
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Jiří Kunčar

ProCom middleware

Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Tomáš Bureš, Ph.D.

Study Programme: Informatics

Specialization: Software Systems

Prague 2012



2

This thesis would not be possible without the help of my mentor Etienne Borde.
I would like to thank a lot to Jan Carlson for his benefical advices and invaluable input
to my research at Mälardalen University. I also thank Rafia Inam for her kind support
and introduction to the embedded systems development. And finally to Tomáš Bureš for
giving me the opportunity to write this thesis.



3

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources. I understand that my work relates
to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as
amended, in particular the fact that the Charles University in Prague has the right to
conclude a license agreement on the use of this work as a school work pursuant to Section
60 paragraph 1 of the Copyright Act.

In Prague ........................... Jiří Kunčar



4

Název práce: ProCom Middleware
Autor: Jiří Kunčar
Katedra (ústav): Katedra distribuovaných a spolehlivých systémů
Vedoucí diplomové práce: RNDr. Tomáš Bureš, Ph.D.

Abstrakt: Cílem práce je navhnout a implementovat části midlewaru, který poskytuje nut-
nou podporu pro běh ProCom komponent nad real-time operačním systémem FreeRTOS.
ProCom je název komponentového modelu pro vestavěné systémy vyvinutý na Mälardalen
University.

Primární úlohou je nalezení vhodného kompomisu mezi úrovní abstrakce a ohledu-
plného využívání systémových zdrojů ve vestavěných systémech. Definovaná cílová plat-
forma má mnohé limitující faktory v porovnání s běžným počítačem. K těmto omezením
patří zejména omezená paměť, procesor nebo přenosová kapacita komunikačních kanálů
a zároveň strikní požadavky na spolehlivost a odezvu systému. Při řešení jsme čelili
problému s limitujícími nebo chybějícími technickými prostředky pro odstraňování chyb
programu.

V práci jsou řešeny problémy s rozdílností operačních systémů bez a s real-time pod-
porou. Zaměřili jsme se na nalezení společné podmnožiny funkcí systému nezbytné pro
zajištění adekvátní podpory běhu navržených komponent. Rovněž jsme nalezli a otesto-
vali vhodné knihovny pro různé druhy síťové komunikace zejména TCP/IP, i když jsme
si plně vědomi jejich limitů při použití v real-time systémech a analýze jejich chování.

Klíčová slova: ProCom, middleware, FreeRTOS

Title: ProCom Middleware
Author: Jiří Kunčar
Department: Department of Distributed and Dependable Systems
Supervisor: RNDr. Tomáš Bureš, Ph.D.
Abstract: The goal of this thesis is to develop and implement parts of a middleware
that provides necessary support for the execution of ProCom components on top of the
real-time operating system FreeRTOS. The ProCom is a component model for embedded
systems developed at Mälardalen University.

The primary problem is finding an appropriate balance between the level of abstraction
and thoughtful utilization of system resources in embedded devices. The defined target
platform has limitations in comparison to general purpose computer. These include con-
straints in available resources such as memory, CPU or bandwidth together with strict
requirements in terms of worst-case response time and reliability. We have to also face
the problem of limited debugging facilities or their complete absence.

In this project, we have examined differences between several real-time and non real-
time operating systems. We focus on finding a common subset of core functions that the
system must support in order to ensure adequate support for running designed compo-
nents. We have also identified and tested the suitable libraries to support different types
of communication especially TCP/IP. However, we are keenly aware of the limitations of
used communication types for analysis of the behavior of real-time systems.

Keywords: ProCom, middleware, FreeRTOS



Contents

1 Introduction 8
1.1 Problems Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Benefits of the Implementation . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11
2.1 Real-time Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Component Based Development . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 PROGRESS and the ProCom Component Model . . . . . . . . . . . . . . 14
2.5 Development process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Technological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Modelling and Comunication Design 21
3.1 Physical Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Virtual Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The ProCom Middleware 26
4.1 Platform Abstraction Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 API proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Message Communication 36
5.1 Message Sending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Message Receiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Connection Reliability and Message Delivery Confirmation . . . . . . . . . 41

6 Application Example 42
6.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Virtual Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Physical Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Related Work 49
7.1 AUTOSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 SOFA HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5



CONTENTS 6

7.3 MyCCM-HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 RubusCMv3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5 Similar Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusion and Future Work 52

A API Documentation 57
A.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B How to build own application 60
B.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.2 Obtaining Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C AVR Studio 64



List of Figures

2.1 Overview of deployment modeling and synthesis [3] . . . . . . . . . . . . . 16
2.2 AVR Dragon and EVK1100 Evaluation Board . . . . . . . . . . . . . . . . 18

3.1 Single channel design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Local and network connection . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Two channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Two way connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Two channels (another layout) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Channel collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Message port structure initialization . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Atomic message send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Independent trigger and data writing . . . . . . . . . . . . . . . . . . . . . 37
5.3 Multiple writers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Two readers of same message . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Periodic and sporadic tasks read the same message . . . . . . . . . . . . . 40
5.6 Only periodic tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Forwarder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Virtual node connection design . . . . . . . . . . . . . . . . . . . . . . . . 43
6.5 Local communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.6 Ethernet communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.7 Serial communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C.1 Creating new example project . . . . . . . . . . . . . . . . . . . . . . . . . 64
C.2 Select example project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.3 Choosing name and location . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.4 Project Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7



Chapter 1

Introduction

There is a great deal of interest in communication nowadays. It is here to help us to solve
the problems faster and more efficiently. But to do so we need to break the language
barriers, understand each other and deliver the messages to the right listeners.

Communication is widespread and takes many forms. Not only people communicate,
but also (even thought we do not realize) in our common life computers in offices, machines
and their parts — everything communicates with each other and meets with similar
problems. Progression in this area is evident every day, especially in the field of industry
and it puts emphasis on communication time requirements and efficiency. This general
trend is seen for example in automotive industry, where the complexity of electronic
components (such as engine control, anti-lock braking system, electronic stability control,
collision avoidance system, parking assistants, etc.) is growing exponentially, according
to Bureš et al. [1].

Besides, new functionalities are developed and needed to be integrated into current
systems. Component Based Software Engineering (CBSE) brings many improvements
to developing software for distributed real-time embedded systems by reducing the com-
plexity, organizing the division of the functionality into independent subsystems often
developed by different suppliers and enabling easier reuse of once developed and tested
components.

The component model used in this thesis is developed within a large research vision
called Progress which aims at providing theories, methods and tools for the development
of real-time embedded systems [2]. In order to allow the automatic code generation,
we implement and give precise enough description of the functional blocks needed for
components code integration in order to produce executable binaries. The specific code
must be included to provide execution support and enable inter-component communication
independently on the underlying platform.

This thesis starts with description of the problems originated in the development of
a middleware that provides necessary support for the execution of ProCom1 components
on heterogeneous hardware and operating systems of embedded devices. The main focus
is dedicated to support of the transparent communication between these devices.

1Progress component model

8



Problems Definition 9

1.1 Problems Definition

Creation of a wrapper code for the integration of the software components used in Dis-
tributed Real-Time Embedded System (DRTES) faces several conflicting requirements.
In addition, the semantics of the ProCom model and the Progress deployment process
designate a set of requirements on the runtime environment. There are also several de-
mands on the resulting code structure and runtime library. All requirements are closely
described in [11], but only some of them are related to the thesis.

To create as much as possible accurate design of the middleware it is necessary to
take into account the significant differences between operating systems and hardware on
which the middleware is supposed to work. Moreover, there is a serious concern and need
for its integration into the development environment and support for as easy as possible
code generation components using this middleware. We also need to consider difficulties
of reusing existing code in different usage contexts.

Particularly with regard to the reusability of the components, the knowledge of the in-
ner structure of the entire system should be put outside the component code scope. Refer-
ring to the communication the knowledge of receivers should not be included in generated
component code.

The developed middleware should allow transparent reallocation of components (or tested
set of components) to take advantage of CBSE approach. It means that we should be able
reuse the code on different platform with any or minimal modifications. The structure
of the components should be easily generated from the model of components. However,
the runtime library code can be more complex. The complexity of the runtime library
code is not a problem in this case, because there is time to test and validate it. It must be
clearly defined for every individual section of the final code if it is automatically generated
according to component model, or whether it is part of the runtime library.

Futuremore, the middleware should also provide access to the shared system resources
to avoid conflicts during accessing them. However, there is a contradiction between an
effective utilization of resources and re-usability that inhibits to fulfill the requirement.
The most thoroughly discussed set of requirement concerns communication.

Support for channels with more than one sender and reader is a preliminary step to
build model of communication between components. The real-time analysis entails the
need to ensure that the channel topology (or its change during design process) can not
affect analysis results by changing behavior and characteristic of a component within
performing operation adherent to the channel communication.

From a modeling point of view there are various possibilities how the components can
be associated to message ports and use asynchronous message communication. The mid-
dleware has to fulfill rigorously the defined semantics of message passing. We should also
not overlook to ensure binary compatibility of sending data between different platforms.
Typical example of such a problem is a big and little endian byte order (description is
available in [21]).

Finally, we would like to remember the problem with limited resources and real-time
requirements that needs to be considered to make predictable system with time and event
triggered tasks.



Benefits of the Implementation 10

1.2 Benefits of the Implementation

With our developed middleware we are able to compose previously created components
into monolithic firmware for the defined platforms. Since composition is made in design
time under the ProCom component model, therefore we can perform optimization of com-
ponents and connections between components, which can be replaced by direct function
call.

The middleware provides functionality covering most of the features, that the devel-
oper of the synthesis mechanism may require. Several additional improvements for saving
resources were implemented. For example we made transparent sharing of the physical
connection among several components on the same device possible. However, developer
of the system does not have to think about these problems at the beginning of develop-
ment process and he can focus on right design of his application, instead of developing
underlying supporting functionality because of separation of modeling and deployment
phases.

Building and analyzing of the system become easier, because middleware can be more
thoroughly tested and analyzed based on well know or measured properties at different
platforms. It also helps with separation of software and hardware design, which we hope
to expand to the independent use and allocation of not only software but also hardware
component in future.

The middleware is easily extensible to support new hardware for different communica-
tion media or other operating system and as an extra benefit it is possible to use the library
outside context of the ProCom model. Developers can focus only on creating functional
code and the library solves the communication and task portability for them. Finally, the
middleware can be distributed either with full source codes or even in pre-compiled form
for supported operation systems.

1.3 Outline of the Thesis

The remaining part of this thesis comprises these chapters: Chapter 2 gives definitions
and an overview of the technologies used when developing software for the distributed
real-time embedded systems. The design and structure of middleware layers are discussed
in Chapter 3. Chapter 4 presents architecture of the ProCom runtime environment and
introduce the API2. The description of communication process is concisely introduced in
Chapter 5. Chapter 6 gives an example of how our middleware can be used in developing
component systems that use different types of connection for message communication.
Related projects are presented in Chapter 7, and Chapter 8 concludes the report.

2Application Programming Interface



Chapter 2

Background

In this chapter, we start with several definitions of the real-time and embedded systems,
and the middleware. Following part describes component based development and com-
ponent framework for system modeling according to the ProCom model. Essential parts
of the Progress project and the ProCom component model are described in section
2.4 followed by technological background about operating systems, libraries and hard-
ware supported by current version of the middleware. Last parts of the technical section
consist of a short introduction to the development environment (AVR32 Studio1) and
presentation of another tested experimental hardware.

2.1 Real-time Embedded Systems

In this section, the definitions of real-time and embedded systems will be briefly intro-
duced. The various demands and the most important properties of these systems are
presented and understanding them is important for comprehension of decisions made
during the work.

2.1.1 Embedded Systems

Electronic devices containing microprocessors are almost everywhere around us. In fact,
only about one percent of them is in personal-computers (PC) including laptops [15].
The rest are included in many common devices and helps people with simple daily tasks
such as preparation of lunches in microwaves or doing laundry in the washing machines.
Users may not even notice the existence of the processor and software in the device that
they are using. The microprocessors are also part of some larger and complex systems in
automotive industry.

Embedded systems are computer systems that are part of larger systems and they per-
form some of the requirements of these systems [5]. They are designed to perform their
task in very efficient way, mostly (partially) independent of human intervention. The
device may be extended or connected with additional mechanical parts or sensors, e.g.
detection of closed-door in a car, wheel rotation or distance sensors, to be able interact
with the environment where is located. In larger systems that are composed of many
smaller units, effective and reliable communication is the integral part of the system.

1Available at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

11

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725


Middleware 12

Embedded systems are closely related to real-time systems (discussed below) often
in safety-critical applications, e.g., transportation vehicles, where they take care of all
different kinds of tasks under difficult environmental conditions such as dust, vibration,
electromagnetic interference, etc.

2.1.2 Real-time Systems

A real-time system is a computing system in which correctness depends not only on the log-
ical results of the computations, but also on physical instant at which the system produces
the correct results [13]. Another possible definition found in [12] describes a real-time
system as a set of concurrent programs called tasks that have to respond to an internal
or external event in a determined time period. The time when the period ends is called
deadline.

A real-time system can be classified as a hard real-time system if the result must be
produced before deadline otherwise there is no value to the computation. The extreme of
missed deadline may have a serious consequences to the system or its user. We can describe
the situation using examples with the collision avoidance system or engine control of a car.
In the first example, the system could be incapable to stop the car and avoid a collision,
because a computation of distance and speed can take more time than is expected. When
the ignition is delayed due to missed deadline of engine control task, irreversible engine
damage can occur. However, in soft real-time systems it is acceptable that a task deadline
is missed with no serious threat or damage. For instance while an audio or video stream
is being listened, missing some deadlines causes a quality degradation of the sound.

An important requirement for many real-time systems is to achieve predictability.
In hard-real time systems, it is also necessary to predict the peak-load performance and
avoid missing predefined deadline. The easiest way how the system can meet deadlines of
all concurrent time-critical tasks is to use a static scheduling. The run-time overhead is
very small, but all scheduling decisions have to be made at compile time. However, if the
system has to adaptively react to non-regular external events, than the static scheduler is
not suitable. Dynamic scheduler is more flexible, although it can incur nontrivial system
overhead and requires detailed system analysis to ensure desired behavior.

2.2 Middleware

A middleware is, in our case, the software layer that lies between operating systems
and software components that can be located on different devices connected by network.
It consists of a set of services that allows transparent inter-process communication based
on messages within one or between several nodes. Middleware can help to manage com-
plexity and heterogeneity of the underlying operating systems and hardware and also it
facilitates using multiple network technologies. It tends to provide consistent and inte-
grated distributed programming environment.

Through indisputable advantages, there are also disadvantages in terms of performance
degradation, that must be taken into account on systems with limited resources. A higher
level of abstraction usually increases code re-usability, but it can decrease efficiency in
using resources.



Component Based Development 13

2.3 Component Based Development

While demands and expectations on functionality included in machines around us (such
as refrigerators, televisions, cell phones and cars) are growing, developers have to deal with
higher complexity of the software driving the devices. A possible solution lies in dividing
software into smaller independent units — components. This type of development is called
component based development (CBD) and it is described more precisely in [4].

The advantage of such a division is in the possibility to develop the units independently
and reuse or compose them, thanks to well defined interfaces of each unit. Developed,
analyzed and tested components can be stored in a software repository prepared for a fu-
ture use. Furthermore, these components can be pre-compiled or shared among developer
groups. Therefore increasing reliability and reduced development time can potentially be
achieved.

However, the CBD approach has also several problems. Most of them come from
desired component properties described in [20]: isolation (a component is an atomic
deployable unit, that can be run independently), composability (a new component can
be constructed from existing hierarchically structured and interconnected components)
and opaqueness (a knowledge of component implementation is not necessary for using
component – only the interface).

The first problem is connected with a need of isolated and reusable code in compo-
nents. This can lead to suboptimal utilization of resources. A strict decomposition into
small components and re-composition causes an overhead but on the other hand using too
big components does not solve the complexity problem mentioned at the beginning of this
section. Opaqueness of component implementation can bring a problem when changing
the implementation. Therefore the specification of the component model should be com-
plete and accurate. Development of a component system can be more time-consuming
than creating the application in the usual way. Especially the first time, since it requires
to adopt the component semantics. Nevertheless, the appropriate framework and tools
should decrease the needed time.

2.3.1 Component Framework

With CBD, developers can build systems by assembling existing components. To take
more advantage from CBD, a software component framework automatically generates the
non-functional code, i.e., the “glue” that plugs together individual components. Such
a framework has been developed within the Progress project. The purpose of ProCom
Integrated Development Environment (Pride2) is to support design, analysis, and real-
ization of components and component-based systems using different tools integrated in a
common environment [10]. The implementation of the ProCom middleware created as
a part of the thesis should help when generating “glue” code connecting components and
runtime support for different execution platforms with the code generated by PRIDE.

2web page: www.idt.mdh.se/pride

http://www.idt.mdh.se/pride


PROGRESS and the ProCom Component Model 14

2.4 PROGRESS and the ProCom Component Model

This thesis is a part of the larger research vision called Progress, which is the Swedish
national research center for predictable development of embedded systems. In this section
a brief overview of the vision is introduced as it is described in [2].

The overall goal of the Progress project is to cover the whole development process
starting from a vague specification at the beginning to the final specification and im-
plementation including reliability predictions, analysis of functional compliance, timing
analysis and resource usage analysis [11]. The ProCom component model has been intro-
duced as one part of the PROGRESS project to be used mostly on real-time embedded
systems. It consists of two different (but related) layers which help to solve the prob-
lem with the right level of component granularity. The larger units are using message
passing. At more fine-grained level, the information about timing and synchronization
requirements are known and the communication within one subsystem can be much more
simple and optimized.

The lower level, called ProSave, aims to design functional components, which could
be hierarchically structured and used as composite units. These components are passive
and the communication on the ProSave level is based on pipe-and-filters paradigm [2]
in contrast of ProSys layer, where the components compose a collection of concurrent,
communicating subsystems. The communication is mediated by sending messages through
channels connecting message ports.

ProCom has also particular elements that enable communication between the ProSave
and ProSys layers. The clocks generate periodic triggers and message ports create map-
pings between message passing and trigger or data communication on ProSave level.

More detailed information about ProSys and ProSave layers are included in 2.4.1 and
2.4.2, respectively. The software development and deployment according to the Progress

vision are described in 2.5.

2.4.1 ProSys

As mentioned in the beginning of this section, ProSys models a system as a collection
of subsystems. The subsystems can be composite — contain one or more interconnected
ProSys subsystems, or primitive — usually build from a set of ProSave components. In
the final system a ProSys subsystem is represented by set of tasks, message ports (input
and output) and parameters required for execution. If the composite ProSys subsystem
contains any local communication between its subsystems then it is statically resolved dur-
ing the synthesis and it is not visible outside of the subsystem. This simplify middleware
concept of the communication part.

Communication on this level is possible only through the asynchronous message chan-
nels connecting message ports. Each channel is typed and only a message port that sends
or receives that type can be connected to the channel. There are no limitations to channel
complexity (it is possible to use channels with more that one writer and reader), but it is
very important to say, that no dynamic changes of the channel structure or subsystems
are allowed after deployment. The support of transparent network communication is also
needed, because subsystems are reusable and can be mapped to different nodes.



Development process 15

2.4.2 ProSave

ProSave is the lowest layer in ProCom using several modeling constructs. Services consist
of one input port group and one or more output port groups. Each group consists of one
trigger port and zero or more data ports.

For full understanding of the thesis it is not necessary to know all parts from which
the ProSave component can be composed. The bindings to the developed library is very
simple. ProSave component routines are represented by C functions and corresponding
data structure. The activation connection with ProSys layer can be created in two different
ways. The first one is done by a clock event with defined period and the other trigger can
be an incoming message on an associated input message port.

2.5 Development process

The usage of components provides substantial benefits in development of real-time em-
bedded systems. The development process based on the ProCom model adds the ability
to design distributed systems using further modeling layers of virtual and physical nodes.

ProCom development process can be partitioned into deployment modeling and syn-
thesis parts which are described in following paragraphs.

2.5.1 Deployment Modeling

The modeling part is divided into four related formalisms having distinct objectives. The
first two — ProSave and ProSys — were described in previous sections. The third part is
a virtual node model. The aim of this modeling concept is mainly to allow detailed timing
analysis of virtual node independently from other virtual nodes and tasks allocated on the
physical node in the final deployment. A virtual node is a collection of ProSys subsystem
instances from which the information about interfaces, interconnections, dependencies
on libraries and specific hardware are derived. CPU utilization and network bandwidth
allocation should also be counted based on components demands for each virtual node.

The last part of the deployment model defines the physical nodes of the system and
the way of mutual interconnection. A physical node is primarily intended as a container
of virtual nodes and other entities needed of communication and hardware support. The
definition of physical node includes information about processor type, available memory,
hardware components, possible network types and used operating system. During the
allocating process of virtual nodes to physical node, demands on resources are compared
with possible utilization of the physical node. The whole process of system modeling is
shown on top of Figure 2.1.



Technological Background 16

Figure 2.1: Overview of deployment modeling and synthesis [3]

2.5.2 Synthesis Overview

Synthesis is the process that constructs runnable representations of ProCom model entities
(see bottom part of Figure 2.1). Composition levels correspond to deployment models and
for each composition level should be possible to build a binary library. The build process
incrementally composes binary files from lower level components and necessary glue code.
A ProSave component can be represented by one C-function for each entry point of the
component, statically allocated data and set of implementing functions. Synthesis of
composite ProSave components requires more effort in optimization to produce an efficient
runnable representation, because it adds locks and synchronization of data transferred
between internal components. One of the ProSys subsystem synthesis results is a number
of needed task for ProSave component execution. For future system analysis, information
about period, offset and deadline are included in the result.

The runnable representation of a virtual node is more or less set of a ProSys subsystems
combined with information about resource allocation for guaranteed execution behavior.
The last step of the synthesis process produces executable binary file based on knowledge
of the targeted system from virtual nodes. It also adds an implementation of message
channels used to send messages between virtual nodes.

The process design, allocation to virtual nodes, allocation to physical nodes and gen-
erating final executable files mostly intended for embedded real-time systems, but there
is no limitation to use it in some other supported system.

2.6 Technological Background

Before we begin designing a library, it is a good idea to get acquainted with potential
target operating systems and hardware platforms. Finding the intersection of similar key
system attributes can help us create the middleware. During our work it has been shown,
that adding support for new systems after commencement of development can be difficult
if any of the key system properties is not fully supported.



Technological Background 17

2.6.1 Execution Support

In real-time operating systems (but not only there), we can find different approaches
how to manage multiple routine execution support — tasks and co-routines. A good
comparison of tasks and co-routines can be found in [8] in section “Getting Started —
Tasks and Co-routines”. The brief overview follows.

Tasks are independent real-time processes executed within their own context. The sched-
uler is responsible for choosing which task to execute, for example based on priority
information associated with each task. Anytime the running task is swapped out,
the scheduler has to ensure that the processor context is saved and correctly restored
when the task is swapped back in. In order to achieve this each task has to have its
own stack to which the information will be stored.

Co-routines are intended for use in small systems with limited memory. They are similar
to tasks, but they do not require individual stack for each routine. All the co-routines
share a single application stack, that reduces the amount of required memory. The
role of the scheduler is limited there, because co-routines use cooperative scheduling.

As we mentioned earlier (in section 2.6.5) some operating systems are missing support for
dynamic task creation. This situation requires a different style how to write a program.
There is not a user defined main function from which other tasks are started, but they
are defined in special configuration files. The final C implementation with all definitions
and statically allocated space is generated from these files.

There is problem how to generate the configuration files and keep platform indepen-
dency of generated code as much as possible. A feasible solution is to use macros for task
creation in the main function or kernel configuration file.

2.6.2 POSIX

POSIX (stands for Portable Operation System Interface [for Unix]) consists of a set of
specifications to enable the portability of applications software across Unix environments.
However, POSIX standard is not limited to use only in the Unix environment. The
great strength of this standard is in significant reduction in effort and time for porting
application to another conforming platform.

Pthreads is a POSIX standard defining an API for creating and manipulating threads [18].
The library iRTncludes support for mutexes, condition variables, read/write locks
and barriers. However, there is a problem with POSIX semaphore API compatibility
on Mac OS 10.6, that was solved by using platform dependent API.

Socket interface (Berkeley) is an API dedicated to communication between hosts using
TCP/IP. It is used to send or receive packets through sockets of different types
(stream, datagram) using several supported protocol families. It is also part POSIX
standard described in section “2.10 Sockets” in [17].

Using almost any POSIX compatible platform gives us the advantage of the wide range
of free programming and especially debugging tools that make the development process
easier.



Technological Background 18

2.6.3 FreeRTOS

FreeRTOS is a real-time operating system (RTOS) for embedded devices. Based on
information available in [8], it can be run on several supported architectures (for example:
ARM, Atmel AVR, AVR32, x86, PIC) and for each officially supported architecture a
pre-configured example application demonstrating the kernel features is included. The
kernel is very simple and actually really small. The core of the kernel is contained in only
three C files.

Despite its simplicity, FreeRTOS supports a wide range of inter-task communication
primitives. A primary form of inter-task communication is provided by queues usually
used to send messages between tasks. Binary semaphores and mutexes are very similar
primitives, however only mutexes include priority inheritance mechanism. Semaphores
with defined maximal value — counting semaphores — can be seen as queues of defined
size same as maximal value of the semaphore.

Figure 2.2: AVR Dragon and EVK1100 Evaluation Board

FreeRTOS provides good support for all necessary functionality of middleware for the
testing platform introduced later on. Further, we describe a library used for network
communication support.

LwIP is an implementation of the TCP/IP protocol stack with the focus on small mem-
ory usage and code size, which makes it suitable for systems with limited resources.
It provides three levels of API in order to reduce processing and memory demands
at lower level and provide compatible sockets API at highest level.



Technological Background 19

The EVK1100 evaluation kit (see right board in figure 2.2) with the AVR32 AT32UC3A
micro-controller was chosen as a testing platform for the middleware port. Uploading
developed program and debugging is realized by AVR Dragon programmer (see left board
in figure 2.2) connected on JTAG (no. 1). The description how to the setup development
environment is included in next section.

The EVK1100 kit is equipped with a rich set of peripherals displayed on figure 2.2 and
the most important ones are marked with numbers 2-10. Other devices can be connected
on Ethernet port (no. 2), USB (no. 3) or 2 serial ports (no. 4). The board can be
powered via either DC input (no. 11) or USB 2.0 (no. 3) port. The potentiometer, set of
buttons and joystick (no. 5) are placed at bottom part of the board. A light sensor (no.
6) and temperature sensor (no. 7) are located at bottom corners. A blue LCD (no. 8)
can display 4 lines of 20 characters. Remaining not described controls are restart button
(no. 9) and power switch (no. 10). MMC card reader is not shown on figure 2.2, because
it is situated on the other side of the EVK1100 board.

2.6.4 AVR Studio

The AVR Studio is based on the Eclipse platform with extensible plug-in architecture.
The main reason to choose AVR Studio was to have integrated developing and debugging
environment together with possibility to setup target architecture and upload the runnable
binary file into a device.

The usage of this environment has the main advantage in the integration of building
tools for our hardware, FreeRTOS, LwIP and drivers including examples. It also allows
to upload final binary file to the device directly from main window. The process how to
setup the environment is described in Appendix C.

2.6.5 LEGO Mindstorm NXT 2.0

The LEGO Mindstorm NXT 2.0 is an advanced toy containing several types of sensors
(contact, ultrasonic, color), servo motors, large matrix display, programmable control
unit and of course versatile brick building system. Communication with a computer or
with other NXT Intelligent Bricks is possible using a USB cable or bluetooth wireless
technology.

Nowadays, numerous operating systems, drivers and applications are available to use
with the NXT brick. We have chosen nxtOSEK platform based on C language support and
API for sensors, motor and other devices. According to information from the nxtOSEK
web page [19], it consists of device driver code of leJOS NXT 3 and two possible real-time
operating systems:

• TOPPERS/ATK provides real-time multi tasking features proven in automotive
industry

• TOPPERS/JSP provides real-time multi tasking features compiling with Japan
original open RTOS specification µITRON 4.0

3LeJOS web page http://lejos.sourceforge.net/

http://lejos.sourceforge.net/


Technological Background 20

A huge limitation of both included real-time operating systems is in providing only static
API for creating tasks and synchronization primitives. Two ways of dealing with the
problem were experimented, however none of them has been completely finished due to
limited time.

Because the hardware was brought after initial design and implementation had been
done, overwriting existing library would require a major effort. Fortunately, adding basic
support to limited dynamic tasks and semaphores creation was possible and additional
work on this problem is planned as a future work.



Chapter 3

Modelling and Comunication Design

The significant advantage of component based development is the possibility to build sys-
tem by assembling prepared components. Such components could be composed to larger
units of defined functionality which are later deployed to specified hardware. The goal
of the designed middleware implementation is to allow simple composition of the com-
ponents and provide transparent communication of these component regardless of where
they are deployed.

This chapter describes and explains the important design decisions made during the de-
velopment of the ProCom middleware with main focus on communication. We start from
the top abstraction layer describing situations that led to key decisions in the design and
implementation of channel communication.

Graphic Description Graphic Description

Physical Node Channel

Virtual Node Channel Front-end

Output Message Port Channel Back-end

Input Message Port Connection

Triggering Task

Data Transfer Port

Atomic Data Transfer and Trigger Clock

Table 3.1: Graphical elements

Before we present the design description, we provide information about a graphical
notation of elements in Table 3.1. The graphical notation is similar to ProCom elements

21



Physical Nodes 22

notation and there is a clear corresponding coupling between them. We have created the
different notation to express that the diagrams are showing synthetized elements of the
ProCom model.

3.1 Physical Nodes

When the system grows in number of connected components (e.g. car systems) we have
to deal with its complexity and possible resource over-utilization. To avoid this problem
some extra-functional properties of the components allocated to defined hardware are
kept in the system model and compared with the hardware capabilities during the design
time. Whenever reallocation of some components is required we would like to achieve
a maximal reusability of the previously generated code.

The deployed system is decomposed to one or many physical nodes that can be con-
nected. When we talk about a physical node, we mean a hardware device containing
a CPU capable of task execution. Several properties such as hardware platform, operat-
ing system and communication ports have to be defined for each node. The middleware
participates in the initialization of hardware components and establishing connections
based on information gathered from the overall system model.

There is a complicated communication part of the initial connection check. But first
we elaborate why the check is (or is not) necessary. Because system can consist of more
than one physical node and it is needed to ensure that all nodes are fully functional before
a message is sent. For example in the situation when one node sends message to another
one, but the task located on the second node has not been activated yet. Hence it can
not handle and react to incoming message.

This situation implies that the sender should check if the reader is ready or not, and
only when the reader is ready the sender can activate its tasks. However, this can lead
to a cyclic dependency between physical nodes. We can also see the fact that even if
the connection is successfully established, the system may not be able to run correctly.
From this point of view we have the system where every message (including the first
one) has to be delivered and we should be also able to detect that. However our channel
communication has only one-direction, hence we would need to extend its functionality.
The current solution uses unreliable TCP connection, hence we decided to ignore the
possibility of message loss and we assume that the node is ready when all its connections
are established.

Furthermore, let us shortly discuss the possibility of accessing specific hardware parts
(sensors, buttons, displays, etc.) required by tasks included in a virtual node. The first
option is to create an universal drivers library, however it would be hard to cover differ-
ences in the hardware capabilities. Another way is to develop specific components with
defined interfaces, which are usually tightly bound to the used hardware. Even if we con-
sider using some abstract ProCom drivers or hard-coded functionality inside components
there is still a tradeoff between reusability and effective utilization of resources.



Virtual Nodes 23

3.2 Virtual Nodes

As we mentioned in section 2.4, a virtual node is a set of ProSys subsystems. From
a deployment point of view, we can look at virtual nodes architecture as an abstraction
of target hardware devices which allows flexible allocation of the subsystems to different
platforms. Information about these subsystems (periodic and event driven functionalities
and appropriate data structures) is collected during the synthesis process and the virtual
node definition is formed by combining the information. Therefore, the virtual node
structure describes a set of functionalities (realized by tasks) and data structures.

The internal structure of task (shown in section 4.2.1) unifies the way how to store
the information about functionalities of different type. This virtual node implementa-
tion uses the advantage of simplified access to the information about tasks structured
as an array. The start-up procedure easily calls initialization functions (init_routine)
of each task and than it creates threads from methods periodic_task or sporadic_task
depending on type of the task. Besides information about the tasks in the definition
of the VN there are included lists of incoming and outgoing message ports.

However, we would like to mention that this structure was created for testing pur-
poses and for further use it is necessary to consider the problems of multiple allocation
of the same VN to one physical node. Consequently the support of multiple instances on
the same physical node is missing for now and to use the same functionality of a virtual
node multiple times it is necessary to create the copy of its code and change variables
names.

3.3 Channels

The objective of this section is to show steps of the designing system communication.
We focus on top two layers — physical and virtual nodes. Let us remind that channels
are used for virtual nodes composition. Virtual nodes are not connected to each other
directly, but they are using channels instead. This section also discuss general issues
of the message channels from the runtime point of view.

Figure 3.1: Single channel design
Figure 3.2: Local and network connec-
tion



Channels 24

Example 1. To simplify the architecture example we will focus only on the physical layer
and virtual nodes communication. Let us start with three virtual nodes (see Figure 3.1)
communicating by passing messages through one message channel. More specifically the
first VN sends messages to the other two. Now we have designed communication and the
next step is to allocate VNs to physical nodes. For illustration, we deploy VN1, VN2 on
PN1 and VN3 on PN2. A challenging phase of the realization is the right division of
channel implementation to the right physical nodes and their connections. One possible
approach, how this channel structure could be deployed, is presented in Figure 3.2 where
the gray arrow illustrates direction of inter-node network communication.

In general, we create a channel front-end/back-end for each physical node if there is
at least one writer/reader associated with the channel. Let N be a number of front-
ends and M be a number of back-ends of the same message channel. Then we need to
define M ∗ N connections. In the previous example we have shown a simple one way
communication where a shipped message was distributed to different nodes. However,
consider the following scenario.

Example 2. Assume that we need to send replies back to the first physical node as
it is shown in Figure 3.3. Therefore we add a new channel to the system model and
connection between its back-end and front-end. We could straightforwardly define another
connection, but if the type of physical connection provides two-way communication we
take this advantage into account and use it for both channels (see the double-headed gray
arrow grouping connections to the single network connection in Figure 3.4). An important
motivation is the reduction of allocated resources on both physical nodes.

Figure 3.3: Two channels Figure 3.4: Two way connection

This solution was chosen because embedded systems typically have resource limitation
in terms of maximum open connections. For example LwIP library uses a single task for
each open connection. On the other hand, sharing a connection between multiple channels
leads to the problem of message delivery to the right channel on the receiver side as we
present in following example.

Example 3. Let us slightly arrange previous example as it is displayed in Figure 3.5.
We keep the deployment layout same then we get the collocation of multiple channels



Channels 25

to one physical connection (the gray arrow in Figure 3.6). The problem arises when the
received message should be moved to the right channel on physical node PH2. Our solution
consists of an additional channel identifier in the message structure. A small disadvantage
is the larger size of transmitted data.

Figure 3.5: Two channels (another lay-
out) Figure 3.6: Channel collocation



Chapter 4

The ProCom Middleware

The term runtime environment, as it is used in the context of this thesis, describes a set
of services providing an API intended to allow running of the same component’s code
allocated at virtual nodes (VN) on different platforms. To design and implement an API
we have to look closer at the used operating systems (OS) features and communication
semantics. In the following sections the platform abstraction layer and middleware API
are described.

Because there are no dynamic changes allowed after the deployment process is finished,
all the information about nodes and physical connections among them can be included
directly in the generated code. This solution has many advantages in embedded systems,
where it would be complicated to implement the reading of configuration files. Because
of the fixed configuration storage there is no need for change mechanism implementation.

According to the requirements it would be beneficial to design the library architecture
as two-layered to expandable parts. The top layer provides the API defined in section
4.2 that supports tasks creation, inter-component communication and virtual node cre-
ation. The underlying part, (described in section 4.1) provides an unified access to shared
resources, operating system, and some common hardware.

4.1 Platform Abstraction Layer

To create an easily maintainable runtime library implementation it is necessary to define
a certain level of platform abstraction. It helps not only with maintaining but also with
porting the library to other hardware architectures or operating systems and in an ideal
case without any changes in the top layer. The abstraction layer provides simplified
access to system primitives such as threads, semaphores, mutexes and timers. Most of
these primitives are same in the major part of used real-time operating systems. However,
several problems have appeared.

The operating systems running under the middleware provide varying hardware ab-
straction. We have focused only on hardware needed for communication such as Ethernet
and serial ports. The hardware initialization is normally provided by the operating sys-
tems, but the function hardware_init is implemented to initialize the hardware of embed-
ded systems, where in some situations the initial values need to be written to the hardware
registers. However, this part is hard-coded in the middleware which is not the optimal
solution. The function connection_init is intended to initialize communication ports

26



Platform Abstraction Layer 27

and library for network communication (e.g. Ethernet listener thread in the LwIP library,
interrupt handlers and peripheral devices).

4.1.1 Threads

The basic purpose of the runtime environment is to enable independent execution of
multiple components. In embedded or real-time systems threads are mostly called tasks.
They are performing an activity in their own context.

Functions progress_thread_create and progress_thread_exit wrap system spe-
cific calls for creating and exiting system thread. These functions are available only on
systems that support dynamic task creation.

4.1.2 Synchronization

Process synchronization support is needed to ensure that certain parts of code do not
execute concurrently while they access to shared resource. If one thread attempts to get
access to a resource that is already in use by another thread, the thread will be blocked
until the resource is released.

However, blocking the thread is undesirable for many reasons mainly while high-
priority task is running. Blocking in real-time systems brings more problems with their
analysis and improper usage of locks or interactions between them can lead to undesir-
able state of system (deadlock, live-lock or priority inversion). In any case system has to
provide at least one type of synchronization primitive.

We have implemented support for basic operations with semaphores (progress_sem_init,
progress_sem_signal and progress_sem_wait) and also mutexes (progress_mutex_init,
progress_mutex_lock and progress_mutex_unlock).

4.1.3 Sleeping

In some situations it is useful to resume task execution. A sleep system call places
the running process into an inactive state for a defined period of time. The time parameter
usually specifies only minimum amount of time that the process is inactive. The passive
waiting is provided by progress_usleep function. More accurate timed sleeping that
takes into account priority of the sleeping task (if it is supported by OS), is implemented
in function wait_for_next_period and introduced in section 4.2.1.

4.1.4 Memory Allocation

There is a problem with dynamic memory allocation, because of lacking or restricted
support of functions like malloc in many RTOS. For example the dynamic allocation is
not allowed after a scheduler is started in some systems. In case that dynamic allocation
is unavoidable, it is possible to use a statically allocated memory pool.



API proposal 28

4.2 API proposal

The API is supposed to help with producing reusable code for components by the develop-
ers as well as easily generated code for virtual and physical nodes. To achieve these goals
we use the abstraction of the system primitives for synchronization (e.g. semaphores, mu-
texes), threads creation and sleeping for periodic actions. The set of auxiliary functions
is also a part of the library to facilitate initialization of the hardware components and
ProCom runtime environment in cooperation with underlying abstraction layer.

Before describing individual functions from the API, we provide an overall information
about major functions. The middleware aims to provide easily usable data structures
and functions for modeling, initialization and creation of elements at different ProCom
modeling levels. Note that since the components are hierarchically composed, it is not
necessary to use some of initialize functions explicitly, but they are called from the upper
level initialization function automatically.

Let us provide a simplified list of the most important functions divided into categories
according to model layers (full list can be found in appendix A.1):

1. Task

(a) Get_message

(b) Send_message

(c) Write_data

(d) Trigger_port

2. Virtual node

(a) Init_task

(b) Create_task

3. Physical node

(a) Init_virtual_node

(b) Create_virtual_node

In addition to the above functions we provide a wide range of extra macros (full list with
description is provided in appendix A.2) for generating static data structures required
for system modeling. These macros simplify the code generation templates and serve as
interlayer allowing small changes in library functions and structures without requiring
a change in a previously created template.

4.2.1 Task Creation

Model transformation for the system synthesis generates two types of tasks that differ
in the way they are activated. The first type of task, called periodic, is formed by the
combination of a clock element and the entry function of a connected ProSave component.
We need to ensure further periodical activations at defined time, regardless of possible



API proposal 29

varying execution time of the component entry function. The second task type is called
sporadic and the name comes from the nature of the task to be executed in response to
sporadically incoming messages to a connected message port.

Looking for solutions we focused on the question of providing easily maintainable
code, that is open to slight modifications whenever new requirements on the middleware
are discovered. The final implementation came from solution dealing with the problem
of creating a common function for virtual node initialization, which is described later
section.

The initial idea was to have one initialization function for each task type as it is
described subsequently: create_periodic_task (create_sporadic_task) initializes the
data structure of a periodic (sporadic task) activated by timer (activated by incoming
message) and is used as the entry function of corresponding thread.

However, during the implementation it became clear that it would be better to use
only one function for creating tasks no matter of its type. The proposed solution has
advantage in easier code generation, because all information are stored in a single data
structure (shown in listing 4.1) and can be also referenced from virtual node to which
they are allocated.

Init_task executes initialization routine.

Create_task creates new thread from functions sporadic_task and periodic_task that
include infinite loop with different internal implementation (described below).

Listing 4.1 Task data structure

typedef struct __progress_task {

enum { TASK_PERIODIC , TASK_SPORADIC } type;

void (* init_routine)();

void *(* start_routine)(void *);

void *arg;

union {

const progress_time_t period;

progress_sem_t * trigger;

} info;

int priority ;

/* private : */

progress_thread_t thread_handler;

struct __progress_node * virtual_node;

} progress_task_t;

The process of creating tasks is split to two phases. In the first phase init_routine is
called and internal task data are set up. This task memory initialization can usually be
executed in any order, however there is problem with hardware initialization (in general
with any shared resource) that does not have any abstraction layer handling multiple
accesses.

During next phase the corresponding thread is initialized and then suspended until
all tasks of all virtual nodes have been initialized and all physical nodes are ready to



API proposal 30

communicate. Detailed description of system startup problem is introduced in section
3.2.

Internal Implementation

The internal implementation of tasks uses the following functions to achieve desired be-
haviour while preserving platform independence. They are not directly part of the API,
but they are closely connected to task definition.

Wait_for_other_tasks_init performs synchronization step. It waits for all the tasks
of a virtual node to be initialized.

The next two functions are used in the periodic task loop. Their implementation is
platform dependent with a view to gain benefits from operating systems that directly
support periodic actions.

Compute_next_period enables to know when the task needs to be waken up based on
time from previous task execution. It does not seem useful using FreeRTOS or
RESCH1.

Wait_for_next_period waits until next period when the tasks can be executed again.
It is called at the end of the working loop of the periodic task.

The last function is intended to wait for an external trigger at the beginning of the task
loop. The activation can currently come only from an input message port that is associated
with the task. When the task is woken up, the incoming message must be read from
the message port.

Wait_for_activation waits for a trigger to execute the routine of a sporadic tasks.

4.2.2 Virtual Node Creation

A virtual node is a set of ProSys subsystems, however for its successful initialization
we need access to the tasks of each subsystem. Moreover, every virtual node will have
a generated list of the message ports which have to be initialized before task activation.

Init_virtual_node initializes the tasks and message ports allocated to a virtual node.

Create_virtual_node creates and initializes the data structure of a virtual node.

Before tasks can be activated, all virtual nodes (not only on same physical node) have to
be ready.

Wait_for_other_nodes_init is a synchronization function that waits for the other VNs
initialization before to launch the VN tasks.

1A Loadable Real-Time Scheduler Suite for Linux (RESCH) is available on web page
http://www.ece.cmu.edu/∼shinpei/resch/.

http://www.ece.cmu.edu/~shinpei/resch/


Data structures 31

4.2.3 Inter-node Communication

The only allowed way how a task can communicate with the other tasks located at a
different virtual node is realized by message passing.

Send_message function packs data into a message and sends the message to an associated
message channel. The action of packing and sending is atomic.

Get_message function reads data from an incoming message.

Because the semantic of message sending allows some special cases, we decided to split
the functionality of message sending into two following independent functions. Together
they do the same as send_message, but a message in the message port can be overwritten
before it is triggered.

Write_data only packs data into a message and stores it in the associated message port.

Trigger_port sends last stored data from the message port to the associated message
channels.

If data are sent over network, it is necessary to convert them into the expected format
for the communication protocol. Functions should be implemented for converting simple
data types before they are sent. A typical examples of functions converting integers to
and from the network format are htonl and ntohl.

4.3 Data structures

This section describes data types used on different levels of a system composition. We
have experimented with dividing the information into two sets. The first one includes
the information needed for establishing a connection and the other one contains the run-
time information about the connection (e.g. socket identifier). This approach has shown
to be really helpful, because it simplifies code generation and it also allows to hide the
implementation of physical connections.

Based on the communication design introduced in previous sections following struc-
tures were implemented to achieve desired behaviors.

4.3.1 Task Port

As the name suggests, this structure is used by tasks (services) to read data from an in-
put message port or store data into associated output message ports. There are three
supported ways how the task port can be connected to an output message port — only
write data, only trigger port and atomic write and trigger. Similarly, the task can read
the latest data from an input message port. The term – latest data – indicates content of
message that has not been read by all associated sporadic tasks (triggered by event of the
incoming message). In case that there are only periodic tasks reading from the message
port they will read data from the newest received message.



Data structures 32

Output task port is connected to possibly multiple message ports with attributes defin-
ing if the data connector between task port and message port is present and if
the message port should be triggered when the data is written. We use the at-
tributes rather than different methods in the API for the different types of message
port associations.

Input task port can be connected only to a single input message port. In addition to
the connector it includes only one other attribute that is true if the task is activated
by the message port.

4.3.2 Message Port

Message ports provide a mapping between message passing and trigger/data communica-
tion [2]. Taking into account various demands to reliability of message delivery we have
decided to add buffers to the message port instead of channel. Moreover, it saves coping
of data in case that the port is assigned to multiple channels. Another advantage of this
solution is in simplifying the analysis of necessary buffer size to avoid message overwriting.

During the implementation work we faced a problem of minimizing data coping while
using only statically allocated memory. Moreover, it is desirable to reduce the length of
critical sections (buffers are possibly shared by multiple writers). After a closer exami-

0 M M*(N+1)M*N

W R

Figure 4.1: Message port structure initialization

nation of several possibilities (e.g. data stored in the task port, cyclic buffer for whole
messages in the message port), it has been concluded that the message port should con-
tain a cyclic buffer of the pointers to space for whole message and extra pointers to free
memory for writing (W ) and reading (R) message. The extra space for writing message
was chosen for keeping the message outside the buffer before the message port is trig-
gered. Hence, the messages from the buffer can be sent by other task meantime. This
also applies symmetrically for reading and sending messages from the message port.

During initialization phase all pointers are initialized as it is displayed in Figure 4.1.The main
advantage is in the minimization of unnecessary data copying because we swap only point-
ers W and R with first unused and used item from buffer respectively. Let N be size of
buffer and let M be size of the message. Then the memory of size (M + sizeof (void∗)) ∗
(N + 2) is used.



Data structures 33

Input message port contains the defined space for at least one whole message. When-
ever the message is received, the message data are written to the message port
buffer. If all tasks triggered by the message port have read the message data from
R, then the pointer to the oldest message data in the buffer is swapped with R
pointer and the associated tasks are activated.

Output message port is an inverse to the input message port. When the trigger is
activated, the port stores a message with the data currently available on the input
data port to its buffer and wakes up the sender task. Whenever the sender task is
waken up, it sends messages from buffer belonging to the message port that woke
him up to all associated channels.

Experiments have shown that the manual generation of structures of message ports with
various options brings a lot of mistakes and, in addition, for minor modifications of the
library it was needed to rewrite a large amount of already created code. To solve that
problem we have defined a set of macros for the code generation which also makes pos-
sible to do some minor changes in the library without affecting existing code, and most
importantly without changing the code-generating templates in the Pride tool. Equally
important facts shall be revealed that this can solve most problems with generating dif-
ferent code for various platforms.

4.3.3 Channel

The channel is a kind of abstraction that stores information about connections used to
send messages to the other virtual nodes possibly located on different physical nodes. It
participates in ensuring compliance of transmitted data.

A channel is logically composed of a set of front-ends and back-ends as was already
described in Section 3.3. This approach brings several advantages. First, when a virtual
node is deployed to different physical node only the information about connection be-
tween physical nodes is changed in channel front-end structure of the sender. Similarly,
information about new channel back-end is saved to the connection structure on receiver
side. Using two independent structures can reduce the memory requirements on nodes
where none of associated input or output message port exits, and it also simplifies the
code generation.

Front-end part holds information about message channel connections and the size of
allowed message payload. Another possible solution would be the runtime type
checking of data during saving process. Because no dynamic changes are allowed
after system is deployed, the size check seems sufficient.

Back-end is supposed to check size of incoming message and distribute it to the message
ports associated with this channel and placed on this physical node. The whole
process was described in Section 5.2.

4.3.4 Inter-Channel Connection

Connections define how the message is transferred between each front-end to all back-
ends. During the development three types of connection were tested — local, TCP/IP
(Ethernet) and serial line.



Data structures 34

We focus on issues related to the implementation of interactions between channels
and physical communication media. First we tried to minimize the number of necessary
physical connections in a way that if possible, they are used for communication in both
directions by multiple channels. Then we separated the information needed to initialize
the connection from the handlers required for sending and receiving data. Here it was
discovered that the connection handlers are similar (or same) on all tested platforms, but
data structures needed for creating connections of same type are different. In this case,
we will benefit from code generation using predefined macros.

Local connection is the simplest type of inter-channel communication. This connection
is usually used for the communication within a single physical node — more accu-
rately — within a single system process. The implementation itself is very simple
and consists of a simple distribution of the sent message from the channel front-end
to all input message ports associated with the channel back-end.

Network connection (TCP/IP) is more complicated, since the TCP/IP communica-
tion is established by three-way handshake between client and server. At first all
defined server ports are opened for listening and they are waiting for clients whose
IP address match up with any IP address from the list of allowed clients. This list
also includes references to inter-channel connections, that is set up every time when
allowed client connects to server. On the client side it is defined only IP address
and port of the server and the inter-channel connection is set up right after the TCP
connection is established.

Serial line connection has the most differences of implementation across operating sys-
tems. While on UNIX systems working with a serial port is as simple as working
with regular files, on the evaluation board the hardware has to be initialized first
and we need an extra task to handle every connection. The information needed
for initialization mainly consist of a port identifier, speed, data bits, stop bits and
parity. This implementation is highly experimental.

Because sometimes it is necessary to create system tasks for handling physical connection,
system events or library call-backs, we decided to store all information for connection
initialization of a physical node in a specialized structure. This structure is used by the
connection manager during system startup and the decision about creating system tasks
is done there based on the number of connections of certain types.

Once we begin to allow the interconnection of different node architectures, it is nec-
essary to consider possibly different interpretations of the transmitted binary data and
their compatibility. The most common problem are endianness and serialization of data
structures. We have focused only on the solution that converts simple data type to uni-
versal network type to avoid endianness problem during transmission of a message from
one physical node to another one. Currently it is necessary to do the data transformation
before they are stored in the message structure.

Finally, we would like to point out on problem that has arisen during testing of different
variants of interconnection of physical nodes. Imagine a situation with three physical
nodes P1, P2 and P3, where P1 has only one serial port connected to P2, but it needs to
communicate with the both remaining nodes. In case the connection was TCP/IP and
P2 supported routing, everything would be fine. However, we need to solve the routing



Data structures 35

on application level. We see these two possible solutions. First one uses an extra task
associated with an input and output message port which forwards the message to desired
destination (a possible implementation can be simillar to Listing 6.1 and the overall design
of the task including the message ports is shown in Figure 6.2). The other approach is to
add “routing tables” to connections with information like this: “messages from channel X
forward/copy to connection Y ”.



Chapter 5

Message Communication

We have described communication based on messages, where the channels are engaged
as distributors of messages to the other virtual nodes using a defined set of connections.
In this chapter we look closer at sending and receiving data passed through the channels
and we also describe precisely and in more detail the concepts of binding components to
message ports. The chapter concludes with a description of the structural elements of
communication.

5.1 Message Sending

The semantics of sending message from an output message port says: “Whenever the trig-
ger is activated the output message port sends a message with the data currently present
on the input data port” [11]. The main requirements for middleware functionality, that
we have focused on, are:

• non blocking behavior of store function;

• simple trigger function; and

• atomic combination of store and trigger functions (save and send data encapsulated
in one message).

An output message port can be triggered by one or many tasks, and similarly one or
many tasks can write data to the same message port. Each task can also be associated
with zero or many message ports. Three different ways how to associate one task with
message port exist and they will be described below.

Example 4. Probably the simplest and mostly used situation is sending data right after
it is copied to message port. Demonstration of such a task T1 with associated message
port is shown in Figure 5.1. When the trigger and data come from the same task port,
the middleware can ensure that the stored data in the message port will not be overwritten
before it is sent.

In our solution we lock the message port for writing when a task starts copying data
to the message port and we release the lock after it has pushed them to the message

36



Message Sending 37

Figure 5.1: Atomic message send

port buffer (a detailed description of message port structure is given in the section 4.3.2).
Though the critical section is very short, in situation when using locks for writing is
prohibited, it is possible to use a single message port for each task (and remove the
locks). The second proposal consumes more memory, because every task port has its own
space where the whole message can be stored. When the message is prepared, the pointer
to the message from the task port is swapped with a pointer to memory space for writting
message from the message port buffer.

Example 5. Let T1 be a task triggering message port M1 without providing the data.
There is only one problem, namely to prevent sending non-initialized data in a message,
if the message is not supposed to have empty payload. This can happen at the beginning
when task T2 had not written any data to message port but T1 triggered the message port
(see Figure 5.2). Hence during the initialization period a default data should be written
to the message port.

Figure 5.2: Independent trigger and data writing

When the data is stored in the message port and the message port is triggered, then
it is pushed to queue of message ports waiting for send by sender thread.

Example 6. Let T1 and T2 be tasks writing only data to message port M1. These two
tasks do not care about sending the data. They only store the latest data from some
sensors or computation into the message port. When some other task triggers that port,
the message will be sent with the latest stored data.



Message Sending 38

Figure 5.3: Multiple writers

To support this example it is necessary to add a pointer on the latest data to send.
But it is also necessary to add write lock for that pointer to prevent incomplete writing
and moving the pointer to message port buffer on architectures where writing pointer is
not atomic.

In the next subsection we describe the work of the sender thread and the advantages
and disadvantages of its use.

5.1.1 Sender Task

This section will clarify the situation, which resulted in the use of solutions with an extra
high priority task for processing outbound messages at every single physical node.

Motivation: Consider the situation where two tasks T1 and T2 are sending messages
through one shared connection C1 and T2 is also sending messages through connection
C2. If something gets wrong with C1 during sending message from T1 then the tasks are
blocked and even T2 can not send its data. Message passing over physical media is usually
performed by a blocking function. It is necessary to make sure that the message was sent
whole at once.

Using buffers on different levels can help to solve this problem. We can look at the
task message sending as the Producers-Consumer, where Ti are producing messages and
sender is consuming (sending) them. A question is, what to do in the situation when any
buffer or queue is full. If it happens in a message port buffer, then the oldest record is
overwritten. It may be seen as a too old message which is not worth to send or it was
a problem with definition of buffer size.

A normal buffer with data needs to copy them every time they are stored in buffer or
read from buffer. The other approach is to store only pointers to the data. Because it
is not good idea to use dynamic allocation (malloc() and free()) in real-time systems
(it is hard to predict how much time the allocation will take), the space for the data is
allocated statically.

Example 7. Let T1, T2 and T3 be periodic tasks with periods 500ms, 300ms and 200ms
and all of them are sending message to same message port M1. Let M1 have buffer size
equal to 2. At the beginning the sender has no work to do and has the highest priority. So
he can send the messages immediately. However every 3000ms1 three new messages are

1LCM — Least Common Multiple of numbers 500, 300 and 200.



Message Receiving 39

created and queued for sending. If the sender is busy at that moment, the oldest message
will be overwritten. The solution is to extend the buffer size.

But if the enlargement to size greater than number of tasks writing to message port
does not help either, then it is probably necessary to upgrade hardware or split function-
ality to different physical nodes. However in some cases it does not matter that one or
more messages will not be dispatched.

If we look at overwriting of the oldest message in the buffer in more details we find
out that it is not always allowed to overwrite the oldest record in the buffer, because it
can be used by the sender by that time. The solution consists of using an extra space
outside the buffer that sender swaps with the oldest record.

When the sender is woken up, it reads the message port from the queue of ready
message ports and does the following operations until the queue is empty: first it gets an
array of associated channels and then for each channel from the array it sends the message
through every connection used by the channel.

5.2 Message Receiving

The way in which individual messages are retrieved from the physical link is dependent
on the system implementation and used libraries. This section introduces the process by
which incoming messages are processed as soon as they are completely received from a
connection.

When a message is received, the corresponding information about channels associated
with the connection are compared with the channel identifier included in the message
header, and the data are distributed to the matching one. The comparison is needed
because of the possibility to send messages belonging to different channels through one
physical connection between nodes as was described in section 3.3.

Whenever a message is passed to the channel, the data stored in that message is saved
in the message port buffer and the message port updater is waken up. The purpose of
having an extra thread responsible for this is explained in the next part of this section.

5.2.1 Message Port Updater

The message port updater is a high priority task which is used for doing work that is not
connected with the main purpose of component tasks. The solution with an extra thread
is not the only possible one. During the development we considered a possibility of storing
data directly in task data ports, however it may require some unnecessary data copying.
The reason why the message port updater has its own thread is illustrated in the following
examples.

Example 8. Let T1 and T2 be sporadic tasks associated to the same incoming message
port (see Figure 5.4). According to the semantics, the incoming message has to be read
by either all or none of the associated sporadic tasks. The problem occurs when multiple
messages arrive within a very short time interval. This can happen due to some networking
problems or perhaps because several messages from different nodes were sent at once.



Message Receiving 40

Figure 5.4: Two readers of same message

The additional work with updating message port structure has been done by tasks in
the initial implementation without message port updater task. Hence every time the task
read the message from message port, it had to check if all other tasks had already read
that message and it also had to update message port properties in conformity with the
situation. However, this had disadvantagous in point of consumed CPU time for the last
reader, because it has less time that remains for useful computation and most probably
this action would be executed by same one most of the time. In terms of more uniform
distribution of work done in receiving messages by tasks, it is better to separate the work
from the library function into the system thread, leaving only the minimum of necessary
actions performed by the tasks.

Figure 5.5: Periodic and sporadic tasks read the same message

Example 9. Let T1 be a periodic task and let T2, T3 be sporadic tasks associated to
the same incoming message port (see Figure 5.5). Task T1 will possibly read the same
message several times until both sporadic tasks read the message. This is the desired
behavior that does not require any additional changes in previously introduced solution.

If it is necessary to make sure that the delivery of messages to T1 is not delayed by
aperiodic tasks, then separate message port only for task T1 should be created during
the design. Message port updater will keep only latest message in that message port.



Connection Reliability and Message Delivery Confirmation 41

Example 10. Let T1 and T2 are periodic tasks associated to the same incoming message
port. In this situation when two or more periodic tasks read from one message port we
do not guarantee that they will read same message. The situation is illustrated in Figure
5.6, where even if both tasks are activated at the same point of time, another message
can arrive after only one of them has read the previous message.

Figure 5.6: Only periodic tasks

In last example it is pointless to have the message port buffer (B) bigger than one.
Even if more than one message arrive, only the latest one is used for reading (R) by all
tasks.

5.3 Connection Reliability and Message Delivery Con-

firmation

The question of the connection reliability and the message delivery confirmation has been
mentioned in section 3.1, but we would like add a few more suggestions for possible future
ways of solving it.

The connection reliability is dependent on the type of physical connection. The real-
time requirements and re-sending overhead need to be considered if we decide to supply
the reliability feature of the physical connection in the middleware.

On the other hand, we can ask the question: “Is it really necessary to check the delivery
status of every single message?” A negative answer brings new options. System start-up
check can be simplified and we can check the message delivery status by adding special
component for sending and receiving messages. The user (ProCom programmer) will
only use the component whenever message delivery confirmation is required. This can be
automated in the tool analogous to the semantic check of type of connected message ports
and channels. However, there is a problem if the message has more recipients. In this
case we would have to generate the checking component in conformity with deployment
of nodes but it reduces re-usability a lot.



Chapter 6

Application Example

The objective of this trivial application is to present virtual node allocation and simple
switch of physical connection in channel communication. Firstly, we introduce a complete
overview how to create the applications using our middleware implementations and we
also show its advantages in implementing changes in the final application. We would like
to emphasize that it is certainly possible to use the library outside of the Pride, however
it provides many other useful features.

Remember that the channel is logically separated into front-ends and back-ends, which
can be connected with multiple connections as the layout of physical nodes requires. For
every physical node, where at least one output message port is associated with a channel,
the channel front-end of defined channel is created. Similarly, if there is an input message
port located on a physical node, appropriate channel back-end is created.

6.1 Components

At the beginning we create two components - sender (see Figure 6.1) and receiver (see
Figure 6.3). Sender has own internal status stored as integer and its only job is to
increment own status and sends it to the output port when it is triggered. Receiver stores
received data into its private variable and prints them on a screen (display).

Figure 6.1: Sender Figure 6.2: Forwarder Figure 6.3: Receiver

To show component that sends and receives data, we have created a third component
- forwarder (see Figure 6.2 and code on listing 6.1). Its data-structure comprises pointers
to task, input and output data port and a supplemental variable. In the listing it is also
shown the usage of functions get_message and send_message.

42



Virtual Nodes 43

Listing 6.1 Forwarder

// part of forwarder .h

struct sys_Forwarder_t {

progress_task_t * pg_task_forwarder;

task_port_in_t * in_port;

task_port_out_t * out_port ;

int number;

};

// part of forwarder .c

void * forwarder_job(void * task) {

sys_Forwarder_t * forwarder = (sys_Forwarder_t *) task;

int message_data = 0;

if (get_message(forwarder ->in_port , &message_data) > 0)

{

forwarder ->number = ntohl(message_data);

send_message(forwarder ->out_port , &message_data);

}

return NULL;

}

6.2 Virtual Nodes

In the next step we create the instances of previously defined components, tasks and
ports. We recommend to use macros prefixed with letters GEN_ and defined in the file
progress_macros.h, however it is not required. The definition of component contain in-
formation about tasks, theirs ports and message ports instances used in the allocated
instance. For a clear idea of the component connection design, the scheme is given on
Figure 6.4, where P1 and P2 are message ports and C1 is channel.

Figure 6.4: Virtual node connection design

Let components S and R are allocated to individual virtual nodes as can be seen also
in Figure 6.4. The transformation creates a periodic task from the clock and component
S, and a sporadic task triggered by message port P2 from the component R.

In next step, we create task and message port instances to enable communication. The
sender has one port that atomically triggers and writes data to message port P1. And the
receiver port is associated with message port P2.



Physical Nodes 44

Listing 6.2 Task instances

/* Part of virtual_node_sender.c */

/* Periodic Task Instance */

progress_task_t sys_Sender_instance_task = {

TASK_PERIODIC , sender_init , sender_job ,

(void *) &sys_Sender_instance ,

{ .period = 500 }, TASK_PRIORITY_MEDIUM };

/* Part of virtual_node_receiver.c */

/* Trigger */

progress_sem_t sys_Receiver_instance_trigger ;

/* Sporadic Task Instance */

progress_task_t sys_Receiver_instance_task = {

TASK_SPORADIC , NULL , receiver_job ,

(void *) &sys_Receiver_instance ,

{ .trigger = &sys_Receiver_instance_sr1_t1_sem },

TASK_PRIORITY_HIGH };

Listing 6.3 virtual_node_sender.c

/* Message Port */

GEN_MessagePortOut(P1,sizeof(int) ,1)

/* Task Port */

#define Sender_out_port_AssocPorts(_) _(SS1_OUT , true , true)

GEN_TaskPortOut(sys_Sender_instance_out_port ,

Sender_out_port_AssocPorts)

/* Sender Component instance */

sys_Sender_t sys_Sender_instance = {

.pg_task_sender = & sys_Sender_instance_task ,

.out_port = & sys_Sender_instance_out_port ,

.number = 0 };

The last step to complete virtual node is to define unique variables of type progress_node_t
with all tasks and message ports.

6.3 Physical Nodes

To synthesize physical node finally, we select virtual nodes definitions and then we create
channel parts instances with correct types of connections according to the real location
of the other channel part and also add binding of the message ports to channels.

The easiest way to test our application lies in the allocation of both VNs on the
same physical node PHY1 (see Figure 6.5) and using local connection. Let us present the
definitions of the channel parts and connection between them.

• Define the association of channel front-ends to connections:



Physical Nodes 45

Listing 6.4 virtual_node_receiver.c

/* Message Port */

#define P2_assoc_tasks(_) _(sys_Receiver_instance_task)

GEN_MessagePortIn(P2,sizeof(int) ,10, P2_assoc_tasks)

/* Task Port */

GEN_TaskPortIn(sys_Receiver_instance_in_port , P2, true)

/* Receiver Component Instance */

sys_Receiver_t sys_Receiver_instance = {

.pg_task_receiver = & sys_Receiver_instance_task ,

.in_port = & sys_Receiver_instance_in_port ,

.number = 0 };

Figure 6.5: Local communication

#define C1_connections(_) _(connection1)

• Channel front-end has defined name, size of payload and previously defined associ-
ations:
GEN_ChannelFrontend(C1,sizeof(int),C1_connections)

• Define the local connection writing to the channel back-end:
GEN_Connection(connection1,local,C1)

• Define the association of message ports to channel back-end:
#define C1_ports(_) _(P2)

• Similarly to channel front-end define channel back-end:
GEN_ChannelBackend(C1,sizeof(int),C1_ports)

The last missing associations are between the output message ports of all allocated virtual
nodes. The generation of needed structures is done by macros GEN_VNPortAssoc and
GEN_VNSetPortAssoc.

This virtual nodes were also used to compose two physical nodes in order to test
different types of communication (see Figure 6.6 and 6.7). With only the small change in
connection type definition two different transport media can be used - Ethernet (TCP/IP)
or serial line.



Physical Nodes 46

Listing 6.5 Testing Physical Node

#define VN_SENDER_P1(_) _(C1)

#define eP1 1 // port ID

GEN_VNPortAssoc(VN_SENDER_P1)

void physical_node_init() {

GEN_VNSetPortAssoc(VN_SENDER ,0,eP1 ,VN_SIMPLE_SENDER_P1)

init_virtual_node(& VN_SENDER );

init_virtual_node(& VN_RECEIVER);

create_virtual_node(& VN_SENDER );

create_virtual_node(& VN_RECEIVER);

/* omitted part */

}

Figure 6.6: Ethernet communication

Figure 6.7: Serial communication

We propose the template generating physical connections (listing 6.6) and the structure
for managing connections. The template also helps with keeping right order of the defi-
nitions and avoiding mistakes when redefining or adding new connections.

The macros from the listing 6.6 prefixed with string FOREACH_ can be defined in
the following way:

• Let us define the port ETH1 for listening on port 2222, and accepting client with IP
address 192.168.0.2:
#define ETH1_clients(_) _(ETH1_clients_1, "192.168.0.2", CONN2)
#define FOREACH_TcpPortListen(_) _(ETH1, "2222", ETH1_clients)
#define CONN2_AssocChannels(_)
#define FOREACH_Connections(_) _(CONN2, network, CONN2_AssocChannels(_)

• The port ETH2 on the other physical node will connect the previously defined port
with information defined subsequently:



Code Structure 47

Listing 6.6 Template for Physical Connections

FOREACH_Connections(GEN_Connection)

#ifdef FOREACH_TcpPortListen

FOREACH_TcpPortListen(GEN_TcpPortListen)

#endif

#ifdef FOREACH_TcpPortConnect

FOREACH_TcpPortConnect(GEN_TcpPortConnect)

#endif

#ifdef FOREACH_SerialPort

FOREACH_SerialPort(GEN_SerialPort)

#endif

#define FOREACH_TcpPortConnect(_) _(ETH2,"192.168.0.1", "2222", CONN3)
#define CONN3_AssocChannels(_) _(C1)
#define FOREACH_Connections(_) _(CONN3, network, CONN3_AssocChannels(_)

To take use of previously defined macros we have also created the template for generating
structure used by the connection manager (see listing 6.7).

Listing 6.7 Template for Connection Manager

connection_manager_t CM = {

.in_ports = { FOREACH_TcpPortListen(GEN_RefValue) },

SUM_FOREACH(FOREACH_TcpPortListen),

.out_ports = { FOREACH_TcpPortConnect(GEN_RefValue) },

SUM_FOREACH(FOREACH_TcpPortConnect),

.serial_ports= { FOREACH_SerialPort(GEN_RefValue),

SUM_FOREACH(FOREACH_SerialPort),,

.channel_frontends = {FOREACH_ChannelFrontends(

GEN_ChannelFrontendRef) },

SUM_FOREACH(FOREACH_ChannelFrontends),

.channel_backends = {FOREACH_ChannelBackends(

GEN_ChannelBackendRef) },

SUM_FOREACH(FOREACH_ChannelBackends)

};

6.4 Code Structure

The code is divided into four directories. The progress directory contains middleware
implementation including header files providing the runtime and system abstraction APIs.
For easier orientation we use prefixes for contained files:

• connection_* — implementation of physical connections and necessary library call-
back functions



Code Structure 48

• message_* — data-structures and functions for modeling communication channels
and ports

• progress_* — functions providing the system abstraction and middleware API

The other three directories — components, virtual_nodes and physical_nodes — contain
subfolders with name of included components or nodes respectively. Each subfolder should
contain directory src with handwritten or generated source code and makefile (subdir.mk).



Chapter 7

Related Work

Increasing requirements for progressive software productivity and quality resulted in the
use of component-based development. Currently, there exists many component models
for a wide range of applications used for example in automotive industry, consumer elec-
tronics, telecommunications and other business domains. Each specific domain places
emphasis on different properties of individual components, the underlying platform and
the binding mechanisms. A number of middleware have been created in order to create
runtime and communication support of application components. However, these mostly
do not take into account various requirements for the domain of real-time systems. The
requirements and constraints to embedded systems, as they are presented in [6], do not
allow to use existing technologies for enterprise component system, such as CCM, J2EE,
CORBA and .NET/COM+.

Design-time analysis according to Progress is essential for achieving system compli-
ance with desired non-functional requirements and predictable behavior of the interaction
between software components and real hardware. In addition to the requirements of de-
velopment of applications for real-time embedded systems, a middleware has to satisfy
the specific requirements for component design (tasks, message ports), communication
(virtual channels), scheduling (virtual nodes) and hardware platform (EVK1100 board
running FreeRTOS). The approach we have proposed in this report is based on ProCom
component model, therefore the middleware can be easily incorporated into the existing
development tool in order to complete the whole development life-cycle.

Several component models has been already developed in either academia and industry.
In this chapter, we provide a brief overview of some component models for real-time
embedded systems.

7.1 AUTOSAR

A relatively long tradition of component-based development is within automotive indus-
try. The AUTomotive Open System ARchitecture (AUTOSAR) [22] was founded
as a development partnership between several manufacturers and suppliers from the auto-
motive field. The main focus of AUTOSAR is to establish an open standard in automotive
industry to master the growing complexity of automotive electronics. The standardization
of architecture, architectural components and their interoperability allows a separation
of development of component-based applications from the underlying hardware platform.

49



SOFA HI 50

The AUTOSAR standard introduces the Virtual Function Bus (VFB) and the Runtime
Environment (RTE) architectural concepts and different layers of abstraction to capture
several aspects of the physical system on which the application will later be deployed
on. An AUTOSAR software component is wrapped into a so-called Runnable which are
implemented in C.

7.2 SOFA HI

The component model SOFA 2 [23] has been developed at Charles University in Prague.
SOFA HI [24, 25] is an extension of this component model supporting high-integrity real-
time embedded systems. SOFA HI keeps control over all hardware resources through a
service mediating access to the real-time operating system and hardware. The component
model allows hierarchical component composition and definition of extra-functional prop-
erties. Components can be active – contain own thread, or passive – executed in the con-
text of an active component.

In many situations, a component can provide access to a hardware device, or its part,
and therefore it is useful to mark this component as singleton during system design phase.
The specification of SOFA components and system is described by an ADL-like language
which is extended to keep the information about additional architectural attributes. The
implementation of SOFA HI components is mainly based on usage of C macro definitions
with various restrictions in order to keep them predictable and lightweight. The applica-
tions can use only provided system API providing platform abstraction. The SOFA HI
system API is the same for each supported operating system and its implementation is
selected at compile time.

7.3 MyCCM-HI

MyCCM1 High Integrity is a component framework for critical, distributed, real-time and
embedded software [26]. It is based on LwCCM with specific extensions, addons, and
limitations. MyCCM-HI application model is described with its own input architec-
ture description language called COAL (Component-Oriented Architecture Language).
MyCCM-HI allows to develop composite components in one of the following languages:
C, C++, Java, and Ada.

The MyCCM generator produces also an AADL [27] model describing the thread def-
initions with associated priorities and periods, and communication code. MyCCM-HI
uses Telecom ParisTech Ocarina[28] for generating PolyORB -based application-specific
underlying middleware layer from an input AADL model. PolyORB [29] is a versatile
middleware that aims at providing distribution and concurrent capabilities for High In-
tegrity systems. The final generated code is very compact and thus easy to verify, and it
is adapted to several execution platforms (Linux, VxWorks, OSE-ck, OSEK).

1MyCCM stands for “Make Your Component Container Model”



RubusCMv3 51

7.4 RubusCMv3

The Rubus component model was designed for development of distributed real-time sys-
tems especially to support development of embedded control systems with a mix of hard,
soft and non real-time requirements. The component model aims to express the inter-
action between software components in terms of data and control-flow as well as non-
functional attributes e.g. timings requirements and resource utilization.

Rubus uses hybrid scheduling – static scheduling for critical core functions (clock-
triggered tasks run at highest priority), and event-triggered tasks use the remaining pro-
cessing time. Two types of real-time timing requirements are supported: (1) deadlines
and (2) jitter bounds.

The architectural elements are represented by graphical entities, which can be con-
nected by data and triggering flows. The basic units of composition in Rubus are software
circuits which can be hierarchically composed. Component behavior is represented by a
specific entry function. Each component is also associated with profile describing the
execution-time and memory consumption on different platforms [14].

7.5 Similar Models

Furthermore, we could state other component models for example COMDES II2[30],
Palladio3[31], Robocop4, and others according to the comparison found in [7]. Since
one of the main task of middleware is to provide code portability we would like to mention
a specialized real-time embedded middleware framework creating Component Portability
Infrastructure (CPI). OpenCPI is a middleware developed to reduce complexity and
improve code portability of real-time embedded systems. OpenCPI creates a hardware
abstraction layer for component-based applications on heterogeneous architectures and
communication technologies.

The presented component models are similar in spirit to our work, however we have
focused more on the support for modeling elements and semantics of message communi-
cation through the virtual channels. Moreover we added support for using the two-level
Hierarchical Scheduling Framework (HSF) for FreeRTOS presented in [16]. The goal of
HSF integration is to allow predictable integration of virtual nodes on one physical node,
and profit from reusability of timing analysis of previously developed virtual nodes.

2COMponent-based design of software for Distributed Embedded Systems, version II, developed at
University of Southern Denmark.

3It was started at University of Oldenburg, actively developed by Karlsruhe Institute of Technology
(KIT), FZI Research Center for Information Technology, and University of Paderborn.

4Robust Open Component Based Software Architecture for Configurable Devices Project.



Chapter 8

Conclusion and Future Work

The goal of this thesis was to develop and implement parts of a middleware that provides
necessary support for the execution of the ProCom components not only on the top
of the real-time operating system FreeRTOS. The major interest concerns the transparent
communication over the connections of different types while the connected physical nodes
can be of the various execution platform.

To summarize, the main contribution of the thesis consists in analysis of various pos-
sibilities of the channel communication and implementation of the basic execution and
communication support for the virtual nodes based on analysis of the ProCom model
semantic and requirements. The substantial part of the thesis is dedicated to examine the
semantic of sending and receiving messages by tasks, allowing the transparent reallocation
of virtual nodes and sharing physical connections by multiple channels.

The key issue tackled in the design of the communication interface is to ensure fair
(mostly equal) consumption of resources when a task communicates regardless of genuine
structure of channels and type of physical connections. Proposed solution consists of ex-
tra tasks — sender and updater, which do not only facilitate the handling of messages,
moreover they are engaged in the implementation of the semantic of task triggering.

We would like to draw the attention to a problem with message delivery delay caused
by buffering in combination with the defined communication semantic. The investigation
of the system starting process has raised questions related to the detection of physical node
state and managing cyclic dependencies during establishing of the physical connections.
The answer is connected to the future definition of reliable channels.

The middleware consists of two layers: system abstraction layer and modeling API.
The system abstraction layer enables us to develop platform independent modeling API
covering most of the features needed for the integration of the synthesis mechanism into
the Pride tool. Our approach increases the reusability of the components by moving
the information about system and communication outside the component code without
negative impact to the effective resource utilization.

As it turned out at the end of our implementation, we need to move our effort from
simple hardware support for communication to the general hardware model promoting
unified input/output access to devices both for transparent inter node communication,
and the possible need to communicate with attached peripherals.

The future work may consist of improving and adding support for more platforms
(especially the systems without dynamic task creation) and connection types, optimization

52



53

of message sending (joining multiple messages into one packet), and finally add ability
to use multiple instances of the same virtual node on one physical node. The concept of
virtual nodes waits for an early integration of the support for hierarchical scheduling to
achieve the temporal isolation between the components and predictability of the system
behavior.

Finally, in order to complete development chain for model driven engineering of the Pro-
Com component based system, the implementations of the physical platform modeling and
deployment in the Pride tool need to be finished.



Bibliography

[1] Tomáš Bureš, Jan Carlson, Séverine Sentilles and Aneta Vulgarakis, A Component
Model Family for Vehicular Embedded Systems, Mälardalen Real-Time Research Cen-
tre, Västerås, Sweden.

[2] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and Aneta Vulgarakis,
ProCom — the Progress component model reference manual, version 1.0. Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-230/2008-1-SE, Mälardalen University,
June 2008.

[3] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja and Mikael Sjödin, Deployment Mod-
elling and Synthesis in a Component Model for Distributed Embedded Systems, 36th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
Lille, France, 2010.

[4] Ivica Crnković, Magnus Peter Henrik Larsson, Building reliable component-based soft-
ware systems, ISBN 9781580533270, Artech House, 2002.

[5] Ivica Crnković, Component-based Software Engineering for Embedded Systems,
ICSE’05, 2005.

[6] Ivica Crnković, Component-based approach for embedded systems, Ninth International
Workshop on Component-Oriented Programming, 2004.

[7] Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis, and Michel Chaudron, A Clas-
sification Framework for Software Component Models, IEEE Transaction of Software
Engineering, 2010.
http://www.mrtc.mdh.se/index.php?choice=publications&id=2139

[8] FreeRTOS homepage, http://www.freertos.org, December 2010.

[9] Tomáš Pop, The Progress Run-time Architecture, Master of Science Thesis,
Mälardalen University, February 2009.

[10] ProgressIDE, http://www.idt.mdh.se/pride/?id=features, November 2010.

[11] Jagadish Suryadevara, Aneta Vulgarakis, Jan Carlson, Cristina Seceleanu and Paul
Pettersson, ProCom: Formal Semantics, version 1.1, Mälardalen University, July
2010.

[12] Dan Ionescu, Aurel Cornell, Real-time systems: modeling, design, and applications,
ISBN 9789810244248, World Scientific, 2007.

54



BIBLIOGRAPHY 55

[13] Hermann Kopetz, Real-time systems: design principles for distributed embedded ap-
plications, ISBN 9780792398943, Springer, 1997.

[14] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John Lundbäck
and Kurt-Lennart Lundbäck, The Rubus Component Model for Resource Constrained
Real-Time Systems, 3rd IEEE International Symposium on Industrial Embedded
Systems, June 2008.

[15] Jim Turley, The Two Percent Solution,
http://www.eetimes.com/discussion/other/4024488/The-Two-Percent-Solution ,
2002.

[16] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and Sara Afshar,
Hierarchical Scheduling Framework Implementation in FreeRTOS, Technical Report,
Mälardalen University, 2011.

[17] POSIX.1-2008 specification,
http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html

[18] The Open Group Base Specifications Issue 6, IEEE Std 1003.1,
http://www.opengroup.org/onlinepubs/007904975/basedefs/pthread.h.html

[19] NxtOSEK homepage, http://lejos-osek.sourceforge.net/whatislejososek.htm, 2010.

[20] Shengquan Wang, Sangig Rho, Zhibin Mai, Riccardo Bettati, and Wei Zhao, Real-
Time Component-based Systems, 11th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS’05) 1080-1812/05 $ 20.00 IEEE.

[21] Steve Zucker, Endianness in the Solaris Operating Environment,
http://developers.sun.com/solaris/developer/support/driver/wps/endianness/SOLENDIAN.pdf,

1999.

[22] AUTOSAR homepage, http://www.autosar.org/, 2011.

[23] SOFA 2 homepage, http://sofa.ow2.org/, 2011.

[24] SOFA-HI homepage, http://sofa.ow2.org/sofahi/, 2011

[25] Petr Hošek, Tomáš Pop, Tomáš Bureš, Petr Hňetynka and Michal Malohlava, Sup-
porting real-time features in a hierarchical component system, Technical report No.
2010/5, December 2010.

[26] MyCCM-HI homepage, http://sourceforge.net/apps/trac/myccm-hi/wiki, 2011.

[27] AADL homepage, http://www.aadl.info/aadl/currentsite/, 2011.

[28] Ocarina homepage, http://libre.adacore.com/libre/tools/ocarina/, 2011.

[29] PolyORB middleware homepage, http://www.adacore.com/home/products/gnatpro/add-
on_technologies/distributed_systems, 2010.



BIBLIOGRAPHY 56

[30] X. Ke, K. Sierszecki, and C. Angelov, COMDES-II: A ComponentBased Framework
for Generative Development of Distributed Real-Time Control Systems, in Proc. of
the 13th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. IEEE, 2007.

[31] Palladio homepage, http://www.palladio-simulator.com/, 2010.



Appendix A

API Documentation

A.1 Functions

void init_task (progress_task_t *task)
Function initializes task datastructure and it calls task initialization routine.

void create_task (progress_task_t *task)
Function creates new thread from the correct routine according to task type.

void init_virtual_node (progress_node_t *node)
Function calls the init routines of tasks allocated on the virtual node.

void create_virtual_node (progress_node_t *node)
Function creates the tasks from components allocated on the virtual node.

int get_message (task_port_in_t *mpin, void *read_data)
Function reads lastest message from the associated message port.

void send_message (task_port_out_t *out_port, void *data)
Function writes and sends data in message through the associated message ports.

void write_data (task_port_out_t *out_port, void *data)
Function only writes data to associated message ports without triggering the mes-
sage ports.

void wait_for_other_nodes_init ()
Function should wait until connected nodes are ready.

void wait_for_other_tasks_init ()
Function waits until function activate_tasks() is called.

void activate_tasks ()
Function activates all created tasks.

void wait_for_activation (progress_sem_t *task_port_in)
Function waits for incomming message on specified trigger.

57



Macros 58

void wait_for_next_period (save_period_t *period_info)
Function waits for the next period to be activated.

void compute_next_period (save_period_t *period_info)
Function calculates when the task needs to be waken up.

void periodic_task (progress_task_t *task)
Periodic task routine.

void sporadic_task (progress_task_t *task)
Sporadic task routine.

A.2 Macros

#define GEN_MessagePortOutInit(PORT,...)
Macro generates initialization function of output message port.

#define GEN_MessagePortInInit(PORT,...)
Macro generates initialization function of input message port.

#define GEN_MessagePortOut(NAME, SIZE, BUFFER_COUNT)
Macro generates message port variable for outgoing messages.

#define GEN_VNPortAssoc(CHANNELS)
Macro generates channels association list.

#define GEN_VNSetPortAssoc(VN,I,ID,CHANNELS)
Macro generates association of information about channels to a message port.

#define GEN_MessagePortIn(NAME, SIZE, BUFFER_COUNT, ACTIVATED_TASKS)
Macro generates message port variable for incoming messages.

#define GEN_MessagePortInExtern(NAME,...)
Macro generates task port variables.

#define GEN_AssocPorts(PORT, IS_TRIGGERED, DATA_CONNECTOR)
Macro generates output task port.

#define GEN_TaskPortIn(NAME, MESSAGE_PORT, IS_ACTIVATED)
Macro generates input task port.

#define GEN_ChannelFrontend(NAME, SIZE, CONNECTIONS)
Macro generates channel frontend from the main list of channels.

#define GEN_ChannelBackend(NAME, SIZE, PORTS)
Macro generates channel backend from the main list of channels.

#define GEN_local_info(CHANNEL)
Macro generates information about local connection between channel parts.



Macros 59

#define GEN_network_info(CHANNELS)
Macro generates information about network connection.

#define GEN_serial_info(CHANNELS)
Macro generates information about serial connection.

#define GEN_TcpPortAccept(NAME, IP, CONNECTION)
Macro generates list of accepted clients.

#define GEN_TcpPortListen(NAME, IP, CLIENTS)
Macro generates information to open TCP port for listening.

#define GEN_TcpPortConnect(NAME, IP, PORT, CONNECTION)
Macro generates information to connect to TCP port.

#define GEN_SerialPort(NAME, DEVICE, BAUD, CONNECTION)
Macro generates connection variable.



Appendix B

How to build own application

The building process can be divided into two potentially independent parts. First part
consists of building ProCom middleware library and the second one builds the runnable
representation of physical node. Although the process of building library can be indepen-
dent, it can useful to rebuild the library based on physical node requirements and reduce
the size of resulting executables if some parts of library are not needed (for example
TCP/IP communication).

B.1 Prerequisites

In order to build ProCom middleware and sample application from source, several libraries
and programs are required to be present on the system depending on target physical node.
Generally we use GNU/Make tool and GCC compiler, however there are some specific
programs needed for each supported platform. Further we provide basic information and
links to

AVR32 EVK1100/FreeRTOS

• AVR32 GNU Toolchain 2.4.2
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118

– cross compiler, assembler and linker

– debugger

– flash programming tools

• AVR32 Studio 4
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

– preconfigured examples

– FreeRTOS, LwIP library and other drivers

60

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725


Obtaining Source Code 61

Apple Mac OS X

• XCode Tools 2.2.1
http://developer.apple.com/technologies/xcode.html

– tested with GCC 4.2.1 (build 5664)

– POSIX Threads - IEEE 1003.1c

Microsoft Windows

• Cygwin
http://cygwin.com/install.html

• Install GCC 4 and Make packages using the Cygwin installation wizard.

GNU/Linux

• All major distributions already includes GCC and make packages in latest versions.

B.2 Obtaining Source Code

Source core is available from the CD-ROM attached to printed version of this thesis or
the latest version is accessible online from subversion repository (username: mdh, pass-
word: mdh2010) http://server.openagency.cz/svn/jirka/netdemo. Process of merg-
ing downloaded source code with the environment for EVK1100 including FreeRTOS,
LwIP library and necessary drivers is described in Chapter C.

B.3 Compilation

To ensure maximal compatibility across different platforms we decided to use a Makefiles
for driving build process. First we present sub-makefiles for components (tasks), virtual

Listing B.1 Component subdir.mk

include Makefile .inc

C_SRCS += ./ components/sender/src/sender.c

OBJS += ./ components/sender/src/sender.o

COMPONENTS_SENDER_INCLUDE = -I./ components/sender/src/ \

-I./ progress / -I. -I./CONFIG/

./ components/sender/src/sender.o: ./ components/sender/src/sender.c

$(CC) $(CFLAGS) $(SYMBOLS) $(COMPONENTS_SENDER_INCLUDE) -o"

$@" "$<"

nodes and physical nodes. In each makefile we add used source and object files to variables
C_SRCS and OBJS.

http://developer.apple.com/technologies/xcode.html
http://cygwin.com/install.html


Compilation 62

The virtual node includes the sender task component subdir.mk and the rule for cre-
ating object file from the source code.

Listing B.2 Virtual node subdir.mk

include ./ components/sender/src/subdir.mk

C_SRCS += ./ virtual_nodes/vn_sender /src/vn_sender .c

OBJS += ./ virtual_nodes/vn_sender /src/vn_sender .o

VN_SENDER_INCLUDE= -I./ virtual_nodes/vn_sender /src \

-I./ components/sender/src/ -I./ progress / -I. -I./CONFIG/

./ virtual_nodes/vn_sender /src/vn_sender .o: ./ virtual_nodes/

vn_sender /src/vn_sender .c

$(CC) $(CFLAGS) $(SYMBOLS) $(VN_SENDER_INCLUDE) -o"$@" "$<"

The physical node includes the sender virtual node subdir.mk and also the rule for
creating object file from the source code. If there are more virtual nodes allocated to
single physical node, we only include its subdir.mk :

• include ./virtual_nodes/vn_receiver/src/subdir.mk

Listing B.3 Physical node subdir.mk

include ./ virtual_nodes/vn_sender /src/subdir.mk

C_SRCS += ./ physical_nodes/pn_sender /src/pn_sender .c

OBJS += ./ physical_nodes/pn_sender /src/pn_sender .o

PN_SENDER_INCLUDE= -I./ physical_nodes/pn_sender /src \

-I./ virtual_nodes/vn_sender /src -I./ progress / -I. -I./CONFIG/

./ physical_nodes/pn_sender /src/pn_sender .o: ./ physical_nodes/

pn_sender /src/pn_sender .c

$(CC) $(CFLAGS) $(SYMBOLS) $(PN_SENDER_INCLUDE) -o"$@" "$<"

The listing B.4 shows the shorten version of main makefile that includes the physical
node subdir.mk file according to TARGET variable. Hence to compile pn_sender following
command should be executed:

• make TARGET=pn_sender ARCH={WINDOWS|LINUX|MACOSX|FREERTOS}

If the TARGET variable is not specified it compiles only the ProCom middleware library.



Compilation 63

Listing B.4 Shorter version of system Makefile

include Makefile .inc

PROGRESS_SRCS = $(wildcard $(PROGRESS_DIR)/*.c)

C_SRCS =

OBJS =

AS_FILES =

# Specific parts for different platforms

ifeq ($(ARCH), FREERTOS )

# omitted

endif

DEPEND = $(GCC) -MM -MT ’$*.o $*.d’

TARGET=lib

VPATH = $(SRC_DIR)

OBJECT_FILES = $(sort $($(basename AS_FILES ):.x=.o) $(OBJS))

LST_FILES = $($(basename AS_FILES ):.x=.lst) $(sort $($(basename

C_SRCS):.c=.lst))

DEPENDENCY_FILES = $(OBJECT_FILES:.o=.d)

ifneq ($(TARGET),lib)

include ./ physical_nodes/$(TARGET)/src/subdir.mk

-include $(DEPENDENCY_FILES)

endif

.PHONE all

all: lib $(TARGET)

build: $(TARGET)

lib: libprocom .a

libprocom .a : $($(basename PROGRESS_SRCS):.c=.o)

$(AR) -rs $@ $($(basename PROGRESS_SRCS):.c=.o)

ifneq ($(TARGET),lib)

$(TARGET) : $(OBJECT_FILES)

$(LD) -L. -lprocom $(LDFLAGS ) -o $@ $(OBJECT_FILES)

endif

%.d: %.c

$(DEPEND) $(CFLAGS) $(INCLUDES ) $(SYMBOLS) $< > $@

%.o: %.x

$(AS) $(ASFLAGS ) $< -o $@

%.o: %.c

$(CC) $(CFLAGS) $(INCLUDES ) $(SYMBOLS) $< -o $@

clean:

rm -f $(OBJECT_FILES) $(DEPENDENCY_FILES) $(TARGET)



Appendix C

AVR Studio

This part describes how to start development easily using software and hardware intro-
duced in previous three sections. At the beginning, we present creating new example
project using FreeRTOS and LwIP library. With this integrated solution, it is not nec-
essary to download and setup operating system and library separately. Creation of new
example project is done by simple wizard dialog. Desired action is achievable by following
these steps:

• Open menu: File > New > AVR32 Example Projects (see figure C.1)

Figure C.1: Creating new example project

• Filter only “lwip” projects and choose example for EVK1100 (see figure C.2).

64



65

Figure C.2: Select example project

• Setup project name and location if the default location is not checked (see fig-
ure C.3).

Figure C.3: Choosing name and location

• AVR Studio generates the project and copies FreeRTOS and LwIP files into created
project (see figure C.4).

Now we have a working example application, that can be uploaded and run on the board
or modified in order to use the middleware for our programs. However, if you want to
use other parts of the board is beneficial to use feature of the AVR Studio, which adds
drivers and header files to our folder using a simple wizard.

For using the middleware and some example application import the directory with
source codes into your project. The compilation of the firmware is facilitate by the make
utility that needs to be executed on command line.



66

Figure C.4: Project Explorer


	Introduction
	Problems Definition
	Benefits of the Implementation
	Outline of the Thesis

	Background
	Real-time Embedded Systems
	Middleware
	Component Based Development
	PROGRESS and the ProCom Component Model
	Development process
	Technological Background

	Modelling and Comunication Design
	Physical Nodes
	Virtual Nodes
	Channels

	The ProCom Middleware
	Platform Abstraction Layer
	API proposal
	Data structures

	Message Communication
	Message Sending
	Message Receiving
	Connection Reliability and Message Delivery Confirmation

	Application Example
	Components
	Virtual Nodes
	Physical Nodes
	Code Structure

	Related Work
	AUTOSAR
	SOFA HI
	MyCCM-HI
	RubusCMv3
	Similar Models

	Conclusion and Future Work
	API Documentation
	Functions
	Macros

	How to build own application
	Prerequisites
	Obtaining Source Code
	Compilation

	AVR Studio

