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putationally intensive method that simulates interactions between entities

in economy instead of focusing on stable equilibria. We will provide intro-

duction into Complex systems theory, which explains many phenomena we

can see in economies and explain why these phenomena make it hard for

economists to design models explaining behavior of people in real world. We

will show one possible model of face-to-face interactions between consumers

and firms and its implementation, where we can see whether it can sustain

for a period of time in dynamic but stable state.
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Chapter 1

Introduction

Economics – “a social science that analyzes the production, distribution,

and consumption of goods and services” (Wikipedia).

At first, it was an area of study firmly standing among other humani-

ties, but it soon began to incorporate elements of exact sciences, especially

of mathematics. This shift gave birth to many controversies and disputes

among economists and all people which somehow felt affected by their teach-

ings.

People felt very affected after the last financial crisis which broke out

in 2008 and many immediately began to question economics as a science

and its trends. This mood in society was reflected by many articles in news-

papers and books, for example [1]. The exact and mathematical nature of

economics was once again in need to justify itself because of misunderstand-

ing. Misunderstanding of people creating unsatisfactory economic models,

for example credit risk models in banks [2], and misunderstanding of people

using these models in applications where their authors never intended for

them to be used.

The use of mathematical approach and modeling in economics increased

with the invention of computers and computing machines and was used

interestingly for example to help in economic planning in the Soviet Union

[3].
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One type of economic models, are the general equilibrium models, which

are a tool of general equilibrium theory – theory, that “seeks to explain the

behavior of supply, demand and prices in a whole economy with several or

many interacting markets, by seeking to prove that a set of prices exists that

will result in an overall equilibrium” (Wikipedia).

The growth of computer capabilities in the past years paved the way

for an entirely new approach – the Agent-based Computational Economics

(ACE). It studies economic processes as dynamic systems of interacting

agents (autonomous entities pursuing their goals), rather than equations.

These agents do not have to have perfect information or rationality. Hence

this approach does not use equilibria, which do not have to be maintained

at all, but focuses on processes and phenomena that occur when agents

interact.

When using equation models, all the complexity of economy must be

directly embedded in the equations, therefore even when modeling relatively

simple economies, the equations are relatively complex. However, when using

agent-based modeling, the agents are relatively simple – they have to be,

since subjects in the economy (and in the world) aren’t all knowing and

all powerful. The complexity of economy and its interesting properties arise

from the numerous interactions between agents.
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Chapter 2

Agents and complexity

The interesting properties of economies, arising from the interactions

between simple agents, are manifestation of a phenomenon called emergence,

which is studied by complex systems theory. These emergent properties can

be very different from the properties of the individual agents.

System is regarded as complex, when it consists of connected but inter-

dependent diverse entities and these entities adapt according to the changes

in their environment.

They are interesting because of the aforementioned emergent phenom-

ena, for example when system organizes itself in some kind of order. They

often can not be predicted from the behavior of individual parts and this

organization can be maintained even if some shock events happen to the

environment. You can see from this description, that economies are such

complex systems. By getting to know the properties, virtues and dark cor-

ners of complexity, one can properly appreciate the hardships any modeler

faces.

2.1 Landscapes

In order to learn more about complex systems, we will use the idea of

landscapes as a metaphor for the environment agents live in. This metaphor

10



is used by Scott E. Page [5]. We will be interested only in the height of

the point agent is in. Point is some state of the environment defined by

the variables and assigned values. The height means how good the agent is

doing.

Lets divide landscapes into three types

1. Simple landscape – one single hill with a top.

2. Rugged landscape – has many peaks with different height.

3. Dancing landscape – many peaks with different heights and the land-

scape changes in time.

Property if peaks is their height. Simple landscape has one peak, which is

global peak – the optimum if we were searching for the highest one. Rugged

landscape has many peaks – local optima – and one or more global peaks. It

is usually computationally hard to find them, if the landscape is defined by

some function or system of equations. Dancing landscapes are even harder

(not that NP hard was not hard enough), if we want to find the global peak,

since they change in time and what was global peak once can be local peak

in the next moment or not a peak at all.

Simple landscapes

Problems, whose search space is simple landscape are simple to solve.

Classical example is the optimal size of shovel explored by Frederick Winslow

Taylor in the early 20th century [4]. With the increasing size of shovel the

productivity of worker was increasing to a certain point and then decreasing.

Rugged landscapes

However, the number of problems that lead to simple landscapes is lim-

ited and optimizing the economy or personal profit in it is undeniably more

complicated than that. The ruggedness of the landscape stems from the fact,
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that agent has usually more choices he can make at once and the outcome

of one choice influences the outcome of second choice.

For example when agent has two possible types of goods to buy, the

decision to buy one good and its consumption affects the happiness from

the purchase and consumption of the other goods. The more interconnected

choices agent has, the more rugged the landscape.

Dancing landscapes

This ruggedness, however, does not mean complexity as we have de-

fined it. To get complexity, we need the landscape to become dancing. This

happens, when there are other agents, that our “problem solving” agent

has to take into account and their choices interact with his choices. In this

way, agent has very limited time for decision and knowledge about what

choice produces what outcome, because the outcomes are dependent on other

agents’ choices too.

For example, we have two firms producing some kind of good and they

have to establish or improve their delivery chain. The first firm decides to

expand in a place, where demand exceeds supply and that would seem like

a reasonable action. This firm takes a lot of money hires many very clever

people who work for a long time to tweak the delivery chain so that it would

exactly match the expected demand at that place. After many resources

spent, the deliveries in that area begin, only for the firm to realize, that

the second firm had the same idea and already supplies in that area and the

demand therefore dropped significantly. The landscape has changed, because

of the other firm’s (agent’s) action. If the other firm was not there, it would

be only a problem represented by rugged landscape (dependencies of choices

are likely).

This landscape metaphor helps us to understand the fact, that sometimes

systems can achieve optimal solution and sometimes can’t.
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2.2 Complexity arises

As we have previously said, the system is complex, if it consists of inter-

dependent, connected, diverse and adaptive agents. But to which extent do

these properties have to exert?

Interestingly, we can have too much of a good thing and at the extremes,

complexity does not occur.

But to have better insight in what really is complex behavior and what

is not, we divide behavior of systems into four categories.

1. Stable single-point equilibria – the classic example is the ball at the

bottom of the bowl, standing still. If we push it in whatever direction,

it comes back and settles into rest. This is usually the case of the

aforementioned general equilibrium theory economic models, although

they are somewhat more complicated than a bowl.

2. Periodic orbits – state of system changes, but in a periodic way.

3. Chaotic behavior – this is not just any chaotic behavior, but chaotic

in a strict way defined by chaos theory. This behavior can be periodic

and settle down to predictable path in state space which is called an

attractor. State space is a virtual space where each possible state of

the system is incidental to all states that the original state can become

if one variable changes its value. Chaotic behavior is by definition very

sensitive to initial conditions, as was discovered by Edward Lorenz.

He has shown, that it is impossible to predict weather in the long run,

because the weather system is so sensitive, that a flap of butterfly

wings in Brazil can set off a Tornado in Texas (hyperbole) [6].

4. Complex behavior – behavior which is complicated, but has some

inner regular structure and reason that arose from the interaction of

parts of the system. This structure makes perfect sense, if the system

is simple enough so that it can be described and comprehended. If the
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system is not simple enough, it probably would make sense if we were

smarter beings.

2.2.1 Interdependence

So when we get what behavior? Let’s say we try the interdependence

level. If the agents are independent, the behavior is not very interesting. If

they are totally dependent on each other, we get chaos, because even a slight

change causes an avalanche of changes throughout the system.

2.2.2 Connectedness

Next is connectedness. If agents are disconnected, they cannot observe

their neighborhood and for example the level of interconnectedness is irrel-

evant. So this behavior is not interesting.

If connectedness is kept too low or too high, the system quickly converges

to some equilibrium. However, with reasonable middle course of connected-

ness, interesting patterns begin to emerge, as noted for example in [7], [8].

In these papers, agents are let play rock-paper-scissors game connected in a

network, players have fixed strategy (player always uses either rock or paper

or scissors) and when player loses, he is replaced by a copy of the winning

player. When players are intermediately connected (for example 3 connec-

tions), cyclic dominance of strategies is observed, i.e. strategy is dominant

only for a while and changed by another in a periodic fashion. This is really

observed in nature in Escherichia coli bacteria, which come in three types

and fight with each other for space.

2.2.3 Diversity

The same stands for diversity. When there is not enough diversity, the

system is simple. If there is too much, it is a mess with no interesting patterns

at all. Really high diversity can survive mostly because of the moderate levels
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of connectedness each diverse type has – this can be found for example in

nature, where there is very high diversity, but species are limited to their

niche.

What is the cause of diversity in real life and in models? First, it is

the interdependence and connectedness of agents – if one agent changes its

behavior, the landscape for the other agents has changed and they have to

act accordingly to survive. Other reason is, when there is, on the other hand,

not enough pressure for selection and agents can become diverse with no fear

of punishment for the lower efficiency they deliver [9].

2.2.4 Adaptation and learning

If we want to adjust adaptation, we adjust the intelligence of agents.

If there is no adaptation, the system stays in equilibrium. If agents are

all-knowing and super-intelligent, the system once again tends to stay in

equilibrium – every agent finds its optimal place and behavior. Again, the

best results lie in the middle, where agents are trying to figure out how to

interact with the others to create complex system.

2.3 Exploration and exploitation

An ubiquitous problem in agent modeling is the trade-off between ex-

ploration and exploitation. By exploration, we mean the search for new and

better behavior and solutions. Exploitation is, when agent wants to stay in

place and take advantage of the found behavior or solution. For example,

agent can ask himself the question “Should I still buy goods from this com-

pany, or does some other company offer better prices. And if not, will it

always be like this in the future?” It is obvious, that agent must somehow

find balance between trying new things and sticking with old, even with

respect to time.
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A classic problem where this phenomenon is studied is the two-armed

bandit. It is a variation of a traditional slot machine. It has two levers

and each lever provides a reward according to some probability distribu-

tion of that lever. The person or agent pulling the levers is faced with the

explore/exploit problem, because he wants to pull only the lever that pays

more money. How to determine, which lever is better? Many strategies have

come up through time. Some of the simpler ones [10]:

• Epsilon-greedy strategy – simple greedy strategy would use only the

lever, which has been better so far. This strategy still chooses the worse

lever with probability ε and the better lever with 1− ε. This way, it the

algorithm misjudged, the better lever now considered worse, may earn

its proper appreciation, because it is still given a chance to earn more.

• Epsilon-first strategy – if there is fixed amount of trials T, agent ear-

marks his first εT trials for exploration (random lever pulled) and the

rest, (1− ε)T for exploitation of the better lever.

• Strategy similar to epsilon-greedy, but the value for ε decreases in time.

• Strategy similar to that above, but epsilon decreases quickly if agent

observes big changes in the expected distributions of the payoff of the

levers. This allows agent to explore. Once the expected values of distri-

butions do not change much, epsilon drops down to allow exploitation.

This model of two-armed bandit can be used even in economics. If firm

starts producing some good and does not know its demand curve, it can

try to set some prices according to some strategy and observe the profit the

prices generated to determine the best price [11].

2.3.1 Simulated annealing

Now we’ll explore more general algorithm, dealing with the trade-off be-

tween exploration and exploitation and we will illustrate it using our concept
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of landscapes. We want to get as high on the landscape, as possible, with

limited time. If we make a step only if it takes us higher (exploit), we would

quickly become stuck in some local optimum. This outcome happens usually

when we try to program some greedy algorithm into our optimizing agent.

Much better approach is some algorithm that both explores and ex-

ploits. Typical representative is the simulated annealing algorithm [12]. An-

nealing (not simulated) is a process used by metallurgists and in materials

science, used for altering the material by heat to change its properties such

as strength and hardness. This is achieved by aligning all particles in the ma-

terial in one direction. If metal is slightly heated, the previously randomly

aligned particles align with their neighbors, which creates local neighbor-

hoods with equally aligned particles. Then the temperature is cooled down

gradually, so that the boundaries between neighborhoods cause some neigh-

borhoods to switch particle alignment and assimilate into other neighbor-

hoods. After some time, all particles are in one direction.

In modeling, this approach is used similarly. The temperature, which is

higher at the beginning and gradually drops, is represented by willingness

to explore and hence make mistakes. So at the beginning of simulation,

the agent explores a lot. On a landscape, that means he moves both up and

down. With time, the temperature goes down and the agent starts to exploit

more. This means he goes only up the hills in the landscape and eventually

stops at some local optimum. It is only local optimum and it is not secured

that it is the global one; nevertheless it is a good solution. The rate at which

the temperature falls depends on the ruggedness of the landscape.

Example of a landscape where simulated annealing can be used is the

landscape represented by Rastrigin function 1 in figure 2.1.

For sample implementation used for optimizing cost function, see [14].

1Rastrigin function [13] is often used as a benchmark for the efficiency of op-

timization algorithms. It is defined for example like f(x) = 10n + sumn
i=1(x

2
i −

10cos(2πxi)),−5.12 <= xi <= 5.12. where n is the number of dimensions
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Figure 2.1: Rastrigin function

What about dancing landscapes? When the peaks in the landscape move,

agents can not only exploit, they have to maintain some residual amount of

exploitation. This exploration itself makes the landscape move for other

agents, since one agent’s action is connected with another agent’s outcome

(thanks to interconnectedness). These actions are, however, not random, but

optimizing, which causes the emergence of complexity instead of chaos.

2.4 Emergence

Emergence means a spontaneous functionality and order, which was not

imposed on the system by modeler or some central planner (in the case of

real world) but was created from the bottom up [15] by the individual agents.

Examples of emergence in nature are self-organizing schools of fish or

flocks of birds. In economics, fine example is the emergence of stock mar-

ket behavior that regulates the prices of securities, although investors have

limited knowledge about only some companies. But as a whole, this sys-

tem works and usually produces equilibrium prices and patterns studied by

analysts.
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2.4.1 Types of emergence

Emergence can be divided into two types – weak and strong.

• Weak emergence – if the emergent property is deducible from its indi-

vidual parts, even if the property was unexpected.

• Strong emergence – if the emergent property is not deducible from its

individual parts.

The fine line between these two types is not set precisely and some scien-

tists argue, that they are the same, because if person is sufficiently intelligent

an knowledgeable, he is able to deduce anything from its parts; with the ex-

ception of consciousness, which is the only example of strong emergence.

[16]

2.4.2 Cellular automata

For one very simple example of emergence, we will use the concept of

cellular automata Cellular automaton is a discrete model which consists of

grid of cells. Grid can have arbitrary number of dimensions. Each cell is in

some state – in our Figure 2.2, there are only two states, ON and OFF and

the grid is two dimensional. Each cell has some defined neighborhood, which

consists of cells in some distance from the original cell. In our example, we

will define the neighborhood as consisting of the 8 cells around the original

cell.

Figure 2.2: Blinker in state 1.
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Figure 2.3: Blinker in state 2.

The cells change their state in time, all at once, according to rules. These

rules determine the state of the cell in the next step only with dependence

on the state of neighboring cells in the last step.

Our rules will be:

1. If cell is OFF and three neighboring cells are ON, cell swithces ON.

2. If cell is ON and two neighboring cells are ON, cell stays ON.

3. Else cell is OFF in next step.

If we start with simple grid looking like the one in Figure 2.2, where the

ON cells are black, we get 2.3. In the next step, the system goes back to

state in Figure 2.2. This means, that from simple rules, blinking behavior

emerged. Much more complex behaviors, with simple rules, were devised in

the Game of Life system by John Horton Conway.2

2Game of Life is a cellular automaton devised by John Horton Conway in 1970 and

described first in [17]. More information can be found for example in [18]. It has four

rules, different frou ours, and shows very interesting emergent behavior and patterns, like

the “gun” pattern, which repeatedly shoots out moving patterns. One pattern that can

be shot is the “glider”, which can be used to construct logic gates (AND, OR, NOT) in

the system, making it Turing complete [19].
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Chapter 3

Agent-based models

We will start with a few definitions:

• Agent (in economics) is the unit which acts and makes decisions in the

model.

• Agent (in computer science) – autonomous entity which uses percep-

tors for sensing the environment it lives in and actuators to make

actions affecting the environment.

• Agent-based model – computational model with agents following rules,

pursuing their goals and taking actions, whose effect on the environ-

ment is then studied.

Agent-based models are computer models, that are used for studying

complex systems (like economies). The dependence between complex sys-

tems and agent-based modeling is two-way – agent-based models help us

understand some problems arising in complex systems, but they also create

new problems to study by themselves.

We have seen simple agent-based model in section 2.4.2. There, individual

cells were agents, because they were independent entities behaving according

to some rules and through their behavior they affected the environment -

other cells.
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Agent based models can be used for example to study evacuation from

buildings – how people behave and where the potential bottlenecks of suc-

cessful evacuation are [20].

3.1 Walrasian equilibrium model

When modeling competitive markets, economists still widely use the

equilibrium model invented by Leon Walras. 1

This equilibrium model consists of

• Firms producing some good or service and maximizing their profit.

• Consumers maximizing some utility function.

Prices of goods are then set by walrasian auction, where all consumers com-

pute their demand for all possible prices of the good and the price is then set

so that the amount of good demanded equals the amount of good supplied

by firms 2. This has, however, some properties that are usually assumed

by economists, but are rarely seen in real world – perfect information, no

transaction costs and no strategic behavior of consumers or firms, trying

to “outwit the others. Consumers are simple passive price-takers with no

dependence on the choice of other consumers. The same problem stands for

firms.

Moreover, the process of setting the right prices is much more compli-

cated in real world and involving agent interactions. Such processes seldom

end in stable equilibria and really, as shown for example by Fisher in [22],

there are very specific conditions that have to be met for the walrasian equi-

librium to exist. And even though these conditions are met, the equilibrium

does not have to be unique or stable.

1French mathematical economist living 1834 - 1910, who is considered the creator of

general equilibrium theory, as introduced in chapter 1.
2More information on how the auction works in detail can be found in [21]
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If we remove the walrasian auctioneer, we must now take into account

the interactions between individual agents [23], that cannot be described

analytically.

3.2 Simulation

The simulation model described here tries to model face to face interac-

tions of firms and consumers on single market instead of using the Walrasian

auctioneer construct for finding the clearing price and volume of goods. This

kind of model was devised in [24] but never implemented, instead, it evolved

into The Trade Network Game Lab (TNG Lab) [25]

3.2.1 Economy

There are two types of firms, one selling abstract good A, the other good

B. Each firm can produce only one type of goods. Then there are consumers,

who buy goods A and B. Each firm in period T = 0 starts with an amount

of money and production capacity.

Each firm has a total cost function that includes fixed costs proportional

to its current capacity. Each firm knows the number of firms and consumers

currently in the economy. However, no firm has prior knowledge regarding

the income levels and utility functions of the consumers or the cost functions

and capacities of other firms.

Each consumer in period T = 0 has fixed regular salary (paid from the

outside) and a utility function measuring preferences and subsistence needs

for goods in each period.

Each consumer is also a shareholder who owns an equal fraction of each

firm. The income of each consumer at the beginning of period T = 0 is en-

tirely determined by his money endowment. At the beginning of each period,

each consumer’s income is determined in part by his money endowment, in
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part by his savings from previous periods, and in part by his newly received

dividend payments from firms.

At the beginning of each period, each firm selects a supply offer consisting

of a production level and a unit price. Each firm uses a learning method to

make this selection, conditional on its profit history and its cost attributes.

This posting is carried out simultaneously by all firms, so that no firm has

a strategic advantage through asymmetric information.

At the beginning of each period, each consumer costlessly acquires com-

plete information about the firms’ supply offers as soon as they are posted.

Consumers then attempt to ensure their survival (subsistence needs) and

happiness (amounts above subsistence needs) by engaging in a price discov-

ery process consisting of successive rounds. During each round, the following

sequence of activities is carried out:

First, any consumer unable to cover his currently unmet subsistence

needs at the currently lowest posted prices immediately exits the price dis-

covery process. Each remaining consumer determines his utility-maximizing

demands for goods conditional on his currently unspent income, his cur-

rently unmet subsistence needs, and the currently lowest posted prices. He

then submits his demands to the firms that have posted these lowest prices.

Next, the firms receiving these demands attempt to satisfy them, apply-

ing if necessary a rationing method. Consumers rationed below subsistence

need for one of the goods can adjust downward their demand for the other

good to preserve income for future rounds. Finally, actual trades take place,

which concludes the round. Any firms with unsold goods and any rationed

consumers with unspent income then proceed into the next round, and the

process repeats.

This period-T price-discovery process comes to a halt either when all

firms are stocked out or when the unspent income levels of all consumers

still participating in the process have been reduced to zero. Consumers who

exit or finish this process with positive unmet subsistence needs die at the
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end of period T. Their unspent money holdings (if any) are then lost to the

economy, but their stock shares are distributed equally among all remaining

(alive) consumers at the beginning of period T+1. This stock share redistri-

bution method ensures that each alive consumer continues to own an equal

share of each firm. At the end of each period T ≥ 0, each firm calculates

its period-T profits. A firm incurs positive (negative) profits if it sells (does

not sell) enough output at a sufficiently high price to cover its total costs,

including its fixed costs. Each firm then calculates its period-T net worth

(total assets minus total liabilities). If a firm finds it does not have a positive

net worth, it is declared insolvent and it must exit the economy. Otherwise,

the firm applies a state-conditioned profit allocation method to determine

how its period-T profits (positive or negative) should be allocated between

money savings, capacity investment or reduction, and dividend payments to

its shareholders.

3.2.2 Mathematical equations and processes

Utility function of consumer is defined as

Utilityc(a, b) = (a− subNeedsa,c)
α

α+β ∗ (b− subNeedsb,c)
β

α+β

where a and b are amounts of bought good A and B respectively, subNeedsa,c

and subNeedsb,c are respectively the subsistence needs for goods A and B of

consumer c and α is preference of A and β preference of B of consumer c.

Fixed costs of firm j in period T are

FixedCostsj(T ) = fj ∗ capacityj(T ) + Fj

where fj and Fj are some given constants and capacityj(T ) is capacity of firm

j in period T.

Total costs of production of firm j in period T are

TotalCostsj(T ) = Rj∗productionLevelj(T )2+Sj∗productionLevelj(T )+FixedCosts(T )
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where Rj and Sj are given constants and productionLevelj(T ) is the level of

production of firm j in period T.

Profit of firm is defined as

Profitj(T ) = soldGoods(T ) ∗ priceOfGoods(T )− TotalCostsj(T )

where soldGoods(T ) is the amount of goods sold in period T and priceOfGoods(T )

is unit price for goods in period T.

Net worth of firm j is calculated as

NetWorthj(T ) = moneyj(T ) + capacityPrice ∗ productionCapacityj(T ) + Profitj(T )

where moneyj(T ) is money firm has at the beginning of period T, capacityPrice

is the price for one unit of capacity (firm can buy or sell it for capacityPrice)

and productionCapacityj(T ) is the production capacity of firm j in T. If firm

has negative net worth, it leaves the economy.

Capacity investment

If firm produces at the maximum capacity and sells everything, it al-

locates some part of profit into capacity investment and from the rest it

pays part as dividends to consumers. The rest of money stays with the firm.

Money in period T+1:

Moneyj(T + 1) =

1− dividendAllocationj) ∗ (Moneyj(T ) + (1− capacityAllocationj) ∗ Profitj(T ))

(3.1)

Capacityj(T + 1) =

Capacityj(T ) + capacityAllocationj ∗ Profitj(T )/capacityPrice (3.2)

Dividendsj(T + 1) =

dividendAllocationj ∗ (Moneyj(T ) + (1− capacityAllocationj) ∗ Profitj(T )) (3.3)
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Where dividendAllocationj is part of money to pay as dividends and capacityAllocationj

is part of profit to invest in capacity. If profits are nonnegative, but not all

was sold, all profits go to money holdings and dividends are paid.

Learning

Each firm at the beginning of period decides what amount of goods

to produce and for what unit price. Amount of goods to produce, called

production level, must be smalled thar production capacity of firm. Price is

chosen indirectly through markup, which is

Markup = (price−MarginalCosts)/price

where MarginalCosts are marginal costs of current production.

Firm can try to increase its profit by increasing markup and production

level (and capacity).

Learning is implemented as reinforcement learning - tendency to imple-

ment an action should be strengthened (reinforced) if it produces favorable

results and weakened if it produces unfavorable results.

A firm j can choose from NumOffersj feasible supply offers in the form

of (productionlevel,markup) in each period. In the initial period T = 0, the

initial propensity of firm j to choose its feasible supply offer is given by a

nonnegative initial propensity propensityji(0), i = 1, ..., NumOffersj These

initial propensities are assumed to be equal valued.

After that first period, the choice probability that firm j uses to select

particular offer i is given by

probabilityji(T ) =
exp(propensityji(T )/coolingj))

NumOffersj∑
k=1

exp(propensityjk(T )/coolingj))

where coolingj is a cooling parameter that affects the degree to which firm j

makes use of propensity values in determining its choice probabilities.
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As coolingj → ∞ , then probabilityji(T ) → (1/NumOffersj) for each i, so

that in the limit firm j pays no attention to propensity values in forming its

choice probabilities. On the other hand, as coolingj → 0, the choice probabil-

ities become increasingly peaked over the particular supply offers i having

the highest propensity values, thereby increasing the probability that these

supply offers will be chosen.

At the end of each period T ≥ 0, the current propensity propensityji(T )

that firm j associates with each feasible supply offer i is updated in accor-

dance with the following rule. Let i′ denote the supply offer that was actually

selected and posted for period T, and let Profitji′(T ) denote the profits (pos-

itive or negative) attained by firm j in period T following its actual choice

of supply offer i′. Then, for each feasible supply offer i:

propensityji(T + 1) = (1− recencyParamj) ∗ propensityji +Responseji(T )

i = i′)Response = (1− experimentParamj) ∗ Profitji(T )

i <> i′)Response = experimentParamj ∗ propensityji(T )/(NumOffersj − 1)

where the recency parameterrecencyParamj acts as a damper on the growth

of propensities over time. The experimentation parameter experimentParamj

permits reinforcement to spill over to some extent from a chosen supply offer

to other supply offers to encourage continued experimentation with various

supply offers in the early stages of the learning process.

Firm j faces a trade-off in each period T between information exploitation

and information exploration. This learning algorithm resolves this trade-off

by ensuring continual exploration, typically at a declining rate. Firm j in

period T does not necessarily choose a supply offer with the highest accu-

mulated profits to date. Given a suitably small value for experimentParamj,

selected supply offers generating the highest accumulated profits tend to
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have a relatively higher probability of being chosen, but there is always a

chance that other supply offers will be chosen instead. This helps to reduce

the risk of premature fixation on suboptimal supply offers in the early stages.

Price discovery process

Price discovery process consists of a sequence of rounds. The process

comes to a halt as soon as either all firms are stocked out or the unspent

income levels of all consumers still participating in the process have been

reduced to zero. The total amount of goods actually purchased by each

consumer c during the course of the period-T price discovery process are

denoted by boughtc,a(T ) for good A and boughtc,b(T ) for good B

Suppose at least one firm has not stocked out and that the currently

unspent portion of moneyc(T )′ of consumer c’s period-T income is positive.

Let subNeeds′
c,a and subNeeds′

c,a denote consumer c’s current net subsistence

needs for A and B, i.e., his basic subsistence needs net of any purchases he

has made in previous rounds of the period-T price discovery process. Finally,

let lowestPricea denote the currently lowest posted price for A if any A firms

are still posting supply offers, and similarly for lowestPriceb.

Suppose all A firms have stocked out but at least one B firm has not

stocked out. If either subNeeds′
c,a > 0 or lowestPriceb ∗ subNeeds′

c,a > moneyc(T )′,

consumer c exits the price discovery process. Otherwise, consumer c deter-

mines his demands as follows:

demandForA = 0; demandForB = moneyc(T )′/lowestPriceb

Finally, suppose that at least one A firm and one B firm have not stocked

out. If consumer doesn’t have enough money to satisfy his subsistence needs

at the current lowest prices, consumers exits.

If both A and B firms still supply, consumer maximizes his utility subject

to his budget and subsistence constraints. Demand functions:

demandForA = subNeeds′
c,a +

α

α+ β
∗
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∗
(moneyc(T )′ − (subNeeds′

c,a ∗ priceOfGoodsa(T ) + subNeeds′
c,b ∗ priceOfGoodsb(T )))

priceOfGoodsa(T )

Where α and β are preference coefficients as in utility function above. Similar

equation stands for demand for B.

Rationing

If firm isn’t able to satisfy all the demand, it must ration provided goods

among consumers. One possible rationing method: Random queue rationing:

Given excess demand for my good, I first randomly order my current cus-

tomers into a queue line. I then attempt to satisfy each customer’s demand

in turn, to the fullest extent possible. All rationed amounts offered to con-

sumers must be nonnegative.

If consumer is not able to cover subsistence needs under rationing, then

he must adjust the demanded amounts to save as much money as possible

to try in next round.

Cases:

1. no rationing - what was demanded was also offered by firm and there-

fore could have been bought

2. all needs met under rationing - rationed amounts are purchased

3. one need not met - for example for B - consumer buys only net sub-

sistence needs for A and rationed amount of B to save money

4. both needs are not met - consumer buys rationed amounts

At the end of the price discovery round, consumer updates unspent

money holdings and net subsistence needs.

3.2.3 Implementation

Introduction to architecture

More details about implementation and architecture of the program, with
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more easy-to-read and hyperlinked text can be found in the enclosed documentation

Program is implemented in Java and consists of 2 types of agents, represented

as instances of the classes TradingWorld.Firm and TradingWorld.Consumer.

These live in the TradingWorld.World, which holds the containers of all

consumers and firms and also is responsible for the right flow of the program

by calling firms’ and consumers’ trading methods.

Class World holds all instances of classes Consumer and Firm in HashSets.

HashSets for Firms are two, TradingWorld.World.AFirms for firms selling

A and the TradingWorld.World.BFirms for B. These two types of firms are

not different in their instances, but are differentiated just by the different

location World stores them. No firm knows what type of goods it is actually

selling.

When firm chooses how much and for how much it will sell its goods,

it uses the TradingWorld.PropensityManager class. Each Firm has one

instance of its PropensityManager, where it stores the data needed for

deciding which offer to choose. When firm chooses price and production

level by calling the TradingWorld.PropensityManager.chooseOffer(int

productionCapacity) method, it only sets TradingWorld.Firm.price and

TradingWorld.Firm.productionLevel attributes in its instance. World them

must extract the price from inside the firm, pack it together with reference of

firm offering the price and create instance of TradingWorld.World.PriceOffer

object holding these two pieces of information together. This PriceOffer

object is then placed in one of the TradingWorld.World.APrices or

TradingWorld.World.BPrices lists of price offers in world.

Consumers then ask World for the PriceOffer of one of the cheapest firms

for trading and prepare their order.

Firms take orders from consumers in the form of instances of

TradingWorld.Firm.Order class. Each consumer must therefore create an

instance and pass it to firms to enter their queues. Consumer knows the

reference to firm he wants to trade with, because he has unpacked it from
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PriceOffer he got from the World.

Order of consumer contains not only amount of goods he wants to buy

but also an instance of class TradingWorld.Consumer.OrderConfirmation,

which belongs to ordering consumer. There the chosen firm responds to

consumer’s order and submits amount of goods consumer can actually buy.

Consumer owns two instances of OrderConfirmation. One he provides to

chosen firm selling A and the other to firm selling B. There he collects the

amounts of goods offered by the firm and redecides the amounts if it needs

to buy less to save money for later purchases, because his subsistence needs

are not met.

The buying itself is performed by consumer and carried out through the

references to firms in firm’s PriceOffer, which contains the price for which

firm sells and firm’s reference.

When consumer wants to be removed from world, he notifies the world

about his removal and passes the reference of itself to the world. World stores

these references in TradingWorld.World.consumersToKill list of firms which

want to be removed and removes them at the end of the round (removal is

carried out through comparing ID’s of consumers).

Firms who want to be removed are in a more complicated situation.

If they pass their reference to the world, it wouldn’t know what type

of firm it is (selling A or B), because the firm itself does not know.

Therefore each firm is provided (at the start) with a reference to

TradingWorld.World.FirmArraysContainer, which the firm should use when

submitting its removal. These containers are two in the world - one with

some lists where firms selling A post some data, the other container for

firms selling B. Firm can’t do anything with this container reference, it only

pases it back to the world when submitting removal and world adds this firm

to collection TradingWorld.World.FirmArraysContainer.firmsForRemoval in

the container. This collection is processed at the end of the round and all

firms added there are removed from the world.
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Similar mechanism is used when firms want to withdraw their

offers from the list of PriceOffers when they are stocked out - uses

TradingWorld.World.FirmArraysContainer.pricesForRemoval.

There is one more type of nested classes in Consumers and Firms, which

are classes implementing the Runnable interface. Each of these classes has

only one method - the run() method, which acts as a standard method of

Consumer of Firm. But because it is wrapped in Runnable, it can run in a

separate thread and use paralelization.

Parallelization

Some functions manipulating with Consumers and Firms are computationally

intensive and every consumer or firm runs its own instance, manipulating

only with the data stored in it. Therefore these functions can easily run in

parallel, so that program can take advantage of multi-core processors.

Each of these functions is wrapped in a class implementing standard java

Runnable interface and the implemented method run() is the parallelized

function. These runnable classes, which are in fact just like regular functions.

Some examples:

• TradingWorld.Consumer.EnterQueueRunnable

• TradingWorld.Firm.ChooseOfferRunnable

• TradingWorld.Firm.ProcessQueueRunnable

More detail about what particular runnable does is in the Detailed flow of

the program in the enclosed documentation.

These Runnables are always started by the World, which ensures the

parallelization by standard java facility for starting Runnables, which is

java.util.concurrent.Executor and interface java.util.concurrent.ExecutorService,

providing additional methods for control of Runnables.
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Propensity manager

Propensity manager serves as learning mechanism for deciding which

production level and markup firm (which owns its instance of propensity

manager) should choose for production. Provides two main methods -

TradingWorld.PropensityManager.chooseOffer(int productionCapacity) and

TradingWorld.PropensityManager.updatePropensities(int productionLevel,

byte markup, double profit). ChooseOffer method returns some production

level and markup according to the embedded learning mechanism.

UpdatePropensities updates the mechanism according to profit the

previously chosen offer generated.

Propensity manager stores propensities in

TradingWorld.PropensityManager.offerMap, which is a TreeMap<Integer,

ProductionLevelNode>indexed by production level and

storing TradingWorld.PropensityManager.ProductionLevelNode.

This production level node consists of list

TradingWorld.PropensityManager.ProductionLevelNode.markups , which

stores instances of TradingWorld.PropensityManager.MarkupNode, which

store propensity to the given combination of production level and markup.

Since at the beginning all the propensities are the same and have

the uniform value assigned to them, there is no point in storing

this value in each MarkupNode and all these MarkupNodes in

ProductionLevelNodes. So each ProductionLevelNode contains also list

TradingWorld.PropensityManager.ProductionLevelNode.uniformMarkups

of markups, which have uniform propensity. These

markups do not have their representation in

TradingWorld.PropensityManager.ProductionLevelNode.markups.

Likewise, the ProductionLevelNodes which have all markup propensities

uniform do not have to be in TradingWorld.PropensityManager.offerMap,

so they are simply not present there. Also capacity of firms can be infinite,
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which would mean infinite number of ProductionLevelNodes needed.

When chooseOffer is called, propensity manager first has to

choose production level from offerMap and then it chooses some

markup from ProductionLevelNode of that particular production

level. First manager has to determine the probability of choosing

each ProductionLevelNode. This probability is computed as a sum

of all probabilities of choosing markups inside ProductionLevelNode.

(Method TradingWorld.PropensityManager.ProductionLevelNode.

getAltProductionLevelPropensity() is responsible for that.) This probability

of choosing one markup (in production level) is computed from propensity

of the markup as probability = Math.exp(propensity / coolingCoefficient)

(see 3.2.2).

When those probabilities of production levels are determined (by method

TradingWorld.PropensityManager.getNonUniformProdLevels(), the

production levels are put into array, the first level is assigned its probability

and all next production levels are assigned number computed as ”probability

of the particular level + the number assigned to the level before”. This

way the last production level has been assigned the sum of all probabilities.

(Method TradingWorld.PropensityManager.transformAndGetMissing

(ListAndPropensitySum<ProdLevelAltSummedPropensity>nonUniformProdLevels).)

This way, some production level can be chosen by generating random

number (from the interval < 0, numberatlastproductionlevel >) and whichever

level has summed probability closest to the random number, it is chosen.

One problem with this approach is, that some production level nodes are

missing in offerMap. Those, whose markups have uniform propensity. The

probability of choosing any of this production levels is the same and can be

easily computed from uniform propensity.

Next, it is determined, if production level from

uniform ones or nonuniform ones will be chosen -

determined by random. If from non-uniform, method
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TradingWorld.PropensityManager.chooseNonUniformProdLevel() is called,

which choses one production level in the way described above. If uniform

production level will be chosen from the list of uniform ones, it is chosen

with uniform probability distribution from the array of integers representing

production level, because the production level node does not yet exist.

After choosing, the new instance of ProductionLevelNode is created and

put into offerMap, since if it was chosen, it will be updated later with new

propensities.

Markup from ProductionLevelNode is chosen by

TradingWorld.PropensityManager.MarkupNode.chooseMarkup(), which

uses similar approach as when choosing production level - transformation

of propensities into probabilities, if uniform is chosen, it is removed from

list of uniform and put in set of non-uniform.

Chosen production level and markup are passed to firm as instance of

TradingWorld.PropensityManager.Offer.

When firm uses chosen production level and markup and makes some

profit (of loss), it updates the propensities with its propensity manager

by calling TradingWorld.PropensityManager.updatePropensities(int

productionLevel, byte markup, double profit), which updates propensities

according to 3.2.2.

Concluding results

The purpose of this simulation, as was suggested in previous chapters,

is to see, whether such system can survive for some period of time. That is,

if enough consumers and firms stay in the economy for successive rounds.

This depends only on the parameters of the system, which can be tuned in

the program.

The first idea about how to setup the program, would be to give everybody

as much money as possible and little of costs. This works well for firms -

they do not mind what they produce and at what cost, because it is always
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cheap for them to produce it and consumers are rich, so they buy everything.

Propensity manager can be setup any way, because it does not matter what

price and amount firm produces. However, this approach has one glitch. The

consumers, which come first buy all the goods and so the consumers behind

in the queue are not allowed to buy anything.

This is what it looks like in graphs and setup - figures 3.1, 3.2, 3.3, 3.4.

Figure 3.1: Numbers of consumers (bottom line) and firms (top 2 lines)

Both the types of firms thrive (stay on the same level, no firm exits

the economy), whereas the consumers die quickly, until the strongest (or

luckiest) stay, because the firms produce the right amount of goods just for

them.

One thing we can do, is to give less money to consumers and firms. If we

give only 1000 to both types of firms and 100 to consumers for beginning

and 10 as salary, the world quickly ends, because when consumers spend all

their starting money, they have almost nothing and die, taking firms with
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Figure 3.2: Setup of consumer

Figure 3.3: Setup of A firm (B similar)
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Figure 3.4: Setup of propensity manager

them - figure 3.5.

However, when we balance the money and give 1000 to firms as starting

money and 100 to consumers as salary, the world can finally sustain on some

interesting levels. Only 2 of B firms and 3 A firms survived, but there are

also 20 satisfied consumers. And this ratio consumers : firms seems quite

realistic - figure 3.6.

But other patterns emerge, when we set parameters differently. For example,

when there are only small amount of firms left (lets say two) and one of them

makes a big mistake when deciding price (large experimentation coefficient

helps), it collapses the whole system. Consumers begin dying quickly, since

half of the goods supplied is now gone. That means less profit for the one

firm left at this moment and if firm does not react quicky by changing

price and supply (which it can’t, since it uses its propensity manager quite

nonadventurously), it goes bankrupt too. See figure 3.7

We will show one more interesting scenario. We set consumers moderately

rich, 1000 salary, with similar setting as previously. Firms have 1000 at the
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Figure 3.5: Numbers of consumers (top line) and firms (bottom 2 lines)

Figure 3.6: Numbers of consumers (top line) and firms (bottom 2 lines)
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Figure 3.7: Numbers of consumers (top line) and firms (bottom 2 lines)

start too, else everything is normal - see figures 3.8, 3.9.

On the graph showing numbers of agents, we can see what seems to be

“slowly declining efficiency” - figure 3.10.

If we look at the figure showing money of consumers, we see, that it is

exactly zero for all consumers all the time. They are spending all they get

- figure 3.11. This is different from the first case, where we had a few rich

consumers and the rest dead - the histogram of their money showed a lot

of money as reserves. So if consumers are spending all their money, what

does it look like for firms? From their price and profit histograms, they have

found very competitive price around which all firms oscillate and firms have

also very stable profits distributed around zero, but more positive profits

than negative ones. See figures 3.12, 3.13.
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Figure 3.8: Setup of consumer

Figure 3.9: Setup of firm
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Figure 3.10: Setup of firm

Figure 3.11: Setup of firm
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Figure 3.12: Setup of firm

Figure 3.13: Setup of firm
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Chapter 4

Conclusion

We have introduced to the reader the new approach in economic modeling.

The Agent-based modeling in economics has bright future, since the computing

power is increasing rapidly each year and even students can now project and

implement sophisticated and computationally intensive models, which help

us understand, what economy really is (or at least some of its smaller parts).

This approach is not a substitute for classical modeling with differential

equations and does not even want to be. It is merely a great complement,

where classical models based on equations fail, because of the complexity

of the problem or because the complexity of the solution. Since we have

shown, that economy is a complex system with all its beauties and pitfalls,

to have such a great tool at hand is really exciting. And we have shown, that

a simple program with boundedly rational, simple agents, can be complex

in its behavior and stable at the same time. Of course, we can’t forget that

these models are simplifications too and we can’t expect miracles from them.

But we can have some fun with them and possibly stumble across something

of intriguing.
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.1 The list of files on the enclosed CD

1. Agent-based modelling in economics.pdf – this thesis

2. Program.zip – simulation program
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