
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Oto Petř́ık

GPU Supported Terrain Editing

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: RNDr. Josef Pelikán

Study program: Computer Science

Specialization: Programming

2011

I would like to thank my supervisor RNDr. Josef Pelikán for valuable
suggestions and patience. I would also like to thank my family for support
during writing this thesis.

I declare that I carried out this bachelor thesis independently, and only
with the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under
the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
the fact that the Charles University in Prague has the right to conclude
a license agreement on the use of this work as a school work pursuant to
Section 60 paragraph 1 of the Copyright Act.

In Prague, 5 August, 2011 Oto Petř́ık

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Goals . 5

2 Overview 7
2.1 Rendering geometry . 7
2.2 Texturing the terrain . 7
2.3 Editing . 9
2.4 GPU vs. CPU views . 10

3 Design 11
3.1 Initial idea . 11
3.2 Changes . 12
3.3 Final design . 13

4 Implementation 15
4.1 Used technologies . 15
4.2 Data representation . 15
4.3 Rendering . 16
4.4 Editing . 17
4.5 Encountered troubles . 17

5 Extensibility 19

6 Conclusion and future work 20
6.1 What went well . 20
6.2 What did not went well 20
6.3 Future work . 21

A CD content 22

3

B Programmer’s documentation 23
B.1 Introduction . 23
B.2 Compiling . 24
B.3 General notes . 24
B.4 Generating shader programs 25
B.5 Terrain . 27
B.6 GUI . 28
B.7 Lower level classes . 29

Literature 32

4

Název práce: GPU Supported Terrain Editing
Autor: Oto Petř́ık
Katedra (ústav): Kabinet software a výuky informatiky
Vedoućı bakalářské práce: RNDr. Josef Pelikán
e-mail vedoućıho: pepca@cgg.mff.cuni.cz

Abstrakt: Vykreslováńı terénu je běžně prováděno na GPU. V této práci
zkoumáme možnost využit́ı tohoto dodatečného výpočetńıho výkonu k se-
staveńı vlastńıch terénńıch dat. Spolu s přehledem běžných postup̊u edi-
tace terénu uvád́ıme také omezeńı na strukturu terénńıch dat, která jsou
kladena r̊uznými zp̊usoby zobrazeńı. Popisujeme počátečńı představu
reprezentace terénu, následné změny a výsledný návrh. Implementace
návrhu byla provedena v podobě experimentálńı aplikace, která obsahuje
sadu operaćı na úpravu terénu. Pro ověřeńı rozš́ı̌ritelnosti byl implemen-
tován efekt simuluj́ıćı erozi terénu. Na závěr nast́ıńıme směry daľśıho
rozš́ı̌reńı editoru.
Kĺıčová slova: editace terénu, programováńı GPU, konstrukce shader pro-
gramu

Title: GPU Supported Terrain Editing
Author: Oto Petř́ık
Department: Department of Software and Computer Science Education
Supervisor: RNDr. Josef Pelikán
Supervisor’s e-mail address: pepca@cgg.mff.cuni.cz

Abstract: Rendering terrain is routinely performed by GPU. In this work,
we explore the possibility to use this additional computing power for as-
sembling the actual terrain data. Limitations on terrain data structure,
imposed by different terrain rendering methods, are presented along with
an overview of common approaches to terrain editing. Description of
initial idea for representing the terrain is given, including subsequent
changes and final design. A experimental application implementing the
design was written, containing multiple operations for terrain modifica-
tion. To demonstrate extensibility of the architecture, an effect simulating
terrain erosion was implemented. In the end, we outline ways to further
extend the editor.
Keywords: terrain editing, GPU programming, shader program construc-
tion

5

Chapter 1

Introduction

Terrains are one of the very appealing objects of computer graphics, be it
because of the ability to create virtual worlds or just because of interest-
ing problems they present. Terrain rendering is used in fields spanning
from scientific visualizations through film industry to games. Need for
editing the data follows. There is need to manipulate gathered real world
data, create backdrop for a movie or just provide gamers with piece of
land to fight over.

Many papers have been written about rendering terrains using differ-
ent methods and different hardware. Current solutions implemented in
computer games allow for interactive frame rates, while still providing
user with plausible images. This was largely made possible by introduc-
tion of faster GPUs and their increasing programmability.

1.1 Motivation

There are many tools that can be used to edit a terrain, ranging from
basic image editors and map editors in games to complex 3D modeling
suites. Although graphics cards are used to accelerate rendering in most
of the editors, we believe that their potential in terrain editors is not
fully utilized. Thanks to programmability of modern GPUs, there is a
possibility to offload more work than just rendering.

1.2 Goals

Goals of this work are:

1. Study existing techniques for terrain editing.

6

2. Design a terrain-editing architecture based on programmable GPU
with focus on extensibility.

3. Implement the system in an experimental application.

7

Chapter 2

Overview

2.1 Rendering geometry

While it is possible to render terrain exactly the same way as any other
model in the scene, it is an ineffective way. Unlike most models, terrains
have interesting properties that can be taken advantage of.

First of all, they are usually huge, with only a fraction of the area
visible at the time. Resources are saved by splitting terrain into parts
and rendering only the visible ones. However, not all parts are equal and
further speedup is obtained by rendering parts with different level of
detail.

Most approaches to terrain rendering use another property of ter-
rains, they are generally flat. Although there can be complex structures,
most of the terrain geometry can be described by a height function of ter-
rain coordinates. Remaining geometry (caves, tunnels, overhangs, etc.)
is considered separate and rendered as such.

There are additional problems involved with rendering terrain geom-
etry (e.g. avoiding cracks between terrain parts, selecting proper levels
of details, . . .), however from point of editing, it is sufficient to say that
an editor must provide access to a heightfield (in corresponding level of
detail) for every terrain part to be rendered.

2.2 Texturing the terrain

To render every pixel of resulting terrain image, renderer uses a light-
ing model. In addition to camera location, additional values are needed.
These values (basic color, normal, etc.) are obtained from a set of textures
or passed from the vertex program.

8

The simplest method to texture a terrain is to use a single set of
textures (e.g. one texture containing color, one containing normal) and
stretch the textures over the whole terrain. The upside is uniquely tex-
tured terrain without any repetitive patterns, downside is limited resolu-
tion of the textures (or prohibitive memory requirements). For rendering,
it is possible to blend additional ’detail’ texture to hide limited resolution
or use virtual textures ([2],[3]) to work around graphics card memory lim-
its. However, editing such data can be compared to using early graphics
editors without support for layers.

Another method is to use a set of textures for every material, these
textures are repeated many times over the terrain. Additional textures
(masks) contain information where material is to be applied. Depending
on the number of materials, rendering can happen in a single pass (all
material textures and masks fit as fragment program parameters). In
cases of terrain parts with many materials, multiple rendering passes
might be needed, resulting color is calculated by blending partial results
in the framebuffer.

Described approaches assumed, that the shader program is same over
the whole terrain (all materials use the same shader). If materials use dif-
ferent shader programs, additional issues arise. Generic shader programs
cannot be easily merged, while type and number of parameters passed
from vertex program might be possible to unify, different fragment pro-
grams require different input textures (number, type or represented data)
and different number of parameters.

One can render terrain in multiple passes, one pass for every material
and blend results together in the framebuffer. Using geometry shader to
filter geometry based on material mask, might be used to lower perfor-
mance penalty. However, the limitation of combining materials in the
framebuffer remains.

As seen in [1], another option is to assemble shader capable of evaluat-
ing every used material. In order to make merging material shaders possi-
ble, restriction upon shader code might be needed. For limited number of
materials, such assembled shader might be all that is needed. Larger ma-
terial sets might require assembling multiple shaders, each providing code
required to evaluate all materials used in a given area. Upper bound of
possible material combinations might be high, however it is not expected
that number of materials used close together would be high. In case of
large terrain, required shaders can be preassembled before rendering and
cached.

While editing, camera usually moves at limited speed, this provides

9

possibility to assemble shaders for newly visible terrain parts at runtime.
Fast movement or large edit operations might require assembling higher
number of shaders and cause decreased performance.

2.3 Editing

Offline Editing

The easiest way to edit a terrain is to modify the heightmap in an im-
age editor. While this method is not usually feasible for correcting real
world data, it can be used to generate heightmaps for games. Distribut-
ing materials can also be done in the image editor by painting masks to
different layers and exporting them in a suitable format. Drawbacks of
this approach are lack of feedback and limited size of terrains that can
be edited in using this method.

Online Editing

To avoid feedback roundtrip between image editor and terrain renderer,
editor and renderer can be merged. Complexity of the editor rises as
image editor tools have to be implemented in way which does not interfere
with the renderer (mostly with level of detail techniques). In the end,
terrain editor transforms into sort of image editor which draws the image
(and its layers) in quite different way. Work required for integration brings
additional advantages, it is easier to add additional operations which
might be required from the editor (entity placement, saving in file format
used for final rendering, etc.). However main advantage is the elimination
of roundtrip between editor and renderer.

Shader graph

In previous methods, we assumed that materials used in terrain rendering
are already prepared - usually in the form of shader program with a set
of textures and parameters. The work of editor was limited to painting
material masks and heightmap.

Adding shader graph to the mix allows user to describe how terrain
should look based on different input values (material textures, material
masks, terrain height, slope, etc.). The graph describes fragment program
in a user friendly way, editor must then assemble actual shader source
used for rendering. Program can determine which parts of the graph are

10

safe to prune and generate multiple faster shaders, with less required
textures, for different parts of the terrain.

Constructing shader programs adds additional complexity to the ed-
itor, but allows user to further tune resulting terrain appearance. Using
a graph to describe shader allows for additional flexibility. As seen in [1],
combining with additional techniques (dynamic masks, sparse textures)
makes it possible to allow limited editing in final game.

2.4 GPU vs. CPU views

In order to properly design terrain editing architecture, we look over
different aspects involved in working with data for rendering and editing
terrain from perspective of CPU and GPU. We limit the comparison to
main points which affected the design.

Code running on the CPU has virtually unrestricted read-write access
to the program’s memory. This allows relatively easy manipulation of the
terrain data. Downside is the limited number of threads that can be run
simultaneously and requirement to share processor time. Given that CPU
does not limit code structure the way GPU does, it is considered good
practice to try offload processing to the GPU and make CPU available
to parts of the program that cannot be easily run on the GPU.

GPU has different constraints, which additionally depend on used
technologies, supported OpenGL extensions and GPU type. It is task
oriented - a program is loaded, its dependencies are bound and the pro-
gram is run. The result is either a picture in framebuffer, texture or list
of values in a buffer. Accessing the result from GPU is fast, accessing the
result from CPU requires transfer to main memory. Additionally there is
a delay between starting a task on GPU and availability of the results.

11

Chapter 3

Design

3.1 Initial idea

From the beginning, the goal has been to offload as much processing as
possible to the GPU while allowing user as much freedom as possible.
It became clear that some variation of shader graph approach would be
used. Changes in graph should be propagated instantly (except special
cases of slow effects).

Initial idea was to consider terrain as stack of calculating stages. One
stack for calculating terrain color, one stack for calculating terrain height
and a stack for every additional terrain property (slope, sunlight, humid-
ity, . . .).

Every stage of every stack is an operation. All operations, except
constants and texture fetches, take result of lower level as input with
possibility to connect results of other stacks as additional inputs. Output
is considered result of the stack; at least until another stage is added.

Stages of the color stack would usually consist of applying one ma-
terial after another, stages of the height stack would be applications of
effects and merges of edit operations between effects. In order to calcu-
late result of a stack, its dependencies must form a tree, this condition
was later relaxed to directed acyclic graph. See figure 3.1 for example of
such graph.

Create a new stack by calculating slope of height stack, add another
stage to blend a texture, painted by user within the program, and use
resulting stack as a mask in blending a material to the color stack. From
editing standpoint it looks appealing, stacks represent understandable
concepts. Assembling a shader program from such graph does not seem
unreasonable.

12

Tiled Noise
scale
tile

texture
Terrain Height

add
blur
add

texture

User Changes

editable texture

Figure 3.1: Example of a stack graph

Terrain rendering is to be done using an algorithm that avoids or min-
imizes cracks. For every part of terrain to be rendered, query consisting
of part’s location, size and level of detail is constructed. Resolving this
query, graph provides a shader program, which is then used to render the
part.

To optimize assembled shader, minima and maxima of outputs over
areas are calculated and results are used to avoid generating shader code
from parts of the graph; based on these values, stages have the option
to behave as no-op. This is done to avoid running code and binding
textures used for calculating a material in areas where material mask is
zero. It would also lower the number of used textures in most versions of
assembled shader.

3.2 Changes

The problem was dependencies, with every stack having only the top
result, stacks would need to be split in order to allow access to values
in the middle of the stack. Such access would be needed for example to
calculate stack for erosion (which needs access to terrain height) which
itself would be then accessed by terrain height.

Having output at every stage was considered. Every stage would have
input from the previous stage, additional inputs and an output which
would connect to the next stage and possibly used as input to different

13

stacks. It would even allow stage to depend on results of multiple lower
stages of the same stack. However, allowing outputs from within the
stack would make graph more complex. Assembling a shader program
from such graph, required rethinking of resulting structure of generated
shaders.

It the end, it became clear that connection between neighboring stages
of a stack is just another connection, resulting in a graph of freely con-
nected nodes. While loosing the stack metaphor might leave graph a bit
harder to navigate, it allows more freedom in constructing the graph. It
is also makes easier to see direction of dependencies, making it easier to
avoid circular ones.

Initial design called for two separate graphs, one for calculating height
(used to assemble vertex program), another to calculate color (to assem-
ble fragment program). However, some operations used in calculating
color would need access to height data as well, to avoid duplication of
height stack and its dependencies, the design was changed to single graph
for generating both shader types.

Shader generation was also subject to changes. Every graph node can
use information about target terrain area to provide suitable piece of
shader code. This allows nodes to provide different code based on level
of detail and terrain coordinates.

3.3 Final design

Terrain is represented as a directed acyclic graph of nodes called genera-
tors. Every generator has zero or more inputs and outputs parametrized
by type of index (in current implementation always float2) and type of
value (in current implementation type between float and float4). In or-
der to use generator output, every input has to be connected. Additional
generator properties can be set too, these are used to tune generator
operation (texture filtering, constants used in shader, . . .).

Generators can provide editors, which can modify operation of the
renderer and receive user input. This is used in editable texture generator
and allows modification of textures.

As result, terrain is editable in two different ways - one by modifying
properties of generators, second by changing the graph that calculates
terrain height and terrain color.

To render a part of terrain, the graph is evaluated for vertex and
fragment program. Requests for areas required from given generator are
merged and generator is then queried for smallest enclosing rectangle.

14

Figure 3.2: Part of terrain graph in the application

Generator is free to provide code, that uses any of generator’s inputs,
the area used to query inputs can be enlarged if needed. In order to
avoid multiple instances of single generator, queries on input have the
same level of detail as the query being evaluated.

It is also possible to evaluate a subgraph of inputs independently, use
assembled programs to render input values to a texture and return a code
to sample the texture, this is used in render-to-texture generator.

Generator outputs can also be queried for a minima and maxima over
given area, this can be used to avoid evaluating unnecessary parts of the
graph. It is also used to calculate height values for bounding boxes of
terrain parts. See figure 3.2 for example of the graph in final design.

15

Chapter 4

Implementation

4.1 Used technologies

Program was developed on the Linux operating system. This slightly af-
fected selected technologies. That said, libraries used are portable and a
Windows build was created. Program is written in C++, with Qt4 for
GUI and OpenGL & Cg for graphics. Other supporting libraries are glew,
loki and openil. Libraries’ homepages are listed in appendix Program-
mer’s documentation, which also contains overview of the implementa-
tion at the source-code level. The application is present on included CD,
see CD content for further information.

4.2 Data representation

Terrain description is stored in a graph of generators (nodes).
Each generator has a name, set of modules, named inputs and

named outputs. Graph contains at least two generators with no outputs1,
which represent final terrain height and color. Additional such genera-
tors can be added as probes to allow easier access to terrain rendered
using only a subgraph. Generators are assigned to layers and circular
dependencies are prevented.

Aside from the main value, each generator output also provides a
res value. Its estimate is accessible in main program, real value can be
location dependent and is accessible only in generated shader. This value
describes distance to neighboring texel; for generators without raster (e.g.
constant color or value) a default value is returned. Providing res value

1The generators have outputs, however, they are hidden from the user

16

allows creating generators which calculate normal vector over the terrain.
Every time generator is queried, it resolves itself to one of its mod-

ules. Its responsibility is to provide Cg code representing the generator
and also signal changes, which might require re-querying of the graph.
Like generators, modules have inputs. They have the same signature as
generator’s inputs, however, not all generator inputs have to be present.
Inputs not present in module are not queried, which allows for smaller
shader program. Module inputs also contain epsilon value; query area of
connected generator is incremented by epsilon2 in every direction. This
ensures safe sampling of neighboring texels.

Generated Cg sources are compiled and the result is cached.
Changes in the graph or generator properties are detected and new

shaders are constructed.

4.3 Rendering

Terrain geometry is rendered using a simplified version of algorithm de-
scribed in [1].

The terrain is split to square tiles of different sizes. Parts of the terrain
which should be rendered in higher detail are covered with larger number
of small tiles, lower detail parts are covered with few large tiles.

Each tile consist of 16 × 16 vertices. If all tiles are of the same size,
triangulation is regular. If a side borders with larger tile, every second
vertex is skipped; this is done to avoid terrain cracks. Additionally, tile
neighbors can only be same size, nearest smaller or nearest bigger size.

In order to determine tile size, current implementation considers only
distance from the camera. Tile size is also used to select level-of-detail,
value which is further passed to shader program construction. To avoid
rendering unnecessary geometry, an octree is used to cull parts of the
terrain outside the view.

For every rendered tile both vertex and fragment programs are gen-
erated. Minimum and maximum height over the area is also calculated
and used for frustum culling.

2Unit of epsilon is local res value.

17

4.4 Editing

Graph structure

Editing the structure of the graph is done through separate GUI win-
dow. Qt’s GraphicsView is utilized to present user with editable graph of
generators. Items representing generators draw inputs on their left side,
outputs on the right side. Changes made in the window are mirrored to
the graph used to generate shaders. User is prevented from connecting
outputs of generator which does not have all inputs connected, creating
circular dependencies is also prohibited.

Generator properties and data

Generator properties are set on the right side of the main window. Gen-
erator’s editor is responsible for drawing that area and implementing
changes. While most editors only set generator properties, editor can
also intercept user input and render additional geometry. With trans-
form feedback enabled, the terrain is rendered for second time, geometry
shader is used to test triangle against camera-mouse ray; this avoids
copying terrain data to the main memory and performing testing on the
CPU.

Editable generator is an example of a generator that can edit
data. Editor draws additional geometry (cursor) and processes user input.

Changes of generator properties trigger regeneration of shader pro-
grams if needed.

4.5 Encountered troubles

Using Cg combined with the need to render to a buffer object (for terrain-
ray collisions) required using NVIDIA-only OpenGL extension 3, this
prevents program from running on graphics cards without this extension.

Using Qt library for GUI worked well most of the time. Minor issue
was encountered in initializing additional libraries (Cg, glew) at the right
time. However, sharing OpenGL context with overlay text drawn by Qt
in the main window turned out tricky4. In the end, it required carefully
separating code which needs to access OpenGL and code which might
even indirectly trigger repaint event.

3NV transform feedback
4For details, see GUI section of Programmer’s documentation

18

Boost::serialization turned out to be a mixed blessing, it allowed fast
initial implementation, but bugs caused by slight mishandling of the li-
brary were hard to diagnose.

19

Chapter 5

Extensibility

In order to test the extensibility of the program, a non-trivial generator
was written. The implementation is based on the water erosion simulation
described in [4].

Generator has single input (terrain height) and multiple outputs (ter-
rain height, water height, total height, outflow and velocity).

At the beginning, the subgraph connected to the terrain height input
is evaluated and the result rendered to the texture. Simulation is then run
between two sets of three textures. Seven render-to-texture operations are
needed for single simulation step, shaders used are hand written.1

Once simulation is finished, generator is marked as ’current’ and a
module sampling textures with simulation results is returned. Simulation
is re-run if input subgraph is changed or generators within subgraph
change their values. To control the simulation, an editor was written,
it allows user to set simulation parameters and once satisfied with the
values, re-run the simulation.

Resulting generator does return modified terrain height, however, tun-
ing parameters to provide likable result is rather difficult.

1If a generator requires to use a generator input in such case, providing a subclass
of shadergen::Pass class is needed

20

Chapter 6

Conclusion and future work

6.1 What went well

We designed and implemented an extensible program for terrain render-
ing which runs on both Linux and Windows. It is possible to extend the
program by creating additional generator types1. Program is able to syn-
thesize Cg shader programs based on graph description given by user.
Changes in the graph structure or generator properties are reflected in
timely manner in the rendered image.

6.2 What did not went well

Probably the most troubling was underestimation of the scope of the
problem. Initial design silently expected that a variation of sparse vir-
tual texture ([2],[3]) would be implemented as an early modification, this
would allow larger terrains and effective caching. Delays caused by ob-
taining minimum and maximum of terrain height turned out to be higher
than expected and visibly slow down program in cases of fast camera
movement. Debugging the program was also harder than expected.

1See chapter Extensibility

21

6.3 Future work

Performance of the solution can be improved, adding sparse virtual tree
implementation and effective caching of generator stats should visibly
improve performance.

Extending the program to generate geometry programs would allow
using terrain data for filtering geometry, it would allow for easy automatic
placement of entities such as trees and rocks.

Last but not the least, for serious use, more tools for texture editing
and additional generators would be needed.

22

Appendix A

CD content

Included CD-ROM contains developed application, directory list follows:

• /thesis - PDF version of this thesis

• /bin-linux64 - compiled binaries for x86 64 Linux

• /bin-win32 - compiled binaries for 32-bit Windows

• /src - source tree of the application

• /src/texts - user documentation (in Czech), also copied to direc-
tories with compiled binaries.

• /src/html - Doxygen generated documentation, includes a copy of
Programmer’s documentation.

Windows binaries folder contains required libraries. Linux binaries ex-
pect required libraries installed in usual paths1. For building from sources,
see Programmer’s documentation for details. In order to run the program,
system with NVIDIA graphics card 8800 or later is needed. The program
was developed on Linux operating system, while Windows binary is pro-
vided for convenience, it had received less testing than the Linux version.
In case of problems running the application, author can be contacted at
oto.petrik@gmail.com

1Binaries compiled on x86 64 Fedora 14

23

Appendix B

Programmer’s documentation

This appendix contains modified version of programmer’s documenta-
tion. Original version is incorporated by Doxygen in generated documen-
tation stored doc/html subdirectory of the source tree. Following text
has been modified for easier reading without Doxygen’s links, however,
occasional glance at the source code might be needed.

B.1 Introduction

This program allows for terrain editing using a graph of connected shader
parts that compute height and color of the terrain. See texts/userdoc.txt
in source directory for user documentation.

Program was developed on a x86 64 linux system, care has been taken
to allow building under visual studio express, however windows-only bugs
might still lurk somewhere.

Installation

Program requires compiled binary and directory ’cg’ from source tree.
Example file ’example.terr’ is provided (which requires directory ’im-
ages’ from source tree to be present). OpenGL 3.2 with NVIDIA trans-
form feedback extension 1 is required to run (NVIDIA 8800 type card or
newer).

1GL NV transform feedback

24

B.2 Compiling

Program uses CMake build system. Run cmake in directory containing
file CMakeLists.txt, then make (on linux and like) or nmake (windows).
CMake can generate Visual Studio solutions. Program was developed us-
ing GNU g++ on Linux, Windows binary was created using Visual C++
2008 Express. On Windows, FindDevIl.cmake file in CMake installation
might need tweaking - find ’IL/il.h’ instead ’il.h’.

Dependencies

Required libraries

• Qt 4.7 http://qt.nokia.com/

• DevIL http://openil.sourceforge.net/

• loki http://loki-lib.sourceforge.net/

• Boost2 1.44 http://www.boost.org/

• NVidia Cg 3 http://developer.nvidia.com/cg-toolkit

• GLew http://glew.sourceforge.net/

and CMake build system (http://www.cmake.org/) to compile the pro-
gram.

Sharing OpenGL context with Qt library is sometimes tricky, if you
use Qt version newer than recommended changes might be needed.

B.3 General notes

Coding style

Older parts of code use lots of underscores and small letters style,
which suffers from collisions between class names and variable names.
This became problem only later in development, after some parts of code
were already written using the style; it also lead to using multiple names-
paces to minimize collisions. Some of the code was converted to the new
style, unfortunately, parts of the source still use older style.

New style is camel-case based and does not suffer from collisions as
much, although it has few glitches (naming enum values). See shadergen
subdirectory for example of new style.

2For Windows build use version 1.43.

25

http://qt.nokia.com/
http://openil.sourceforge.net/
http://loki-lib.sourceforge.net/
http://www.boost.org/
http://developer.nvidia.com/cg-toolkit
http://glew.sourceforge.net/
http://www.cmake.org/

Used naming conventions

Methods named attach something3 (or detach something) take (or
give up) ownership of object passed as parameter. Names register some-

thing (or unregister something) are used for methods that do not take
(or give up) ownership of the object in question. Unless stated otherwise,
all registered objects have to be unregistered before destruction of the
object. Although there are getters returning non-const objects, do not
modify them unless absolutely sure. Usual case is modification of data
before binding/registering/etc.

Removing object from a collection

If object A needs to unregister/detach/. . . itself from a object B that
keeps a pointer to A, extra care has to be taken to make sure that given
code is not called from a loop over pointers owned by B. Most collection-
like classes use std::set or std::list that can withstand invalidation
of neighboring iterator, however none of the classes can withstand inval-
idation of current iterator.

Use Eclipse’s ”Open Call Hierarchy” function or Doxygen caller graph
feature to find out callers of the code in question and change caller’s
loop to either safely iterate using two iterators or to make a copy of the
collection and iterate over the copy.

B.4 Generating shader programs

Shader program construction occurs in two phases: user creates a graph,
program converts the graph to a shader.

Creating the graph

User connects GUI widgets representing generators to construct directed
acyclic graph. Few basic rules have to be followed:

• no loops (checked using Generator::dependsOn)

• to connect to generator’s output, all its inputs have to be connected
(checked using Generator::hasAllInputsConnected)

• to remove generator, all its outputs have to be disconnected (checked
using Generator::hasSinks)

3Old coding style convention is used because most affected classes still use it.

26

The rules make sure that it is always possible to convert graph to
a correct shader. Exceptions to this rule are probe generators, they are
created without connected inputs, but can be used as target generator
for shader construction, see Tree members currentVertexOutput and
currentVertexOutput for code that avoids using invalid probe generator
as target.

Converting graph to shader

Graph is stored in a Tree (which is really directed acyclic graph, not
a tree; idea evolved, name did not), target generator is selected using
either one of Tree’s methods to get default generator or another means
(RTTGenerator). Generated shader is valid only over given area and pro-
vides data for given lod4. Using these parameters, one of Pass descen-
dants is constructed.

For every generator, pass keeps requested area. Generators are re-
quired to provide a module (Generator::provideModule), module is
used to determine requested area of generators connected to inputs. Gen-
erators are processed from higher layer to lower to make sure that all
dependent generators (and provided modules) have opportunity to en-
large requested area (GeneratorInput::requestedArea). If the area is
empty, no module is requested. This occurs if generator has multiple in-
puts and provided module has only some of them. It is also the core of
shadergen usefulness, generated shader contains only what it needs — no
extra textures or code that would not be used anyway.

Once pass is resolved, resulting shader and parameters can be ob-
tained. Cg programs generated for vertex and fragment program share
TEXUNITn semantics, to avoid collision Pass constructors have optional
parameter to start counting TEXUNITn names where previous shader
(vertex program) left.

For usage, see Tile::provideFragmentProgram.
Generated vertex program are also used for mouse cursor vs. terrain

testing (see terrain::intersection).

Serialization

Serialization is done using boost::serialization see Lower level classes
section for details.

Generators usually serialize all modules and modules serialize all in-
puts and outputs (samplers are not serializable and have to be recreated).

4an unsigned value selecting the level of detail

27

Some generators prefer to recreate all modules on deserialization, those
change value of Generator::serializeModuleList to avoid serializa-
tion of modules.

B.5 Terrain

Program displays terrain as a set of triangle meshes, with every mesh is
rendered separately.

Terrain is subdivided to allow more detailed rendering where it is
needed. Current version uses only distance from camera to determine
which parts are important. If fast stats5 caching is implemented, it would
be possible to use differences in terrain heightmap (and between height-
map lods) as well.

Nodes

Internal representation of terrain is a collection of nodes (terrain::node)
which can be accessed using node storage. Every node is in one of two
states:

• split (does no rendering, only keeps track of its children)

• leaf (does rendering using terrain::Tile class)

Every node can be selected using value of type id t as an index.
There are rules to ensure terrain without cracks, the most important

is that every neighboring pair of nodes differs in id t::lod by zero or
one. Lod value zero means that node is as detailed node possible (no
vertices are skipped).

If lod does not match, node with lower lod uses irregular mesh to
avoid cracks.

Changes between node states are propagated to neighboring nodes,
which allows them to update their meshes accordingly.

Tiles

Leaf node uses terrain::Tile class to render the mesh. Tile class re-
quests vertex and index buffers from tilegen. Vertex buffer is shared by

5shadergen::GeneratorOutputStats

28

all nodes, index buffers are shared by all nodes that have same neigh-

bour bits signature. If node::neighbour bits change, method update-

Borders is called to refresh the index buffer.
Tile uses stats to calculate bounding box. TerrainFragmentPass and

TerrainVertexPass are used to construct shaders for displacing and
coloring the heightmap. Invalidation of stats, fragment or vertex program
is detected and tile is registered with terrain object for revalidation.

B.6 GUI

Main windows and OpenGL

User interface for editing the generator graph is implemented in TreeEd-
itScene.hpp and TreeEditScene.cpp.

CustomGLContext.cpp contains GLEW, Cg and OpenIL initializa-
tion. OpenGL context is shared between terrain rendering and normal
QGraphicsView rendering 6.

Precise moment of GL context initialization seems to vary between
Qt platforms, GraphicsView (derived from QGraphicsView) takes extra
care to render only after all libraries have been properly initialized.

To avoid GL state conflict, GraphicsView and other parts of the GUI
use TAKEOVER GL macro to save Qt’s OpenGL state, set GL to known
state and enable Cg. The macro has a counter making it safe to have
multiple instances on the stack. Whenever Qt event handler or slot re-
quires to do something with terrain, shadergen or perform an OpenGL
call, it must use the macro to avoid fighting with Qt over GL state.

Editors

Editors are classes, usually derived from QWidget, which allow changing
generator parameters (filtering, changing constant values, etc.) and/or
editing generator data (painting into texture).

Generator::editorName holds type of editor required to modify given
generator, using this name and a builder system, EditorSelectionWidget
creates new instance of required editor and generator keeps this object
for its lifetime (Generator::setEditorObject).

Editor::activate and Editor::deactivate are used by editors to
temporary override default vertex and/or fragment target generators (us-

6For details see code in app/GraphicsView.cpp

29

ing methods overrideVertexOutput and overrideFragmentOutput of
Tree class).

Editor::terrainTest is called with information whether mouse cur-
sor is over the terrain and if so, terrain coordinates of the cursor. This is
used for texture painting (EditableTexture2DGenerator).

B.7 Lower level classes

Serialization

Serialization is done using the boost::serialization, resulting file is an
XML file with an unfortunate structure. The library does not support
marking which pointers should be used to serialize only references to
already (or later) serialized object and which pointers should serialize
objects themselves. However, an XML file is still easier to debug that
binary file (the other boost::serialization option).

See boost documentation on details how the library works. Relevant
files that show how the library is used are serialization.cpp, Genera-
tor.hpp and derived generators.

It should be noted, that using serialization might produce warnings
about unused variables. It also significantly slows down the compilation.

File serialization.cpp contains functions that allow mapping absolute
filenames to relative, this allows deserialization from different absolute
path to the one used in serialization.

OpenGL & Cg

Wrapping of OpenGL and Cg libraries is done in src/gl directory. Most
of it is straightforward, interesting parts are probably util/shaders.cpp
for loading shaders from cg subdirectory of program directory and buf-
fer bindings.hpp, buffer set.hpp and buffer targets.hpp which together al-
low reasonable management of buffer object for indices, vertices and ver-
tex attributes.

Render subsystem

Render subsystem orders drawing calls to make sure all instances of a
model are drawn together without unnecessary state changes. Rendering
order of models is arbitrary, there could be a speed gain in ordering mod-
els to minimize state changes between models, however current program
has relatively few models in the view at a time.

30

For now, render subsystem serves mostly to avoid mixing rendering
tiles and rendering bounding boxes (if enabled).

Camera classes (e.g. render::generic camera) allow for coupling
render instances with matrices required for rendering.

Scene management

Scene management is done using an octree. Class scene has views (each
with a camera). Every scene view tracks visible nodes and entities7.

Method update entity of scene view class handles updating ren-
der instances which should be rendered using given camera. There is no
mapping between tree entity and render::instance; tree entity is
free to add multiple render::instances to camera in the show method.
Only requirement is to remove those instances in hide method.

There is a debug feature to allow displaying bounding boxes of tree
nodes. It is expected that bounding boxes for entities will be drawn by
entities themselves if required.

Image

Files Image.hpp and Image.cpp containing wrapper class over OpenIL
library. It is used to store and load textures. Supported types are RGB8,
RGBA8 and 16bit grayscale image (useful for heightmap).

Builders

Given that generators select their editors by a string, there is a need for
system that will, for given name, provide a configured instance of a class
or an instance of derived class. These mappings can be spread over many
files (see number of editors and generators), requiring an initialization
code to include all header files and register them would be error-prone.
File util/builder.hpp solves both, it provides templates and macros, that
allow easy creation of snippet that constructs a instance, and registering
the snippet with a singleton responsible for providing a instance based on
the string. Registration of the snippet is done in a constructor of specially
crafted class instantiated as global variable.

Beware, builders implementation is both template and macro heavy.
See generators, GeneratorFactoryCollectionModel::data, NewGenera-

torWindow::buttonClicked and EditorSelectionWidget::provideEditor for
examples how to use builders.

7Classes tree node and tree entity

31

Storage

Storage subsystem lives in util/storage.hpp and is used in util subdirec-
tories of gl and render directories. Useful for providing common objects
like render models for box, coordinate system origin, etc. It is also used
to load common shaders form cg subdirectory of program directory.

32

Bibliography

[1] Andersson J.: Terrain Rendering in Frostbite Using Procedural
Shader Splatting, ACM SIGGRAPH, 2007

[2] Barrett S.: Sparse Virtual Textures, http://silverspaceship.

com/src/svt/

[3] Mittring M.: Advanced Virtual Texture Topics, ACM SIGGRAPH,
2008

[4] Mei X., Decaudin P., Hu B.-G.: Fast Hydraulic Erosion Simulation
and Visualization on GPU, Pacific Conference on Computer Graph-
ics and Applications, Pacific Graphics 2007

33

http://silverspaceship.com/src/svt/
http://silverspaceship.com/src/svt/

	Introduction
	Motivation
	Goals

	Overview
	Rendering geometry
	Texturing the terrain
	Editing
	GPU vs. CPU views

	Design
	Initial idea
	Changes
	Final design

	Implementation
	Used technologies
	Data representation
	Rendering
	Editing
	Encountered troubles

	Extensibility
	Conclusion and future work
	What went well
	What did not went well
	Future work

	CD content
	Programmer's documentation
	Introduction
	Compiling
	General notes
	Generating shader programs
	Terrain
	GUI
	Lower level classes

	Literature

