
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta
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optimalizaci
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Introduction

Mathematical programming deals with the problem of optimising a certain
criterion expressed as an objective function over a set of feasible decisions. The
set of feasible decisions is usually described by equality and inequality constraints,
i.e. functions satisfying certain equality and inequality conditions, respectively.
If such constraints exist, the problem is called constraint programming, otherwise
the problem is called unconstrained programming.

If all the functions are nonlinear, the problem is called nonlinear programming.
For solving such problems, various algorithms have been proposed, e.g. feasible
direction algorithms [3] for constrained nonlinear programming and line search
algorithms [3] for unconstrained nonlinear programming.

Penalty function methods are a special type of such algorithms. They convert
a constrained problem into a sequence of unconstrained problems or into a single
unconstrained one. The constraints of the original problem are incorporated into
the objective function of the unconstrained problem through a suitably chosen
penalty function, which penalises any violations of the constraints. The extent
of the penalisation is controlled by a nonnegative penalty coefficient. By making
the penalty coefficient larger, the violations of the constraints are naturally pe-
nalised more strictly. It can be shown that under mild assumptions, the penalty
function methods are able to generate optimal solutions to the original problems
by increasing the penalty coefficient.

For exterior penalty function methods, the penalty parameter must usually be
infinitely large, in a limiting sense, in order to obtain an optimal solution to the
original problem. This can cause computational difficulties and ill-conditioned
Hessian matrix, for further details see [3] or [26]. Another weakness of the exte-
rior penalty functions is the assumption of finding the global minimisers to the
unconstrained penalty subproblems. In practise, we do not obtain global min-
imisers as the algorithms usually generate sequences of locally optimal solutions.
Hence, exact penalty methods which attempt to solve the original problem by
finding a solution of a single unconstrained problem have been employed.

In many practical cases, one must cope with the consequences of realisa-
tions of the randomness occurring during the decision making process and hedge
supremely against them so as to secure the best possible outcome. Ignoring this
uncertainty may lead to unsatisfactory or simply wrong decisions. Stochastic
programming problems differ from deterministic problems, in which all the co-
efficients are exactly known, in incorporating this uncertainty into the model.
Natural demand for solving such problems occurs in many different fields of sci-
ence and engineering, from finance and economics to agriculture, medicine and
logistics, cf. [33] or [34].
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Two predominant approaches has been employed to solve the treatment of the
random part. One of them is based on the notion of optimising the total lost or
cost on average and called expected violation (or shortfall) penalty model. The
second approach is derived from reliability requirements on the optimal decision
and called probabilistic (or chance constrained) programs.

Numerical solving stochastic programming problems, in particular probabilis-
tic programs, is decidedly more difficult than numerical solving deterministic
programs. The feasible region of a probabilistic program is generally not convex,
and it is not easy to check the feasibility of a point as it leads to computation
of multivariate integrals. Therefore, finding reliable numerical solution to prob-
abilistic programs has been of greatest interest. Fortunately, there exist several
methods for numerically solving chance constrained problems under discrete or
continuous probability distributions, cf. [28]. In case of continuous or discrete
probability distribution with many realisation, approximative techniques can be
used to solve the problems numerically, cf. [7].

It was previously noted that by solving problems with penalised random con-
straints, one can obtain highly reliable solutions to the original probabilistic pro-
gram, cf. [8]. This type of penalisation was successfully applied in water manage-
ment [14], insurance [15] and finance [6, 7]. These observations led to study the
behaviour of penalty function methods applied on chance constrained problems
with respect to their possible equivalence. Rigorous proofs of the asymptotic
equivalences of chance constrained problems and penalty function problems un-
der various assumptions were submitted in [15, 9, 7, 8].

The aim of the thesis is to research penalty function methods for determin-
istic nonlinear programming problems in order to enhance the applicability of
these methods, specifically of exact penalty function methods, for probabilistic
programming problems. The thesis also includes a numerical study on which the
newly constructed theorems are compared with already available approaches to
solve probabilistic programming problems.

In order to fulfil the aforementioned aims, the thesis is organised as follows:
In chapter 1, penalty function methods for deterministic nonlinear program-

ming are delineated. In section 1.1, the original problem is formulated, and the
definition of suitable penalty functions is proposed. Section 1.2 is devoted to
exterior penalty function methods. The main attention is focused on section 1.3
in which three theorems concerning exact penalty function methods are put for-
ward. The equivalence of the original and the penalty function problem using
arbitrary vector norm as penalty function is shown for convex and invex func-
tions, respectively.

In chapter 2, the reader is acquainted with the basic notions of one-stage
stochastic programming problems. The two prevalent approaches to treat the
uncertainty are briefly outlined in sections 2.1 and 2.2.

In chapter 3, penalty function methods for stochastic programming problems
are described. The chapter is divided into two sections. Section 3.1 discusses the
asymptotic equivalence of the multiple chance constrained and the corresponding
penalty function problems under continuous probability distributions. Section 3.2
studies the same asymptotic equivalence under finite discrete probability distribu-
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tions. In this section, new penalty function methods for solving multiple chance
constrained problems, based on theorems proposed in section 1.3, are put forward
as well.

In chapter 4, a numerical study demonstrating the capability of the newly
proposed methods to generate highly reliable solutions with other methods is
provided. The usefulness of the newly proposed penalty function methods for
stochastic programming problems is illustrated on a VaR-constrained portfolio
selection problem [2].

In Appendix A, the less common terms and relations used throughout the
thesis are gathered together and defined or derived for convenience.
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Chapter 1

Penalty function methods for
nonlinear programming

In this chapter, we introduce the basic concept of penalty function method
and present the main theorem concerning its convergence to the original problem.
Furthermore, we introduce exact penalty function methods for convex and invex
functions, which do not require to solve an infinite sequence of unconstrained
nonlinear programming problems.

1.1 Notations and notions

First, we formulate the constrained nonlinear problem and propose a proper
definition of suitable penalty functions for the original problem.

1.1.1 The original problem

The formulation of the original problem follows the formulation of the primal
problem in [3, p. 476]. Let X be a nonempty set in Rn. Consider the following
minimisation problem

min f (x)

subject to g (x) ≤ 0

h (x) = 0

x ∈ X ,

(OP)

where we put g (x) = (g1 (x) , . . . , gm (x))T , h (x) = (h1 (x) , . . . , hl (x))T and
0 = (0, . . . , 0)T for convenience. Hereinafter, the problem (OP) will be referred to
as the original problem. The functions f (x), g1 (x) , . . . , gm (x), h1 (x) , . . . , hl (x)
are defined on Rn and continuous in their arguments, f (x) : Rn → R, g (x) : Rn →
Rm, and h (x) : Rn → Rl. Denote

S = {x ∈ X : g (x) ≤ 0,h (x) = 0}

the feasible region of the original problem (OP). The set X might typically
represent constraints which could be handled directly, e.g lower and upper bounds
on the variables.
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For further needs, let us define the Lagrangian function for the original prob-
lem (OP), which is defined as

L (x;u,v) =

{
f (x) +

∑m
i=1 uigi (x) +

∑l
i=1 vihi (x) , if x ∈ X ,

∞, if x 6∈ X

where u = (u1, . . . , um)T , ui ≥ 0, i = 1, . . . ,m, and v = (v1, . . . , vl)
T , vi ∈ R, i =

1, . . . , l, are called Lagrangian multipliers associated with the inequality gi (x),
i = 1, . . . ,m, and the equality constraints hi (x), i = 1, . . . , l, respectively.

1.1.2 Penalty functions

A suitable penalty function must vanish for feasible points and return posi-
tive and negative values for infeasible points of minimisation and maximisation
problems, respectively, cf. [3]. We propose the following definition of penalty
functions based on the requirements stated above.

Definiton 1.1. A function p (x) : Rn → R is called a penalty function for the
original problem (OP), if p (x) satisfies

(i) p (x) = 0 for x ∈ Rn, g (x) ≤ 0 and h (x) = 0,

(ii) p (x) > 0 for x ∈ Rn, g (x) > 0 or h (x) 6= 0.

Having stated the definition of the penalty function p (x), we present the
basic penalty function method form of the original problem (OP). Denote µ
the penalty coefficient. Naturally, it must hold that µ ≥ 0. Thus, the penalty
function method form of the original problem (OP) using the penalty function
p (x) is formulated as follows

min f (x) + µp (x)

subject to x ∈ X .
(PP)

Penalty functions p (x) are typically defined by

p (x) =
m∑
i=1

φ (gi (x)) +
l∑

j=1

ψ (hj (x)) , (1.1)

where φ (y) and ψ (y) are functions such that

φ (y) = 0 for y ≤ 0, and φ (y) > 0 for y > 0,

ψ (y) = 0 for y = 0, and ψ (y) > 0 for y 6= 0,
(1.2)

although more general function satisfying the definition can be conceptually used.
Typically, φ (y) and ψ (y) are of the forms

φq (y) = max{0, y}q, and ψq (y) = |y|q , (1.3)

where q is positive, cf. [3]. Let us define the Lq norm for a given vector x ∈ Rn

and a given q ≥ 1 by

‖x‖q = (|x1|q + |x2|q + · · ·+ |xn|q)
1
q ,
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and the maximum norm L∞ by

‖x‖∞ = max {|x1|, |x2|, . . . , |xn|} . (1.4)

By substituting (1.3) into (1.1) and noting that
∑l

j=1 |hj(x)|q = ‖h (x) ‖qq and∑m
i=1[max{0, gi (x)}]q = ‖max {0, g (x)} ‖qq, we have

pq (x) =
m∑
i=1

[max{0, gi (x)}]q +
l∑

j=1

|hj(x)|q = ‖max{0, g (x)}‖qq + ‖h (x) ‖qq.

(1.5)
The function pq (x) are generally called the Lq penalty functions, derived from
their association with the Lq norm.

1.2 Exterior penalty function methods

Define the following auxiliary function

θ (µ) = inf{f (x) + µp (x) : x ∈ X}

of the penalty coefficient µ. Then the penalty function method (PP) can be
alternatively reformulated as follows

sup θ (µ)

subject to µ ≥ 0.
(APP)

It can be shown that under certain assumptions, the two problems (OP) and
(APP) are equivalent. To show the equivalency, the following lemma is necessary.

Lemma 1.1. Suppose that f (x), g1 (x) , . . . , gm (x), h1 (x) , . . . , hl (x) are con-
tinuous functions on Rn, and let X be a nonempty set in Rn. Let p (x) be a
continuous function defined by Definition 1.1, and suppose that for each µ, there
exists an xµ ∈ X such that θ (µ) = f (xµ) + µp (xµ). Then, the following state-
ments hold true:

(i) inf{f (x) : x ∈ X , g (x) ≤ 0,h (x) = 0} ≥ sup
µ≥0

θ (µ),

(ii) f (xµ) is a nondecreasing function of µ ≥ 0, θ (µ) is a nondecreasing func-
tion of µ, and p (xµ) is a nonincreasing function of µ.

Proof. See [3, lemma 9.2.1].

Having stated the previous lemma, we can present the main theorem of section
1.2.

Theorem 1.1. Consider the original problem (OP). Suppose that the problem
has a feasible solution, and let p (x) be a continuous function satisfying Defini-
tion 1.1. Furthermore, suppose that for each µ ≥ 0 there is a solution xµ ∈ X
to the penalty function problem (PP), and that {xµ} is contained in a compact
subset of X . Then

inf{f (x) : g (x) ≤ 0,h (x) = 0,x ∈ X} = sup
µ≥0

θ (µ) = lim
µ→∞

θ (µ) .

Moreover, the limit x̄ of any convergent subsequence of {xµ} is an optimal solu-
tion to the original problem (OP), and µp (xµ)→ 0 as µ→∞.
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Proof. See [3, Theorem 9.2.2].

Note the assumption requiring that the sequence {xµ} of the solutions to the
penalty function problems (PP) does not restrict the applicability of the theorem
in many practical cases seeing that the variables are usually bounded.

It is evident from Theorem 1.1 that if p (xµ) = 0 for some µ ≥ 0, then xµ is
an optimal solution to the original problem (OP). In other words, if the penalty
term p (xµ) vanishes for a sufficiently large penalty parameter µ, an optimal
solution to the original problem (OP) is obtained. From Theorem 1.1, it also
follows that the optimal solutions xµ to the penalty function problems (PP) can
be made arbitrarily close to an optimal solution to the original problem (OP) by
choosing µ large enough. Similarly, f (xµ)+µp (xµ) can be made arbitrarily close
to the optimal objective value of the original problem (OP). The points {xµ}
are generally infeasible and approach an optimal solution from outside the set of
feasible solutions by increasing the penalty coefficient µ. Hence, this technique is
also denominated as exterior penalty function method, cf. [3].

1.2.1 Estimation of the KKT Lagrange multipliers at op-
timality

Under the assumptions of theorem 1.1, the KKT Lagrange multipliers asso-
ciated with the constraints at optimality can be recovered by using the solutions
{xµ} to the penalty subproblems (PP). The following part is partially based on
[3, pp. 479-481] and exercise 9.12 in [3, p. 523].

Suppose that the penalty function is given by (1.1),

X = {x ∈ Rn : gi (x) ≤ 0, i = m+ 1, . . . ,M, hi (x) = 0, i = l + 1, . . . , L} ,
(1.6)

and gm+1 (x) , . . . , gM (x), hl+1 (x) , . . . , hL (x) are differentiable. Note that the
penalty function p (x) might not be continuously differentiable, e.g. functions
such as max{0, gi (x)} are generally not differentiable at points x where gi (x) =
0. Nevertheless, if we suppose that the functions φ (y) and ψ (y) are continuously
differentiable such that

φ′(y) ≥ 0 for all y and φ′(y) = 0 for all y ≤ 0, (1.7)

then p (x) is differentiable, provided that the functions g1 (x) , . . . , gm (x) and
h1 (x) , . . . , hl (x) are differentiable. By applying the chain rule, we can write

∇xp (x) =
m∑
i=1

φ′ (gi (x))∇xgi (x) +
l∑

i=1

ψ′ (hi (x))∇xhi (x) , (1.8)

where ∇xf (x) denotes the gradient of a multivariable function f (x) : Rn → R
at x ∈ Rn, i.e.

∇xf (x) =

(
∂f

∂x1

(x) , . . . ,
∂f

∂xn
(x)

)T
.
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Let us assume that the assumptions of Theorem 1.1 hold true. Since xµ is an
optimal solution to the penalty function problem (PP), it is obviously an optimal
solution to the following problem

min f (x) + µp (x) + µp2 (x)

subject to x ∈ Rn,
(1.9)

where p2 (x) =
∑M

i=m+1 φ (gi (x))+
∑L

j=l+1 ψ (hj (x)), as p2 (x) ≥ 0 for all x ∈ Rn

and the objective function of (1.9) can not be further minimalised.
Since the problem (1.9) is an unconstrained problem and xµ is an optimal

solution to (1.9), the gradient of the objective function f (x) + µp (x) + µp2 (x)
must vanish at xµ, i.e.

∇xf (xµ) + µ∇xp (xµ) + µ∇xp2 (xµ) = 0. (1.10)

Similarly to (1.8), the gradient of p2 (xµ) is as follows

∇xp2 (x) =
M∑

i=m+1

φ′ (gi (x))∇xgi (x) +
L∑

i=l+1

ψ′ (hi (x))∇xhi (x) . (1.11)

By substituting the formulas (1.8) and (1.11) into equation (1.10), we obtain

∇xf (xµ) +
M∑
i=1

µφ′ (gi (xµ))∇xgi (xµ) +
L∑
i=1

µψ′ (hi (xµ))∇xhi (xµ) = 0. (1.12)

Let x̄ be an accumulation point of the sequence {xµ}. Therefore, x̄ is
an optimal solution to the original problem (OP). Without loss of general-
ity, suppose that the sequence {xµ} itself converges to x̄. Denote I (x̄) =
{i ∈ (1, . . . ,M) : gi (x̄) = 0} the set of active inequality constraints at x̄, and
N (x̄) = {i ∈ (1, . . . ,M) : gi (x̄) < 0} the set of inactive inequality constraints
at x̄. By the reason of gi (x̄) < 0 for all i ∈ N (x̄), we have gi (xµ) < 0 for µ
large enough, which gives µφ′ (gi (xµ)) = 0. Let uµ and vµ denote vectors having
components

(uµ)i = µφ′ (gi (xµ)) ∀ i ∈ I (x̄) ,

(uµ)i = 0 ∀ i ∈ N (x̄) ,

(vµ)i = µψ′ (hi (xµ)) ∀ i = 1, . . . , L.

(1.13)

Since µ ≥ 0, and ψ′ (y) ≥ 0, it follows that (uµ)i ≥ 0 for all i ∈ I (x̄). Having
summarised the aforementioned, we can rewrite the foregoing identity (1.12) for
all sufficiently large µ as

∇xf (xµ) +
M∑
i=1

(uµ)i∇xgi (xµ) +
L∑
i=1

(vµ)i∇xhi (xµ) = 0. (1.14)

Suppose that x̄ is a regular solution to the original problem (OP). Then there
exist unique Lagrangian multipliers ūi ≥ 0, i ∈ I (x̄), ūi = 0, i ∈ N (x̄), and
v̄i ∈ R, i = 1, . . . , L, such that

∇xf (x̄) +
M∑
i=1

ūi∇xgi (x̄) +
L∑
i=1

v̄i∇xhi (x̄) = 0, (1.15)
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cf. [3, Theorem 4.3.7]. Denote ū = (ū1, . . . , ūM)T , v̄ = (v̄1, . . . , v̄L)T and suppose

that
{(
uTµ ,v

T
µ

)T} → (
ūT , v̄T

)T
as µ → ∞. Since g (x), h (x), φ′ (y) and ψ′ (y)

are continuous functions, equations (1.14) converges to (1.15) as µ→∞.

It remains to show that
{(
uTµ ,v

T
µ

)T} → (
ūT , v̄T

)T
for a unique

(
ūT , v̄T

)T
.

Suppose that the sequence
{(
uTµ ,v

T
µ

)T}
has no accumulation points. Then it

holds true that
{∥∥∥(uTµ ,vTµ )T∥∥∥}→∞ as µ→∞. Otherwise, the whole sequence

would be contained in the bounded set {z ∈ RH : ‖z‖ ≤ supµ

∥∥∥(uTµ ,vTµ )T∥∥∥},
where H = M + L. Let us now define a new sequence by

(
aTµ , b

T
µ

)T
=

(
uTµ ,v

T
µ

)T∥∥∥(uTµ ,vTµ )T∥∥∥ .
Since

∥∥∥(aTµ , bTµ)T∥∥∥ = 1 for all µ, the sequence
{(
aTµ , b

T
µ

)T}
is contained in the

compact set {x ∈ RH : ‖x‖ = 1} and hence has at least one accumulation point.

Denote
(
āT , b̄T

)T
an accumulation point of the sequence

{(
aTµ , b

T
µ

)T}
. Without

loss of generality, suppose that
{(
aTµ , b

T
µ

)T}
itself converges to

(
āT , b̄T

)T
. Then

for sufficiently large µ, and by using equation (1.14), the following identities hold
true

∑
i∈I(x̄)

(aµ)i∇xgi (xµ) +
L∑
i=1

(bµ)i∇xhi (xµ)

=
1∥∥∥(uTµ ,vTµ )T∥∥∥

∑
i∈I(x̄)

(uµ)i∇xgi (xµ) +
L∑
i=1

(vµ)i∇xhi (xµ)


=

1∥∥∥(uTµ ,vTµ )T∥∥∥
(

M∑
i=1

(uµ)i∇xgi (xµ) +
L∑
i=1

(vµ)i∇xhi (xµ)

)

= − ∇xf (xµ)∥∥∥(uTµ ,vTµ )T∥∥∥ .

(1.16)

As µ→∞, we have {x}µ → x̄,
{(
aTµ , b

T
µ

)T}→ (
āT , b̄T

)T
, and

{∥∥∥(uTµ ,vTµ )T∥∥∥}→
∞, and therefore equation (1.16) becomes

∑
i∈I(x̄)

(ā)i∇xgi (x̄) +
L∑
i=1

(
b̄
)
i
∇xhi (x̄) = 0. (1.17)

Since
∥∥∥(āT , b̄T )T∥∥∥ = 1, equation (1.17) contradicts the linear independence of

vectors ∇xgi (x̄), i ∈ I (x̄), and ∇xh1 (x̄) , . . . ,∇xhL (x̄). Hence,
{(
uTµ ,v

T
µ

)T}
has at least one accumulation point.
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To show its uniqueness, suppose that
{(
uTµ ,v

T
µ

)T}
has two accumulation

points,
(
ūT , v̄T

)T
and

(
ũT , ṽT

)T
. Having noted that ūi = 0 and ũi = 0 for

i ∈ N (x̄) necessarily, we can write

∑
i∈I(x̄)

ūi∇xgi (x̄)+
L∑
i=1

v̄i∇xhi (x̄) = −∇xf (x̄) =
∑
i∈I(x̄)

ũi∇xgi (x̄)+
L∑
i=1

ṽi∇xhi (x̄) ,

which yields ∑
i∈I(x̄)

(ūi − ũi)∇xgi (x̄) +
L∑
i=1

(v̄i − ṽi)∇xhi (x̄) = 0.

By considering the assumption of linear independence of the gradients, we obtain
ūi− ũi = 0 for all i ∈ I (x̄), and v̄i− ṽi = 0 for all i = 1, . . . , L. Thus, we showed

that
(
ūT , v̄T

)T
=
(
ũT , ṽT

)T
.

For the sake of perspicuity, let us formulate the above stated facts in a propo-
sition.

Propositon 1.1. Suppose that φ (y) and ψ (y) are continuously differentiable
functions, and φ (y) satisfies

φ′(y) ≥ 0 for all y and φ′(y) = 0 for all y ≤ 0.

Futhermore, assume that

X = {x ∈ Rn : gi (x) ≤ 0, i = m+ 1, . . . ,M, hi (x) = 0, i = l + 1, . . . , L} ,
(1.18)

f (x), g1 (x) , . . . , gM (x) and h1 (x) , . . . , hL (x) are differentiable. Moreover, sup-
pose that the assumptions of Theorem 1.1 hold true, and x̄ is a regular solution to
the original problem (OP). Denote I (x̄) = {i ∈ (1, . . . ,M) : gi (x̄) = 0} the set
of active inequality constraints at x̄, and N (x̄) = {i ∈ (1, . . . ,M) : gi (x̄) < 0}
the set of inactive inequality constraints at x̄. Define

{(
uTµ ,v

T
µ

)T}
by

(uµ)i = µφ′ (gi (xµ)) ∀ i ∈ I (x̄) ,

(uµ)i = 0 ∀ i ∈ N (x̄) ,

(vµ)i = µψ′ (hi (xµ)) ∀ i = 1, . . . , L.

Then
{(
uTµ ,v

T
µ

)T} → (
ūT , v̄T

)T
as µ → ∞, where

(
ūT , v̄T

)T
is the vector of

KKT Lagrange multipliers associated with the inequality and equality constraints
at optimality.

That is to say, Proposition 1.1 states that uµ and vµ can be used as estimates
of the KKT Lagrange multipliers at optimality for sufficiently large µ.

Remark that if ūi > 0 for some i ∈ I (x̄), then (uµ)i > 0 for sufficiently
large µ. This means that gi (x) ≤ 0 is violated along the trajectory leading to x̄.
On the other hand, observe that gi (xµ) ≤ 0 for all i = m + 1, . . . ,M , therefore
ūi = 0. In other words, if a solution to the original problem (OP) for sets X
of type (1.18) satisfies the strict complementary slackness condition ([3, p. 499])
then I (x̄) ∩ {m+ 1, . . . ,M} = ∅.
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1.2.2 An example of exterior penalty function

The quadratic penalty function

The quadratic penalty function for (OP) is a special case of Lq penalty function
(1.5) for q = 2. Therefore, it is given by

p2 (x) = ‖max{0, g (x)}‖2
2 + ‖h (x) ‖2

2 =
m∑
i=1

[max{0, gi (x)}]2 +
l∑

j=1

|hj(x)|2.

(1.19)
Let us demonstrate, that the quadratic penalty function satisfies (1.13), and thus
it can recover the KKT Lagrange multipliers. From the definition of the quadratic
penalty function it follows that

φ2 (y) = max{0, y}2 and ψ2 (y) = y2.

Having differentiated them, we can write

φ′2 (y) = 2 max{0, y} and ψ′2 (y) = 2y.

Evidently, φ′2 (y) ≥ 0 for all y, and φ′2 (y) = 0 for y ≤ 0. Therefore, we easily
obtain from Proposition 1.1 that

(uµ)i = 2µmax{0, gi (xµ)} ∀ i ∈ I (x̄) ,

(vµ)i = 2µhi (xµ) ∀ i = 1, . . . , L.

1.3 Exact penalty function methods

In this section, we shall associate with the original problem (OP) the following
class of penalty functions

p (x) = ‖max{0, g (x)}‖+ ‖h (x)‖ , (1.20)

where ‖ · ‖ is any fixed vector norm in Rm and in Rl, respectively. A similar
class of penalty function was put forward in [17]. In this section we denote the
objective function of the penalty problem (PP) as FE (x;µ). Thus, we have

FE(x;µ) = f (x) + µp (x) = f (x) + µ ‖max{0, g (x)}‖+ µ ‖h (x)‖ .

On the account of the presence of the norm and the function max{0, ·}, p (x) is
non-differentiable at some x.

The exact penalty method form of the original problem (OP) is formulated
as follows

min FE (x;µ)

subject to x ∈ X .
(EP)

The following theorem establishes the exactness of the (1.20) penalty function.
Its proof is partially based on the steps of the proofs of Theorems 3 and 5 in [20].

Theorem 1.2. Suppose that x̄ ∈ S is a KKT point for the original problem (OP)
with Lagrangian multipliers ūi, i = 1, . . . ,m, and v̄i, i = 1, . . . , l associated with
the inequality gi (x), i = 1, . . . ,m, and the equality constraints hi (x), i = 1, . . . , l,
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respectively. Moreover, suppose that the second-order sufficient conditions hold
true at x̄ and

µ > µ̄ = max
{
‖ū‖′ , ‖v̄‖′

}
,

where ‖ · ‖′ is the dual norm to ‖ · ‖, ū = (ū1, . . . , ūm)T , and v̄ = (v̄1, . . . , v̄l)
T .

Then x̄ is a strict local solution to the exact penalty function problem (EP)
for all µ > µ̄.

Proof. To show that x̄ is a strict local solution to (EP), we have to solve the
following auxiliary problem.

Without loss of generality, suppose that

X = {x ∈ Rn : gi (x) ≤ 0, i = m+ 1, . . . ,M, hi (x) = 0, i = l + 1, . . . , L} .

Furthermore, let ū2
i , i = m+ 1, . . . ,M , and v̄2

i , i = l+ 1, . . . , L be the Lagrangian
multipliers associated with gi (x̄), i = m + 1, . . . ,M , and hi (x̄), i = l + 1, . . . , L
and denote g2 (x) = (gm+1 (x) , . . . , gM (x))T , h2 (x) = (hl+1 (x) , . . . , hL (x))T ,

ū2 =
(
ū2
m+1, . . . , ū

2
M

)T
, and v̄2 =

(
v̄2
l+1, . . . , v̄

2
L

)T
. Let ‖ · ‖ be any fixed vector

norm in R(M−m+L−l). Then the auxiliary problem is formulated as follows

min FAE (x;µ, µ2)

subject to x ∈ Rn,
(AEP)

where FAE (x;µ, µ2) = FE(x;µ) + µ2

∥∥∥∥(max {0, g2 (x)}T ,h2 (x)T
)T∥∥∥∥. Suppose

that µ2 > µ̄2 =
∥∥∥(ūT2 , v̄T2 )T∥∥∥′. We will show that x̄ is a strict local solution to

(AEP).
Assume that x̄ is not a strict local solution to (AEP). Thus, there exists a

sequence
{
xk
}

, xk 6= x̄, converging to x̄ such that FAE(xk;µ, µ2) ≤ FAE(x̄;µ, µ2)
for all k ≥ 0. Thereby,

FAE
(
xk;µ, µ2

)
− FAE (x̄;µ, µ2) = f(xk)− f(x̄) + µ

∥∥max
{
0, g

(
xk
)}∥∥

+µ
∥∥h (xk)∥∥+ µ2

∥∥∥∥(max {0, g2 (x)}T ,h2 (x)T
)T∥∥∥∥ ≤ 0

(1.21)

Having noted that the set {x ∈ Rn : ‖x‖ = 1} is compact, we define the sequence
{dk} as

dk =
xk − x̄
‖xk − x̄‖

and take a convergent subsequence {dkl} that converges to d. After dividing
(1.21) by ‖xkl− x̄‖ and subtracting g (x̄) = 0, h (x̄) = 0, g2 (x̄) = 0 ,h2 (x̄) = 0,
we get

f
(
xkl
)
− f(x̄)

‖xkl − x̄‖
+ µ

∥∥∥∥∥max

{
0,
g
(
xkl
)
− g (x̄)

‖xkl − x̄‖

}∥∥∥∥∥+ µ

∥∥∥∥∥h
(
xkl
)
− h (x̄)

‖xkl − x̄‖

∥∥∥∥∥
+µ2

∥∥∥∥∥∥
max

{
0,
g2

(
xkl
)
− g2 (x̄)

‖xkl − x̄‖

}T

,

(
h2

(
xkl
)
− h2 (x̄)

‖xkl − x̄‖

)T
T∥∥∥∥∥∥ ≤ 0.

(1.22)
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Note that f , gi, i = 1, . . . ,M , hi, i = 1, . . . , L are differentiable at x̄, ‖ · ‖ and
max{0, ·} are continuous. Then by taking the limit of (1.22) as kl approaches
infinity, we obtain

∇xf(x̄)Td+ µ ‖Jg+ (x̄)d‖+ µ ‖Jh (x̄)d‖

+µ2

∥∥∥∥∥
((

Jg+2 (x̄)d
)T

, (Jh2 (x̄)d)T
)T∥∥∥∥∥ ≤ 0,

(1.23)

where

Jg+(x̄)d =
(
max

{
∇xg1(x̄)Td, 0

}
, . . . ,max

{
∇xgm(x̄)Td, 0

})T
,

Jh(x̄)d =
(
∇xh1(x̄)Td, . . . ,∇xhl(x̄)Td

)T
and

Jg+2 (x̄)d =
(
max

{
∇xgm+1(x̄)Td, 0

}
, . . . ,max

{
∇xgM(x̄)Td, 0

})T
,

Jh2(x̄)d =
(
∇xhl+1(x̄)Td, . . . ,∇xhL(x̄)Td

)T
.

Since x̄ is a KKT point for (OP), therefore

∇xf(x̄)Td = −ūTJg(x̄)d− v̄TJh(x̄)d− ūT2Jg2(x̄)− v̄T2 Jh2(x̄)d. (1.24)

By using (1.24) in (1.23), we find that

µ ‖Jg+ (x̄)d‖+ µ ‖Jh (x̄)d‖ − ūTJg(x̄)d− v̄TJh(x̄)d

+µ2

∥∥∥∥∥
((

Jg+2 (x̄)d
)T

, (Jh2 (x̄)d)T
)T∥∥∥∥∥− ūT2Jg2(x̄)d− v̄T2 Jh2(x̄)d ≤ 0.

(1.25)

By noting that Jg(x̄)d ≤ Jg+(x̄)d, and Jg2(x̄)d ≤ Jg+2 (x̄)d, we get

µ ‖Jg+ (x̄)d‖+ µ ‖Jh (x̄)d‖ − ūTJg+(x̄)d− v̄TJh(x̄)d

+µ2

∥∥∥∥∥
((

Jg+2 (x̄)d
)T

, (Jh2 (x̄)d)T
)T∥∥∥∥∥− ūT2Jg+2 (x̄)d− v̄T2 Jh2(x̄)d ≤ 0.

By using the generalised Cauchy–Schwarz inequality (A.1), we conclude that(
µ− ‖ū‖′

)
‖Jg+(x̄)d‖+

(
µ− ‖v̄‖′

)
‖Jh (x̄)d‖

+

(
µ2 −

∥∥∥(ūT2 , v̄T2 )T∥∥∥′)
∥∥∥∥∥
((

Jg+2 (x̄)d
)T

, (Jh2 (x̄)d)T
)T∥∥∥∥∥ ≤ 0

(1.26)

Since µ > max {‖ū‖′, ‖v̄‖′}, and µ2 >
∥∥∥(ūT2 , v̄T2 )T∥∥∥′, it follows from (1.26) that

Jg+(x̄)d = 0, Jh(x̄)d = 0, Jg+2 (x̄)d = 0, and Jh2(x̄)d = 0. (1.27)

Denote
I (x̄) = {i ∈ (1, . . . ,m) : gi (x̄) = 0} ,

and
I2 (x̄) = {i ∈ (m+ 1, . . . ,M) : gi (x̄) = 0} .
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From [3, Theorem 4.4.2], we know that the following must hold true

∇xgi(x̄)Td ≤ 0 for i ∈ I (x̄) ,

∇xgi(x̄)Td ≤ 0 for i ∈ I2 (x̄) ,

∇xhi(x̄)Td = 0 for i = 1, . . . , L.

(1.28)

By using identities (1.27) in (1.25), we obtain

∇xgi(x̄)Td ≥ 0 for i ∈ I (x̄) , ūi > 0,

∇xgi(x̄)Td ≥ 0 for i ∈ I2 (x̄) , ū2
i > 0, .

(1.29)

Thus, the following identities hold true

∇xgi(x̄)Td = 0 for i ∈ I (x̄) , ūi > 0,

∇xgi(x̄)Td ≤ 0 for i ∈ I (x̄) , ūi = 0,

∇xgi(x̄)Td = 0 for i ∈ I2 (x̄) , ū2
i > 0,

∇xgi(x̄)Td ≤ 0 for i ∈ I2 (x̄) , ū2
i = 0,

∇xhi(x̄)Td = 0 for i = 1, . . . , L.

(1.30)

Identities (1.30) imply that d is in the critical cone, viz. (A.2). After expanding
L (·; ū, v̄, ū2, v̄2) in x̄, we can write

L
(
xkl ; ū, v̄, ū2, v̄2

)
− L (x̄; ū, v̄, ū2, v̄2) = ∇xL (x̄; ū, v̄, ū2, v̄2)T

(
xkl − x̄

)
+

1

2

(
xkl − x̄

)T ∇2
xxL (x̄; ū, v̄, ū2, v̄2)

(
xkl − x̄

)
+
∥∥xkl − x̄∥∥2

αL
(
x̄;xkl − x̄

)
,

(1.31)
where limkl→∞ αL

(
x̄;xkl − x̄

)
= 0, vide [3, definition 3.3.5]. As x̄ is a KKT

point, ∇xL (x̄, ū, v̄, ū2, v̄2) = 0. Since the second-order sufficient conditions
hold true, d is in the critical cone and

lim
kl→∞

1

2

(
xkl − x̄

)T
‖xkl − x̄‖

∇2
xxL (x̄; ū, v̄, ū2, v̄2)

(
xkl − x̄

)
‖xkl − x̄‖

.

+αL
(
x̄;xkl − x̄

)
=

1

2
dT∇2

xxL (x̄; ū, v̄, ū2, v̄2)d > 0,

and hence for sufficiently large kl

1

2

(
xkl − x̄

)T ∇2
xxL (x̄; ū, v̄, ū2, v̄2)

(
xkl − x̄

)
+
∥∥xkl − x̄∥∥2

αL
(
x̄;xkl − x̄

)
> 0.

(1.32)
By using (1.32) in (1.31), for sufficiently large kl, we get

L
(
xkl ; ū, v̄, ū2, v̄2

)
> L (x̄; ū, v̄, ū2, v̄2) . (1.33)

By using the generalised Cauchy–Schwarz inequality (A.1), we obtain

FAE
(
xkl ;µ, µ2

)
= f

(
xkl
)

+ µ
∥∥max

{
0, g

(
xkl
)}∥∥+ µ

∥∥h (xkl)∥∥
+ µ2

∥∥∥∥(max
{
0, g2

(
xkl
)}T

,h2

(
xkl
)T)T∥∥∥∥

> f
(
xkl
)

+ ‖ū‖′
∥∥max

{
0, g

(
xkl
)}∥∥+ ‖v̄‖′

∥∥h (xkl)∥∥
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+
∥∥∥(ūT2 , v̄T2 )T∥∥∥′ ∥∥∥∥(max

{
0, g2

(
xkl
)}T

,h2

(
xkl
)T)T∥∥∥∥

≥ f
(
xkl
)

+ ūT max
{
0, g

(
xkl
)}

+ v̄Th
(
xkl
)

+ ūT2 max
{
0, g2

(
xkl
)}

+ v̄T2h2

(
xkl
)
.

Since g (x) ≤ max {0, g (x)} and g2 (x) ≤ max {0, g2 (x)}, it follows that

FAE
(
xkl ;µ, µ2

)
≥ f

(
xkl
)

+ ūTg
(
xkl
)

+ v̄Th
(
xkl
)

+ ūT2g2

(
xkl
)

+ v̄T2h2

(
xkl
)

= L
(
xkl ; ū, v̄, ū2, v̄2

)
.

By using (1.33), for sufficiently large kl, we get

FAE
(
xkl ;µ, µ2

)
≥ L

(
xkl ; ū, v̄, ū2, v̄2

)
> L (x̄; ū, v̄, ū2, v̄2)

= f (x̄)

= FAE (x̄;µ, µ2)

≥ FAE
(
xkl ;µ, µ2

)
,

which is a contradiction. Thus, x̄ is a strict local solution to (AEP). This
means that for µ > µ̄, and µ2 > µ̄2 there exists an ε > 0 such that for all
x ∈ {x ∈ Rn : ‖x− x̄‖ ≤ ε} =: B (x̄, ε)

FAE (x̄;µ, µ2) < FAE (x;µ, µ2) ,

and also for all x ∈ B (x̄, ε) ∩ X . Since

∥∥∥∥(max {0, g2 (x)}T ,h2 (x)T
)T∥∥∥∥ = 0 for

all x ∈ B (x̄, ε) ∩ X ,
FE (x̄;µ) < FE (x;µ) .

This completes the proof.

For further purposes, consider the following reformulation of the original prob-
lem (OP) with multiple inequality constraints

min f (x)

subject to gi (x) ≤ 0 i = 1, . . . , k

h (x) = 0

x ∈ X ,

(MCOP)

where gi (x) = (gi1 (x) , . . . , gimi (x))T , i = 1, . . . , k. The corresponding objective
function to the exact penalty function problem (EP) is as follows

FE(x;µ) = f (x) +
k∑
i=1

µi ‖max{0, gi (x)}‖+ µ ‖h (x)‖ . (1.34)

Furthermore, denote

Ii (x̄) = {j ∈ (1, . . . ,mi) : gij (x̄) = 0} , i = 1, . . . , k.

In a special case of f (x), gij (x), j = 1, . . . ,mi, i = 1, . . . , k, and hi (x),
i = 1, . . . , l, and X , any solution to problem with multiple constraints (MCOP)
is a global solution to the exact penalty function problem (EP) with the objective
function defined by (1.34) for sufficiently large µ, and vice versa.
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Theorem 1.3. Suppose that

X = {x : gi (x) ≤ 0, i = 1, . . . ,M, hi (x) = 0, i = l + 1, . . . , L} ,

is a nonempty set, C ⊃ X is an open convex set, and x̄ ∈ S is a KKT point for
problem (MCOP) with Lagrangian multipliers ūij, j = 1, . . . ,mi, i = 1, . . . , k, and
v̄i, i = 1, . . . , l associated with the inequality gij (x), j = 1, . . . ,mi, i = 1, . . . , k,
and equality constraints hi (x), i = 1, . . . , l, respectively.

Denote

(i) ūi = (ūi1, . . . , ūimi)
T , i = 1, . . . , k, v̄ = (v̄1, . . . , v̄l)

T ,

(ii) ūi, i = 1, . . . ,M , and v̄i, i = l + 1, . . . , L the Lagrangian multipliers associ-
ated with gi (x), i = 1, . . . ,M , and hi (x), i = l + 1, . . . , L, respectively,

(iii) IX (x̄) = {i ∈ (1, . . . ,M) : gi (x̄) = 0},

(iv) I+ (x̄) = {i ∈ (1, . . . , l) : v̄i > 0}, I+
X (x̄) = {i ∈ (l + 1, . . . , L) : v̄i > 0},

(v) I− (x̄) = {i ∈ (1, . . . , l) : v̄i < 0}, I−X (x̄) = {i ∈ (l + 1, . . . , L) : v̄i < 0}.

Furthermore, suppose that f (x) is a convex function on C,

(i) gij (x), j ∈ Ii (x̄), i = 1, . . . , k, gi (x), i ∈ IX (x̄) are convex functions on
C,

(ii) hi, i ∈ I+ (x̄) ∪ I+
X (x̄) are convex functions on C,

(iii) hi, i ∈ I− (x̄) ∪ I−X (x̄) are concave functions on C.

Then, for

µi ≥ µ̄i = ‖ūi‖′ , i = 1, . . . , k and µ ≥ µ̄ = ‖v̄‖′

where ‖ · ‖′ is the dual norm to ‖ · ‖, x̄ also minimises the exact penalty objective
function (1.34).

Moreover, if x̄E is solution to the exact penalty problem (EP) with objective
function (1.34) for µi > µ̄i = ‖ūi‖′ , i = 1, . . . , k and µ > ‖v̄‖′, then x̄E is also
a solution to the problem with multiple inequality constraints (MCOP).

Proof. Denote gX (x) = (g1 (x) , . . . , gM (x))T , hX (x) = (hl+1 (x) , . . . , hL (x))T ,

ūX = (ū2
1, . . . , ū

2
M)

T
, and v̄X =

(
v̄2
l+1, . . . , v̄

2
L

)T
.

Due to our assumptions, L (x, ū, v̄) is convex on C and differentiable at x̄.
This implies that

L (x, ū, v̄)− L (x̄, ū, v̄) ≥ ∇xL (x̄, ū, v̄)T (x− x̄) ,

vide Theorem 3.2.5 and Lemma 3.3.2 in [3]. Since x̄ is a KKT point,∇xL (x̄, ū, v̄) =
0. Thus, we can write

L (x, ū, v̄) ≥ L (x̄, ū, v̄) . (1.35)
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By using the generalised Cauchy–Schwarz inequality (A.1), we obtain

FE (x;µ) = f (x) +
k∑
i=1

µi ‖max{0, gi (x)}‖+ µ ‖h (x)‖

≥ f (x) +
k∑
i=1

‖ūi‖′ ‖max{0, gi (x)}‖+ ‖v̄‖′ ‖h (x)‖

≥ f (x) +
k∑
i=1

ūTi max{0, gi (x)}+ v̄Th (x) .

Since gi (x) ≤ max {0, gi (x)}, i = 1, . . . , k, it follows that

FE (x;µ) ≥ f (x) +
k∑
i=1

ūTi gi (x) + v̄Th (x) .

Since gX (x) ≤ 0 and hX (x) = 0 for all x ∈ X , we can write

f (x) +
k∑
i=1

ūTi gi (x) + v̄Th (x) ≥ f (x) +
k∑
i=1

ūTi gi (x) + v̄Th (x)

+ūTXgX (x) + v̄TXhX (x) = L (x, ū, v̄)

By using (1.35), for all x ∈ X we get

FE (x;µ) ≥ L (x, ū, v̄)

≥ L (x̄, ū, v̄)

= f (x̄)

= FE (x̄;µ) ,

thus x̄ is a solution to the exact penalty problem (EP) for µi ≥ µ̄i, i = 1, . . . , k
and µ ≥ µ̄.

Since x̄E solves (EP), we have

f (x̄E)+
k∑
i=1

µi ‖max{0, gi (x̄E)}‖+µ ‖h (x̄E)‖ = FE (x̄E;µ) ≤ FE (x̄;µ) = f (x̄) ,

and so

f (x̄E) ≤ f (x̄)−
k∑
i=1

µi ‖max{0, gi (x̄E)}‖ − µ ‖h (x̄E)‖ . (1.36)

Since f (x), gij (x), j ∈ Ii (x̄), i = 1, . . . , k, gi (x), i ∈ IX (x̄), and hi (x), i ∈
I+ (x̄) ∪ I+

X (x̄) are convex functions, it holds true for all x ∈ X

f (x) ≥ f (x̄) +∇xf (x̄)T (x− x̄) , (1.37)

gij (x) ≥ gij (x̄) +∇xgij (x̄)T (x− x̄) ∀ j ∈ Ii (x̄) , i = 1, . . . , k, (1.38)

gi (x) ≥ gi (x̄) +∇xgi (x̄)T (x− x̄) ∀ i ∈ IX (x̄) , (1.39)

hi (x) ≥ hi (x̄) +∇xhi (x̄)T (x− x̄) ∀ i ∈ I+ (x̄) ∪ I+
X (x̄) . (1.40)
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Besides, hi (x), i ∈ I− (x̄) ∪ I−X (x̄) are concave, and hence, the following holds
true for all x ∈ X

hi (x) ≤ hi (x̄) +∇xhi (x̄)T (x− x̄) ∀ i ∈ I− (x̄) ∪ I−X (x̄) . (1.41)

Suppose that x̄E is not feasible for (OP). Using (1.37), we have

f (x̄E) ≥ f (x̄) +∇xf (x̄)T (x̄E − x̄) . (1.42)

Denote

Jgi(x̄) = (∇xgi1(x̄), . . . ,∇xgimi(x̄))T , i = 1, . . . , k,

Jh(x̄) = (∇xh1(x̄), . . . ,∇xhl(x̄))T

and

JgX (x̄) = (∇xg1(x̄), . . . ,∇xgM(x̄))T ,

JhX (x̄) = (∇xhl+1(x̄), . . . ,∇xhL(x̄))T .

Since x̄ is a KKT point, we can write

∇xf (x̄)T = −
K∑
i=1

ūTi Jgi (x̄)− v̄TJh (x̄)− ūTXJgX (x̄)− v̄TXJhX (x̄) . (1.43)

By using (1.43) in (1.42), we obtain

f (x̄E) ≥ f (x̄)−
k∑
i=1

ūTi Jgi (x̄) (x̄E − x̄)− v̄TJh (x̄) (x̄E − x̄)

−ūTXJgX (x̄) (x̄E − x̄)− v̄TXJhX (x̄) (x̄E − x̄) .

By using (1.38), (1.39), (1.40) and (1.41), we get

f (x̄E) ≥ f (x̄) +
k∑
i=1

ūTi (gi (x̄)− gi (x̄E)) + v̄T (h (x̄)− h (x̄E))

+ūTX (gX (x̄)− gX (x̄E)) + v̄TX (hX (x̄)− hX (x̄E)) .

Since ūTi gi (x̄) = 0, i = 1, . . . , k, v̄Th (x̄) = 0, ūTXgX (x̄) = 0 and v̄TXhX (x̄) = 0,
and gX (x̄E) ≤ 0, hX (x̄E) = 0, we can write

f (x̄) +
k∑
i=1

ūTi (gi (x̄)− gi (x̄E)) + v̄T (h (x̄)− h (x̄E))

+ūTX (gX (x̄)− gX (x̄E)) + v̄TX (hX (x̄)− hX (x̄E))

≥ f (x̄)−
k∑
i=1

ūTi gi (x̄E)− v̄Th (x̄E) .

Since gi (x) ≤ max {0, gi (x)}, i = 1, . . . , k, it follows that

f (x̄)−
k∑
i=1

ūTi gi (x̄E)− v̄Th (x̄E) ≥ f (x̄)−
k∑
i=1

ūTi max {0, gi (x̄E)}− v̄Th (x̄E) .
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After using the generalised Cauchy–Schwarz inequality (A.1), we can write

f (x̄E) ≥ f (x̄)−
k∑
i=1

ūTi max {0, gi (x̄E)} − v̄Th (x̄E)

≥ f (x̄)−
k∑
i=1

‖ūi‖′ ‖max{0, gi (x̄E)}‖ − ‖v̄‖′ ‖h (x̄E)‖

> f (x̄)−
k∑
i=1

µi ‖max{0, gi (x̄E)}‖ − µ ‖h (x̄E)‖ ,

which contradicts (1.36).Therefore, x̄E is feasible for (MCOP), and

f (x̄E) ≤ f (x̄) .

Since x̄ is a KKT point for (MCOP), it is an optimal solution to (MCOP), vide
[3, Theorem 4.3.8], and therefore x̄E is also and optimal solution to (MCOP).
This completes the proof.

Note that Theorem 1.3 also works with the original problem (OP) and the
corresponding exact penalty function problem (EP) with a common penalty pa-
rameter µ. In such a case, the threshold µ̄ equals to

µ̄ = max
{
‖ū‖′ , ‖v̄‖′

}
.

Evidently, the assumption of Theorem 1.3 must be satisfied, i.e. the convexity
and concavity requirements on f (x), gi (x), hi (x) and X must be given as in the
theorem.

1.3.1 Invex functions

Generalised convex functions have been introduced in order to lessen as much
as possible the convexity requirements for results related to optimisation prob-
lems. This motivation led to put forward and employ pseudo-convex, e.g. [23, 24],
and quasi-convex function, e.g. [22].

Invex functions intend to generalise convex functions as well. Dealing with
KKT conditions and Wolfe duality, vide [36], Hanson noted that the usual con-
vexity requirements can be altered. By substituting the linear term (x− y) ap-
pearing in the definition of differentiable convex functions by an arbitrary vector-
valued function η (x,y), he introduced a new class of differentiable functions,
vide [18].

Definiton 1.2 (Invex function). Assume O ⊆ Rn is an open set. A differentiable
function f (x) : O → R is invex on O with respect to η (x,y) if there exists a
vector-valued function η (x,y) : O ×O → Rn such that

f (x)− f (y) ≥ η (x,y)T ∇yf (y) , ∀ x,y ∈ O. (1.44)

The vector-valued function η (x,y) is sometimes referred to as the kernel
function. The term invex is due to Craven [11] and is an abbreviation of invariant
convex, since one can construct an invex function with respect to η (x,y) by the
following way, cf. [25]:
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Let g (x) : Rn → R be differentiable convex and Φ (y) : Rr → Rn, r ≥ n, be
differentiable with

JΦ (y) = (∇yΦ1 (y) , . . . ,∇yΦn (y))T

of rank n. Then f (y) = g (Φ (y)) is invex since ∀ x,y ∈ Rr, we have

f (x)− f (y) = g (Φ (x))− g (Φ (y)) ≥ (Φ (x)−Φ (y))T ∇xg (Φ (y)) .

As JΦ (y) is full of row rank, equation

(Φ (x)−Φ (y)) = JΦ (y) η (x,y) (1.45)

has a solution η (x,y) ∈ Rr. By multiplying equation (1.45) by∇xg (Φ (y))T ,
we get

∇xg (Φ (y))T (Φ (x)−Φ (y)) = ∇xg (Φ (y))T JΦ (y) η (x,y) . (1.46)

Since ∇yf (y) = JΦ (y)T ∇xg (Φ (y)), equation (1.46) is equivalent to

(Φ (x)−Φ (y))T ∇xg (Φ (y)) = η (x,y)T ∇yf (y)

Hence,
f (x)− f (y) ≥ η (x,y)T ∇yf (y) , ∀ x,y ∈ Rr

and for some η (x,y) : Rr × Rr → Rr.

Ben-Israel and Mond [4] showed that a differentiable function is invex with
respect to η (x,y) if and only if every stationary point is a global minimum.
Hence, invex functions with respect to the same η (x,y) were constructed in
order for the KKT condition to be sufficient for a global minimum, cf. [25].

Obviously, the particular case of differentiable convex function is obtained
from (1.44) by putting η (x,y) = x−y. Thus, invexity is commonly considered as
a generalisation of convexity. However, this notion can lead to misapprehensions
as it is pointless to discuss invexity without considering the kernel function.

The following illustrative example of a invex function which is not convex is
taken from [21]. Consider the function f (x) = x+ sin (x) defined on

(
0, π

2

)
. The

f (x) is invex with respect to

η (x, y) =
sin (x)− sin (y)

cos (y)
,

but is not convex as for x = π
4

and y = π
6

f (x)− f (y) 6≥ (x− y)∇yf (y) .

An example of an invex program which is not convex can be found in [18].

Preparatory to the next subsection, let us define the negative of an invex
function with respect to η (x,y), the incave function with respect to η (x,y).

Definiton 1.3 (Incave function). AssumeO ⊆ Rn is an open set. A differentiable
function f (x) : O → R is incave on O with respect to η (x,y) if −f (x) is invex
on O with respect to η (x,y).

1.3.2 Invex functions and exact penalty function methods

It is of utmost importance to find ways for employing exact penalty functions
for non-convex problems. Antczak [1] recently proposed to use invex and incave
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functions with respect to the same η (x,y) instead of convex and concave func-
tions, respectively, for exact penalty methods. He established for the L∞ penalty
function that one can achieve similar results as in Theorem 1.3 by using invex
and incave functions with respect to the same η (x,y).

Let us reformulate Theorem 1.3 for invex and incave functions with respect
to the same η (x,y) and prove that the result likewise holds.

Theorem 1.4. Suppose that

X = {x : gi (x) ≤ 0, i = 1, . . . ,M, hi (x) = 0, i = l + 1, . . . , L} ,

is a nonempty set, O ⊃ X is an open set, and x̄ ∈ S is a KKT point for problem
(MCOP) with Lagrangian multipliers ūij, j = 1, . . . ,mi, i = 1, . . . , k, and v̄i,
i = 1, . . . , l associated with the inequality gij (x), j = 1, . . . ,mi, i = 1, . . . , k, and
equality constraints hi (x), i = 1, . . . , l, respectively.

Denote

(i) ūi = (ūi1, . . . , ūimi)
T , i = 1, . . . , k, v̄ = (v̄1, . . . , v̄l)

T ,

(ii) ūi, i = 1, . . . ,M , and v̄i, i = l + 1, . . . , L the Lagrangian multipliers associ-
ated with gi (x), i = 1, . . . ,M , and hi (x), i = l + 1, . . . , L, respectively,

(iii) IX (x̄) = {i ∈ (1, . . . ,M) : gi (x̄) = 0},

(iv) I+ (x̄) = {i ∈ (1, . . . , l) : v̄i > 0}, I+
X (x̄) = {i ∈ (l + 1, . . . , L) : v̄i > 0},

(v) I− (x̄) = {i ∈ (1, . . . , l) : v̄i < 0}, I−X (x̄) = {i ∈ (l + 1, . . . , L) : v̄i < 0}.

Furthermore, suppose that f (x) is a invex functions on O with respect to a
η (x,y),

(i) gij (x), j ∈ Ii (x̄), i = 1, . . . , k, gi (x), i ∈ IX (x̄) are invex functions on O
with respect to the same η (x,y),

(ii) hi, i ∈ I+ (x̄) ∪ I+
X (x̄) are invex functions on O with respect to the same

η (x,y),

(iii) hi, i ∈ I− (x̄) ∪ I−X (x̄) are incave on O functions with respect to the same
η (x,y).

Then, for
µi ≥ µ̄i = ‖ūi‖′ , i = 1, . . . , k and µ ≥ ‖v̄‖′

where ‖ · ‖′ is the dual norm to ‖ · ‖, x̄ also minimises the exact penalty objective
function (1.34).

Moreover, if x̄E is solution to the exact penalty problem (EP) with objective
function (1.34) for µi > µ̄i = ‖ūi‖′ , i = 1, . . . , k and µ > ‖v̄‖′, then x̄E is also
a solution to the problem with multiple inequality constraints (MCOP).

Proof. The proof of Theorem 1.4 is analogous to the proof of Theorem 1.3, and
therefore we shall only discuss the validity of the main steps.

Due to our assumptions, L (x, ū, v̄) is invex on O with respect to η (x,y), cf.
[25, Theorem 2.9]. This implies that

L (x, ū, v̄)− L (x̄, ū, v̄) ≥ η (x, x̄)T ∇xL (x̄, ū, v̄) .
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Since x̄ is a KKT point, ∇xL (x̄, ū, v̄) = 0. Thus, we can write

L (x, ū, v̄) ≥ L (x̄, ū, v̄) .

Therefore, we have

FE (x;µ) ≥ FE (x̄;µ) for µi ≥ µ̄i, i = 1, . . . , k, µ ≥ µ̄.

The second part of the theorem holds as well. Obviously, we get the same
results by replacing (x− x̄) with η (x, x̄). Namely, x̄E is feasible for (MCOP),
and

f (x̄E) ≤ f (x̄) .

Since x̄ is a KKT point for (MCOP), it is an optimal solution to (MCOP), cf.
[18, Theorem 2.1], and therefore x̄E is also and optimal solution to (MCOP).
This completes the proof.

Note that for the existence of a common kernel function, the following system
of inequalities

f (x)− f (y) ≥ η (x,y)T ∇yf (y) ,

gij (x)− gij (y) ≥ η (x,y)T ∇ygij (y) , j ∈ Ii (x̄) , i = 1, . . . , k,

gi (x)− gi (y) ≥ η (x,y)T ∇ygi (y) , i ∈ IX (x̄) ,

hi (x)− hi (y) ≥ η (x,y)T ∇yhi (y) , i ∈ I+ (x̄) ∪ I+
X (x̄) ,

hi (y)− hi (x) ≥ −η (x,y)T ∇yhi (y) , i ∈ I− (x̄) ∪ I−X (x̄) ,

(1.47)

must have a solution η (x,y). Denote Γ the matrix of the gradients, i.e.

Γ = (∇yf (y) ,∇ygij (y) ,∇ygi (y) ,∇yhi (y) ,−∇yhi (y))T ,

and λ the vector of the left-hand side. Then the matrix notation of the system
(1.47) is as follows

Γη (x,y) ≤ λ. (1.48)

From Gale’s theorem of the alternative, vide [16], either the system Γη (x,y) ≤ λ
has a solution η (x,y), or the system ΓTz = 0, λTz = −1, z ≥ 0, has a solution
z, but not both. Hence, one could in principle determine the existence of a kernel
function by determining the nonexistence of a z in the latter system of equations,
cf. [18].

1.3.3 Examples of exact penalty functions

The absolute value penalty function

The absolute value penalty function for (OP) is also a special case of Lq
penalty function (1.5) for q = 1. Hence, it is sometimes referred to as the L1

penalty function. It is given by

p1 (x) = ‖max{0, g (x)}‖1 +‖h (x) ‖1 =
m∑
i=1

max{0, gi (x)}+
l∑

i=1

|hi(x)|. (1.49)
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The absolute value penalty function (1.49) is a commonly used exact penalty
function. Since the dual norm to the L1 norm is the L∞ norm, cf. [19], it suffices
to choose a penalty parameter

µ > max {ū1, . . . , ūm, |v̄1| , . . . , |v̄l|}

in order to satisfy the condition on the penalty parameter of theorems 1.2 or 1.3.

The L∞ penalty function

The L∞ penalty function is derived from the L∞ norm (1.4), and therefore it
is defined by

p∞ (x) = max
i=1,...,m

max{0, gi (x)}+ max
i=1,...,l

|hi(x)| . (1.50)

Since the dual norm to the L∞ norm is the L1 norm, cf. [19], it suffices to choose
a penalty parameter

µ > max

{
m∑
i=1

ūi,
l∑

i=1

|v̄i|

}
in order to satisfy the condition on the penalty parameter of theorems 1.2 or 1.3.
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Chapter 2

One-stage stochastic
programming problems

By incorporating uncertainty into the original problem (OP), one-stage prob-
lem with uncertainty can be formulated as follows

“ min ” f (x,ω)

“subject to” g (x,ω) ≤ 0

x ∈ X ,
(PwUC)

where ω = (ω1, . . . , ωs)
T is an s dimensional real-valued random vector defined

on a probability space (Ω,F ,P) with known probability measure P and Ω ⊂ Rs,
and g (x,ω) = (g1 (x,ω) , . . . , gm (x,ω))T . All the functions occurring in the
problem are defined on X × Ω and take values in the extended real numbers,
i.e. f (x,ω) : X × Ω → R̄, gi (x,ω) : X × Ω → R̄, i = 1 . . . ,m, where R̄ =
R ∪ {−∞,∞} denotes the extended reals. Note that equality constraints, i.e.
h (x,ω) = 0, are not consider in our formulation of the problem.

Since ω is unknown, it remains a question how to interpret and solve the
problem (PwUC). Considering the fact that the decision has to be made before
ω eventuate, a suitable reformulation of the problem (PwUC) is mandatory. As it
was stated in the Introduction, the following two approaches has been eminently
employed to solve the vagueness of the problem (PwUC) with respect to the
treatment of the random vector ω:

• expected violation (or shortfall) penalty models,

• probabilistic (or chance constrained) programs.

We shall briefly outline the expected violation penalty technique and focus
our attention on the probabilistic programs.

2.1 Expected violation penalty models

The expected violation penalty model formulation of the stochastic programs
is as follows

min E F (x,ω)

subject to x ∈ X ,
(EVPM)
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where X is a nonempty, closed set of decisions x which is completely independent
of the probability measure, and F (x,ω) : X×Ω→ R̄ is a suitably chosen function
which penalises the lost or cost caused by the decision x ∈ X when the observation
ω occurs. The requirements on the function F (x,ω) consists of measurability in
ω for every fixed x ∈ X and well-defined expected value E F (x,ω) for each x ∈
X . The objective function of the expected violation penalty problem (EVPM)
may be rather complicated, e.g. multi-stage models in [33].

Let us show that the above formulation of the stochastic programming prob-
lem (PwUC) is truly based on the notion of optimising the total lost or cost on
average. If the process repeats itself then by the Law of Large Numbers the aver-
age of the total cost will converge a.s. to the expectation E F (x,ω), and indeed
the solution of the expected violation penalty problem (EVPM) will be optimal
on average, cf. [34].

One possible reformulation of the problem (PwUC) into an expected violation
penalty program (EVPM) is the following. Suppose that f (x,ω) and g (x,ω)
are measurable in ω for every fixed x ∈ X and the expected values E f (x,ω),
E max {0, g (x,ω)} are well-defined for each x ∈ X . Then, the expected violation
penalty program (EVPM) can be formulated as

min E
(
f (x,ω) + cT max {0, g (x,ω)}

)
subject to x ∈ X ,

(2.1)

Note that the problem (2.1) is in the scalarised of the multi-objective problem

min {E f (x,ω) ,E max {0, g (x,ω)}}
subject to x ∈ X .

(2.1-MO)

Therefore, if X is nonempty, convex and compact and the functions E f (x,ω)
and E max {0, g (x,ω)} are convex in x then for every non-negative c ∈ Rm,
c 6= 0, every solution to the problem (2.1) is an efficient solution to the multi-
objective problem (2.1-MO). If the functions f (x,ω) and g (x,ω) are convex in
x then E f (x,ω) and E max {0, g (x,ω)} are convex in x as well. Let us show
this for E f (x,ω). For all x1,x2 ∈ X and α ∈ [0, 1], the following hold true

E f (αx1 + (1− α)x2,ω) ≤ E (f (αx1,ω) + f ((1− α)x2,ω))

≤ E f (αx1,ω) + E f ((1− α)x2,ω) .

Thus, E f (x,ω) is convex in x. The convexity of E max {0, g (x,ω)} in x is
analogous.

Having noted that the problem (2.1) is a multi-objective program (2.1-MO),
an other method, namely, the ε-constrained approach can be used to solve the
problem. In this case, the problem (2.1-MO) is of the form

min E f (x,ω)

subject to E max {0, g (x,ω)} ≤ ε
x ∈ X ,

(2.1-ε-c)

where ε = (ε1, . . . , εm)T .
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2.2 Probabilistic programming

Probabilistic (or chance constrained) programming problems were first intro-
duced in [10]. In such problems, the set of feasible solutions X (P) ⊂ Rn depends
on the probability distribution P of the random part. The general formulation
of probabilistic programs is as follows

min E f (x,ω)

subject to x ∈ X (P) .
(CC)

Solving chance constrained problems is not an easy matter. In general, the struc-
ture of the set of feasible solutions X (P) is not convex, and hence, further spec-
ification are provided.

A common formulation of X (P) is derived from requirements on the reliabil-
ity on the optimal solution. In general, one may require the random constraints
g (x,ω) to be meet for a prescribed probability thresholds (1− ε) jointly or in-
dividually, depending on the nature of the problem. The reliability requirement
ε ∈ [0, 1] is chosen by the decision maker. Typically, it is rather small.

In the joint case, X (P) = X ∩ Xε (P), where Xε (P) is defined as

Xε (P) = {x ∈ Rn : P (g (x,ω) ≤ 0) ≥ 1− ε} (2.2)

and called joint probability constraints. The structure of Xε (P) may not be easy
even in this particular case. To obtain a convex set, special assumptions on the
probability distribution P are required. If the functions gi (x,y), i = 1, . . . ,m,
are quasi-convex jointly in both arguments and ω is a random vector that has
an α-concave probability distribution, cf. [12], then Xε (P) is convex and closed.
For more general results and details concerning joint probability constraints, see
e.g. [12] or [28].

In the individual case, the structure of Xε (P) is slightly easier due to sepa-
rate treatment of gi (x,ω) ≤ 0. Denote the probability thresholds εi on the ith
constraint gi (x,ω) ≤ 0, i = 1, . . . ,m. For this case, Xε (P) is defined as

Xε (P) = {x ∈ Rn : P (gi (x,ω) ≤ 0) ≥ 1− εi, i = 1, . . . ,m} (2.3)

and called individual probability constraints. If s = m and ωi, i = 1, . . . ,m,
constitute the right hand sides of the constraints, i.e. gi (x,ω) = gi (x)− ωi, the
probabilistic constraints (2.3) become

P (gi (x) ≤ ωi) ≥ 1− εi, i = 1, . . . ,m

which is equivalent to

P (ωi ≤ gi (x)) ≤ εi, i = 1, . . . ,m

and
gi (x) ≤ uεi (P i) , i = 1, . . . ,m,

where uεi (P i) denotes the εi quantile of the marginal probability distribution of
ωi. Therefore, for quasi-convex gi (x), i = 1, . . . ,m, the set Xε (P) is convex, vide
[3, Theorem 3.5.2]. For more general results and details concerning individual
probability constraints, see e.g. [12].
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Note that P (g (x,ω) ≤ 0) = E I (g (x,ω) ≤ 0), and the chance constrained
problem (CC) can be formulated as

min E f (x,ω)

subject to E I (g (x,ω) ≤ 0) ≥ 1− ε
x ∈ X ,

(CC-ε-c)

which in the form of the ε-constrained approach of solving the multi-objective
program

min {E f (x,ω) ,−E I (g (x,ω) ≤ 0)}
subject to x ∈ X .

(CC-MO)

Hence, for nonempty, convex, compact X , convex E f (x,ω) in x and concave
E I (g (x,ω) ≤ 0) in x there exists an N ≥ 0 such that the optimal solutions
to the probabilistic programming problem (CC) assuming joint probability con-
straints (2.2) and ε ∈ [0, 1], can be found by solving the scalarised form of the
multi-objective problem (CC-MO)

min E (f (x,ω)−N · I (g (x,ω) ≤ 0))

subject to x ∈ X .
(CC-sc)

Note that the scalarised form (CC-sc) is an expected violation penalty problem
(EVPM) with F (x,ω) = f (x,ω)−N · I (g (x,ω) ≤ 0), cf. [9].

These two aforementioned types of stochastic programming are not rivals
but rather supplements and can be further combined in order to enhance the
reliability of the optimal decision, cf. [9]. As we mentioned above, the solution
of the expected violation penalty model optimises the lost or cost on average,
whereas the probabilistic programming capture the reliability requirements or
risk restrictions on the optimal solution. Hence, a “mixed” model is beneficial in
such a way that one is able to control both the level of reliability and the extent
of penalisation. The combination of the two approaches was first put forward by
Prékopa [27].

Prékopa [27] “. . . we are convinced that the best way of operating a stochastic
system is to operate it with a prescribed (high) reliability and at the same
time use penalties to punish discrepancies.”

An example of a “mixed” model and its properties were recently presented in [5].
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Chapter 3

Penalty function methods for
stochastic programming

In section 2.2, we showed that a chance constrained problem (CC) can be
reformulated into an expected violation penalty problem (EVPM), in which one
employs a suitably chosen penalty function. Therefore, one can have a stochas-
tic program (CC) with a fixed feasible region. Nevertheless, this reformulation
is practically unsatisfactory. The deficiency of the scalarised form (CC-sc) of
the multi-objective problem (CC-MO) associated with the probabilistic program
(CC) is usually caused by relatively difficult evaluation of the objective function.

The idea of constructing a second program employing absolute value penalty
function with a fixed set X of feasible solutions associated with the chance con-
strained problem (CC) with joint probability constraints (2.2) was proposed in
[31]. They proposed to assign penalties N max {0, gi (x,ω)} with positive penalty
parameter N and to solve

min E f (x,ω) +N
m∑
i=1

E max {0, gi (x,ω)}

subject to x ∈ X
(3.1)

instead of the chance constrained problem (CC). It is important to note that the
two problems (CC) and (3.1) are not equivalent as the equivalent reformulation
of the chance constrained problem (CC) using penalty function is the scalarised
form (CC-sc), cf. section 2.2. However, one may expect that the two problems
are asymptotically equivalent, i.e. for sufficiently large penalty parameter N
there exists a reliability requirement ε > 0 such that the obtained solution to the
penalty function problem (3.1) satisfies the joint probability constraints (2.2).

A rigorous proof of the asymptotic equivalence of chance constrained programs
(CC) with one chance constraint and penalty function problems of form (3.1) is
due to [15]. The approach was extended to an entire class of penalty function,
cf. [9], and to problems with several individual and joint chance constraints, cf.
[7]. The assumption of the theorems restricted their validity only to continuous
probability distribution. The approach was recently extended to finite discrete
probability distributions and exact penalty function methods as well, cf. [8].
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3.1 Continuous probability distributions

First, we present a theorem of asymptotic equivalence which holds for contin-
uous probability distributions. Prior to that, the formulations of the considered
problems are provided.

3.1.1 The fomulation of multiple chance constrained and
penalty function problems

Let X be a nonempty set in Rn, ω = (ω1, . . . , ωs)
T be a real-valued random

vector defined on a probability space (Ω,F ,P) with known probability measure
P and Ω ⊂ Rs, f (x) : Rn → R and gij (x,ω) : Rn × Rs → R, j = 0, . . . ,mi,
i = 1, . . . , k, be real valued functions measurable in ω for all x ∈ X , and denote
gi (x,ω) = (gi1 (x,ω) , . . . , gimi (x,ω))T , i = 1, . . . , k. Then the multiple chance
constrained problem can be formulated as

min f (x)

subject to P (gi (x,ω) ≤ 0) ≥ 1− εi, i = 1, . . . , k,

x ∈ X ,
(MCC)

where ε = (ε1, . . . , εk)
T is the vector of given reliability requirements εi ∈ (0, 1)

for the joint constraint gi (x,ω), i = 1, . . . , k. Denote ψε the optimal value and
xε the optimal solution to the multiple chance constrained problem (MCC) for
given reliability requirements ε.

Note that the formulation of the multiple chance constrained problem (MCC)
enables us to work with slightly generalised settings in comparison with proba-
bilistic programming (CC) introduced in section 2.2. Since multiple reliability
requirements on various constraints gi (x,ω) can be set, it allows the decision
maker to possess greater freedom of choice.

Consider the penalty functions φi (y) : Rmi → R, i = 1, . . . , k, which are
continuous and nondecreasing in their components, equal to 0 for y ≤ 0 and
positive otherwise. Additionally, we denote

pi (x,ω) = φi (gi1 (x,ω) , . . . , gimi (x,ω)) : Rn × Rs → R, i = 1, . . . , k

the penalised constraints, cf. [7]. From the construction of pj (x,ω), the following
relation holds true

P (gi (x,ω) ≤ 0) ≥ 1− εj ⇐⇒ P (pi (x,ω) > 0) ≤ εi (3.2)

for all i = 1, . . . , k, cf. [7].
The penalty function problem associated with the multiple chance constrained

problem (MCC) can be formulated as follows

min f (x) + µ

k∑
i=1

E pi (x,ω)

subject to x ∈ X ,
(P-MCC)

where µ is a positive penalty parameter. Denote ϕµ the optimal value and xµ the
optimal solution to the penalty function problem (P-MCC) for a given penalty
parameter µ.
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3.1.2 The asymptotic equivalence of the two problems

Let us examine the the asymptotic equivalence of the two problems (MCC)
and (P-MCC) under continuous probability distribution. The following theorem
states the asymptotic equivalence in generalised settings, i.e. for arbitrary penalty
function. The theorem is one of the main results in [7].

Theorem 3.1. Consider the multiple chance constrained problems (MCC) and
the corresponding penalty function problem (P-MCC) and assume that X ⊂ Rn

is nonempty, compact, f (x) is continuous,

(i) gij (x,ω), j = 1, . . . ,mi, i = 1, . . . , k, are almost surely continuous,

(ii) there exists a nonnegative random variable C (ω) with E C1+κ (ω) <∞ for
some κ > 0 such that |pi (x,ω)| ≤ C (ω), i = 1, . . . , k, for all x ∈ X ,

(iii) E pi (x
′,ω) = 0, i = 1, . . . , k, for some x′ ∈ X ,

(iv) P (gij (x,ω) = 0) = 0, j = 1, . . . ,mi, i = 1, . . . , k, for all x ∈ X .

Denote η = κ
2(1+κ)

and for arbitrary µ > 0 and ε ∈ (0, 1)m put

εj (x) = P (pj (x,ω) > 0) , j = 1, . . . ,m,

αµ (x) = µ
m∑
j=1

E pj (x,ω) ,

βε (x) = ε−ηmax

m∑
j=1

E pj (x,ω) ,

where εmax denotes the maximum of the vector of the reliability requirements

ε = (ε1, . . . , εk)
T , and

[
1/µ1/η

]
=
(
1/µ1/η, . . . , 1/µ1/η

)T
is a vector of length k.

Then for any prescribed ε ∈ (0, 1)k there always exists a sufficiently large
µ so that the minimisation of the penalty function problem (P-MCC) generates
optimal solutions xµ which also satisfy the multiple chance constraints (MCC)
with the given ε.

Moreover, bounds on the optimal value ψε based on the optimal value ϕµ and
vice versa can be constructed as

ϕ1/εηmax(xµ) − βε(xµ)

(
xε(xµ)

)
≤ ψε(xµ) ≤ ϕµ − αµ (xµ)

ψε(xµ) + αµ (xµ) ≤ ϕµ ≤ ψ[1/µ1/η] + β[1/µ1/η]

(
x[1/µ1/η]

)
,

(3.3)

with
lim
µ→∞

αµ (xµ) = lim
µ→∞

εj (xµ) = lim
εmax→0+

βε (xε) = 0

for any sequences of optimal solutions xµ and xε.

Proof. The proof is based on Theorem 1.1 and can be found in [7].

Note that Theorem 3.1 does not make any statement on the convergence
of optimal solutions. It merely relates the optimal values for certain reliability
requirements ε and the penalty parameter µ, cf. [7].
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Since the only points of discontinuity of the probability function

P (gij (x,ω) ≤ 0, j = 1, . . . ,mi) ,

in the decision variable x is gij (x,ω) = 0, j = 1, . . . ,mi, i = 1, . . . , k, assumption
(iv) ensures its continuity for any x ∈ X , cf. [7].

The bounds (3.3) and the terms εi (x), i = 1, . . . , k, αµ (x) and βε (x) depend
on the chosen penalty functions φi (y), i = 1, . . . , k. Nonetheless, numeric eval-
uation of the bounds may cause difficulties. One cannot compute βε(xµ)

(
xε(xµ)

)
without having the optimal solution xε(xµ), which is not aimed to be found or
may be extremely difficult to obtain, cf. [7].

Let us examine assumption (iii). Since pi (x,ω) ≥ 0 a.s. for all x ∈ X
and E pi (x

′,ω) = 0 for some x′ ∈ X , it follows that pi (x
′,ω) = 0 a.s. This

assumption states that x′ is a permanently feasible solution, i.e. a solution to the
multiple chance constrained problem (MCC) with reliability requirements ε = 0.
Therefore, assumption (iii) can be severely restrictive. In general, the overall
feasible set may shrink with increasing reliability requirements ε to the empty
set, and hence, Theorem 3.1 may fail for probability measures with an unbounded
support, cf. [9].

In section 1.3, we discussed that if p (xµ) = 0 for some µ > 0, then xµ is
an optimal solution to the original problem (OP). In this case it means that if
E pi (xµ,ω) = 0, i = 1, . . . , k for some µ > 0 then xµ is a permanently feasible
solution.

3.2 Finite discrete probability distributions

Under discrete probability distribution with finite number of realisations, the
theorem of asymptotic equivalence requires less assumptions. In addition, one
can employ exact penalty function methods, section 1.3, in order to obtain the
equivalence of the problems.

3.2.1 The fomulation of chance constrained and penalty
function problems

Let the probability distribution of the random vector ω be discrete with finite
number of realisations (scenarios) ωs, s = 1, . . . , S, and denote 0 < πs < 1,
s = 1, . . . , S,

∑S
s=1 πs = 1 the associated probabilities. For such probability

distributions, the probabilistic program (MCC) can be formulated as

min f (x)

subject to
S∑
s=1

πs I (gi (x,ω
s) ≤ 0) ≥ 1− εi, i = 1, . . . , k

x ∈ X ,

(MCCd)

and the corresponding penalty function problem (P-MCC) can be formulated as

min f (x) + µ

k∑
i=1

S∑
s=1

πspi (x,ω
s)

subject to x ∈ X .
(P-MCCd)
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The notations of the optimal value and the optimal solution to the multiple chance
constrained problem (MCCd) and the corresponding penalty function problem
(P-MCCd) do not change.

3.2.2 The asymptotic equivalence of the two problems

First, we examine the the asymptotic equivalence of the two problems (MCCd)
and (P-MCCd) under finite discrete probability distribution. The following theo-
rem is analogous to Theorem 3.1, and thus it states the asymptotic equivalence in
generalised settings, i.e. for arbitrary penalty function. It also extends Theorem 1
in [8] to multiple chance constrained problems.

Theorem 3.2. Consider the multiple chance constrained problem (MCCd) and
the corresponding penalty function problem (P-MCCd) and assume that X ⊂ Rn

is a nonempty, compact set, f (x) a continuous function,

(i) gij (x,ωs), j = 1, . . . ,mi, i = 1, . . . , k, are continuous for all s = 1, . . . , S,

(ii) gij (x,ωs) ≤ 0 for all j = 1, . . . ,mi, i = 1, . . . , k, s = 1, . . . , S and at least
one x′ ∈ X .

For arbitrary γ ∈ (0, 1), µ > 0 and ε ∈ (0, 1)k put

εi (x) =
S∑
s=1

πs I (pi (x,ω
s) > 0) , i = 1, . . . , k,

αµ (x) = µ
k∑
i=1

S∑
s=1

πspi (x,ω
s) ,

βε (x) = ε−γmax

k∑
i=1

S∑
s=1

πspi (x,ω
s) ,

where εmax denotes the maximum of the vector of the reliability requirements

ε = (ε1, . . . , εk)
T and

[
1/µ1/η

]
=
(
1/µ1/η, . . . , 1/µ1/η

)T
is a vector of length k.

Then for any prescribed ε ∈ (0, 1)k there always exists a sufficiently large µ
so that the minimisation of the penalty function problem (P-MCCd) generates
optimal solutions xµ which also satisfy the multiple chance constraints (MCCd)
with the given reliability requirements ε.

Moreover, bounds on the optimal value ψε based on the optimal value ϕµ and
vice versa can be constructed as

ϕ1/εγmax(xµ) − βε(xµ)

(
xε(xµ)

)
≤ ψε(xµ) ≤ ϕµ − αµ (xµ) ,

ψε(xµ) + αµ (xµ) ≤ ϕµ ≤ ψ[1/µ1/γ] + β[1/µ1/γ]

(
x[1/µ1/γ]

)
,

(3.4)
with

lim
µ→∞

αµ (xµ) = lim
εmax→0+

βε (xε) = lim
µ→∞

εi (xµ) = 0, i = 1, . . . , k

for any sequences of optimal solutions xµ and xε.

34



Proof. Assumption (ii) implies that for every vector ε > 0 there exists a xε ∈ X
such that

S∑
s=1

πs I (gi1 (xε,ω
s) ≤ 0, . . . , gimi (xε,ω

s) ≤ 0) ≥ 1− εi, i = 1, . . . , k.

Denote
C = max

i=1,...,k
max
s=1,...,S

max
x∈X

pi (x,ω
s) ,

which is finite due to our assumptions. Then for any ε > 0 the following relations
hold

k∑
i=1

S∑
s=1

πspi (x,ω
s) ≤ C

k∑
i=1

S∑
s=1

πs I (pi (x,ω
s) > 0) ≤ kCεmax.

Hence, for εmax → 0+ and arbitrary γ ∈ (0, 1)

βε (x) = ε−γmax

k∑
i=1

S∑
s=1

πspi (x,ω
s) ≤ kCε1−γ

max → 0. (3.5)

We denote

δµ =
k∑
i=1

S∑
s=1

πspi (xµ,ω
s)

for a sequence xµ of optimal solutions to the penalty function problem (P-MCCd).
Our assumptions and the general properties of the penalty function method, vide
Theorem 1.1, ensures that δµ → 0+ and moreover αµ (xµ) = µδµ → 0 as µ→∞.
Let Gi (x, ·) denote the distribution function of pi (x,ω) for a fixed x defined by

Gi (x, y) = P (pi (x,ω) ≤ y) =
S∑
s=1

πs I (pi (x,ω) ≤ y) , i = 1, . . . , k.

The we can rewrite εi (xµ), i = 1, . . . , k, as

εi (xµ) =
S∑
s=1

πs I (pi (xµ,ω
s) > 0)

=
S∑
s=1

πs I
(

0 < pi (xµ,ω
s) ≤

√
δµ

)
+

S∑
s=1

πs I
(
pi (xµ,ω

s) >
√
δµ

)
The first summand can be rewritten by using the empirical distribution function
as

S∑
s=1

πs I
(

0 < pi (xµ,ω
s) ≤

√
δµ

)
= Gi

(
xµ,
√
δµ

)
−Gi (xµ, 0) .

The second summand can be rewritten by using Markov’s inequality

P (X > a) ≤ E X

a

as
S∑
s=1

πs I
(
pi (xµ,ω

s) >
√
δµ

)
≤ 1√

δµ

S∑
s=1

πspi (xµ,ω
s) =

√
δµ.
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Therefore, for i = 1, . . . , k we have

εi (xµ) ≤ Gi

(
xµ,
√
δµ

)
−Gi (xµ, 0) +

√
δµ → 0 as µ→∞ (3.6)

as the distribution function Gi (x, ·) is right continuous. This means that for µ
large enough one can generate feasible solution for the chance constrained problem
with arbitrary low reliability requirements ε.

The optimal solution xµ of the penalty function problem (P-MCCd) with
penalty parameter µ is obviously feasible for the multiple chance constrained
problem (MCCd) with reliability requirements ε (xµ) = (ε1 (xµ) , . . . , εk (xµ))T

as relation (3.2) holds with εi = εi (xµ). Therefore, we get the lower bound for
the optimal value ϕµ of the penalty function problem (P-MCCd)

ϕµ = f (xµ) + µ
k∑
i=1

S∑
s=1

πspi (xµ,ω
s)

≥ f
(
xε(xµ)

)
+ µ

k∑
i=1

S∑
s=1

πspi (xµ,ω
s)

= ψε(xµ) + αµ (xµ) .

This bound is directly employed in bounds (3.4).
Since for the optimal solution xε to the multiple chance constrained problem

(MCCd) holds

f (xε) + ε−γmax

k∑
i=1

S∑
s=1

πspi (xε,ω
s) ≥ ϕε−γmax

,

hence we the lower bound for the optimal value ψε of the multiple chance con-
strained problem (MCCd)

ψε =

(
ψε + ε−γmax

k∑
i=1

S∑
s=1

πspi (xε,ω
s)

)
− ε−γmax

k∑
i=1

S∑
s=1

πspi (xε,ω
s)

≥ ϕε−γmax
− ε−γmax

k∑
i=1

S∑
s=1

πspi (xε) = ϕε−γmax
− βε (xε)

This bound is then employed in (3.4) by setting ε = ε (xµ) and ε =
[
1/µ1/γ

]
.

This completes the proof.

Assumption (ii) requires a permanently feasible solution to multiple con-
strained problem (MCCd), which is defined as the optimal solution to

min f (x)

subject to gi (x,ω
s) ≤ 0, i = 1, . . . , k, s = 1, . . . , S

x ∈ X .
(PF-MCCd)

Note that for εi < mins=1,...,S πs, i = 1, . . . , k, any solution to the multiple
chance constrained problem (MCCd) is a solution to the permanently feasi-
ble problem (PF-MCCd), and therefore is permanently feasible, cf. [8]. An
analogous criterion to obtain a permanently feasible solution can be stated as∑k

i=1

∑S
s=1 πspi (xµ,ω

s) = 0 for some µ > 0 and xµ ∈ X , cf. section 1.2.
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3.2.3 The asymptotic equivalence of the two problems us-
ing exact penalisation

One of the disadvantages of exterior penalty function methods is the necessity
of infinite increase of the penalty parameter. Thus, one must solve several prob-
lems for ascendant penalty parameters and estimate the reliability of the obtained
solution to stochastic programming problems. Analogously to deterministic prob-
lems, the penalty function approach for stochastic programming can be further
improved by means of exact penalty function methods.

In [8], an exact penalty function method using the absolute value penalty
function under general assumptions was proposed.

The following theorem compounds the exact penalty function method for con-
vex and concave functions stated by Theorem 1.3 and penalty function methods
for stochastic programming under discrete probability distributions stated by
Theorem 3.2. Since in Theorem 1.3 arbitrary vector norms can be theoretically
used, the following theorem extends the usable penalty functions in case of convex
functions.

Theorem 3.3. Consider the two problems (MCCd) and (P-MCCd) and as-
sume that X = {x ∈ Rn : gi (x) ≤ 0, i = 1, . . . ,M, hi (x) = 0, i = 1, . . . , L} is
nonempty, C ⊃ X is an open convex set, f (x) is a convex function on C,

(i) gij (x,ωs), j = 1, . . . ,mi, i = 1, . . . , k and s = 1, . . . , S, are convex func-
tions on C,

(ii) gi (x), i = 1, . . . ,M , are convex functions on C,

(iii) hi (x) are affine for all i = 1, . . . , L,

(iv) there exists a KKT point for the permanently feasible problem (PF-MCCd).

Let
pi (x,ω) = ‖max {0, gi (x,ω)}‖ , i = 1, . . . , k,

where ‖·‖ is any fixed vector norm in Rmi, i = 1, . . . , k, respectively. For arbitrary
µ > 0 and ε ∈ (0, 1)k put

εi (x) =
S∑
s=1

πs I (pi (x,ω
s) > 0) , i = 1, . . . , k

αµ (x) = µ

k∑
i=1

S∑
s=1

πspi (x,ω
s) ,

βε (x) = ε−1
max

k∑
i=1

S∑
s=1

πspi (x,ω
s) ,

where εmax denotes the maximum of the vector of reliabilities ε = (ε1, . . . , εk)
T .

Then there exists a µ̃ that any optimal solution to the penalty function prob-
lem (P-MCCd) is also an optimal solution to the permanently feasible problem
(PF-MCCd).
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In addition, suppose that for every µ ≤ µ̃ there exists an optimal solution
xµ to the penalty function problem (P-MCCd) and for every ε ∈ [ε̃, 1)k, ε̃ <
mins=1,...,S πs, there exists an optimal solution xε to the multiple chance con-
strained problem (MCCd).

Then for any prescribed ε ∈ (0, 1)k there always exists µ ≤ µ̃ so that the
optimal solution xµ satisfies the chance constraints with the given ε.

Moreover, bounds on the optimal value ψε based on the optimal value ϕµ and
vice versa can be constructed as

ϕ1/εmax(xµ) − βε(xµ)

(
xε(xµ)

)
≤ ψε(xµ) ≤ ϕµ − αµ (xµ) ,

ψε(xµ) + αµ (xµ) ≤ ϕµ ≤ ψ[1/µ] + β[1/µ]

(
x[1/µ]

)
,

(3.7)

with
lim
µ→µ̃−

αµ (xµ) = lim
εmax→ε̃+

βε (xε) = lim
µ→µ̃−

εi (xµ) = 0, i = 1, . . . , k

for any sequences of optimal solutions xµ and xε, where [1/µ] = (1/µ, . . . , 1/µ)T

is a vector of length k.

Proof. The proof is analogous to the proof of Theorem 3.2, and hence, we shall
discuss only the validity of the main steps.

Note the permanently feasible problem (PF-MCCd) can be considered as a
problem with multiple inequality constraints (MCOP). Its corresponding exact
penalty function problem can be formulated as

min f (x) +
k∑
i=1

S∑
s=1

µsipi (x,ω
s)

subject to x ∈ X .
(3.8)

Obviously, the formulation of the penalty function problem (P-MCCd) differs
from problem (3.8) in the penalty parameters. In the penalty function problem
(P-MCCd), a common penalty parameter is multiplied by the probabilities of the
scenarios, i.e. µsi = µπs.

It follows from the assumption and Theorem 1.3 that there exist penalty
parameters µ̃si , i = 1 . . . , k, s = 1, . . . , S, so that any solution to problem (3.8) is
an optimal solution to the permanently feasible problem (PF-MCCd). Then for
a common penalty parameter such that

µ̃πs ≥ µ̃si , i = 1, . . . , k, s = 1, . . . , S,

which can be written as

µ̃ ≥ max
s=1,...,S

{
max {µ̃s1, . . . , µ̃sk}

πs

}
,

any solution to the penalty function problem (P-MCCd) is an optimal solution
to the permanently feasible problem (PF-MCCd), and therefore

δµ̃ =
k∑
i=1

S∑
s=1

πspi (xµ̃,ω
s) = 0.
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Since pi (·,ω), i = 1, . . . , k, is continuous for fixed ω, we have

lim
µ→µ̃−

δµ =
k∑
i=1

S∑
s=1

πs lim
µ→µ̃−

pi (xµ,ω
s) =

k∑
i=1

S∑
s=1

πspi (xµ̃,ω
s) = 0

and
lim
µ→µ̃−

αµ (xµ) = lim
µ→µ̃−

µδµ = µ̃δµ̃ = 0.

Analogously to (3.6), we have

ε (xµ) ≤ G
(
xµ,
√
δµ

)
−G (xµ, 0) +

√
δµ → 0 as µ→ µ̃−

Therefore, for µ large enough one can generate a feasible solution for the chance
constrained problem with arbitrary low ε.

Since any solution xε, where εi ≤ ε̃, i = 1, . . . , k, is a solution to the perma-
nently feasible problem (PF-MCCd), and thus pi (xε, ω

s) = 0 for all i = 1, . . . , k
and s = 1, . . . , S. Therefore, we can write

lim
εmax→ε̃+

βε (xε) = ε−1
max

k∑
i=1

S∑
s=1

πs lim
εmax→ε̃+

pi (xε,ω
s) = 0.

The bounds (3.7) do not change and therefore remain valid. This completes
the proof.

Analogously to section 1.3, one can employ invex functions with respect to
the same η (x,y) in lieu of convex functions in Theorem 3.3. Note that in such
cases, differentiable functions are required to exist.

Theorem 3.4. Consider the two problems (MCCd) and (P-MCCd) and as-
sume that X = {x ∈ Rn : gi (x) ≤ 0, i = 1, . . . ,M, hi (x) = 0, i = 1, . . . , L} is
nonempty, O ⊃ X is an open set, f (x) is invex on O with respect to an η (x,y),

(i) gij (x,ωs), j = 1, . . . ,mi, i = 1, . . . , k and s = 1, . . . , S, are invex on O
with respect to the same η (x,y),

(ii) gi (x), i = 1, . . . ,M , are invex on O with respect to the same η (x,y),

(iii) hi (x) are affine for all i = 1, . . . , L,

(iv) there exists a KKT point for the permanently feasible problem (PF-MCCd).

Let
pi (x,ω) = ‖max {0, gi (x,ω)}‖ , i = 1, . . . , k,

where ‖·‖ is any fixed vector norm in Rmi, i = 1, . . . , k, respectively. For arbitrary
µ > 0 and ε ∈ (0, 1)k put

εi (x) =
S∑
s=1

πs I (pi (x,ω
s) > 0) , i = 1, . . . , k

αµ (x) = µ

k∑
i=1

S∑
s=1

πspi (x,ω
s) ,

βε (x) = ε−1
max

k∑
i=1

S∑
s=1

πspi (x,ω
s) ,
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where εmax denotes the maximum of the vector of reliabilities ε = (ε1, . . . , εk)
T .

Then there exists a µ̃ that any optimal solution to the penalty function prob-
lem (P-MCCd) is also an optimal solution to the permanently feasible problem
(PF-MCCd).

In addition, suppose that for every µ ≤ µ̃ there exists an optimal solution
xµ to the penalty function problem (P-MCCd) and for every ε ∈ [ε̃, 1)k, ε̃ <
mins=1,...,S πs, there exists an optimal solution xε to the multiple chance con-
strained problem (MCCd).

Then for any prescribed ε ∈ (0, 1)k there always exists µ ≤ µ̃ so that the
optimal solution xµ satisfies the chance constraints with the given ε.

Moreover, bounds on the optimal value ψε based on the optimal value ϕµ and
vice versa can be constructed as

ϕ1/εmax(xµ) − βε(xµ)

(
xε(xµ)

)
≤ ψε(xµ) ≤ ϕµ − αµ (xµ) ,

ψε(xµ) + αµ (xµ) ≤ ϕµ ≤ ψ[1/µ] + β[1/µ]

(
x[1/µ]

)
,

(3.9)

with
lim
µ→µ̃−

αµ (xµ) = lim
εmax→ε̃+

βε (xε) = lim
µ→µ̃−

εi (xµ) = 0, i = 1, . . . , k

for any sequences of optimal solutions xµ and xε, where [1/µ] = (1/µ, . . . , 1/µ)T

is a vector of length k.

Proof. The proof is analogous to the proof of Theorem 3.3. It differs only in
applying Theorem 1.4 in lieu of Theorem 1.3. This completes the proof.

Remark that having X compact is sufficient for the existence of xµ for µ ≤ µ̃

and xε for ε ∈ [ε̃, 1)k. In many practical cases, having X compact is not severely
restrictive since the variables are usually bounded.

If one wants to obtain exact convergence of the bounds (3.7) on the optimal
values, additional condition on µ is required to be set. Since 1/µ is the upper
bound on ϕµ has to converge to ε̃, it follows that µ ≥ max {µ̃, 1/ε̃}, cf. [8].

In both cases, assumption (iv) can be restrictive for certain practical prob-
lems. Not only is a permanently feasible solution required, but a KKT point must
exist as well. In order for a minimum point to satisfy the conditions of being a
KKT point, the problem must satisfy some constraint qualifications, which can
be found for example in [3, chapter 5].

Theoretically, one is able to evaluate the threshold µ̃ defined in Theorem 1.3
and Theorem 1.4. Denote x̄ a KKT point for the permanently feasible problem
(PF-MCCd) associated with gij (x̄,ωs), j = 1, . . . ,mi, i = 1, . . . , k and s =

1, . . . , S and ūsi =
(
ūsi1, . . . , ū

s
imi

)T
the vector of these Lagrangian multipliers,

i = 1, . . . , k, s = 1, . . . , S. Applying the notation of either Theorem 1.3 or
Theorem 1.4, we can write

µ̄si = ‖ūsi‖
′ , i = 1, . . . , k, s = 1, . . . , S.

By using the notation of the proof of Theorem 3.3 and the requirements on the
penalty parameters µ̃si stated by either Theorem 1.3 or Theorem 1.4, we obtain

µ̃si > µ̄si , i = 1, . . . , k, s = 1, . . . , S.
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Since

µ̃ ≥ max
s=1,...,S

{
max {µ̃s1, . . . , µ̃sk}

πs

}
,

the following holds inequality holds for the threshold

µ̃ > max
s=1,...,S

{
max

{
‖ūs1‖

′ , . . . , ‖ūsk‖
′}

πs

}
. (3.10)

Note that the constraints in X are not penalised, and therefore they do not have
influence on the threshold, cf. Theorem 1.3 and Theorem 1.4.
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Chapter 4

Numerical study

In order to demonstrate the practical usability of the stated theorems, in par-
ticular Theorem 3.3 and Theorem 3.4, we shall conduct a numerical study on
solving a VaR-constrained portfolio selection problem [2]. Prior to further spec-
ification of the illustrative problem, we shall briefly present the definition of the
Value-at-Risk (VaR), delineate the VaR-constrained portfolio selection problem
and introduce a mixed-integer reformulation approach to solve chance constrained
problems.

4.1 Value-at-Risk

Define the random loss L (x,ω) dependent on a decision x ∈ X ⊂ Rn (weights
of assets in our portfolio, portfolio allocation) and a random rates of returns
ω = (ω1, . . . , ωm)T , which is a real-valued random vector defined on a probability
space (Ω,F ,P).

Definiton 4.1 (Value-at-Risk (VaR), [30]). The Value-at-Risk of a portfolio al-
located by x at (1− ε) · 100% confidence level is defined by

VaR1−ε (x) = min {ξ : P (L (x,ω) ≤ ξ) ≥ 1− ε} .

Note thatR (x,ω) = −L (x,ω) is the random return on the portfolio allocated
by a decision x.

4.2 VaR-constrained portfolio selection problem

As the designation of the problem may foretell, the VaR-constrained portfolio
selection problem does not attempt to optimise VaR. Actually, it is indirectly
constrained by the following probability constraint

P
(
xTω ≥ Rd

)
≥ 1− ε, (4.1)

where ω is the random vector of the rates of returns on n risky assets, x is the
vector of weights of assets in our portfolio (portfolio allocation), Rd is a desired
minimal rate of return on the portfolio, and ε ∈ [0, 1] is the reliability requirement.

42



Let us demonstrate that the constraint (4.1) is truly a VaR constraint. Denote
L the random loss of the portfolio. Then, it evidently holds that L = −xTω. By
substituting L in (4.1) we get

P (L ≤ −Rd) ≥ 1− ε.

Having considered Definition 4.1, we get VaR1−ε(x) ≤ −Rd, i.e. we showed that
the VaR of the portfolio allocated by x at a (1− ε) · 100% confidence level is
constrained by −Rd.

In general, VaR-constrained portfolio selection problem is formulated as

min xTΣx

s.t. P
(
xTω ≥ Rd

)
≥ 1− ε

xTe = 1

x ≥ 0

(VaRcPSP)

where Σ is the sample covariance of the rates of returns, and e = (1, . . . , 1)T is a
vector of length n.

The VaR-constrained portfolio selection problem (VaRcPSP) can be perceived
as a special type of mean-variance problems (or the Markowitz model [13]), in
which the constraint

E xTω ≥ Rd

is replaced by the chance constraint (4.1). Hence, the objective function of the
VaR-constrained portfolio selection problem (VaRcPSP) is quadratic, and the
function in the chance constraint, formally g (x,ω) = Rd − xtω, is affine.

4.3 Mixed-integer reformulation of chance con-

straint problems

Consider the multiple chance constrained problem under finite discrete proba-
bility distribution (MCCd). Suppose that X is compact and gij (x,ωs) is continu-
ous for every triples (i, j, s). In this case, the multiple chance constrained problem
(MCCd) can be reformulated as a large mixed-integer nonlinear program, cf. [29],

min f (x)

subject to gi (x,ω
s) ≤ M (1− uis) e, i = 1, . . . , k, s = 1, . . . , S

S∑
s=1

πsuis ≥ 1− εi, i = 1, . . . , k

x ∈ X
uis ∈ {0, 1} , i = 1, . . . , k, s = 1, . . . , S,

(MI-MCCd)
where M = maxi maxj maxs supx∈X gij (x,ωs).

Due to potential multitude of binary variables uis, it may be difficult to solve
the mixed-integer problem (MI-MCCd) even with solvers specifically designed for
mixed-integer problems, cf. [8].
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4.4 The solved problem

Suppose that ω is a random vector with finite equiprobable realisations (sce-
narios) ωs, s = 1, . . . , S, hence a associated probability πs is equal to 1

S
. Addi-

tionally, suppose that any allocation can not exceed 0.5. In these settings, the
VaR-constrained portfolio selection problem (VaRcPSP) is of the form

min xTΣx

s.t.
1

S

S∑
s=1

I
(
xTωs ≥ Rd

)
≥ 1− ε

xTe = 1

0.5 ≥ x ≥ 0,

(VaRcPSPd)

where 0.5 = (0.5, . . . , 0.5)T .
Let us present the mixed-integer and penalty function forms of the proposed

problem (VaRcPSPd).

4.4.1 The mixed-integer form

The probability distribution independent feasible region X in this case is equal
to {x ∈ Rn : xte = 1,x ≥ 0} and is evidently compact. Since g (x,ωs) = Rd −
xTωs, s = 1, . . . , S, are indubitably affine, they are continuous as well. Hence,
we can apply the mixed-integer reformulation introduced in section 4.3. The
mixed-integer reformulation of the VaR-constrained portfolio selection problem
(VaRcPSP) is of the form

min xTΣx

s.t. Rd − xtωs ≤M (1− us) , s = 1, . . . , S

1

S

S∑
s=1

us ≥ 1− ε

xTe = 1

0.5 ≥ x ≥ 0

us ∈ {0, 1} , s = 1, . . . , S,

(MI-VaRcPSPd)

where M = maxs supx∈X (Rd − xtωs). Since there is merely one chance con-
straint employed, the total number of binary variables solely depends on the
total number of scenarios.

4.4.2 The penalty function form

In every practical problem, it is utterly important to choose a suitable penalty
function. A suitable penalty function must reflect the nature of the chance con-
straints, e.g. the L∞ penalty function is typically used for the joint chance con-
straints (2.2), cf. [7]. Beside the L∞ penalty function, the absolute value penalty
function is commonly used as well, cf. [7].
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Since there is only one function in the chance constraint of the stochastic
programming problem (VaRcPSPd), the absolute value penalty function and the
L∞ penalty function coincide. By the reason of the prevalence of the mentioned
penalty functions and their coincidence, we shall use the following penalty func-
tion

p (x,ω) = max {0, g (x,ω)}

in order to solve the VaR-constrained portfolio selection problem (VaRcPSPd).
The corresponding penalty function problem is of the form

min xTΣx+
µ

S

S∑
s=1

max
{

0, Rd − xTωs
}

s.t. xT e = 1

0.5 ≥ x ≥ 0,

(P-VaRcPSPd)

where µ > 0 is the penalty parameter.
Let us examine the eligibility of the considered penalty function problem

(P-VaRcPSPd) for applicability of Theorem 3.3 or Theorem 3.4. The objec-
tive function is quadratic, the function in the chance constraint is affine, and the
remaining function are likewise affine. Hence, each and every function occurring
in the problem is differentiable convex on Rn, and the penalty function problem
(P-VaRcPSPd) satisfies assumptions (i), (ii) and (iii) of Theorem 3.3. Since the
sole chance constraint employed is affine, Kuhn-Tucker’s constraint qualification
holds true, and hence, the KKT conditions are necessary for optimality. As the
objective function is continuous and the set of permanently feasible solutions

XPF =
{
x ∈ Rn : xte = 1, 0.5 ≥ x ≥ 0, Rd − xtωs ≤, s = 1, . . . , S

}
(4.2)

is compact (any allocation can not exceed 1), XPF must be nonempty in order
for an optimal solution to exist. In such a case, the penalty function problem
(VaRcPSPd) also satisfies assumption (iv).

Note that the penalty function problem (VaRcPSPd) itself is a convex pro-
gram. The convexity of the constraints follows from the discussion above, as does
the convexity of the first term of the objective function. Since every vector norm
preserves convexity, and so does max {0, ·}, the penalised constraint is convex as
well.

By adding auxiliary variables, the penalty function problem (P-VaRcPSPd)
can be reformulated into a quadratic programming problem. Let y = (y1, . . . , yS)T

denote the auxiliary variables. Then the quadratic programming reformulation
is as follows

max − xTΣx− µ

S

S∑
s=1

ys

s.t. xT e = 1

0.5 ≥ x ≥ 0

xTωs + ys ≥ Rd, s = 1, . . . , S

y ≥ 0.

(P-VaRcPSPdQP)
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4.4.3 Data and parameters

For solving the two problems (MI-VaRcPSPd) and (P-VaRcPSPd), historical
weekly rates of returns on every component of the Dow Jones Industrial Average
were employed. The Dow Jones Industrial Average is a stock market index con-
sisting of 30 major American companies representing various industries. The used
time interval ranges from 05/01/2004 to 01/07/2013 amounting to 496 scenarios.
As stated above, all the scenarios are supposed to be equiprobable.

In order for the permanently feasible region (4.2) to be nonempty, the desired
minimal rate of return Rd must be carefully chosen. Allowing the minimal rate of
return to be negative may increase the chance to obtain a nonempty permanently
feasible region. Hence, the desired minimal rate of return was chosen to be

Rd = −0.1.

The confidence level for VaR typically equals to 95% or 99%. Hence, the
reliability requirements of the chance constraint (4.1) were chosen to equal to
these typical levels. Besides, three more reliability requirements were chosen for
illustrative purposes. The reliability requirements are represented in Table 4.1.

ε1 ε2 ε3 ε4 ε5

0.001 0.002 0.005 0.01 0.05

Table 4.1: Reliability requirements

In order to demonstrate the capability of the penalty function method to
generate comparable solutions, the penalty parameters represented in Table 4.2
were chosen.

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

0.001 0.01 0.1 0.5 1 1.5 2 2.5 3 3.5

Table 4.2: Penalty parameters

4.4.4 Results

For solving the penalty function form (P-VaRcPSPd) numerically, its quadratic
programming reformulation (P-VaRcPSPdQP) was used. For verifying the non-
emptiness of the set of permanently feasible solutions, the modelling system
GAMS was applied. This modelling system was likewise employed for solving
the mixed-integer form (MI-VaRcPSPd) of the chance constrained problem and
the quadratic programming form (P-VaRcPSPdQP) of the penalty function prob-
lem. In both cases, the Ilog CPLEX 12.5 solver was used.

Let us examine the numerical results. In Tables 4.3 and 4.4, the optimal val-
ues of both the chance constrained problems and the penalty function problems
are summarised. Additionally, the reliabilities of the optimal solutions to the
penalty function problems is illustrated in Table 4.4. The column “Reliability”
was evaluated by substituting the optimal decisions into the VaR-constraint (4.1).
Obviously, the penalty function problem (P-VaRcPSPd) is able to generate com-
parable solutions. From Table 4.4, it is also apparent that the threshold µ̃ lies
between 2.5 and 3.
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ε ψε

0.001 0.000465
0.002 0.000306
0.005 0.000306
0.01 0.000306
0.05 0.000306

Table 4.3: Chance constrained problems - optimal values

µ “Reliability” ϕµ µ “Reliability” ϕµ

0.001 0.99798 0.000306 1.5 0.99798 0.000426
0.01 0.99798 0.000307 2 0.99798 0.000448
0.1 0.99798 0.000317 2.5 0.99798 0.000461
0.5 0.99798 0.000355 3 1 0.000465
1 0.99798 0.000395 3.5 1 0.000465

Table 4.4: Penalty function problems - optimal values and “reliabilites”

In order to confirm that the threshold µ̃ lies between 2.5 and 3, the Lagrangian
multipliers associated with gi (x,ω

s), s = 1, . . . , 496 were obtained by solving the
permanently feasible problem using GAMS and the Ilog CPLEX 12.5 solver.
The largest obtained Lagrangian multiplier equalled approximately to 0.006. By
substituting into the right-hand side of inequality (3.10), we obtained that the
threshold µ̃ > 2.976. Hence, it accords with our previous conjecture.

The data and the GAMS programs solving the mixed-integer problem form
(MI-VaRcPSPd), the quadratic programming form (P-VaRcPSPdQP) and the
permanently feasible problem are available on the enclosed CD.
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Conclusion

In this thesis, we dealt with penalty function methods for stochastic pro-
gramming. It was shown that multiple chance constrained and the corresponding
penalty function problems are asymptotically equivalent, i.e. by solving the cor-
responding penalty function problem, one can obtain highly reliable solutions
to the original multiple chance constrained program, and vice versa. Thus, this
equivalence provides an alternate approach to solve probabilistic programming
problems, and its research was worthy of interest.

The aim of the thesis was to propose new penalty function methods for
stochastic programming and to validate their usefulness on a numerical exam-
ple. In order for this plan to be fulfilled, the following steps were done.

In chapter 1, exterior and exact penalty functions methods for deterministic
nonlinear problems were studied. The main aim of this chapter was to put forward
new exact penalty function methods. In order to fulfil this aim, a theorem con-
cerning exact penalty function methods for convex programming problems using
arbitrary vector norm as penalty function was proposed. Although this theorem
let us use arbitrary vector norm as penalty function, extending it to other types
of functions was likewise important. Thus, invex and incave functions were em-
ployed. These functions intend to generalise convex and concave functions by
substituting the linear term (x− y) appearing in the definition of differentiable
convex functions by an arbitrary vector-valued function η (x,y), called kernel
function. This vector-valued function η (x,y) plays an inevitable role in the def-
inition of invex and incave functions and may restrict the use of other types of
functions in certain cases. The existence of such a common vector-valued function
was discussed in subsection 1.3.2.

In chapter 2, a reformulation of probabilistic programming problems (CC)
into expected violation penalty models (EVPM) was shown for certain functions
occurring the problems. This reformulation is closely related to the notion of
employing penalty functions methods for stochastic programming, and hence, it
served as a first encounter with the topic.

In chapter 3, the main theorems of the thesis were put forward. Our attention
was mostly focused on multiple chance constrained problems under finite discrete
probability distributions. In subsection 3.2.2, we extended Theorem 1 in [8]
to multiple chance constrained problems. In subsection 3.2.3, we proposed two
analogous theorems using exact penalty function methods for convex and invex
functions, respectively. Similar exact penalty function methods for stochastic
programming were studied in [8]. Despite the fact that the proposed theorem
in [8] uses a modified calmness property [8, Definition 1] which provides more
general settings in comparison with convex and invex functions, respectively, the
choice of the penalty function is not arbitrary. The theorem allows us to use
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only a modified absolute value penalty function. As the proposed theorems in
subsection 3.2.3 are based on theorems in section 1.3, they enable us to use
any vector norm as penalty function. Therefore, we pay for the variability with
reduced generality.

In chapter 4, the capability of the penalty function methods to generate com-
parable solutions was demonstrated on a small illustrative example. It was also
showed that the exact penalisation truly functioned since the optimal solutions
to the penalty function problems with penalty parameter exceeding the threshold
µ̃ equaled to the optimal solution to the permanently feasible problem.

Even though we managed to extend exact penalty function methods to non-
convex problems through invex functions with respect to the same kernel function,
the importance of the requirement of having identical kernel function for each
function occurring in the problems may diminish or even reverse their generalising
effect in certain cases. Hence, future research of the topic should concern possible
extension of the proposed methods to other types of functions, e.g. pseudo- and
quasi-convex functions.

Other crucial requirement of the proposed theorems concerning exact penalty
function methods for stochastic programming is the existence of a KKT point
to the permanently feasible problem (PF-MCCd). The analogous theorem in [8]
merely requires having a permanently feasible solution, which is naturally weaker
condition than the existence of a KKT point. Thus, research of possible elimi-
nation of the named requirement could improve the applicability of the proposed
theorems.

Unfortunately, the above mentioned enhancements were beyond the scope of
this thesis. Nonetheless, these improvements may provide substantial extensions
of penalty function methods for stochastic programming and therefore are worth
of future research.
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Appendix A

A.1 Vector norms

Definiton A.1 (dual norm). Let ‖ · ‖ be a vector norm on Rn. Then the dual
norm ‖ · ‖′ of ‖ · ‖ is defined as follows

‖x‖′ = sup
‖y‖=1

xTy, x,y ∈ Rn.

Theorem A.1 (generalised Cauchy–Schwarz inequality). For any vector norm
‖ · ‖ on Rn and its corresponding dual norm ‖ · ‖′ the following inequality holds
true

xTy ≤ ‖x‖ · ‖y‖′ for all x,y ∈ Rn. (A.1)

Proof. For x = 0 or y = 0 the inequality evidently holds. Suppose that x 6= 0
and y 6= 0. Then it follows from the definition above that

‖y‖′ = sup
‖z‖=1

yTz ≥ y
Tx

‖x‖
.

This completes the proof.

A.2 Nonlinear programming

Definiton A.2 (affine functions). A function f (x) : Rn → R is called affine if it
is of the form

f (x) = α + ctx,

where α is a scalar and c is a vector of length n.

Definiton A.3 (regular solution). Let x̄ be a feasible solution to the original
problem (OP), and denote I (x̄) = {i ∈ (1, . . . ,M) : gi (x̄) = 0}. Suppose that
f (x) and gi (x), i ∈ I (x), hi (x), i = 1, . . . , l, are differentiable at x̄. Then x̄
is called regular solution to the problem if ∇xgi (x̄), i ∈ I (x̄), and ∇xhi (x̄),
i = 1, . . . , l, are linearly independent.

Definiton A.4 (KKT point). Let x̄ be feasible for the original problem (OP)
and gi (x), i = 1, . . . ,m, hi (x), i = 1 . . . , l be differentiable at x̄. Then x̄ is
called KKT point if there exist Lagrangian multipliers ūi, i = 1, . . . ,m, and v̄i,
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i = 1, . . . , l associated with the inequality gi (x), i = 1, . . . ,m, and the equality
constraints hi (x), i = 1, . . . , l, respectively, such that

∇xf (x̄) +
m∑
i=1

ūi∇xgi (x̄) +
l∑

i=1

v̄i∇xhi (x̄) = 0

ūigi (x̄) = 0, i = 1, . . . ,m

ūi ≥ 0, i = 1, . . . ,m.

Note that the first equality is equivalent to

∇xL (x̄; ū, v̄) = 0.

Definiton A.5 (second-order sufficient conditions). Let x̄ be a KKT point for
the original problem (OP) and gi (x), i = 1, . . . ,m, hi (x), i = 1 . . . , l be twice
differentiable at x̄. Then the second-order sufficient conditions hold true at x̄ if
for all d in the critical cone

C = {d 6= 0 : ∇xgi(x̄)Td = 0 for i ∈ I (x̄) , ūi > 0,

∇xgi(x̄)Td ≤ 0 for i ∈ I (x̄) , ūi = 0,

∇xhi(x̄)Td = 0 for i = 1, . . . , l}
(A.2)

the following holds true

dT∇2
xxL (x̄; ū, v̄)d > 0.
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