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Introduction

The goal of this thesis is to create a modular ray tracer using OpenCL technology
to take advantage of the computing power of modern GPUs.

Motivation

Ray tracing is an advanced form of image generation in computer graphics with
many specifics. It can be used to create photo-realistic imagery without complex
tricks, by simply simulating how the material in question behaves, and tracing the
causes of color in the image. The downside of ray tracing is the large complexity
put into each pixel of the image, which prevents ray tracing from becoming the
first pick for any computer graphics.

On the other hand, ray tracing is very parallel task, easily spreading to multi-
ple computing units. Current CPUs have as much as 10 physical cores, but GPUs
have over 500 cores. That seems like GPUs are an ideal target for ray tracing
implementations, but that is not entirely accurate. GPU cores often operate on
much lower frequency than CPU cores, have different memory hierarchy, and of-
ten are not as independent as CPU cores. However, when used properly, GPU
outperforms CPU hands down. Due to this, ray tracing on GPU has been an
interest to many researchers.
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1. Introduction to ray tracing

Ray tracing is a name for several techniques used for generating two-dimensional
views of a three-dimensional scene. All these techniques can be characterized as
simplified simulation of light transport using geometric optics,

1.1 History of ray tracing

The simplest version of ray tracing, today more often referred to as ’Ray Casting’,
was introduced by Arthur Appel in 1968[1]. The idea was to create a ray coming
from the eye through each pixel of the image and intersecting it with the scene,
finding the closest object that intersects with the given ray. At this point, ray
tracing was used for solving visibility problems for solid objects, rather than for
creating realistic images, due to not simulating reflection and refraction effects.
Appel did, however, use shadow rays to determine whether the point is in shadow
or not, although that is not considered a part of ray casting.

eye point

image plane
scene objects

Figure 1.1: Ray casting, with highlighted primary rays

Probably the most significant improvement was brought in by Turner Whitted
in 1980[2], creating what is today commonly known as ’Ray Tracing’ or ’Whitted
Ray Tracing’ or ’Recursive Ray Tracing’. His idea was to use rays not only
for finding the nearest object for each pixel, but also to determine the color of
this pixel. In his work, Whitted introduced three types of secondary rays1 cast
from the intersection point: reflection rays, refraction rays 2, and shadow rays 3.
Refraction and reflection rays were used to simulate optical properties of reflective
and (semi-)transparent materials, while the shadow rays were used to find any
objects obstructing the light source, and therefore create very accurate shadows
and add realism to the image. The reflection and refraction rays are traced in
recursive fashion, creating more secondary rays on new intersections with the
scene, until the rays contribution to the result is considered minimal and the ray

1Secondary rays are rays not originating in the eye, but rather in the intersection point
2at most one per intersection each
3one per intersection per light source
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is terminated4

eye point

image plane

scene objects

light source

Figure 1.2: Recursive ray tracing, with highlighted reflection rays and shadow
rays (dotted)

The most recent improvement of Ray Tracing algorithms in terms of real-
ism was ’Distributed Ray Tracing’, introduced by Robert Cook in 1984[3]. This
method extended Recursive Ray Tracing by creating several reflection and refrac-
tion rays, and sampling them using probability methods. Distributed Ray tracing
is also used to simulate motion blur or depth of field, by shooting multiple pri-
mary rays per pixel, with different timeframe or focal point. Multiple secondary
rays produce realistic effects like glossy reflection, diffraction or smooth shadows
from area lights, but also significantly increase the computational complexity.

eye point

image plane

scene objects

light source

Figure 1.3: Distributed ray tracing, with highlighted multiple reflection rays

4shaded without casting recursive rays
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1.2 Performance of ray tracing

While Ray Tracing can generate very realistic imagery, it comes at a price.
Measurements show that up to 95% of time is spent on calculating ray-triangle
intersection[2], which makes it a perfect target for improvements.

There are two independent directions of research, one aims to improve the
speed of a single intersection test, while the other aims to reduce the number of
triangles each ray has to be tested against in order to find the closest intersection
point.

Methods of improving speed of intersection tests mostly consist of using vector
instructions to do several tests at the same time, or intersect the scene with a
higher order primitive instead of a ray. Such methods are often highly platform-
dependent and will not be discussed in detail in this thesis, instead we will discuss
ways of reducing the number of intersection tests needed.

Hybrid techniques

Some parts of ray tracing pipeline can be approximated by methods used in classic
rasterization pipeline, which often have significant positive performance impact.
However, these methods come at the cost of image quality, which makes them
unsuitable for general ray tracers, but useful in specific applications.

Examples of such techniques would be using depth buffers instead of trac-
ing shadow rays, or vista-buffering, a method of using perspective projection to
determine intersection candidates for primary rays.

Spatial subdivision

The general idea of spatial subdivision is to divide space into non-overlapping
cells, and to traverse the ray through this structure, intersecting only with trian-
gles present in relevant cells. Disadvantage of spatial subdivision is creation of
duplicate entries for triangles overlapping multiple cells.

Some well-known examples are uniform grids, octrees and kD-trees, discussed
later.

Mailboxing

Mailboxing is based on a concept of intersection memory. Spatial subdivision
techniques create neighbor cells containing the same triangles, which cause the
algorithm to repeat some intersection tests, gaining no new information. Mailbox-
ing tries to prevent this by remembering a certain number of triangles the ray has
already been intersected with in a ring buffer-like data structure. This, however,
adds some computational and memory overhead, and has not seen widespread
adoption.

An improved version called hashed mailboxing tries to lower the overhead
of consulting the mailbox by using a small hash table instead of a ring buffer,
providing computation overhead independent on mailbox size. Despite this, the
overhead still proves too big for general use[4]. However, techniques intersecting
higher order primitives consisting of multiple rays with the scene do see perfor-
mance improvements.
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Scene subdivision

Scene subdivision techniques try to divide objects in the scene into groups, and
quickly eliminate the whole groups as intersection candidates. As opposed to
spatial subdivision, scene subdivision structures only have one entry for each
triangle, but can overlap in space, adding some complexity to construction and
intersection algorithms.

An example of scene subdivision techniques are bounding volume hierarchies,
which will be discussed later

1.2.1 Uniform grids

Uniform grid is a simple spatial subdivision technique, creating a three dimen-
sional grid of uniformly sized cells. This approach is very easy to implement, and
very fast to build and therefore well suited for dynamic scenes.

Figure 1.4: Uniform grid example

As a non-hierarchical approach, Uniform Grids suffer from teapot-in-a-stadium
problem, which occurs in scenes with small complex geometry in one place. In
such case, most of the cells with the large low-detailed scene (stadium) will be
empty, while the cell containing the complex geometry (teapot) will have a long
list of triangles, which greatly decreases performance

A simple way to create an Uniform Grid in compact memory with O(n)
complexity[5] is explained in Algorithm 1.

Simple traversal algorithm for uniform grids is given in Algorithm 2
One of posible improvements of this concept is sparse grids, which include

the distance to nearest non-empty cell in each cell to improve traversal speed
for scenes with lots of open space, Another such improvement is hierarchical
grids, which embed new uniform grid into some cells, creating partially hierar-
chical structure, which increases scale differences needed for teapot-in-a-stadium
problem to manifest. Nevertheless, it does not eliminate it entirely. Another grid-
based acceleration structure is a perspective grid, which partitions a perspective
projection of space and simplifies the traversal algorithm. However, this is only

6



Algorithm 1 Fast construction of compact uniform grid

This algorithm requires one fixed array of length Cell Count+1, referred to as
Cells, and a second array of triangle indexes, referred to as Tris, allocated
later.

for all t ∈ Triangles do
for all c ∈ Cells intersecting t do
Cells [c] + = 1

end for
end for
for c ∈ 1 ... Cell Count do
Cells [c] + = Cells [c− 1]

end for
Tris = Allocate memory for Cells[Cell Count]
for all t ∈ Triangles do
for all c ∈ Cells intersecting t do
Cells [c]− = 1
Tris [Cells [c]] = t

end for
end for

Triangles in a given cell C are now found in Tris [Cells [C] ...Cells [C + 1]− 1]

Algorithm 2 Traversal algorithm for uniform grid

Ray is in form origin + t ∗ direction

set tx,ty,tz to direction / cellsize {this represents t increments between cells
in each direction}
set dx,dy and dz according to the origin point {this represents t increment
required to move to next cell in each direction}
intersect ray with all triangles in the current cell
while intersection not found do

find minimal di and subtract it from dx,dy and dz
set the now zero di to corresponding ti, move one cell in the corresponding
direction

end while
select intersection with minimal t in the current cell {shadow rays do not need
to find the closest intersection}
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usable for primary rays, one would need a regular grid or another acceleration
structure for secondary rays.

1.2.2 Octrees

Octrees try to solve the teapot-in-a-stadium problem by adding adaptive hierar-
chy, while still retaining relatively simple traversal and construction algorithms.

Generally, octrees are tree structures where each internal node has eight chil-
dren. In Ray tracing, octrees are visualized as cells splitting into eight by halving
each axis.

A basic octree construction algorithm would begin by creating one cell con-
taining the entire scene, and then finding any cell with too many triangles and
splitting it

However, due to added construction complexity compared to uniform grids
and poor performance compared to kD-trees, octrees are not widely used in mod-
ern ray tracers

Figure 1.5: Octree example

1.2.3 kD-trees

kD-trees are a popular kind of binary space partitioning trees, which means that
every internal node has two children. In case of kD-tree, each cell can be split by
a plane perpendicular to an axis at any point of the cell.

Most, if not all, construction algorithms use some form of Surface Area Heuris-
tic (or SAH for short) to aproximate the cost of intersecting a ray with this cell.
A simple SAH weighs the cost of intersection tests with the bounding box and
all triangles contained within the cell5 against the surface area of the cell 6.

It is easy to see that SAH is linear and partially continuous, with disconti-
nuities in triangle begin/end points. This means that any candidate for minimal

5all triangles are assumed to be of similar size
6with an assumption that the rays are uniformly distributed over the cells surface, which

doesn’t hold for primary rays, but still provides good estimates
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Figure 1.6: kD-tree example

SAH is a triangle begin/end point. Furthermore SAH can be easily calculated
by one pass over sorted vertex data, because the number of triangles in each cell
always changes by one.

kD-trees show superior performance to octrees, with known construction algo-
rithms with O(n log n) complexity with very good results [6], such as Algorithm
3

Algorithm 3 Fast construction of kD-tree

create lists Sx, Sy and Sz by sorting all triangle begin/end points in x,y and z
coordinate respectively

evaluate SAH on all points in Sx,Sy and Sz

if minimal SAH < cell SAH then
place the split plane on minimal SAH value
split Sx into Sx1 and Sx2 for child cells, according to the split plane position
repair Sx1 and Sx2 by adding begin/end coordinates for triangles present in
both lists
do the same for Sy and Sz {note that this keeps the lists sorted}
recurse for each child cell

end if

with reasonably low number of triangles intersection the split plane this finished
in O(n log n) time

Due to the hierarchical nature of kD-trees, traversal algorithm is best ex-
plained in recursive way, as in Algorithm 4

1.2.4 Bounding Volume Hierarchies

Bounding Volume Hierarchies (BVHs for short) are a scene subdivision structure,
which creates geometrically simple pseudo-objects (mostly axis-aligned bounding
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Algorithm 4 Traversal algorithm for kD-tree

if cell is leaf then
intersect with all triangles
if intersection found then

select closest intersection and finish
end if

else
intersect ray with split plane
if intersection is after ray leaves the cell then

recurse into first cell
else if intersection is before ray enters the cell then

recurse into second cell
else

recurse into first cell
recurse into second cell

end if
end if

boxes, but some researchers work with higher order volumes) to exclude large
amount of geometry from intersection testing. This is done in a hierarchical
fashion, creating bounding volumes over bounding volumes etc. creating a tree-
like structure. As opposed to kD-trees, BVHs tend to have a lot of empty space,
with no leaf volume (and therefore no triangles to test), but also contain space
which is encompassed by several leaf volumes, forcing rays going through this
area to be tested against triangles in all these volumes (no triangles are shared
though).

Figure 1.7: Bounding volume hierarchy using axis-aligned bounding boxes

there are several BVH generation techniques, with top-down techniques (split-
ting space into groups, similar to kD-tree construction) being faster, and bottom-
up (grouping objects and smaller groups until all geometry is in a single group)
creating superior results.

10



2. GPU Computing

GPU computing or GPGPU refers to the usage of advanced graphics hardware
to perform non-graphics related calculations. This is done by running programs
called kernels on GPU shader units in a parallel manner.

2.1 History of GPU Computing

Historically, users were able to adjust some options regarding the rendering
pipeline to change the behavior of texturing and shading, but this was very lim-
ited. As speed of such hardware increased, users became interested in greater
flexibility for fragment shading.

In 2000, Microsoft published version 8 of their DirectX API, which included
support for programmable fragment and vertex shaders 1. At first, these shaders
were very limited (in maximum instruction size, floating point precision etc), but
with each new revision of DirectX these limitations loosened.

Starting with GeForce 8 and Radeon HD2000 series (introduced in 2006/7
respectively), instruction sets for fragment and vertex shaders became so similar
that manufacturers began using a unified shader design, where one hardware unit
could run both fragment and vertex shaders.

in 2007, nVidia unveiled its CUDA GPGPU technology, designed to run ar-
bitrary calculations on GeForce 8 or newer GPU 2.

in 2008, Apple created initial version of OpenCL, submitting it to Khronos
Group3 for review and publication.

2.2 CUDA

CUDA is the first and currently most widespread GPGPU technology. The lan-
guage for writing kernels is a modified version of C, with some notable exceptions
4 and additions for parallelism and disjoint memory spaces

CUDA-compatible hardware includes any nVidia-manufactured GPU from
G80 generation (GeForce 8) onward. Hardware feature differences are specified
using ’Compute Capability’5 or CC in short. Differences between Compute Capa-
bility levels include double precision support and performance (introduced in CC
1.3, speed improved in CC 2.0), memory access capabilities, cache size, atomics
and more.

Current versions of CUDA toolkit combined with a CC 2.0/2.1 GPU supports
a subset of C++ objective functionality, with more functionality being added in
every new version of CUDA toolkit.

1First hardware with support for this new feature was GeForce 3 by nVidia and Radeon
8500 by ATi, both available in 2001

2ATi introduced their ’Close to Metal’ technology as a part Stream GPGPU toolkit at the
same time, but it has not seen widespread adoption and was later replaced by OpenCL

3maintainer of OpenGL and other open standards
4no function pointers, no recursion, no double precision floats on most hardware
5Current GPUs have Compute Capability 2.0/2.1
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Kernel execution is done in groups called warps, which are executed on a
group of shader units called SM, which shares registers, instruction decoder unit,
texture access units and SFUs6. In this architecture instructions are issued to
all threads on a SM at once. While threads can mask instructions to perform
different calculations, they have to wait in loops until all threads in a warp are
finished before proceeding. Furthermore instructions of all conditional blocks that
at least one of the threads takes have to be issued. Due to this fact, calculations
that diverge greatly suffer a serious performance penalty, and the aim is to use
as little conditional blocks as possible. Currently all GPUs can run 32 threads
on a single SM at the same time, but using larger warps is desirable, to avoid
latencies from memory access

The memory model of CUDA is also different from standard C, having three
disjoint memory spaces, global, shared and local. Local memory represents reg-
isters allocated by the running thread, and is used to keep most of temporary
variables during computation, as it has very low access latency, but is very lim-
ited in size. Shared memory is also stored in registers, but is shared between
threads in a warp. Because of not all threads are running at the same time, all
read/write access to shared memory should be protected by barrier instructions
to prevent race-conditions. Global memory represents RAM on the card, and
it is significantly larger than local memory but also much slower and has large
access latency. This is where kernel input and output data generally is. This is
also the only memory space that can be accessed on the host code (running on
the CPU). All local and shared memory is allocated statically, global memory
is allocated in host code and until recently, there was no support for dynamic
memory allocation. GPUs with CC 2.0/2.1 have an ability to dynamically allo-
cate global memory in kernel code with cooperation of the GPU driver, local and
shared memory is still allocated statically.

CUDA kernels are compiled into low-level bytecode called PTX, which is
compiled by the runtime in the driver for the specific GPU.

2.3 OpenCL

OpenCL was designed by Apple in pursuit of enabling user to develop GPGPU
applications without worrying about his target platform. The OpenCL kernel lan-
guage is very similar to CUDA, with some differences in keywords (’private’ mem-
ory instead of ’local’, ’local’ instead of ’shared’, ’workgroups’ instead of ’warps’
etc), while the runtime characteristics are somewhat similar to OpenGL, having
a set of core functionality and a set of vendor extensions. Currently, the feature
set of OpenCL is somewhat lacking, as there is no C++ support, no dynamic
allocation in kernel code, and no support for most features introduced in CUDA
CC 2.0/2.1.

Due to runtime platform detection and selection, OpenCL mostly uses kernels
distributed in source mode, and compiles them at runtime to suit the specified
platform and device 7.

The main advantage of OpenCL is openness and ability to run on several

6special function units for transcendental functions
7Binary kernels are supported, but cross-device portability is not guaranteed
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different platforms, with the latter currently not working as originally intended.
8. Some of the disadvantages are a too general approach, which causes the lack of
features in comparison with CUDA, and current state of compilers/drivers, which
often contain bugs and have non-ideal optimization routines.

The current revision of OpenCL is 1.1, which adds support for 3-component
vector types 9, moves some atomic operations into the core instead of being an
extension, and guarantees OpenCL thread-safety from host code, along with some
less significant changes. This revision is supported by AMD Stream SDK version
2.2 and newer. Unfortunately, nVidia tries to push its CUDA technology, and
their support of OpenCL is somewhat lacking. nVidia drivers version 195 and
newer support OpenCL 1.0, while a pre-release driver with support for OpenCL
1.1 is available to registered developers10.

8The same OpenCL kernel can run on both nVidia and AMD/ATi hardware, but due to
architecture differences the performance would not be optimal

9even though these are considered as 4-component in memory
10version 258.19, released in June 2010
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3. The clTracer program

clTracer is a modular ray tracing system, using OpenCL technology to utilize the
computing power of GPUs.

The aim of clTracer is rendering flythrough-like scenes, where the scene re-
mains constant while the camera changes positions. The input is a custom con-
figuration file, which references a single scene geometry file, several lights and
camera settings for all the requested frames. An interactive mode is also avail-
able, where the configuration file contains camera settings for the first frame, and
the user is able to dynamically change the position and orientation of the camera.
In addition to the configuration and geometry file, a material file with a list of
textures and the material shaders have to be supplied.

Material shaders are called directly, and thus have to be programmed in Open-
CL. However, most of the language specifics are prepared in advanced, so basic
knowledge of C is sufficient to create shaders.

Implementation details like function interfaces or code examples are not in-
cluded here, but are available in the source tree under ’doc’ subdirectory. This is
because those can change in future, confusing the potential user of clTracer after
reading this thesis.

3.1 General design

clTracer codebase consists of two major parts, the control program and OpenCL
kernels, both made of several components.

The overall design strives to be highly modular, enabling improvements or
alterations of components without affecting large amount of scattered pieces, and
thus improving maintainability.

The Central part of the design is the shared type definition, which guaran-
tees type compatibility between the control program and OpenCL kernels. Any
changes to types require recompilation of the control program, because Open-
CL kernels are runtime-compiled and automatically use the latest type structure,
which could cause invalid memory access. This also requires the use of some
preprocessor macros, in case of types with same name have different size.

3.2 Control program design

The control program consists of a grid construction component, an OpenCL com-
ponent, a configuration parser component, a scene loading component, a texture
and material loading component, an image output component, an interactive con-
trol component and a control component. Some of these components are simple,
while some will be explained into detail.

Most of the code is written in C99 with GNU extensions1, only the scene
loading component uses C++. This language was chosen for its low overhead,
direct interface with OpenCL and the possibility of code-sharing with kernels

1anonymous unions, used to mimic OpenCL vector type access
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3.2.1 The Simple components

The simplest of the components is the image output, which is used in non-
interactive mode to save the result to a file, and is basically a wrapper around
DevIL library. This component contained some custom image manipulation code
in the past, but has since been swapped for the current DevIL wrapper.

Another quite simple component is the configuration parser. This component
isn’t based on a stack machine design like parsers generated by lex/yacc and
similar, but rather works by simply trimming spaces of a line and trying to match
a keyword, and then parsing the rest of the line using C scanf function. While a
stack machine based approach is more powerful than this design, it was deemed
to be an overkill for short and simple configuration files.

The grid construction component is also in need of no explanation, as it uses
the fast compact grid building algorithm listed in section 1.2.1 as Algorithm 1

The control component is responsible for interacting with all the other com-
ponents - it takes care of calling everything in the correct order, and makes sure
that all memory gets cleaned.

3.2.2 The Scene loading component

The scene loading component is responsible for loading the triangle mesh from a
file. Wavefront OBJ was chosen as an input format, mainly due to its simplicity
and support in wide range of editors.

OBJ is a simple text-based format, with lines either adding new vertex coordi-
nates (separately for space, normal and texture) to the scene database, or creating
convex polygons by referencing coordinate index triplets. While the format allows
for incomplete triplets2, this component expects full index triplets 3. Additionally
convex polygons are not very usable objects, and are thus interpreted as triangle
fan and split into separate triangles.

No NURBS geometry is supported by the parser, and will be ignored if present
in the file. The material format of OBJ is not used, and is instead replaced by a
custom one more suited for the use-case 4.

The parser is not based on a grammar-generated state machine, but rather
has a much simpler design. After trimming any leading whitespaces, the program
takes advantage of the hierarchical meaning in most keywords in the format, and
goes through a few switch statements directly to the code used to parse the specific
line. This means the code is still easily readable and fast, as it only passes the
line once. On the other hand, the code does not recognize an invalid input file if
the incorrect part is not used to determine the type of line being parsed..

Due to the OBJs stream-like format with back references, this component is
written in C++ to take advantage of templates for automatically resizing data
structures.

2space coordinates are required, texture and normal coordinates may be omitted
3There is no sensible default value - zero would break normalization, anything else would be

wrong when used, therefore such polygon is ignored
4the material file states the name of material, followed by the number of image textures

used, followed by texture filenames. The actual material shader is provided elsewhere
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3.2.3 The Interactive control component

This component handles the interactive mode, and is the only place with platform-
specific code 5, currently with support only for GLX 6, on which the code is
developed

This code uses GLUT7 to create an output window, handle input and copy
output from OpenCL memory onto screen.

The most straightforward way of achieving this goal is to use OpenGL-OpenCL
texture sharing, which should allow an OpenCL kernel to write directly into the
OpenGL texture. This, proved to be non-functional for some reason, and a
workaround had to be found.

The cleanest way to do this was found in the AMD Stream SDK examples8,
and it is to employ a pixel buffer as a middle step. This trick uses the pixel buffer
as a simple byte array - the image is converted from its internal floating point
representation into 8bit per channel RGBA and saved into the pixel buffer. The
next step is to synchronize with OpenGL and hand over the pixel buffer, and to
copy its contents into a prepared texture. This texture is then displayed using
orthogonal projection.

Due to high complexity of ray tracing, the image is recalculated only if move-
ment is detected, and not on every screen refresh.

3.2.4 The Texture and material loading component

The Texture and material loading component is responsible for loading the texture
images and for generating material shader kernels.

The texture loading part uses information from the scene loading component
to load appropriate files using DevIL image library and to fill texture information
structures, which are to be used by the OpenCL component

Due to restrictions posed on usage of textures in OpenCL9, the material load-
ing part of this component has to dynamically create the shading kernel based
on materials used in the scene, and also make sure that textures get passed to
the correct material shaders.

The format of the shading kernel will be detailed in section 3.3.4.

3.2.5 The OpenCL component

The OpenCL component is responsible for most of GPU-related operations.
This component loads sources for all kernels and compiles them, also is re-

sponsible for allocation (and setting, if necessary) of all OpenCL memory buffers,
and for running the kernels in the correct order.

Because there may be several reflection/refraction rays coming from a single
primary ray10, the ray memory buffers may need to be extended. To keep the

5there is no platform-independent way of getting the current OpenGL context, which is
required for memory sharing between OpenGL and OpenCL

6OpenGL on X11 on UNIX-like systems
7OpenGL Utility Toolkit
8and also many places on the web
9Image types cannot be used to define a type, or within structures or arrays[7]

10shadow rays are cast separately, at rate one per intersection per light source
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overhead from reallocation small while conserving memory, this component will
at least double the size of each buffer when reallocation is necessary, and will not
reallocate when smaller number of items is requested.

3.3 OpenCL kernels

Due to the non-recursive nature of OpenCL, the standard recursive ray tracing
algorithms do no really work, and instead have to be transformed into iteration-
based algorithms. This has some implications for the shading process, and makes
it a bit harder to implement hierarchical acceleration structures.

The revision of OpenCL used is 1.1, which is the highest at the time of writing.
For more information, please see section 2.3.

A simplified Dataflow diagram is listed as Figure 3.1, the counting kernel
missing from the diagram is run in parallel with the lighting kernel.

Scene

Light sources
Pixels

Rays

Intersections

Light samples

Raycast

Trace Illuminate

Shade

Kernels Temp data Global Data

Figure 3.1: Dataflow between OpenCL kernels

Due to OpenCL not having a stack or dynamically allocated memory, associ-
ation between rays is kept in a structure called image reconstruction information,
described in section 3.3.4

3.3.1 Misc kernels

Misc kernels are contained in the ’tools.cl’ file, and are run in order to prepare
the scene. These kernels normalize direction vectors for lights and normal vectors
for triangles.

These kernels also include the ray casting kernel, which is used to generate
primary rays for the scene. The algorithm used for this creates a side vector,
perpendicular to both the up vector and the eye direction vector, then it creates
a new up vector perpendicular to the side vector and eyedirection vector. The
last step of the algorithm is to scale the side vector and the new up vector to suit
the desired view angle, and to generate primary rays by taking the eye direction
vector and adding fractions of the side and the up vectors corresponding to the
coordinates of the desired pixel.
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The last kernel considered in this group is used to copy the rendered image
to the OpenGL buffer, as explained in section 3.2.3.

3.3.2 Ray tracing kernel

The ray tracing kernel is used to find intersection between the scene and the
rays. On hit, this kernel records the closest triangle and barycentric coordinates
of the intersection point for use in shading kernel. When the ray doesn’t hit any
triangle, a negative triangle index is used, and barycentric coordinates are not
valid.

This kernel examines the supplied acceleration structure and selects the inter-
section algorithm at runtime, currently by using a simple brute-force algorithm
or a uniform grid traversal algorithm.

Brute-force algorithm

This algorithm is based on basic principles of ray tracing, intersecting each ray
with each triangle and picking the intersection point closest to the ray origin.
The performance of this algorithm is very bad, nevertheless it is included as a
reference algorithm that produces correct results

Grid traversal algorithm

This algorithm uses a uniform grid structure to lower the required number of
intersection tests, and is very similar to Algorithm 2. While the performance of
this algorithm is not in the real-time domain, it is considered fast enough to use,
enabling easy development of other components of the program.

3.3.3 Lighting kernel

The lighting kernel is responsible for evaluating light samples at each intersec-
tion point. For each light source it evaluates the potential light sample, and if
necessary it traces a shadow ray.

The currently supported light types are ambient light (constant light in the
whole scene, doesn’t cast a ray), directional light (light with a uniform direction
and intensity, like sunlight), omni light (omni directional light with a single point
of origin), spot light (light with a given point of origin, a direction vector, and
an angle of the light cone).

If a shadow ray is needed, an early-exit version of the trace kernel is called,
performing the same algorithm selection as the tracing kernel. Light samples
from all light sources are made available to the shading shading kernel for each
intersection point.

3.3.4 Shading and counting kernels

These two kernels get runtime generated by material loading component to suit
the materials used in the scene.

The counting kernel works around OpenCL not allowing to allocate memory
from kernel code. Instead, this kernel runs a limited material shader called the
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counting shader, which returns the number of secondary rays from the given
intersection, and uses atomic instructions to sum the rays and pass the number
to the control program, which then reallocates buffers if necessary.

The shading kernels task is to evaluate the pixel color and determine secondary
ray properties at each intersection point. The material shaders are required to cast
exactly as many secondary rays as the corresponding counting shader allocated.
Due to iterative manner of the shading process, any change to the pixel is done
before casting secondary rays, which also means that each run of shading kernel
directly accesses the image.

Any ray-related information needed by the shading process has to be passed
forward along with the ray as image reconstruction information. Normally, this
structure contains the number of the original pixel, the importance of the ray
and a seed for a random number generator (see 3.3.5), but it can also contain any
additional information needed by the shading kernel to determine what operation
to apply. Examples of such would be the ray spectrum, if one used clTracer as a
spectral renderer11, the depth of the secondary ray, if one wanted to use it as a
ray termination criterion, or any data one wanted to access in process of shading
the intersection point of the ray.

Every triangle in the scene has a single associated material shader, and the
environment has one additional special material shader, which gets called when
the ray doesn’t hit any triangle. Because the environment shader is implicit, it
cannot use any textures, and because no intersection was found, no triangle is
available. The only useful attribute for the environment shader is the direction
of the ray, and anything passed in image reconstruction information.

3.3.5 Helper tools

The helper tools are small algorithms kept in a single place and used in several
kernels. These algorithms include the ray-triangle intersection test or linear and
spherical interpolations.

Two important parts of there tools are pixel locking support and random
number generation.

Locking support

To properly handle multiple rays coming from one pixel, access serialization must
be implemented. In current version, this is done by putting a spinlock-based
structure on every pixel, and having the shading kernel use it whenever there
is a possibility of multiple rays accessing one pixel. This, of course has some
overhead, and should be replaced by atomic functions once atomic float addition
becomes possible in future OpenCL versions.

Random numbers

Random numbers are required for distributed ray tracing and for some proce-
dural materials, and as such need to be included by clTracer. Due to OpenCL

11in which case the format of the pixel data, the light source data and light sample data
would probably need to be changed
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not having random number generator routines12, a custom solution had to be
implemented.

clTracer uses the image reconstruction information of each ray to keep its
unique random seed. Those seeds are first generated by the control program (see
3.2.5), and then distributed during the shading process. To ensure the uniqueness
of each sequence, two random number generators are used - one generates a
floating point number in range (-1,1), and the other generates a new random
seed, but doesn’t change the original seed. A new random seed is necessary when
creating multiple rays from one intersection point, so that the new rays don’t
share the same random number sequence. For this to work, it is necessary to use
two different generators for this purpose.

Currently, both generators are implemented as linear congruent generators,
due to their good randomness/instruction ratio, and their small seed size. Thanks
to the modularity of the clTracer design, using other random generators is straight-
forward, and would only require to change the actual generator code, and possibly
the data structure used as a seed.

12OpenGL has a random number function, but it either returns a constant zero (on nVidia
cards), or a value is generated and supplied by the driver

20



Conclusion

clTracer is a usable GPGPU ray tracing system, with large amount of flexibility
in shader programming and reasonable performance, licensed under GPL open-
source license.

That being said, nVidia has released their GPGPU ray tracing framework
called OptiX, which is even more flexible than clTracer, while achieving higher
performance, probably due to use of hierarchical acceleration structures. The
only downside of OptiX is that it is CUDA based and will only run on nVidia
GPUs, and also the full source is not publicly available.

Results

The performance results of clTracer are somewhat underwhelming, reaching real-
time frame rate only for simple scenes without secondary rays or for small resolu-
tion, even on high-end hardware. Profiling shows that most of the time is spent
in kernels that do intersection tests and acceleration structure traversal, and that
these kernels have a high number of divergent branches. This is an inherent lim-
itation of GPU programming, where groups of threads share instruction units.
Attempts to use this coherency were made, but explicit thread synchronization
proved to have too large an overhead.

Furthermore, uniform grid is not the best acceleration structure speed-wise,
but it has simple control flow, with should have minimize the number of divergent
branches. Neither kD-trees nor BVHs were tested or implemented in clTracer as
of yet.

Further work

clTracer is far from finished, with several issues to improve upon. One of these
points is performance, which can be helped either by improving intersection tests
or implementing new acceleration structures or even decreasing the control over-
head. Another infinished issue is creating a library for common shader opera-
tions, including common light models, world-to-local and local-to-world coordi-
nate transformations, noise functions and more such helper algorithms.

The most recent version of clTracer can be found at http://repo.or.cz/w/
cltracer.git
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List of Abbreviations

API Application Programming Interface

Definition of ways to use an external programming library

BVH Bounding Volume Hierarchy

Method of grouping objects used for improving ray tracing performance

CPU Central Processing Unit

The main computation component of every computer

CUDA Compute Unified Device Architecture

Name for nVidia GPU architecure, and also for their GPGPU technology

GPGPU General Purpose GPU

Concept of using GPU as a parallel co-processor for non-graphical calcula-
tions, or a related technology

GPU Graphics Processing Unit

Hardware specialized in rendering graphics

PTX Parallel Thread Execution

Low-level bytecode produced by CUDA compiler, interpreted by nVidia
GPUs

RGBA Red Green Blue Alpha

Format of storing image color information with transparency

SAH Surface Area Heuristic

An explicit formula used to approximate the cost of entering a cell in kD-
tree structure

SDK Software Development Kit

A set of libraries, documents and code examples, giving a programmer
access to some technology

SM Shader Multiprocessor

Single unit of hardware in nVidia GPU architecture, with several execution
units and a shared instruction unit
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CD contents

thesis.pdf Electronic version of this thesis

src/ TeX sources for this thesis

cltracer/ Source code for clTracer

cl/ Source code for clTracer OpenCL kernels

doc/ Technical documentation of clTracer
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