Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Jan Siroky

Scala Web Application Toolkit

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Pavel Jezek
Study program: Computer Science

Specialization: Software Systems

Prague 2013

I would like to thank my family for continuous support during my work on the
thesis, my supervisor Pavel Jezek for invaluable consultations and advices he
provided me with and my friend Jirka Helmich for proofrading of the thesis.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Nazev prace: Scala Web Application Toolkit
Autor: Jan Siroky
Katedra: Katedra distribuovanych a spolehlivych systému

Vedouci diplomové prace: Mgr. Pavel Jezek, Ph.D, Katedra distribuovanych a
spolehlivych systému

Abstrakt: Préce nejdrive popisuje nevyhody JavaScriptu v kontextu rozsahlych
webovych aplikaci a predstavuje, jak se tyto problémy obvykle fesi pomoci kom-
pilatoru z jiného vyssiho programovaciho jazyka do JavaScriptu. Prace déle
ukazuje, jaké problémy je nutné fesit v ramci implementace takového kompilatoru
a jak prekonat dalsi prekazky (interoperabilita, distribuce knihoven) vyplyvajici
z toho, ze programy nejsou napsany piimo v JavaScriptu, nybrz ve Scale. Na
vyvinutém kompilatoru a jednoduchém béhovém prostiedi pak déle stavi in-
frastrukturu, kterd umoznuje vzdélené volani metod (RPC). Tato infrastruktura
zahrnuje mimo jiné i dynamické nacitani skripti ze serveru a (de)serializér grafu
objektu. V zavéru pak porovnava vyvinuty toolkit s jinymi podobnymi projekty
a predstavuje nékolik zajimavych smeéru, kterymi by se cely projekt déle mohl
ubirat.

Klicova slova: Scala, JavaScript, RIA, JSON, RPC

Title: Scala Web Application Toolkit
Author: Jan Siroky
Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Jezek, Ph.D, Department of Distributed and Dependable
Systems

Abstract: The thesis describes disadvantages of JavaScript in the context of big
web applications and presents how they can be eliminated by compilation from
a different language to JavaScript. With Scala as the source language, the thesis
shows what it takes to implement such a compiler and how to solve issues that
arise with the compilation process (interoperability, library distribution). On
top of the compiler with a simple runtime a remote metod invocation (RPC)
infrastructue is built. It also involves a dynamic client side script loader and an
object graph (de)serializer. Finally the work compares the implemented toolkit to
similar projects and proposes several interesting directions the toolkit can evolve
into.

Keywords: Scala, JavaScript, RIA, JSON, RPC

Contents

1__Introductionl 3
[T Motivationl 4
[1.1.1 JavaScript Disadvantages|. 4

(1.1.2 Improving Javascript|)

(1.1.3 Why Scalal 7

(1.2 Project Aim| 7
M2T1 Goald. 8

2" Background| 10
2.1 Javadcript|o 10
R2 Scalal 12
[2.3 Scala Compiler| 0 16

3 Analysis 18
.................................. 18
[3.1.1 Utilizing the Source Language Compiler| 19

[3.1.2 Debugging| 20

[3.2 Interoperability with JavaScript| 21
B3 TFrontend 22
[3.3.1 Compile Time vs. Runtime Approach| 23

[3.3.2 Scope of a Compilation Unitf. 24

[3.3.3 Type Definitions| 25

[3.3.4 Scopeofalype. 26

[3.3.5 Expressions| L 29

(3.4 Standard Librariesl oo 32
[3.5 Library Distribution| 33

[4 Implementation| 34
4.1 Environmentl. 34
4.2 Toolkit Overview| 34
4.3 API (package swat.api)| L. 35
4.4 Compiler (package swat.compiler)| 37
4.1 Frontend (package swat.compiler.frontend) 38

M5 Runtimel 39
.5.1 Client (package swat.client). 39

[4.5.2 Type Loader|. L. 40

4503 JSON Serializero 40
HESA"RPC . . . oo 41

[4.6 Integration with a Web Framework] 43
4.7 Build Process 44
B8 Testd o oo 44
[5__Conclusion| 46
.1 Similar Toolso 46
[.1.1 Comparison| 47

h.2 Future Workl.
Hb2.1 Web workers|.
[5.2.2 Template Enginel 000
I:i.z.;i li!]‘ll!l I l!!g:sz{l:il
(Bibliography/
APP d
[A_User Manuall

(B Sample Application|

IC_Content of attached CD)I

56

56

57

59

1. Introduction

The environment of websites and web applications has been rapidly evolving and
going through a lot of changes for the last twenty years. It may even be considered
the most dynamic area of software development, currently together with mobile
application development. The first websites were just static HTML pages linked
together with anchors. But people soon found out it is possible to generate the
pages on the server, thus provide a dynamic behavior and mimic standard desktop
applications. The obvious drawback is that when a user performs an action the
whole page has to be reloaded.

In order to mitigate the problems of dynamic pages, new browser based tech-
nologies started to emerge. The most known are Flash [I], Java Applets [2] and
JavaScript [3] [4]. The proprietary Flash and Java Applets were designed sole-
ly for the purpose of web application development, JavaScript was in the first
phases meant as a simple scripting language for a manipulation with a web page.
However, with the ability to send HTTP requests (known as AJAX [B]), it turned
out that JavaScript may be even used as a platform for web applications.

The current tendency is to move from the proprietary technologies to JavaScript,
which is widely supported by browsers and devices. With the new HTML5 [6]
specifications, which are being adopted quite quickly by the major browsers, even
the advantages of other technologies (e.g. video in Flash) are disappearing. So
a growing number of web applications is at the moment designed as a single
HTML page with embedded JavaScript that takes care of everything. The single
page is backed by a server API that the client JavaScript communicates with.
This architecture is actually quite similar to the desktop applications therefore
design patterns and techniques that are already proven-right from the desktop
environment may be utilized. From the architectural point of view the web and
desktop application branches are merging.

During the past couple of years, JavaScript has been used so extensively that
the developers started to reach its limits in modularization and maintainability,
mainly while working on big applications. Other programming languages however
handle those issues better and because JavaScript is a quite powerful program-
ming language, it is not that difficult to use it as a compilation target for those
languages. Even completely new programming languages with the only purpose
to improve JavaScript appeared, so there is currently more than one hundred of
languages that compile to JavaScript [7], both new and mainstream like Java,
C#, C++ etc.

This approach is actually similar to what happened in the world of standard
programming languages where the bottom level is an assembly language. Other
more expressive languages like C or Pascal which compile to an assembler emerged
as soon as an assembly language was not sufficient enough.

1.1 Motivation

The vast amount of compilers targeting JavaScript suggests there actually are
objective reasons and motivation for them, which drive their development efforts.
And because compilation is a development step that is not present during de-
velopment of plain JavaScript programs, the motivation has to be strong enough
so programmers are willing to bear this additional step. The following sections
should summarize the main disadvantages of JavaScript and briefly describe cur-
rent trends in the area of JavaScript improvements and compilation into it.

1.1.1 JavaScript Disadvantages

When evaluating a programming language, it is always necessary to specify the
context of its usage. Here we are interested in the area of large and complex web
applications so it does not mean that JavaScript should not be used for small and
even middle-sized applications.

Language

The JavaScript itself is a dynamically typed language with prototype-based in-
heritance. It has no notion of classes, modules, packages or any other similar
concepts. The whole program consists of bunch of functions and nested objects,
which are all accessible from the global scope due to the fact that object is a
key-value table without any access modifiers. Also there is not any way how to
define an interface and its implementation, so it is impossible to hide complexity
of components behind interfaces. All this leads to a drawback that JavaScript
programs are difficult to modularize. Advantages of static typing over dynamic
typing are nicely summarized by Erik Meijer [8]:

”...earlier detection of programming mistakes (e.g. preventing adding
an integer to a boolean), better documentation in the form of type
signatures (e.g. incorporating number and types of arguments when
resolving names), more opportunities for compiler optimizations (e.g.
replacing virtual calls by direct calls when the exact type of the re-
ceiver is known statically), increased run-time efficiency (e.g. not all
values need to carry a dynamic type), and a better design time devel-
oper experience (e.g. knowing the type of the receiver, the IDE can
present a drop-down menu of all applicable members).”

Even though inheritance is present in JavaScript, it is very different from the
class-based inheritance most of the programmers are used to. So it takes some
time to fully understand it and take advantage of it. The JavaScript community
realizes some of the disadvantages and tries to remedy them on the language level
using sometimes peculiar constructs (for example hiding variables and functions
by declaring them as local inside body of an anonymous function which is imme-
diately executed). But there is no standardized or widely adopted way so those
efforts stay in the position of suggested conventions.

Distribution

The most common way of library distribution is one big JavaScript file containing
everything. Therefore when a fraction of a library is used, the whole library has
to be loaded into the page. Dependencies among the libraries are described in the
documentation, thus absence of a dependency causes run-time error claiming that
a function or an object is not defined. This leads to an environment where the
libraries are more likely monolithic and do not share the common functionality
even if they could. Similar problem arises when a single application is subdivided
into multiple source files. Then all the files have to be declared in the page
using script elements in their dependency order. There already exist loaders that
handle packaging (most commonly used RequireJS [9], HeadJS [10]) but all share
the common disadvantage that the organization of source files into modules and
dependencies among them has to be explicitly declared.

Development Process

As a consequence of the dynamic typing and the fact that field values and there-
fore method implementations are resolved at run-time, some of the processes that
can be performed automatically by an IDE or an external tool are not as power-
ful as in statically typed languages or are even unusable. Because code analyzers
and optimizers have much less information about the programs and cannot easily
reason about them, their power is weaker. There is however couple of such tools,
e.g. code quality analyzers JSLint [I1] and JSHint [12] and code optimizer Google
Closure Compiler [13]). Automatic refactoring cannot be utilized at all, so in re-
al life it boils down to the unreliable operation “replace in files”. Intellisense in
IDEs is currently at least partially usable however still far behind statically typed
languages. Hand in hand with intellisense comes the source documentation in a
form of documentation comments, because when it does not pop up in the IDE,
programmers are less motivated to write it.

1.1.2 Improving JavaScript

When examining current directions of JavaScript improvement, most of them
have couple of things in common. They use source languages with static (or
at least optionally static) type systems in order to solve the issues related to
development process. Moreover they introduce the concept of packages (or mod-
ules, namespaces) for better modularization of programs. All of them switch the
prototype-based inheritance for class-based inheritance and together with class-
es, majority of them also introduces interfaces (or traits, mix-ins) and access
modifiers.

Using such a source language that is compilable to JavaScript fixes the aforemen-
tioned issues. The problems related to the distribution of programs and libraries
are mostly handled at the run-time, so it does not affect the source language.

Ideally the source language should be much more expressive than JavaScript,
not only small superset in terms of language features, so the compilation step

really pays off. Similarly to the step from an assembly language to C, the C
language is not just another assembler with some new instructions, but it offers
new paradigms, control structures and language constructs that are completely
foreign to an assembler.

New Languages

One branch of the improvement process leads to a design of new programming
languages solely with the purpose to extend JavaScript. The most well-known
examples are Dart [I4], CoffeeScript [15] and TypeScript [16]. Their advantage
is that they are designed with the knowledge that programs would be compiled
to JavaScript so for example primitive types do not deviate from JavaScript
primitive types. And some of the languages allow optional typing, which is good
for interoperability with existing libraries. Another benefit is that from the syntax
point of view they are mostly quite similar to JavaScript so the learning curve is
flat for established web application developers.

On the other hand, the fact they are brand new implies that for the whole appli-
cation, one has to be familiar with three programming languages at a time. One
for server side, the new language for client side and JavaScript for debugging.
Currently both the compilers and browsers start to support source maps which
enable debugging in the source language instead of JavaScript, but the need of
JavaScript knowledge will be still present.

Type systems of those languages are primitive compared to Haskell, Scala or
even C# and their expressiveness is close to JavaScript. They do not bring any
revolutionary concepts therefore the improvement is not as big as it theoretically
could be. From that point of view, CoffeeScript is however the most advanced
one.

Existing Languages

The more appealing idea is to use existing proven language and add the JavaScript
backend to its compiler. And if the language is well-suited for web applications
or APIs, then even better because the two ultimate aims could be accomplished:
having the whole application written in one language and code-sharing and reuse
between server-side and client-side. These goals are so attractive that the project
Node.js [17] tackles them from the other side by enabling usage of JavaScript on
the servers.

Having both sides of the application written in one language even allows im-
plementation of middleware infrastructures that would support for example re-
mote method invocation known as RPC [I§]. That is unthinkable in the plain
JavaScript world.

Drawback is that the languages differ from JavaScript a lot, interoperability with
it is more inconvenient and in some cases they are less expressive than JavaScript
(e.g. lack of closures in Java). The most famous representatives of this branch are

GWT (Google Web Toolkit [19]) for Java and SharpKit [20] for C#, but almost
all established languages have their JavaScript compilers.

1.1.3 Why Scala

During the development of one web application in Scala whose big part should
run in the web browser, it was decided that it would be nice to implement that
part using something like GW'T, just for Scala. However no such tool turned out
to be both usable, maintained and not abandoned. That lead to an origin of the
project to implement such a tool for Scala. Later it emerged that it would be
more likely a set of tools, therefore the name of the project and also title of this
thesis converged to ”Scala Web Application Toolkit”, shortly ”Swat”.

Scala is relatively new yet already established programming language. Among
the family of modern programming languages that run on top of Java Virtual
Machine (i.e. Scala, Groovy, Clojure, Kotlin) it is the most popular one according
to TIOBE index [21] as of writing this thesis, currently gaining a lot of momentum
and being already adopted by commercial companies like Twitter or LinkedIn.
Moreover, it is backed by strong academic community so the language with all
the concepts and paradigms are well thought through. All these facts determined
that it would be good idea to start the project because there is a lot of possible
potential.

1.2 Project Aim

It may be already apparent from the motivation, but the main aim of the project
is to create a Scala to JavaScript compiler. From the topmost level point of view
it should take Scala code on the input and produce JavaScript code on the output.
The generated code should be somehow embedded or loaded into a web page so
when the page is displayed, it runs and on the algorithmic level does the same
thing as if the original Scala code was executed on the JVM. Moreover, it should
be possible to access both native JavaScript APIs (e.g. DOM [22], browser-related
APIs) and other already existing JavaScript libraries (e.g. jQuery [23]) from the
Scala code in order to manipulate with the web page or with the browser.

With the described setup, it should be possible to take advantage of the fact
that both client and server are written in one language and implement simple
RPC mechanism. The obvious implication is that objects would have to be
sent through HTTP protocol in both directions and therefore serialized to some
common format. To accomplish that, a client side (de)serializer and a server side
(de)serializer has to be implemented.

To make the development simple and user-friendly, the tool should be integrated
into the SBT (Scala Build Tool [24]) which is currently the most used and to
some extent an industry standard in the Scala ecosystem. Moreover, it should be
relatively straightforward to integrate the Swat infrastructure into any web appli-
cation framework. For the purpose of an example, the web application framework

Play [25] will be used as a reference. SBT and Play are supported by the Type-
safe [26] which is a company founded by the authors of Scala so both projects are
highly maintained with big communities around them.

Finally, a sample application that demonstrates usage of the toolkit should be
created. Because the whole toolkit is quite a complex piece of software whose
size spans out of the scope of this thesis, it is presupposed that not all aspects
of it would be fully completed. However, the most challenging and difficult parts
should be finished. The areas that are not so interesting from the architectural
or design point of view would be given lower priority. So the sample application
will be rather small.

1.2.1 Goals

To get better understanding of what has to be done and to somehow break down
the project, it is possible to identify couple of steps that have to be analyzed,
decided and possibly implemented. The first set of core goals that are critically
necessary for the toolkit consists of the following:

1 - Compiler The Scala to JavaScript compiler and its integration
to SBT. It should be the most extensively tested com-
ponent of the toolkit.

2 - Interoperability A way how to interoperate with JavaScript APIs and
libraries.

3 - Runtime When the generated code would not be executable by
itself, a runtime that would support the execution.

4 - Libraries Provide subset of the Scala and Java standard li-
braries relevant to the web environment.

5 - Integration Straightforward means of toolkit integration to a web
application framework.

6 - Distribution In the ideal case a distribution method where a dis-
tribution unit contains both Scala bytecode and the
generated JavaScript code.

When the core goals are finished it is possible to start working on other tasks that
the toolkit in principle could do without. They bring more comfort to further
development process and provide the competitive advantage over other similar
tools. The enhancement goals are the following:

7 - Serialization The serializer & deserializer usable not only for com-
munication between server-side Scala and client-side
generated JavaScript.

8 - Loading An equivalent to Java classloader that can load com-
piled JavaScript files from the server on the fly.

9 - RPC A possibility to mark some methods as remote and
infrastructure taking care of the communication.

10 - Application A sample application.

2. Background

Both Scala and JavaScript are not mainstream languages in the sense of chosen
paradigms and used concepts so the following sections will focus mainly on the
differences from the conventional object-oriented languages (C++, Java, C#)
and on differences between the two, which are important from the compiler per-
spective. If you are already familiar with any of the languages, you may skip the
corresponding sections. The section is dedicated to the Scala compiler, its
internal processes and related data structures.

2.1 JavaScript

JavaScript [3] originated as an in-browser scripting language, more recently it
expanded to other areas like game-development, desktop applications and server
applications. It was designed by Brendan Eich for Netscape, but when it became
adopted by other companies, Netscape submitted the language specification to
Ecma international [27] which subsequently formalized it in the ECMAScript
language standard [4]. Regarding syntax and control structures, it was mostly
influenced by C and Java but from the design point of view, the main principles
are taken from Self [2§].

Style The language is imperative and to some extent functional. It supports
standard control structures (e.g. if-then-else, while), makes distinction
between expressions and statements, the functions are first-class citizens (i.e.
objects themselves that can be manipulated with). One big difference is scoping.
Unlike most of the standard languages which have block scoping, JavaScript has
lexical scoping. So for example a variable declared inside else branch of an if
statement is visible everywhere in the function body.

Type System JavaScript is dynamically typed, types are associated with val-
ues, not variables. The possible types are String, Boolean and Number
for primitives, Array for mutable arrays that behave more like hash tables,
Function representing functions and methods and Object which is the super-
type of all of the aforementioned types. Objects are basically associative arrays,
S0 accessing properties is equivalent to dereferencing values in an associative array
by property names. Note that there is not any integral numeric type (e.g. int,
short), the Number is a 64bit double-precision floating point type. A character
type (char) is not present either.

Inheritance The most unusual feature is prototype based inheritance whose
principles will be demonstrated on an example of hierarchy Dog <: Animal
<: Object (the ”"<:” symbol stands for the "subtype” relation) depicted on

figure

10

Function.prototype

[[Prototype]]
apply function() { ... }
call function() { ... }
AA
function Object T Object.prototype
[[Prototype]] | [[Prototype]] | undefined
prototype —————* | toString function() { ... }
eval function() { ... }
function Animal Animal.prototype T
[[Prototype]] [[Prototype]] |
prototype | live function() { ... }
die function() { ... }
function Dog(name) { }.. } Dog.prototype T
[[Prototypel] [[Prototypel] |
prototype T | bark function() { ... }
new Dog(”Rex”) / new Dog(”M‘a\Q)
[[Prototype]] [[Prototype]]
name "Rex” name " Max”

Figure 2.1: JavaScript prototypes, constructors and instances.

The first thing to notice is that all objects (and also functions because functions
are objects) have the [[Prototype]] property which holds their prototypes.
When a property of an object is being accessed, direct properties of the object are
inspected first. If there is no direct property with the specified name, properties of
the prototype are inspected. And so on until the prototype of currently inspected
object is undefined. As a consequence, it behaves like if the object inherited all
properties of its prototype. The [[Prototype]] property is internal, does not
change, is assigned once when the object is constructed and cannot be changed
programmatically.

So for example all functions inherit methods apply and call from their common
prototype Function.prototype and transitively methods toString, eval
etc. from their prototype’s prototype Object .prototype.

In order to create objects, a constructor function has to be defined first (e.g.
the function Animal for animals). A constructor function may access the ob-
ject that is being created via the this keyword and set some of its proper-
ties (e.g. the constructor function Dog sets name of a new dog). Moreover
it may have associated special object in the property prototype that will be
assigned as the [[Prototype]] to all objects created with the constructor

11

function. If the function does not have the prototype specified, the standard
Object.prototype is assigned to the created objects. Finally a new object
is created by calling a constructor function together with the new keyword, e.g.
new Animal ().

To sum it up, the hierarchy in the figure is set up in the following manner:
1. Define a constructor function for animals - the function Animal.

2. Assign a new object with properties 1ive and die to the prototype
property of the Animal function.

3. Define the dog constructor function Dog with body: this.name = name;.

4. Create a new Animal object (using new Animal ()), define its method
bark and set it to the to the prototype property of the Dog function.

5. Create the dogs using new Dog ("Rex") and new Dog ("Max").

Environment JavaScript is an interpreted language, therefore it requires a
runtime environment that interprets it and provides objects and functions for
interaction with the "outside world”. In the context of web applications, both
the runtime environment and the outside world is the web browser. The code is
executed in a single thread which behaves similarly to an event loop. There is
a queue of code that has to be executed. Code is enqueued to the queue from
two main reasons: when a new script is loaded and when an external operation
handled by the browser finishes and a callback has to be invoked. The environ-
ment cyclically waits until the queue is non-empty and then sequentially executes
everything in the queue. So it is guaranteed that nothing will run in parallel.

2.2 Scala

One of the best summaries of the Scala language is provided by its author himself,
Martin Odersky, in [29]:

”Scala fuses object-oriented and functional programming in a stat-
ically typed language. Conceptually, it builds on a Java-like core,
even though its syntax differs. To this foundation, several extensions
are added. From the object-oriented tradition comes a uniform object
model, where every value is an object and every operation is a method
invocation. From the functional tradition come the ideas that func-
tions are First-class values, and that some objects can be decomposed
using pattern matching. Both traditions are merged in the conception
of a novel type system, where classes can be nested, classes can be ag-
gregated using mixin composition, and where types are class members
which can be either concrete or abstract.”

Style The language is both imperative and functional but tends and encourages
to use rather the functional style. It supports most of the standard control

12

structures known from e.g. Java. Adds some new control structures, the most
important is the match statement (a self explaining example using match is in

Listing .

list match {
case Nil => "empty"

case ’'a’ :: tail => "starts with 'a’"

case (x: Int) :: _ if x > 3 => "starts with int > 3"
case (x: Int) :: _ => "starts with int"

case _ => "whatever"

Listing 2.1: Match statement example.

Scala also generalizes existing control structures where it is possible: for cycles
are abstracted into much more powerful for comprehensions. The for compre-
hensions are actually a syntax sugar for series of operations map, flatMap and
withFilter whose semantics are defined by the target of their invocation, not
by the for comprehension itself. Parallel to that can be found in C# in the
form of LINQ [30] which behaves more less the same. An example of one for
comprehension that selects older underpaid employees can be seen on listing [2.2]

for (e <- employees;
if e.age > 40;
c <— companies;
if c.name == e.companyName;
difference = e.salary - c.avgSalary;
if difference < O
) yield (e.name, c.name, difference)

Listing 2.2: For comprehension example.

Leitmotif of the Scala language design is unification of concepts which appears for
example in the catch blocks. Multiple catch blocks for each catched exception
type known from standard languages are turned into one that matches against
the catched exception. A simple example is provided in Listing

try {
throwsException ()

} catch {
case _: TimeoutException => println("timeout")
case _: IOException => println("IO")

case e => println(e.getMessage)

Listing 2.3: Catch block example.

Scala does not differentiate between expressions and statements, because every-
thing that has been traditionally viewed as a statement (if-else, try-catch)
has a return value. So for example a ternary operator is unnecessary, because
if-else can be used instead (listing . There are many more features, for a
thorough description refer to the Scala "bible” [31].

13

val result = if (a >= 0) "positive" else "negative"

Listing 2.4: Tf-else as a ternary operator.

Syntax As it can be seen on the previous code samples, the syntax resembles
Java or C#, but is much more flexible while trying to reduce unnecessary clutter.
It is possible to define methods whose usage looks like built-in control structures.
For example the using syntactical construct known from C# can be defined
in Scala as a library function whose usage will look exactly the same as in C#.
Leaving out parentheses or semicolons is also allowed in places where they are
not necessary. As a consequence Scala is pretty suitable for design of domain
specific languages (DSLs).

Type System Unlike Java with distinct primitive and reference types, where
the primitive types do not belong into the inheritance hierarchy, all Scala types
inherit from the common ancestor scala.Any. The whole hierarchy is de-
picted in Figure 2.2 the types that are passed by value are descendants of
the scala.AnyVal, reference types inherit from the scala.AnyRef. The
scala.AnyRef stands for the standard object of the underlying platform, which
does not necessarily need to be Java Virtual Machine but also .NET Common
Language Runtime. The only non-standard value type is the scala.Unit which
represents the product of no types, i.e. the O-tuple. It has one instance written
as empty parentheses - (). The scala.Unit is for example used as a return
type of functions that are in other languages defined as void.

<4—— Subtype
| <=—— View

scala.AnyVal

. scala.AnyRef
scala.ScalaObject (java.lang Object)

scaate

scala.List \

\\ .«. (other Scala classes)...
- scala.Short
I
h ~
= -‘ scala.Byte

java.lang.String

.+ (other Java classes). ..

\

scala.Null

scala.Nothing

Figure 2.2: Scala Type System.

14

Note the scala.Null type with its only instance null and the uninhabited
type scala.Nothing (i.e. no value has such type, in type theory known as the
zero type). With them, it is always feasible to determine common supertype and
common subtype for each two typesﬂ

The types may take other types as parameters (known as generic types), the type
parameters can be annotated with variance annotations (invariant, covariant,
contravariant) and bounded (e.g. the type parameter has to be subtype of type
X). Also some more advanced possibilities are supported - existential types, path-
dependent types, structural types, etc (a complete listing can be found at [32]).

Functional Programming Scala also supports a lot of features that can be
found only in functional languages so it is possible to write Scala programs solely
in the functional style. But not purely because mutable variables which violate
the referential transparency are allowed. The most important functional concepts
are:

e Closures - anonymous functions that capture the declaration site scope.
e Immutable variables (vals).

e Lazy evaluation of variables, function parameters or object fields.

e Higher-order and nested functions.

e Currying and partial application.

e Pattern matching.

e Tuples and algebraic data types.

Object Oriented Programming On the other hand Scala is a pure OO lan-
guage, meaning that every value is an object. A data type may be declared either
as a class, a trait or a singleton object. Classes are quite similar to Java classes,
but on top of class inheritance they may mix in any amount of traits. Traits are
basically enhanced Java interfaces with a possibility to also define the implemen-
tation. From the Scala perspective the only difference between traits and classes
is that traits cannot have parametrized constructors.

The static fields and methods known from mainstream languages are not sup-
ported because it is difficult to abstract over them. To fill the gap, singleton
objects behave like classes whose only instance is created during the class-loading
process. They serve the purpose of static classes but may also inherit or mix-in
other types and possibly override something (this is not achievable in languages
that use the static modifier).

The famous diamond inheritance problem that always emerges with the multiple
inheritance is solved using a technique called linearization [33]. Linearization
is a deterministic process that specifies a single linear order for all of the type

LA common supertype is needed when inferring type of an expression that returns either
type A or type B, a common subtype when unifying two generic types with type parameters
on a contravariant position.

15

ancestors (i.e. all classes in the superclass chain and parent chains of all traits).
Method resolution takes advantage of it and works in the linearization order, so
there is no place for ambiguity left.

2.3 Scala Compiler

In the context of the thesis it is also important to know how the Scala compiler
works, because it may be used by the Swat as a library for tasks that are specific
for Scala compilation, but not that relevant from the Scala to JavaScript compi-
lation perspective. The compiler architecture is summarized by Martin Odersky
in [29]:

"The Scala compiler, scalac, consists of several phases. The first
phase is syntax analysis, implemented by a scanner and a conventional
recursive descent parser. The result of this phase is an abstract syntax
tree. The next phase attributes the syntax tree with symbol and type
information. This is followed by a number of phases that transform
the syntax tree. Most transformations replace some high-level Scala-
specific constructs with lower-level constructs that can more directly
be represented in bytecode. Other transformations perform optimiza-
tions such as inlining or tail call elimination. Transformations always
consume and produce attributed trees.”

So the compiler can be understood as a sequence of phases where each phase
takes an abstract syntax tree (AST) as its input from the previous phase, adds
attributes to the AST or modifies the AST and passes the modified tree to the
consequent phase.

In order to represent a Scala program in the compiler, a couple of data structures
needs to be defined (complete description in[34]). Names represent identifiers that
appear in the source code, e.g. class names or field names. Symbols are used
to bind a name and the entity it refers to, e.g. a class or a method. Anything
that can be given a name has a symbol associated with it. Instances of the
Type class represent information about the type of a corresponding symbol (the
information include member methods, fields, base types etc). Finally, the ASTs
are represented by the Tree class and its subclasses which correspond to various
source code elements such as class definitions (ClassDef), method invocations
(Apply) or if-else statements (If).

The only up-to-date description of the scalac phases can be found in the source
code (class scala.tools.nsc.Global). Here are the most important ones
in their execution order:

syntaxAnalyzer Takes Scala code as its input, parses source code into
ASTs, performs simple desugaring.

namerFactory Declares symbols and enters them into scopes

typerFactory Assigns types to symbols, the most complex phase.

16

patmat

uncurry

explicitOuter

erasure
lambdaLift
lazyVals
constructors
mixer
cleanup

deadCode

jvm

Converts the match expressions into if-else state-
ments, labels and jumps.

Performs the opposite of currying, transforms vari-
adic parameters to sequences, converts closures to
anonymous classes and a lot of other similar, rather
simple, operations.

For each nested class, adds a field for the reference to
the outer class instance.

Erases generic types, adds interfaces for traits.
Move nested function definitions to the top level.
Converts lazy fields into methods.

Moves field initialization into constructors.
Performs the mix-in composition.

Platform specific cleanup.

One of many optimization phases, eliminates dead
code.

Generates the Java bytecode.

17

3. Analysis

This chapter proposes how some of the defined goals can be fulfilled, while pro-
viding more possibilities with their pros and cons. It is intended not be biased
by the fact that the source language is Scala for the described methods to be
applicable even in a different environment. But for example purposes Scala will
be used, because it is the source language of the Swat. Moreover this chapter
elaborates on which of the proposed approaches is used by the Swat and why.

3.1 Setup

Compiler architecture has converged throughout years to a data flow consisting of
canonical components. The source code is consumed by a scanner that performs
lexical analysis and produces a stream of lexical tokens. A parser takes the token
stream on the input, performs syntactical analysis and builds up the ASTs. The
ASTs are then processed by a semantical analyzer which validates them, assigns
types to symbols and possibly transforms the ASTs. These three components
are marked as the frontend components. When the abstract syntax trees leave
the frontend, they go to a backend, which is responsible for generation of the
target language/assembly/byte code. The backend usually consists of several
subcomponents that firstly produce some intermediate code, optimize it and then
generate the machine specific code. Such a data flow can be seen in Figure 3.1

Foo.scala Tokens Scala ASTs Scala ASTs Foo.class

— | Lexical Analysis ‘ —_— ‘ Syntactic Analysis ‘ —_— ‘ Semantic Analysis ‘ —_— ‘ Backend ——

Figure 3.1: Canonical compiler architecture.

In order to transform programs to JavaScript, one needs to work with them pro-
grammatically. ASTs exactly serve this purpose and because standard compilers
(e.g. javac, csc, scalac) already handle the transformation from source code to
ASTs, reusing that functionality is definitely the best way to go.

As it can be seen in the diagram of the whole setup (Figure , the compiler to
JavaScript itself follows the canonical structure, therefore it consists of a frontend
and a backend. The JavaScript Frontend in ideal case consumes ASTs obtained
from the source language compiler and produces corresponding JavaScript ASTs.
When the JavaScript frontend is done, the execution proceeds to the JavaScript
Backend. It generates JavaScript code corresponding to the ASTs and may op-
timize the output either by itself or by an external tool (e.g. Google Closure
compiler [I3] which is one of the most popular JavaScript optimization tool).

Another advantage of the proposed setup is that compilation to bytecode and
compilation to JavaScript can be performed during one run of the composed
compiler. So the lexical analysis, syntactical analysis and possibly type checking

18

Foo.scala Foo.class

- Scala Compiler —_—
Scala ASTs
¢ Scala to JavaScript Compiler)
Foo.js
’ JavaScript Frontend > | JavaScript Backend | T—>
JavaScript ASTs

Figure 3.2: JavaScript compiler using the source language compiler.

runs only once and their outcome is used both by the standard compiler and the
compiler to JavaScript. And it is a common knowledge that these three operations
take the most of the compilation time.

One may also ask why the compilation to bytecode is necessary after all. The
first reason is that data structures intended for the client side could be reused
on the server side and the other way round. Or at least functionality that is
common for the server and the client can be abstracted out in order to avoid
duplication. The main reason however is that a program may depend on a library
(possibly compiled to JavaScript). If the library did not contain classfiles then
the program itself would not be compilable (it would not pass the type checking
phase of semantic analysis).

3.1.1 Utilizing the Source Language Compiler

The standard compiler architecture offers a few places where the ASTs can be
obtained. As depicted in Figure [3.1] it is either before the semantic analysis is
executed (option A) or after execution of the semantic analysis (option C). If
the compiler components are subdivided into phases, it may be even possible to
access syntax trees during execution of the semantic analysis (option B). That
mostly depends on architecture of the source language compiler, whether it allows
such an interception.

ssssssss

f1e14 x:Sering
Scala ASTs Foo.class

— | Lexical Analysis ‘ —_— ‘ Syntactic Analysis ‘ ‘ Semantic Analysis ‘ ‘ Backend ‘ ——
A B J C

‘ JavaScript Frontend ‘ —_— ‘ JavaScript Backend ‘ —_—

var Foo
var x

JavaScript ASTs Foo.js

Foo.scala Tokens

Figure 3.3: Plugging JavaScript compiler into the source language compiler.

The choice between options A, B and C determines abilities of the JavaScript

19

frontend. The ASTs may just mirror the source code with no added information
(option A), they may be completely analyzed and possibly transformed to some
extent (option C), or the ASTs may be in an interim state between A and C
(option B). Drawback of the option A is that the ASTs may represent language
constructs that are not directly expressible in JavaScript. An issue with the
option C is that some of the trees may be transformed to constructs that are
really low-level and close to bytecode, even though the original trees would be
directly expressible in JavaScript before the transformation.

The Scala compiler is subdivided into phases so the most crucial decision is finding
the spot where the compiler to JavaScript should be plugged in. Scala compiler
phases have fixed order and dependencies and it is almost impossible to leave out
a phase from the sequence. So the decision is where to cut the sequence into two
parts.

Principally the compiler to JavaScript could be plugged anywhere. The earlier
it is plugged in, the more work for it because the early phases work with much
richer set of tree types compared to the latter phases where some of the AST types
are completely eliminated (e.g. Match by phase patmat). On the contrary the
ASTs that appear on the beginning of the phase sequence practically mirror the
original Scala code whereas the ASTs towards the end look more like Java mixed
with bytecode.

One of the aims was to produce JavaScript code that would resemble Scala
as much as possible and use just the compiler phases that analyze the code
(syntaxAnalyzer, namerFactory, typerFactory). The motivation for it
was to simplify debugging of the compiled code in a web browser. But it turned
out that it would be a lot work to implement JavaScript counterparts of Scala
control structures that are not present in JavaScript. So the phases patmat,
uncurry and explicitOuter should also be utilized, because they transform
higher level Scala constructs to ones that are directly expressible in JavaScript.
From the other point of view, the phase erasure does not bring any added
value in the context of compilation to JavaScript, it erases some of the type in-
formation. The phases after erasure (namely the lamdaLift) transform the
trees to an extent, that is not acceptable if the resulting JavaScript code should
resemble Scala at least a bit. To sum it up, the place between explicitOuter
and erasure is where the Swat compiler should be plugged in.

3.1.2 Debugging

The chosen plugging position implies that the resulting code sometimes would
not resemble the source Scala code which means that debugging of the program
directly in JavaScript in a web browser would be tricky. This way of debugging
is not ideal even if the outputted JavaScript code looked almost the same as the
source it was compiled from. Similar problem appears in the plain JavaScript
world where code that went through minification (e.g. whitespace removal, name
shortening) is difficult to debug.

JavaScript ecosystem and web browsers offer a solution in form of source maps

20

[35] that establish mapping between the executed JavaScript code (minified or
compiled) and the original code (not minified or even possibly not JavaScript)
and allow a user to debug the original code. Source maps are still a state of the
art functionality not supported by all browsers and establishing such a mapping
can be quite a complex task. Therefore implementation of it is out of the scope
of the thesis.

3.2 Interoperability with JavaScript

One of the crucial requirements of a compiler targeting JavaScript is enabling
the programs written in a source language to interoperate with the JavaScript
environment. There are two main reasons:

e Programs do not run in a vacuum and the only possibility how they can
manifest themselves is via interaction with the hosting environment. It is
feasible to make them interoperate with the environment in a type safe
manner, since the JavaSrcipt and browser APIs are defined mostly in W3C
[36] specifications which contain type information. It is JavaScript where
the type information is lost.

e Sometimes it makes sense to descend to the JavaScript level and write a
piece of code directly in it, for example for performance reasons.

Inherent restriction of the interoperability is that the solution used should not
violate the syntax of the source language. There are several ways how to accom-
plish the proposed requirements, the following three solutions represent different
ways of doing it and are more less orthogonal to each other:

Native code blocks A parallel to the inline assembler blocks in the C language
with difference that the JavaScript code has to be placed in a string in order not
to violate the source language syntax. Moreover type of the whole code block
expression (e.g. js("123 + 456")) has to be scala.Nothing so it can be
used even in places where a value of particular type is expected. When the
JavaScript Frontend encounters such a block it outputs only the code stored in
the string. Example of such a code block can be seen in Listing

def repeat (text: String, times: Int): String = Js("""
var a = [];
while(a.length < times) ({
a.push (text) ;
}

return a.join("");
mnw ")

Listing 3.1: Native code block example.

Adapters For all the JavaScript APIs and objects that should be usable from
the source language, so called ”adapter” classes could be defined in the source lan-

21

guage. They should exactly match the JavaScript definitions in terms of names,
fields, methods, parameters etc. And they should be marked with an annotation
in order to be distinguishable. They do not have to be implemented, but the
type signatures should match the specification (see Listing where an adapter
for the window object is defined and used). When the compiler encounters such
an adapter class, it knows that it is something that is already present in the
JavaScript environment and will not produce any JavaScript code corresponding
to the adapter definition (Listing presents such a situation).

@adapter object window {
def alert (text: String) {}
}

def test () { var test = function () {

window.alert ("test")

}

window.alert ("test");

}

Listing 3.2: Adapter definition and
usage example.

Listing 3.3:
output.

Adapter compilation

Dynamic This option is relevant only to source languages that support the
concept of a dynamic class. In Scala, an object named global representing
the JavaScript global scope (object global extends Dynamic) would be
defined. The object would mix-in the scala.Dynamic [37] trait, so an arbitrary
field can be selected or any method can be invoked on that particular object. For
example global.window would be turned by the Scala compiler before the
typing phase into global.selectDynamic ("window"). Such a selection
can later be transformed by the JavaScript Frontend into window.

As it was mentioned in the motivation in Chapter static typing is an ad-
vantage in the context of large applications, therefore choosing Adapters is pre-
ferrable. Unlike the two other it preserves type safety. The trade-off is that it
is incomparably more time-consuming for a developer to define all the adapters
compared to the other options where nothing has to be declared. For exception-
al purposes (performance optimization) the Native code blocks, which are more
flexible than Dynamic could be used.

3.3 Frontend

A heart of the whole compiler is the JavaScript frontend responsible for transfor-
mation of source language ASTs to JavaScript ASTs. It starts given the whole
program in a form of a syntax tree, traverses the AST and produces a JavaScript
AST. According to the current subtree whose root the fronted is visiting, it should
produce a JavaScript counterpart for that subtree. The following sections de-
scribe options the fronted has and elaborate on how particular tree types should
be represented in JavaScript. It is natural to start with the top-level node that

22

encapsulates everything else and traverse down the tree through class definitions,
their member definitions to the simplest expressions on the leaf level of the tree.

3.3.1 Compile Time vs. Runtime Approach

The JavaScript frontend can use different approaches to tackle its task. As an
example, consider a piece of Scala code containing lazy field declaration and access
in Listing and how it could be compiled to JavaScript.

lazy val foo = reallyLongOperation ()

// Causes evaluation of foo.
val bar = foo

Listing 3.4: Lazy field declaration and access.

One option is to construct JavaScript ASTs utilizing only JavaScript language
primitives and internal functions so the resulting code would be executable as
it is. Everything is handled during the compilation (thus named the ”compile
time approach”) so the produced code uses only native JavaScript constructs and

APIs (listing [3.5).

var foo_value = undefined;
var foo = function() {
if (typeof foo_value === "undefined") ({
foo_value = reallyLongOperation();
}
return foo_value;
}i

var bar = foo();

Listing 3.5: Compile time option outcome.

The other way is to move some of the logic to a completely new runtime library
written directly in JavaScript so the outputted JavaScript code would run only
if the runtime library is present in the global scope. In case of the lazy field a
new function named runtime.lazy would be defined in the runtime library
(Listing [3.6] shows its implementation).

23

runtime.lazy = function (f) {
var x;
return function () {
if (typeof x === "undefined") {
x = f.apply(this, arguments);
}
return x;
}i
}i

Listing 3.6: Runtime function that lazifies evaluation.

With the library function runtime.lazy it is possible to translate Scala code
in Listing [3.4] to JavaScript code listed in [3.7]

var foo = runtime.lazy (function() {
return reallyLongOperation();

Listing 3.7: Runtime option outcome.

In order to minimize size and boilerplate code in the produced JavaScript and to
increase its readability, the Swat JavaScript fronted sticks to the runtime option
with a runtime library and tries to move functionality there if it is both possible
and beneficial. In cases when the compile time option nor the runtime option is
apparently better than the other, the runtime option is chosen because modifying
the runtime is by far simpler than modifying the compiler.

3.3.2 Scope of a Compilation Unit

The top level tree type represents a compilation unit (one source file) and it
contains possibly nested definitions of packages. The package definitions are usu-
ally non-empty, they encapsulate type definitions (definitions of classes, singleton
objects and traits). An important decision on this level is how the compiler out-
put should be structured. Should it be a single file containing everything in the
compiled program /library? Should it be a set of files that correspond to the com-
pilation units? Or should the compilation unit output be splitted into mutliple
files? In the web environment such questions have to be answered because size
of files downloaded to the client really matters (particulary on mobile devices).

It is a crucial decision because the compiler to JavaScript should be besides
other things used to compile the Scala standard library [38] (which is an implicit
dependency of all Scala programs). And the Scala library contains thousands of
classes so having the library packed in a single file with size exceeding megabytes
is not acceptable in any real world scenario.

An entry point to a Scala application is a singleton object that mixes in the
scala.App trait (an analogue to a class with static void main method in

24

other languages). Not all of web applications are in the form of a single page,
it is quite common that there are multiple pages with completely different func-
tionality. The application therefore has multiple entry points. There is a shared
portion of the codebase but different entry points have different implementation
that is not shared, so it a is a waste of resources to download everything in the
context of a single page.

An inspiration for a solution can be found right inside the standard Scala compiler.
It splits the compilation unit into class definitions and produces separate classfiles
(x.class) for each class definition. For a compiler targetting JavaScript, the
splitting opens up a possibility, to track and store dependencies of each type
definition together with its outputted JavaScript typefile (analogue to a Java
classfile). A dependency is either an instantiated class, an accessed singleton
object, a used type or a supertype of the type definition. With this information,
the JavaScript typefiles form an oriented dependency graph. It would also be
possible to track dependencies among outputs of compilation units, however it
would not be any advantage over dependencies among type definitions.

In order to run an application on a page, a typefile corresponding to the entry
point has to be loaded with all its transitive dependencies. Utilizing the depen-
dency graph ensures that only the types that are actually used are downloaded
to the client. The same applies for external libraries. If an application uses just
a fraction of an external library, then the downloaded JavaScript file still stays
relatively small.

3.3.3 Type Definitions

Descending an AST, the next kind of nodes JavaSript frontend comes accross are
type definitions. Packages or namespaces are not an issue because solution for
them is trivial as it is illustrated in Listing In order to declare a package it
is enough to create an object with the same name as the top level package and
recursively nest there objects corresponding to the subpackages.

// Declaration of the package "foo.bar.baz".
var foo = { bar: { baz: {} } };

// Definition of a package member.
foo.bar.baz.Animal = /% ... %/

Listing 3.8: Packages in JavaScript.

A type definition (a class, a trait or a singleton object definition) is identified by
a name, has an ordered sequence of supertypes, consists of members and has a
constructor. A member is either a method definition or a field definition. In the
case of a singleton object or static constructors, the runtime is responsible for
their initialization.

There are many possibilities, how to encode such type definitions in JavaScript,
because JavaScript is really flexible. Different JavaScript application frameworks,

25

that introduce the concept of class-based inheritance, do not even agree and en-
code it slightly differently. As mentioned earlier, the favored encoding would be
to produce only necessary information about the type definition. It means that a
function (e.g. runtime.class) has to be defined in the runtime library. This
function should take three parameters: fully qualified name of the class, class
supertypes and the class member definitions. Its responsibility is to create a con-
structor function for the class and setup inheritance by initializing the prototype
chain.

An example of how a Scala class Dog (Listing could be encoded is visible
in Listing [3.10] The runtime.class function in this case returns a contructor
function of the animals.Dog so new instances can be created simply by calling
new animals.Dog ().

package animals {
class Dog extends Animal with FourLegged {
def bark () { /% ... %/}
override def live() { /% ... =/}

}

Listing 3.9: Scala Dog class example.

animals.Dog = runtime.class (
"animals.Dog", // Full name of the class.
[Animal, FourlLegged, java.lang.Object, Any], // Super types.
{
bark: function() { /* ... %/}, // Member function definition.
live: function() { /% ... %/} // Member function definition.
}
)

Listing 3.10: The Dog class encoded using the runtime.class function

One issue that has to be taken special care of is an initialization of singleton
objects. Singleton objects behave similarly to static constructors, they should be
initialized before they are accessed for the first time. To ensure that it is sufficient
enough not to reference them directly, but use an accessor function instead which
follows the lazy initialization pattern [39]. When a singleton object is accessed
for the first time via the accessor function, the function knows it has not been
initialized yet, initializes it and returns in.

3.3.4 Scope of a Type

A type has two kinds of members: field definitions and method definitions. Fields
of JavaScript objects do not have to be declared in advance, they come into
existence when they are assigned. Therefore the JavaScript frontend can safely
ignore the fields that are only declared but not initialzied. The assignment part
(e.g. foo = 123) of fields that are both declared and initialized together (e.g.

26

val foo = 123) has to be moved into a new synthesized field initialization
function. The field initializer invocation has to be put in the beginning of each
constructor so when a constructor body is being executed, the fields are already
initialized.

In Scala there is notion of a default constructor. If a class has multiple con-
structors, the overloaded constructors have to, as their first statement, call either
another overloaded constructor or the default constructor. But the invocation
chain always has to end up in the default constructor. Otherwise the Scala com-
piler reports an error. As a consequence there is no need for the synthetic field
initializer, the field initialization can be placed on the top of the default construc-
tor body.

Scala also supports lazy fields that are initialized when firstly accessed. The same
approach as with the singleton object initializers can be utilized which gives an
opportunity to define a runtime function runtime.lazy (implementation can
be seen in Listing usable for both cases.

The situation is much more complicated with method definitions. Depending on
the source language, a method can be overloaded and it can have parameters
with defualt values or a variadic parameter. Some of the features may already be
handled by the source language compiler, namely the variadic parameters (but
even if not, their processing is not a big challenge).

Method overloading

Because JavaScript does not support multiple variables with the same name in a
scope, methods of JavaScript objects cannot be overloaded. Listing presents
a pair of overloaded methods and their invocation.

def foo(x: String) { /+ ... #*/}
def foo(x: Int) { /* ... x/ }
def test () {

foo("test")

foo (123)

}

Listing 3.11: Scala method overloading example.

Overloaded methods differ by their type singatures, therefore one possible solution
is to somehow encode the type signature into the method name (known as name
mangling which is a commonly known technique that is used by C++ compilers).
Output of a compiler that uses name mangling applied on the sample methods
can be seen on in Listing [3.12

27

foo_ _java_lang_String = function(x) { /* ... */ };
foo_ _scala_Int = function(x) { /% ... %/ };
test = function () {
foo___java_lang_String("test");
foo_ _scala_Int (123);
}i

Listing 3.12: Overloading solved by name mangling.

The other way is to have one ”"wrapper” method named the same as all the
overloaded methods. The wrapper method would take a type signature as an
additional string parameter and based on its value, it would decide which variant
to actually invoke. This approach implies that a runtime library function has to
be defined. It can be named e.g. runtime.overload, as parameters it would
take the overloaded variants with their type signatures and it would construct the
"wrapper” function. This technique applied on the sample methods is presented

in Listing |3.13]

foo = runtime.overloaded ({
"java.lang.String": function(x) { /% ... =%/},
"scala.Int": function(x) { /* ... */ }
)i
test = function() {
foo("test", "java.lang.String");
(

foo (123, "scala.Int");
}i

Listing 3.13: Overloading in JavaScript.

The "name encoding” approach has a big advantage in zero runtime overhead.
On the other hand, methods with a few parameters of nontrivial types would
have really long names so the resulting code would be rather unreadable. The
most important information about a method call in the use site is the method
name and the arguments. With this solution, they would be separated by the
type signature encoding.

The "wrapper” way obviously causes runtime overhead both during declaration
(the runtime.overload function has to create the ”wrapper” method) and
during invocation (choosing the variant according to the provided type signature).
A benefit is that the resulting code is more readable - the important information
occur in the code earlier than the less important type signature. Another advan-
tage is that calling a method compiled to JavaScript directly from JavaScript is
simpler, because the one who calls it does not have to know, how a type signature
is encoded into a method name. It is enough to know fully qualified names of the
method parameter types.

If performance is the main priority, then the "name encoding” variant is the one
to use. In Swat, the "wrapper method” approach is used mainly for the sake of
code readability, however it would not be a big effort to change it to the other
one.

28

Default Parameter Values

If the source language allows to define method parameter default values, then the
best approach is to exploit the JavaScript undefined constant which has no
counterpart in most of other programming languages. In the invocation site if an
argument is not provided (i.e. the default value should be used) the JavaScript
frontend can use the undefined as the argument. And on the top of the method
body, all the arguments have to be checked whether they are the undefined. If
so, the default value should be used instead as it is demonstrated in Listing [3.14]

function (x) {
if (typeof x === "undefined") {
x = "default value";
}
VIR

Listing 3.14: Default parameters in JavaScript.

3.3.5 Expressions

The last category of ASTs are expressions. An expression is basically anything
that can appear inside a method body (except type and function definitions).
The most common expressions are control structures, method invocations, field
selections and literals.

Scoping

The first issue that has to be resolved is different scoping in JavaScript. Scala
and most of the other standard languages use block scoping where a variable is
availible only in the block it is declared in. JavaScript on the contrary uses lexical
function-level scoping therefore a variable is available in a function body where it
was declared in. The difference in scoping is illustrated in Listings and [3.16]

val x = "foo" var x = "foo";
{ {
val x = "bar" var x = "bar";
} }
println(x) // Prints "foo". console.log(x); // Prints "bar".
Listing 3.15: Scala scoping. Listing 3.16: JavaScript scoping.

A solution for this problem is a part of common knowledge in the JavaScript
community. The code block that should be executed with a new scope has to
be wrapped inside an anonymous function which is immediately executed (see
Listing for an example). Invocation of the function forces creation of a new
scope so it behaves the same way as blocks in standard languages.

29

var x = "foo";
(function () {
var x = "bar";

FO)
console.log(x); // Prints "foo".

Listing 3.17: Emulation of block scope in JavaScript.

Another problem related to scoping is meaning of the this keyword. In OO
languages it means the current object whereas in JavaScript it references the
current scope. An issue arises inside a method body if the current object is being
accessed from a nested function. The this keyword inside the nested function
references the nested function scope, not the current object. Resolution of this
problem is surprisingly simple. It suffices to capture the current object to a new
variable on the top of each method body (e.g. var self = this;) and to use
the captured variable (self) instead of the this keyword.

Primitive Types

Due to the fact that JavaScript primitive types differ from primitive types of
mainstream OO languages, it has to be decided how the source language prim-
itive values would be represented in JavaScript. The scala.Boolean and
java.lang.String can be represented directly as their JavaScript counter-
parts, the scala.Unit as the undefined. But what with the rest?

One possibility is to use the existing JavaScript primitive types which would
mean that a scala.Char would be represented as a single-character String
in JavaScript and all numeric values (of types scala.Int, scala.Double
etc.) would be represented as JavaScript Numbers. An advantage is that there
is no runtime overhead, that the resulting code is well readable and that interop-
erability with JavaScript is problem-free. From the drawback point of view there
is no way how to determine whether 2.0 represents a scala.Integer or a
scala.Double. Moreover overflows do not behave as expected because most
of the numeric types have wider ranges than in the source language.

The other way is to create a wrapper class for each type. The class would con-
tain the value represented same way as it is described in the previous paragraph.
On top of that it will define all operations (e.g. add, subtract, multiply,
etc.) so that overflows and ranges would work exactly the same as in the source
language. A benefit is that no information is lost when compiled and execut-
ed in JavaScript. A disadvantage is that there is some runtime overhead and
that the produced code is little more literal (e.g. 1 + 1 would compile to new
scala.Int (1) .add(new scala.Int (1))). In addition the wrapped val-
ues would have to be unwrapped on the boundaries between compiled JavaScript
code and native JavaScript code.

The choice is biased by the fact that in most cases JavaScript applications do
not not perform any computationally complex operations where bit arithmetic
is involved. They however interoperate a lot with the environment and external

30

libraries. While keeping that in mind it is apparent that the first option (without
wrappers) has been chosen, even though the ”wrapper” approach is definitely
cleaner. A compromise could be a parameter of the compiler that would switch
between the two aforementioned approaches.

Control Structures

Thanks to Scala compiler phases that run before the Swat compiler it is not
necessary to worry about advanced control structures like match because they
are desugared to code that is ”"compatible” with JavaScript. The only thing to
take care of is that Scala control structures may have a return value. An elegant
solution naturally pops up together with the scope handling. Consider an i f-
else control structure on the listing [3.18

val decision =

if (foo) {
"foo is true"
} else {

"foo is false"

}

Listing 3.18: A condition with return value.

Transformation to JavaScript will be performed in two steps. The first step in
Listing [3.19]is just for illustrational purposes. It is not a valid JavaScript code but
it shows how scoping would be resolved (both branches wrapped with immediately
invoked functions). The second step is to merge the two anonymous functions
into one and add the return keywords (Listing [3.20).

var decision = var decision = (function() {
if (foo) { (function() { if (foo) {
"foo is true"; return "foo is true";
}())} else { (function () { } else {
"foo is false"; return "foo is false";
O} }
O ;

Listing 3.19: The first step of condition Listing 3.20: The result of condition
compilation. compilation.

The super Keyword

The last challenging expression kind is an invocation of method defined on a

supertype, e.g. super.foo (). Consider the setup in Listing - a top level
trait, two child traits and two classes that mix in both child traits.

31

trait A {
def foo = "A"

}
trait Bl extends A

—_~

override def foo = "Bl " + super.foo
}
trait B2 extends A {

override def foo = "B2 " + super.foo

}

class Cl extends
class C2 extends

Bl with B2 { def test
B2 with Bl { def test

= super.foo }

super.foo }

// Prints
// Prints

"B2 B1 A".
"Bl B2 A".

println ((new Cl) .test)
println((new C2) .test)

Listing 3.21: The super keyword non-static behavior example.

Note that the traits are mixed into classes in opposite order to each other. There-
fore the linearized supertype sequences of C1 and C2 are different and the test
methods do not return same values. As a consequnce the super. foo used inside
the method B1. foo may reference either B2 . foo or A. foo. So when the com-
piler processes the B1 . foo method body, the super. foo invocation cannot be
dispatched statically.

As it started to become a custom, runtime comes to the rescue. A method
runtime.super has to be defined. It would take a method name, method
arguments and most importantly the declaration site type. The super.foo
inside B1. foo would be compiled into runtime.super ("foo", [], Bl).
When the runtime. super method is invoked, it basically starts at the object
(e.g. new C1) and climbs up the prototype chain (e.g. C1, B2, B1, A) until it
gets to the declaration site type (B1). Then the first method defined above the
declaration site type with the specified name is invoked (e.g. A.foo0).

3.4 Standard Libraries

Most of programs in any language depend on a standard library which is offered
together with the source language. In some cases the standard library is a required
dependency that cannot be left out even if the program did not explicitly use
anything from it. So in order to execute compiled programs there also have
to be a JavaScript counterpart for the standard library. If the source code of
the standard library is publicly available then the best approach is to use the
compiler to JavaScript and compile the library with it. If the sources are not
publicly available then the only option is to reimplement it either directly in
JavaScript or in the source language and then compile it. Applications in Scala
implicitly rely on the Scala Library [38] and a small subset of the Java Class
Library. Solution in this case would be to compile the opensource Scala Library
classes directly to JavaScript. The Java Class Library subset would have to be
reimplemented in Scala and then compiled.

32

One approach is to take the whole library and compile it as it is. The main down-
side is that a lot of classes that are not usable in the context of web browsers
would be included. For example everything related to threading. Scala collections
define the par method which returns parallelizable version of the collection. So
the parallel versions are direct dependencies of the sequential versions and con-
sequently would have to be downloaded whenever a standard sequential version
is used.

The better approach is to start with a small subset of the library classes that
would be compiled to JavaScript (i.e. supported classes). Before a class would
be added to the subset (i.e. become supported) one would have to check its
dependencies and possibly tweak its source code in order to exclude everything
unnecessary. In a case of the collections it would mean that the par method
would be removed, which would break the dependency on the parallelizable ver-
sion.

3.5 Library Distribution

A way how to simply distribute libraries is one of the main goals of the toolkit.
A motivation behind it is thoroughly described in Section [I.I] The solution how-
ever, to further extent, depends on the source language platform and distribution
means there. In the Scala ecosystem, programs and libraries are distributed ex-
actly the same way as in the Java environment - in the form of *. jar files (Java
Archives). Such an archive usually contains class files, metadata associated with
them and additional resources.

Integrating distribution of the compiled JavaScript with the existing methods
of Scala program distribution is without a doubt the ideal approach, because
the existing infrastructure (build tools, dependency management tools) could be
utilized. The proposed solution is, to trivially output all the generated JavaScript
files into the resources directory of the very same module. During the standard
compilation, which produces classfiles, the compiler to JavaScript is executed
in order to produce the JavaScript typefiles. The typefiles are stored into the
resources of the module within the same directory structure that is used in the
target directory for classfiles. Finally, when the module is packaged into a
* . jar, both the classfiles and typefiles are included. And that is exactly what
the user of the library needs. The classfiles for standard compilation and execution
of pragrams that use the library, the typefiles for client side programs that are
compiled to JavaScript and rely on the library.

Such a distribution method implicitly raises a new requirement on a JavaScript
type loader which should be able to extract typefiles from the resources. Based
on a fully qualified name of a type it should obtain the corresponding typefile.
Because a typefile may have other typefiles as its dependenecies, the typeloader
should explore the dependency graph and yield the required file together with all
its transitive dependencies. Therefore the requested type could be immediately
declared and used in a web page.

33

4. Implementation

4.1 Environment

The nature of the Swat toolkit and how it should be used by other programmers
implies that it has to be tightly cooperating both with the standard Scala compiler
and the build tool SBT. The compiler to JavaScript works with internal data
structures and interfaces defined by the Scala compiler, however those may change
even between two minor versions. No backward compatibility of those internal
structures is guaranteed. As of writing the thesis the most current version of
Scala (Scala 2.10.1) has been chosen to be the only supported version.

Build process and execution of the toolkit is handled by SBT, which means that
the only requirement on the host system is to have the Java Runtime Environ-
ment in version 1.6 or higher installed. All dependencies of the Swat (e.g. Scala
compiler, Scala library) are obtained by SBT from the internet. SBT is distribut-
ed together with the toolkit in order to make the usage as simple as possible -
just downloading the toolkit and running the included SBT. The whole toolkit is
divided into multiple projects; everything is defined in a SBT configuration file
(project/SwatBuild.scala). SBT is not tightly connected with any par-
ticular IDE, but it is possible to generate IDE specific project files for the most
used ones (IntelliJ Idea, Eclipse) based on the SBT configuration file.

4.2 Toolkit Overview

The two core projects are the api and compiler. They are the only depen-
dencies required to be able to compile Scala programs to JavaScript. The api
contains adapter classes and Swat specific annotations that are meant to be used
by the programs compiled to JavaScript. The compiler performs the com-
pilation step and incorporates most of the logic that was described in Section

B3l

All the projects that enable execution of the compiled programs are placed in
the runtime directory and are compiled using the Swat compiler itself. They
also contain sources directly in JavaScript which are not affected by the Swat
compiler. As it is depicted in Figure the runtime projects depend on the
api (in order to interoperate with JavaScript environment), get compiled by
Swat compiler and packaged to Java Archives (consisting of Java classfiles and
JavaScript typefiles).

The runtime/java is a reimplementation of core Java classes in Scala so it
is possible to compile them using Swat compiler. The runtime/scala is a
carefully selected subset of Scala Library classes that is supported by the Swat
toolkit. The existing sources of Scala Library are used and modified with respect
to fact that the classes will be executed as JavaScript so for example everything
related to threading can be excluded.

34

| Swat API (api) |

T T ! !

Swat Java Library Swat Scala Library Client Library Common Library

runtime/java runtime/scala runtime/client runtime/common

’ Swat Compiler (compiler) ‘

v v v v

’ runtime-java.jar ‘ ’ runtime-scala.jar ‘ ’ runtime-client.jar ‘ ’ runtime-common.jar ‘

— Compiles into

— Compile time dependency

Figure 4.1: Runtime project compilation.

The runtime/client is the runtime library that was mentioned multiple times
in Analysis (section . It is partially implemented in Scala and partially directly
in JavaScript. Finally the runtime/common contains the enhancements like
the type loader or the RPC infrastructure. A part of it runs only on the server,
part of it is compiled to JavaScript and used both on the server and on the client.

There are four additional projects that either test or demonstrate capabilities
of the toolkit. The web in the root is a server side web application based on
the Play Framework [25]. Tt serves three web pages where each page contains
one client-side application written in Scala and compiled to JavaScript using the
Swat compiler. The web/tests is an application that executes tests of the Swat
Runtime (there is no other simple and direct way of the runtime testing process).
The web/swatter is a sample application that presents some of the toolkit
features. Last but not least, the web/playground is an empty application
meant to be used for experiments.

An application that should be compiled into JavaScript depends during compi-
lation on the api (in order to use adapters), runtime/client (so it can use
e.g. serializer) and runtime/common (for access to type loader etc.). It also
implicitly depends (as all Scala applications) on the Standard Scala Library and
Java Class Library. It does not depend on the versions runtime/java and
runtime/scala adjusted for Swat. Consequently all types defined in the ap-
plication could be used even on the server side because they do not depend on
the adjusted versions of standard libraries. The purpose of the adjusted versions
is to store typefiles of standard Java and Scala library classes. The compilation
process is depicted in Figure [4.2]

4.3 API (package swat.api)

The api library is completely visible to users of the toolkit and contains means for
interoperability with JavaScript environment and a few annotations that some-
how affect the compilation process. The annotations are currently only two, the

35

Standard Libraries (Java, Scala)

Swat API (api) and runtimel/client, runtime/common

! T !

Test Application Sample Application Playground

web/tests web /swatter web /playground

Swat Cpmpiler (compiler)

\ \ \

web-tests.jar web-swatter.jar web-playground.jar
* —
Swat Runtime
runtime /scala — Compiles into
runt%me/ Jjava — Compile time dependency
runtime /client
runtime/common — JavaScript runtime dependency

Figure 4.2: Swat application compilation.

swat .ingored makes the Swat compiler completely ingore the annotated type,
the swat .adapter informs the compiler that the annotated type is an adapter
for a JavaScript object.

The most important parts of the api are predefined adapters for native JavaScript
APIs. It is not meant to cover all possible JavaScript APIs, mostly the adapters
are added/extended when needed during development of an application or a li-
brary. There are couple of predefined adapters that should more less cover the
following JavaScript APIs:

e Document Object Model (DOM) Level 3 Core Specification.
Package swat . js.dom.

http://www.w3.0rg/TR/2004/REC-DOM-Level-3-Core—-20040407/

e Document Object Model (DOM) Level 3 Events Specification.
Package swat. js.events.
http://www.w3.0rg/TR/DOM-Level-3-Events/

e JavaScript Objects, Browser Objects and HTML DOM Element Objects.
Packages swat . js, swat.js.applications, swat.js.html.
http://www.w3schools.com/jsref/default.asp

e Web Workers and Communication.
Packages swat . js.workers, swat. js.communication, swat. js.url.
http://www.w3.0rg/TR/workers/

36

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3schools.com/jsref/default.asp
http://www.w3.org/TR/workers/

The first thing to notice is that the adapters do not blindly copy the specifications
because the specifications are in some cases redundant and contain duplicities.
Usage of Scala, which is great for abstraction of common functionality, allows
to define a new trait (with no counterpart in the specification) for the shared
operations. The trait can later be mixed into all adapters that have the specified
operations. The swat.js.html.elements.InputLike trait is an example
of such an approach. It defines an interface that is shared among all form input
HTML elements and is mixed into ITnput, Select and TextArea adapters.

The second interesting part is how the global scope is established. The global
scope richness depends on a context in which JavaScript code is executed. If
a script is being executed in the standard context (applies to all scripts inside
a page) then it may access the window object or manipulate with the page.
On the other hand if a script is being executed inside a web worker (analogue
to a parallel process) then it is forbidden to access the window. So the object
swat . js.CommonScope defines API that is availible in all execution contexts,
swat. js.DefaultScope defines what is availible inside the default execu-
tion context and swat. js.SharedWorkerScope what is accessible in a web
worker. The preferred way is to use the swat . js.CommonScope which ensures
that the code would work in all execution contexts. A more specific global scope
should be used only when it is really necessary.

4.4 Compiler (package swat.compiler)

The Swat compiler is implemented as a plugin (SwatCompilerPlugin) to the
Scala compiler so it follows the Scala compiler plugin design guidelines [40]. The
plugin adds one phase to the standard set of compiler phases. When the phase is
executed during the compilation it does not modify the input Scala ASTs at all
and delegates control to the JavaScript frontend (class ScalaAstProcessor)
as it can be seen in Figure [4.3] Additionaly, there is also the SwatCompiler
class which wraps the whole plugged Scala compiler, adds a programmer-friendly
interface thus it is possible to perform the compilation to JavaScript program-
matically.

There are three main subpackages: js, frontend and backend. The js pack-
age contains definitions of JavaScript ASTs and other syntax related constructs
(e.g. keywords). The classes that represent syntax trees mirror the specification
of JavaScript syntax [4] so any imaginable JavaScript program could be repre-
sented with these classes. In addition, the TreeBuilder is a factory for some
commonly used ASTs.

The backend package allows to generate JavaScript code from the ASTs. There
is only one important class - JsCodeGenerator. From the top level point of
view, it is just one big match expression against all types of ASTs where each
case is responsible for one type. In most cases it works recursively because
an AST is often composed of other ASTs. Therefore the encapsulated ASTs
are processed first and then the resulting code fragments are somehow combined
together. It also takes care of the indentation and white spaces of the outputted

37

— | explicitOuter — —* | erasure —_—

Scala ASTs Scala ASTs

SwatCompilerPhase

v

‘ ScalaAstProcessor ‘

Foo ScalaV \M‘Scala AST

‘ TypeDefProcessor ‘ ‘ TypeDefProcessor ‘
iFoo JavaScript AST l
Bar JavaScript AST
‘ JsCodeGenerator ‘ ‘ JsCodeGenerator ‘

Foo.js Bar.js

Figure 4.3: Swat compiler implementation.

code to make it readable.

4.4.1 Frontend (package swat.compiler.frontend)

An entry point to the frontend is the ScalaAstProcessor class. Its function-
ality is pretty straightforward as it just traverses a body of a CompilationUnit
in order to find all type definitions. Then for each type definition it creates a new
TypeDefProcessor and lets it process the type definition.

The TypeDefProcessor is an abstract class responsible for a transformation
of a type definition Scala AST to a JavaScript AST. It defines a functionality
common for all kinds of type definitions and for each kind it has a corresponding
subclass: ClassProcessor for class definitions, TraitProcessor for trait
definitions and ObjectProcessor for singleton object definitions. The sub-
classes are very simple, most of the functionality is shared and defined in the
TypeDefProcessor.

The approach used inside the TypeDefProcessor is very similar to how the
JsCodeGenerator generates JavaScript code, the main difference is that the
TypeDefProcessor generates JavaScript ASTs. First of all, methods are ex-
tracted from the type definition, groupped by their names and processed as it
is described in the Analysis. Processing a method group means that all over-
loaded variants are processed separately and then encoded to a single JavaScript
AST representing the whole method group. Finally when all the method groups
are processed, the type definition can be encoded into a single JavaScript AST
containing the members, type name and linearized supertypes.

The transformation on the expression level (e.g. method bodies, field values)
starts with the most important method TypeDefProcessor.processTree.

38

The method can be given any kind of AST and based on its type the processTree
delegates the control to a more specific method, which is responsible for that par-
ticular AST. For example when the processTree is given an If tree it delegates
the control to the processIf method. On top of that there are several variants
of the processTree, which invoke it and somehow modify or check the result:

processStatementTree Makes sure that the processed JavaScript AST is a
js.Statement. Otherwise, it tries to convert it to a statement. Unlike
the processTree method, which returns a generic js.Ast it returns a
js.Statement.

processExpressionTree Makes sure that the processed JavaScript AST is
a js.Expression, which is also the return type. Used for example when
processing a condition of an ITf AST. The condition always has to be an
expression so processTree is too generic for that purpose.

processReturnTree Makes sure that the processed AST ends with a return
statement. E.g. used for transformation of expressions that represent
method bodies.

The rest of the TypeDefProcessor methods are the aforementioned variants
tailored for concrete AST types, e.g. processLiteral for primitive literals,
processIdent for identifiers, processMatch for match statements and many
more. An important thing to remember is that all of the methods follow the
chosen approaches defined in the Analysis. From the implementation perspective
they are not that interesting to further extent.

4.5 Runtime

4.5.1 Client (package swat.client)

A core of the client-side runtime is implemented directly in JavaScript and can be
found in the resources of the project (file resource/swat. js). It is the first
thing that has to be declared in order for the compiled code to function. First
of all, it defines several helper methods (e.g. isJsObject, isJsArray) that
are not present in JavaScript yet are useful. Then there are functions used by
the JavaScript Fronted to encode Scala constructs: swat .type encodes classes
and traits, swat.object encodes singleton objects, swat.method encodes
possibly overloaded methods. The last category of functions is responsible for
operations that are implemented in Scala with respect to the underlying platform

(usually JVM):

swat .isInstanceOf Returns whether an object is of the specified type. Ba-
sically verifies that the object is either of the type or any of the object
supertypes <: the specified type.

swat .asInstanceOf Uses the isInstaceOf to check whether an object is
of the specified type. Throws a ClassCastException if it is not.

39

swat .equals Implementation of the == relation (in Scala == corresponds to
the equals method in mainstream languages, Scala eq corresponds to ref-
erence equality == in e.g. Java). It cannot be a method of the scala.Any
type because even null == null should return true. For more about
equality and its common pitfalls refer to [53].

swat .getClass Returns a java.lang.Class of the invocation target. In
Swat the java.lang.Class is rather simple, the reflection is not cur-
rently supported.

swat .hashCode An implementation of the Scala method hashCode (or under
alias ##). In order to work properly, each instance of any Swat type is given
an identifier, which can be used as a base for its hash code.

swat .toString Stringifies any given object.

4.5.2 Type Loader

The class swat .commmon . TypeLoader is not complex at all, it provides two
operations: get for JavaScript code of a specified type (including all its depen-
dencies) and getApp for JavaScript code of an application and its execution
(invocation of the application constructor). It works in two phases. In the first
phase it creates a dependency graph of all involved types by visiting all depen-
dencies of the specified type, their dependencies and so on. Dependencies can be
of two kinds:

Declaration JavaScript code of the dependency has to be declared before the
type itself is declared.

Runtime Dependency has to be declared, however order of the dependency dec-
laration and type declaration does not matter.

For example the core runtime swat . js is a declaration dependency of any other
type. Then in the second phase the graph is traversed in a topological order given
by the ”declaration” dependency and outputted to one string.

There is also a possibility not to include some types to the result. That is useful
when there are types already declared on the client-side and some other have to
be loaded. In this case it is unnecessary to download the source code of already
declared types again and redeclare them again.

4.5.3 JSON Serializer

Besides serialization of primitive types and arrays, the serializer is also capable
of object serialization. In order to support serialization of object graphs that
contain cycles, all objects have to be given unique serialization ids and referenced
indirectly using the ids. Listing shows a self explaining example of how an
object (with couple of fields that reference other objects) would be serialized into
JSON.

40

{
$value: { $ref: 0 }, // The root object.
Sobjects: [// Repository of all AnyRef objects.
{
$id: 0, // Id of the object, which is used while referencing it.
Stype: "my.package.X", // Type of the object.
a: "Foo", // AnyVal.

b: { Sref: 1 }, // Reference to an object.
c: { S$ref: "scala.None", // Reference to a singleton object.
d: [123, 456, 789 1, // Array of AnyVals.
e: [{ $Sref: 0 }, { Sref: 1 }, { Sref: 2 }] // Array of AnyRefs.
}’
{
$id: 1
/7.
br
{
Silels 2,
/7.

Listing 4.1: A serialized object that references other objects.

Notice the included type information so it is possible to succesfully deserialize it
on the server and assign proper prototype on the client. When a singleton object
should be serialized then a fully qualified name of it is used as a reference.

The deserializer on the other hand goes through the JSON, creates instances
corresponding to every single object in the Sobjects array while using nulls
instead of the references (the referenced instances may not have been created yet).
When all instances are created, the references that were initially set to nulls
can be corrected so they point to valid instances.

4.5.4 RPC

The remote method invocation is a concept that allows to communicate between
two physical machines by invocation of a method. The programmer does not
need to take care of the communication, serialization of the exchanged data etc.
Everything is handled by the underlying infrastructure. In the context of web
applications, the client application can directly communicate with one other ap-
plication - the server application. First of all, the target of invocation has to be
defined. Consider a singleton object (foo) with one method (echo) in Listing

A2

@remote object foo {
def echo(message: String): String = {
"Received message '" + message + "' ."

}

Listing 4.2: A remote object.

When the echo method is invoked from within the client application then the
call should be somehow delegated to RPC infrastructure which dispatches it to

41

the server. A support from the Scala to JavaScript compiler is needed in order to
achieve that. Whenever the compiler comes accross a method invocation on an
object that is annotated with the @remote annotation it delegates the call to
the runtime. An example of such invocation can be seen in Listing and how
it gets compiled to JavaScript in Listing [4.4]

def test () {
foo.echo ("Hello World!")
}

var test function () {
swat .invokeRemote (
"foo.echo",
["Hello World!"]
)

}

Listing 4.3: Remote method invocation
in Scala.

Listing 4.4: Remote method invocation
in JavaScript.

The sequence of steps that follows invocation of the swat.invokeRemote is

depicted in Figure [4.4]

Client Application

Server Application

‘ Runtime ‘ ‘ RpcProxy ‘ ‘ Serializer ‘
T T

‘RpcDiSpatcher‘ ‘Serializer ‘ ‘foo ‘ ‘TypeLoader
T T T

T
T T T
invokeRemote ' ‘ L. ‘
! serialize !
|

arguments

invoke

HTTP POST

T
T
I
I
I
I
I
I
I deserialize
1

reflect

T
I
I
I
I
I
I
I
I
I
I
I
. I
invoke !

arguments
|

serialize
result

1

deserialize
result

result

A

Figure 4.4: Remote method invocation.

. The invokeRemote method is invoked.
. Runtime delegates the call to the swat.client.rpc.RpcProxy class.

The method arguments are serialized as a tuple utilizing the client side

serializer (swat.client.json.JsonSerializer).

. A HTTP POST request is created and sent to the server.

On the server, the request is forwarded (the forwarding process is described

in the following section) to the swat .common.rpc.RpcDispatcher.

42

6. Arguments of the remote method invocation are deserialized using the
swat .common. json.JsonSerializer.

7. The remote method is invoked using reflection.
8. The return value is serialized and returned to the client as a string.

9. On the client, the swat .client.rpc.RpcProxy goes through the result
and finds all types that are present in the result.

10. The swat .common.TypeLoader is asked for typefiles of types that are
present in the result but not declared on the client yet.

11. The source code of the missing types is declared so there is nothing pre-
venting deserialization of the result.

12. The result is deserialized and returned.

One more thing to notice is that the communication between the client RocProxy
and server TypeLoader is realized as a remote method invocation too. A return
type of the TypeLoader.get is however always present on the client so it does
not lead to a cycle.

4.6 Integration with a Web Framework

In order for the client application to be fully functional, the server side has to
respond to a few requests that are generated by the Swat infrastructure on the
client side. The toolkit was designed with a focus on a simple integration to
existing web application frameworks so it is just necessary to forward the following
three HT'TP requests to the Swat server runtime.

e GET /swat/tpe/<typeldentifier>
Returns JavaScript code of the specified type.

e GET /swat/app/<typeldentifier>/<args?>
Returns JavaScript code of the specified type that mixes-in the scala.App.
When executed in a browser the specified application starts running. The
arguments are optional and allow simple parametrization of the application.

e POST /swat/rpc/<methodIdentifier>
Returns result of the specified remote method invocation.

An examplary integration to the Play MVC Framework [25] can be seen in Listing
.5 You may also notice that the toolkit uses Scala Futures [4I] so when an
operation blocks on e.g. system operation, the thread may be used to handle
another request. As a consequence scalability of the whole application increases.

43

import scala.concurrent._

import ExecutionContext.Implicits.global
import play.api.mvc._

import swat.common._

import swat.common.rpc._

object Swat extends Controller {
def tpe (typeldentifier: String) = AsyncAction { r =>
TypeLoader.getOrAlert (Array (typeldentifier), Array.empty)
}

def app(typeldentifier: String, args: String) = AsyncAction { r =>
TypeLoader.getAppOrAlert (typeldentifier, args.split(","))
}

def rpc (methodIdentifier: String) = AsyncAction { r =>
val arguments = r.body.asJson.map(_.toString()) .getOrElse("")
RpcDispatcher.invoke (methodIdentifier, arguments)

}

private def AsyncAction(a: Request [AnyContent] => Future[String]) = Action { r =>
Async (a(r) .map (0k (_)))
}

Listing 4.5: Integration of Swat toolkit to Play Framework.

4.7 Build Process

The integration with SBT was initially planned as a plugin to SBT. A user of the
toolkit would specify that his or her solution requires the ”Swat SBT plugin”,
which would allow him or her to define not only standard Scala projects but also
"Swat projects”. SBT would download the plugin from the internet during the
startup and the plugin would be responsible for invocation of the Swat compiler
during compilation of a ”Swat project”.

The proposed setup would be nice, however it turned out that SBT plugins have
to be binary compatible with SBT itself (i.e. use same version of Scala as SBT).
The proposed ”Swat SBT plugin” would have to use Scala 2.10.1 because it
invokes the Swat compiler which uses Scala 2.10.1 itself. On the other hand the
latest version of SBT (at time of writing the thesis) uses Scala 2.9 and therefore
the plugin would be incompatible with SBT.

It has been solved by a new SBT action: besides the standard compilation ac-
tion compile a new action swat is introduced. The swat action invokes the
Swat compiler explicitly, but it is not that user-friendly and the compilation to
JavaScript is not done in one step together with the standard compilation. As
soon as SBT comes out with Scala 2.10.1 build, the proposed plugin should be
implemented and the temporary hack replaced.

4.8 Tests

The most of the libraries in the toolkit are covered with tests with a purpose to
early detect bugs that can be introduced to the compiler later. Especially the

44

compiler tests are useful, because a simple modification that seems correct may
actually break the compilation of an AST when it is used in a different context.
To run the tests start the SBT and execute the test action (i.e. write ”test”
and confirm it with enter).

45

5. Conclusion

With regards to the planned goals it can be stated the requirements on the toolkit
have been met. The compiler is able to compile Scala programs to JavaScript and
has no problems with any kinds of Scala language constructs. The interoperability
with JavaScript is covered by quite a rich set of adapters and the possibility to
use the native JavaScript code blocks inside the Scala programs. The runtime
environment manages to support the compiled code during the execution while
being consise. The toolkit was used to compile all the core Java and Scala classes
necessary for its operation, moreover the futures and promises are fully supported.
On the other hand, the supported library classes were added in a lazy-manner
so there are only the core classes and other required classes. Mainly the lack of
the Scala collection library (due to its size and complexity) is currently the most
limiting factor. The integration to a web application framework is straightforward
and the distribution of the libraries is as simple as it could possibly be.

The enhancement goals were also fulfilled. The JSON (de)serializer is usable both
on the client-side and on the server-side. On top of the standard functionality it
also allows to serialize object graphs containing reference cycles. The type loader
is fully implemetned, RPC infractructure is conceptually solved and usable for a
remote method invocation, but the support for more advanced scenarios involving
authorization is not implemented yet.

To sum up, all the ”"big” challenges have been solved, some of them even to a
near-production or production extent. On the other hand, the repetitive tasks
that are not that interesting from the theoretical point of view, were given a lower
priority, so the adapters and Scala library support have to be worked on.

5.1 Similar Tools

When the project started there have already been a few tools with the same
or similar goal - to compile Scala to JavaScript. Namely ScalaGWT [42], s2js
[44], Scalosure [45] and js-scala [46]. But it soon turned out that for a real web
application they are not very usable. Members of the Scala academic community
were also aware of that fact, therefore a new project Scala.js [47] was started
during the work on the thesis.

ScalaGWT

The ScalaGWT is a new backend for the Scala compiler. The interesting thing
is that in the first step it transforms Scala ASTs into Jribble [43], language,
which is a new language described as a "looser” Java. The second step is to
transform Jribble into Java. Finally, the resulting Java program is processed by
the Google Web Toolkit [19], which transforms it into JavaScript. A motivation
for the middle step (i.e. Jribble) is to open possibilities for other languages to

46

be transformed into JavaScript. And it is simpler to have Jribble as the target
language instead of Java.

The drawbacks are that the project is abandoned for more than two years, is
not well-integrated with Scala tools and frameworks and is rather in a prototype
phase (the Scala library is not well supported). The author works primarily on
the standard Scala compiler so ScalaGWT is a side-project for him.

S2js and Scalosure

Scalosure started as a fork of s2js, so these two tools are very similar to each
other. Both of them are however unfinished, do not even support compilation of
all Scala language constructs, the Scala library is mostly unsupported and the
projects are not maintained. On the other hand they served as a great example
on how to implement such a tool.

js-scala

The approach js-scala uses is a bit different but it is mentioned here for the sake
of the completeness. It is a domain specific language that can be embedded
into Scala programs. Its compiler plugin translates fragments of the DSL into
JavaScript. The main disadvantage is that the existing code that should be
transformed using js-scala has to be rewritten in order to follow rules of the
DSL. The existing code cannot be used without modifications which is apparently
the reason why Scala Library is unsupported. The project is currently rather a
theoretical proof of concept than a tool focusing on a real world usage.

Scala.js

The project originated in January 2013 and is developed in EPFL (Ecole Polytech-
nique Fédérale de Lausanne), which is a heart of the Scala community. Therefore
it has big support from people that are directly involved in Scala language, com-
piler or Library. The compilation process works practically the same way as in
Swat, the only difference is that the Scala.js compiler plugin runs after all the
standard phases are executed.

The biggest achievement of this project is that the whole Scala Library was
compiled to JavaScript and proven to be usable. The support of source maps
is in progress and it has a tool for import of TypeScript adapter definitions to
Scala. A downside is that the concept similar to Swat typefiles is not utilized so
the compiled library has couple of megabytes after minification and compression.

5.1.1 Comparison

It is difficult to exactly quantify abilities of each of the aforementioned tools,
becuase they are mostly undocumented. It is also difficult not to stay biased in

47

favor of the Swat toolkit but Table 5.1 tries to objectively summarize the level of
maturity of each tool by different criteria:

Compiler Scala language compiler support: * - major issues, *x
almost everything supported, x x x - full support.

Interoperability JavaScript interoperability: x - possible, xx adapters
and native code, xxx - automatic coversion of adapters
defined in different language.

Libraries Standard library support: * nothing or basic classes,
*x - not everything but important classes supported,
* % % - whole library.

Distribution Ease of library distribution and code reuse: x - not
addressed (e.g. output to one file), xx at least some-
how solved, xx« - typefiles and dynamic type loader.

Tooling Build, debug, runtime and other tools: x - missing,
*x - couple of tools, x x x - rich variety of tools.

Overall Subjective overall impression.
Tool Compiler | Interoperability | Libraries | Distribution | Tooling || Overall
ScalaGWT *ok * * *ok * Hok
s2js * * * * * *
Scalosure * * * ok * *
js-scala - *x * * * *k
Scala.js * % K * % * * % * * *ok * * K
Swat * % K *ok ok * % K *ok * * K

Table 5.1: Comparison of Swat with other similar tools.

The fact that Scala.js and Swat have three stars in the Overall criterion does not
necessarily mean they are ready for a production use. It means they are closest to
it so they are already suitable for programmers to start experimenting with. At
this moment there is no clear winner between Scala.js and Swat, both have their
highlights and downsides so it is matter of who will sort them out faster. Scala.js
currently has some support from the Scala community in EPFL so probably it
has bigger chances of succeeding.

5.2 Future Work

As it is already apparent from the conclusion, one of the main future goals would
be to continually add and extend support of Scala Library classes. Namely the
collection library, which is for its richness widely used by Scala programmers.
The adapters can be continually added in the same fashion as the Scala Library
support. Or it is possible to reuse existing adapters defined in a different language
(e.g. like Scala.js does with Typescript adapters).

48

The second more exciting direction is to explore ways how tasks that are not
programmer-friendly in JavaScript could be simplified utilizing Scala. The grounds
in form of the Swat toolkit have been laid so the really interesting applications
can now be implemented or at least tried.

5.2.1 Web workers

JavaScript does not have any direct means of concurrent programming so it is
quite challenging to implement an application that is computationally demanding
and in the same time allowing the user to interact with it. A proof of this state-
ment is that there are not many games or sophisticated visualization applications
implemetned fully in JavaScript.

There is however a way how to execute code in parallel with the code that is
being executed on a web page - by using WebWorkers [48]. The code in the
standard execution context may create a new WebWorker which is sort of a
different process. The standrd context and the worker context do not share access
to memory so the only way of communication is to send or receive immutable
serialized messages. The WebWorker library API is rather unfriendly so it is not
widely used but applications that critacally need the concurrency have to bear
with it, because there is no other option.

From a broader perspective WebWorkers are very similar concept to Actor Model
[49] which is implemented in Scala within the Akka Concurrency Library [50].
There is an opportunity to create a class that would provide the Scala Actor
API (or its essential subset) while under the hood it would use the unfriendly
WebWorker API. A serialization and a deserialization of messages is already taken
care of thanks to the JSON serializer.

Even a more interesting thing would be to abstract it a bit more so it would
be possible on the client-side to create a "remote” actor, which would actually
run on the server. The API of a "remote” actor would be the same as API of a
"WebWorker” actor so for a programmer it would be undistinguishable whether
the actor runs on a server or inside a WebWorker. It would also allow the web
application to have some of its computation needs fulfilled by the server or the
other way round.

There is another new feature in the JavaScript ecosystem called WebSockets [51],
which would be necessary to utilize in case of the "remote” actors. A WebSocket
allows to open bidirectional communication channel from the client side to the
server side. They would also deserve to be given a better API that would hide
low level details and make their usage friendlier.

5.2.2 Template Engine
Another thing that is currently rather inconvenient is templating in JavaScript.

One often needs to create fragments of a HTML page programmatically, compose
the fragments to bigger components and manipulate with them. The first option is

49

to create the whole fragment purely in JavaScript using DOM, but this approach
is for larger parts of a page almost unusable. The second option is to use a
template engine where it is possible to define a template with placeholders for
data, compile the template to JavaScript, give the compiled template the data
and make it render itself. This approach however brings the compilation step
which does not pay off when used only for templating.

With Swat it should theoretically be possible to implement a type safe templating
engine that would rely on Scala String Interpolation [52]. A template would be
a function taking data and producing an HTML Element. A construction of the
element and composition of the template from other templates would be a work
of a new special string interpolator (e.g. template). A simplified example just
to give an impression how it could look like is presented on Listing where a
model class (User) is defined together with a template for it.

case class User (name: String, frineds: List[User])

object Templates ({
def user (user: User): Element = template"""
<div>
<h2>${user.name}</h2>

<h3>Friends</h3>
${user.friends.map (userTemplate) }
</div>

mmn

Listing 5.1: An example of templating engine.

5.2.3 Build Process

The Build process deserves the full integration to the SBT as it was not achiev-
able at the moment of writing the thesis. An interesting improvement would be
to employ the SBT resident compiler (a compiler that runs all the time, detects
changes in the source files and recompiles the modified ones) so a programmer
would not need to explicitly compile anything. He or she would just run the
resident compiler and run the application. From that point it would be suffi-
cient to modify a particular source file and reload the current page in order to
immediately see the result.

50

Bibliography

1]

[12]

[13]

[14]

Introducing the Adobe Flash Platform. Adobe, July 2011.
http://www.adobe.com/devnet/flashplatform/articles/
flashplatform overview.html

Java applet. Wikipedia, 2013.
http://en.wikipedia.orqg/wiki/Java_applet

JavaScript. Wikipedia, 2013.
http://en.wikipedia.org/wiki/JavaScript

ECMAScript Language Specification. Ecma International, June 2011.
http://www.ecma—1international.org/publications/files/
ECMA-ST/Ecma—262.pdf

GARRETT, Jesse James.

Ajax: A New Approach to Web Applications. Adaptive Path, February
2005.

http://www.adaptivepath.com/ideas/
ajax—new—approach-web—-applications

HTML5 Introduction. W3schools, 2013.
http://www.w3schools.com/html/html5_intro.asp

ASHKENAS, Jeremy. List of languages that compile to JS. July 2013.
https://github.com/jashkenas/coffee-script/wiki/
List-of-languages—-that-compile-to-JS

MELJER, Erik and DRAYTON, Peter. Static Typing Where Possible, Dynam-
ic Typing When Needed: The End of the Cold War Between Programming
Languages. Microsoft Research 2004.
http://research.microsoft.com/en—us/um/people/
emeijer/Papers/RDL04Mei jer.pdf

RequireJS.
http://requireijs.org/

HeadJS.
http://headjs.com/

JSLint, The JavaScript Code Quality Tool.
http://www.jslint.com/

JSHint, a JavaScript Code Quality Tool.
http://www. jshint.com/

Google Closure Compiler.
http://closure-compiler.appspot.com/home

Dart: Structured web apps.
http://www.dartlang.org/

51

http://www.adobe.com/devnet/flashplatform/articles/flashplatform_overview.html
http://www.adobe.com/devnet/flashplatform/articles/flashplatform_overview.html
http://en.wikipedia.org/wiki/Java_applet
http://en.wikipedia.org/wiki/JavaScript
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.w3schools.com/html/html5_intro.asp
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
http://research.microsoft.com/en-us/um/people/emeijer/Papers/RDL04Meijer.pdf
http://research.microsoft.com/en-us/um/people/emeijer/Papers/RDL04Meijer.pdf
http://requirejs.org/
http://headjs.com/
http://www.jslint.com/
http://www.jshint.com/
http://closure-compiler.appspot.com/home
http://www.dartlang.org/

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

CoffeeScript.
http://coffeescript.orqg/

TypeScript.
www.typescriptlang.org/

node.js
http://nodejs.orqg/

Remote procedure call. Wikipedia 2013
http://en.wikipedia.org/wiki/Remote_procedure_call

GWT Project.
WWW.gwtproject.org/

SharpKit - C# to JavaScript Compiler.
http://sharpkit.net/

TIOBE Programming Community Index for July 2013. Tiobe, 2013.
http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html

Document Object Model (DOM) Specifications. W3C 2004.
http://www.w3.0rg/DOM/DOMTR

[23] jQuery.

[24]

[25]

[30]

[31]

http://jquery.com/

Scala Build Tool.
http://www.scala-sbt.org/

Play.
http://www.playframework.com/

Typesafe.
http://typesafe.com/

Ecma International.
http://www.ecma-international.org/

Self.
http://selflanguage.orqg/

ODERSKY, Martin and ZENGER, Matthias. Scalable Component Abstrac-
tions. Proc. OOPSLA 2005.
http://lampwww.epfl.ch/~odersky/papers/
ScalableComponent.pdf

LINQ (Language-Integrated Query). MSDN 2013.
http://msdn.microsoft.com/en-us/library/vstudio/
bb397926.aspx

ODERSKY, Martin and SPOON, Lex and VENNERS, Bill. Programming in
Scala, Second Edition. Artima, 2010

52

http://coffeescript.org/
www.typescriptlang.org/
http://nodejs.org/
http://en.wikipedia.org/wiki/Remote_procedure_call
www.gwtproject.org/
http://sharpkit.net/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.w3.org/DOM/DOMTR
http://jquery.com/
http://www.scala-sbt.org/
http://www.playframework.com/
http://typesafe.com/
http://selflanguage.org/
http://lampwww.epfl.ch/~odersky/papers/ScalableComponent.pdf
http://lampwww.epfl.ch/~odersky/papers/ScalableComponent.pdf
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

[32]

[33]

[34]

[35]

[36]

[37]

[3]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

Advantages of Scala’s Type System. StackOverflow 2013.
http://stackoverflow.com/questions/3112725/
advantages—-of—-scalas—type-system

McBEATH, Jim. Scala Class Linearization. Coding and Life, 2010.
http://jim-mcbeath.blogspot.cz/2009/08/
scala-class—linearization.html

Symbols, Trees, and Types. Scala Documentation 2013.
http://docs.scala-lang.org/overviews/reflection/
symbols—-trees—-types.html

SEDDON, Ryan. Introduction to JavaScript Source Maps. HTML5 Rocks,
March 2012.

http://www.html5rocks.com/en/tutorials/
developertools/sourcemaps/

World Wide Web Consortium.
http://www.w3.0rg/

Scala Dynamic. Scala API Documentation 2013.
http://www.scala—-lang.org/api/current/index.html#
scala.Dynamic

Scala Standard Library API. Scala API Documentation 2013.
http://www.scala—-lang.org/api/current/index.html#
package

Lazy initialization. Wikipedia 2013
http://en.wikipedia.org/wiki/Lazy_initialization

SPOON, Lex. Writing Scala Compiler Plugins. Scala 2009.
http://www.scala-lang.org/node/140

Futures and Promises. Scala Documentation 2013.
http://docs.scala—-lang.org/overviews/core/futures.
html

Scala+GW'T Project.
https://github.com/scalagwt

Jribble. Scala+GW'T Project.
http://scalagwt.github.io/jribble

S2JS Compiler Plugin.
https://github.com/alvarocl/s2s

Scalosure.
https://github.com/efleming969/scalosure

[46] js.scala: JavaScript as an embedded DSL in Scala.

[47]

https://github.com/js-scala/Jjs—scala

Scala.js, a Scala to JavaScript compiler.
https://github.com/sjrd/scala—s

93

http://stackoverflow.com/questions/3112725/advantages-of-scalas-type-system
http://stackoverflow.com/questions/3112725/advantages-of-scalas-type-system
http://jim-mcbeath.blogspot.cz/2009/08/scala-class-linearization.html
http://jim-mcbeath.blogspot.cz/2009/08/scala-class-linearization.html
http://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html
http://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://www.w3.org/
http://www.scala-lang.org/api/current/index.html#scala.Dynamic
http://www.scala-lang.org/api/current/index.html#scala.Dynamic
http://www.scala-lang.org/api/current/index.html#package
http://www.scala-lang.org/api/current/index.html#package
http://en.wikipedia.org/wiki/Lazy_initialization
http://www.scala-lang.org/node/140
http://docs.scala-lang.org/overviews/core/futures.html
http://docs.scala-lang.org/overviews/core/futures.html
https://github.com/scalagwt
https://github.com/alvaroc1/s2js
https://github.com/efleming969/scalosure
https://github.com/js-scala/js-scala
https://github.com/sjrd/scala-js

[48]

[49]

[50]

[51]

Using web workers. Mozilla Developer Network 2013.
https://developer.mozilla.org/en-US/docs/Web/Guide/
Performance/Using_web_workers

Actor Model. Wikipedia 2013.
http://en.wikipedia.org/wiki/Actor_model

AKkka.
http://akka.io/

UBL, Malte and KiTAMURA Eiji. Introducing WebSockets: Bringing Sockets
to the Web. HTML5 Rocks, Octomber 2010.
http://www.html5rocks.com/en/tutorials/websockets/
basics/

SUERETH Josh. String Interpolation. Scala Documentation 2013.
http://docs.scala-lang.org/overviews/core/
string—-interpolation.html

ODERSKY, Martin and SPOON, Lex and VENNERS, Bill. How to Write an
Equality Method in Java. Aritma Developer, June 2009.
http://www.artima.com/lejava/articles/equality.html

o4

https://developer.mozilla.org/en-US/docs/Web/Guide/Performance/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/Guide/Performance/Using_web_workers
http://en.wikipedia.org/wiki/Actor_model
http://akka.io/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://docs.scala-lang.org/overviews/core/string-interpolation.html
http://docs.scala-lang.org/overviews/core/string-interpolation.html
http://www.artima.com/lejava/articles/equality.html

Appendices

%)

A. User Manual

The up to date version of Swat can be obtained from the Github Repository
at https://github.com/siroky/Swatl You can either clone it into local
directory using git or download it as a ZIP archive.

From the root directory go to the swat subdirectory and execute either sbt .bat
(on Windows) or sbt.sh (on Unix). It should start SBT with the Swat project
loaded in, but it may take couple of minutes because all dependencies of both
SBT and Swat have to be downloaded in case they are not already present in the
local Ivy cache.

When the " [info] Set current project to swat” appears, enter the
compile command and confirm it with enter. It should compile the compiler
and all other projects. Then execute the swat command in order to compile the
runtime and the applications to JavaScript.

Finally when everything is compiled, it is time to run the server application.
Switch to the web project using command project web and execute comm-
mand run. Now you have couple of options. You can either access the sample
application in your favorite web browser at http://localhost:9000/|or ac-
cess the playground application at http://localhost:9000/playground
or visit the runtime test application at http://localhost:9000/tests.

Experimenting

If you want to experiment with the tool you may either directly use the sample
appplication which serves that purpose or modify and extend the playground ap-
plication. The best workflow is to start one SBT and run the web project there.
Then start second SBT where you switch to the playground project (com-
mand project playground). You may modify sources of the playground
any way you want, use the second SBT to compile them into JavaScript (com-
mand swat) and observe the outcome by refreshing http://localhost:
9000/playground

Tests
To run all tests, switch to the top level swat project (command project swat)

and execute command test. You should immediately start seeing results of the
tests.

o6

https://github.com/siroky/Swat
http://localhost:9000/
http://localhost:9000/playground
http://localhost:9000/tests
http://localhost:9000/playground
http://localhost:9000/playground

B. Sample Application

The sample application that was developped using the Swat toolkit is called
"Swatter”. It allows the user to enter Scala code into one editor and compile
it to JavaScript. The compiled code is displayed in an editor next to the Scala
editor so the user can immediately see how some Scala constructs are compiled to
JavaScript and what the output looks like. In case the compilation succeeds it is
also possible to execute the compiled code. Screenshot of the sample application
before compilation can be seen in the figure

Swat # Scala Web Application Toolkit

Swat is a toolkit for richinternet application development in Scala, that brings the power of Scala into the world of JavaScript. It consists of a Scala to JavaScript compiler, runtime that
supports execution of the compiled code, dependency manager, RPC via AJAX with help of custom JSON serializers and deserializers and many other features. For more information, visit the
Github Repository. Or you may try the compiler right now, just write some Scala code to the left editor and see how it compiles to JavaScript.

Scala SEaRey JavaScript
import swat.js.DefaultScope._ s
- object Tastagp extenas fes
writeToBody("Going to greet.")

window.alert("Hello World from Swat.")
writeToBody(“Greeted.")

- def writeToBody(text: String) {
document . body . appendChild(document . createTextNode (text))

Figure B.1: Screenshot of the sample application.

When the ”Compile with Swat” button is clicked, the application invokes the
compiler on the server using RPC (figure |B.2)).

When the compilation finishes the result is shown in the JavaScript editor (figure
B.3). It is also possible to run the compiled code using the "Run” button.

o7

Compiling

The Scala code is being compiled to JavaScript...

Figure B.2: Compilation to JavaScript in progress.

Swat Scala Web Applicatior

Swat is a toolkit for richinternet application development in Scala, that brings the power of Scala into the world of JavaScript. It consists of a Scala to JavaScript compiler, runtime that
supports execution of the compiled code, dependency manager, RPC via AJAX with help of custom JSON serializers and deserializers and many other features. For more information, visit the

Githt pository. Or you may try the compiler right now, just write some Scala code to the left editor and see how it compiles to JavaScript.

Scala JavaScript N

swat.provide(' TestApps'); -
swat.require('java.lang.Object’, true);

Do not change the opplication name if you want it to be runnable swat.require(’scala.Any’, true);
- object TestApp extends App { swat .require(

import swat.js.DefaultScope._

‘scala.App’, true);
writeToBody(“Going to greet.”) swat.require('scala.DelayedInit’, true);
window.alert("Hello World from Swat."} ~ TestApp$.S$init$ = (function() {
writeToBody("Greeted.") var $self = this;

swat.invokeSuper($self, 'Sinits', [], 'Testapps');

- def writeToBody(text: String) { $self.writeToBody('Going to greet.', 'java.lang.5tring');
document . body . appendChild(document . createTexthode (text)) window.alert('Hello World from Swat.');
¥ §self.writeToBody('Greeted.', 'java.lang.String');
¥

BH
~ TestApp$.writeToBody = swat.method(' TestApp$.writeToBody', 'java.lang.String'
var §self = this;
document . body . appendChild(document .createTextNode (text));

TestApp$ = swat.object('Testapps', [TestApp$, scala.App, scala.DelayedInit, :

Figure B.3: Compilation result.

o8

C. Content of attached CD

The attached CD contains the most current snapshot of the Github Repository
available. There are two directories. The thesis contains the text of the thesis
in PDF, the source of the thesis in TeX and all related resources. The swat
contains the source code of the Swat toolkit, the SBT and generated project files
for IntelliJ Idea.

59

	Introduction
	Motivation
	JavaScript Disadvantages
	Improving JavaScript
	Why Scala

	Project Aim
	Goals

	Background
	JavaScript
	Scala
	Scala Compiler

	Analysis
	Setup
	Utilizing the Source Language Compiler
	Debugging

	Interoperability with JavaScript
	Frontend
	Compile Time vs. Runtime Approach
	Scope of a Compilation Unit
	Type Definitions
	Scope of a Type
	Expressions

	Standard Libraries
	Library Distribution

	Implementation
	Environment
	Toolkit Overview
	API (package swat.api)
	Compiler (package swat.compiler)
	Frontend (package swat.compiler.frontend)

	Runtime
	Client (package swat.client)
	Type Loader
	JSON Serializer
	RPC

	Integration with a Web Framework
	Build Process
	Tests

	Conclusion
	Similar Tools
	Comparison

	Future Work
	Web workers
	Template Engine
	Build Process

	Bibliography
	Appendices
	User Manual
	Sample Application
	Content of attached CD

