in

subsection 2.2.3.

Examples

02 # unsigned(2)

Listing 2.2: An embedded positive uint_8t

18 2a # unsigned(42)

Listing 2.3: A full-length positive uint_8t

21

19 0101 # unsigned(257)

Listing 2.4: A positive uint_16t

1a 00067932 # unsigned(424242)

Listing 2.5: A positive uint_32t

1b 0000007f4b73be72 # unsigned(546726723186)

Listing 2.6: A positive uint_64t

2.1.1.4 Major type 1 - negative integers

Items of this type are used for negative integers in the range from −264 to −1, in

much the same way as unsigned integers.

It is important to notice that these integers are strictly negative. Somewhat

counter-intuitively, CBOR does not have a ‘signed’ integral type. As this model

does not fit with the typical signed-unsigned approach, mapping these values to

the types of the host language might be challenging.

One should also observe that since a major type byte of a negative integer

lies within the [1 << 5, 1 << 5 + 27] range (equivalent to 0x20..0x3b), the major

type bytes between 0x1c and 0x1f inclusive remain unused. This is intended to

allow future extensions to the type [7, s. 5.1].

Value range Additional information Comments
[−1, −24] 0x00 .. 0x17 Corresponding to the value
[−25, −28] 0x18 uint_8t follows
[−28, −216] 0x19 uint_16t follows
[−216, −232] 0x1a uint_32t follows
[−232, −264] 0x1b uint_64t follows

Table 2.3: Additional information values for Major type 1

Examples

21 # negative(1)

Listing 2.7: An embedded negative uint_8t

22

38 29 # negative(41)

Listing 2.8: A full-length negative uint_8t

39 0100 # negative(256)

Listing 2.9: A negative uint_16t

3a 00067931 # negative(424241)

Listing 2.10: A negative uint_32t

3b 0000007f4b73be71 # negative(546726723185)

Listing 2.11: A negative uint_64t

2.1.1.5 Major type 2 - byte strings

Items of this type are used for storing sequences of zero or more bytes (octets).

This feature enables clients to include arbitrary binary data in CBOR items. The

data are not escaped or altered in any way.

There are two fundamental kinds of byte strings: definite and indefinite.

Whereas definite byte strings have a fixed length specified in their headers,

indefinite byte strings consist of zero or more definite byte strings – so called

chunks – followed by a break (a 0xff byte indicating end of an indefinite item).

Additional information is used in a manner similar to that of previous types,

with an extra value to denote the indefinite variant.

Additional information Meaning
0x0 .. 0x17 0 – 23 bytes (corresponding to the value) follow

0x18 uint_8t and correspondingly many bytes follow
0x19 uint_16t and correspondingly many bytes follow
0x1a uint_32t and correspondingly many bytes follow
0x1b uint_64t and correspondingly many bytes follow
0x1f indefinite byte string start

Table 2.4: Additional information values for Major type 2

23

Examples

40 # bytes(0)
""

Listing 2.12: An empty byte string

58 1b # bytes(27)
416e79206279746573202d206576656e206e756c6c733a2 [...]

Listing 2.13: A byte string with uint_8t length

59 0102 # bytes(258)
a25bb77465531b202fb3c938e0f4f7a95ec880364cad492 [...]

Listing 2.14: A byte string with uint_16t length

5f # bytes(*)
40 # bytes(0)

""
58 21 # bytes(33)

c8da6848fa6a2defe45bc1b6b0499571dbb6af7fc743 [...]
58 48 # bytes(72)

14bb167a22786723f48426daa9e235e171928b9508e9 [...]
ff # primitive(*)

Listing 2.15: An indefinite byte string with several chunks

2.1.1.6 Major type 3 - text strings

Items of this type are used for storing sequences of zero or more (well-formed)

characters (or more precisely, code points) of UTF-8 [63] encoded text.

As with byte strings, the characters are never escaped. For example the

newline character (\n, U+000A) is encoded as 0x0a, not as 0x5c6e (‘\n’), nor

as 0x5c7530303061 (‘\u000a’) [7, s. 2.1].

Text strings use the additional information in exactly the same way as byte

strings do.

It should be noted that the definition implies that splitting a multi-byte

character between two chunks of an indefinite text string is illegal, as the chunk

would not be a string of characters.

24

One should also notice that the specified length of a text string or its chunk

is given in bytes, not characters.

Additional information Meaning
0x0 .. 0x17 0 – 23 bytes (corresponding to the value) follow

0x18 uint_8t and correspondingly many bytes follow
0x19 uint_16t and correspondingly many bytes follow
0x1a uint_32t and correspondingly many bytes follow
0x1b uint_64t and correspondingly many bytes follow
0x1f indefinite byte string start

Table 2.5: Additional information values for Major type 3

Examples

60 # text(0)
""

Listing 2.16: An empty text string

6c # text(12)
48656c6c6f20776f726c6421 # "Hello world!"

Listing 2.17: A text string with embedded uint_8t length

79 01cd # text(461)
48656c6c6f20776f726c64212041206c6f74206d6f72652 [...]

Listing 2.18: A text string with uint_16t length

7f # text(*)
6c # text(12)

48656c6c6f20776f726c6421 # "Hello world!"
60 # text(0)

""
69 # text(9)

53747265616d696e67 # "Streaming"
ff # primitive(*)

Listing 2.19: An indefinite text string with several chunks

25

2.1.1.7 Major type 4 - arrays

Items of this type are used for storing sequences of zero or more (well-formed)

data items. Arrays’ length is encoded in much the same way as that of byte and

text strings.

Nesting multiple arrays arbitrarily is legal, regardless of whether they are

definite or indefinite. This creates possibly complex semantics, which are analyzed

in section 2.2.4.

Indefinite arrays are terminated by the break code, just like strings.

Additional information Meaning
0x0 .. 0x17 0 – 23 items (corresponding to the value) follow

0x18 uint_8t and correspondingly many items follow
0x19 uint_16t and correspondingly many items follow
0x1a uint_32t and correspondingly many items follow
0x1b uint_64t and correspondingly many items follow
0x1f indefinite array start

Table 2.6: Additional information values for Major type 4

Examples

80 # array(0)

Listing 2.20: An empty array

9f # array(*)
ff # primitive(*)

Listing 2.21: An empty indefinite array

84 # array(4)
01 # unsigned(1)
02 # unsigned(2)
03 # unsigned(3)
63 # text(3)

666f6f # "foo"

Listing 2.22: An array with several members

26

[1, [0, [_ [[]]]], 2]
83 # array(3)

01 # unsigned(1)
82 # array(2)

00 # unsigned(0)
9f # array(*)

81 # array(1)
80 # array(0)

ff # primitive(*)
02 # unsigned(2)

Listing 2.23: A deeply nested array

2.1.1.8 Major type 5 - maps

Items of this type are used for storing associative maps (hash maps, analogous

to JSON objects [12, s. 4]), consisting of keys and values. They are represented

by a series of zero or more pairs of items. Pairs have no explicit delimiter, nor

do their members. Length of maps is encoded using the same technique as for

arrays.

Maps can also be indefinite, with the break code at the end. What is more,

there is no limitation pertaining the keys and values. For example, indefinite keys

and indefinite values are legal. Implications of this design decision are discussed

in subsection 2.2.4.

Additional information Meaning
0x0 .. 0x17 0 – 23 pairs (corresponding to the value) follow

0x18 uint_8t and correspondingly many pairs follow
0x19 uint_16t and correspondingly many pairs follow
0x1a uint_32t and correspondingly many pairs follow
0x1b uint_64t and correspondingly many pairs follow
0x1f indefinite map start

Table 2.7: Additional information values for Major type 5

Examples

a0 # map(0)

Listing 2.24: An empty map

27

bf # map(*)
ff # primitive(*)

Listing 2.25: An empty indefinite map

{"foo": 42, "bar": []}
a2 # map(2)

63 # text(3)
666f6f # "foo"

18 2a # unsigned(42)
63 # text(3)

626172 # "bar"
80 # array(0)

Listing 2.26: A simple map with text keys

{{_"foo": [1,2]}: 42, {_}: []}
a2 # map(2)

bf # map(*)
63 # text(3)

666f6f # "foo"
82 # array(2)

01 # unsigned(1)
02 # unsigned(2)

ff # primitive(*)
18 2a # unsigned(42)
bf # map(*)

ff # primitive(*)
80 # array(0)

Listing 2.27: A map with indefinite map keys

2.1.1.9 Major type 6 - semantic tags

Items of this type are not data per se. Instead, they appear before other data

items and specify additional semantics or type conversions. The meaning of a

particular tag is specified by a central authority [11]. Depending on the nature

of a tag, it can apply to one or more types of data items.

For example, tag 1 specifies that the value of the immediately following item

should be interpreted a as an epoch time stamp [28, s. 4.15]; it can be applied to

both positive and negative integers, as well as to floats.

Tag application is right-associative. Tags A and B followed by a data item C

should be interpreted as A(B(C)). The only limit for tag usage is that defined by

the tag itself.

28

Additional information Meaning
0x0 .. 0x17 Tags 0 – 23

0x18 uint_8t specifying the value follows
0x19 uint_16t specifying the value follows
0x1a uint_32t specifying the value follows
0x1b uint_64t specifying the value follows

Table 2.8: Additional information values for Major type 6

Examples

0("1970-01-01T00:01Z")
c0 # tag(0)

71 # text(17)
313937302d30312d30315430303a30315a # "1970-0 [...]

Listing 2.28: A string tagged as a timestamp

24("8")
d8 18 # tag(24)

61 # text(1)
38 # "8"

Listing 2.29: A byte string tagged as a nested CBOR (with value 8)

129(54873(24("8")))
d8 81 # tag(129)

d9 d659 # tag(54873)
d8 18 # tag(24)

61 # text(1)
38 # "8"

Listing 2.30: Nested tags

546234566543(42)
db 0000007f2e1e078f # tag(546234566543)

18 2a # unsigned(42)

Listing 2.31: A uint64_t tag

2.1.1.10 Major type 7 - floating-point numbers and simple values

Finally, items of this type are used for storing floating-point numbers, as well as

several simple values and the break code.

29

The encoding defined by the IEEE 754 [32] standard is used for the numbers,

but only half-, single-, and double-precision floats are currently available. There

are no limitations regarding float normalization or denormals [26].

Simple values refer to true, false, null, and undefined value. As the

standard contains no information about mapping of these values to the types of

common programming languages, these values – especially undefined value –

require extra attention when used.

Additional information Meaning
0x0 .. 0x17 Simple value 0 – 23 (corresponding)

0x18 uint_8t specifying a simple value follows
0x19 half-precision float (16) follows
0x1a single-precision float (32b) follows
0x1b double-precision float (64b) follows
0x1f break code

Table 2.9: Additional information values for Major type 7

Examples

true
f5 # primitive(21)
false
f4 # primitive(20)
null
f6 # primitive(22)
undefined
f7 # primitive(23)

Listing 2.32: true, false, null, undefined

0.5
f9 3800 # primitive(14336)

Listing 2.33: A half-precision float

100000.0
fa 47c35000 # primitive(1203982336)

Listing 2.34: A single-precision float

30

3.141592653589793238462643383
fb 400921fb54442d18 # primitive(4614256656552045848)

Listing 2.35: A double-precision float

Infinity
f9 7c00 # primitive(31744)
NaN
f9 7e00 # primitive(32256)
-Infinity
f9 fc00 # primitive(64512)

Listing 2.36: Infinity, NaN, -Infinity

2.1.2 Functionality

In the strict sense, CBOR is a data serialization format, and therefore it does

not provide any ‘functionality’2 as such. There are, however, some major aspects

which could be considered ‘protocol features’, or perhaps even functionality by a

high-level client. These are streaming, lazy decoding, and custom semantics.

They are one of the major differentiators that set CBOR apart from similar

formats, and thus deserve a thorough discussion. These properties are contrasted

with the similar concepts found in other formats introduced in section 1.2.

Another reason to pay close attention to these concepts is the fact that a

significant part of complexity in generic encoders and decoders arise from them,

making them a major factor in overall performance (see section 5.1).

2.1.2.1 Streaming

The presence of indefinitely-sized data items goes hand in hand with the concept

of streaming. Arrays and strings are particularly well-suited for streaming oper-

ations, as they are often used to transport data of a stream nature, for example

lists (lazily evaluated, as opposed to fixed-length arrays) and IO streams.

This idea is commonly found in other similar formats, the most well-known

example being SAX [13] for XML. Similar approaches were adopted for streaming

JSON data. The existing implementations are somewhat fragmented, with no

single specification, whether format or conventional. Some implementors prefer
2As in ‘the range of operations one can perform using the system’

31

extending the format itself [57], whereas others choose to only allow concatenating

multiple top-level objects [61].

2.1.2.2 Lazy decoding

Unlike both text-based and binary delimiter-based formats, most common CBOR

structures have fixed length encoded in their headers. This enables one kind of

lazy decoding, where a part of input is skipped and may be decoded later, when

actually needed.

To illustrate this idea, consider the nested array

[1, 2, "abc<many more characters>", 3]

When decoding, only the header of the text string needs to be decoded. If

appropriate, the decoder may skip the string with a simple jump or seek, as the

number of bytes the string will occupy is known beforehand.

The other kind of lazy decoding uses byte strings that contain CBOR data

items. Given the nested array

[1, [2, 3]]

we can encode it either as is, resulting in or use a more sophisticated approach

82 # array(2)
01 # unsigned(1)
82 # array(2)

02 # unsigned(2)
03 # unsigned(3)

and encode

[2, 3]

fragment as a byte string, resulting in

82 # array(2)
02 # unsigned(2)
03 # unsigned(3)

32

We then apply the tag 24, which is used for encoded CBOR items, [7, s.

2.4.4.1] and include it in the top-level array, resulting in

82 # array(2)
01 # unsigned(1)
d8 18 # tag(24)

43 # bytes(3)
820203 # "\x82\x02\x03"

The decoder can then decide freely when to invest its computational resources

into decoding the inner array.

2.1.2.3 Custom semantics

Owing to the tagging system and byte string data type, arbitrary data formats

and conventions can be used and supported systematically in CBOR-based ap-

plications. This is a significant improvement over earlier formats, as it allows to

clearly and consistently separate schema validation from data validation. Hope-

fully, it will usher in the creation of more robust applications protocols.

Furthermore, as new tags and conventions become generally accepted, they

can be added to the official tag repository [11]. This should enable smooth

formalization of new conventions without the need for updating the protocol

or generic codecs.

2.2 Key properties of the CBOR format

2.2.1 The notions of validity and well-formedness

There is an important distinction to be made between well-formed and valid

CBOR data items. The standard defines a well-formed data item as

A data item that follows the syntactic structure of CBOR. A well-

formed data item uses the initial bytes and the byte strings and/or

data items that are implied by their values as defined in CBOR and

is not followed by extraneous data. [7, s. 1.2]

In order for a data item to be consider valid, it has to be well-formed and

“follow the semantic restrictions that apply to CBOR data items.” [7, s. 1.2]

33

One might think of these concepts as being equivalent to syntax and semantics.

To illustrate the difference between these two concepts, consider a hash map with

duplicate keys. Such an item is well-formed, but not valid [7, s. 2.1].

{"key": "first value", "key": "second_value"}
a1 # map(1)

63 # text(3)
6b6579 # "key"

6c # text(12)
7365636f6e645f76616c7565 # "second_value"

Listing 2.37: A well-formed, invalid map

This distinction fits in well with the model of a generic decoder that only

concerns itself with syntax. In streaming application, for instance, not only is it

impractical for the decoder to verify validity, it may in fact be outright impossible

for long enough streams.

Invalid Unicode encoding of a text string is another real-world example that

is worth mentioning. It presents us with an interesting corner-case, as the

distinction between well-formedness and validity is not clearly defined by the

standard in this case. The standard states that a text string data item consists

of UTF-8 encoded text, which implies that only valid UTF-8 strings are valid

CBOR data items [7, s. 2.1]. This in turn obliges the decoder to verify the

semantics of UTF-8 encoding. We can clearly see that this is not consistent

with the ‘syntax only’ understanding of well-formedness, and what is more, it

contradicts the instructions for error handling [7, s. 3.4].

64 # text(4)
74007374 # "t?st"

Listing 2.38: An invalid UTF-8 string

Even though this behavior pushes more complexity into the decoder and comes

at a performance cost, we put forward the view that it is necessary to verify text

string encoding in the decoder. The main reason for this claim is the fact that

many systems today still rely on NULL-terminated strings. The possibility of

introducing unexpected3 NULL bytes, especially from external sources, is a well-

known source of potential vulnerabilities [17][47].
3Valid UTF-8 encoded string do not contain NULL bytes.

34

2.2.2 Nested data items

CBOR arrays (2.1.1.7), hash maps (2.1.1.8), and tags (2.1.1.9) allow nesting of

arbitrary depth. Both streaming and standard codecs will most likely utilize

a stack mechanism to keep track of the data structure. This, together with

the fact that we cannot easily allocate memory beforehand, means that the

implementation will need to take precautions to prevent resource exhaustion

attacks by means of excessively nested structures.

Another aspect to consider is memory management and correctness. This is

outstandingly important in C, as the language provides no abstractions to work

with. Given the object-like structure of CBOR, a graph of ‘fake objects’ seems

to be a natural fit. In order to allow for correctly handling operations such as

‘append a map to an array’, a memory ownership and lifetime model will be

needed.

2.2.3 Hash map keys

Unlike all the other protocols that support hash maps, CBOR allows using

arbitrary data items as map keys [7, s. 3.7].

Another somewhat underspecified aspect of the format is the equality relation

between different representations of two (possibly) semantically equivalent data

items. For example, the same array can be represented as either fixed-length or

indefinite item:

[1, 2, 3]
83 # array(3)

01 # unsigned(1)
02 # unsigned(2)
03 # unsigned(3)

[_ 1, 2, 3]
9f # array(*)

01 # unsigned(1)
02 # unsigned(2)
03 # unsigned(3)
ff # primitive(*)

Listing 2.39: Definite and indefinite versions of the same array

Given these settings, we need to ask ourselves how to define equality of hash

35

map keys. This is a rather convoluted issue, as the equality relation may be

application specific. Moreover, it is very difficult to provide efficient associative

data structures for keys that lack canonical representation. An even more detailed

discussion of this issue can be found in subsection 3.3.2.

The cbor-ruby gem discussed in subsection 2.3.3 is a real-world example of

a decoder that hides and disregards whether decoded objects are definite or

indefinite.

As most real-world applications only use a restricted set of fairly uniform keys,

we came to the conclusion that a generic codec should not extend its scope to

include optimized associative data storage structures.

2.2.4 Indefinite data items

When dealing with items whose length is not known beforehand, we must carefully

consider how to handle memory allocation. Although effective memory allocation

strategies for buffers of unknown length exist (namely the technique of exponential

growth and shrinking), they are not looked upon favorably in network-facing code.

What is more, relatively frequent reallocations might not only be costly, but also

amplify fragmentation issues, as shown by Chang et al. [14, pp. 3].

One might consider either operating in a fixed, pre-allocated memory pool,

or use a more elaborate memory management strategy, perhaps one that can

incorporate application-specific hints to its decision strategy (see also Jula et al.

[37]).

Unfortunately, both of the possible approaches require careful planning and

are very much dependent on the knowledge of the specific application and op-

erational properties. For this reason, we propose using the classical approach.

When implemented carefully, it will provide an acceptable performance without

impeding the generality of the implementation. The option to use a custom

allocator might be a good way to allow for fine-tuning without introducing high

incidental complexity.

36

2.3 Existing implementations

As mentioned in section 1.3, there is no general-purpose C implementation avail-

able at the time of writing. There are, however, some simplified or niche-specific

implementations already available. As for Ruby libraries, a fairly mature fork of

the official MessagePack implementation adapted to work with CBOR has been

published by C. Bormann [9].

2.3.1 RIOT OS

An experimental C implementation can be found in the RIOT operating system

[51] (a lightweight OS for embedded computing). While it does support encoding

and decoding all the major types, it cannot be meaningfully integrated into any

application as it doesn’t provide any data model – all the decoded data are just

pretty-printed to the standard output.

Streaming support is completely omitted as well. Although the code appears

to be functional, it really is much more of a proof of concept rather than a full-

fledged implementation.

2.3.2 cn-cbor

cn-cbor is a very lightweight C implementation for constrained nodes [10]. The

author claims the compiled code size to be smaller than 1 KB.

The API covers most of the standard, excluding some specific functionality

like UTF-8 checking, and works with indefinite items, although not in a streaming

manner. The code itself is rather terse, as one would expect.

Memory management employs a simple hierarchical structure: container items

are responsible for deallocation of the items nested inside them. One should notice

that this is a simple instance of our approach described in subsection 3.3.3.

2.3.3 cbor-ruby

cbor-ruby [9] is a fairly mature and complete Ruby implementation that is based

on msgpack-ruby [24]. It claims to be ‘high-performance’, although no bench-

37

marks are available. This claim is based on the fact that the core is implement

in C rather than Ruby. On the one hand, the C backend is likely to boost

performance, but on the other hand, it renders the library incompatible with

platforms other than MRI and Rubinius, as it uses features specific to MRI4.

A major problem with cbor-ruby lies in the outdated API and its documenta-

tion – only basic features have been updated to use CBOR, other more advanced

features (such as streaming and evented socket handlers) remain dysfunctional.

The code, including the memory model, is tied to the internals of MRI. Native

memory management is interwoven with Ruby’s garbage collection. Memory

management is, therefore, performed through the Ruby runtime, which handles

the actual resources. The library only creates the appropriate GC marks.

2.4 Other related work

2.4.1 Noteworthy implementations of other formats

2.4.1.1 YAJL

YAJL [30] is a JSON parser with an interesting approach to memory representa-

tion: instead of building new data structures in the memory, YAJL is a purely

streaming parser. It only emits events, meaning it almost never allocates new

objects. Although it is not necessarily faster than traditional approaches [4], this

approach has a significant potential due to the fact that memory operations are

often the limiting factor in both encoding and decoding applications.

2.4.1.2 Jansson

Jansson [42] is a JSON library that is on the other end of the spectrum. Offering

a rich API and a complete memory representation and manipulation model for

documents, it is often touted as the easiest JSON library for C to use. Another

interesting property is its reference counting memory management. While it does

suffer from the problems commonly associated with reference counting, such as

the inability to detect circular references, it can be beneficial in two ways.
4Rubinius maintains MRI API compatibility

38

Firstly, it enables structural sharing of fragments. One can easily imagine

how this can be useful for reusing common pieces of data, e.g. headers, cached

objects, or metadata.

Secondly, it can be used to effortlessly establish a simple ownership model.

Functions can either increase, decrease, or not modify the reference counter.

Borrowing and ownership of input and output arguments is then easily determined

from functions interaction with the reference counter.

The approach used in the implementation presented in this thesis builds upon

this idea. A similar, albeit more sophisticated, model is introduced in section

3.3.3.

2.4.2 Generated parsers

A fairly popular approach to building implementations of new protocols and

data formats is to generate the actual decoder from its specification using a

combination of a lexer generator and a parser generator.

This approach has several advantages, most importantly it minimizes the

effort required, ensures the product will comply to the specification, and usually

delivers optimized parsers.

Unfortunately, there are no known tools that could generate lexers operating

at a granularity lower than one byte or octet. Boost.Spirit [35] probably comes

the closest, but it still doesn’t offer a way to handle constructs such as major

type byte embedded values.

2.5 Summary

Several CBOR features that will have a cogent impact on any generic imple-

mentation have been discussed. Most problems seem to center around memory

management and data manipulation.

Exploring the landscape, we have investigated the approaches, advantages,

and shortcomings of three existing CBOR implementations, as well as two innova-

tive JSON implementations. They are utilizing techniques such purely streaming

decoding and memory reference counting that might be useful for implementing

39

CBOR as well.

Finally, the possibility of using a parser generator or a similar technology has

been considered. Due to the tight binary coding of CBOR, such an approach is

not viable.

40

Chapter 3

Implementation

In this chapter, our C implementation of the CBOR format, libcbor , and its Ruby

derivative, libcbor-rb, are introduced. We present and justify the design decisions

through which the goals laid out in section 1.4 have been achieved.

The tools, methods, and design paradigms that were utilized during the

development of libcbor are also briefly mentioned.

Finally, we conclude the chapter with an overview of reliability and correctness

features and processes that were employed.

3.1 Design overview

As already stated in the introduction, the implementation consists of two main

parts:

• libcbor , the C library,

• libcbor-rb, the Ruby binding and extension for libcbor .

libcbor is completely oblivious of libcbor-rb in terms of API design. This

is intended to stipulate that a clear design will not be cluttered by any Ruby

specifics. Furthermore, it increases the potential of re-using libcbor in other

contexts as well. One can easily imagine use cases such as bindings similar to

libcbor-rb for other languages, incorporation into specific applications, or perhaps

even building custom implementations of CBOR-based protocols.

41

Figure 3.1: Possible layers of abstraction on which the client might interact with
CBOR. In this particular example, we show how ActiveModel::Serializers [1],
a library that abstracts different serialization formats, could possibly integrate
libcbor-rb. Since the Ruby on Rails [53] web framework relies on ActiveMod-
el::Serializers, the functionality will be propagated higher up the abstraction
hierarchy.

The aforementioned approach has many advantages. Structuring abstraction

in such a way is generally considered to be a ‘best practice’ [40, pp. 146]; besides,

there are three more tangible benefits to it for our implementation.

Firstly, the client can choose the optimal control and performance to

effort ratio according to his own needs. For example, a web developer wishing

to use CBOR in a WebSockets [29] application will be happy to use the highly

abstract interface. A message queue engineer, on the other hand, might want to

take the opportunity and configure libcbor with the parsing strategy and data

structures that will provide the required performance.

Secondly, it enables faster iteration and release cycle. While it is common

to update your dependencies (i.e. libcbor-rb) on a monthly basis in the Ruby

ecosystem, system libraries (i.e. libcbor) get updated in much longer cycles.

Decoupling the components will allow users to take advantage of new updates

42

in libcbor-rb without having to update libcbor .

Finally, having possibly many instances of CBOR-related software that all

rely on a single low-level library is the best-case scenario in terms of integration

and compatibility issues. It is quite common that different implementations of

standardized protocols slowly deviate from each other, ushering in incompatibil-

ities. The presence of one implementation that sets the standard is likely to

mitigate most of the problems.

Overall, the design philosophy follows five simple paradigms (roughly in order

of importance):

• Adhere to the standard

• Focus on robustness and security

• Prefer simplicity over unnecessary abstraction

• Handle failure predictably and gracefully

• Strive for high performance

Notwithstanding the effort that was put forward to achieve the goals while

following these principles, there were situations where we found some of them in

conflict. A detailed discussion of the features that were shown to be somewhat

problematic can be found in section 6.1.

3.2 Technology and supported platforms

Broadly speaking, there are only two technologies that libcbor and libcbor-rb

depend on by intentional choice. These are the C99 revision [34] of the C language,

and the FFI gem1[52]. The reasoning behind these choices is presented below.

For tools and other supporting software, please refer to section 3.5.

3.2.1 C99

We have chosen C99 instead of the older revisions because CBOR is an emerging

technology, therefore it is rather unlikely that users of legacy systems will seek
1A packaged Ruby library. See the glossary.

43

to utilize it. Having said that, we also take advantage of several new features

that cannot be found or emulated in the older version, e.g. the restrict spec-

ifier. C11, on the other hand, is still lacking support on many platforms and

while it does have several useful features (_Generic macros would be especially

convenient), these features do not justify the loss of compatibility.

The reason for not choosing C++, whose OO nature could simplify modeling

the object-like nature of CBOR items, is the fact that C is much more widely used

for FFI embedding, predominantly due to its much simpler calling convention.

We could provide a C interface for a C++ library, but we maintain that

this would be detrimental to the design quality across all the components. Due

to C++’s exception mechanism, overloading, and constructor mechanisms, wrap-

ping idiomatic C++ API into a C one is a daunting task. To worsen the situation

even further, C++ generics would be of no value as we would be forced to list

and implement all template instantiations explicitly. Finally, C is, compared to

C++, more commonly found on embedded platforms, which is yet another reason

to prefer plain C, as embedded devices might be a good niche for CBOR.

3.2.2 Ruby FFI

Ruby FFI is a useful tool that allows developers to create FFI integrations for

Ruby that will be independent of the concrete Ruby implementation. This is an

extremely valuable asset that even many popular Ruby gems sorely lack.

To illustrate this, consider JRuby [46], the popular JVM-based Ruby imple-

mentation. In order to attach a native extension, one would typically have to do

so through the JNI. The C code would then have to be specific to the JNI. Ruby

FFI provides a unified interface that abstracts this capability across virtually all

Ruby implementations.

3.3 libcbor

The C part is fairly simple in terms of conceptual complexity, as one would expect.

The incidental complexity, however, manifests itself in three major aspects.

First of these aspects is memory management. Dealing with nested data

44

items with dynamic size requires a substantial amount of attention by both the

implementors and the client. To alleviate this woe, a reference-counting ownership

schema has been implemented (see section 3.3.3).

The second problem arises from the need to robustly handle failure. Since C

lacks exceptions or a similar error-signaling mechanism, we had to resort to the

typical approach employing either return values or output parameters.

Finally, CBOR structures map poorly to the procedural constructs of C. We

use a combination of two well known techniques: opaque structures with functions

emulating dynamic dispatch where necessary, and multi-way branching based on

enumerations elsewhere.

3.3.1 Design overview

The library has three main layers, which are approximately divided by their level

of abstraction.

3.3.1.1 Internal – encoders and loaders

This layer consists of functions located in the src/cbor/internal directory and

provides primitive data operations. These include reading and writing atomic

data blocks as well as endianess transformations. This API layer is not intended

to be used by the clients. Header files that belong to this category are

• src/cbor/internal/loaders.h – provides function such as _cbor_load

_uint16 that read buffers and perform endianess conversion. They also

handle IEEE 754 half precision floats [32, s. 4.3] decoding, as C has no

standard facility to work with them.

• src/cbor/internal/encoders.c – provides functions such as _cbor_encode

_uint8 that write into buffers in a checked manner and also perform endi-

aness conversion. Many of them use compiler specific built-ins in order to

achieve higher performance, as shown in listing 3.1.

• src/cbor/internal/unicode.h – provides a fast UTF-8 validation routine

and a code point counting routine.

45

#ifdef HAVE_ENDIAN_H
*(uint16_t *) &buffer[1] = htobe16(value);

#else
#ifdef IS_BIG_ENDIAN

*(uint16_t *) &buffer[1] = value;
#else

buffer[1] = value >> 8;
buffer[2] = value;

#endif
#endif

Listing 3.1: Built-in endianess conversion routines (src/cbor/internal/
encoders.c).

3.3.1.2 Streaming API

The streaming API provides the ability to incrementally decode or encode data

in an event-driven manner.

When decoding, libcbor provides a stateless decoder that invokes a set of

callback functions as it progresses. These callbacks are free to handle the input

in any way they deem suitable, including ignoring it.

Since the parsing process does not involve memory allocation or complex

manipulation, this API level is a perfect fit for creating application specific high-

performance decoders that work with the client’s data structures.

The encoding API provides functions that operate upon buffers, encoding

simple values with the appropriate CBOR major type byte. Just like the decoding

API, they do not have any notion of state or non-local syntax; the client takes

the responsibility for ensuring the well-formedness of the resulting CBOR.

The streaming API is defined in the following header files:

• src/cbor/encoding.h – provides the aforementioned encoding functions,

such as cbor_encode_string_start

• src/cbor/callbacks.h – defines the data types for decoder interaction.

Listing 3.2 exemplifies the structure of the ‘callback bundle’.

• src/cbor/streaming.h – contains the streaming decoder itself

46

17 /** Callback prototype */
18 typedef void(*cbor_int8_callback)(void *, uint8_t);
19

20 /** Callback prototype */
21 typedef void(*cbor_int16_callback)(void *, uint16_t);

48 struct cbor_callbacks {
49 /** Unsigned int */
50 cbor_int8_callback uint8;
51 /** Unsigned int */
52 cbor_int16_callback uint16;

Listing 3.2: Two parts of the callback passing structure
(src/cbor/callbacks.h).

3.3.1.3 Data items API

This layer provides the highest level of abstraction and convenience, at the cost of

performance and flexibility. It encodes and decodes whole items that are stored

in the memory and provides some 200 routines to manipulate them.

The data items are reference-counted to alleviate the burden of manual mem-

ory management. The ownership model is described in more detail in subsection

3.3.3.

The key headers for this layer are:

• src/cbor.h – top level header, includes all the APIs

• src/cbor/serialization.h – data items serialization

• src/cbor/common.h – utilities, custom allocators support, and reference

counting manipulation

• Type specific routines in

– src/cbor/ints.h

– src/cbor/bytestrings.h

– src/cbor/strings.h

– src/cbor/arrays.h

– src/cbor/maps.h

– src/cbor/tags.h

47

– src/cbor/floats_ctrls.h

When decoding complete data items, libcbor performs syntactical and se-

mantic verification to ensure that the incoming data are well-formed and valid.

Parsing is implemented using a simple stack-based mechanism using the algorithm

described in listing 3.3.

3.3.2 Data structures

The lower two layers of the API do not use any noteworthy data structures

by conscious decision – they were designed to be as simple and transparent as

reasonably possible.

The data items API is centered around cbor_item_t (shown in listing 3.4).

This structure mimics the OO nature of CBOR data items, effectively acting as

a discriminated union with the discriminator type.

The metadata field is composed of metadata structures specific to each re-

spective major type. From this it follows that the interpretation of data depends

upon the type and the metadata.

We were faced with a considerable challenge when choosing the data structures

for the two non-trivial nested types: maps and arrays. As to arrays, the primary

premise is that clients will expect them to work as arrays, i.e. contiguous blocks

of memory. This leaves us with no other viable choice than to use an array-like

structure.

Our implementation attempts to maximize the performance by

• using a libstc++’s [41] std::vector-like preallocation strategy parametrized

with an optimal value (configurable during build) based on experimental

measurements,

• growing the array exponentially (likewise, the growth factor is configurable),

and

• giving the client the ability to provide his own allocator.

In spite of the acknowledged lack of sophistication, the measurements present-

ed in section 5.1 show that this approach, largely by virtue of careful implemen-

48

Data: List of primitive CBOR tokens L
Result: A well-formed CBOR item
initStack(S);
if empty(L) then

fail(’No data’)
while notEmpty(L) do

switch takeHead(L) do
case ARRAY, INDEFARRAY

push(S, new_array)
end
case MAP, INDEFMAP

push(S, new_map)
end
case INDEFSTRING

push(S, new_string)
end
case INDEFBSTRING

push(S, new_bstring)
end
case TAG

push(S, new_tag_head)
end
case BREAK

if indefinite_item(top(S)) then
append(pop(S))

else
fail(’Malformed item’)

end
end
otherwise

append() the item
end

endsw
end
if size(S) > 1 then

fail(’Not enough data’)
else

return pop(S)
end

Listing 3.3: CBOR parsing algorithm. The append routine is defined in listing
3.7

tation, can outperform seemingly more advanced ones. Moreover, the ability to

use the array with standard library functions such as qsort is a significant factor

in terms of practicality (illustrated in examples/sort.c).

In the case of maps, the issue is even more convoluted. Not only are the keys

49

135 };
136

137 /** Union of metadata across all possible types - discriminated in #cbor_item_t */
138 union cbor_item_metadata {
139 struct _cbor_int_metadata int_metadata;
140 struct _cbor_bytestring_metadata bytestring_metadata;
141 struct _cbor_string_metadata string_metadata;
142 struct _cbor_array_metadata array_metadata;
143 struct _cbor_map_metadata map_metadata;
144 struct _cbor_tag_metadata tag_metadata;
145 struct _cbor_float_ctrl_metadata float_ctrl_metadata;

Listing 3.4: The generic item handle (src/cbor/data.h).

potentially ambiguous, as described in subsection 2.2.3, but they may also be

extremely long.

While one could allow the client to define application specific key comparators

that could then be used in tree-based structures, a crucial thing to remember here

is the aforementioned unbounded length of keys for general-case input. Further-

more, any reasonable comparator would most likely have linear complexity in

term of the item’s serialized length. Consequently, any deterministic comparison-

based structure would have a propensity for pathological behavior for certain

inputs (i.e. traversal or lookup paths). This is a major security concern that

could potentially result in both denial-of-service and timing vulnerabilities.

Tries may, in theory, serve our purpose. The fact that we would have to

construct them byte-wise, however, renders them unusable. Memory overhead

of one pointer per byte is unacceptable by all standards, and we would have

to keep a working copy of the key regardless to keep e.g. arrays contiguous.

Even if implemented as a compressed trie, dealing with updates would still be

prohibitively expensive.

Finally, hashing is generally unsuitable due to its memory overhead and

the susceptibility to complexity-based attacks through pathological inputs, as

demonstrated by Crosby and Wallach [18].

Referring to the goals defined in section 1.4, we have decided to use a simple

array instead of introducing the complexity that would inevitably come with

a more elaborate solution. Based on the discussion above, there is no known

50

elegant and compact solution. Therefore, given these circumstances, simplicity

and separation of concerns take precedence.

In most applications, keys will be fairly simple, perhaps just simple text

strings. Users can implement their own data structure using the streaming API

with relatively little effort.

3.3.3 Ownership and reference counting

In order to correctly handle memory management in complex nested structures,

libcbor implements a reference counting scheme that ensures correct allocation

and deallocation, while also enabling structural sharing.

Every data item has a reference count stored in its handle (cbor_item_t).

This value corresponds to the total number of references to the item held across

the system. When the reference count reaches zero, the item is no longer accessible

and should be deallocated.

Those parts of the system that hold a reference to a value, be it in a variable

or an intermediate value, are said to own it. When an entity owns an item, it

can do so in either exclusive or shared manner.

An entity has an exclusive ownership of an item if and only if it holds one or

more references to the item and no other part of the system holds a reference to

the same item. In other words, no other part of the system can know that this

item exists. More specifically, when the reference count is one, any ownership

relation is an exclusive ownership relations.

Conversely, shared ownership is the state when two or more different entities

hold a reference to the same item.

We define the reference graph to be consistent at the given instant if and

only if the reference count of all items corresponds to the actual number of

references to each and every item in existence. Note that this does not imply

that the respective owners are somehow ‘aware’ of their ownership. We could

use a stronger definition requiring that every reference owner is aware of his

ownership. The weaker requirement is, however, sufficient for ensuring correct

memory management. If the reference graph is not consistent, we consider it to

be inconsistent.

51

libcbor functions can either create new references, borrow them, or take

ownership from the caller. Every function in libcbor is annotated with respect

to their reference behavior.

Functions returning new reference can be thought of as constructors in OO

environments. They take no data item on input, and return items with refcount

= 1. This reference belongs to the caller and is exclusive. The pointers created

by these functions are guaranteed to follow strict aliasing rules (as defined by the

C99 restrict specifier [54, s. 6.7.3.1]) over their valid lifetime.

Functions that borrow a reference take temporary ownership of the item

during their invocation. These are often functions that manipulate or transform

items. Caller’s reference ownership is transferred to them upon invocation and

they return it to the caller once they yield control. They do not change the

reference count.

Functions that take ownership become owners of the caller’s reference when

invoked. The caller gives up on the reference and acknowledges that it can no

longer operate upon the item unless it owns another, different reference. The

most notable example is cbor_decref, which should be called when exiting the

scope, as illustrated in listing 3.5.

A reference owner may also either borrow or transfer his ownership to a thread

or a similar execution unit. Furthermore, some function increase the reference

count of some of its arguments – this is essentially a combination of creating a

new reference and then passing it to a function that takes ownership.

1 FILE * f = fopen(argv[1], "rb");
2 if (f == NULL)
3 usage();
4 fseek(f, 0, SEEK_END);
5 size_t length = (size_t)ftell(f);
6 fseek(f, 0, SEEK_SET);
7 unsigned char * buffer = malloc(length);

Listing 3.5: Ownership and lifetime illustration. cbor_load returns a new
reference, therefore releasing the reference with cbor_decref is necessary
(examples/readfile.c).

52

This model is not only useful for correct memory management, but it also

gives us several straightforward properties for concurrent manipulation with data

items. First and foremost, exclusive ownership guarantees exclusive access, and

the owner is therefore free to use the data item. When items and references are

shared across threads or other concurrent execution units and the owner cannot

prove his exclusive ownership, the client has to take the responsibility for access

synchronization in his application.

In order to allow for the following two guarantees, library functions are exten-

sively annotated with the const specifier and mutation descriptions to distinguish

read-only routines from read-write ones, depending on whether they refrain

from modifying their arguments or not.

Serial correctness guarantee If the reference graph was consistent through-

out the entire execution in a non-concurrent environment, libcbor guarantees that

all the memory reads and writes issued by its functions will be correct and all the

items allocated through its constructors will be fully and correctly deallocated.

Concurrent correctness guarantee If the reference graph was consistent

throughout the entire execution in a concurrent environment and all read-write

functions were invoked upon items only by their respective exclusive owner,

libcbor guarantees that all the memory reads and writes issued by its functions

will be correct and all the items allocated through its constructors will be fully

and correctly deallocated.

Note that the aforementioned guarantees are implications. It is possible for

a program to enter an inconsistent state and still maintain correctness. This is

usually achieved through additional semantics of the client application.

3.4 libcbor-rb

The purpose of libcbor-rb, a Ruby bindings for libcbor , is to be as simple to

use as possible while still allowing clients to use all the features of CBOR. In

order to achieve this goal, simply providing a way to call the libcbor routines

from Ruby is not sufficient – the resulting API would not be convenient by any

53

means. Therefore, libcbor-rb is not merely a binding, it is more of a combination

of binding, wrapper, and a collection of utilities.

3.4.1 Design overview

Much like libcbor , libcbor-rb uses a layered architecture in order to present the

clients with a flexible mix of control and convenience. The layers, however, are

not build on top of each other. Instead, the two high-level layers both directly

use the libcbor binding. Figure 3.2 illustrates this idea and provides a comparison

to libcbor .

Figure 3.2: Illustration of the relation between libcbor and libcbor-rb in a Ruby
process.

3.4.1.1 Native wrapper

At the heart of libcbor-rb lies the lowest-level wrapper to the native library.

It provides very little to no abstraction; in simple terms, it allows calling C

routines from Ruby and vice versa. The complexity that is being dealt with in

54

this component is the complexity of managing such interactions.

This process involves creating a platform-independent description of the libcbor

API and the memory layout of its data structures. Upon execution, this blueprint

is used to create a concrete ABI-like layer through which the shared library is

attached to the Ruby interpreter.

36 def __libcbor_to_cbor
37 @@item ||= LibCBOR.cbor_new_definite_string
38 string = FFI::MemoryPointer.from_string(self)
39 out_bfr = FFI::MemoryPointer.new :pointer
40 out_bfr_len = FFI::MemoryPointer.new :size_t
41 LibCBOR.cbor_string_set_handle(@@item, string, bytes.length)
42 res_len = LibCBOR.cbor_serialize_alloc(@@item, out_bfr, out_bfr_len)
43 out_bfr.read_pointer.get_bytes(0, res_len).tap do
44 LibC.free(out_bfr.read_pointer)
45 end
46 end

Listing 3.6: Converting a Ruby string into its CBOR representation (lib/
libcbor/helpers.rb).

The second important aspect of interfacing with C code is memory manage-

ment. The FFI mechanism provides facilities to allocate both heap and stack

memory directly from Ruby and manage it through a handle object. It should

be noted that this memory is off limits for the Ruby runtime and whereas the

handle object will be collected by the GC, the lifetime process of such buffers

must be managed manually. Listing 3.6 illustrates the process of invoking a

libcbor function from Ruby.

Files belonging to this layer are found in the lib/libcbor/inner directory.

Apart from libcbor-rb files, the directory also contains the lib/libcbor/inner/

lib_c.rb utility module, which wraps C memory allocation functions for use in

Ruby.

3.4.1.2 Streaming API

This layer provides a simple API for incrementally encoding and decoding CBOR,

namely the CBOR::Streaming::BufferedDecoder and CBOR::Streaming::Encoder

classes, along with several utility classes.

Regardless of its simplicity, it is very easy to use, as shown in Appendix C.

55

3.4.1.3 Simple API

Unlike C, the standard library of Ruby provides suitable data structures for all the

data types, with the exception of tags. libcbor-rb therefore relies on the built-in

data structures for representation. Conversion between the libcbor representation

and the Ruby object graph is provided by the CBOR::CBORItem class.

Encoding is simple as well; users can even define their own mappings for user-

defined classes. We achieve this by dynamically extending the core classes with

a suitable collection of modules (horizontal re-use units of Ruby). Due to the

fact that this extension is performed after libcbor-rb has been loaded for the first

time, it can be customized so as to prevent name clashes and give the user more

flexibility.

3.4.2 Memory management

Where possible, libcbor-rb relies on handle objects representing native memory

objects. When the handle object is deallocated by the garbage collector, it either

frees the memory (in case it represents a buffer), or decreases the reference count

in the libcbor reference counting mechanism. This approach is in line with the

model described in subsection 3.3.3.

3.5 Tools, processes, and quality assurance

We have gone to great lengths to ensure that libcbor will be as practical and usable

as is realistically possible. This includes adhering to standard processes and

providing easy to use utilities for installation, management, and documentation.

The importance of reliability and robustness has already been stressed; this

section also describes the approach that has been taken to fulfill this goal.

3.5.1 Building, packaging, and installation

libcbor uses CMake, a widely used free build software [43] that can generate

build scripts for common back ends such as GNU make, Microsoft’s Visual C

tool chain, or OS X’s XCode tools. This, paired with the standard-compliant

56

C99 implementation, ensures effortless portability across all major platforms,

including ARM-based devices.

Users can either build the library themselves from the source (as described in

the documentation), or use pre-built rpm, deb, and plain tgz packages that are

provided with each release.

As to libcbor-rb, it is distributed through the central gem repository. The

package manager will resolve it together with its dependencies automatically.

Alternatively, one can build the gem from source locally. Both of these approaches

are documented in the user manual.

3.5.2 Versioning

Both libcbor and libcbor-rb follow the semantic versioning convention [49]. The

source code is managed using git, with a stable master branch and version tags.

This approach will ensure smooth cooperation with dependency managers and

effortless updates.

3.5.3 Correctness

Both libcbor and libcbor-rb are covered by extensive test suites. The git repository

is integrated with a CI service that runs all the checks automatically for every

commit across many possible configuration and build setups, ensuring that broken

versions are fixed in time. This checking also includes code coverage analysis,

which forms an important part of the test suite’s credibility.

In the case of libcbor , the test suite is roughly divided by the API function-

ality levels and comprises both unit and integration tests based on the CMocka

framework [56]. All parts of the library are tested by more than 1100 manually

written assertions with coverage nearing 99 %.

libcbor-rb is tested using an executable specification that provides not only

behavior verification, but a human readable description of the desired contract

as well. The test coverage is 100 %.

A fuzz test where many random sequences of bytes are repeatedly passed

to the decoder is also a part of the test suite. We require that the decoder

57

either succeeds or fails with a meaningful error while leaking no memory. This

measure is crucial to ensuring that both libcbor and libcbor-rb can be safely used

in network-facing code.

Yet another measure to provide the best possible quality is the use of static

analysis tools during the CI process, cppcheck in particular, to prevent common

mistakes and vulnerabilities.

3.5.4 Memory correctness verification

One of the most common pitfalls of developing in the C language is incorrect

memory management, ultimately resulting in crashes, undefined behavior, and

memory leaks. libcbor benefits greatly from its use of automated memory cor-

rectness checking. We use Valgrind [45], which, through dynamic instrumentation

of memory allocation and access, can detect most of the common mistakes.

During the CI process, the whole test suite is run with Valgrind instrumenta-

tion and the results are reported. This has enabled us to identify tens of potential

memory errors quickly.

3.6 Summary

Our implementations of the CBOR format, libcbor and libcbor-rb, have been

introduced. They rely on commonly used technologies, provide a well-structured

API design, and have a formalized notion of ownership that allows reliable re-

source management without hindering performance. An important finding is that

generic CBOR does not lend itself to usage with sophisticated data structures.

The key techniques that were used to ensure correctness and robustness have

been described as well.

58

Data: Parser stack S, item to append
if empty(S) then

if simple_value(item) then
push(S, item)

else
fail(’Malformed item’)

end
else

switch type(top(S)) do
case ARRAY

array_push(top(S), item);
if definite_and_complete(top(S)) then

append(pop(S))
end

end
case MAP

map_push(top(S), item);
if definite_and_complete(top(S)) then

append(pop(S))
end

end
case INDEFSTRING

if type(item) = STRING then
append_chunk(top(S), item)

else
fail(’Malformed item’)

end
end
case INDEFBSTRING

if type(item) = BSTRING then
append_chunk(top(S), item)

else
fail(’Malformed item’)

end
end
case TAG

tag_set_value(top(S), item);
append(pop(S))

end
otherwise

fail(’Malformed item’)
end

endsw
end

Listing 3.7: CBOR parsing algorithm: the append routine

59

Chapter 4

Using the implementation

In this chapter, we will briefly showcase how a client application might use

libcbor and libcbor-rb. Please note that the examples aim to provide a conceptual

overview rather than a comprehensive manual. Detailed reference and complete

API documentation can be found in the attachments section.

4.1 Using the C component

4.1.1 Data items API

Decoding serialized CBOR data is easy and straightforward, as seen in listing

4.1. The snippet showcases the core of a program that reads CBOR data from a

buffer and pretty-prints the result.

25 usage();
26 FILE * f = fopen(argv[1], "rb");
27 if (f == NULL)

Listing 4.1: Reading serialized CBOR (examples/readfile.c).

Likewise, building and serializing data items is just as simple (illustrated by

listing 4.2). Notice how cbor_move enables fluent manipulation with intermediate

values.

60

13 /* Preallocate the map structure */
14 cbor_item_t * root = cbor_new_definite_map(2);
15 /* Add the content */
16 cbor_map_add(root, (struct cbor_pair) {
17 .key = cbor_move(cbor_build_string("Is CBOR awesome?")),
18 .value = cbor_move(cbor_build_bool(true))
19 });
20 cbor_map_add(root, (struct cbor_pair) {
21 .key = cbor_move(cbor_build_uint8(42)),
22 .value = cbor_move(cbor_build_string("Is the answer"))
23 });
24 /* Output: ‘length‘ bytes of data in the ‘buffer‘ */
25 unsigned char * buffer;
26 size_t buffer_size,
27 length = cbor_serialize_alloc(root, &buffer, &buffer_size);

Listing 4.2: Creating and serializing CBOR data items
(examples/create_items.c).

4.1.2 Streaming API

The streaming API is quite easy to work with as well, although the resulting

code is usually more verbose. When decoding, one just has to specify the desired

callbacks and repeatedly invoke cbor_stream_decode as needed. This technique

is illustrated in listings C.2 and 4.4.

To encode data, the user can use methods such as cbor_encode_double that

take the value to encode along with a reference to the output buffer, writing

the correct headers and data to the buffer. One potential pitfall to be aware of

is the use of maps and arrays, especially indefinite ones, where it is the users

responsibility to correctly serialize the inner items and provide the break code.

Failing to do so may result in invalid CBOR data output.

4.2 Using the Ruby component

Setting up and using libcbor-rb is easy and intuitive. The lowest level interface is

available, but will not likely be of interest to users. The remaining two layers are,

especially contrasted to libcbor , more flexible and can be mixed-and-matched in

the same application as needed.

61

4.2.1 Traditional API

The user only needs to concern himself with two simple methods, CBOR.decode

for decoding (usage is illustrated in listing 4.3)

8 require ’lib/libcbor’
9 require ’pp’

10

11 ARGV.each { |_| PP.pp CBOR.decode(IO.read(_)) }

Listing 4.3: Loading files from the command line arguments and printing the
decoded Ruby structures (examples/load_file.rb).

4.2.2 Streaming API

The streaming API layer is very akin to that of libcbor , the only difference being

that it provides buffering and can interact directly with sockets and IO streams.

When decoding, the user attaches a set of callbacks to CBOR::Streaming::

BufferedDecoder. These will then be invoked when the matching item is read

from the input data.

One can also use cbor_stream_decode directly, supplying it with Ruby call-

backs. The FFI wrapper will then generate C stubs that will pass the data to the

actual Ruby procedures. In fact, CBOR::Streaming::BufferedDecoder is built

using this very mechanism.

The CBOR::Streaming::Encoder class provides functionality similar to the

streaming encoder of libcbor . The key difference is that one can also encode

complex CBOR structures. This layer is built on top of the libcbor encoders

and provides the same level of control. Listing C.1 exemplifies how to use the

streaming facilities for network programming.

4.3 Building custom encoders and decoders

We have discussed the reasons for choosing the layered architecture over other

alternatives in section 3.1. Indeed, building custom decoders is extremely simple.

One just has to provide a correct set of callback function and invoke the stateless

decoder (cbor_stream_decode) as needed. The default decoder is built using

62

the very same mechanism (shown in listing 4.4), which serves as evidence of how

clear-cut and transparent this design is.

67 if (source_size > result->read) { /* Check for overflows */
68 decode_result = cbor_stream_decode(
69 source + result->read,
70 source_size - result->read,
71 &callbacks,
72 &context);
73 } else {
74 result->error = (struct cbor_error) {
75 .code = CBOR_ERR_NOTENOUGHDATA,
76 .position = result->read
77 };
78 goto error;
79 }

Listing 4.4: cbor_load’s usage of cbor_stream_decode (src/cbor.c).

Implementing custom decoders based on libcbor or libcbor-rb is rather straight-

forward as well, but we put forward the view that this option will be useful only

in very rare cases. Most applications will only require streaming or special control

to some level, and will not be concerned with encoding their ‘atomic’ data items.

Finally, we should also mention the possibility of integrating libcbor-rb into

reactor-style event loops [55]. These constructs are rather common in Ruby

code that deals with networking, and libcbor-rb is a natural fit for providing

a quintessential event source and consumer. Bearing this in mind, libcbor is

designed to integrate well with popular abstractions, such as the widely used

EventMachine [15] library. We expect this to be a popular usage pattern; a

sample implementation is provided in libcbor-rb (see listing C.1).

4.3.1 Schema-based codecs

libcbor is suitable for implementing custom schema-based decoders, be they based

on CDDL [60], or any other mechanism. This can be achieved through a variety

of methods, the most common of which will probably be specializations of the

CBOR parsing algorithm (shown in listing 3.3).

The complexity associated with this approach, however, will rarely be justi-

fied. If an application requires a custom codec for messages whose structure is

63

defined beforehand, solutions design specifically for this approach (such as Google

Protocol Buffers [59]) will most likely be a better fit.

4.4 Existing applications

libcbor-rb follows idiomatic Ruby design principles and should therefore be very

friendly to users seeking to use it either as a replacement or alongside existing seri-

alization solutions, presumably predominantly JSON. In most cases, substituting

CBOR.load for JSON.load and #to_cbor for #to_json will suffice.

As to libcbor , the integration process will not be as effortless as with libcbor-rb,

but it will not be any more difficult than integrating other data serialization

libraries. The source codes of benchmarks presented in chapter 5 provide a side-

to-side comparison of programs that accomplish the same task using different

formats and implementations.

4.5 Linking to other languages

A significant advantage of the design approach described in section 3.1 is that

libcbor-rb equivalents for other high-level languages are just as easy to design and

implement as libcbor-rb.

The reference counting approach to memory management plays a significant

part in this process, as most target languages will be garbage collected. Regardless

of the GC approach, reference counting is easy to integrate with.

If an implementor of a libcbor binding wants to give up on the reference

counting approach and manage data items by the host language’s facilities, it

suffices to provide a fake free implementation and accordingly register the objects

with the host language.

4.6 Summary

We have shown how libcbor and libcbor-rb can be easily used and integrated in

several different ways. For custom decoders, streaming API is a convenient basis

64

to build upon and clients are expected to take advantage of it, whereas custom

encoders will likely be rather rare.

The possibility of codecs programmatically generated from schema definition

has been discussed; we have arrived at the conclusion that this approach is rarely

preferable and does not align with the properties of CBOR. Finally, we have

shown that libcbor is suitable for creating embeddings and bindings in other

environments.

65

Chapter 5

Evaluation

In this chapter, a series of experimental measurements that will help us to

evaluate various aspects of libcbor ’s and libcbor-rb’s performance and efficiency is

conducted. The performance is then analyzed and compared to several popular

alternatives.

The encoding efficiency of CBOR in comparison to that of other formats

mentioned in section 1.2 will also be investigated. This should provide us with

the data based on which CBOR’s suitability for different niches will be evaluated.

5.1 Performance

5.1.1 Measurement methods

The performance experiments were conducted by measuring the execution time

of the most common operations that should represent real-world use cases. We

have used six input data files which should represent complete a sample of all

practical inputs.

The timings were determined using the PAPI framework [62]. More specif-

ically, the PAPI_get_real_usec facility was used. On our test machine, this

mechanism affords sub-microsecond precision1.

The testing setup involved a common customer-grade computer with an Intel

Xeon E3-1230 CPU running Linux 3.13 in a standard configuration. Some of
1Determined using the papi_clockres utility. The resolution is hardware- and software-

dependent.

66

the memory intensive tests may also be sensitive to the memory bandwidth and

latency – the setup was equipped with 32 GB of DDR3 memory running at

1333 MHz. All the libraries were compiled from the latest stable source (specific

versions are noted in listing 5.1), following their authors’ instructions exactly.

The compiler used was GCC 4.8.2.

In some cases, especially when we discuss throughput, we present the results

as ‘normalized to’ some particular format. In such cases, the result was scaled

by the ratio of the data size in the reference format to the data size in the

normalized format. This allows us to give more relevant metrics since values

scaled in such a way represent comparable amount of useful information. Not

taking this precaution would skew the comparison in favor of formats with less

efficient encoding.

One should keep in mind that many of the comparisons we are about to

present are not completely consistent or significant due to the fact that the

implementations we compare differ in terms of functionality and design trade-offs.

We put forward the view that the comparisons, accompanied by explanation of

these differences, remains valuable regardless.

All the measurements are based on a statistically significant number of samples

and include a warm-up round to eliminate the possible effects of lazy symbol

resolution in shared libraries.

We have also excluded XML from these comparisons, as its real-world use

cases do not align with those of other formats and the mapping between differ-

ent data constructs such as arrays and booleans is largely a matter of specific

implementation decision, hence any synthetic benchmarking would be largely

irrelevant. For JSON, we use the minimal equivalent input (i.e. one without any

unnecessary whitespace).

UBJSON is not included either, as there are hardly any resources available

to work with. At the time of writing, there is no documented C library publicly

available, nor are sample data or conversion tools. This fact is rather regrettable

since UBJSON is, just like CBOR, a new format that is likely to see some

development.

67

• libbson 1.1.5

• libcbor 0.3.1

• Jansson 2.6

• msgpack-c 1.1.0

• Yajl 2.1.0

Listing 5.1: Versions of the benchmarked implementations

5.1.2 Testing inputs

A range of input covering the whole range of available constructs is used. Please

refer to appendix A for samples and a more detailed description.

• citylots, 181 MB: Real city planning department information; array of

nested map with text, integers, decimals and booleans. Represents bal-

anced, mixed inputs.

• numbers, 4.4 MB: A matrix of integers. Represents number-heavy inputs.

• cards, 43 MB: Collectors’ card game information. Combination of maps

and strings between 3 and 270 characters.

• glossary, 552 B: A simple map ‘object’ with string keys. Typical for web

applications data exchange.

• instruments, 216 KB: A software instrumentation log. Nested map with

numerical values. Common for web applications and configuration files.

• blobs, 65 MB: An array with many binary objects.

5.1.3 Decoding to memory

This benchmark measures the time it takes to decode a document from a memory

buffer into a representation that can be used for manipulation. As mentioned

in the introduction, these measurements are not directly comparable as the

flexibility and complexity of the memory representations vary significantly.

For example, libbson uses a flat representation, where decoding is performed

just by loading the data into a new buffer and performing several basic validations.

68

676

2295

1541

4908

429

0

1000

2000

3000

4000

5000

Jansson libbson − BSON libbson − JSON libcbor msgpack−c

Format implementation

T
im

e
 t
o
 d

e
c
o
d
e
 i
n
to

 m
e
m

o
ry

 [
m

s
]

Figure 5.1: Parsing times for the citylots data file. Notice the difference
between BSON and BSON/JSON. The whiskers denote the standard deviations
of the measurements.

libcbor and Jansson, on the other hand, use a complex and flexible memory layout

where each sub-item can be deallocated, replaced, and generally manipulated with

independently, which inevitably comes at a performance cost.

Likewise, msgpack-c uses a memory pool mechanism and performs decoding

with very few additional allocations beyond the initial one. This approach results

in significantly higher encoding and decoding performance at the cost of flexibility

and data manipulation performance.

This fact is nicely illustrated by figure 5.1, where we can see how MsgPack

and libbson are both considerably faster than libcbor and Jansson because of their

contiguous storage approach. Interestingly, the BSON/JSON test where we load

JSON using the libbson library shows how libbson’s performance is optimized only

for the aforementioned simple loading case.

When dealing with data serialization, it is often more convenient to express the

performance in terms of data throughput. Figure 5.2 offers a relevant comparison

69

3
6

3
2

1
7 3

3

3
1

1
2
8

2
3
1

5
7

1
5
9 1
8
2

1
9
1

6
8 7
2

1
2
5

6
5 8

3 1
0
1

4
4

8
1 8
5

6
8
3

3
6
4 3
7
9

4
4
3

3
0
2

0

200

400

600

Jansson libbson − BSON libbson − JSON libcbor msgpack−c

Implementation

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

Input cards citylots glossary instruments numbers

Figure 5.2: Decoding throughput by format and implementation. Normalized to
minified JSON.

in terms of actual information value.

We can observe several interesting phenomena. Firstly, MsgPack’s optimiza-

tion allows it to decode at rates well over 200 MB/s, significantly faster than all

the other implementations, which upholds the general perception of msgpack-c

as the leading solution in terms of speed. These results suggests that a more

detailed survey of the techniques used in msgpack-c’s implementation might be

worthwhile.

Secondly, we see that the decoding performance can differ significantly based

on the input data for msgpack-c and libbson. libcbor and Jansson, on the other

hand, deliver a consistent performance regardless of the input.

Finally, we can observe that libcbor consistently outperforms Jansson by a

factor of two or more despite the fact that they use largely similar memory

representation and that Jansson is much more mature. This is likely to be a

combination of the properties of CBOR and the quality of the implementations.

70

libcbor is also surprisingly fast in comparison to libbson’s JSON mode (with the

exception of the string-heavy inputs), which hints at libbson not being optimized

for anything but the ‘flat memory load’ approach described in the introduction.

5.1.4 Encoding

This benchmark measures the time it takes to encode a document from the mem-

ory representation to the serialized equivalent. As with the previous benchmark,

libcbor can be compared directly to Jansson and libbson is directly comparable to

msgpack-c; comparisons between members of the two pairs are only illustrative.

Once again, this is due to the different flexibility-performance trade-offs in their

memory representation design.

Figure 5.3 captures several important findings. Unsurprisingly, libbson is by

far the fastest due to the fact that its memory representation is identical to the

encoded data representation, hence ‘encoding’ is performed as a simple copying

of heap memory blocks. This characteristic arises from its role in the MongoDB

database, which is, in many ways, write-oriented.

Contrarily, MsgPack’s performance does not meet the expectations set by the

previous benchmark and is left behind by libcbor across all the inputs. The same

goes for libbson’s JSON mode and Jansson, which were outperformed by up to

two orders of magnitude.

This leads us to believe that the encoding performance of all the implemen-

tation except for libbson and libcbor is secondary to their decoding performance.

From the practical point of view, however, encoding throughput in the order of

hundreds of megabytes per second is likely to be sufficient for the vast majority

of applications, particularly networking ones.

5.1.5 Manipulation

Both Jansson and libcbor provide the user with data manipulation routines. In

this benchmark, we measure the time it takes to build a fairly big array with

booleans, strings, and numbers. The array is then traversed and the values are

updated.

71

9
5

2
7

3
9

7
2

4
7

1
2
4

5
4
3
2

6
2
9
4

1
3
5
5

1
8
9
7
7

9
1
1
8

7
9
6
5

3
0

2
6

1
2

2
6 3

2

4
8

1
8
1
8

5
8
3

2
2
2

4
1
7

5
0
4

7
2
4
0

6
5
8

4
4
8

1
0
3

3
7
3

4
0
9

6
6
6
5

8

128

2048

32768

Jansson libbson − BSON libbson − JSON libcbor msgpack−c

Implementation

T
h
ro

u
g
h
p
u
t
[M

B
/s

],
 l
o
g

2

s
c
a
le

Input blob cards citylots glossary instruments numbers

Figure 5.3: Encoding throughput by format and implementation. Normalized to
minified JSON. Notice the logarithmic scale.

Figure 5.1.6 shows that libcbor and Jansson are closely tied, with Jansson

being about 5 % faster. This is likely down to the simplicity of JSON (only one

integer width, no distinctions between definite and indefinite items) and Jansson’s

maturity.

2266

2146

cbor

jansson

0 500 1000 1500 2000 2500

Time taken [µs]

L
ib

ra
ry

Figure 5.4: Manipulation benchmark.

72

5.1.6 Event emitting

This test is focused on the speed of emitting parser events. As this technique is

only supported by libcbor and msgpack-c, Yajl, the de facto standard for parsing

JSON in a streaming manner, will also be included in this benchmark in order to

provide a standard for reference.

Figure 5.5 shows how libcbor outperforms both msgpack-c and Yajl, achieving

761 MB/s geometric mean throughput, compared to 433 MB/s delivered by

msgpack-c and 233 MB/s achieved by Yajl.

Another observation is that the event emitting performance varies between

different inputs even more significantly than the encoding and decoding per-

formance. The outstandingly low performance of msgpack-c for the glossary

input shows the cost of its sophisticated approach that manifests itself through a

significant initialization overhead.

CBOR, on the other hand, performs rather well on the glossary input, which

is in line with one of its intended use cases in web applications.

Finally, Yajl is consistently slower than both libcbor and msgpack-c, leading

us to the conclusion that both MsgPack and CBOR are more suitable for high-

volume streaming applications not only due to their encoding efficiency, but also

because of the superior decoding performance.

5.2 Encoding efficiency

In this section, the encoding efficiency of the formats whose implementations were

benchmarked in section 5.1 is examined. We use the same set of inputs as well,

since they accurately represent the actual and anticipated use cases.

The first result to notice in figure 5.6 is the efficiency (or lack of thereof) of

BSON. Overall, it is the least efficient format of the four. The liberal encoding

strategy for numbers and simple values contributes to the relatively high perfor-

mance demonstrated in section 5.1, but it also renders it even less efficient than

JSON.

As with the encoding strategy, this property stems from its original purpose of

a database serialization format. While it does still offer a binary data type that

73

1
3
9
4

7
1
5

6
3
0

5
0
4

6
6
7

8
4
9

6
5
5

4
8

4
3
8

4
2
0

3
5
5

2
1
8

1
9
8

1
9
6

1
7
3

0

500

1000

1500

cbor msgpack yajl

Implementation

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

Input cards citylots glossary instruments numbers

Figure 5.5: Event emitting throughput by format and implementation. Normal-
ized to minified JSON.

can be used to embed resources and therefore save multiple network requests,

BSON’s inefficiency prevents it from being considered a relevant alternative to

the other formats, at least in domains involving data transmission.

JSON, on the other hand, compares surprisingly well to the binary alterna-

tives. While it produces files between 13 % to 48 % larger compared to the

CBOR/MsgPack tandem, its string encoding is almost as efficient as that of

CBOR, resulting in solid performance on string-heavy inputs. It falls short on

inputs containing long numbers and special values, as expected.

The final conclusion to be drawn from these data is that CBOR and MsgPack

are very closely tied in terms of encoding efficiency. The largest difference

measured is 5.8 % in favor of MsgPack for the citylots input, whereas CBOR

performs better for both numbers and cards.

74

0.0e+00

2.5e+07

5.0e+07

7.5e+07

BSON CBOR JSON MsgPack

blob

S
iz

e
 [

B
]

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

BSON CBOR JSON MsgPack

cards

S
iz

e
 [

B
]

0.0e+00

5.0e+07

1.0e+08

1.5e+08

BSON CBOR JSON MsgPack

citylots

S
iz

e
 [

B
]

0

100

200

300

400

BSON CBOR JSON MsgPack

glossary
S

iz
e

 [
B

]

0

30000

60000

90000

BSON CBOR JSON MsgPack

instruments

S
iz

e
 [

B
]

0e+00

1e+06

2e+06

3e+06

BSON CBOR JSON MsgPack

numbers

S
iz

e
 [

B
]

Figure 5.6: Sizes of the testing data serialized in different formats.

5.3 Memory usage

Figure 5.7 represents the heap profiles of three iterations of the decoding bench-

mark from subsection 5.1.3 taken using Valgrind’s massif [45] tool and the

citylots input. By instrumenting the allocation mechanism and sampling the

heap at regular intervals, it provides a graph of memory allocated over time

including information about which functions the allocations originated from.

One can observe that the libraries have fairly dissimilar memory profiles,

as well as the total memory usage. Unsurprisingly, libbson allocates the least

memory, while libcbor and Jansson top the chart due to the high overhead of

their approach.

We can also see how libbson allocates all the memory in advance when it starts

75

(a) libbson (b) libcbor

(c) Jansson (d) msgpack-c

Figure 5.7: Memory usage profiles for loading of the citylots input. Please refer
to appendix B for the full-scale version.

the decoding process, whereas the remaining libraries allocate space gradually as

needed. This is another reason why libbson tops the chart.

5.4 Complexity

A final part of the evaluation will be a brief survey of the complexity of the

aforementioned libraries. It is important for several reasons, ranging from the

effort required for maintaining the code base to the expected size of the compiled

binary, which still remains a concern for embedded devices and the Internet of

things.

Since measures of software complexity are a fairly convoluted topic that lies

outside the scope of this text, only two simple, universally understood measures

are used, namely LoC count (excluding tests and configuration files) and the size

of the resulting shared library without any debugging symbols.

libbson libcbor Jansson msgpack-c Yajl
.so size (KB) 177 64 45 163 35
LoC 10649 3363 4012 32534 2429

Table 5.1: Size and complexity facts

76

Based on table 5.1, we can see that libbson and msgpack-c have significantly

larger code bases compared to the remaining libraries. This complexity is also

reflected in their shared object size, which could be a disadvantage in somewhat

memory restricted environments. Yajl lies at the other hand of the spectrum,

with just 2.5K lines of code.

One reason for the relatively large size ofmsgpack-c’s code base is the extensive

use of templates and their specializations. This technique can eliminate many

virtually resolved calls, and plays a significant role in the high performance

achieved in the benchmarks in section 5.1.

The combination of these characteristics predetermine msgpack-c towards

usage in high-volume applications where throughput is critical, as opposed to

mobile computing and restricted nodes. The key thing to keep in mind, however,

is that this pertains only to the particular implementation, not to the protocol

itself.

5.5 Summary

This chapter presented an evaluation of libcbor in terms of performance and

complexity, as well as a comparison of JSON, BSON, CBOR, and MsgPack in

terms of encoding efficiency.

Despite the fluctuations depending on the input data and the nature of bench-

mark, the data show that libcbor is consistently faster than two highly regarded

and commonly used JSON implementations, regardless of the fact that it com-

bines both of their specialized approaches. msgpack-c excels in decoding data to

memory, but is left behind by libcbor in event driven decoding. What is more,

its performance comes at the cost of a very high complexity.

The efficiency comparison has shown that BSON is by far the least efficient

of the four. JSON, on the other hand, comes surprisingly close to CBOR and

MsgPack, especially for string-heavy inputs. CBOR and MsgPack provide an

almost identical encoding efficiency.

77

Chapter 6

Discussion

This chapter provides a discussion of the findings from chapter 5. We recapitulate

the key challenges that our implementation was faced with and critically reflect

on the CBOR standard design from the standpoint of practical implementation.

Furthermore, several improvements to remedy the most pressing issues are

proposed. Some of them are compatible with the existing standard, others would

require breaking changes in the specification.

The appropriate use cases for CBOR are discussed; this list is of an illustrative

nature since CBOR is very flexible and can be used in many unexpected ways.

Finally, the alternative approaches to implementing CBOR are discussed in

terms of their expected performance, use cases, and general viability.

6.1 CBOR semantics

There are seven main areas where, based on the previous chapters, CBOR either

does not meet its original design objectives or forces implementors to resort to

excessively complex approaches. This section will describe these areas, whereas

section 6.2 lists the proposed solutions.

78

6.1.1 Unclear distinction between well-formedness and va-

lidity

As discussed in subsection 2.2.1, the distinction between well-formedness and

validity remains unspecified for text strings.

6.1.2 Too complex map keys

The arbitrarily complex structure of map keys is problematic for both the decoder

and the memory representation, as shown in subsection 2.2.3, hence it directly

violates the second design goal stated in the RFC [7, s. 1.1].

6.1.3 No signed numeral type

Although the lack of signed types (see subsection 2.1.1.4) contributes to the

efficiency of encoding, it maps extremely poorly to fixed-width integers in C

and many other languages. The logical value of n − 1 is utterly counter-intuitive

and is likely to be a source of programming errors.

6.1.4 Combination of null and undefined value

As with the previous point, these constructs map poorly to the constructs of

the vast majority of programming languages and will likely create unnecessary

confusion.

6.1.5 Lack of no-op-like construct

A rather useful feature of UBJSON (introduced in 1.2.7.5) is the no-op, an

auxiliary data items that is used to prevent network timeouts in protocols such as

HTTP. The lack of this feature in CBOR renders all the sophisticated streaming

features significantly less valuable.

79

6.1.6 Unspecified relationship between definite and indef-

inite items

Whether or not definite and indefinite maps and arrays with the same inner

value are equivalent is crucial for designing high-level implementations that should

arguably provide functionality such as equality comparison. It would also be

useful for implementing more efficient hash map data structures (see subsection

2.2.3).

6.1.7 Implementation complexity

The standard requires that “the code for an encoder or decoder must be able to

be compact” [7, s. 1.1]. This can only be the case for simple implementations

that do not need to concern themselves with memory representation or robust

error handling. With the two requirements present, the complexity of CBOR

implementations surpasses that of JSON implementations due to the richer set

of available constructs and a roughly similar complexity in other areas.

6.2 Proposed improvements

6.2.1 Unclear distinction between well-formedness and va-

lidity

Simply clarifying all the corner cases in the next revision of the standard should

remedy this deficiency. More specifically, as argued in subsection 2.2.1, the

validity UTF-8 text strings should be dealt with on the well-formedness level.

6.2.2 Too complex map keys

Only very few applications will take advantage of the possibilities arising from

this feature. Restricting map keys to definite length strings and integers would

likely cover most real-world use cases while significantly reducing the complexity

of generic implementations.

80

6.2.3 No signed numeral type

This point cannot be argued for by means of objective evidence, but we put for-

ward the view that replacing negative integers (2.1.1.4) with plain signed integers

would greatly simplify type mapping in virtually all application environments,

whereas the drop in efficiency caused by the value range overlap between signed

and unsigned numerals would likely be, for most practical payloads, marginal to

insignificant.

6.2.4 Combination of null and undefined value

Dropping one of the values from the protocol would suffice.

6.2.5 Lack of no-op-like construct

A no-op with the same semantics as the one found in UBJSON should be intro-

duced as one of the simple values. Since there are unassigned one byte simple

values still available, this can be done in a backwards-compatible manner in one

of the future revisions.

6.2.6 Unspecified relationship between definite and indef-

inite items

The protocol specification should include a normative recommendation on this

issue. From the application point of view, definite and indefinite items are most

likely equivalent, hence generic codecs should, at least by default, handle them

in the corresponding manner.

6.2.7 Implementation complexity

The protocol specification should address error handling in more detail. More

specifically, defining several levels of error handling would allow very simple

approaches for constrained nodes while allowing for consistent error detection

and handling in a more complicated setting.

81

Alternatively, this could be integrated into the CDDL [60] proposal for uni-

versal schemata definition. The question of whether or not it is appropriate to

handle these errors at a higher level of abstraction is outside the scope of this

text; it should be noted that even a CDDL-based approach will require a certain

level of cooperation on the codecs side.

6.3 Appropriate use cases

Since CBOR is a relatively recent technology that has not yet had much public

exposure, exploring potential use cases is a worthwhile undertaking, as already

argued in section 1.3. Based on the findings from the previous chapters, CBOR

is suitable for a variety of applications, although the cost of introducing it into

existing applications might not always be justified.

6.3.1 Web applications

CBOR is certainly a viable alternative to JSON, although the efficiency gain

(shown to be between between 13 % and 48 % in section 5.2) is unlikely to be the

key factor. The ability to embed binary resources and thus save multiple requests,

especially in situations where new requests require establishing a new connection,

is presumably of greater value in terms of overall efficiency and performance.

Due to their dependence on a number of variables and application specifics, these

benefits are hard to quantify or measure.

Usage with the WebSockets API appears to be very feasible, especially for

multimedia-heavy applications that can take advantage of binary embedding. It

should be noted, however, that such applications would most likely rely on WS

API for streaming, hence the streaming functionality of CBOR will likely remain

unused in this context.

6.3.2 REST-style APIs

The extensible semantics and tagging system could work well with REST-like

[21] APIs, where version negotiation and specific semantics often come into play,

but a generic, schema-free format is still preferred. The feasibility of this usage

82

will largely depend on the popularity and completeness of the tag repository (as

discussed in subsection 2.1.2.3).

6.3.3 Internet of things

CBOR is suitable for communication between low-powered devices due to its

relatively compact encoding. Suitability for embedded devices was one of the

original design goals of CBOR. In spite of the reservations and criticisms outlined

in section 6.1, the measurements suggest that it has been met, at least to some

extent.

6.3.4 Piggybacking on other protocols

One unexpected application of CBOR that has already been reported by a libcbor

user is piggybacking on other protocols and transport mechanisms. The afore-

mentioned application uses CBOR to pack data payloads into the ZeroMQ [31]

messaging queue messages. The fact that CBOR is schema-less enables zero-

downtime upgrades of producers and consumers in the messaging system. Despite

being quite surprising, this usage is perfectly reasonable and demonstrates that

CBOR can be used in many other contexts we had not consider.

6.3.5 Creating new protocols

The possibility of building custom CBOR-based protocols is discussed in the

standard [7, s. 3], and indeed, the observations made throughout the previous

chapters support this vision. libcbor can feasibly be used as a basis for such

protocols, especially the streaming API layer.

6.4 Alternative implementation designs

Chapter 5 explains, among other things, how the different approaches to imple-

menting CBOR and similar protocols affect properties such as performance, com-

plexity, or memory consumption. Although libcbor compares to the alternatives

83

fairly favorably, there might be situations where a different CBOR implementa-

tion would be more suitable.

6.4.1 Flat memory representation

libbson’s approach described in subsection 5.1.3 could work just as well for CBOR.

This strategy is suitable when data items will not be modified, or at least not

frequently. The expected encoding and decoding performance is likely to surpass

that of libcbor , at the cost of flexibility. This approach is likely to be of a lower

complexity than that of libcbor .

6.4.2 Flat memory representation with parse trees

A more sophisticated version of the previous technique is to use a hybrid approach

where the data structure is not subdivided into atomic items and is represented

in a flat manner and a (contiguously stored) parse tree is stored alongside with

it, enabling fast queries and meta data extraction (e.g. array members count,

aggregated depth of structure).

It is suitable for read-oriented applications with the need for more advanced

manipulation; modifying data items remains expensive. The encoding and decod-

ing performance is expected to trounce libcbor ; the complexity of implementation

will likely be higher due to the need for a sophisticated parse tree construction

approach that will be required so as to allow it to use just one memory block.

6.4.3 Purely event-driven parser

Some lightweight applications may, for example, only extract particular values (as

shown in example C.2), or perhaps just read the data for monitoring or similar

purpose. If that is the case, a stateless decoder (e.g. libcbor ’s streaming API

layer) will likely suffice. Both speed and complexity will likely be very favorable,

as shown in subsection 5.1.6.

84

6.4.4 Advanced memory control

The final alternative is inspired by msgpack-c, which uses a sophisticated lazy

parsing strategy with memory management based on memory pools (zones in

figure 6.1), preallocation, and reference counting. The substantial complexity

and sophistication can enable impressive performance, especially when decoding

(see 5.1), but is not necessarily superior for all usage patterns.

Figure 6.1: Diagram of msgpack-c’s memory management mechanism. Adapted
from the official website [16].

Manipulation with data items still comes at a nontrivial cost, but offers

significantly better performance than all of the previous alternatives. This im-

plementation design is likely to be suitable for complex, extensively optimized

applications dealing with high volumes of data.

6.5 Summary

The problematic aspects of CBOR and the proposed solutions were discussed.

Several of them would require changing the existing standard in one way or

85

another. In spite of these problems, CBOR meets most of its design objectives

and has good prospects to become one of the commonly used formats alongside

JSON and MsgPack.

As we list the viable niches, it becomes apparent that despite the declared

difference in goals [7, Appendix E], CBOR’s and MsgPack’s domains have a sig-

nificant overlap. Although libcbor already has several known users, the adoption

trend remains largely unpredictable for the near future.

Finally, alternative approaches to implementing generic CBOR codecs and

decoders were discussed and compared in terms of their expected performance,

design, and complexity properties. The approaches predominantly derive from

techniques found in existing implementations of other protocols, and will likely

be beneficial in specific contexts.

86

Chapter 7

Conclusions and future work

This chapter will discuss the extent to which the goals laid out in section 1.4 have

been met. Several possible directions for future work and development will be

mentioned as well.

7.1 C implementation

In spite of the challenges described in chapter 3, we have addressed and met all

the goals and objectives. libcbor is fully standard compliant, the layered API is

easy to use and offers both convenience and tight control, and the implementation

is extraordinarily well tested and robust.

The goals also required that the performance would match that of popular

JSON implementations. libcbor has exceeded the expectations in all the areas,

including encoding, decoding, manipulation, and streaming decoding. Based on

measurements from section 5.1, libcbor outperforms Yajl, Jansson, and libbson’s

JSON mode in nearly all the tests, sometimes by up to two orders of magnitude.

In many cases, libcbor ’s performance even matches or surpasses that ofmsgpack-c,

which is a significant achievement and a testimonial to the quality of libcbor ’s

design, considering msgpack-c’s maturity and extensive optimizations.

Overall, libcbor is a production quality implementation that offers a solid

foundation for working and experimenting with CBOR. Its performance is suf-

ficient for almost any domain; nevertheless, there is potential for improvement

and optimization. If required, matching the performance profile of msgpack-c is

87

certainly possible by applying the same techniques.

Perhaps due to factors such as practical design and development practices,

extensive documentation, the informative web site (http://libcbor.org), and

the permissive open source licensing, libcbor has been receiving the attention of

the community from its earliest days and already has self-reporting users. We

are therefore faced with an obligation to maintain and improve libcbor for the

months and years to come.

The aforementioned improvements could be in several areas: performance,

tutorials and more high-level documentation, and the packaging and distribution

process. While libcbor already adheres to a high standard in all of these fields,

there is definitely room for improvement. One major effort that is underway is

the inclusion of libcbor in the standard package repository of Ubuntu and OS X’s

homebrew packaging systems.

7.2 Ruby implementation

libcbor-rb has fulfilled the goals as well. The libcbor binding is elegant and concise,

whereas the rich selection of Ruby additions allow it to integrate effortlessly with

most existing Ruby code, rendering it remarkably easy to use.

Just like libcbor , libcbor-rb presents its users with a high standard of software

engineering in all key areas. The descriptive executable specification makes it

extremely easy to modify and improve with confidence, which is an important

trait for a quickly developing software.

Unsurprisingly, libcbor-rb already has a handful of users as well. Nevertheless,

the possible improvements for libcbor outlined in the previous section apply to it

just as much, with the addition of more work on integration with common web-

related technologies. Such integration should enable even smoother adoption for

users wishing to evaluate CBOR for use in their applications.

88

http://libcbor.org

7.3 Evaluation

All the measurements and experiments outlined in the introduction were con-

ducted and analyzed. The value of these measurements has been somewhat

undermined by the fact that many of the alternatives were found to be mutually

incomparable, or at least not directly comparable.

Based on the evaluation, we have concluded that CBOR is closely tied to

MsgPack in most areas. Although their design goals differ, MsgPack and CBOR

are likely to provide almost identical performance, efficiency, and feature set in

many domains. This leads us to believe that more detailed analyses of CBOR

designed with respect to particular niches should be conducted.

Considering all the aforementioned arguments, the future adoption of CBOR

remains largely unpredictable. Although a number of CBOR’s properties, use

cases, and potential deficiencies have been investigated, the conclusions might

differ depending on the viewpoint. Chapter 5 has concluded that, while a viable

alternative to JSON or MsgPack, CBOR’s unique combination of features does

not give it a significant competitive edge over these formats in their respective

domains. Instead, it might have a bigger impact in emerging fields such as the

Internet of things, with the reservations pointed out in section 6.1.

In summary, the evaluation has provided the first comprehensive inquiry into

the mechanics and characteristics of the CBOR protocol, arriving at surprising

and relevant findings in areas such as performance, efficiency, or the semantics

and features. The conclusions will be of value to anyone who is either considering

using CBOR, looking to compare different data serialization formats, or creating

a new, similar protocol.

89

Bibliography

[1] ActiveModel::Serializers. url: https://github.com/rails-api/active_
model_serializers (visited on 04/25/2015).

[2] Gavin Andersen. Bitcoin JSON-RPC documentation. url: https://en.
bitcoin.it/wiki/Proper_Money_Handling_(JSON- RPC) (visited on
04/11/2015).

[3] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: the definitive
guide. O’Reilly Media, Inc., 2010. isbn: 8184049471.

[4] Chad Austin. JSON Parser Benchmarking. url: http://chadaustin.me/
2013/01/json-parser-benchmarking/ (visited on 04/22/2015).

[5] Kyle Banker. MongoDB in action. Manning Publications Co., 2011. isbn:
1935182870.

[6] Mike Belshe and Roberto Peon. SPDY protocol. IETF Network Working
Group, 2012.

[7] C. Bormann and P. Hoffman. Concise Binary Object Representation (CBOR).
RFC 7049 (Proposed Standard). Internet Engineering Task Force, Oct.
2013. url: http://www.ietf.org/rfc/rfc7049.txt.

[8] Carsten Bormann. CBOR official webpage. url: http://cbor.io/impls.
html (visited on 04/18/2015).

[9] Carsten Bormann. cbor-ruby. url: https://github.com/cabo/cbor-
ruby (visited on 04/22/2015).

[10] Carsten Bormann. cn-cbor: A constrained node implementation of CBOR
in C. url: https://github.com/cabo/cn-cbor (visited on 04/22/2015).

[11] Carsten Bormann et al. Concise Binary Object Representation (CBOR)
Tags. 2013. url: http://www.iana.org/assignments/cbor-tags/cbor-
tags.xhtml.

[12] T. Bray. The JavaScript Object Notation (JSON) Data Interchange For-
mat. RFC 7159 (Proposed Standard). Internet Engineering Task Force,
Mar. 2014. url: http://www.ietf.org/rfc/rfc7159.txt.

[13] D. Brownell. SAX2. O’Reilly Series. O’Reilly, 2002. isbn: 9780596002374.
url: http://books.google.cz/books?id=WrZQAAAAMAAJ.

[14] J Morris Chang, Yusuf Hasan, and Woo H Lee. “A high-performance mem-
ory allocator for memory intensive applications”. In: High Performance
Computing in the Asia-Pacific Region, 2000. Proceedings. The Fourth In-
ternational Conference/Exhibition on. Vol. 1. IEEE. 2000, pp. 6–12.

90

https://github.com/rails-api/active_model_serializers
https://github.com/rails-api/active_model_serializers
https://en.bitcoin.it/wiki/Proper_Money_Handling_(JSON-RPC)
https://en.bitcoin.it/wiki/Proper_Money_Handling_(JSON-RPC)
http://chadaustin.me/2013/01/json-parser-benchmarking/
http://chadaustin.me/2013/01/json-parser-benchmarking/
http://www.ietf.org/rfc/rfc7049.txt
http://cbor.io/impls.html
http://cbor.io/impls.html
https://github.com/cabo/cbor-ruby
https://github.com/cabo/cbor-ruby
https://github.com/cabo/cn-cbor
http://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml
http://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml
http://www.ietf.org/rfc/rfc7159.txt
http://books.google.cz/books?id=WrZQAAAAMAAJ

[15] Francis Cianfrocca. EventMachine. url: https://github.com/eventmachine/
eventmachine (visited on 04/25/2015).

[16] msgpack-c contributors. msgpack-c implementation website. url: https:
//github.com/msgpack/msgpack-c (visited on 04/25/2015).

[17] Crispin Cowan et al. “Buffer overflows: Attacks and defenses for the vul-
nerability of the decade”. In: DARPA Information Survivability Confer-
ence and Exposition, 2000. DISCEX’00. Proceedings. Vol. 2. IEEE. 2000,
pp. 119–129.

[18] Scott A Crosby and Dan S Wallach. “Denial of Service via Algorithmic
Complexity Attacks.” In: Usenix Security. Vol. 2. 2003.

[19] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rig-
orous and Practical Approach, Revised. Course Technology, 1998. isbn:
0534954251.

[20] Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specification. W3C Rec-
ommendation. http://www.w3.org/TR/2001/REC-SVG-20010904. W3C,
Sept. 2001.

[21] Roy Fielding. “Representational state transfer”. In: Architectural Styles
and the Design of Netowork-based Software Architecture (2000), pp. 76–85.

[22] Sadayuki Furuhashi. MessagePack specification. 2014. url: https : / /
github . com / msgpack / msgpack / blob / master / spec . md (visited on
03/19/2015).

[23] Sadayuki Furuhashi.MsgPack official website. url: http://msgpack.org/
(visited on 04/18/2015).

[24] Sadayuki Furuhashi. msgpack-ruby: MessagePack implementation for Ru-
by. url: https : / / github . com / msgpack / msgpack - ruby (visited on
04/22/2015).

[25] Sadayuki Furuhashi. Streaming Serialization/Deserialization with MessagePack.
url: https : / / msgpack . wordpress . com / 2010 / 05 / 18 / streaming -
serializationdeserialization-with-messagepack/ (visited on 04/18/2015).

[26] David Goldberg. “What every computer scientist should know about floating-
point arithmetic”. In: ACM Computing Surveys (CSUR) 23.1 (1991), pp. 5–
48.

[27] JSON-RPC Working Group. Json-rpc 2.0 specification. 2012.
[28] The Open Group. The Open Group Base Specifications. 2013. url: http:

//pubs.opengroup.org/onlinepubs/9699919799/.
[29] Ian Hickson. The WebSocket API. Candidate Recommendation. W3C, Sept.

2012. url: http://www.w3.org/TR/2012/CR-websockets-20120920/.
[30] Lloyd Hilaiel. YAJL. url: https://github.com/lloyd/yajl (visited on

04/22/2015).
[31] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Me-

dia, Inc., 2013. isbn: 1449334067.

91

https://github.com/eventmachine/eventmachine
https://github.com/eventmachine/eventmachine
https://github.com/msgpack/msgpack-c
https://github.com/msgpack/msgpack-c
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md
http://msgpack.org/
https://github.com/msgpack/msgpack-ruby
https://msgpack.wordpress.com/2010/05/18/streaming-serializationdeserialization-with-messagepack/
https://msgpack.wordpress.com/2010/05/18/streaming-serializationdeserialization-with-messagepack/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.w3.org/TR/2012/CR-websockets-20120920/
https://github.com/lloyd/yajl

[32] IEEE Standard for Floating-Point Arithmetic. Tech. rep. 3 Park Avenue,
New York, NY 10016-5997, USA: Microprocessor Standards Committee of
the IEEE Computer Society, Aug. 29, 2008, pp. 1–70. url: http://dx.
doi.org/10.1109/ieeestd.2008.4610935.

[33] International Organization for Standardization. ISO 8879:1986: Informa-
tion processing — Text and office systems — Standard Generalized Markup
Language (SGML). Geneva, Switzerland: International Organization for
Standardization, Aug. 17, 1986, p. 155. url: http://www.iso.ch/cate/
d16387.html.

[34] ISO. ISO C Standard 1999. Tech. rep. ISO/IEC 9899:1999 draft. 1999. url:
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf.

[35] Hartmut Kaiser Joel de Guzman. Boost.Spirit. url: http://www.boost.
org/doc/libs/1_48_0/libs/spirit/doc/html/index.html (visited on
04/22/2015).

[36] JSON official homepage. url: http://www.json.org/ (visited on 04/11/2015).
[37] Alin Jula and Lawrence Rauchwerger. “Two memory allocators that use

hints to improve locality”. In: Proceedings of the 2009 international sym-
posium on Memory management. ACM. 2009, pp. 109–118.

[38] Takuki Kamiya and John Schneider. Efficient XML Interchange (EXI)
Format 1.0. W3C Recommendation. http://www.w3.org/TR/2011/REC-
exi-20110310/. W3C, Mar. 2011.

[39] Ben Klemens. 21st Century C: C Tips from the New School. O’Reilly
Media, 2012. isbn: 1449327141.

[40] Charles WKrueger. “Software reuse”. In:ACM Computing Surveys (CSUR)
24.2 (1992), pp. 131–183.

[41] Chris Lattner. “LLVM and Clang: Next generation compiler technology”.
In: The BSD Conference. 2008, pp. 1–2.

[42] Petri Lehtinen. Jansson. url: http://www.digip.org/jansson/ (visited
on 04/22/2015).

[43] Ken Martin and Bill Hoffman. Mastering CMake. Kitware, 2010. isbn:
1930934319.

[44] MongoDB team. BSON specification. url: http://bsonspec.org/ (visit-
ed on 04/18/2015).

[45] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavy-
weight dynamic binary instrumentation”. In: ACM Sigplan notices. Vol. 42.
6. ACM. 2007, pp. 89–100.

[46] Charles Nutter. JRuby Ruby implementation. url: http://jruby.org/
(visited on 04/25/2015).

[47] Aleph One. “Smashing the stack for fun and profit”. In: Phrack magazine
7.49 (1996), pp. 14–16.

[48] J Paoli et al. “ECMA-376 office open XML file formats”. In:URL http://www.
ecmainternational. org/publications/standards/Ecma-376. htm (2006).

92

http://dx.doi.org/10.1109/ieeestd.2008.4610935
http://dx.doi.org/10.1109/ieeestd.2008.4610935
http://www.iso.ch/cate/d16387.html
http://www.iso.ch/cate/d16387.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.boost.org/doc/libs/1_48_0/libs/spirit/doc/html/index.html
http://www.boost.org/doc/libs/1_48_0/libs/spirit/doc/html/index.html
http://www.json.org/
http://www.digip.org/jansson/
http://bsonspec.org/
http://jruby.org/

[49] Tom Preston-Werner. Semantic Versioning 2.0.0. url: http://semver.
org/ (visited on 04/25/2015).

[50] RethinkDB. url: http://rethinkdb.com/ (visited on 04/11/2015).
[51] RIOT OS Team. RIOT OS. url: http://www.riot-os.org/ (visited on

04/22/2015).
[52] Ruby FFI team. Ruby FFI. url: https://github.com/ffi/ffi (visited

on 04/25/2015).
[53] Ruby on Rails web framework. url: http://rubyonrails.org/ (visited

on 04/25/2015).
[54] SC22/WG14. ISO/IEC 9899: 2011. url: http://www.iso.org/iso/iso_

catalogue/catalogue_%20tc/catalogue_detail.htm.
[55] Douglas C Schmidt. Reactor: An object behavioral pattern for concurrent

event demultiplexing and dispatching. 1995.
[56] Andreas Schneider. CMocka testing tool. url: https : / / cmocka . org/

(visited on 04/25/2015).
[57] Yonik Seeley. Noggit JSON streaming parser. url: http://yonik.com/

noggit-json-parser/ (visited on 03/24/2015).
[BZ] The Buzz Media, LLC. Universal Binary JSON Specification. url: http:

//ubjson.org/ (visited on 04/18/2015).
[58] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby: The

Pragmatic Programmers’ Guide, Second Edition. Pragmatic Bookshelf, 2004.
isbn: 0974514055.

[59] Kenton Varda. Protocol buffers: Google’s data interchange format. 2008.
[60] Christoph Vigano, Henk Birkholz, and Ruinan Sun. CBOR data defini-

tion language: a notational convention to express CBOR data structures.
Internet-Draft. IETF Secretariat, Mar. 2015. url: http://www.ietf.org/
internet-drafts/draft-greevenbosch-appsawg-cbor-cddl-05.txt.

[61] Ian Ward. Documentation for the JSON Lines text file format. url: http:
//jsonlines.org/ (visited on 03/24/2015).

[62] Vincent MWeaver et al. “PAPI 5: Measuring power, energy, and the cloud”.
In: Performance Analysis of Systems and Software (ISPASS), 2013 IEEE
International Symposium on. IEEE. 2013, pp. 124–125.

[63] F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629
(INTERNET STANDARD). Internet Engineering Task Force, Nov. 2003.
url: http://www.ietf.org/rfc/rfc3629.txt.

[64] Qu Zhan and Li Chan. “Application of JSON in Ajax data exchange”.
In: Journal of Xi’an Shiyou University (Natural Science Edition) (2011),
p. 024.

93

http://semver.org/
http://semver.org/
http://rethinkdb.com/
http://www.riot-os.org/
https://github.com/ffi/ffi
http://rubyonrails.org/
http://www.iso.org/iso/iso_catalogue/catalogue_%20tc/catalogue_detail.htm
http://www.iso.org/iso/iso_catalogue/catalogue_%20tc/catalogue_detail.htm
https://cmocka.org/
http://yonik.com/noggit-json-parser/
http://yonik.com/noggit-json-parser/
http://ubjson.org/
http://ubjson.org/
http://www.ietf.org/internet-drafts/draft-greevenbosch-appsawg-cbor-cddl-05.txt
http://www.ietf.org/internet-drafts/draft-greevenbosch-appsawg-cbor-cddl-05.txt
http://jsonlines.org/
http://jsonlines.org/
http://www.ietf.org/rfc/rfc3629.txt

List of Tables

1.1 Feature comparison matrix . 15

2.1 Illustration of the numerical notation 20
2.2 Additional information values for Major type 0 21
2.3 Additional information values for Major type 1 22
2.4 Additional information values for Major type 2 23
2.5 Additional information values for Major type 3 25
2.6 Additional information values for Major type 4 26
2.7 Additional information values for Major type 5 27
2.8 Additional information values for Major type 6 29
2.9 Additional information values for Major type 7 30

5.1 Size and complexity facts . 76

94

List of listings

1.1 A typical REST API response from the Gravatar service which
provides users’ profile images based on their emails. Most clients
will make a second request to fetch the image from thumbnailUrl.
Embedding the thumbnail content directly could save the unnec-
essary connection. 16

2.1 Diagnostic notation showcase . 20
2.2 An embedded positive uint_8t 21
2.3 A full-length positive uint_8t . 21
2.4 A positive uint_16t . 22
2.5 A positive uint_32t . 22
2.6 A positive uint_64t . 22
2.7 An embedded negative uint_8t 22
2.8 A full-length negative uint_8t . 23
2.9 A negative uint_16t . 23
2.10 A negative uint_32t . 23
2.11 A negative uint_64t . 23
2.12 An empty byte string . 24
2.13 A byte string with uint_8t length 24
2.14 A byte string with uint_16t length 24
2.15 An indefinite byte string with several chunks 24
2.16 An empty text string . 25
2.17 A text string with embedded uint_8t length 25
2.18 A text string with uint_16t length 25
2.19 An indefinite text string with several chunks 25
2.20 An empty array . 26
2.21 An empty indefinite array . 26
2.22 An array with several members 26
2.23 A deeply nested array . 27
2.24 An empty map . 27
2.25 An empty indefinite map . 28
2.26 A simple map with text keys . 28
2.27 A map with indefinite map keys 28
2.28 A string tagged as a timestamp 29
2.29 A byte string tagged as a nested CBOR (with value 8) 29
2.30 Nested tags . 29
2.31 A uint64_t tag . 29
2.32 true, false, null, undefined 30
2.33 A half-precision float . 30
2.34 A single-precision float . 30

95

2.35 A double-precision float . 31
2.36 Infinity, NaN, -Infinity . 31
2.37 A well-formed, invalid map . 34
2.38 An invalid UTF-8 string . 34
2.39 Definite and indefinite versions of the same array 35
3.1 Built-in endianess conversion routines (src/cbor/internal/encoders.c). 46
3.2 Two parts of the callback passing structure (src/cbor/callbacks.h). 47
3.3 CBOR parsing algorithm. The append routine is defined in listing

3.7 . 49
3.4 The generic item handle (src/cbor/data.h). 50
3.5 Ownership and lifetime illustration. cbor_load returns a new

reference, therefore releasing the reference with cbor_decref is
necessary (examples/readfile.c). 52

3.6 Converting a Ruby string into its CBOR representation (lib/
libcbor/helpers.rb). 55

3.7 CBOR parsing algorithm: the append routine 59
4.1 Reading serialized CBOR (examples/readfile.c). 60
4.2 Creating and serializing CBOR data items (examples/create_items.c). 61
4.3 Loading files from the command line arguments and printing the

decoded Ruby structures (examples/load_file.rb). 62
4.4 cbor_load’s usage of cbor_stream_decode (src/cbor.c). 63
5.1 Versions of the benchmarked implementations 68
C.1 Using the streaming API in conjunction with network communication111
C.2 Using the streaming decoder to find just one value. No memory is

allocated in the process. 112

96

List of Figures

3.1 Possible layers of abstraction on which the client might interact
with CBOR. In this particular example, we show how Active-
Model::Serializers [1], a library that abstracts different serialization
formats, could possibly integrate libcbor-rb. Since the Ruby on
Rails [53] web framework relies on ActiveModel::Serializers, the
functionality will be propagated higher up the abstraction hierarchy. 42

3.2 Illustration of the relation between libcbor and libcbor-rb in a Ruby
process. 54

5.1 Parsing times for the citylots data file. Notice the difference be-
tween BSON and BSON/JSON. The whiskers denote the standard
deviations of the measurements. 69

5.2 Decoding throughput by format and implementation. Normalized
to minified JSON. 70

5.3 Encoding throughput by format and implementation. Normalized
to minified JSON. Notice the logarithmic scale. 72

5.4 Manipulation benchmark. 72
5.5 Event emitting throughput by format and implementation. Nor-

malized to minified JSON. 74
5.6 Sizes of the testing data serialized in different formats. 75
5.7 Memory usage profiles for loading of the citylots input. Please

refer to appendix B for the full-scale version. 76

6.1 Diagram ofmsgpack-c’s memory management mechanism. Adapted
from the official website [16]. 85

B.1 libbson . 106
B.2 libcbor . 107
B.3 Jansson . 108
B.4 msgpack-c . 109

97

Glossary

ABI Application Binary Interface. 55

CI Continous integration. 57, 58

codec a software that can both encode and decode data. 8, 12, 82

FFI Foreign Function Interface. 18, 44, 62

GC Garbage collection. 64

gem is a commonly used term for a packaged Ruby library or component. 36,
43, 57

JNI a native FFI interface of the JVM. 44

LoC Line(s) of code. 76

major type fundamental data type of CBOR. 19

major type byte the leading byte of a CBOR item containing the 3 bit major
type description. 19, 20, 46

OO object oriented. 44, 48, 52

PAPI Performance Application Programming Interface. 66

REST Representational State Transfer, a design paradigm for building HTTP-
based applications. 16, 82, 95

98

Attachments

Attached to this printout you will find a CD containing the following attachments:

• The text of this thesis

• Source code of libcbor , including the following resources

– Detailed build and installation instructions

– Test suite

– Examples

• Source code of libcbor-rb, including the following resources

– Detailed build and installation instructions

– Executable specification

– Examples

– A brief tutorial

• API documentation for libcbor

• API documentation for libcbor-rb

• User documentation for libcbor

• Source code of benchmarks, including sample data

• A copy of the RFC 7049 specification

99

Appendices

100

Appendix A

Benchmark data showcase and

description

A.1 citylots

Size 181 MB

Content type Array of nested map with text, integers, decimals and booleans.

Representative use case Balanced, mixed inputs. Larger documents, con-
figuration files, object graph dumps.

Source City of San Francisco government data (https://data.sfgov.org/
Geographic-Locations-and-Boundaries/City-Lots-Zipped-Shapefile-Format-
/3vyz-qy9p?)

"features": [
{

"geometry": {
"coordinates": [

[
[-122.42200352825247, 37.80848009696725, 0],
[-122.42207601332528, 37.808835019815085, 0]

]
],

},
"properties": {

"BLKLOT": "0001001",
...

101

https://data.sfgov.org/Geographic-Locations-and-Boundaries/City-Lots-Zipped-Shapefile-Format-/3vyz-qy9p?
https://data.sfgov.org/Geographic-Locations-and-Boundaries/City-Lots-Zipped-Shapefile-Format-/3vyz-qy9p?
https://data.sfgov.org/Geographic-Locations-and-Boundaries/City-Lots-Zipped-Shapefile-Format-/3vyz-qy9p?

A.2 numbers

Size 4.4 MB

Content type A matrix of integers.

Representative use case Numbers-heavy inputs, graphics, 3D models, sta-
tistical data.

Source Generated.

[
[

37355,
35787,
37505,

...

A.3 cards

Size 43 MB

Content type Combination of maps and strings between 3 and 270 characters.

Representative use case Strings-heavy web applications, user input serial-
ization.

Source MTG JSON (http://mtgjson.com/)

"cards": [
{

"artist": "Rebecca Guay",
"colors": [

"Green"
],
"foreignNames": [

{
"language": "Chinese Traditional",
"name": "\u8c50\u8863\u8db3\u98df"

...

102

http://mtgjson.com/

A.4 glossary

Size 552 B

Content type A simple map ‘object’ with string keys.

Representative use case Web and interactive applications server communi-
cation. Messaging, lightweight synchronization.

Source The JSON specification (http://json.org/)

"ID": "SGML",
...

"GlossDef": {
"para": "A meta-markup language, ...",
"GlossSeeAlso": ["GML", "XML"]

},
"GlossSee": "markup"

}

A.5 instruments

Size 216 KB

Content type Map with many simple values and small integers.

Representative use case Configuration files, machine generated data, database
dumps, web applications, UI state.

Source Chad Austin’s web benchmarks (https://github.com/chadaustin/
Web-Benchmarks)

...
"default_filter_cutoff" : 0,
"default_filter_cutoff_enabled" : false,
"default_filter_mode" : 255,
"default_filter_resonance" : 0,
"default_filter_resonance_enabled" : false,
...

103

http://json.org/
https://github.com/chadaustin/Web-Benchmarks
https://github.com/chadaustin/Web-Benchmarks

A.6 blobs

Size 65 MB

Content type Array of binary objects.

Representative use case Embedding resources, structured file transfer.

Source Generated. For JSON, the binary data are Base64-encoded

104

Appendix B

Memory profiles

105

Fi
gu

re
B.
1:

lib
bs
on

106

Fi
gu

re
B.
2:

lib
cb
or

107

Fi
gu

re
B.
3:

Ja
ns
so
n

108

Fi
gu

re
B.
4:

m
sg
pa
ck
-c

109

Appendix C

libcbor usage examples

110

Listens for connections, asynchronously receives data, replies with
pretty-printed arrays (works for indefinite arrays with integers only for
the sake of simplicity)
#
Make sure to install EventMachine first (‘$ gem install eventmachine‘)
#
Start with
$./examples/network_streaming.rb
#
Then send data from the example file using netcat or a similar tool:
$ netcat localhost 9000 < examples/data/indef_array.cbor
#
The file from the example contains the CBOR representation of
[_ [_ 1, 2], 3, [_ 4, [_ 5]]]
Terminate with ^c

$LOAD_PATH.unshift(File.join(File.dirname(__FILE__), ’..’))
require ’lib/libcbor’
require ’rubygems’
require ’eventmachine’

class CBORPrinter < EM::Connection
def print(what)

send_data(’ ’ * @nesting + what.to_s + "\n")
end

def initialize
@nesting = 0
@reader = CBOR::Streaming::BufferedDecoder.new(

array_start: ->() { print ’[’; @nesting += 1 },
integer: ->(val) { print val },
break: ->() {

@nesting -= 1; print ’]’
close_connection_after_writing if @nesting == 0

}
)

end

def receive_data(data)
@reader << data

end
end

EventMachine.run do
Signal.trap(’INT’) { EventMachine.stop }
EventMachine.start_server(’0.0.0.0’, 9000, CBORPrinter)

end

Listing C.1: Using the streaming API in conjunction with network communication

111

void usage()
{

printf("Usage: streaming_parser [input file]\n");
exit(1);

}

/*
* Illustrates how one might skim through a map (which is assumed to have
* string keys and values only), looking for the value of a specific key
*
* Use the examples/data/map.cbor input to test this.
*/

const char * key = "a secret key";
bool key_found = false;

void find_string(void * _ctx, cbor_data buffer, size_t len)
{

if (key_found) {
printf("Found the value: %*s\n", (int) len, buffer);
key_found = false;

} else if (len == strlen(key)) {
key_found = (memcmp(key, buffer, len) == 0);

}
}

int main(int argc, char * argv[])
{

if (argc != 2)
usage();

FILE * f = fopen(argv[1], "rb");
if (f == NULL)

usage();
fseek(f, 0, SEEK_END);
size_t length = (size_t)ftell(f);
fseek(f, 0, SEEK_SET);
unsigned char * buffer = malloc(length);
fread(buffer, length, 1, f);

struct cbor_callbacks callbacks = cbor_empty_callbacks;
struct cbor_decoder_result decode_result;
size_t bytes_read = 0;
callbacks.string = find_string;

Listing C.2: Using the streaming decoder to find just one value. No memory is allocated
in the process.

112

	Introduction and related work
	An overview of the CBOR format
	General information and background
	Design objectives

	Comparison to similar formats
	Relevant aspects
	JSON
	XML
	CBOR
	BSON
	MessagePack
	UBJSON

	Motivation
	Unique features
	Compactness & performance
	Simplicity of integration

	Goals

	Analysis
	A closer look at CBOR
	Data types
	Functionality

	Key properties of the CBOR format
	The notions of validity and well-formedness
	Nested data items
	Hash map keys
	Indefinite data items

	Existing implementations
	RIOT OS
	cn-cbor
	cbor-ruby

	Other related work
	Noteworthy implementations of other formats
	Generated parsers

	Summary

	Implementation
	Design overview
	Technology and supported platforms
	C99
	Ruby FFI

	libcbor
	Design overview
	Data structures
	Ownership and reference counting

	libcbor-rb
	Design overview
	Memory management

	Tools, processes, and quality assurance
	Building, packaging, and installation
	Versioning
	Correctness
	Memory correctness verification

	Summary

	Using the implementation
	Using the C component
	Data items API
	Streaming API

	Using the Ruby component
	Traditional API
	Streaming API

	Building custom encoders and decoders
	Schema-based codecs

	Existing applications
	Linking to other languages
	Summary

	Evaluation
	Performance
	Measurement methods
	Testing inputs
	Decoding to memory
	Encoding
	Manipulation
	Event emitting

	Encoding efficiency
	Memory usage
	Complexity
	Summary

	Discussion
	CBOR semantics
	Unclear distinction between well-formedness and validity
	Too complex map keys
	No signed numeral type
	Combination of null and undefined value
	Lack of no-op-like construct
	Unspecified relationship between definite and indefinite items
	Implementation complexity

	Proposed improvements
	Unclear distinction between well-formedness and validity
	Too complex map keys
	No signed numeral type
	Combination of null and undefined value
	Lack of no-op-like construct
	Unspecified relationship between definite and indefinite items
	Implementation complexity

	Appropriate use cases
	Web applications
	REST-style APIs
	Internet of things
	Piggybacking on other protocols
	Creating new protocols

	Alternative implementation designs
	Flat memory representation
	Flat memory representation with parse trees
	Purely event-driven parser
	Advanced memory control

	Summary

	Conclusions and future work
	C implementation
	Ruby implementation
	Evaluation

	Bibliography
	List of tables
	List of listings
	List of figures
	Glossary
	Attachments
	Appendices
	Benchmark data showcase and description
	citylots
	numbers
	cards
	glossary
	instruments
	blobs

	Memory profiles
	libcbor usage examples

