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Preface

The presented thesis is based on the work of many mathematicians from the field
of set theory and the theory of large cardinals. In order to connect the work of
those mathematicians and their various approaches and notations, we are forced
to choose one particular notation and reformulate the rest to be consistent with
this notation.

In this thesis we collect all the relevant definitions from various sources, even
though some of the authors may consider them redundant. In spite of that, we
assume that the reader is familiar with the basics of logic and set theoretic
terminology, as some of the symbols appear undefined throughout the thesis.

The first chapter contains the introduction to measure theory and a sum-
mary of some basic set theoretic knowledge, i.e. equivalence, filter and ultrafilter
properties and cardinal properties, whose use is essential in the third chapter.
The rest of this chapter is devoted to consistence of theories and formalization.

The second chapter introduces the axiom of constructibility and some basic
facts about it. The other part of this chapter defines inner models and connects
them to the Gödel’s constructible universe L.

In the final chapter we first construct the rest of the theory needed to for-
mulate the Theorem of  Loś, which is an important theorem concerning ultra-
products. Next we extend the theory to proper classes, which is needed for the
second important theorem called Mostowski’s Collapsing Theorem. Using all pre-
vious results we prove Dana Scott’s Theorem and show that the existence of a
measurable cardinal implies existence of a nontrivial embedding of the universe.

The main contribution of this thesis is to help understand the basics about
ultrapower construction and the technique of relativization in set theory and
their use in large cardinal theory.
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1 Preliminaries

Definitions used in this chapter mostly come from [2].

1.1 Defining the measure

Measure theory was initially created to deal with the notion of length of subsets
of the real line.

Modern measure theory was founded by well known French mathematician
Henri Lebesgue. He wanted to construct a function that would yield a non-
negative real number to every bounded set of reals. Thus he defined a function
m with the following properties:

(a) m is not identically zero,

(b) m is translation-invariant, i.e., m(X) = m(Y) whenever there is a real r
such that Y = {x+ r | x ∈ X},

(c) m is countably additive, i.e., if {Xn | n ∈ ω} is a pairwise disjoint collection
whose union is a bounded set of reals, then m(

⋃
nXn) =

∑
nm(Xn).

Unfortunately, assuming Axiom of Choice (we will further use just AC), Giuseppe
Vitali was able to construct a bounded set X of reals from a well-ordering of reals,
such that m does not map X to any non-negative real number.

Before we review the construction of Vitali, we formulate definitions concern-
ing equivalence and the definition of cosets:

Definition 1.1 An equivalence relation on a set X is a binary relation ≡ which
is reflexive, symmetric and transitive, i.e., for all x, y, z ∈ X we have

(i) x ≡ x,

(ii) x ≡ y implies y ≡ x,

(iii) if x ≡ y and y ≡ z then x ≡ z.

Let ≡ be an equivalence relation on X. Then for every x ∈ X,

[x] = {y ∈ X | y ≡ x}

is the equivalence class of x and the set

X/≡ = {[x] | x ∈ X}

is the quotient of X by ≡.
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Definition 1.2 Let (G, ∗) be a group and (H, ∗) a subgroup. A subset of G of
the form {g ∗h | h ∈ H}, where g is a fixed element of G, is abbreviated to g ∗H
and called a (left) coset of H in G.

The following is taken from [5]:

Lemma 1.3 Let m be a measure satisfying conditions (a)–(c) above. We show
that m does not measure all subsets of R.

Proof. This construction will use rational numbers as a subgroup of reals with
group operator +. We shall take one element from each coset of Q in R and
collect all choices in a set X. Let ≡ be an equivalence relation on R, where a ≡ b
if and only if a− b ∈ Q. We claim X is non-measurable.

Consider m(X) = 0: First consider for each q ∈ Q the translates Xq = X+q.
From the definition of Xq’s we get

⋃
Xq = R. We also get m(Xq) = 0 for every

q ∈ Q from translation-invariance. Because there is only countable amount of the
translates of X, we get 0 =

∑
m(Xq) = m(

⋃
Xq) = m(R) = 0 from countable

additivity. But m(R) > 0 (because of (a)). This means m(X) > 0.
But then, there exists a positive integer N such that m(X∩[−N,N ]) = a > 0.

Let A be a set of (2N + 2)/a many distinct rational numbers from (0, 1)(there
is infinite of them, thus such A exists). For each element b ∈ A consider the
translates Xb = (X ∩ [−N,N ]) + b. All Xb’s are disjoint by the definition and⋃
Xb ⊆ [−N,N + 1].
By countable additivity we get

m(
⋃
Xb) = ((2N + 2)/a) · a = 2N + 2 > 2N + 1,

where 2N + 1 corresponds to the measure of interval [−N,N + 1]. Because we
have m(

⋃
Xb) ⊆ [−N,N + 1] it would mean that a subset of [−N,N + 1] has

bigger measure than [−N,N + 1], which is a contradiction.

Vitali’s construction can be percieved in two ways. For Lebesgue, existence of
Vitali’s set gave him a reason to doubt AC, which was needed in the construction.
If we agree to AC, we may ask if there is a way to extend the measure to be
defined over the whole R again. We want to maintain both condition (a) and
condition (c) so the only way is to give up the translation-invariance. Banach did
just that in [6] and replaced the translation-invariance with a minimal condition
that avoids trivial solutions. That is: m({x}) = 0 for every singleton x ∈ R.

Banach realised that his generalization of (b) also removed geometric con-
siderations for m, which resulted in replacement of unit interval [0, 1] with an
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arbitrary set S. In this case if m is not zero on the powerset of S denoted P (S),
then obviously m(S) > 0. On P (S), m(S) should have the highest possible
value. For the generalization established by Banach we let m(S) = 1. The mea-
sure problem was then adjusted as follows: Is there a nonempty uncountable set
S and a function m : P (S)→ [0, 1] such that:

(i) m(S) = 1,

(ii) m({x}) = 0 for every singleton x ∈ S,

(iii) for pairwise disjoint {Xn | n ∈ ω} ⊆ P (S), m(
⋃
nXn) =

∑
nm(Xn).

Definition 1.4 Let m be a measure over a set S. We say that m is λ-additive if

for any γ < λ and pairwise disjoint {Xα|α < γ} ⊆ P (S),
m(

⋃
αXα) =

∑
αm(Xα).

For our purposes it is enough to consider a two valued measure m:

m : P (S)→ {0, 1}

Definition 1.5 Let S be a set. U is a filter over S if and only if

(i) U ⊆ P (S),

(ii) S ∈ U ,

(iii) X ⊇ Y, Y ∈ U → X ∈ U ,

(iv) X, Y ∈ U → X ∩ Y ∈ U .

U is proper if and only if ∅ /∈ U .
U is principal if and only if U = {X | Y ⊆ X ⊆ S} for some Y ⊆ S.
U is an ultrafilter if and only if U is a proper filter and, for all X ⊆ S, X /∈ U ↔
−X ∈ U .

For m a two valued measure we define ultrafilter U by

U = {S ⊆ κ | m(S) = 1}.

Then U is clearly a non-principal ultrafilter (m({x}) = 0 for every singleton
x ∈ S and thus no singleton is in U) over S and we say U is associated with the
measure m.

Definition 1.6 Let U be an ultrafilter. We say U is λ-complete if
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for any γ < λ and {Xα | α < γ} ⊆ U ,
⋂
α<γ

Xα ∈ U.

For m a two valued measure we state as follows:

Proposition 1.7: Let κ be a cardinal number. A two valued measure m over κ
is κ-additive if and only if the associated ultrafilter U over κ is κ-complete.

Proof. We first show that κ-completeness is equivalent to the following:

For every ξ < κ, let {Xα | α < ξ} be a family of subsets not in U ,
then

⋃
α<ξXα /∈ U .

Assuming κ-completeness let {Xα | α < ξ} be a family of subsets not in U .
Then from the definiton of ultrafilter {−Xα | α < ξ} ⊆ U and

⋂
α<ξ −Xα ∈ U

= −
⋃
α<ξXα ∈ U . Using ultrafilter property again we get

⋃
α<ξXα /∈ U .

Now let {Xα | α < ξ} ⊆ U . From the definition of ultrafilter {−Xα | α < ξ}
is a family of subsets not in U but then

⋃
α<ξ −Xα /∈ U = −

⋂
α<ξXα /∈ U and

using ultrafilter property again we get
⋂
α<ξXα ∈ U .

Now from left to right let {Xα | α < ξ} be a family of subsets not in U . Then∑
m(Xα) = 0 and using κ-additivity m(

⋃
αXα) = 0. We get

⋃
α<ξXα /∈ U .

From right to left let
∑
m(Xα) = 0. Then for every α, m(Xα) = 0 and

{Xα | α < ξ} is a family of subsets not in U . We get
⋃
α<ξXα /∈ U . This results

in m(
⋃
αXα) = 0.

Remark: Let κ > ω be a cardinal number, We say κ is measurable if and only
if there is a κ-complete non-principal ultrafilter over κ.

1.2 Inaccessible cardinals

We start with a quote about inaccessible cardinals from [2]:”...the least among
them has such an exorbitant magnitude that it will hardly ever come into con-
sideration for the usual purposes of set theory.” Those were words of German
mathematician Hausdorff in regards of the possible existence of inaccessible car-
dinals.

Definition 1.8 A cardinal number κ is:

(i) regular if cf(κ) = κ, where cf(κ) denotes cofinality of κ,

11



(ii) a weak limit if κ is neither 0 nor a successor cardinal,

(iii) a strong limit if κ is a weak limit and for every λ < κ, 2λ < κ.

Let κ > ω be a cardinal number. We say κ is inaccessible if and only if κ is
regular and a strong limit.

In other words an inaccessible cardinal is a cardinal κ above ω, which cannot
be reached by repeated powerset operation (strong limit) and cannot be broken
into smaller collections of smaller parts (regularity).

The rest of this section illustrates some of the consequences of existence of
inacessible cardinals.

Definition 1.9 Let ZFC be an abbreviation for Zermelo-Fraenkel set theory
with AC, i.e., finite set of axioms {ϕ1, . . . , ϕn}+ schema of replacement. We say
pϕq is a formal (arithmetic) version of metamathematical formula ϕ and denote
pZFCq the set {pϕ1q, . . . , pϕnq}∪ instances of formal schema of replacement.

Lemma 1.10 If κ is an inaccessible cardinal, then Vκ � pZFCq.

Proof. For this lemma to hold we need to verify if the following is true:

ZFC ` Vκ � pZFCq.

If ϕ is a metamathematical formula, Vκ a set, it holds that

ZFC ` ϕVκ ↔ ZFC ` Vκ � pϕq.

We can immediately see that for every ϕ ∈ ZFC\Replacement ZFC ` ϕVκ ↔
ZFC ` Vκ � pϕq. To show Replacement we will need to check every instance of
this axiomatic schema. The following holds for Replacement :

If ZFC ` for every F : Vκ → Vκ, for every a ∈ Vκ, F [a] ∈ Vκ then ZFC `
Vκ � pReplacementq.

It remains to show that the condition above holds to verify schema of Re-
placement and that all other axioms of ZFC hold in Vκ.

For every α > 0, axioms of extensionality, foundation, subsets, empty set,
union and choice are true in Vα. If α is a limit ordinal, axioms of pairs and power
set are true in Vα. If α > ω, then axiom of infinity is true in Vα as well. We state
this as fact. Since κ is inaccessible, it is both bigger than ω, and is a limit, thus
verifying the above.
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We still need to show the condition of formal Replacement in Vκ. That means
to see whether for every F : Vκ → Vκ, for every a ∈ Vκ, F [a] ∈ Vκ.

Since κ is inaccessible we have |Vκ|=κ and |a|< κ for every a ∈ Vκ. If F is
a function from Vκ, a ∈ Vκ into Vκ, then |F [a]|≤|a|< κ and since κ is regular,
F [a] ⊆ Vα for some α<κ. From this F [a] ∈ Vκ.
This concludes the proof.

Let I be the statement: ”There is an inaccessible cardinal.”

Corollary 1.11 ZFC + I ` Con(pZFCq), where Con denotes consistence of a
theory.

Theorem 1.12 The existence of inaccessible cardinals is not provable in ZFC.
Moreover, it cannot be shown by finite means that the existence of inaccessible
cardinals is consistent with ZFC.

Proof. If I holds and κ is the least inaccessible cardinal, then Vκ � ZFC + ”There
is no inaccessible cardinal”. But if there is no inaccessible cardinal, we take the
universe as the model and conclude the existence of inaccessible cardinals cannot
be proven in ZFC.

To show the second part, let’s assume for contradiction that there is a finite
means to show Con(ZFC)→ Con(ZFC + I).

Because the argument is finite there is a way to formulate it formally in ZFC
and thus also in ZFC + I:

ZFC + I ` Con(pZFCq)→ Con(pZFCq + I).

We already have

ZFC + I ` Con(pZFCq),

thus using modus ponens, we obtain

ZFC + I ` Con(pZFCq + I),

which is a contradiction to Gödel’s Second Incompleteness Theorem.

For κ > ω we can now formulate the following theorem:

Theorem 1.13 (Ulam-Tarski) Let κ > ω be a cardinal number. If κ is measur-
able, then κ is inaccessible.
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2 Constructible universe L

In this chapter we take a little detour to look at some of the contributions to
the set theory by the foremost mathematical logician and his speculations about
large cardinals. It would not be without his contributions that the axiomatic
set theory and large cardinals got as much attention from the mathematical
community.

Theorems throughout this chapter are stated without proofs, that can be
found in [3].

2.1 Axiom of constructibility V=L

The person behind the principles of constructibility is Kurt Gödel. His article
The Consistency of the Axiom of Choice and of the Generalized Continuum-
Hypothesis (see [7]) was the first showing the results Gödel made.

We state that set y is definable over a structure M if and only if there is a
first-order formula ϕ(v0, . . . , vn) in the language ofM and parameters a1, . . . , an
in the domain ofM such that: z ∈ y if and only ifM � ϕ[z, a1, . . . , an]. For any
set x,

def(x) = {y ⊆ x | y is definable over 〈x,∈〉}.

Clearly, x ∈ def(x) and x ⊆ def(x) ⊆ P (x).

Definition 2.1 We say class T is transitive if every element of T is a subset of
T , i.e., when x ∈ T , x ⊆ T .

Definition 2.2 For L a transitive set we define by transfinite recursion

(i) L(0) = 0, L(α + 1) = def(L(α)),

(ii) L(α) =
⋃
ξ<α L(ξ) when α is a limit ordinal and

(iii) L=
⋃
α∈ON L(α).

Note that each L(α) is a transitive set, thus L is a transitive class.
Gödel named L the class of all constructible sets and the following axiom of

constructibility: V = L (∀x(x ∈ L)) meaning ’Every set is constructible.’ More-
over Gödel proved that

ZF + V = L ` AC and
ZF + V = L ` GCH.
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Theorem 2.3 L is a model of ZF.

Corollary 2.4 L is a model of ZF + V = L.

Corollary 2.5 Con(ZF)→ Con(ZF + V = L).

Corollary 2.6 Con(ZF)→ Con(ZFC + GCH).

2.2 Inner Models

Definition 2.7 An inner model M of ZF is a transitive class that contains all
ordinals and satisfies the axioms of ZF, i.e., M is a model of ZF.

From what we have estabilished so far, we can immediately state that L is
an inner model of ZF since it is a transitive class containing all ordinals and it
satisfies all axioms of ZF.

To show L is the least inner model, we first extend the notion of relativization
to classes:

Theorem 2.8 If M is an inner model, then L ⊆ M . In other words L is the
least inner model of ZF.
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3 Ultrapower construction

3.1 Defining the Ultrapower

Let S be a nonempty set and let {Ax | x ∈ S} be a system of models (for an
uncountable language L) with universe Ax for every x ∈ S. Let U be a non-
principal filter over S. Let ∏

x∈S

Ax

be the set of functions f : S →
⋃
x∈S Ax such that f(x) ∈ Ax for every x ∈ S.

Definition 3.1 For f, g ∈
∏

x∈S Ax we define

f =U g if and only if {x ∈ S | f(x) = g(x)} ∈ U .

Lemma 3.2 The relation =U on
∏

x∈S Ax is an equivalence relation.

Proof. Let f, g, h ∈
∏

x∈S Ax. Reflexivity of =U holds because f =U f if and
only if {x ∈ S | f(x) = f(x)} ∈ U translates into S ∈ U which holds for every
filter. Symmetry for =U holds because relation = is symmetric. For transitivity
we assume f =U g =U h. Then by Definition 3.1

{x ∈ S | f(x) = g(x)} ∈ U and {x ∈ S | g(x) = h(x)} ∈ U

and also

{x ∈ S | f(x) = g(x)} ∩ {x ∈ S | g(x) = h(x)} ∈ U

since U is closed under intersection. Thus

{x ∈ S | f(x) = g(x) = h(x)} ∈ U .

Because

{x ∈ S | f(x) = g(x) = h(x)} ⊆ {x ∈ S | f(x) = h(x)}

is true, from the definition of a filter we have

{x ∈ S | f(x) = h(x)} ∈ U .

Then by Definition 3.1 f =U h.
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Definition 3.3 Let [f ] = {g ∈
∏

x∈S Ax | f =U g} be the equivalence class of
f ∈

∏
x∈S Ax.

We say A is called a reduced product of {Ax | x ∈ S} by U if

(i) A = {[f ] | f ∈
∏

x∈S Ax} is the universe of A,

(ii) for every constant c we have
cA = [f ], where f(x) = cAx for every x ∈ S,

(iii) for every function symbol F , if f1, . . . , fn ∈
∏

x∈S Ax, then
FA([f1], . . . , [fn]) = [f ], where f(x) = FAx(f1(x), . . . , fn(x)) for every x ∈ S,

(iv) for every predicate P , if f1, . . . , fn ∈
∏

x∈S Ax, then
PA([f1], . . . , [fn]) if and only if {x ∈ S | PAx(f1(x), . . . , fn(x))} ∈ U .

Lemma 3.4 Conditions (iii) and (iv) in Definition 3.3 do not depend on the
choice of representatives from the equivalence classes [f1], . . . , [fn].

Proof. For (iv) let [f1], . . . , [fn] ∈ A and let f1, . . . , fn be the representatives of
[f1], . . . , [fn] such that
PA([f1], . . . , [fn]) if and only if {x ∈ S | PAx(f1(x), . . . , fn(x))} ∈ U . Let g1 =U

f1, . . . , gn =U fn.
From the definition of =U we get

{x ∈ S | f1(x) = g1(x)} ∈ U, . . . , {x ∈ S|fn(x) = gn(x)} ∈ U
and {x ∈ S | PAx (f1(x), . . . , fn(x))} ∈ U.

Since U is closed under intersection we obtain

{x ∈ S | f1(x) = g1(x)}∩, . . . ,∩{x ∈ S | fn(x) = gn(x)}∩
∩{x ∈ S | PAx (f1(x), . . . , fn(x))} ∈ U.

Thus

{x ∈ S | f1(x) = g1(x)}∩, . . . ,∩{x ∈ S | fn(x) = gn(x)}∩
∩{x ∈ S | PAx (f1(x), . . . , fn(x))} ⊆ {x ∈ S | PAx (g1(x), . . . , gn(x))}

and since U is upward-closed we get

{x ∈ S | PAx (g1(x), . . . , gn(x))} ∈ U.

Condition (iii) is proven analogously.
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Reduced products are particularly important when the filter is an ultrafilter.
If U is an ultrafilter over S, then the reduced product A defined in Definition
3.3 is called the ultraproduct of {Ax | x ∈ S} by U and we use the notation

UltU{Ax | x ∈ S}

instead of A.

Theorem 3.5 ( Loś) Let U be an ultrafilter over S and let A be the ultraproduct
of {Ax | x ∈ S} by U . If ϕ is a formula, then for every f1, . . . , fn ∈

∏
x∈S Ax

A � ϕ([f1], . . . , [fn]) if and only if {x ∈ S | Ax � ϕ(f1(x), . . . , fn(x))} ∈ U.

Proof. We prove this by induction on the complexity of formulas. We start with
the evaluation of terms.

Terms : For every term t and f1, . . . , fn ∈
∏

x∈S Ax,

tA([f1], . . . , [fn]) = [f ], where f(x) = tAx (f1(x), . . . , fn(x)) for every x ∈ S(1)

We prove this by induction on the complexity of terms.
For a constant c, where t = c, we need to show

cA([f1], . . . , [fn]) = [f ], where f(x) = cAx (f1(x), . . . , fn(x)) for every x ∈ S.

But this is equivalent to

cA = [f ] where f(x) = cAx for all x ∈ S

which is exactly Definition 3.3.
For a variable v, where t = v, we need to show

vA([f1], . . . , [fn]) = [f ], where f(x) = vAx (f1(x), . . . , fn(x)) for every x ∈ S.

But

vA([f1], . . . , [fn]) = ([f1], . . . , [fn])(v) = [fv]

and for every x ∈ S we have

vAx (f1(x), . . . , fn(x)) = (f1(x), . . . , fn(x))(v) = fv(x)

thus

vA([f1], . . . , [fn]) = [fv], where fv(x) = vAx (f1(x), . . . , fn(x)) for every x ∈ S.
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Now suppose t = F (t1, . . . , tn), where F is a function and t1, . . . , tn are terms.
We assume (1) is true for t1, . . . , tn. Then

(F (t1, . . . , tn))A([f1], . . . , [fn]) = FA(tA1 ([f1], . . . , [fn]), . . . , tAn([f1], . . . , [fn]))

and from (1) for every i, tAi ([f1], . . . , [fn]) = [gi],
where gi(x) = tAxi (f1(x), . . . , fn(x)) for every x ∈ S.

Thus we write FA([g1], . . . , [gn]) and from Definition 3.3 we get

FA([g1], . . . , [gn]) = [f ], where f(x) = FAx(g1(x), . . . , gn(x)) for every x ∈ S.

But then

f(x) = FAx(tAx1 (f1(x), . . . , fn(x)), . . . , tAxn (f1(x), . . . , fn(x))) for every x ∈ S.

This is equivalent to

f(x) = (F (t1, . . . , tn))Ax(f1(x), . . . , fn(x)) for every x ∈ S

proving the theorem for terms.

Atomic formulas : Consider an n-ary predicate P and an expression A �
P (t1, . . . , tn)([f1], . . . , [fm]), where [f1], . . . , [fm] is the evaluation of m-many free
variables in terms (t1, . . . , tn). Then we have

A �P (t1, . . . , tn)([f1], . . . , [fm])(2)

↔ PA(tA1 ([f1], . . . , [fm]), . . . , tAn([f1], . . . , [fm]))

↔ {x ∈ S | PAx (tAx1 (f1(x), . . . , fm(x)), . . . , tAxn (f1(x), . . . , fm(x))} ∈ U
↔ {x ∈ S | Ax � P (t1, . . . , tn)(f1(x), . . . , fm(x))} ∈ U

Logical connectives : We assume the theorem holds for atomic formula ϕ and
show it holds for ¬ϕ as well (we use the ultrafilter property X ∈ U if and only
if −X /∈ U).

A � ¬ϕ([f1], . . . , [fn]) ↔ not A � ϕ([f1], . . . , [fn])

↔ {x ∈ S | Ax � ϕ(f1(x), . . . , fn(x))} /∈ U
↔ {x ∈ S | Ax 2 ϕ(f1(x), . . . , fn(x)} ∈ U
↔ {x ∈ S | Ax � ¬ϕ(f1(x), . . . , fn(x)} ∈ U.
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Assuming the theorem holds for atomic formulas ϕ and ψ,

A � ϕ ∧ ψ ↔ A � ϕ and A � ψ

↔ {x ∈ S | Ax � ϕ} ∈ U and {x ∈ S | Ax � ψ} ∈ U
↔ {x ∈ S | Ax � ϕ ∧ ψ} ∈ U.

Last equivalence holds due to filter property X ∈ U and Y ∈ U if and only if
X ∩ Y ∈ U .

Existential quantifier : We assume the theorem holds for atomic formula ϕ
and show it holds for the formula ∃uϕ. Let

A � ∃uϕ([f1], . . . , [fn]).(3)

Then there is some g ∈
∏

x∈S Ax such that A � ϕ([g], [f1], . . . , [fn]) and since we
assumed the theorem holds for ϕ, we have

{x ∈ S | Ax � ϕ(g(x), f1(x), . . . , fn(x))} ∈ U.(4)

But then there exists some u (in particular u = g(x)) such that

{x ∈ S | Ax � ∃uϕ(f1(x), . . . , fn(x))} ∈ U.(5)

To show the other implication, assume (5). For each x ∈ S let ux ∈ Ax be such
that Ax � ϕ(ux, f1(x), . . . , fn(x)) if such ux exists, and arbitrary otherwise. If we
define g ∈

∏
x∈S Ax by g(x) = ux, then we have (4) and from our assumption

also

A � ϕ([g], [f1], . . . , [fn]),

which implies (3).

Corollary 3.6 Let U be an ultrafilter over S and let A be the ultraproduct of
{Ax | x ∈ S} by U . If σ is a sentence, then

A � σ if and only if {x ∈ S | Ax � σ} ∈ U.

When

{x ∈ S | Ax � ϕ(f1(x), . . . , fn(x))} ∈ U

holds, we say that Ax satisfies ϕ(f1(x), . . . , fn(x)) for allmost all x, or that
Ax � ϕ(f1(x), . . . , fn(x)) holds almost everywhere. Using this terminology,  Loś’s
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theorem states that ϕ([f1], . . . , [fn]) holds in the ultraproduct if and only if for
almost all x, ϕ(f1(x), . . . , fn(x)) holds in Ax.

Let us consider now a special case of ultraproducts. When each Ax is the
same model A, we call the ultraproduct an ultrapower of A; denoted UltUA.

Corollary 3.7 An ultrapower UltUA is elementary equivalent to A.

Proof. Note that for UltUA to be elementary equivalent to A only requires that
we show both of them satisfy the same sentences. By Corollary 3.6 we get
UltUA � σ if and only if {x | A � σ} ∈ U . For this to hold the set {x | A � σ}
is either whole S when A � σ or empty when A 2 σ.

We further show that there exists an elementary embedding between A and
its ultrapower UltUA. If U is an ultrafilter over S, we define j : A → UltUA a
canonical embedding as follows:

Definition 3.8 For each a ∈ A, let ca be the constant function where ∀x ∈ S

ca(x) = a and j(a) = [ca].

Corollary 3.9 The canonical embedding j : A → UltUA is an elementary em-
bedding.

Proof. Let a1, . . . , an ∈ A, then, using  Loś’s theorem, we obtain that UltUA �
ϕ(j(a1), . . . , j(an)) if and only if UltUA � ϕ([ca1 ], . . . , [can ]) iff A � ϕ(a1, . . . , an)
for almost all x (this holds because we previously defined ca a constant function
with value a for every x ∈ S) if and only if A � ϕ(a1, . . . , an).

3.2 Extending to proper classes

The last section described the ultrapower construction on sets. Our next goal
should be to extend this construction to models that are proper classes.

The language of set theory has only one binary predicate ∈ and so models of
set theory consist of the universe M(so far we have only considered M to be a
set) and a binary relation R, which interprets ∈.

We want to extend the concept to consider models of set theory that are
proper classes. We have to be careful how we make the generalization, in order
not to obtain a theory proving its own consistence, because that is a contradiction
with Gödel’s Second Incompleteness Theorem.
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Definition 3.10 Let M be a class, let R be a binary relation on M and let
ϕ(x1, . . . , xn) be a formula of the language of set theory. The relativization of ϕ
to M,R is the formula

ϕM,R(x1, . . . , xn)(6)

with the folowing inductive definition:

(x ∈ y)M,R ↔ x R y

(x = y)M,R ↔ x = y

(¬ϕ)M,R ↔ ¬ϕM,R

(ϕ ∧ ψ)M,R ↔ ϕM,R ∧ ψM,R

(∃xϕ)M,R ↔ (∃x ∈M)ϕM,R

Other connectives and ∀ quantifier are defined similarly.

If R is ∈, we write ϕM instead of ϕM,∈.
When using ϕM,R(x1, . . . , xn), it is usually assumed variables x1, . . . , xn ∈M

to make sense. Instead of (6),

(M,R) � ϕ(x1, . . . , xn)

is used to describe that the model (M,R) satisfies ϕ. It should be noted though,
that while it’s clearly without a problem in every particular case of ϕ, the general
satisfaction relation is formally undefinable in ZF.

Now we use the generalized technique to construct ultrapowers of the uni-
verse. Let U be an ultrafilter over a set S. Consider the class of all functions
with domain S. Using Theorem 3.5 and Corollary 3.6 let

f =∗ g if and only if {x ∈ S | f(x) = g(x)} ∈ U,(7)

f ∈∗ g if and only if {x ∈ S | f(x) ∈ g(x)} ∈ U.(8)

By Lemma 3.4, ∈∗ again does not depend on the choice of representatives.
The rank function is then defined as follows:

rank(x) = the least α such that x ∈ Vα+1.

Each Vα is the collection of all sets of rank less than α and also

(i) If x ∈ y then rank(x)< rank(y).
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(ii) rank(α)=α.

For each f we denote [f ] the equivalence class of f in =∗:

[f ] = {g | f =∗ g and ∀h(h =∗ f → rank(g) ≤ rank(h))}.(9)

Note that [f ] in (9) is not the actual equivalence class of f in =∗. It is just a
nonempty subset of the equivalence class f . The reason for making this trick is
that the real equivalence class [f ] = {g | g =∗ f} is a proper class and we cannot
consider the class Ult(U,V) = {[f ] | f : κ →V} for formal reasons. (9) is a way
to get around this problem.

Let Ult(U ,V) = UltU(V) be the class of all [f ], where f : S → V is a function.
Now consider the model (Ult(U ,V),∈∗).  Loś’s Theorem holds in this context as
well: Let ϕ(x1, . . . , xn) be a formula of set theory, then

Ult(U,V) � ϕ([f1], . . . , [fn]) iff {x ∈ S | V � ϕ(f1(x), . . . , fn(x))} ∈ U

is true. If σ is a sentence, then Ult(U ,V) � σ if and only if σ holds in V.
From Corollary 3.7 Ult(U ,V) is elementary equivalent to the universe (V,∈).
The canonical embedding j is defined exactly according to Definition 3.8. Thus
by Corrolary 3.9, j is an elementary embedding such that j :V→ Ult(U ,V) which
gives us:

Ult(U ,V) � ϕ([ca1 ], . . . , [can ]) if and only if V � ϕ(ca1(x), . . . , can(x))

Ult(U ,V) � ϕ(j(a1), . . . , j(an)) if and only if V � ϕ(a1, . . . , an)

whenever ϕ(x1, . . . , xn) is a formula of set theory. As we have shown, there is an
elementary embedding from V to Ult(U ,V).

Note that since ∈∗ does not depend on the choice of representatives, we may
write f ∈∗ g when [f ] ∈∗ [g]. We will further use just the notation [f ] ∈∗ [g].

The most important application of ultrapowers in set theory are those in
which (Ult(U ,V),∈∗) is well-founded. As we show below, well-founded ultrapow-
ers are closely related to measurable cardinals.

Definition 3.11 The model (Ult(U ,V),∈∗) is well-founded, if every nonempty
set X ⊆ Ult(U ,V) has ∈∗-minimal element.

Since the above definition is quite impractical to use, we introduce the fol-
lowing characterization.

Proposition 3.12: The following statements are equivalent:
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(i) Every nonempty set X ⊆ Ult(U ,V) has ∈∗-minimal element.
(ii) There exists no infinite descending ∈∗-sequence

[f0] 3∗ [f1] 3∗ . . . 3∗ [fk] 3∗ . . . (k ∈ ω).

Proof. From left to right we assume (i) holds, but that there is an infinite de-
scending ∈∗-sequence in Ult(U ,V). However, the infinite descending ∈∗-sequence
is a nonempty subset of Ult(U ,V), thus has no minimal element. That contradicts
(i).

From right to left we assume (ii) holds, but that there exists a nonempty
X ⊆ Ult(U ,V) without ∈∗-minimal element. However, X must then contain an
infinite descending ∈∗-sequence contradicting (ii).

By the following Lemma, a σ-complete ultrafilter is sufficient for (Ult(U ,V),∈∗)
to be a well-founded model.

Lemma 3.13 If U is a σ-complete ultrafilter, then (Ult(U,V),∈∗) is a well-
founded model.

Proof. We shall prove exactly what we already put forth; that for U a σ-complete
ultrafilter over S, there is no infinite descending ∈∗-sequence.

Let us assume that [f0], [f1], . . . , [fn], . . . , is such a descending sequence. Thus
each set

Xn = {x ∈ S | fn+1(x) ∈ fn(x)}

is in the ultrafilter. From σ-completeness of U the intersection X =
⋂
nXn is

also in U and therefore nonempty. Let x be an arbitrary element of X. Then we
get

f0(x) 3 f1(x) 3 . . . 3 fn(x) 3 . . .

an infinite descending ∈-sequence, which is a contradiction with axiom of foun-
dation, which implies there is no infinite descending ∈∗-sequence.

3.3 Mostowski’s Collapsing Theorem

In this section we prove Mostowski’s Collapsing Theorem, which is essential for
the proof of Dana Scott’s theorem. It shows that the transitive collapse of an
extensional set-like well-founded relation is one-to-one and that every extensional
class is ∈-isomorphic to a transitive class.

But first we define
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Definition 3.14 Let a, b be sets and let R be a binary relation. Then

extR(a) = {b | b R a}

is a R-extension of a.

Definition 3.15 Let X be a class and let R be a binary relation on X. We say
that R is set-like if for every a ∈ X, extR(a) is a set.

Proposition 3.16: The relation ∈∗ is set-like.

Proof. Let [f ], [g] ∈ A. The relation ∈∗ is then set-like if

ext∈∗([f ]) = {[g] | [g] ∈∗ [f ]}

is a set.
For every equivalence class [g] define a function g′ such that g(x) = g′(x)

whenever g(x) ∈ f(x) and g′(x) = 0 otherwise.
Since [g] ∈∗ [f ] holds, we know that g =∗ g′. It follows that every [g] ∈∗ [f ]

can be represented by a function g′ from S to
⋃

rng(f) ∪ {0}. Since f is a set,
we have

⋃
rng(f)∪{0} is a set and since there are only set-many functions from

a set S to another set, there are only set-many such g′. It follows that there are
only set-many elements [g] such that [g] ∈∗ [f ].

Definition 3.17 A relation R on a class X is well-founded if every nonempty
subset Y of X has an R-minimal element.

By Proposition 3.12, ∈∗ is well-founded.

Definition 3.18 A well-founded relation R on a class X is extensional if

extR(Y ) 6= extR(Z)(10)

whenever Y and Z are distinct elements of X.
A class M is extensional if the relation ∈ on M is extensional, i.e., if for any

distinct X and Y ∈M , X ∩M 6= Y ∩M .

Proposition 3.19: The relation ∈∗ is extensional.
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Proof. Let [f ], [g] ∈ A. Assume for contradiction that

ext∈∗([g]) 6= ext∈∗([f ]) and f =∗ g.

Therefore
{[h1] | [h1] ∈∗ [g]} 6= {[h2] | [h2] ∈∗ [f ]} and f =∗ g

holds. Using  Loś’s theorem we get

{[h1] | {x ∈ S | h1(x) ∈ g(x)} ∈ U} 6= {[h2] | {x ∈ S | h2(x) ∈ f(x)} ∈ U}
and {x ∈ S | g(x) = f(x)} ∈ U.

But then

{[h1] | {x ∈ S | h1(x) ∈ g(x)} ∈ U} = {[h1] | {x ∈ S | h1(x) ∈ f(x)} ∈ U}
= {[h2] | {x ∈ S | h2(x) ∈ f(x)} ∈ U}

and that is a contradiction.

Following theorems come from [3].

Theorem 3.20 (∈-Induction) Let T be a transitive class and let φ be a property.
Assume that:

(i) φ(∅),

(ii) if x ∈ T and φ(z) holds for every z ∈ x, then φ(x).

Then every x ∈ T has the property φ.

Proof. Let C be the class of all x ∈ T that do not have the property φ. If C is
nonempty, then it has some ∈-minimal element x. Now, using (i), we have x 6= ∅
and from minimality of x we see for every z ∈ x, φ(z) holds. Thus, using (ii), we
obtain φ(x) holds, but that is a contradiction with x ∈ C.

Theorem 3.21 (Well-Founded Induction) Let R be a well-founded relation on
a class X. Let φ be a property. Assume that:

(i) Every R-minimal element x of X has property φ,

(ii) if x ∈ X and φ(z) holds for every z such that z R x, then φ(x).

Then every x ∈ X has the property φ.
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Proof. Similarly as in ∈-induction. Let C be the class of all x ∈ X that do not
have the property φ. If C is nonempty, then it has some R-minimal element x.
Now, using (i), we get x is not minimal in X. Thus from minimality of x in C
we obtain that for every z satisfying z R x, φ(z) holds. Hence, using (ii), φ(x)
holds as well and that is a contradiction with x ∈ C.

Theorem 3.22 (Well-Founded Recursion) Let R be a well-founded relation on
a class X. Let G : X × V → V be a function. Then there is a unique function
F : X → V such that

F (x) = G(x, F � extR(x))(11)

for every x ∈ X.

Proof. We first show the uniqueness of F . Let F, F ′ both satisfy (11) and assume
they are not the same. Because R is a well-founded relation, there is some x ∈ X,
which is R-minimal, with the property that F (x) 6= F ′(x). But now by (11),

F (x) = G(x, F � extR(x)) = G(x, F ′ � extR(x)) = F ′(x).

That is a contradiction.
Let F (x) = y, if there exists a function f such that dom(f)⊆ X and

∀z ∈ dom(f), f(z) = G(z, f � extR(z)) and

f(x) = y.

The existence of F satisfying (11) comes from Theorem 3.21. For more details
see [4], p.103.

Example 3.23 (The Rank Function) We define by induction for all x ∈ X and
R a well-founded relation:

ρ(x) = sup{ρ(z) + 1 | z R x}.

The range of ρ is either an ordinal or the class Ord. For all x, y ∈ X,

x R y → ρ(x) < ρ(y).

The last example is just a conversion of the former rank function definition.
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Theorem 3.24 Let M1, M2 be transitive classes and let π be an ∈-isomorphism
of M1 onto M2, i.e., π is one-to-one and

x ∈ v ↔ π(x) ∈ π(v).

Then M1 = M2 and π(x) = x for every x ∈M1.

Proof. Assume that π(z) = z for each z ∈ x and let y = π(x).
We have x ⊆ y because if z ∈ x, then z = π(z) ∈ π(x) = y and z ∈ y.
We also have y ⊆ x: Let t ∈ y. Since y ∈ M2, there is z ∈ M1 such that

π(z) = t. Since π(z) ∈ y, we have z ∈ x, and so t = π(z) = z. Thus t ∈ x.
Therefore π(x) = x for all x ∈M1, and M2 = M1.

Now we finally have all we need to prove the following Theorem.

Theorem 3.25 (Mostowski’s Collapsing Theorem)

(i) If R is a well-founded set-like extensional relation on a class X, then
there is a transitive class M and an isomorphism π between (X,R) and
(M,∈). The transitive class M and the isomorphism π are unique.

(ii) In particular, every extensional class X is isomorphic to a transitive
class M. The transitive class M and the isomorphism π are unique.

(iii) In case (ii), if T ⊆ X is transitive, then πx = x for every x ∈ T.

Proof. Because (ii) is just a special case of (i), we will aim to prove the existence
of an isomorphism in the general case and get (ii) in the process.

Since R must be a well-founded set-like relation, we define π in the following
way: Every π(x) will be defined throught π(z)’s, where z R x. We let for each
x ∈ X

π(x) = {π(z) | z R x}.(12)

This definition is correct because of Theorem 3.22. The function π maps X onto a
class M = π(X). To see M is transitive, take x, y ∈ X. If x R y, then π(x) ∈ π(y)
from (12). From Example 3.23 we get rank(π(x)) < rank(π(y)), also π(x) ∈ Vα
for some α and π(y) ∈ Vβ for some β > α. Since β > α, Vα ⊆ Vβ and thus
π(x) ⊆ π(y).

To show π is also one-to-one, we use the extensionality of R. Let z ∈ M be
of least rank such that z = π(x) = π(y) for some x 6= y. Then from Definition
3.18, extR(x) 6= extR(y) hence there is u ∈ extR(x) such that u /∈ extR(y). Let
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t = π(u). Since t ∈ z, where z = π(y), there is v ∈ extR(y) such that t = π(v).
Thus we have t = π(u) = π(v) and u 6= v. But since t ∈ z, t is of lesser rank
than z and thus z isn’t of least rank; a contradiction.

Now it’s easy to prove

x R y ↔ π(x) ∈ π(y).(13)

If x R y holds, then from (12) π(x) ∈ π(y). For the second implication, if
π(x) ∈ π(y), then again by (12) for some z R y, π(x) = π(z) and since we
proved π is one-to-one, we have x = z and so x R y as well.

To see π and the transitive class M = π(X) are unique:
If π1 is an isomorphism of X onto M1, π2 is an isomorphism of X onto M2, then
π2π

−1
1 is an isomorphism between M1 and M2. From Theorem 3.24 we get that

M1 = M2 and π2π
−1
1 is an identity mapping. Thus π1 = π2.

It only remains to prove (iii). If T ⊆ X is transitive, then we first observe
that x ⊆ X for every x ∈ T and then x ∩X = x and also

π(x) = {π(z) | z ∈ x}

for all x ∈ T . Obviously π(∅) = ∅ and also if x ∈ T and π(z) = z holds for every
z ∈ x, then π(x) = π(z) = {z | z ∈ x} = x. Now, using Theorem 3.20, we get
π(x) = x for all x ∈ T .

3.4 Critical point

Now we recall all the previous results to prove the theorem of Danna Scott
published in [1], which distinguishes universe of sets from Gödel’s constructible
universe under the assumption that there is a measurable cardinal.

In order to use Mostowski’s Collapsing Theorem, we need a well-founded
set-like extensional relation R on class X, that assures the existence of an iso-
morphism π between X and a transitive class M , both being unique.

Let (Ult(U ,V),∈∗) = (X,R). We have already proven ∈∗ is well-founded,
set-like and extensional relation if U is a σ-complete ultrafilter. By Mostowski’s
Collapsing Theorem there exists a one-to-one mapping π of Ult(U ,V) onto a
transitive class M , such that [f ] ∈∗ [g] if and only if π([f ]) ∈ π([g]). To simplify
the notation we will identify each [f ] with its image π([f ]).

Therefore if U is a σ-complete ultrafilter, then Ult(U ,V) denotes the transitive
collapse of the ultrapower and for each function f on S, [f ] is an element of the
transitive class Ult(U ,V). We say that function f represents [f ]∈ Ult(U ,V). Again
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if U is a σ-complete ultrafilter, then M = Ult(U ,V) is an inner model and j is
an elementary embedding j : V→M (see Corollary 3.7).

If α is an ordinal and since j is an elementary embedding, then j(α) is an
ordinal as well. Moreover if α < β, then j(α) < j(β). This implies α ≤ j(α)
for every ordinal number α. Since α + 1 is a successor ordinal of α, we get
j(α + 1) = j(α) + 1 and j(n) = n from the definition of j.

In order to prove j(ω) = ω, assume that [f ] < ω, then f(x) < ω for almost
all x ∈ S and by σ-completeness, for almost all x there is some n < ω such
that f(x) = n. Using the same argument for λ-complete ultrafilter U , we obtain
j(γ) = γ for all γ < λ.

Definition 3.26 Let κ be a measurable cardinal and let U be a non-principal
κ-complete ultrafilter over κ. Then d is the diagonal function on κ defined as
follows:

For every α < κ, d(α) = α.

Lemma 3.27 Let κ be a measurable cardinal, let U be a non-principal κ-complete
ultrafilter over κ and let d be the diagonal function on κ. Let j : V → M be an
elementary embedding. Then for every γ < κ, γ = j(γ) < [d]; in particular
κ ≤ [d].

Proof. Since U is κ-complete, it holds for every γ < κ, that γ /∈ U . Thus we
have γ < d(α) for almost all α. Hence γ = j(γ) < [d] for every γ < κ and also
κ ≤ [d].

From Lemma 3.27 we have [d] ≥ κ for every γ < κ. We also have [d] < j(κ)
because α = d(α) < κ for every α < κ and then j([d]) < j(κ) from the definition
of j. We also get [d] = j[d] thus [d] < j(κ) from the definition. We obtain
j(κ) > κ.

Now we can finally prove Scott’s theorem mentioned at the start of this
section.

Theorem 3.28 (Scott) Let L be the class of all constructible sets. If there is a
measurable cardinal, then V 6= L.

Proof. Assume that V = L and let κ be the least measurable cardinal. Let U be
a non-principal κ-complete ultrafilter over κ and let j : V→M be an elementary
embedding. From the argument above, j(κ) > κ.
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Since we assumed V = L and we know L is the least inner model, the
only transitive model containing all ordinals is the universe itself. We have
V = M = L and the mapping j : V → V. Because κ is the least measurable
cardinal, we get

V � j(κ) is the least measurable cardinal.

But then j(κ) is the least measurable cardinal. This is a contradiction, since
j(κ) > κ and κ is the least measurable cardinal.

Remark: It is now clear, that the existence of a measurable cardinal has a
very interesting consequence, i.e., existence of a nontrivial elementary embed-
ding of the universe into a transitive model. It can be shown conversely, that if
j : V→M is a nontrivial elementary embedding, then there exists a measurable
cardinal.
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