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Abstrakt: V této praci fesime problém odhadu pohybu robota vyhradné z obrazku
pofizenych ze vsesmérové kamery, kterd je namontovdna na robotu (vizudlni
odometrie [SE11[FS12]). V porovnani s hardware bézné pouzivanym pro visualni
odometrii, nas§ robot je specificky tim, ze se pohybuje pomoci pasu a obrazky
porizuje pomovi vSesmérové kamery s vysokym rozliSenim a nizkou frekvenci
snimkovani (1 to 3 Hz). V nasi préci se zaméfrujeme na vysokou presnost odhadu
pohybu ve scénach, kde jsou objekty daleko od kamery. Toto je umoznéno
pouzitim vSesmérové kamery. U tohoto typu kamer je zndmo zZe stabilizuji odhad
pohybu mezi pozicemi kamer, ktery je Spatné podminén u kamer s malym zornym
polem. Pro odhad pohybu kamery pouzivame metodu zaloZenou na detekci rohu.
K vuli moznosti velké vzajemné rotace kamer mezi snimky jsme nuceni pouzit
metodu parovani rohu namisto trackingu.
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Abstract: We present a system that estimates the motion of a robot relying solely
on images from onboard omnidirectional camera (visual odometry [SE11] [F'S12]).
Compared to other visual odometry hardware, ours is unusual in utilizing high
resolution, low frame-rate (1 to 3 Hz) omnidirectional camera mounted on a robot
that is propelled using continuous tracks. We focus on high precision estimates in
scenes, where objects are far away from the camera. This is achieved by utilizing
omnidirectional camera that is able to stabilize the motion estimates between
camera frames that are known to be ill-conditioned for narrow field of view cam-
eras. We employ feature based-approach for estimation camera motion. Given
our hardware, possibly high ammounts of camera rotation between frames can
occur. Thus we use techniques of feature matching rather than feature tracking.
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Introduction

The subject of this work is the development of visual odometry from omnidirec-
tional camera for skid-steer mobile robot.

Visual odometry (VO) is the process of estimating the motion of body using
only images from the camera that is rigidly attached to the body. In more detail,
given sequence of images ordered by the time they were captured in, it is required
to estimate for each of the images the position and orientation relative to each
previous image. It is expected that the relative estimate will become gradually
less precise as the distance between images increases (it is said that the estimate
drifts). An excellent introduction to visual odometry is in [SE11] [FS12].

Concerning the robot hardware, the robot is equipped with Ladybug3 cam-
era (www.ptgrey.com), which is omnidirectional camera composed of 6 wide-
angle perspective cameras. The robot is capable of producing either 3200 x 1600
panoramic image, or 6 individual images of approx. 1600 x 1200, both at a frame-
rate of 2 to 3 frames per second. The robot is propelled by caterpillar track and
it has flipper that can lift front (or back) of the vehicle as pictured in Figure [II

The motivations for implementing visual odometry on for out robot are the
following. The robot already has the capability to perform odometry using other
data-sources. Namely, wheel odometry, internal measurement unit and light de-
tection and ranging. The motivation behind having VO for the robot is that it
is assumed that it will have greater precision in estimating rotation and that it
will work in places where other data-sources fail. Specifically, light detection and
ranging based odometry suffers from the fact that laser range is approx. 10m.
The combined wheel and internal measurement unit odometry suffers from wheel
slip and rough terrain conditions (high vibrations).

Given the hardware constrains and the variety of odometries on the robot,
the design goals of our VO are as follows.

e VO has to be able to reliably estimate motion in an outdoor environment,
where it is expected that the objects in the scene will be far away. This goal
is motivated by the fact that in indoor environment the light detection and
ranging method works well. In outdoor environment this is not the case,
because of the range of the method.

e VO has to be able to work with slow frame-rates (compared to 24 hz of
standard cameras), but it can take much longer to process frames.

e VO should take advantage of the omnidirectional camera. This is motivat-
ed by the fact that omnidirectional vision has been proven in theory and
practice to be superior in motion estimation to that of standard perspective
camera [Ple03]. The reason for this is that for narrow filed-of-view cameras
the estimates of relative motion are ill conditioned.

We will briefly mention several other works that solve similar problem to ours.
Perhaps the closest work to our [DRMS07], where motion of a car is estimated
using omnidirectional camera mounted above the roof of the car. Other works
include [NNB06, DRMS07, HWB™11, [SDMKT1]. These methods use wide-angle
perspective cameras, where some of them perform more difficult problem called


www.ptgrey.com

Figure 1: Picture of our skid-steer robot. Image taken from https://cw.felk.-
cvut.cz/doku.php/misc/projects/nifti/demos/railway_201204.

simultaneous localization and mapping. Finally, more unusual methods exists,

e.g. [MWOS, [GAPPOT].



1. System Analysis and Design

1.1 Overview

We would like to give an overview of of major components of our system and
explain how interact with each other to form the desired behavior. Division
into the modules correspond with the actual implementation. It is also stable
enough to survive severe design changes and thus the intent of this section is to
provide context for the discussion of both analysis of the VO problem and actual
implementation of individual parts of the system.

Keyframe Manager

graph
optimalization

1
Node Builder

1
Node Destroyer
Edge Builder

.

Landmark Manager

Main Data Structure i

camera model

Y

edge node landmark
L - -4 information |={ information [ information |====

Figure 1.1: Overview of system modules and their interactions. Round-edged
boxes represent input/output module interfaces and sharp-edged boxes represent
output-only interfaces. Arrow indicates that source module uses target module.

1.1.1 The Main Modules of the System

We describe main modules of the system, which are illustrated in [Figure 1.1, The
main data structure is described in terms of its function with relation to the rest
of the top-level modules.

Information Maintained by the Main Data Structure

We represent data that are required for operation of the VO system as an oriented
graph G, with additional constraint (a,b) € G < (b,a) € G. Nodes represent
frames and edges represent constrains between nodes. Part of this representation
is also a landmark, which represents locations of points of interest in the scene.
A node of the graph represents a pose of the camera in space as a rigid
body transform from origin of the odometry coordinate frame to the coordinate
frame of the camera represented by the node. An image of the scene that is
taken from this pose is also represented by node — as an array of selected image
features detectable from this pose (or equivalently, this viewpoint). Image feature
(or simply feature) is well detectable image pattern in an image that can be
redetected from images taken from nearby poses. To be more precise, the feature
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array is are represented as an array of keypoints and the corresponding descriptors
for the keypoints. Descriptors contain parts of the feature representation which
is useful only for feature matching, while keypoint represents information about
features that are also useful elsewhere (like image coordinates, or strength of the
feature detection response for that feature).

An edge of the graph represents two things. First, it represents transform
from the edge source camera pose coordinate frame to the edge target camera
pose coordinate frame. Second, it maintains an association of pairs of features in
the edge source and edge target that are images of the same landmark. Landmark
is a part of the scene that gives rise to a feature in an image (i.e., it is coimage
of the feature). They are represented as 3D points.

The landmark structure represents 3 things. First, it maintains an associa-
tion of features-node pairs with landmarks from which they are observed. Second,
it maintains whether a meaningful 3D estimate of landmark can be computed.
Third the 3D estimate of landmark position (if applicable). The issue of mainte-
nance of Landmark structure is discussed in [section 1.5l

Interface for the Manipulation of the Main Data Structure

The interface consists of routines which create nodes (Node Builder), create edges
(Edge Builder) and delete nodes with consequence of deleting edges (Node De-
stroyer). The addition and deletion of edges invokes changes in the landmark
substructure, which is performed by Landmark Manager (section 1.5)).

Main purpose of Node Builder is to process input image into array of features
and its corresponding descriptors. After invocation of Node Builder, the processed
image is discarded.

Edge Builder initiates process where most of the work of our VO system
is done. Edge Builder parameters are source and target nodes that are to be
connected by an oriented edge. It also accepts the type of edge parameter which
determines what kind of estimation is done. Further division of Edge Builder into
submodules is discussed in lsubsection 1.1.2 The arrangement of the submodules
that form Edge Builder is than discussed in [subsection 1.1.3l

Node Destroyer takes the node that is to be deleted as a parameter. The
only interesting issue with this operation is that as a consequence of the node
deletion, landmark structure needs to be altered to reflect deletion of features
and corresponding landmark-feature associations. This is discussed as a part of
Landmark Manager in [section 1.5

Graph Optimalization

Graph optimalization module utilizes the feature-landmark constraints that arise
from feature measurements in an image and initial pose estimates of nodes and
landmarks to jointly optimalize estimates of the camera poses. This is a com-
putationally expensive step and it relies on Keyframe Manager to maintain such
graph structure in Main Data Structure that keeps only meaningful constraints.
Graph optimalization module, that employs nonlinear optimalization method,
called bundle adjustment (BA) in context of computer vision, is discussed in

Section [L.6]



Keyframe Manager

Keyframe Manager is the top level module that directly or indirectly controls all
other modules and is an interface of the whole system. Its function is to issue
appropriate commands to Node Builder, Edge Builder and Node Destroyer so as
to obtain graph structure and thus also node, edge and landmark information
that is proper for BA. After BA, pose information of active node is outputed to
fulfill VO task. Active node is the node that correspond to the last camera image
received and processed by Node Builder. The nodes in the graph that are not used
in BA are of no further use for VO and thus can be deleted by Node Destroyer.
Nodes kept for BA, with the exception of the active node, are commonly called
keyframes in the context of BA (thus the name Keyframe Manager).

Camera Model

Camera model module is used heavily in almost all modules. Given pose in
the scene, its function is to map pixels in the image to the parts of scene that
determine the value of this pixel and vice versa. Camera model is the subject of

[section 1.2

1.1.2 Individual Subcomponents of Edge Constructor Mod-
ule

We describe submodules from which Edge Builder function is composed. They
are described in terms of required input and their output. Because these modules
use only information that is part of Main Data Structure, the input requirements
also specify which parts of MDS have to be filled for use of this module. The
proper order of execution of these modules is then subject of kubsection 1.1.3 and

Fizure 1

Feature Selection

input Array of keypoints and its corresponding feature descriptors (e.g. such
as in a node of the Main Data Structure).

output Array of filtered keypoints and its corresponding array of descriptors.
Feature can be selected by non-maxima suppression of feature detection response
strength given required maximum acceptable feature density per unit squared of
image coordinate.

Unguided Matching

input Array of keypoints that are to be matched and array of corresponding
feature descriptors. This is useful to reduce computational requirements of sub-
sequent steps.

output Set of pairs (7,j), where i is an index of a feature in the array of
features originating from image of source node and j is an index of a feature in
the array of target node. It is assumed that if features are paired, that there is



reasonable probability p that the paired features are images of the same landmark.
Requirements on p are defined by robust estimation module that uses the output,
typically p ranges from 0.2 to 0.8 ).

The task performed by this module is called feature matching in general and
the pairs (i, 7) are called correspondences. In more specific terms, the kind of
feature matching employed by this module is called unguided matching in the
sense that no geometric constrains are exploited in matching process and only

feature information is used. Unguided matching is the topic of [subsection 1.4.1]

Guided Matching

input Array of keypoints that are to be matched and array of corresponding
feature descriptors. Rigid body transform between coordinate frames of the two
nodes involved in matching. Optionally, landmark-feature association for features
in one of the nodes and 3D coordinate of the landmarks involved.

output For guided matching, it is qualitatively same as for unguided matching.

Guided matching is the topic of [subsection 1.4.21

Robust Model Estimation

input Feature-feature correspondences from two nodes with reasonable number
of outliers. RanSaC is used for model estimation, and thus outlier to inlier ratio
depends on model size, which in turn determines number of iterations required.
Computational requirements of various model estimation algorithms are leading
factor in time complexity of one iteration.

output The feature-feature correspondences that fit the model and the esti-
mated model — rigid body transform between node coordinate frames. Robust
model estimation the topic of

Model Refinement

input Rigid body transform estimate (initial model estimate) between the two

nodes involved. Feature correspondences that fit the model estimate.

output Refined model estimate (typically using all inlier feature correspon-
dences).

Outlier Removal Given Estimated Model

input Rigid body transform estimate (model estimate) between the two nodes
involved.

output Feature correspondences that fit the model estimate.
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Figure 1.2: Possible arrangements of modules to fulfill Edge Builder interface.

1.1.3 Edge Construction Component Types

We present arrangement of the components from the above section which pro-
duces possible implementations of Edge Builder. These arrangement are illustrat-
ed in [Figure 1.2l They fall into two major types. First, the case where the rigid
body transform is not known. Second, the case where the rigid body transform
between nodes is already known (e.g. from internal measurement unit).

Unknown Rigid Body Transform

The most complete solution uses the modules in the following order: feature
selection (to reduce number of features to tractable levels for unguided match-
ing), unguided matching (to find feature correspondences), robust model
estimation (to remove outliers and estimate the rigid body transform), model
refinement (compute more precise estimate using all data), guided matching (
to increase number of correspondences), outlier removal given known model.
This corresponds to path A-1.

Other options include skipping model refinement (this is the case that we
actually implement) and/or skipping the guided matching with outlier re-
moval given known model (if we have enough correspondences). This corre-
sponds to paths A-2, A-3 and A-4.



Known Rigid Body Transform

This case is not required for VO to work (and we have not implemented it), but
it can help significantly reduce computation time when the rigid body transform
estimate is already available. This is useful if VO is combined with e.g. wheel
odometry or internal measurement unit. It can be also useful in keyframe manager
for creating additional constrains in the pose-graph or in case when only rotational
part of the estimate is known.

Desirable arrangement of modules depends on the quality of the initial rigid
body transform estimate. If it is fine, only two steps are necessary: guided
matching and outlier removal given known model (B-1). For more coarse
estimates, the following steps would become necessary: guided matching, out-
lier removal given known model, model refinement, guided matching
(again for more matches), ... (B-2).

1.2 Camera Models

We define camera model (CM) using common geometric abstraction used in liter-
ature [SRTT11, MSKS10]. Camera model determines which regions of space are
imaged on what regions of cameras imaging surface. The regions of scene that
affect a point on the imaging surface are modeled by rays. We parametrize Ray as
(B, BY), where B/ is some point on the ray in 3D space and B’ is some direction
vector of the ray. Camera model (CM) is fully determined by the following:

e space of its imaging surface Z
e the space R of rays sampled by the camera.
e camera parameters p (intrinsic camera parameters).

e one to one map m,: R — 7 between the space of imaging surface Z and of
the camera and the space of rays sampled by the camera R.

The function 7, is called forward projection or simply projection and the
function 7 Lis called back-projection.

CMs can be divided into central and non-central. CM is central camera model,
if all the rays in R intersect at one point which is called optical center. Otherwise
it is non-central camera model or equivalently generalized camera model. Conse-
quently rays in central CM model can be parametrized using direction vectors B°
only, because B/ by convention, lies at the origin of camera CF.

In order for function m, to be determined, camera parameters p have to be
determined. Process of estimating camera parameters is called calibration. De-
signing CM and calibrating it is not subject of this thesis. We were provided few
options for CM. In the following text, the available camera models are discussed.
The decision to use a one of the models is than discussed in Section [L.3]

1.2.1 Generalized Model of Ladybug3 Camera

Ladybug3 camera consist of six standard cameras with fixed intrinsic parameters
adhering to the ideal pinhole CM with polynomial distortion, similar to one de-
scribed in [MSKS10, Chapter 3]. Five of these cameras are arranged so that their
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Sensor

(b) Ladybug3 camera. Orientation
of optical axes of individual per-
(a) Ladybug3 camera. spective cameras.

Figure 1.3: Ladybug3 Camera. Images taken from www.ptgrey.com.

optical axes lie in one plane and meet at one point O,. Sixth camera has optical
axis perpendicular to the plane and also intersects the other optical axes at point
O;. The arrangement of cameras in Ladybug3 camera is depicted in [Figure 1.3b|
while the picture of the real camera is in The cameras have wide
field of view so that all rays with direction vectors pointing above (as defined
by the plane defined by the optical axes of the first five cameras are
sampled by at least one of the cameras (or more).

The optical centers of the individual cameras do not coincide with O,. There-
fore, if we wish to model Ladybug3 camera by single CM precisely, that CM
cannot be central CM. We designate the optical centers of the individual cameras
as Oy, ..., 05 and describe appropriate CM for Ladybug3 camera as follows.

e The virtual imaging surface Z = | J 0.5 L; of Ladybug3 camera consists of
the six parts that correspond to imaging planes Z; of the individual cameras
satisfying pinhole CM.

e The space of rays sampled by the Ladybug3 camera is

R= |J {(0;,B})]B; € B;}

j=0,...,5
where B; is the set of rays sampled by the camera with optical center O;.
e The Ladybug3 camera parameters p are given by:

— RBTs from camera CF with origin at Og and CF of individual cameras
with origins at O;.

— The parameters p; of the individual pinhole cameras.

Camera, which consists of multiple cameras related by RBTs is called multi-
camera rig.

10
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e The forward projection m,: R — Z is defined by:
7T(Oj? B]Z) = ﬂpjvj(B;)
and back-projection is thus defined by:

m, (1) = (05, m,,5(15))

1.2.2 Central Camera Models for Omnidirectional Cam-
eras

In this section we define two useful central CMs which will be useful for the next
section where we consider an approximation of Ladybug3 CM using these models.

Spherical Camera Model

Convenient model applicable to all central projection cameras is spherical CM
which is defined as follows:

e The virtual imaging surface Z is a unit sphere.
e Space of rays R samples visible rays B’ with optical center O;.
e The forward projection m,: R — Z is defined by
7(05, B) = (2.1, 2)
where (z,, ) is the direction vector of a ray B® such that ||(z,y, 2)|| = 1.

e The back-projection Lis identity.

Cylindrical Camera Model

Figure 1.4: Panoramic image constructed from spherical approximation.

This is a central CM, where rays are projected onto a cylinder which is then
unrolled into a plane. One of the features of this model is that as the elevation

11



of the projected ray increases the angle between the rays corresponding to two
equidistant points on the image plane also increases which causes severe distortion
on the upper and lower edges of the imaging surface (as seen in Figure [[4)).

e imaging surface is defined by Z = (0,¢), where § € (—m,+7) and ¢ €
(_ga+%)

e the space R is defined as:
R ={(0, (z,y, )ll(z,y,2) = 1A || # 1}

e intrinsic camera parameters p are the same as for spherical approximation.

e The projection functions correspond to conversion between spherical and
cartesian coordinates. More specifically, forward projection m,: R — 7 is
defined as

m((z,y, 2)) = (atan2(—=x, 2), atan2(y, Va2 + 22))
and back-projection is

m, (0, ¢)) = (sin(6) cos(y), sin(), cos(9) cos(¢))

1.2.3 Spherical Approximation for Ladybug3 Camera

If we use notation introduced in the definition of Ladybug3 CM, than in spherical
approzimation of Ladybug3d camera the optical center Oy is assumed to coincide
with optical centers O;. Consider a ray (Os, BY) € R such that there exists
camera j and ray Bj € R; for which B’ = B}. In the approximation the rays B’
and B; sample sample same part of the scene and thus it is assumed that

o(my(B)) = ¢j(my, 5((0;, B))))

where ¢, ¢; are functions that map point on imaging surface to its brightness
value.

In the following, we attempt to characterize error induced by the spherical
approximation. We follow the derivation presented in [KHKI0]. Consider a
landmark with coordinates X that is imaged by ray B;- of camera j. In coordinate
frame of Ladybug3 CM, this corresponds to the ray (O;, B;) Using a spherical
CM, we designate the ray corresponding to the landmark X as B*. Such situation
with j = 1 is drawn in[Figure T.5al The rays (Oy, O;), B* and (O;, B}) determine
a plane, which is drawn in [Figure 1.5b In the following, the approximation error
is characterized using angle between rays (O, B;) and B® which is designated as
f.. This is then related to angle #. which is maximum angle such that error of
approximation on the imaging surface of spherical CM, which is determined by
e; = ||zs — x|, does not exceed k pixels.

The derivation of 6. follows. We designate the distance of landmark X from
optical center Oy as d, and we designate t; as ||[O; — O;||. For Ladybug3 CM,

12



(a) Error in ray direction induced by (b) Detail of spherical approximation er-
spherical approximation. Image adapted ror (see the text).
from [KHK10].

Figure 1.5: Spherical approximation.

t; = 0.042m for horizontal cameras (cameras 0 —4) and t; = 0.062m for the top
camera (camera 5). Using the law of sines, we get
t .

J dy

sinf, sin(m — 6,,)

noting that 6,, < 7, we have sin#,, = sin (7 — 6,,) an thus

t d,

sinf, siné,,

For minimal angle 92 between the rays intersecting pixel boundaries, we get fol-
lowing condition on d,, ¢; and 0,,

ot
sin g, > - siné,),
dy
This means that for specified error of approximation 9;, maximal angle 6, =
max 6,, and distance ||O; — O|| = t;, the minimal distance of the scene d, has to

be: )
tjsin 0,

(1.1)

Because we use spherical approximation with panoramic image at a resolution
of 1600 x 800 px, we now analyze particular values of d, and 9; that apply for
this model. Unfortunately, 0; is not even approximately constant in panoramic
image. In order to illustrate the nature of the error, we plotted 92 for each pixels
in panoramic image (see Figure [[B). The formula for computing 6. (x,y) is as
follows

"~ sind.

/

0.0, ) = min(]| |, (0, )| = I, (N (0, 2D

where 7, is a projection function for panoramic CM and N((f,¢)) are image
plane coordinates of the neighbouring pixes of (6, ¢).

13
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Figure 1.6: Plot of . for the panoramic image plane. The values are in degrees.

To arrive at an estimate of acceptable scene distance, we plot d, as a function
of 6,,, which is determined by [Equation 1.1, We plot this for ¢ = 60°, because
images of objects with higher elevation are too distorted to be useful for reliable
feature detection and they are usually far away anyway. The plot is presented
as Figure [L7l We also note that for pixel neighborhood function N in vertical
direction only, 6.(6, ¢) = 6.(0,0). For this 6., the plot of d, as a function of 6,, is
in Figure

With these values, the spherical approximation does not seem to be plausible.
However, the results presented in [KHK10] indicate that it should be possible to
reliable use the spherical approximation for scenes where most objects are further
than 5m. This does not apply to the bottom half of the image because it is mostly
covered by robot and we do not use it.

1.3 Estimating Relative Rigid Body Transforms
Between Two Cameras

In this section, we discuss the problem of computing rigid body transform (RBT)
between the coordinate frames of two nodes in the pose-graph from set of feature-
feature or feature-landmark associations (or both), where we allow the associa-
tions to be partially incorrect. We call this problem pose-graph edge transform
problem. All considered methods for solving this problem require camera model
with backprojection function. Part of the problem of choosing the method is
also the choice of appropriate camera model for our physical camera as the set of

14
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Figure 1.7: Plot of minimum distance to the scene as a function of the angle
between optical center and imaged ray at ¢ = 60°. The plots correspond to
errors k of one, two and three pixels (colors blue, green and red).

usable methods depend on the camera model used.

More precise definition of pose-graph edge transform problem is as follows.
We have pose-graph in state where there is a node n that is not contained in any
pose-graph edge and a pair of nodes (n,n,). Node n does not have an estimate
of the RBT T,,. We wish to make an initial estimate of T, that will later
be further optimized using bundle adjustment (Section [[L6]). In addition to the
data available in the main data structure, we have the set of the feature-feature
associations between the nodes in the pair (n,n,). This has been obtained in
the step of unguided feature-feature matching that is described in Section [L4.l
Note that, we do not consider the case when n and n, are in different connected
components of the pose-graph. The described method could be extended to
efficiently allow for this, but we do not discuss it. The reason for this is that this
case is not useful for pure VO.

1.3.1 Model Estimation in Presence of Outliers

Our problem can be solved by model parameter estimation paradigm [HZ04!
Chapter 3]. That is we have model that is an adequate description of reality.
Such model is parametrized by a set of parameters. When the parameters of the
model are known, we say that the model is instantiated. We observe the reality
by collecting a set of observations. The observations are governed by observation
model that is fully determined by the instantiated model. The procedure used
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Figure 1.8: Plot of minimum distance to the scene as a function of the angle
between optical center and imaged ray at ¢ = 0°. The plots correspond to errors
k of one, two and three pixels (colors blue, green and red).

to instantiate model from the observations governed by an observation model is
called model estimator.

In robust estimation of the model it is further possible that observations are
polluted by outliers, which are observations that are not determined by an obser-
vation model. The observations that are determined by the model are inliers.

To illustrate the introduced notions, consider the following simple example
of estimating a circle in 2D space that is known to be centered in the origin
from set of point observations. The model is then the circle itself parametrized
by its diameter r. Suppose that we can measure circle by noisily observing a
large set of points on the circle. The appropriate measurement model would than
be that the observation is a random sample from 2D normal distribution. The
model estimator would than estimate the model by taking single datapoint and
computing its distance from the origin.

To deal with possible incorrect observations, we employ the method called
Random Sample Consensus (RanSaC) [FB81]. This method is de-facto standard
for model estimation in presence of outliers [FS12]. In a nutshell this method
works as follows. As an input, it takes a set of observations of a model (or dat-
apoints), a model estimator procedure and an inlier function that determines
for each datapoint and a given estimated model a subset of datapoints that are
considered inliers. The method than operates by iteratively, by estimating the
model from randomly chosen subset of set of datapoints and using inlier func-
tion to compute set of inliers. The chosen set is always of size k, where k is
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Algorithm 1 Random Sample Consensus (RanSaC) [FB8&1]

Computes model estimate M* that has largest consensus set C*. As an input it
takes model M, set of datapoints P, inlier function f : M(S) x P — 0,1 and a
threshold ¢. M(S) is model instantiated from k(M) datapoints, where k(M) is
minimal number of points required to compute unique model.

1. Set C* < 0.
2. Randomly select k(M) datapoints from P and denote them S.
3. instantiate model M (S) (using the selected datapoints 5).

4. Determine subset C', C' C P that satisfy error constraints given by the inlier
function f.

5. If |C| > |C*| then set both C* <— C' and M* < M.

6. If the desired number of iterations n has not been reached, continue with
step

7. If |C*| > t return failure otherwise return success, model M and consensus
set C™.

constant given by the model estimator. After predetermined number of itera-
tions algorithm terminates by returning the model estimate that has the larges
set of inliers. Such model is then accepted, if the largest set of inliers has large
enough cardinality. The minimal cardinality of the set is typically determined by
expected inlier to outlier ratio for datapoint set. The precise formulation of the
algorithm is presented in Algorithm [l The discussion of choosing appropriate
model and inlier function is the topic of subsequent sections.

Number of RanSaC Iterations Required

We proceed by discussing estimates of number of iterations required for the algo-
rithm to succeed (i.e. return a model estimate). It can be shown [FB&1], that if
we want the algorithm to succeed with probability z, than under the assumption
that model size is k and probability of datapoint is considered an inlier by inlier
function is w, the required number of iterations n is governed by the following
formula:

log(1 — 2)

n= ————
log(1 — w*)

This means that order for an model estimator to be usable in a RanSaC scheme,
it has to be able to instantiate models fast (i.e. > 1000 models per second), it
has to be able to instantiate from small number of datapoints (i.e. < 10) and
there must also exist fast inlier function for the model. A useful point here is
that the model estimator does not estimate the model precisely and thus the w
can be actually be lower (and typically is) than true probability of obtaining the
correct correct observation. This and the fact that model is computed from small
number of datapoints are also the reasons why the RanSaC procedure is usually
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Table 1.1: Possible methods that can be useful in solving pose-graph edge trans-
form problem. The number k is the minimum datapoints required to compute
the estimate and the number [ is the maximum number of solutions obtained
using the solver

Name Model k [ Camera Code Reference
Perspective Three-Point | T, 3 4  central yes [KSS11]
Generalized Perspective | T, 3 8 generalized no INSO7]

Three-Point
5-Point Relative Pose E 5 10 central yes [LHO6]
Generalized 6-Point Tew 6 64 generalized yes [SNOAO5]
Relative Pose

followed by computing a model estimate from all observations and readjusting
the inlier set accordingly.

1.3.2 Models and Estimators

In this sections we discuss various models and estimators that are applicable to
our problem and that can be used in a RanSaC scheme. All considered options
are then presented in Table [LI. We also discuss how to extract the solution to
our problem, if it is not obvious. Finally, we touch on how to deal with problem
where the methods presented produce more than one solutions. The inlier are
described in the next section.

Pose Estimation with Central Cameras

In this section we discuss a method for directly estimating a camera pose T,
based on feature-landmark correspondences. We recall from the beginning that
n is an unconnected node and (n,n,) an edge that is being added to the pose-
graph. The method discussed here is commonly called Perspective from n Points
or Perspective n-Points (PnP). More precisely, the datapoints that are input to
the method are pairs (p;, BY), where p; are positions of landmarks [; with respect
to world coordinate frame and B* are rays that correspond to observations of I;
from pose represented by node n. The tentative landmark-feature associations
are computed from feature-feature associations that were computed for the edge
(n, np).

The PnP problem is known ( see papers referenced in [KSS11]) to require at
least 3 datapoints of the above kind in order to constrain Tj,,, to finite number of
possibilities, of which there are 4. There exist many methods for solving P3P. For
all of them, we cite the [KSS11] since it is the most new development in P3P, it
claims to be very fast and there is fast C source-code available based on this paper
at http://www.asl.ethz.ch/people/kneipl/personal/p3p_code_final.zip.

Relative Motion Estimation with Central Cameras

In this section, we discuss case of estimating RBT from two cameras and tentative
sets of feature-feature associations. The material that follows is adapted from
[MSKS10l, Chapter 5] unless otherwise stated.
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We begin our discussion by describing the geometric relationships of geometric
objects involved. We consider non-degenerate situation of two cameras ¢; and
¢o observing single landmark modeled by point p. The lines (c1,p) and (cq,p)
correspond to the rays Bi and B sampling point p. Similarly, I; and I, are
projections of point p on the cameras image plane. The plane determined by
points c;, ¢ and p is called epipolar plane and the curve determined by the
projections of all rays perceived by the camera ¢; that are in the epipolar plane
is called epipolar curve for camera c¢; and point p. In the case of planar imaging
surfaces as in the figure, it is actually a line.

It can be shown that the RBT T, ., cannot be estimated with central CM when
landmark positions are unknown. What can be estimated is essential matriz F,
which is fully determined by RBT (R, ¢y, teye,) € SE(3) as follows

(3c € R)(E = cloyy Rerey)

where for given two vectors a and b, @ € R**3 is a matrix such that @b = a x b
(cross product of @ and b). The E than determines only (R.,c,, dc,c,) Where d.,.,
is related to t.,c, as follows. There exists A € R such that Ade,c, = teyes-

The matrix £ can be computed from feature-feature associations. The process
of doing that is called relative motion estimation. It can be shown (see references
in [LHOG]) that minimal number of such associations required to constrain E
so much so that there is finite number of satisfactory essential matrices is 5.
This number of feature-feature associations can than guarantee maximum of 10
solutions. A method that estimates F from minimal number of correspondences
is described in [LHOG] and fast implementation in C language is available on-line
at http://users.cecs.anu.edu.au/~hongdong/index.html. Other methods
exist, but we tested it and found in to this code to be easy to use and good
enough for our problem.

In order to apply relative motion estimation to our problem, we have to have a
method of extracting (R.,c,, d., c2) from E and we also have to have a way of com-
puting unknown A by other means. Algorithm 2] does the former. The latter can
be accomplished by method suggested in [SE11] as follows. An edge in the pose
graph that contains node n,, is selected. Let the second node in the selected edge
be n,. From each pair of feature-feature matches that shares common features at
node n,, landmarks that correspond to the pairs are triangulated (Algorithm [3))
and the ratios of landmark depths wrt. to node n, are stored. The correct X is
then computed using the median of all stored ratios. If it is the case that n, and
n are the only nodes in the pose graph, we select A arbitrarily (this only happens
once at the beginning). Also care has to be taken in handling cases where n and
n, are close, we discard such nodes n.

Models and Estimators for Non-central Cameras and Others

For both pose estimation and motion estimation problems, there exist algorithms
that directly compute T, or T,,, respectively. Their properties are summa-
rized in Table [[LT] together with one all other applicable method that computes
model from feature-feature association across 3 poses. For one of them, the mo-
tion estimation with generalized camera, we found a source code available at
http://vis.uky.edu/~stewe/code/generalized_camera/.
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Algorithm 2 Recovery of rotation and translation direction from an essential
matrix.

Given an essential matrix £ corresponding to the unknown RBT T,,,,, extracts
rotation component R,,, and translation direction vector d,y,.

1.

Compute singular value decomposition of matrix, i.e. compute U, S and V'
such that £ = USVT.

. If det(U) < 0, then set U «— —U
. If det(V) < 0, then set V « =V

Compute four solutions possible solutions for (R, , dnn,) as

(iURZ(Jrg)SUT, UR§(+g)VT)

and
(£URz(—5)SUT URY(=5)V)
where
- 0 F1 0
Ry(x3)= (%1 0 0
0 0 1

. Disambiguate solutions by checking if points are in front of camera as de-

scribed in the text. In this specific case it is guaranteed that after the
disambiguation only one solution remains.
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Solving Issues with Multiple Solutions

All of the above problems produce more than one solution. We discuss three
solutions to this problem that should be tried in order they will be presented in.
First solution is to triangulate the landmarks from the corresponding observation
rays involved in the datapoints from which the solution was obtained and the
computed relative camera poses. From the triangulated points it can be then
checked if the computed triangulations are in front of the camera (i.e. are in the
direction given by observation rays).

The second solution is to use additional datapoint for estimation of the model
to test if it is consistent with the solution. That is to test if it is an inlier and than
test if it is in from of the camera. Some of the methods (e.g. [LHO6]) actually
guarantee that this is enough to find an unique solution.

The third solution is to test each of the solutions as a separate hypothesis in
the RanSaC algorithm. More precisely, in each iteration of the RanSaC, for all
estimates the inlier set is calculated and the one with largest inlier set is kept as
a result for the iteration.

1.3.3 Datapoint Error Functions For Rigid Body Trans-
form Models

In this section, we present three commonly used options for the RanSaC inlier
function from [MSKSI10].

Reprojection Error

Algorithm 3 Landmark Triangulation from Two Observations

Let z, and x, be rays that observe landmark [ from cameras ¢, and ¢,. Let
T = (R,t) € SO(3) be the rigid body transform that transforms scene points
with coordinates in coordinate frame given by ¢, into coordinates in coordinate
frame given by ¢,. Given known x,, x,, R and t, the depth estimate )\, of the
landmark [ in camera ¢, is obtained as follows.

i Construct matrix M = (@Rxl @t) € R3*2,
. T 9% 1
ii Construct column vector A = ()\a fyT) e R,

iii Compute least square estimate of A in the equation M\ = 0.

iv For rigid body transform (R,t), the depth estimate )\, is then computed as
Ao/

This is general method that applies to measuring if a landmark observation
is an inlier in the geometric model we have chosen for visual odometry problem
(the model was described in Section [[LT]). Given a camera pose ¢ and the po-
sition of any given landmark position p(l), we can test if the observation o(c, ()
associated with the landmark [ in camera c is an inlier by measuring reprojec-
tion error. Reprojection error is defined as 7¢(r(p(l))) — o(c, 1), where r(p(l))
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determines ray that samples point p(l). With landmark observation error being
normally distributed, we can measure the probability that observation o(c,1) is
an inlier using Mahalanobis distance [HZ04]. In the simple case where covariance
matrix is X = ¢l for some constant ¢ € R, the probability depends on geometric
distance ||7¢(r(p(l))) — o(c,1)|| and an appropriate value is typically determined
experimentally.

The reprojection error inlier function is suited for PnP problems, because the
estimate of the landmark position is directly available. In the case of relative
motion estimation this is not the case. The problem with solving this by simply
computing the triangulation is that it is slow. This is the motivation for the
following approach.

Deviation from Epipolar Plane

This is special case where relation between two cameras is specified by an essential
matrix £ and datapoints are feature-feature correspondences. Consider essential
matrix F and a datapoint (2!, 25), where 2! is an observation of some landmark
[ in the first camera and '} is observation associated with the same landmark in
the second camera. It can be shown that given £ and 2!, the ray corresponding
to o, is constraint to lie in the epipolar plane that is given by E and 2. Closed
form solution for computing an angle between ray corresponding to !, and the
epipolar plane exists and it takes only few instructions to compute.

More correct solution would be to measure distance to epipolar curve in the
imaging surface. This method has similar statistical interpretation as the repro-
jection error. The problem with this is that we do not know how to efficiently
compute this distance. This method is commonly used in the case of planar
imaging surfaces where it can be computed easily, and fast. In case of precise
Ladybug3 CM, this method is also applicable to generalized motion estimation —
it can be used between pars of separate cameras.

1.3.4 Implemented Solution and Concluding Remarks

We implemented motion estimation using RanSaC scheme with essential matrix
for central CM as the model that was estimated. We used 5-point minimal solver
for central CM described in [LHOG]. As an error function for datapoints, we use
the one based on angle between the epipolar planes determined by the associated
features that was described above. The method for scale estimation and method
form extraction of rotation and direction vector from essential matrix is also
implemented as described above.

In the following, we explain our decision to use spherical approximation and
our choice of method for relative motion estimation. The of choice of panorama
as virtual imaging surface was due to simpler implementation.

Choice of Central Camera Model over Non-central Camera Model

In [KHK10] there is an experimental comparison in simulated environment of
the following camera models in motion relative motion estimation scheme very
similar to ours:
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1. Spherical approximation of an arrangement of 3 cameras similar to arrange-
ment of cameras in Ladybug3 CM.

2. Single camera that can be modeled as pinhole CM.

3. An arrangement of 3 cameras as in 1., except that their optical centers
coincide is a single point.

The error in imaging surface coordinates induced by approximation in item [I] was
already discussed in[section 1.21 Using terminology from that section, if d, > 7m,
then the error introduced by the spherical approximation coincides with feature
tracking error of 3 pixels. Inferring from experiments presented in [KHK10], it is
reasonable to expect that spherical approximation will not behave much worse if
d, is as much as 10 times smaller.

This does not prohibit us to use spherical approximation, because of the fact
that our design goals consider acceptable the possibility that the algorithm will
not work in such small scene depths as it is expected that laser based odometry
performs acceptably in such scenes.

There are other advantages to using spherical approximation. Namely that it
is simpler then generalized CM and there are more methods and implementations
for 5-point solvers. Additionally, as explained in the above in this section, using
5-point solver rather than 6-point solvers results in less iterations of RanSaC.
Finally, given the fact that we use bundle adjustment (BA, Section [[6l), to refine
our estimates, one could use motion estimation results obtained using spherical
approximation to initialize BA which uses generalized CM. In such scheme dis-
tance of cameras from intersection of optical axes O, would probably have to be
considered as a global parameter, because the distance of the cameras from Oy is
too small for reliable initial estimate of the scale.

Method Used for Model Estimation

Given the fact that there exist solvers usable in RanSaC scheme for both motion
estimation and pose estimation problems with both generalized CM and central
CM case, we opted for RanSaC as a method for robust estimation as recommended
in [FS12].

Regarding the choice of method for pose-graph edge relative transform prob-
lem. The implementation of motion estimation using 5-point algorithm is a must,
because at various points in the VO process, 3D estimates may be unavailable
or unreliable. If 3D landmark estimates are available, P3P would probably offer
better initialization of scale estimate for BA. PnP is used as the main method of
estimation in the VO method [NNBOQG6]. Perhaps the most interesting approach to
the estimation is described in [TPDO0S]. In this paper, it is suggested to use mo-
tion estimation method for estimation of rotation matrix and to use PnP method
for estimation of translation vector. In the paper it is argued that motion estima-
tion produces better estimates for rotation because firstly, it has many more and
more evenly distributed datapoints and secondly, the feature-feature associations
are direct observations whereas landmark 3D estimates are not. The case for
estimating translation vector using PnP and not the method we use is then made
by the better scale estimation capability of PnP.
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It has already been established in the introduction of this thesis, that omni-
directional vision is far superior for motion estimation than single narrow field
of view camera. The following is motivated by the fact that in our experiments
and experiments of others, it was found that scale is very difficult to estimate as
it is susceptible to drift [SMD10]. From the presentation of available solvers for
central CM and generalized CM, it seem that there are algorithms of comparable
quality available for severely generalized CM. Such algorithms have an advantage
of being able to directly (i.e. from two cameras) estimate scale given that the
camera optical centers are far enough apart (which ours are not).

1.4 Feature Detection and Matching

In this section, we briefly discuss how we compute tentative feature-feature ass-
ciations based on appearance information only. These are then used as input to
pose-graph edge estimation problem (Section [L3]).

We decided to use common framework which provides unified interface for this
problem. This is implemented by particular feature detector, feature descriptor
methods and a metric on the descriptors. This framework is used by OpenCV
library (http://opencv.willowgarage.com/wiki/|), which we use.

OpenCV comes with many methods implemented, but the only one that is
suited for our purposes is ORB [RRKB11]. This is mainly because it is fast enough
and it is rotation-invariant. Recently, many new feature detector-descriptor
appeared. For comparison and overview of these, we suggest reader consults
[MMT12].

1.4.1 Unguided Matching

In this section we discuss how the above framework is used for matching. We
used the approach suggested in this book [Szel(, Section 4.1.3]. Tt is known as
brute force matching an is as follows:

e A subset of detected features is selected for the matching.

e For each pair in the subset, a distance is computed. This is the most
expensive step since the descriptors are quite large.

e For each feature in the source image, two closest features are identified.

e The ratio of the two distances is measured. If it is within tolerance, the
closest feature in the second image is accepted, otherwise it is rejected.

1.4.2 Guided Matching

The goal of guided matching is to reduce computational requirements of matching.
The idea behind guided matching [DRMSOT] is to use the pose estimate of the new
pose and/or the landmark positions of features from the previous iterations. If
both are available, the landmarks can be reprojected and the feature is searched
for near the reprojection. If only the former is available, the missing depth is
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assumed to be infinite. We use as large neighborhood as resources permit (60
pixels) and almost all feature-feature associations are found in this way.

We compare the brute force search for guided and unguided matching. Let
w be image width in pixels, h be image height in pixels and E(d) be feature
density per pixel. Consider number of descriptor comparisons for brute force
matching in unguided matching. This quantity amounts to (E(d)wh)?. Now,
consider a division of the image planes into regularly spaced grid, where each
cell is of dimensions \/w x v/h. Further, for each feature in the source image we
know that it is located in one of the k£ of these cells in the target image. This
means that under assumption that the image features are uniformly distributed
across the destination image, the number of required comparisons amounts to

E(dwh(kdy/wv'h)) = dwh(kE(d)\/wvh)) < (E(d)wh)? for small k.

1.5 Feature-Landmark Association

The topic of this section is design of Landmark Manager module. Purpose of this
module is twofold. First to maintain feature-landmark association. Second, com-
putation of initial estimate of the landmark position for the bundle adjustment
(Section [LA]). The first task consists determining which features are observations
of which landmark, given feature-feature associations for edges in the pose-graph.
Landmark Manager is invoked by Edge Builder (Section [[3]) after feature-feature
association is done for the edge that is being build.

For given feature (f,v), co/nsider set of features Ly, defined as maximal set

containing (f,v) such that (f,v") € L, iff all the following is true:
e there exists n > 0

o there exists ((f;,v;) € L(s)) fori=1---n.

L ((fav) - (fl)vl)a (f27v2) ) (fnavn) - (f/av,)
e (fi,v;) is feature-feature associated with (fiy1,v;41)) fori=1---n—1.

We call the set L(s.) a feature track and in a naive implementation of Land-
mark Manager, the set L,y could considered a set of feature observations of a
landmark (i.e. be feature-landmark associated).

As discussed in the sections above, feature-feature matches are constrained
by appearance similarity metric and geometrically, they only satisfy epipolar
constraint given by the poses of nodes from which feature-feature constraint was
constructed. This constraints the one of the features to to lie near the line
given by the epipolar constraint and the other feature. Obviously, given the
pose and a landmark position corresponding to the feature, any observation of
that landmark can be constrained to lie around the landmark projection. In
what follows, we detail how to identify such feature tracks and the corresponding
landmark position that satisfy the mentioned geometric constraint. That is under
the assumption of normally distributed landmark observation errors and (loosely
speaking) accurately estimated camera poses for all nodes in the pose-graph.
The motivation for verifying these additional constraint is the fact that landmark
observations are required to be outlier-free by the bundle adjustment and the fact
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that the mentioned naive approach was found to unacceptable contain outliers.
Our discussion of the topic proceeds firstly by discussing two major components
of the design and then by presentation of the whole algorithm.

1.5.1 Preliminaries

Landmark-Feature Association Consistency under Available Geometric
Constraints

We recall from Section [Tl that our geometric model of observation of landmark [
consists of landmark [ modeled as a point in world CF. Observation of landmark [
in camera c is then modeled as 7(7T,.(1))+¢€, where 7 is a projection function given
by the camera model (Section [[L2), T, a rigid body transform (RBT) from world
CF to the camera CF and e is measurement error, which is normally distributed
with zero mean and covariance 3 = (¢ 9) for some a € R.

We now describe method that is referred to as reprojection residual normality
test. Consider that we have set of features L, and we have precise estimates
of Toe(y) for cameras ¢(f) corresponding to the features f € L, and we have a
position estimate p(l) of a landmark [. We wish to test the hypothesis that L
are observations of landmark [ under our model of observation. This consists of
testing the statistical hypothesis that S = {(o(f) — 7(Twer)(p(1)))) | f € L} are
samples drawn from distribution N (0, ). A simple method for doing this, which
we use, is to do it by using reprojection error inlier function of Section [[.3.3] on
each sample from S. It would be interesting to take advantage of the fact that
cardinality of S makes it possible to use more advanced statistical methods for
testing normality. It would be interesting to explore if these test would lead to
some improvement.

Computing Landmark Position Estimate

Consider the following situation with the above model. We have set of features
L, which are observation of landmark /. For each f* € L, we know the camera
pose T¢ . and we wish to compute an estimate of position p(l) of landmark .
The simplest and most efficient way we know of to compute estimate of po-
sition [ is by selecting arbitrary pair of distinct features from L and using the
two rays that correspond to the features and the poses of the nodes the features
were observed from to triangulate the landmark position. Triangulation is done
using Algorithm [Bl This works to some extent, but it can be substantially im-
proved upon. To show this, consider situation depicted in Figure [L9 In this
figure, we consider a 2D case of observing a landmark by three different rays.
The true rays that observe the landmark, are drawn by dashed line. The area,
where the measured observation can be with high probability (i.e., where it is
considered an inlier by the method above), is bounded by the solid lines. If we
consider arbitrary pair landmarks from the figure, the 3D estimate can be any-
where inside the intersection of the areas with highly probable observation rays.
It can be seen that some pairs constrain the estimate of the landmark position
higher than others and some pairs do produce estimates which would cause some
inlier observations of L to be considered outliers by our method. We hypothesize
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Figure 1.9: Mutual geometric consistency of landmark observation pairs (see
text).

that good pairs are those that have high disparity. Disparity of two rays (or the
features corresponding to the rays) is defined as an angle between the two rays.

Motivated by this, we improve the naive estimation algorithm to compute the
estimate by computing the estimate from all pairs of features and picking the first
one that fits (decision made by the above method). If |k| is high, we assume that
the estimate p(l) of the landmark [ we already have from previous accepted set
of observations for [ is precise enough. This is motivated by the fact that robot
cannot move arbitrarily fast which causes each next observation to be close. In
more detail this procedure is presented as Algorithm [l

Another, faster option, would be to pick the pair with highest disparity. This
requires computing disparity for all pairs, but that should not be a problem since
computing it is probably much more efficient than the triangulation.

1.5.2 Algorithm For Maintaining Feature-Landmark As-
sociation

Let L be a set of features associated with landmark [. Such set uniquely rep-
resents landmark-feature association for . Let £ be set of all L, the task of
maintaining £ is then the task of feature-landmark association. One possibility
to compute this set would be to check consistency of each feature track by the
method described above and depending on the result, add such track into £ or
discard it. We found experimentally that feature-feature associations contain too
many wrongly associated features. Because of that, we would end up loosing a lot
of potentionaly useful landmarks, which in turn decreases precision and increases
risk of catastrophic failure in feature-deprived environments. Motivated by this,
we decided attempt to to maintain £ which is a minimal consistent subdivision
of £'. More precisely, let F' be the set of all features and let Lf,v) be defined
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Algorithm 4 Landmark Observation Set Consistency Test

Tests if landmark observation set L is consistent under our geometric landmark
observation model and estimates landmark position. F is a set of hints (known
good landmark position estimates, if available) and k is a parameter of the
method.

1. Let F be an empty ordered set.

2. Add FE; into order set E with arbitrary order.

3. if |L| > k continue with step [6l

4. Construct set U <= {(f1,f2) | fi € LA fo € LA f1 # fa}.

5. For each p € U, construct triangulation using the feature pair p add the
position estimate into E after all other elements already present in FE.

6. For all e in ordered set F, do in ascending order:

(a) For the set of observations L, test using the reprojection residual nor-
mality test described above, if L is consistent with e.

(b) On test success, return Yes(e)

7. return No.

for (f,v) € F as in the introduction. We want L to satisfy the following:
1. (V(Ll € E))(V(LQ € L))(Ll 7é L2 = L1 N L2 = @)
2. (V((f,v) € F)) (L) € L) ((Uker,,, K) = Ligw)-

3. {L|L e LALC Ly} is minimal in cardinality for all (f,v) € F.

4. For all L € L, L is geometrically consistent in the sense of [subsection 1.5.11

In what follows the design of the algorithm for maintaining £ and maintaining
landmark position estimates for landmarks defined by elements of £. We recall
from previous text, that there are are two ways in which set of all feature-feature
associations can change. One is by adding an edge into the pose-graph, the
other is by removing a node from the pose graph. Note than in both cases each
landmark can lose or gain at most one observation. We present a suboptimal
algorithm (Algorithm [B]) based on a greedy algorithm paradigm. It handles the
case where a feature-feature association is added by determining if there exists
a landmark with which the corresponding observation can be associated without
compromising full landmark consistency. If this is the case than the observation
is added to [, otherwise the uses o in an attempt to find new landmark.

We break our discussion of Algorithm [l into the three cases. First, the case
where an existing landmark is updated. Second, the case where a landmark
is used for potential creation of new landmark. Third, the case of deletion of
feature-feature association necessiated by pose-graph node removal.
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Algorithm 5 Feature-Landmark Data Association Update

For each new feature-feature match f = (o1, 09), update feature-landmark data
associations as follows. k and [ are parameters. There are three cases that are
distinguished:

i Both features in f are already associated with a landmark. Let [; be
landmark associated with observation o; and let Is be the landmark associated
with observation oy. If [; # [y, then attempt to merge set of observations of
landmarks /; and [y under new landmark with set of hints [y, [» (Algorithm [@).

ii One of the features is associated. Without loss on generality, let o; be
the associated as observation with landmark ;. Attempt to merge set of ob-
servations Ly U{o,} under new landmark with set of hints {l; } (Algorithm []).

iii None of the features are associated.
(a) Let L(n) be set of all feature tracks of n features that contain feature

match f and do not contain any features associated with a landmark.

(b) For all feature tracks in L(k), create a new landmark, if consistency test
(Algorithm M) succeeds and maximum disparity between pair of features
in L(k) is at least d.

(c) For all feature tracks in L(l), create a new landmark if consistency test
(Algorithm M) succeeds.

Updating an Existing Landmark

When new pose-graph edge is added, each feature in the two nodes involved is
contained in at most one new feature-feature association. We handle each feature-
feature association as follows. There are two cases when the update of existing
landmark is considered. First case is when both features involved in the feature-
feature association are already associated with a landmark. The decision here is
whether to merge the landmarks. Second case is when only one of the features is
associated with a landmark. Both cases are handled in the fundamentally same
way by attempting to find consistent estimate to the would-be new landmark by
method of Algorithm Ml that was already discussed. This is the reason for the
prerequisite that the rigid body transforms 7., for all poses in the graph are
known. More precisely, the requirement is that only the relative transforms Ty,
for all pairs of poses (a, b) involved in the invocation of Algorithm [ are required
to be well estimated. Given the fact that all node except possibly for the most
recently added one were bundle adjusted (Section [LE this seems reasonable (we
are not the only ones who think so [SMD10]).

There is one interesting detail about the case where both features are already
associated with the same landmark. This means that there is a circle in the
pose-graph and that each node in the pose graph that is part of the circle is also
associated with the landmark and by the semantics of feature-feature and feature-
landmark association, this means that for the set of features that correspond
to the pose-graph circle each feature should be in exactly two feature-feature
associations from the set of feature-feature associations involved in the pose-
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graph circle. This is not enforced by our algorithm and we do not consider it
to be an issue, because the such inconsistency does not have direct effect on the
bundle adjustment results.

New Landmark Initialization

At the beginning of this section, we claimed that £ determines feature-landmark
association. The actual set of landmarks is actually determined by subset of L
defined as {L | L € L A|L| > k(L)}, where k(L) is minimum size of landmark
observation set that is not same for all observation sets. Concretely, the values of
k(L) are set to k(L) = 3 for observations with sufficient disparity and to k(L) = 4
otherwise. These values were determined experimentally.

There are several reasons for choosing these values. One of the reasons we
distinguish two classes according to disparity is that as discussed above, we hy-
pothesize higher disparity estimates are more precise and thus more constrained.
In our experiments some landmarks of only three features still contained outlier
measurements which we believe is due to too permissive guided matching which
produces lot of outliers that are highly probable to be consistent as determined
by our test in Algorithm [Bl Another reason is the fact that the Algorithm [ is
very likely to produce estimate with negative depths for landmarks that are far.
Requiring more observations reduces probability that the landmark is incorrect-
ly discarded. Yet another reason is the fact that lot of useful landmarks have
only three observations, which is partially due to particular implementation of
Keyframe Manager that we use.

Landmark Observation Deletion

When a node is deleted, the involved features are deleted from corresponding
landmark observations. If this would cause a landmark [ to have only one ob-
servation, the landmark [ deleted. This implies that sets L € L are no longer
subsets of feature track sets Lf,v) in the new pose-graph where parts of the old
pose-graph are forgotten.

1.6 Sliding Window Bundle Adjustment

We employ sliding window bundle adjustment to reduce drift and improve the
pose estimates suggested in [FS12]. Bundle adjustment can be formulated as
a non-linear lest squares problem on manifolds as is done in g2o framework
[KGS™11] that we use. The term sliding window bundle adjustment refers to
the fact that bundle adjustment is performed on £ closest poses to the last one
in the pose-graph. In this section we define objectives we want to achieve and
describe our formulation of the problems in term of the requirements described
in the manual [GKSKI12] to g2o framework. For introduction on how algorithms
for NLSOM operate, we refer the reader to [GKSBI10] and [Her(8].

We have chosen g2o0 [KGS™11], because it is well documented [GKSK12], easy
to use, well coded, and used by others (e.g. [SDMKII]). It is general in terms
of its interface and subclasses of nonlinear least squares optimalization problems
that it is able to solve efficiently.
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1.6.1 Non-Linear Least Square Optimalization on Mani-
folds

In the following, we define non-linear least square optimalization on manifolds
[Her0O8]. We have parameters X = (1, X, ..., x,) € M that we wish to optimize.
We are given set observations Z = 21, 2, ..., 2m, 2% € R, where the i*" observation
is assumed to be determined by function f;: X — R* up to a Gaussian noise.
That is the measurement i is drawn from normal distribution with mean f;(X)
and covariance matrix ¥ (which is given) and the measurements are independent
given f;(X). This can be expressed by probability density p;(Z; = z|X = z)
which is called observation model in context of SLAM.
The goal is to determine local minimum of maximum likelihood function

x* = argmax, sz‘(Zi | X = x) = argmin,, Z —log(pi(Z; | X = x)

Common algorithms that find solutions for the problem are Gauss-Newton, Leven-
berg-Marquardt and Conjugate Gradient methods. They proceed by starting with
given initial estimate xy and in each iteration k deriving estimate ;. from es-
timate xp of the previous iteration and the gradient of the function at xy. This
means that on convergence x;, is only local optimum. Thus in order to find glob-
al optimum, the initial guess xq, which is provided as an input should be close
enough to the optimum.

1.6.2 Optimalization Criteria for Our Problem

In this section we describe optimalization criteria used in context of g2o0. In g2o0
NLSOM is represented as a hyper-graph, where nodes correspond to parameters
x; and hyper-edges represent observation models in form of probability density
pi(Z; = z|X = z), where the hyper-edge is connected to the nodes that p; is
dependent on. The probability density is specified in terms of function f; and an
information matrix €; = ;.

Node Parametrization We have two kinds of nodes — landmark nodes and
camera pose nodes. Landmark nodes are represented as points in 3D space and
parametrized as euclidian coordinates in R"™ relative to world coordinate frame.
Landmark increments have the same parametrization.

Camera poses are represented as rigid body transforms from world frame to
coordinate frame of the camera. They are parametrized in the domain of SE(3)
group. The increments are parametrized in domain of se(3) group and the in-
crement operator is realized by mapping increment around identity to its corre-
sponding SE(3) element using exponential map [MSKS10]. The resulting SE3
element is then multiplied by the computed SFE(3) element (rigid body transform
concatenation). This is minimal parametrization (with respect to degrees of free-
dom) in eucleidian space. There are two common minimal parametrizations in
euclidian spaces for increments — the se3 group and (tg) where ¢ is translation
vector and ¢ is unit quaternion. We opted for the former because the two were
experimentally evaluated in context of bundle adjustment in [KGST11] and the
se3 came out slightly better in terms of speed of convergence.
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Observations Only pure observation in our task are observations of landmarks
that are manifested by detected features in each camera pose (additionally es-
timated pose-to-pose transforms could be considered). Feature measurements
are represented in image coordinates. Problem of data association was already
treated in Section [LAl At this point in computation, the data associations are
available. The covariance of information matrix is set to identity matrices. The
Gaussian distribution of measurement is common assumption in the literature in
our setting as is independence of observation given model parameters.

Observation Model and Error Function As an observation model is obvi-
ously given by the projection of landmark corresponding to given observation (see
section refsec:camera-models for discussion of camera models). The error func-
tion used is the reprojection error function from Section [L.3l The error function
adjusts for singularities at image borders.

Initialization of Parameters This is the topic of Section [[L3] and Section [L.5l
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2. Experimental Results

In this section, we compare our VO system with other means of odometry es-
timation. It will be shown that rotational part of the estimated RBTs by our
system is superior to results obtained from INSO. Even though translational part
of the RBTs is not as well estimated and contains gross errors, the result can be
actually useful, if results from INSO and VO are merged as was initial planed.
This mege would be necessary anyway, because the sampeling rate of VO is too
slow for some applications.

We tested our system on four datasets. All of the datasets use panoramic
images of resolution 1600 x 800, which are processed at a rate of about 2-3 frames
per second. We compare the results obtained using VO on each dataset with one
of the following methods.

Reference Tracking System (RTS) In this method, robot trajectory is mea-
sured by using an external camera to track a pair of markers attached to the
robot. This method is reported to have localization accuracy of 15 4+ 13cm
and heading accuracy of 3.8 £+ 2.7deg. The sampeling frequency of this
method greather than 20Hz. For further information about the method,
consult information presented in [KBK12].

Inertial Navigation System / Odometry (INSO) The method computes odo-
metry by fusing outputs from odometries obbtained from inertial navigation
system and wheel odometry. The sampeling frequency for this method is
grather than 100Hz. For more information about INSO, see https://cw.-
felk.cvut.cz/doku.php/misc/projects/nifti/sw/ins and https://-
cw.felk.cvut.cz/doku.php/misc/projects/nifti/sw/inso.

This method is locally more precise than our VO system and thus is still
useful for evaluating datasets where RTS is not available.

The comparison is done by aligning the trajectories from VO and one of the
reference methods decribed above. The aligned trajectories are then visually
compared, the poses where the trajectories differ are identified and VO log is
then conulted to arrive at an explanation of what is the cause. The trajectory
alignment method is as follows:

1. for each pose computed by VO, a corresponding pose from the reference
method is selceted as the one that has the closest time-stamp.

2. For each VO pose v, a transform T that aligns VO track by use of similarity
transform to the corresponding pose of the reference method m is computed
as T4 = T,,ST,,,, where S is appropriate scale transform.

3. From all T4, the transform that minimalizes avarege distance between cor-
responding poses of VO and the reference method is selected.

An exaple of such alignment for one of the datasets is presented in Figure 2.1l For
longer datasets, where one good alignment does not exist, we divide the dataset
to few sets of consecutive poses. For each such set an alignment is produced in
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(a) The trajectory. Units are in meters.

(b) Picture taken at the lower dot. (c) Picture taken at the upper dot.

Figure 2.1: Street Loop dataset. VO trajectory (red) that was scaled and layed
over trajectory gained from RTS (green). The black dots are positions at which
pictures from robot camera were taken. Units are in meters.
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Figure 2.2: Vagon Dataset. INSO (green) and VO (red) trajectories aligned at
points marked by black dot. Units are in meters.
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(¢) third alignment picture (d) fourth alignment picture

Figure 2.3: Vagon Dataset. Robot camera pictures taken at corresponding align-
ment locations of Figure

such a way that the above measure is computed only on this set. An example of
this is Figure 2.2

In the following, we describe the four datasets that we evaluated and present
the results using the above method. Detailed analysis of the local failures is then
presented in the following section:

Street Loop Dataset Short dataset of length 24.5m in urban environment,
where robot is driven to close a loop on a city street. Both INSO data
and RTS data are available for this dataset.

In Figure 2.1l we present the comparison of trajectory obtained with VO and
with RTS. We do not do comparison with INSO since the results are very
similar. To give the reader more precise idea of the nature of the datasets,
we present two images taken from the robot camera during the recording
of this datasets at the poses marked in the figure.

Yard Dataset Longer dataset of length 46.6m in a yard placed inside a city
block. Both INSO and RTS data are available for this dataset. The results
are of the similar quality as in Street Loop Dataset, we present them in
Figure 2.4

Rail Car Dataset Long dataset recorded in a railyard. Robot is driven around
a large rail car and almost closes a loop. Only INSO data are available and
length is of this track is approx. 100m long according to the INSO.

Results are presented in Figure and 23l It is obvious that our VO
implementation drifts in scale extensively but interestingly, it is much better
at estimating rotation (rotational part of RBT). Also, there are several
places where robot temporarily reports grosly inaccurate estimates. This
occurs predominantly in the second part of the datasets, where most of the
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(a) Picture for the upper black dot on the (b) Picture for the lower black dot on the
trajectory. trajectory.

Figure 2.4: Yard Dataset. Robot camera pictures taken at points parked by the
black dots.
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(a) INSO trajectory. Units are in meters.

(b) VO trajectory. Scale is not aligned (units are unknown).

(c) Image taken approximately at the middle of the track.

Figure 2.5: Rail Following dataset. Visual Odomatry maintaints excellent ori-
entation estimate for over 200m of straignt track, where the robot is driven in
between and along straight rails. For comparison, INSO result is displayed.
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scene is close to the robot. This is the plece where we actually expected
robot to fail as explained in Section

Rail Following Dataset The longest dataset, which is recorded in a railyard.
Robot is driven alog between straight rails and back, then it is driven out of
the rails, approximately at the place it started and finaly along the side of
the same pair of rails. Again, only INSO data are available and the length
calculated from INSO data is approx. 250m.

Results in Figure definitively demonstrate that VO, even in its present
form can be sucessfuly used to correct rotational drift produced by INSO.

2.1 Discussion of Failure Cases of the System

In this section, we discuss several failure cases of our system. We do not believe
that these failures are inherent to the VO method and thus we also propose how
our system could be improve in order to reduce or eliminate these failures.

2.1.1 Scale Drift

It is well known that visual odometry drifts in scale, however we believe that
the drift seen e.g. in Figure can be severly improved uppon. There are two
improvements that we believe would help to reduce the drift. They should be
tried in the order they are presented in.

Fist improvement is to redesign the method by which poses and landmarks are
included in the windowed bundle adjustment method. From our experiments, we
learned that poses that are further than 4 keyframes apart from the current pose
in the pose graph are rarely adjusted by more than few millimeters and thus any
pose that is further should be added to the BA as fixed. All poses that contain
any of the landmarks visible from active nodes should be added into the bundle
adjustment and all the constrains between the landmarks visible from the active
poses should be added. This improvement would allow to fully use features that
stay visible for many poses beyond the optimalization window while keeping the
current time requirements of the BA.

Second improvement would be to improve Keyframe Manager component of
the system as follows. In the current implementation, the pose-graph is a tree.
This means that once a feature is lost in a single key-frame, it is never reaquired
as an observation of the original landmark. This occurs quite often and could
be improved by implementing what was introduced in Section [LT.3] as edge con-
struction with known RBT and using it to make keyframe manager to do mini
loop-closures.

2.1.2 Slip and Return

In this section we will discuss a phenomenon where the robot suddenly sharply
departs from the trajectory and then it gradually returns as pictured in Fig-
ure 2.6l We call this Slip and Return phenomenon. From our logs and the images
presented the figure, we believe that the following is the cause of the problem:
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Figure 2.6: Closeups of some Slip and Recovery penomenons taken from the above
datasets.

e The sudden departure from the correct trajectory is accompanied by very
sharp drop in number of features reassociated with landmarks observed
from the previous poses. This occurs exactly at the first pose that is badly
estimated. We believe that this is strong evidence for the theory that this
is in fact caused by bad estimate of scale in the estimate while comput-
ing initial estimate for the node in question (the estimation is the topic of
Section [L3]). This is because bad scale estimates interferes with triangula-
tion used in feature-landmark association, especially for most useful close
features.

e After the sudden departure from the trajectory, it appears that poses are
pulled back towards the correct solution. We believe that this is because
as the robot moves, the few far features that survived initial failure become
better estimated which than causes the poses and new landmarks to drift
back to the correct estimate. This hypothesis is supported by the fact that
we logged how much the poses are moved by the BA process after each new
pose is added. We found that the poses move much more (from their initial
estimates) than is normal.

The scale estimation method that we use is rather crude and there are few
ways to improve it. One of them is to use perspective from n points method for
the translation and keep relative motion estimation for the rotation estimate as
suggested in [TPDO8]. Another solution is to estimate the scale more robustly,
using RanSaC scheme.
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Conclusion

The motivation behind developing visual odometry for the robot was to use spe-
cific strengths of omnidirectional image sensing to complement odometries that
are already implemented for the robot. The main strengths of omnidirectional
sensing in the context of visual odometry are mainly the superiority of rotation
estimates and the fact that it is suited for outdoor environments, where scene
object are typically far.

As it was already demonstrated in Chapter 2] the estimates in rotation are
superior to that of INSO. The main problem with our implementation are the
local failures of translation estimates from which the VO system mostly, but not
completely recovers. Thus the failures contribute to increase the gradual drift
which is natural to some degree. The ways that would correct most of the errors
were already described in Section [2]

Currently, a system is being built to integrate the odometries from all three
sources. Under such system the rotation estimates produced by the VO could
be used to improve estimates from other sources. The occasional local failures of
the VO system pose a problem, if the translation parts of the estimates are to be
used. In order to use the translation estimates, a failure mechanism would have
to be designed. This has to be done in any case because there are always places
where VO inherently fails (e.g. dark enviroments).
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