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Abstract:

Threaded Behavioral Protocols (TBP) is a specification language for modelling the

behavior of software components. This thesis aims at an analysis of TBP specifications

within environments which involve an unbounded replication of threads. Such a TBP

specification – together with a model of the possible environments – induces infinite

state space which contains a vast amount of symmetries caused by thread replication. A

model checking technique addressing such a state space and reducing the symmetries

by using symbolic counter abstraction is proposed. In orderto utilize the symbolic

counter abstraction, the properties of the TBP specifications (called provisions) are

converted into thread state reachability properties. The proposed analysis is safe in the

sense that it discovers all errors in the model. On the other hand, it may yield spurious

errors, i.e., errors that do not correspond to any real errorin the model. The spurious

errors are well identified and further possibilities to reduce them are outlined. Beyond

the scope of the specific specifications, this work may also present a small step towards

supporting dynamic thread creation in TBP.
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Abstrakt:

Threaded Behavior Protocols (TBP) je specifikační jazyk pro modelování chování soft-

warových komponent. Tato práce se zamě̌ruje na analýzu TBP specifikací v rámci

prosťredí, která obsahují neomezené množšví replikovaných vláken. Takové speci-

fikace spolu s modely možných prostředí způsobí nekonečnost stavového prostoru

analýzy, který obsahuje velké množství symetrií, způsobených replikací vláken. V prá-

ci je navžena technika analýzy takových modelů, která redukuje symetrie s použitím

abstrakce zvané Symbolic Counter Abstraction. Pro její použití je však nutné p̌revést

vlastnosti modelu na problém dosažitelnosti stavů vláken. Navrhovaná technika je

bezpěcná ve smyslu odhalení všech chyb v modelu. Na druhou stranu může způsobo-

vat tzv. spurious erros, tj. chyby které neodpovídají skutečným chybám v modelu.

Tyto chyby jsou v práci dob̌re identifikovány a dále jsou nastíněny způsoby jejich re-

dukce. Práce navíc může představovat malý krok sm̌erem k podpǒre dynamického

vytvá̌rení vláken v TBP specifikacích.

Klí čová slova:Modely chování, komponentové systémy, model checking, replikace,

vlákna.
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Introduction

Component Based Development (CBD) is currently a well established paradigm being

used in software development. Its basic idea is to compose complex software from

well defined units of software (called components). Individual components are logi-

cally isolated and communicate with each other through welldefined interface. This

isolation allows components to be developed separately or even by different vendors.

It also encourages reuse of components in different applications requiring the same

functionality.

In theory, a whole new application can be created solely as a composition of third-

party prefabricated components. In such a scenario, focus is shifted from the devel-

opment itself to assuring correctness of a composition of components. Verification of

mutual compatibility between individual components becomes a major challenge.

Common component systems such as EJB [Sak09], DCOM [GG97], SOFA 2

[BHP06] or Fractal [BCL+06] are based on component model and provide runtime

support for component applications. The component model itself provides means for

describing individual components and their communicationinterfaces and structure of

the composition – component architecture. In hierarchicalcomponent systems (e.g.

SOFA, Fractal) individual components may also be formed as acomposition of other

components.

However, for the purpose of compatibility verification, theinformation contained

in the component model must be enriched with a description ofbehavior of the com-

ponents. There are several theoretical frameworks (e.g. process algebras [Bae05] or

interface automata [dAH01]) which may be used to address this issue, but they are

too complex to be used as part of the development process. There are also modelling

languages focused on software behavior such as Promela [Hol03] but their main dis-

advantage is an absence of the concept of components.

For this purpose, a component behavior modelling language called Threaded Be-

havioral Protocols (TBP) was designed. It was introduced in[KPS09] and [Poc10].

TBP aims at the specification of components behavior, whereas the structure of the

component composition is taken from the particular component model. On one hand,

TBP provides means for modelling internal behavior of individual components using

threads and reactions to events on communication interfaces. On the other hand, re-

strictions can be imposed on the interfaces in the form of allowed sequences of method

calls, such restrictions then form the properties of the model. These restrictions are

called provisions.

In TBP, a notion of correctness is well defined forclosedmodels, which are the

models representing whole isolated application with a limited number of threads. The
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correctness consists of two parts, a model is correct if it isfree of bad activityerror

andno activityerror. Put simply, the bad activity error may be described asan explicit

violation of a provision, i.e. a method has been called in a way that is not allowed

by a provision. Conversely, the no activity error corresponds to a situation where

the program computation ends and where some events that havenot been issued are

expected. Put simply, no provisions have been explicitly violated, but at least one has

not been fulfilled.

Additionally, the notion of refinement among components is also defined, it states

that one component specification refines another if the former behaves correctly in all

environments where the latter behaves correctly. The refinement is parametrized with

the maximal number of threads that may be involved in the environments. The knowl-

edge that a component refines another provides an opportunity to safely replace the

latter with the former one in a component application. Nevertheless, such substitution

is guaranteed to be safe only if the number of the threads in the application is less or

equal to the parameter of the refinement.

Goals

This thesis focuses on a situation where no particular limiton the number of threads

is known. Such a situation occurs when the provision of a component allows fully

re-entrant1 calls of some methods, i.e. methods may be called in parallel, and it is

desirable to assure that the component or some composition of components will behave

correctly in any environment which respects its provisions. In order to verify a model in

this scenario, it is necessary to create an artificial component that will represent all the

possible environments. Put simply, such a component must beable to perform all the

possible combinations of events allowed by the provisions.As some provisions contain

full reentrancy, it is obvious that the component will contain an unlimited number of

threads.

Without specialized techniques, it is not possible to perform model checking on

models with unlimited numbers of threads. The reason is thatthe state space is inher-

ently infinite and thus it is not possible to simply traverse all the states. However, it

is possible to create the artificial components so that they use an unlimited number of

replicas of a finite number of particular threads (thread types). Then the infinite state

space contains vast amount of symmetries induced by the thread replication.

The main goal of this thesis is to reduce these symmetries andpropose a model

checking technique for TBP models with unlimited numbers ofthreads. This work

builds on results achieved in the field of model checking of concurrent boolean pro-

1It is worth mentioning, that full reentrancy can be expressed within the means for describing provi-
sions in TBP – it explicitly contains full reentrancy operator.
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grams, especially on counter abstraction technique [BMWK09, BHK+10]. This tech-

nique reduces state space symmetries by reducing the model state reachability problem

to coverability problemof vector addition systems with states(VASS). However, it is

not trivial to encode the TBP provisions as VASS in general asthe provisions may also

be inherently infinite, especially in the case of full reentrancy. This work focuses on a

particular class of provisions with full reentrancy and itsgoal is to provide at least safe

checking of provision-induced properties with respect to bad activity error.

It is also worth pointing out, that the described scenario ishypothetically not the

only case where an unlimited number of threads may occur. Considering the most

general case of a component model, it can for example allow several instances of a

client component to communicate with a server component. Such a scenario might be

modelled using dynamic reconfiguration of the component architecture that would al-

low adding new components. If the number of instances of the client component is not

known in advance, the number of threads involved in this communication is potentially

unlimited. The instances of the client component will be typically one-to-one copies.

Thus such component composition also induces an infinite number of replicas of a fi-

nite number of threads and thus this work would also be applicable onto this scenario.

However, such a construct is not supported in TBP and thus this work does not focus

on it.

Contribution. In summary, this thesis accomplishes the following:

• A specific scenario of TBP model analysis with unbounded number of threads

is focused on: given TBP specifications of components that are supposed to be

used as a part of a closely unspecified application, it is desirable to verify whether

these components will operate correctly with respect to badactivity under any

environment which accomplishes provisions of the components.

• A safe model checking technique addressing such a scenario is proposed. This

technique tackles inherent state space symmetries inducedby unbounded repli-

cation of threads. The technique is safe in the sense that it discovers all potential

bad activity errors. However, it can produce spurious errors, i.e. errors that do

not relate to any actual error in the model.

• Along with the thesis, a proof-of-concept prototype is implemented. It covers all

the key points of the proposed model analysis.

Structure of the text

In Chapter 1, the counter abstraction technique and its symbolic variant are briefly

described.Chapter 2covers syntax and semantics of the TBP specification language,
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defines TBP models and reviews analyses of the models according to error detection

and refinement. In the next chapter,Chapter 3, the particular scenario of TBP analysis

which this thesis focuses on is specified and captured in a specific TBP model called

incomplete TBP model. Subsequently the model checking technique addressing the

defined scenario is described and discussed in detail.Chapter 4reviews the proof-of-

concept prototype implementation. Finally,Conclusionsummarizes this work and the

key the achievements.

Notation

This section reviews the common mathematical symbols and notations used in this

work.

The sets of all natural numbers and integers are denoted usingN andZ respectively,

N0 denotes the set all of non-negative integers. The power set which is a set of all

subsets of a given setS is denoted as℘(S).

Moreover, a special symbolω, used in [KM69] to denote an unlimited counter

value, also appears in the text. Forω holds:

• ∀p∈ Z : p< ω

• ∀p∈ Z : p+ω = ω

• ∀i ∈ N : iω̇ = ω

In order to visually distinguish operations on numbers and vector, special symbols

for operations are used. Letv ∈ Zk be ak-dimensional vector of integers. Ifi is a

natural number such that 1≤ i ≤ k, thenv(i) denotesi-th coordinate ofv. The symbol

6 denotes a point-wise comparison of vectors. Letu,v ∈ Zk be vectors, thenu 6 v

if and only if ∀i ∈ N,1≤ i ≤ k : u(i) ≤ v(i). Analogously,u a denotes point-wise

addition of vectors. Let additionallyw∈ Zk, thenw= uuv if and only if ∀i ∈ N,1≤

i ≤ k : w(i) = u(i)+v(i).

Finite state machines are also often used in this thesis. Recall that a deterministic

finite state machine is a tuple(Q,Σ,δ⊆Q×Σ×Q,s0,F) whereQ denotes a set of

states,Σ denotes finite alphabet,δ is a transition relation,s0 is the initial state andF

is the set of final states. Often simplyfinite state machine, finite automatonor just

automatonwill be used to refer to the deterministic finite state machine. On the other

hand, if a non-deterministic finite state machine occurs, its non-determinism will be

properly emphasized. For completeness, recall that the non-deterministic finite state

machine differs from the deterministic in the transition relation and initial states. A

non-deterministic automaton can contain more than one initial state and its transition

relationδ⊆Q×Σ×℘(Q) can contain several transition starting at one state using the
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same symbol from the alphabet. LetA be a finite state machine, then its set of states

will be referred to usingQA , δA will denote transition relation ofA andFA will be

used to denote the set of final states ofA .
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1. Symbolic Counter Abstraction

As a means allowing checking of models with unlimited numberof threads, a technique

called symbolic counter abstractionis utilized within this work. It was introduced

in [BMWK09] as a symbolic application ofcounter abstractionsymmetry reduction

technique [ET99] for checking boolean programs, however, its key ideas are applicable

to TBP model checking as well. Furthermore, in [Zha09], the approach was extended

with a support of dynamic thread creation and unbounded numbers of threads.

1.1 Vector Addition Systems with States

The base of the symbolic counter abstraction consists in usage Vector Addition Sys-

tems with States (VASS) for solving thread state reachability problem. VASS is a

variant of Vector Addition System (VAS) introduced in [HP76]. In the same work it

was shown that VASS can be simulated by VAS.

Definition 1.1 (Vector Addition System with States). A k-dimensionalVector Addition

System with States(VASS) is a tuple(S ,c0,δ) whereS is a set of states,c0∈ S×(N0)
k

is an initial configuration andδ⊆ S ×S ×Zk is a transition relation.

Given a VASS(S,c0,δ) and a pair of configurationsa= (s,u), b= (t,v), there is a

transition a→ b if exists a vectorw∈ Zk such that(s, t,w)∈ δ anduuw= v∈ (N0)
k.

Additionally, a sequence of configurationsc1,c2, ...,cn is called apath from c1 to cn

if for all the i ∈ N, i < n there is a transition fromci to ci+1. A configurationb is

reachablefrom a configurationa if there is a path froma to b. Let (S,c0,δ) be a

VASS, then there is a natural question whether a configuration c is reachable in the

VASS, i.e. whetherc is reachable fromc0. A slight modification of this question forms

theVASS coverability problem.

VASS coverability problem asks, for a given configurationc= (s,u), whether a

configurationc′ = (s,u′) s.t.u6 u′ is reachable.

The VASS coverability problem is proven decidable. In [KM69], Karp and Miller

present an algorithm that builds a rooted labelled tree called Karp-Miller tree that

represents a set of covered configurations of a VAS. In the same work, they show that

the tree contains finite number of nodes (in other words, theyguarantee termination) for

any VAS. As any VASS can be simulated by using a VAS, the tree can be constructed

for VASS and is finite as well.

1.2 Karp-Miller Tree

The following definition presents the tree extended to fit theVASS naturally.
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Definition 1.2 (Karp-Miller Tree [KM69]). Let W = (S ,c0,δ) be ak-dimensional

VASS andT be a rooted tree with labelled vertices; each vertex is labelled with an

element ofS × (N0∪{ω})k.

We say thatT is Karp-Miller Treefor W , T = T (W ) if and only if

1. the root is labelled withc0

2. letη be a vertex and(sη,vη) its label

(a) if there is a vertexν with label(sν,vν) such thatsν = sη, vν 6 vη andν is

on the path from the root toη, thenη is a leaf (i.e. it has no successors);

(b) otherwise successors ofη are in one to one correspondence with

(sη, t,u)∈ δ such thatvηuu∈ (N0∪{ω})k. The successorν corresponding

to (sη, t,u) is labelled with(t,w). For everyi ∈ {1,2, ...,k}, w(i) is set to

• ω if there exists vertexφ labelled with(sφ,y) on the path from root to

ν such thaty6 (vη uu) andy(i) < (vη uu)(i);

• (vη +u)(i) otherwise.

Obviously, a configurationc= (s,u) is covered in a VASSW = (S ,c0,δ) exactly

if there exists a label(s,v) on a node in the Karp-Miller tree forW such thatu6 v.

For example, consider a 3-dimensional VASSW = ({p,q} ,(p,(1,0,0),δ) where
δ = { (p,q,(−1,1,0)), (p,q,(−1,0,1))

(q, p,(2,0,−1)), (q, p,(2,−1,0)) }
Figure 1.1 depicts this VASS and Figure 1.2 shows the Karp-Miller tree constructed

according to Definition 1.2.

p q

(1,0,0) (−1,1,0)

(−1,0,1)

(2,0,−1)

(2,−1,0)

Figure 1.1: Example of VASS

1.3 Counter Abstraction

The counter abstraction tackles state space symmetries induced by thread replication

by reducing the thread-state reachability problem to the VASS coverability problem.

The key idea is that shared states (i.e. valuation of shared variables) of a program
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(p,(1,0,0))

(q,(0,1,0)) (p,(ω,0,0))

(q,(ω,1,0)) (p,(ω,0,0))

(q,(ω,0,1)) (p,(ω,0,0))

(q,(0,0,1)) (p,(ω,0,0)) (q,(ω,1,0)) (p,(ω,0,0))

(q,(ω,0,1)) (p,(ω,0,0))

Figure 1.2: Example of Karp-Miller tree

are represented with states of VASS, whereas local states (i.e. valuation of thread lo-

cal variables and program counter) are enumerated and coupled with elements of the

vector. A configuration(s,v) then represents the state of the program execution such

that the values of shared variables are captured ins and for eachi there isv(i) threads

residing in thei-th state. Hence the name since the vector coordinates act asthe coun-

ters of threads1. Single step of the program, which in particular means that athread

performs an instruction and thus it changes its local state and possibly assigns new val-

ue to a shared variable, is represented by(s, t,w= (0,0, ...,0,−1,0, ...,0,1,0, ...))∈ δ.

The shared state is changed froms to v and the thread state shift is captured with−1

(leaves the state) and 1 (enters another state).

Having such VASS model of a program, the coverability of a configuration(s,u)

answers the question whether the point of program executionwhere the values of the

shared variables correspond tos and in thei-thread state reside at leastu(i) threads

(∀i,1≤ i≤ k) is reachable. Hence the thread-state reachability problem for the program

can be reduced to the VASS coverability problem.

The explicit approach to counter abstraction constructs thread transition diagrams

and then creates a VASS explicitly. Obviously, the dimension of the VASS (and in

turn the number of counters) corresponds to the number of allthe possible valuations

of local variables. As the number of valuations grow exponentially with the number

of variables, the number of counters may be enormously high.This problem was

identified in [BMWK09] aslocal state space explosion.

The symbolic variant addresses the local state space explosion with interleaving the

model checking phase (Karp-Miller tree construction) withthe state space exploration

phase, in other words, it creates the VASS transitionson-the-fly. Moreover, it does not

retain whole vectors, but only non-zero counters – a zero-valued counter means that

no thread resides in the appropriate state.

The step towards dynamic thread creation and unbounded number of threads leads

through defining some points where the threads can arise. Specifically, such point is

1 In some literature counter abstraction denotes limiting possible counter values or abstraction of the
counter domain, however, we keep terminology of [BMWK09].
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represented by(s, t,w) ∈ δ where∑w(i) > 0. Since the Karp-Miller tree is finite for

every VASS, the thread state reachability can be reduced to the VASS coverability even

for this case.
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2. Threaded Behavior Protocols

As it was already mentioned in the introduction, TBP is a language for modelling be-

havior of components. It aims to be as close as possible to themainstream imperative

programming languages in syntax and semantics as well. TBP concentrates on provid-

ing means to specify behavior of individual components, whereas the architecture of

component composition is supposed to be provided by an underlaid component model.

This chapter reviews TBP as it was proposed in [KPS09] and elaborated in detail in

[Poc10].

2.1 Syntax

TBP specification of a component consists of five parts: type declarations, variable

declarations, provisions, reactions and threads. The reactions and threads describe

the internal behavior of the component in the imperative manner, whereas provisions

specify behavior of the environment assumed by the component. The assumptions are

expressed as allowed sequences of calls of methods providedby the component. It is

worth to mention, that TBP is supposed to be used as an extension of a component

model. The information about provided and required methods(or interfaces which are

in fact groups of methods) is supposed to be obtained from theunderlaid component

model. From the point of view of the specification, it is enough to assume that there

are three setsΣprov, Σreq andΣint where the first contains names of provided methods,

the second contains names of required methods and the last contains names of internal

methods (methods that are neither provided nor required).

component ComponentName {

types {

...

}

vars {

...

}

provisions {

...

}

reactions {

...

}

threads {

...

}

}

13



2.1.1 Type Declarations

Thetypessection defines enumeration types for variable declarations. An enumeration

type declaration consist of a name and a list of enumeration values. The following

fragment declares two enumeration typesresult andmode. The former consist of

enumeration valuesOK andFAILED and the later contains three enumeration values

READY, RUNNING andSTOPPED.

types {

result = { OK, FAILED }

mode = { READY, RUNNING, STOPPED };

}

2.1.2 State Variables

State variables are declared in thevarssection. These variables are accessible only to

the component, however, they are shared among threads and reactions of the compo-

nent. The state variables will be often referred to asglobal variables. A state variable

declaration consists of a type, a name and an initial value. The following fragment

declares a variable namedcurrentMode of the typemode with the initial valueREADY.

vars {

mode currentMode = READY;

}

Additionally, there is a special type of variable –mutex. A mutex variable serves as

synchronisation object which allows threads to achieve mutual exclusion.

2.1.3 Reactions

Thereactionssection contains description of the behavior of the component performed

in reaction on a method call. Each reaction specification consists of the method name,

a declaration of arguments and a reaction body. Optionally,the arguments may be

followed by a return type. The body begins with declaration of local variables followed

by specification of the behavior. A local variable declaration specifies a type, a name

and an initial value of the variable. The local variables areaccessible only to the body

of the reaction. Moreover, each execution has its own copiesof the local variables, thus

the values are not shared among them. Technically speaking,the arguments are just a

special case of local variables with the difference, that the actual values are assigned

during the method call.

14



reactions {

interfaceName.methodName(

argType1 argName1,

argType2 argName2,

...):returnType {

localVarType1 localVarName = INIT_VALUE;

...

}

}

The specification of the reaction behavior consists of elementary actions composed

together using control flow operators.

Elementary Actions

• Method call –i.m(v1, v2, ...)

The methodm on the interfacei is called with parametersv1, v2, etc. The ex-

ecution is switched to the reaction of the method and the current execution is

resumed as the reaction of the called method finishes.

• Return –return value

Terminates the reaction and the return value may be assignedto a variable at the

call site.

• Assignment –var = val

The current value of thevar variable is changed to the current value ofval,

which may refer to a constant, a variable or a method call. In the case of a

method call, the current value is the return value.

Control Flow Operators

• Sequence operator

a;b

The operands (a, b) are executed sequentially.

• Alternative operator

if (condition) {

thenBranch

} else {

elseBranch

}
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Just one of the operands (thenBranch, elseBranch) is executed depending on

the result ofcondition. The condition is an expression defined using following

rules:

– ? is a condition expression. It represents non-deterministic choice, the

result is eithertrueor f alse.

– var == val is a condition expression ifvar is either a local variable or a

state variable andval is either a local variable, a state variable or a enu-

meration constant. The result istrue if and only if the current values ofvar

andval are equal.

– !C is a condition expression ifC is a condition expression. The result is

true if and only if the the result ofC is f alse.

– C1&&C2, C1||C2 are condition expressions if bothC1 andC2 are condition

expressions. The result of the former istrue if and only if the results of

both C1 andC2 are true. The result of the later istrue if and only if the

result ofC1 is trueor the result ofC2 is true.

• Switch operator

switch (var) {

case const1: branch1

case const2: branch2

...

default: defaultBranch

}

Exactly one of the operands (branch1, branch2, ...,defaultBranch) is execut-

ed depending on the current value of thevar variable, which may be a local vari-

able or a state variable. In particular, thei-th branch is executed if the current val-

ue ofvar is equal to the corresponding the enumeration constantconsti. If the

current value ofvar is not equal to any constant in the list, thedefaultBranch

operand is executed.

• Repetition operator

while (condition) {

block

}

The operand (block) is executed repetitively as long as the result of the condition

is true. The condition is defined in the same way as in the case of the alternative

operator.
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• Synchronization operator

sync (mutex) {

block

}

The operand (block) is executed in a synchronized way with respect to the state

variablem of the special built-in typeMutex. In particular, only one block syn-

chronized on a single mutex variable may be executed at a moment.

2.1.4 Threads

Thethreadssections specifies a list of threads in the component. Each thread is defined

with a name and a body. The body begins with a specification of local variables which

is followed by a specification of the thread’s behavior. The behavior is described in the

same way as in the case of reactions. The only difference is that the return statements

are not allowed.

The threads represent a source of activity of the component.Any component with-

out threads is only capable to perform reactions on method calls from the environment.

Conversely, threads allow components to perform actions ontheir own. A significant

feature is that threads are executed in parallel.

2.1.5 Provisions

Theprovisionssection declares the assumptions posed on the environment.Each as-

sumption is defined as a set of allowed sequences of calls and returns of the compo-

nent’s provided methods. The component is supposed to be used in such environments

that do not violate the assumptions.

A single provision declaration consists of an expression defining the set of allowed

sequences and a list of methods that are covered by the provision. The following frag-

ment declares two provisions, the former covers the methodsm andn of the interfacei

and the latter covers the methodm of the interfacej.

provisions {

{ expr1 } for { i.m, i.n }

{ expr2 } for { j.m }

}

Provision Expressions

Each provision expression consists of basic building blocks – elementary expressions

– composed together using provision operators. An elementary expression represents
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two consequent events – a method call and the corresponding return. The specification

of an elementary expression consists of a method name, parameters specification and

a return value where appropriate. The specification of parameters consists of a list of

enumeration constants (of respective types to the arguments of the method) and the

return value is specified by a single enumeration constant. Both the parameters and the

return value are optional.

provisions {

{ calc.sum(POS, ZERO): POS } for { calc.sum }

{ calc.sum() } for { calc.sum }

}

The above fragment contains two provision expressions. Thefirst defines single al-

lowed sequence which consists of a call of thesum method of thecalc interface with

two parametersPOSITIVE andZERO followed by the corresponding return with val-

uePOSITIVE. The second defines the set of all the sequences of two events such that

the first event is a call of the method with an arbitrary combination of the possible

values of the parameters and the second event is the corresponding return with an arbi-

trary value (of the enumeration type associated with the reaction). Note that if thesum

method declared empty list of arguments and no return value,the expression would

define a single sequence of the non-parametrized call followed by the corresponding

return (without a value).

Operators. The provision operators allow creating more complex expressions

from the elementary expressions. There are three operatorscommonly used in regular

expressions – sequence, alternative and repetition. Additionally, parallel and reentran-

cy operators are allowed.

• Sequence operator –;

The sequence operator, which is a binary operator, defines the set of allowed

sequences as the set of concatenations of the allowed sequences of the operands.

• Alternative operator –+

This operator defines the set of allowed sequences as the union of the allowed

sequences of the operands. It is also a binary operator.

• Repetition operator –*
The repetition operator is an unary operator. Any (even null) repetition of the

sequences in the operand’s set of allowed sequences is allowed in the resulting

expression. For any provision expressionP, the expressionP* is equivalent to

λ + P + (P;P) + (P;P;P) + ... whereλ stands for an empty sequence of

events.
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• And-parallel operator –|

The and-parallel operator, which is also a binary operator,allows all the pos-

sible interleavings of the sequences allowed by the operands. For illustration,

let P andQ be provision expressions each allowing single sequence of events

a;b andc;d respectively. Then the provision expressionP | Q allows six se-

quences of events:(a;b;c;d), (a;c;b;d), (a;c;d;b), (c;a;b;d), (c;a;d;b)

and(c;d;a;b).

• Or-parallel operator –||

P || Q is equivalent to(P | Q) + P + Q.

• Limited reentrancy operator –|n for n∈ N

P|n stands forP || P || ... || P whereP occursn times.

• Full reentrancy operator –|*
P|n stands forP || P || ... . In this case, any sequence formed as an in-

terleaving of an arbitrary number of the sequences allowed by the operand is

allowed by the expression.

2.2 Semantics

The syntactical framework described in the previous section together with information

from an underlaid component model form a TBP specification. The semantics of such

a specification is then represented by TBP model, which is a mathematical structure

capturing the specification. The TBP model is derived from the specification for each

component separately and these partial models are composedtogether using informa-

tion from the underlying component model.

The composed model is then a subject of analysis – either error detection or re-

finement analysis depending on whether the model is closed oropen respectively. The

closed model does neither issue nor expect any externally observable activity, in other

words it represents a closed standalone application. Conversely, the open model cor-

responds to a composition of components or a single component which is intended to

interact with other components – an environment. The open model can represent a part

of an overall application or it can be imagined as a library used within the application.

2.2.1 TBP Model

The TBP model is a mathematical structure that precisely represents the semantics of

the TBP specification. It fills the gap between rich syntax andprecise semantics and

captures all the aspects of the specification.
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In following definitionsE denotes a set of enumeration types andV a set of vari-

ables. A variablev is an entity with associated typee∈ E, domainDomv which is

equal to the set of constantsDome declared in typee, and an initial valueInitv∈Domv.

Additionally DomE will denote a set of all constants

DomE =
⋃

v∈V

Domv

Note that a mutexm is a special case of variable withDomm = {UNLOCKED,LOCKED}

and Initm = UNLOCKED. Any variable takes values from its domainDomv which is

captured by valuation functions.

Definition 2.1 (Valuation [Poc10]). LetV be a set of variables thenγV : (V ∪DomE)→

DomE is avaluation functionoverV if and only if

( ∀a∈V : γV (a) ∈ Doma ) ∧ ( ∀e∈ DomE : γV (e) = e )

In addition, if

∀w∈W : γV (w) = Initw

thenγV is aninitial valuationwhich is denotedγ0
V .

Modified valuationγV [v← e] wherev ∈ V ande∈ Domv is a valuation function

such that

γV [v← e] (a) =







e if a= v

γV (a) otherwise

Definition 2.2 (Guards [KPS09, Poc10]). Let V be a set of variables. AguardoverV

is a finite expression derived using following rules:

• true is a guard;

• v==l , wherev∈V andl ∈ Domv is a guard;

• if X andY are guards,X∧Y, X∨Y and¬X are also guards.

Actual value of the guardg under valuationγV is denoted asγV (g) and the set of

all guards overV is denoted asGV .

The guards in Definition 2.2 are simple logical expressions over the variables. The

actual value of a guard takes boolean valuestrue or f alseand it is defined using fol-

lowing rules

• γV (true) = true

• γV (v==l) = true ⇐⇒ γV (v) = γV (l)
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• γV (¬X) = true ⇐⇒ γV (X) 6= true

• γV (X∨Y) = true ⇐⇒ γV (X) = true∨ γV (Y) = true

• γV (X∧Y) = true ⇐⇒ γV (X) = true∧ γV (Y) = true

assuming thatv==l , X andY are guards overV.

Definition 2.3 (Assignment [Poc10]). Let V be a set of variables.AssignmentoverV

is a label in the form

• v←c wherev∈V andc∈ Domv

assigning constantc of corresponding type tov

• v←w wherev,w∈V andDomv = Domw assigning actual value of variablew to

v

Let AV be a set of all assignments overV.

The assignments are supposed to change the values of the variables. Letv←w be

an assignment overV and letγV be a valuation of variables before the assignment.

After the assignment is performed, the valuation will beγV [v← γV (w)].

Definition 2.4 (Labelled Transition System with Assignments [KPS09, Poc10]). A

Labelled Transition System with Assignmentsis a six-tuple(S,s0,F,δ,Σ,V), whereS

is a set of states,s0 ∈ S is an initial state,F ⊆ S is a set of final states,Σ a set labels,V

a set of variables andδ⊆ S×GV×Σ×℘(AV)×S is a transition relation.

Note that Definition 2.4 slightly differs from the one presented in [KPS09, Poc10]

in the point, that it allows more than one assignment to be attached to a transition.

In fact, it allows a transition to contain a non-empty label and a non-empty set of

assignments at once. Covnersely, the original LTSA definition restricted the transitions

so that they could contain just one assignment or a label (δ ⊆ S×GV × (Σ∪AV)×S).

Clearly any original LTSA can be expressed as an LTSA along Definition 2.4.

On the other hand, the proposed extension of the LTSA structure can bring some

problems: consider a transition that contains two different assignments to one variable.

Then the value of the variable after the assignments dependson the order in which

were the assignments performed. Therefore the following notion is introduced. Let

l = (S,s0,F,δ,Σ,V) be a LTSA, thenl is independent of the order of assignmentsif

and only if for all transitions(s,g, l ,a,s′) ∈ δ such thata 6= /0 the following holds

∀(u← v) ,(x← y) ∈ a : (u= x⇒ v= y)∧ (v= x⇒ u= v)∧ (u= y⇒ x= y)

If the assignments in the formx← x, which actually have no effect, are not considered,

the formula in fact says that no variable occurs more than once on the left side among
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all the assignments on any transition. Moreover, if a variable appears on the right side

of an assignment on a transition, the variable does not appear on the left side of any

assignment on the same transition. Thus the order of assignments does not matter.

Moreover, letτ ∈ Σ denote an empty label, thenl is strict if and only if for all

transitions(s,g, l ,a,s′) ∈ δ the size ofa is at most 1 and ifg 6= τ thena= /0. The strict

LTSAs corresponds to the original LTSAs definition. In the following text, only the

LTSAs independent of the order of assignments will be considered.

Definition 2.5 (LTSA computation state [Poc10]). Let l = (S,s0,F,δ,Σ,V) be a LTSA.

A tuple (s,γV) is a computation stateof l if s∈ S andγV is a valuation overV. The

tuple
(
s0,γ0

V

)
is denoted asinitial computation state.

Definition 2.6 (Enabled LTSA transition [Poc10]). Let l = (S,s0,F,δ,Σ,V) be a LTSA

andc= (s,γV) be a computation state ofl . Then a transition(s,g, l ,a,s′) ∈ δ is called

enabledin the computation statec if γv(g) is true.

The LTSA is a crucial structure for representing control flowof imperative parts of

TBP specification – threads and reactions. In the context of TBP models, the labels

will represent issuing method calls. LetΣ contain method names,Σ↑ contains events

for issuing a method call,Σ↓ contains events for accepting a result from a method call

andΣ↑/↓ = Σ↑∪Σ↓.
Let m∈ Σ be a method name, then↑m is an event for issuing a call of the method

m and↓m is an event for accepting a result from the methodm.

Definition 2.7 (Parametrized label [Poc10]). Let Σ be a set of labels andP a set of

parameters. Then the set of parametrized labels is defined as

ΣP = {(m,〈v1,v2, ...,vn〉) | m∈ Σ,n∈ N0,vi ∈ P}.

ThenΣ↑V∪DomE
denotes a set of call events parametrized by all possible combina-

tions of variables and constants from all the enumeration types.

For the purpose of TBP Model definition, letLTSAΣ
V,E denote the set of all the

LTSAs using variablesV and labelsΣ↑V∪DomE
∪{τ} whereτ denotes an empty label.

Thus any non-empty label on a transition in such LTSAs represents issuing a method

call including parameters. Since not only the strict LTSAs are considered, it is worth

mentioning, that the assignments are performed before the method call is issued, as the

parameter values may be affected by the assignments. However, in the TBP models

derived directly from TBP specifications only strict LTSAs will occur. The return value

of the method call is retained in a special purpose variableRet. In order to assign the

return value of the method call to a regular user-defined variablev, the subsequent

transition is supposed to contain assignmentv←Ret.

Definition 2.8(TBP Model [KPS09, Poc10]). A TBP Modelis a five-tuple(Σ,P,R,T,G),

where:
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• Σ = (Σprov,Σreq,Σint) denotes disjunct sets of provided, required and internal

method names used in the model

• G is a set of state variables

• P is a set of provisions{P1,P2,P3, ...,Pn} taking the formPi = ( f ilterPi , tracesPi)

where f ilterPi ⊆ Σprov specifies methods observed by the provision andtracesPi

specifies the allowed finite sequences of events in
(

f ilterPi
)↑/↓

DomE
.

• R is a partial function:(Σprov∪Σint)→ (L,N→ L,LTSAΣint∪Σreq
G∪L,E ) representing

mapping of method names to their local variables (L), a parameter mapping func-

tion and a reaction in the from of LTSA.

• T is a set of threadsT1,T2,T3, ...,Tm, whereTi ∈ (L,LTSA
Σint∪Σreq
G∪L,E ) is a tuple

specifying a set of local variables and the behaviour of thei-th thread in the form

of LTSA.

Note that a set of allowed finite sequencestracesPi can be potentially infinite and

as the provision in general can contain full reentrancy operator, it is not possible to

represent it using finite state machines. Rather, let it be represented by the provision

expression itself which can be converted to the particular structure on demand. Thus

obtaining provisions from a specification is straightforward in general, the only differ-

ence between provision expressions stated in the specification and in the model is that

every elementary expression is replaced with a the corresponding couple of events (a

method call and the corresponding return).

Deriving the variables and method names is also straightforward as they are di-

rectly stated in the specification. The only part which deserves a deeper description is

the construction of the LTSAs for threads and reactions. Thefollowing describes the

conversion in a bottom-top manner.

The elementary actions (assignment, method call, return) represent single LTSA

transitions. The only exception is an assignment of a returnvalue of a method call to a

variable. It is represented by a sequence of two transitions– the first issues the method

call and the second assigns value of the specialRetvariable to the target variable. Note

that transitions that contain an assignment will be equipped with τ label. Additionally,

the assignment set on transition corresponding toNULL action is empty and the label is

τ.

The control flow operators are processed in a similar way to the way finite state

machines are constructed from regular expressions. The sequence operator (;) corre-

sponds to concatenation of the LTSAs of operands.

Theif-then-else andswitch operators correspond to the alternative operator in

regular expressions. The entry transitions to the individual branches will be equipped
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by corresponding guards in case of deterministic conditions (not?). Note that the

guard on theelse branch is a negation of theif condition. In the case ofswitch on

a variablev, the branch corresponding to a case with constantc will be guarded by

v==c and thedefault case will be guarded by the negation of conjunction of guards

corresponding to all thecases.

Thewhile operator is similar to the Kleene star in regular expressions (*) with the

difference that there will be anexit transition starting at the initial state of the LTSA for

the repeated block and pointing to a new final state. The exit transition will contain no

assignments and will be labelled withτ. Any transition to the original final states will

be redirected to the starting state if it is not labelled witha return label. In the case of

a deterministic condition by thewhile statement, the transitions from the initial state

will be labeled with a guard corresponding to the condition (and its negation in case of

the exit transition).

The sync operator on a mutexm adds a new initial state and a new final state to

the LTSA of the synchronized block. It connects the new initial state with the origi-

nal one by using a transition guarded withm== UNLOCKED and with single assignment

m← LOCKED. The original final states (which will no longer be final states) are connect-

ed with the new one by using transitions with the assignmentm← UNLOCKED. For the

sake of simplicity, this construction assumes that noreturn statements appear in the

synchronized block – in this simple way of construction thereturn statement could

cause deadlock as the mutex would not be properly unlocked. However, it is possible

to propose a modified construction which will supportreturn within synchronized,

but it would be a bit more complex.

Note that the transitions derived from the elementary actions contain just one as-

signment, a call label or a return label. As all the control flow operators introduce at

most one assignment and no label per a new transition, the derived LTSA is strict.

Composition

So far, the way of deriving the TBP model from a TBP specification of a single com-

ponent has been described. Consequently, as the componentsare composed together

within, a definition of composition over the TBP models is presented in the following.

First, note that two TBP models can not provide the same methods in order to keep

their composition well defined. The duplicate provided methods could be subsequent-

ly required by a single component and such abroadcastsemantic is not well defined.

Similarly, the internal methods of the models should also beunique in order to keep

the method binding consistent. Definition 2.9 states these requirements formally. Then

Definition 2.10 provides the composition operation itself.
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Definition 2.9 (Composable TBP Models [Poc10]).

Let A= (Σ′,P′,R′,T′,G′), B= (Σ′′,P′′′,R′′,T ′′,G′′) be TBP models. We say thatA and

B arecomposableiff Σ′prov∩Σ′′prov = /0 andΣ′int ∩Σ′′int = /0.

Definition 2.10 (TBP Composition [Poc10]).

Let A= (Σ′,P′,R′,T ′,G′), B = (Σ′′,P′′,R′′,T′′,G′′) be compsable TBP models. Then

thecompositionis defined as

A⊕B= ((Σprov,Σreq,Σint),P
′∪P′′,R′∪R′′,T ′∪T ′′,G′∪G′′)

where

Σprov = Σ′prov∪Σ′′prov

Σreq = (Σ′req∪Σ′′req)\ (Σ′prov∪Σ′′prov)

Σint = Σ′int ∪Σ′′int

Note that the model after composition provides all the methods that were provided

in the original methods. This allows a provided method to be required from more than

one component.

2.2.2 Closed Model Analysis

A closed TBP model is specific in that it does not provide nor require any methods from

the outer environment. In fact, it is fully isolated from outer world and any activity

in the environment does not affect the behavior of the closedmodel. Moreover, the

number of threads in the closed model is known in advance and is finite. Thus full

reentrancy can be removed from provision expressions and they can be converted to

finite state machines.

LetM =(Σ,P,R,T,G)be a closed TBP model and the number of threads bek. Then

any provision expression forPi ∈ P can be modified in the way, that every occurrence

of Q|∗ is replaced with(Q;(Q∗)) |k for arbitraryQ. Let Pi⊥k denote such a modified

provision expression. The expression than does not containfull reentrancy and thus it

can be rewritten as a regular expression and in turn converted into a deterministic finite

state machine – letFSMPi⊥k denote such a machine. Finally, letM⊥k denote the TBP

model derived fromM in the way that the set of allowed traces is for every provision

represented by a deterministic finite state machine, i.e.tracesPi = FSMPi⊥k.

In order to detect errors in a closed model, a closed computation is formally defined

in [Poc10]. This work reviews it just informally. In the cited work the computation is

inspired by stack-based execution model, where the stacks are used to capture method

calls correctly. However, as mentioned in [KPS09], there isan alternative approach
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which utilizes the fact, that there are no recursive calls, and thus reactions may bein-

lined to the corresponding call sites. The alternative approach will be used later in this

work, within symbolic counter abstraction, where it largely simplifies the design.

Intuitively, the stack-based computation defines a computation state composed of

stacksSt and a valuation of global variablesγG. St is a set of stacks which are in

one to one correspondence to the threads, letSi denote a stack corresponding to the

threadTi. Each stack is an ordered sequence oflocal LTSA computation statess. A

local computation state is in fact a LTSA computation state with the difference that the

valuation function is defined only over local variables of the corresponding thread or

reaction. The top of the stack (lastly inserted element) captures the current execution

scope of the thread. The subsequent element (if any) captures the scope which the

current scope (a reaction) was invoked from.

There is a single initial computation state for each TBP model, which is given byγ0
G

and a set of stacks such that each stack contains just one element representing the initial

local LTSA computation state of the corresponding thread’sLTSA. Individual steps

of the threads then form transitions between the computation states. A computation

transition is determined by a thread and a transition of the thread’s LTSA which is

enabled in current computation state. LetTi = (Li ,Γi) be such a thread and lett denote

such an transition. LetSi be the stack ofTi , c= (s,γL) be the top-most element ofSi

andγG be the valuation of global variables of the current computation state. Lett be

enabled in(s,γG∪L). Than in the subsequent computation state given byt thec stack

element will be modified so thatc := (s′,γL).

Additionally, if t contains some assignmentsa then the local valuation is modified

so thatc := (s′,γL[a]) whereγL[a] denotes sequential modification of the valuation with

all the elements ofa which assign a value to a local variable in arbitrary order (note

that it is well defined since all the LTSAs are independent of the order of assignments).

The global valuation is modified analogously with assignments to the state variables.

Moreover, ift contains a call label, it pushes new element on the stackSi , so that

it is initial local LTSA computation state of the called reaction with single exception

– the valuation of local variables corresponding to parameters are modified by values

of variables underγG∪L which were used as parameters in the label. Conversely, if the

transition contains return label with a parameterr then the local valuation in the lower

stack element is modified so that value ofRetwill be γL (r). Finally, if s′ is a final state,

the top most element of the stack is removed.

A computation trace of the TBP model is then a sequence of computation states

where each state is derived using a computation transition from the previous (except

the initial one), the sequence starts with the initial computation state. A computation

trace may end in several different ways. First, if it ends with a computation state that

contains only empty stacks, the trace will be calledterminating. If it ends with a state
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that contain some non-empty stacks and all the top most elements of stacks correspond

to LTSA states with no enabled outgoing transitions, the trace will be calledstuck.

Finally, it may not end at all – then it isinfinite. Note that a terminating trace corre-

sponds to a successful execution, a stuck trace represents occurrence of a deadlock and

an infinite track signalizes, that there is a infinite activity in the model – e.g. an endless

loop. The stuck traces are considered erroneous, whereas some infinite tracks may be

desirable in some models – they will be distinguished later.

For the purpose of the communication error detection, it is necessary to track the

call and return events executed along the computation. One can imagine that there

is a running tape along a computation and each method call andreturn is recorded

on the tape in time of its execution.The labels are recorded with current values of

variables used as parameters of the labels. LetC be a computation trace, thentapeC
will denote the tape, a sequence of labels parametrized byDomE issued along the trace

C. Note that ifC is a infinite track andtapeC is finite, then it corresponds to a situation,

where the model stuck in an endless loop without any observable activity. Such case

of infinite track is considered erroneous, whereas an infiniteC with infinite tapeC may

be desirable in some reactive models.

In order to comparetapeC to a provisionPi it is worth removing all the labels

that are note observed by the provision and denote the resttapePi
C – it will contain

just labels from
(

f ilterPi
)↑/↓

DomE
. Then the tape can be compared to provision and the

communication errors can be defined as follows.

Definition 2.11 (Bad Activity). Let C be a computation trace of a TBP modelM =

(Σ,P,R,T,G) andQ=
(

f ilterQ, tracesQ
)
∈ P. ThenC is freeof bad activity error with

respect to Qif for an arbitrary finite prefixp of thetapeQC there ist ∈ tracesQ such that

p is a prefix oft.

C contains abad activity error with respect to Qif it is not free of bad activity error

with respect toQ. Moreover,C containsbad activity errorif it contains a bad activity

error with respect to at least oneR∈ P. The TBP modelM containsbad activity error

if at least one of its computation traces contains bad activity error.

Definition 2.12 (No Activity). Let C be a computation trace of a TBP modelM =

(Σ,P,R,T,G) andQ=
(

f ilterQ, tracesQ
)
∈ P. ThenC is freeof no activity error with

respect to Qif tapeQC is infinite ortapeQC ∈ tracesQ.

C containsno activity error with respect to Qif it is not free of no activity error

with respect toQ. MoreoverC containsno activity errorif it contains no activity error

with respect to at least oneR∈ P. The TBP modelM containsno activity errorif at

least one of its computation traces contains no activity error.

Summarizing all the error types, a TBP modelM contains an error if

• M generates a stuck computation trace (deadlock)
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• M generates an infinite traceC s.t. tapeC is finite ("void" endless loop)

• M containsbad activity error

• M containsno activity error

2.2.3 Open Model Analysis

The analysis of an open TBP model presented in [Poc10] is based on a refinement

relation over TBP models. A TBP modelI is said that refines another TBP model

S if I behaves correctly in any environment whichS behaves correctly in. For such

relation, there are means for deciding whether one model refines another provided in

the referred work. These means are parametrized with a maximal number of threads

that are allowed in any environment which is considered for the refinement.

The S model is supposed to be a relatively simple model that captures only sig-

nificant points of the implementationI , which typically captures is a more complex

component or a composition of components. The refinement relation allows vertical

decomposition of an complex application in a hierarchical component system. In par-

ticular, an implementationI can be checked whether it refines a specificationS. Then

I may be replaced byS in a more complex fraction of the overall application which

includedI . Then the more complex part can be again checked for a refinement or, if it

forms a closed model, checked for correctness.

In this section the refinement relation and the means for deciding whether two

components are in the relation will be briefly reviewed. For more details a reader is

kindly referred to the original work [Poc10].

The refinement relation parametrized with maximal number ofthreads in environ-

mentk is defined as follows. LetS and I be two TBP models andEk be a set of all

TBP models with maximallyk threads s.t.∀e∈ Ek the compositione⊕ I form a closed

model. Let’s assume thatS is such that∀e∈ E alsoe⊕S forms a closed model. Then

SrefinesI with respect to bad activity up tok threads ife⊕ I does not contain bad ac-

tivity error for eache∈Ek such thate⊕Sdoes not contain bad activity error. Similarly

S refinesI up tok threads with respect to no activity up tok threads ife⊕ I does not

contain no activity error nor any stuck computation trace for eache∈Ek such thate⊕S

does not contain no activity error nor any stuck computationtrace. ThenSrefinesI up

to k threads ifSrefinesI with respect to bad activity up tok threads and with respect to

no activity up tok threads. Finally,SrefinesI if and only if S refinesI up tok threads

for all k∈ N.

The process of deciding whether two models are in the refinement relation is based

on provision-driven computationand subsequent comparison ofobservation projec-

tionsof those computations. The provision-driven computation is similar to the stack
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based computation for closed model with the difference thatit includes actions derived

from the provisions of the model’s provided methods.

The state of provision-driven computation in addition to the stack based closed

computation state contains a state of an automaton derived from the provision expres-

sions. All provisions of the model are combined together to form a deterministic finite

state machineFSMP which accepts exactly the words that are allowed by the provi-

sions. As each provision forms a regular language (because the number of threads is

limited) at is clear that such machine can be constructed. The transitions induced by

the model itself correspond to transitions in the closed computation, but in addition the

state ofFSMP is advanced according to event on the transition – note that the case of

absence of aFSMP transition corresponding to the LTSA label in induced by thecom-

putation transition corresponds to a bad activity error. Inaddition to these transitions,

there are transitions corresponding to available transitions in the finite state in the pro-

vision computation – these represents methods calls performed by an environment. In

the case of such transition, new stack is added which represents the reaction on the

method call invoked by an environment. The initial computation state is identical to

the one of closed computation extended with the initial state of the finite state machine.

The provision-driven computation is then represented by a special state transition

system – its states correspond to the computation states andthe transition relation to

the available transitions. The initial state of the system is the initial computation state.

There is a set ofimperative final stateswhich are the provision driven computation

states that correspond to the end of the model computation – all stacks are empty.

Additionally, there is a set offinal stateswhich are such imperative final states that the

state of the provision finite state machine is a final state. Note that in an imperative

final state the computation may continue by an action of environment.

Within the provision-driven computation, there may be identified states correspond-

ing to a bad activity error (letEBA denote them) and stuck traces (a states which con-

tains at least one non-empty stack will never be modified in future, i.e. the stack is

identical in all the states reachable froms, let Estuck denote such states). Also states

corresponding to endless loop without any externally observable activity (letE∞ denote

such states) can be identified as states from which there is nopath to any final state nor

any transition labelled with any externally observable event (i.e. parametrized events

overΣprov∪Σreq). But existence of such states in itself does not mean that the model

is useless. In some environments such states can be avoided.

An observation projection, which is also an state transition system, is then defined

over the provision computations. It accumulates states of the provision computation

into a super-state which hide internal non-determinism of the model in a pessimistic

way. If an state of computation belongs to a super-state thenalso itsτ−closurebelongs

to the super state.τ− closureof a set of statesS is defined as a set of all states that
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are reachable by any sequence of externally invisible transitions from any state ofS.

The initial state isτ−closureof the initial computation state. The transitions between

the super-states are labelled with externally observable events. There is a transition

labelled with an event over required methode leading froms to s′ if there is at least

one transition overe from a sub-state ofs to a sub-state ofs′. On the other hand, there

is a transition froms to s′ labelled with a provided method evente if for each sub-state

of s there is a transition overepointing to a sub-state ofs′.

Similarly to the provision driven computation there are imperatively final states

(a super-state containing at least one imperatively final sub-state) and final states (a

super-state containing just final states) defined. Moreover, the set of error states is also

defined in a pessimistic way, which means that if at leas one sub-state is erroneous then

the super-state is erroneous. LetEBA denote the set of the super-states that correspond

to bad-activity andENA the set of states containing a state fromEstuck or E∞ – no

activity.

For the following definition, let !m denote an event over a required methodm (m∈

Σreq) and let ?m denote an event over a provided methodm (m∈ Σprov).

Definition 2.13(Parametrized alternation simulation). Let IOP andSOP be observation

projections of TBP modelsI andS. Let QIOP andQIOP denote the sets of states and

δIOP, δSOP denote the transition functions of the respective observation projections. Let

P be a relationP⊆ QIOP×QSOP. Then a relation�P⊆ QIOP×QSOP is aparametrized

alternation simulation(with parameterP) if and only if

• ∀(sI ,sS) ∈�P: (sI ,sS) ∈ P

• ∀(sI ,sS) ∈�P: δIOP(sI , !m) = s′I ⇒ ∃sS : δSOP(sS, !m) = s′S∧s′I �P s′S

• ∀(sI ,sS) ∈�P: δIOP(sI ,?m) = s′I ⇒ ∃sS : δSOP(sS, !m) = s′S∧s′I �P s′S

The parametrized alternation simulation, a variant of alternation simulation origi-

nally introduced for interface automata [dAH01], is extended to the observation rela-

tions in the following way:

IOP�P SOP ⇐⇒ sIOP
0 �P sSOP

0

wheresIOP
0 , sSOP

0 denotes the initial states ofIOP andSOP respectively. ThenI refines

Swith respect toP if IOP� SOP. TheP parameter determines which type of error the

alternation simulation and in turn the refinement relation captures.

For illustration, letBAbe a predicate s.t.BA(a,b) iff a∈EIOP
BA ⇒∈ESOP

BA whereEIOP
BA

is the set of bad activity states ofIOP andESOP
BA is the set of bad activity states ofIOP.

Then, as it is shown in [Poc10],�BA captures the bad activity error andIOP�BA SOP

implies thatI refinesSwith respect to bad activity.
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In order to define the predicate for the no activity error, it is necessary to add more

information about terminating states to the the observation relation. As this work do

not focus on the no activity error, the appropriate predicate will not be discussed in

detail with the note that the precise definition can be found in [Poc10].
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3. Analysis of Incomplete TBP Model

This work focuses on the open models with no limitation on thenumber of threads.

More concretely, the focus is placed on a subclass of open models in which the pro-

vided interfaces that are supposed to be used from an environment are specified by

provisions with full reentrancy. These models can induce massively parallel environ-

ments. The work then attempts to provide an approach to checking such highly parallel

models by using counter abstraction symmetry reduction technique.

3.1 Incomplete TBP Model

From the point of view of CBD, the incomplete model corresponds to a composed com-

ponent with some provided interfaces that allow unlimited re-entrant calls. The internal

architecture of the component is closed except for the provided and required interfaces

of the closing component which are delegated to some internal components. The pro-

vided and required interfaces form communication channelsto the outside world, an

environment which is not known at the current stage of the development. However,

there are some requirements placed on the provided interfaces, specifically allowed

call sequences. On the other hand, there might also be some known properties of

the component in the form of restrictions of the possible call sequences on the required

interfaces that the component may invoke. Then it is naturalto ask whether the compo-

nent will work correctly under any environment which fulfills the requirements placed

on the provided interfaces and whether the component actually satisfies the restrictions

placed on the required interfaces.

For instance consider a composed component which provides atransactional ac-

cess to data records. A simplified internal architecture of such a component could for

example consist ofStorage, Transaction ManagerandData Providercomponents as

depicted on Figure 3.1. TheData Providercomponent provides methods for reading

and writing the data and methods for starting and ending transaction and the component

allows the environment to call the methods in a fully re-entrant way. For example such

a provision could be(begin();(read()+write())*;(commit()+rollback()))|*.

Conversely, theStoragecomponent provides reading and writing in a sequential way.

The appropriate provision could then be(read()+write())*. TheTransaction Man-

agercomponent is then supposed to provide means for creating schedules for the trans-

actions and utilizes theStoragefor writing logs. If such a composition is supposed to

provide an universal data access platform intended to be used in many applications

then it is desirable to verify whether it will eventually work correctly under any envi-

ronment which fulfills the above assumptions.

33



Transaction Manager

Storage

Data Provider

Figure 3.1: Example of a component architecture corresponding to an incomplete mod-
el.

In terms of threaded behavioral protocols, these concepts in general form an open

model which is specific in the restriction that any enclosingenvironment can only op-

erate on a subset of the provided methods. Recall that the composition of TBP models

still provides all the methods that were provided in the subcomponents. Thus there is

a need to distinguish between provided methods that are intended to be used just inter-

nally within the composition and those that will be available to the environment. More-

over, it is also necessary to separate the provisions in an analogous way. Thus, while

keeping the theoretical framework defined in previous sections, a provided method can

be marked asboundif there is a matching required method in the composition and

unboundotherwise.

In turn, a provisionQ is partially bound if at least one method which is captured

by the provision (i.e. a methodm∈ f ilterQ) is bound and the provision is fully bound

if all the captured methods are bound. On the other hand, the provision is unbound if

no method captured by the provision is bound. Then the methods that are captured by

an unbound provision will be treated as intended to be calledfrom the environment. A

model with at least one unbound provision will be calledinclompletemodel as stated

in Definition 3.1.

Definition 3.1 (Incomplete TBP Model). Let A = ((Σprov,Σreq,Σint),P,R,T,G) be a

TBP model. LetΣbound⊂ Σprov be a set of the bound provided methods.

Pi ∈ P is anunboundprovision iff f ilterPi ∩Σbound= /0, P is anpartially bound

provision iff f ilterPi ∩Σbound 6= /0 andP is fully boundprovision iff f ilterPi ⊆ Σbound.

A is incomplete TBP modeliff all the following hold
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• there are no required methods;Σreq = /0

• there is at least one unbound provision inP

• for arbitrary two unbound provisionsQ,R∈ P holds that

eitherQ= Ror f ilterQ∩ f ilterP = /0.

The difference between incomplete and closed model is that the environment is

supposed to invoke methods of unbound provisions and thus the environment is also a

source of activity in the former, whereas in the closed modelthe only source of activ-

ity are threads of the model and the environment can not communicate with it at all.

Note that the incomplete model does not require any methods from the environment.

Although it is fully legitimate to require methods from the environment, it is formally

not allowed in the incomplete models since the environment is not known. Howev-

er, the required interfaces may be satisfied with fictive components that would assign

empty reactions to the required methods. These fictive components are supposed to be

supplied by the developer of the model which gives him an opportunity to specify ad-

ditional restrictions on the way that the methods are calledusing additional provisions.

On the other hand, if there are no such requirements, nothingprevents the reactions

from being generated automatically. It could also be very interesting to ask whether it

is possible to extract the provisions that form restrictions on the required methods in

an at least semi-automatic way, but it is beyond the scope of this work.

3.1.1 Restricting Provision Expressions

This work approaches the analysis of the incomplete model byusing an artificial envi-

ronment which simulates any real environment that uses the unbound provided meth-

ods correctly. The artificial environment will be generatedfrom the unbound provi-

sions so that it will eventually call the provided methods inall the ways allowed in the

provisions. In particular, it means that the environment will eventually generate all the

traces specified by the provisions. This environment then closes the incomplete model.

The composition of the artificial environment and the incomplete model will then form

a closed model which does not allow any of its methods to be called from outside.

Then the closed model will be checked as to whether it is correct with respect tobad

activity. But since the closed model can contain an unlimited number of threads, as

any unbound provision can contain full reentrancy operator, it cannot be analysed as

a classical closed model. In fact, the case of an unlimited number of threads is what

this work is focused on. The analysis of such a closed model will utilize symbolic

counter abstraction, which reduces the symmetries inducedby parallel threads and in

fact allows the analysis of models with unlimited numbers ofthreads.
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The crucial problem is to process the provisions in their general form, both in

the sense of generating the artificial environment and in theterms of checking bad

activity. Although symbolic counter abstraction an allowsinfinite number of threads,

in particular an infinite number of replicas of finite number of thread types, all other

entities such as variables or number of program locations must be finite. Consider for

example a very simple provision(i.a() ;i.b()) |∗;i.c(). It says that the sequence of

calls a andb can be performed infinitely many times in parallel and thenc must be

called. For an environment with an ambition to eventually call all the traces specified

by the provision within all its execution paths it would meanthat it has to launch an

arbitrary number of threads that would performi.a() ;i.b(), wait until they finish and

then performi.c(). But waiting until the threads finish would require a sort of counter

of living threads as a state variable which would need an infinite domain.

Additionally, for checking correctness with respect to badactivity of a provision, it

is necessary to somehow encode the provision and its state (in terms of its simulation

along the executed method calls) into the computation state. The computation state

under symbolic counter abstraction consists of a global state and thread-local states.

The number of these states be finite, but the potential lies inthe fact that the thread-

local states can be occupied by an unbounded number of threads. Thus it is convenient

to spread the provision over the thread states.. Unfortunately, this is again not possible

in general.

For the reasons outlined in the previous paragraphs, it is necessary to restrict the

provision expressions. Definition 3.2 proposes such a restriction. However, the con-

crete reasons for this particular form of provisions will become more clear during the

detailed explanation of the environment generating and provision checking presented

in sections 3.2.1 and 3.2.3 respectively. Nonetheless, it will be assumed that all the

unbound provisions in the incomplete model are in the form ofsimultaneously regular

provision expression, and each bound provision either doesnot contain full reentrancy

operator or forms a simultaneously regular provision expression.

Definition 3.2 (Simultaneously regular provision). A provision expression isentirely

regular iff it does not contain|, ||, |n nor|* operators.

A simultaneously regular provisionexpression (SRP) is defined recursively as fol-

lows:

• P, P|n andP|* are SRP ifP is entirely regular

• P||Q is SRP ifP andQ are SRP and none of them contain| operator

• P|Q is SRP ifP andQ are SRP

Note that the provisions stated in the definitions are in factparallel compositions

of regular expressions. LetP be a simultaneously regular provision expression and
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E1,E2, ...,Ek be its maximal entirely regular subexpressions. The maximality means

that Ei is eitherP or an argument of a parallel operator (|, ||, |n or |∗). Then any fi-

nite sequences∈ tracesP can be taken as a parallel interleaving of a certain number

of sequences, where each of them matches at least one of the entirely regular subex-

pressions. This fact is used in detecting whether the closedmodel does not contain an

internal communication error with respect to bad activity.Simply put, the threads of

the model will be checked as to whether they issue method calls with respect to the en-

tirely regular subexpressions. This can be checked from thethread-local perspective.

It will then be checked from the global perspective whether the threads together issue

a sequence matching the provision in total. As will be shown,there are certain limits

on the number of threads issuing traces of particular subexpressions that assure that

the parallel interleaving will match the overall provision.

Indeed, the requirement imposed on every thread of the model, that it must satisfy a

regular subexpression or issue no call inf ilterP, as a necessary condition for validity of

the model with respect to bad activity onP is stricter than in the closed model analysis.

Thus the analysis of an incomplete model can contain spurious errors in the meaning,

that even if the incomplete model analysis yields a discovered bad activity error, the

model can still be error free for all valid environments. On the other hand, it is safe – if

the incomplete analysis does not find a communication error then the model will surely

not contain any bad activity error under any possible environment which satisfies the

unbound provisions.

Note also, that a provision which does not contain full reentrancy can be checked

using a common finite state machine which observes the eventsglobally. Such error

detection does not induce spurious errors and still remainssafe as it is very close to

the approach of checking bad activity in the closed model. Moreover, some potential

may lie in a combination of these two techniques in order to fully check re-entrant

provisions and reduce spurious errors induced by the former.

3.2 Analysis Using Symbolic Counter Abstraction

In order to check whether an incomplete TBP model is correct with respect to the bad

activity, several transformations need to be done on the model.

The unbound provisions need to be transformed to an artificial component that

will substitute any environment which act correctly with respect to the provisions.

This component is supposed to call methods of the unbound provisions in a valid and

exhaustive manner – just all traces of the provisions must beeventually performed. The

artificial component, in the case of full re-entrant provisions, consists of an unlimited

number of threads. However, these threads arise from unbounded replication of a

finite number of thread types. Then the composition of the artificial component with
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the components corresponding to the incomplete model formsa closed model. Such a

closed model is in fact a replicated finite state model and thus the counter abstraction

is applicable on it.

As already described in chapter 1, the counter abstraction reduces symmetries in-

duced by the replication by reducing the thread state reachability problem to the VASS

coverability problem. This reduction is done by using counters which capture the num-

bers of threads residing in individual thread states.

In order to use a TBP model with the explicit counter abstraction, it would be

necessary to convert the model’s imperative parts, represented by LTSAs, to VASS.

However, as the symbolic counter abstraction interleaves the model checking phase

with the state space exploration phase, it is only necessaryto present a way in which

the exploration phase will be performed on LTSAs. Nonetheless, in order to clarify

the exploration phase and the relation between LTSA and appropriate VASS, even the

explicit conversion will be outlined in Section 3.2.2.

Finally, the bound provisions need to be encoded into the model states. More

precisely, the properties of the model induced by the provisions need to be mapped

onto the reachability of thread states and in turn convertedto the coverability of VASS

configurations. This issue is addressed in section 3.2.2.

3.2.1 Artificial Environment from Unbound Provisions

The goal of this section is to design a mechanism of transforming a provision to an ar-

tificial component. The component will act as a substitute for any arbitrary component

behind the provision, that respects the provision. Hence the artificial component must

perform only such sequences of method calls, that belong to the traces specified by the

provisions. Moreover, considering all possible executions of the component, all traces

of the provision must be invoked. It is obvious, that the component may contain sever-

al thread instances, even possibly unlimited number in casethat the provision contains

full reentrancy operator, in order to involve the parallel nature of the provision. The

desirable result can be accomplished using systematic coordination of the threads and

using non-determinism within them.

Before the particular transformation can be presented, a more detailed theoretical

analysis of the provision expressions is needed. It will offer arguments for the claims

above and shape the transformation itself.

Provision Expression Analysis

Considering a general provision expression,he and-parallel operator is defined via in-

terleavings of operands and the or-parallel and reentrancyoperators are based on it.

The interleaving is expressed formally in definition 3.3.
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Definition 3.3 (Interleaving). Let α,β ∈ Σ∗ be finite sequences of symbols ofΣ (i.e.

words overΣ). Let |α| denote length ofα, αi denotei-th symbol ofα.

We say thatγ ∈ Σ∗ is an interleavingof α and β iff |γ| = |α|+ |β| and ∃ϕα :

{1,2, ..., |α|}→{1,2, ..., |γ|},ϕβ : {1,2, ..., |β|}→{1,2, ..., |γ|}strictly increasing func-

tions such that∀i ∈ {1,2, ..., |α|}, j ∈ {1,2, ..., |β|} : ϕα(i) 6= ϕβ( j), αi = γϕα(i) and

β j = γϕβ( j).

Let A,B⊆ Σ∗ be finite sets of words overΣ, thenA⊗B denotes a set ofmutual

interleavingsof elements ofA andB. Formally,γ ∈ A⊗B ⇐⇒ ∃α ∈ A,β ∈ B s.t. γ is

interleaving ofα andβ.

Following notation will also be used (k∈ N0, m,n∈ Z,n≤m):

A⊗k = A⊗A⊗ ...⊗A
︸ ︷︷ ︸

k

m⊗

i=n

Ai = An⊗An+1⊗ ...⊗Am−1⊗Am

The⊗ operator is clearlycommutative. Directly from definition also follows that

A⊗ /0 = /0 and A⊗{λ} = A whereλ denotes an empty word. It is also clear that

A⊗(k+l) = A⊗k⊗A⊗l for anyk, l ∈N0. ThusA⊗0 = {λ} for A 6= /0 asA⊗k = A⊗k⊗A⊗0

and clearly{λ} is the only identity element with respect to⊗. Note that/0⊗0 is also

equal to{λ}.
Having two provision expressionsP andQ, the semantics of the| and|| operators

can be expressed in the following way:

tracesP|Q = tracesP⊗ tracesQ (3.1)

tracesP||Q =
(

tracesP⊗ tracesQ
)

∪ tracesP∪ tracesQ (3.2)

Lemma 3.4(Distributivity). Let A,B,C⊆ Σ∗ be sets of finite words overΣ. Then

(A∪B)⊗C= (A⊗C)∪ (B⊗C)

Proof.

γ ∈ (A∪B)⊗C ⇐⇒ (∃α ∈ A∪B)(∃β ∈C) : γ interleaving ofα,β

⇐⇒ (∃α ∈ A)(∃β ∈C) : γ interleaving ofα,β

∨

(∃α ∈ B)(∃β ∈C) : γ interleaving ofα,β

⇐⇒ (γ ∈ A⊗C)∨ (γ ∈ B⊗C)

⇐⇒ γ ∈ (A⊗C)∪ (B⊗C)
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Considering thatP|n is defined asP||P||...||P, whereP occursn-times on the right

side andP|∗ is P||P||..., following inclusions are direct consequence of repeated appli-

cation of Lemma 3.4.

(
tracesP

)⊗k
⊆ tracesP|n ∀k≤ n;k,n∈ N (3.3)

(
tracesP

)⊗k
⊆ tracesP|∗ ∀k∈ N (3.4)

So far, the general provision expressions have been considered. Now the simulta-

neously regular provisions will be focused. Such expression consists of entirely regular

subexpressions. Considering only maximal regular subexpressions, i.e. such that they

do not act as an operand of a regular expression operator, they can be enumerated for

example in order of appearance in the whole expression from left to right. Note that

the subexpressions are not necessarily unique, there may bethe same subexpressions

as they appear more than once.

Let P be a simultaneously regular provision expression consisting of E1,E2, ...,Ek

maximal entirely regular subexpressions which define regular languagesR1,R2, ...,Rk.

Indeed, not all the words ofR⊗i1
1 ⊗R⊗i2

2 ⊗...⊗R⊗ik
k for all possible vectors(i1, i2, ..., ik)∈

(N0)
k must match the provisionP. But there are some valid vectors which induce that

the interleavings matchP, these will be identified in the following.

First, consider the maximal number of the words that match a particular entirely

regular subexpression. Clearly there may be a certain number, which when exceeded,

the interleaving will not match the provision. These numbers will be calledupper

parallel boundaries. E.g. for the(a+b)|n expression, the upper parallel boundary is

n. On the other hand, there is no such limit for the expression(a+b)|∗, the number

of the words matchinga+b may be arbitrarily large. Definition 3.5 states prescription

for the upper parallel boundaries. Subsequently, Observation 3.6 covers the previous

ideas formally.

Definition 3.5 (Upper parallel boundaries). Let P be a simultaneously regular provi-

sion expression andA be a subexpression ofP.

UP(A) is anupper parallel boundaryof A in P and it is defined as follows:

• UP(A) = 1 if A= P

• UP(A) = n ·UP(B) if B is a subexpression ofP such thatB= A|n;

• UP(A) = ω if A|∗ is also a subexpression ofP;

• UP(A) = UP(B) if B,C are subexpressions ofP s.t. B= A∗ or B= A◦C where

◦ stands for|, ||, + or ;.
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Note that from the last point follows thatUP(A)=UP(B) if A, Bare subexpressions

of P, A is a subexpression ofB and there is no such subexpressionC of B thatA is a

subexpression ofC andC|n or C|∗ is also a subexpression ofB.

Observation 3.6(Upper parallel boundaries and interleaving). Let P be a simultane-

ously parallel provision expression consisting of E1,E2, ...,Ek entirely regular expres-

sions andUP(Ei) be the upper parallel boundary for Ei in P. Having a vectorη ∈ Nk

such thatη(i) ≤UP(Ei) for all the i, then

k⊗

i=1

(
tracesEi

)⊗η(i) ⊆ tracesP

Intuitively, on the opposite side of the scale, there will also be a sort of boundaries.

On closer inspection, it is crucial whether at least one wordmatching certain regular

subexpression is mandatory. Unfortunately, this can not beexpressed independently of

other subexpressions. Consider(a+b)||(c;d) provision expression. A word matching

(a+b) is mandatory just in the case that there is no word matching(c;d). Intuitively,

for the(a+b)||(c;d) example, the relation between its subexpression can be expressed

as "(a+b)||(c;d) will be met if (a+b) is met or(c;d) is met". The lower boundaries

on the number of words are articulated as propositional expressions.

Definition 3.7 (Lower parallel guards). Let P be a simultaneously regular provision

expression.

Thenlower parallel guardof P denoted for asLP is a propositional formula defined

as follows:

• LP = LA∧LB if P= A|B

• LP = LA∨LB if P= A||B

• LP = LA if P= A|n or P= A|∗

• LP = σP if P is an entirely regular provision expression;σP is a propositional

variable.

Note thatσP would informally correspond to "P is met". This specifically means,

that there is at least one word matchingP in the overall interleaving. The following

theorem summarizes the properties of defined boundaries. Inother words, it says that

if there is a set of words that correspond to the upper boundaries and lower guards

given by a provision, interleaving of these words will matchthe provision. Moreover,

all the possible matching sets will form the provision exhaustively.

Theorem 3.8. Let P be a simultaneously parallel provision expression consisting of

E1,E2, ...,Ek maximal entirely regular expressions. LetLP be the lower parallel guard
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of P containing the propositional variablesσE1,σE2, ...,σEk andUP(Ei) be the upper

parallel boundary for Ei in P.

Having a vectorη∈ (N0)
k, letϑη denote an interpretation of variablesσE1,σE2, ...,σEk

such thatϑη (σEi) is true if and only ifη(i) ≥ 1. If F is a propositional formula over

σE1,σE2, ...,σEk variables, then let alsoϑη (F) denote value of formula F underϑη.

Then for allη ∈ (N0)
k s.t.∀i ∈ {1,2, ...,k} : η(i) ≤UP(Ei) the following holds:

ϑη (LP) is true=⇒
k⊗

i=1

(
tracesEi

)⊗η(i) ⊆ tracesP (3.5)

Moreover, letN be a set of all vectorsη ∈ (N0)
k such thatϑη (LP) is true and

∀i ∈ {1,2, ...,k} : η(i) ≤UP(Ei). Then

⋃

n∈N

k⊗

i=1

(
tracesEi

)⊗η(i) = tracesP (3.6)

Before a proof will be presented, note that the observation 3.6 is a consequence

of this theorem (specifically of the (3.5) implication). Clearly a vectorη such that

η(i) ≥ 1 will conform any lower parallel guard. This advocates the assumptions of the

observation to satisfy the premise of (3.5).

Proof. First, a proof of (3.5) using complete induction will be presented. The induction

will be led over number of binary parallel operators (| and||) in a provision expression.

Consider the base case – letP be a simultaneously regular provision expression

without any binary parallel operator. From definition,P contains exactly one maximal

entirely regular subexpressionE1. Hence the left side of inclusion in (3.5) can be

simplified to
(
tracesE1

)⊗η(1) using substitution ofk= 1. Three are three possible forms

of P:

1. P is entirely regular expression, i.e.P = E1. ThenUP(E1) = 1 andLP = σE1,

thus the only vectorη such thatϑη (LP) is trueandη(1) ≤UP(E1) is (1). Then

(
tracesE1

)⊗η(1) =
(
tracesE1

)⊗1
= tracesE1 = tracesP

2. P=E1|n whereE1 is an entirely regular expression. ThenUP(E1) = n andLP =

σE1. Hence if a vectorη is such thatϑη (LP) is true, then 1≤ η(1). Additionally

η(1) ≤UP(E1) = n from assumption onη. From (3.3)

(
tracesE1

)⊗η(1) ⊆ tracesP

3. P = E1|∗ whereE1 is entirely regular expression. Analogously to the previous
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case, 1≤ η(1) and from (3.4)

(
tracesE1

)⊗η(1) ⊆ tracesP

Let P containm> 0 binary parallel operators, then there areQ andRsimultaneous-

ly regular expressions such that eitherP= Q|R or P= Q||R. Let Q (resp.R) contain

F1, ...,Fk (resp.G1, ...,Gl) maximal entirely regular expressions. Without loss of gen-

erality we can assume thatP containsE1, ...,Ek+l maximal entirely regular expressions

such thatEi = Fi for 1≤ i ≤ k andEk+i = Gi for 1≤ i ≤ l . Hence

UP(Ei) =







UQ(Fi) if 1 ≤ i ≤ k

UR(Gi−k) if k+1≤ i ≤ k+ l
(3.7)

Both Q andR contain obviously less thanm binary parallel operators. From induction

hypothesis for allη ∈ (N0)
k s.t.∀i : η(i) ≤UQ(Fi)

ϑη (LQ) is true=⇒
k⊗

i=1

(
tracesFi

)⊗η(i) ⊆ tracesQ

and for allη ∈ (N0)
l s.t.∀i : η(i) ≤UR(Gi)

ϑη (LR) is true=⇒
l⊗

i=1

(

tracesGi

)⊗η(i)
⊆ tracesR

Considering the case thatP = Q|R, let η(N0)
k+l be a vector such thatη(i) ≤UP(Ei)

andϑη (LP) is true. Then bothϑn(LQ) andϑn(LR) aretrue becauseLP = LQ∧LR.

Then

k+l⊗

i=1

(
tracesEi

)⊗η(i) =

(
k⊗

i=1

(
tracesEi

)⊗η(i)

)

⊗

(
k+l⊗

i=k+1

(
tracesEi

)⊗η(i)

)

=

(
k⊗

i=1

(
tracesFi

)⊗η(i)

)

⊗

(
l⊗

j=1

(

tracesG j

)⊗η( j+k)

)

⊆ tracesQ⊗ tracesR

= tracesP

Note that the inclusion follows from monotonicity of⊗ operator, which is evident.

For the caseP = Q||R the lower parallel guard isLP = LQ∨LR. But from Def-
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inition 3.2 neitherQ nor R contain| operator, thus bothLQ andLR take the form of

a disjunction of some propositional variables. Letη ∈ (N0)
k+l be a vector such that

η(i) ≤UP(Ei) andϑη (LP) is true. Additionally, letη(i, j) ∈ (N0)
j−i+1, i < j ≤ k de-

note a part of vectorη beginning at itsi-th coordinate and ending atj-th coordinate;

∀1≤ α≤ j− i +1 :
(
η(i, j)

)

(α) = η(i+α−1). Then either bothϑη (LQ) andϑη (LR) are

true or just one ofη(1,k), η(k+1,k+l) is zero in all its coordinates. Ifϑη (LQ)∧ϑη (LR)

then (analogously to the previous case)

k+l⊗

i=1

(
tracesEi

)⊗η(i) ⊆ tracesQ⊗ tracesR

Otherwise suppose thatη(k+1,k+l) =~0. Then obviously

k+l⊗

i=1

(
tracesEi

)⊗η(i) =

(
k⊗

i=1

(
tracesEi

)⊗η(i)

)

⊗

(
k+l⊗

i=k+1

(
tracesEi

)⊗0

)

=

(
k⊗

i=1

(
tracesFi

)⊗η(i)

)

⊆ tracesQ

For the opposite case (η(1,k) =~0) holds by analogy:

k+l⊗

i=1

(
tracesEi

)⊗η(i) ⊆ tracesR

Hence

k+l⊗

i=1

(
tracesEi

)⊗η(i) ⊆
(

tracesQ⊗ tracesR
)

∪ tracesQ∪ tracesP

= tracesP

Having (3.5) proven, the only thing rests to show is that all the elements of the right

side of (3.6) belong to the left side, in other words:

⋃

η∈N

k⊗

i=1

(
tracesEi

)⊗η(i) ⊇ tracesP (3.8)

As the opposite inclusion is a direct consequence of (3.5), (3.8) affirms (3.6).
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Let us show (3.8) again using induction over the number of binary parallel opera-

tors in the provision expression. LetP contain neither| nor ||, thenP contains exactly

one maximal entirely regular expressionE1. Thus after substitution ofk:

⋃

η∈N

k⊗

i=1

(
tracesEi

)⊗ni =
⋃

η∈N

(
tracesE1

)⊗η(1)

There are three possible forms of suchP:

1. P is the entirely regular expression itself, i.e.P = E1, LP = σE1, UP(E1) = 1.

HenceN = {(1)} and

⋃

η∈N

(
tracesE1

)⊗η(1) = tracesE1 = tracesP

2. P= E1|n whereE1 is entirely regular expressionLP = σE1, UP(E1) = n. Hence

N = {(1),(2), ...,(n)}. Let γ ∈ tracesP, then by definition there areγ1,γ2, ...,γ j ,

j ≤n, such that∀i ∈{1,2, ... j} : γi ∈ tracesE1 andγ is an interleaving ofγ1,γ2, ...,γ j .

Thusγ ∈
(
tracesEi

)⊗ j
. Obviously( j) ∈N , thus

γ ∈
(
tracesEi

)⊗ j
⊆

⋃

η∈N

(
tracesEi

)⊗η(i)

3. P= E1|∗ whereE1 is entirely regular expressionLP = σE1, UP(E1) = ω. Hence

N = {(1),(2), ...}. Letγ∈ tracesP, then there isj ∈N such thatγ∈
(
tracesE1

)⊗ j

analogously to the previous case. Clearly( j) ∈N , thus

γ ∈
(
tracesEi

)⊗ j
⊆

⋃

η∈N

(
tracesEi

)⊗η(i)

Let P containmbinary parallel operators,m> 0. ThusP= Q|Ror P= Q||Rwhere

Q andRare simultaneously regular provision expressions containing less thanmbinary

parallel operators. LetQ (resp.R) containF1, ...,Fk (resp.G1, ...,Gl) maximal entirely

regular expressions. Without loss of generalityP containsE1, ...,Ek+l maximal entirely

regular expressions such thatEi = Fi for 1≤ i ≤ k andEk+i = Gi for 1≤ i ≤ l . By the

induction hypothesis

⋃

η∈N Q

k⊗

i=1

(
tracesFi

)⊗η(i) ⊇ tracesQ
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and
⋃

η∈N R

l⊗

i=1

(

tracesGi

)⊗η(i)
⊇ tracesR

In the case ofP= Q|R

tracesP = tracesQ⊗ tracesR

⊆




⋃

η∈N Q

k⊗

i=1

(
tracesFi

)⊗η(i)



⊗




⋃

η∈N R

l⊗

i=1

(

tracesGi

)⊗η(i)





⊆
⋃

η∈N P

k+l⊗

i=1

(
tracesEi

)⊗η(i) (3.9)

where the last inclusion (3.9) is left to be proven. Letγ ∈ tracesP, there areα, β such

thatγ = α⊗β and

α ∈
⋃

η∈N Q

k⊗

i=1

(
tracesFi

)⊗η(i)

β ∈
⋃

η∈N R

l⊗

i=1

(

tracesGi

)⊗η(i)

thus there areηq ∈N Q andηr ∈N R such that

α ∈
k⊗

i=1

(
tracesFi

)⊗ηq
(i) andβ ∈

l⊗

i=1

(

tracesGi

)⊗ηr
(i)

Let ηqr ∈ (N0)
k+l be defined as a concatenation ofηq andηr :

ηqr
(i) =







ηq
(i) if 1 ≤ i ≤ k

ηr
(i−k) if k+1≤ i ≤ k+ l

The concatenation is suitable to generateγ from E1,E2, ...,Ek+l :

γ ∈
k+l⊗

i=1

(
tracesEi

)⊗ηqr
(i)

But ηqr ∈N P because of (3.7) andLP =LQ∧LR (expressions hold for bothηq andηr ,

thus the conjunction holds for the concatenationηqr), which proves the (3.9) inclusion.
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For the case thatP= Q||R holds

tracesP =
(

tracesQ⊗ tracesR
)

∪ tracesQ∪ tracesR

Let γ ∈ tracesP. The proof of

γ ∈ tracesQ⊗ tracesR=⇒ γ ∈
⋃

η∈N P

k+l⊗

i=1

(
tracesEi

)⊗η(i)

is analogous to the previous case whereP wasQ|R. The only difference is that nowLP

is LQ∨LR, which is even less restrictive, thus the concatenated sequence will belong

to N P as well.

If γ ∈ tracesQ then there isηq ∈ N Q such thatω ∈
k⊗

i=1

(
tracesFi

)⊗ηq
(i) . Let ηq0 ∈

(N0)
k+l be defined as an extension ofηq:

ηq0
(i) =







ηq
(i) if 1 ≤ i ≤ k

0 if k+1≤ i ≤ k+ l

The extension generatesγ as well, i.e.ω ∈
k+l⊗

i=1

(
tracesEi

)⊗ηq0
(i) . SinceLQ holds under

interpretation induced byηq, regardlessLR, LP = LQ∨LR holds under interpretation

induced byηq0. The upper parallel boundaries are unchanged according to (3.7), so

ηq0 ∈N P. The caseγ ∈ tracesR is completely analogous.

Provisions to Imperative Code

So far, the rules for interleaving words of entirely regularsubexpressions of a simulta-

neously regular provision expression has been stated. Now it is convenient to think of

creating imperative code that would generate the words of the entirely regular subex-

pressions – in terms of method calls. The code will reside in several threads in order to

obtain interleaving of call sequences by interleaving of the threads’ runs. On the other

hand, non-deterministic choices will allow generating allthe possible call sequences

corresponding to a regular expression.

At first glance there is a simple way in which the individual threads are specialized

for generating the sequences of events for the individual regular expressions. For each

regular subexpression there would be a threadtype, that would correspond to it. The

number of replicas of the thread types would reflect the upperparallel boundaries.

But this approach soon gets into trouble with return values of method calls. E.g. for

(a() : x;b())||(a() : y;c()) provision, there would be two threads; one expects thata
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returnsx, the othery. If the first thread retrievesy as the return value, which is not

necessarily a violation of the provision, the thread is not able to cope with it. An

intuitive solution would be tomergethe thread types to accept both return values.

Previous reasoning leads to a more universal approach, where there is a single

thread type that is able to perform all the sequences matching the union of the entirely

regular subexpressions. The thread should also be able to distinguish which particular

regular expressions are satisfied along the generated call sequences. For the sake of

clarity a finite state machine that accepts union of regular languages given by entirely

regular subexpressions will be defined. The definition 3.9 follows standard disjunction

of finite state machines and consequent determinization. The relation to the original

finite state machines is captured formally by defining resulting states as sets of original

states.

Definition 3.9. LetPbe a simultaneously regular provision expression, andE1,E2, ...,Ek

be the maximal entirely regular subexpressions ofP. Let Ai denote a deterministic fi-

nite state machine representingEi . Without loss of generality let∀i, j ∈ {1,2, ...,k} :

QAi ∩QA j = /0.

ThenDP = (Q,Σ,δ,s0,F) is a finite state machine such that

• the set of statesQ⊆℘

(
k⋃

i=1

QAi

)

;

• the alphabetΣ =
k⋃

i=1

Σi , whereΣi denotes alphabet (input symbols) ofAi ;

• the transition relationδ is defined as follows:
(S,x,T) ∈ δ ⇐⇒ S 6= /0∧T 6= /0

∧ ∀s∈ S∀i ∈ {1,2, ...,k} ∀t ∈QAi :

(s,x, t) ∈ δAi ⇒ t ∈ T

∧ ∀t ∈ T ∃s∈ S∃i ∈ {1,2, ...,k} :

(s,x, t) ∈ δAi

• the initial states0 is the set of the initial states ofA1,A2, ...,Ak;

• the set of final statesF ⊆Q is defined as follows:

S∈ F ⇐⇒ ∃s∈ S∃i ∈ {1,2, ...,k} : s∈ FAi

For instance, if a simulation overDP reaches the state{a,b} wherea∈ A1 andb∈

A2, then the simulation of the same word overA1 andA2 would end in the statesaandb

respectively. Let us say that a statep of DP overlapswith Ai and in turn withEi if there

is at least one state ofAi which is also an element ofp. Then it is convenient to define

functionCP as a function which maps each state ofDP to a set of indexes of the original
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state machines that the state overlaps with. More formally,let P containk maximal

entirely regular subexpressionsE1,E2, ...,Ek which correspond to deterministic finite

state machinesA1,A2, ...Ak. The functionCP : QDP
→℘({1,2, ...,k}) can be defined

as

CP(p) = {i | 1≤ i ≤ k∧∃q∈QAi : q∈ p} ∀p∈QDP
(3.10)

Moreover, letFP : QDP→℘({1,2, ...,k}) be a function defined as

FP(p) = {i | 1≤ i ≤ k∧∃q∈ FAi : q∈ p} ∀p∈QDP (3.11)

whereFAi denotes the set of final statesAi .

Lemma 3.10(Specialization). Let P be a simultaneously regular provision expression

and let Q,δ denote the set of states ofDP and the transition relation ofDP respectively.

Then for every p,q∈Q

(∃x : (p,x,q) ∈ δ)⇒ CP(q)⊆ CP(p)

Proof. Let E1,E2, ...,Ek be the maximal entirely regular subexpressions ofP andA1,

A2, ...,Ak be the deterministic finite state machines according to Definition 3.9. Let

p,q ∈ QDP s.t. p 6= /0 andq 6= /0 and there is a transition fromp to q. Finally, let us

assume thatCP(q)* CP(p) for contradiction.

Then there isj s.t. j ∈ CP(q) and j /∈ CP (p). From j ∈ CP(q) follows that there

is a stateq j ∈ QA j s.t. q j ∈ q. On the other hand,p∩QA j = /0 is a consequence of

j /∈ CP(p). From definition of the transition relation ofDP, there is no transition from

p to q since there is no suchr ∈ p that there is a transition fromr to q j in A j .

But the absence of transition fromp to q is in contradiction with the assumptions.

Note that the method of construction ofDP suggests that (1) the number of over-

lapped subexpressions does not grow along the transitions (from Lemma 3.10), and

(2) if a state overlapping with some subexpressions is reached on the path accepting a

particular word, the word would also be accepted by at least one state machine repre-

senting these subexpressions, i.e. the word matches at least one of the subexpressions.

The second statement follows from (1) and the obvious fact that FP(p) ⊆ CP(p) for

any p.

A LTSA fragment which generates method calls that form wordsaccepted byDP will

structurally correspond to theDP machine. Its set of states will be derived fromQDP.
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DP transitions for method call events will be represented by transitions with the par-

ticular method calls as labels. Transitions for return events will be represented as

transitions with guards checking the return value. The following paragraph prescribes

the relation betweenDP and the LTSA more precisely.

Let P be a simultaneously regular provision expression,DP be a finite state ma-

chine according to Definition 3.9. LTSA generating exactly the words accepted byDP,

denotedLTSADP, is created as follows

• States ofLTSADP
correspond to the states ofDP and contain three additional

statess, f ande which respectively denote the initial state, the final stateand

the error state (structurally, the last is also a final state). More precisely, letSDP

be the set of states ofDP, SLTSADP
be the set of states ofLTSADP

. Then there

is a setS⊂ SLTSADP
such thatSLTSADP

= S∪ {s, f ,e} and there is a bijection

`P : SDP→ S.

• Transitions ofLTSADP
also correspond to the transitions ofDP. Let t = (s,x, t)∈

δ be a transition ofDP. There are two main cases that differ in the way of

correspondence –x can be a method call event or a return event. For the sake of

simplicity, assume that all the events specify all particular parameters and return

values of method calls end returns. Note that if there is an event that does not

specify parameter values or return value inP, it can be equivalently rewritten

using alternative and all the possible values.

– Let x be a method call eventm↑ (p1, p2, ...). Then the corresponding tran-

sition is (`P(s), true, lx, /0, `P(t)) wherelx is a label which stands for a call

of the methodm with appropriate parameters prescribed within the event.

The labellx takes the formm(p1, p2, ...).

– Let x be a method return eventm↓: r. Then the corresponding LTSA tran-

sition is (`P(s),gx,τ, /0, `P(t)). The guardgx is true if the methodm does

not return any value (i.e. its type isvoid). In the opposite case, i.e. if the

method has a return value, the actual value is stored in the special purpose

Ret variable as the method call has been issued in the previous transition.

The guardguardx is thenRet== r.

There are also special transitions for thes and f states

– (s, true,τ, /0, `P(s0)) wheres0 is the initial state ofDP;

– (`P(p), true,τ, /0, f ) for all p from the set of final states of states ofDP.

On closer inspection, there is an obvious possibility of deadlock in the LTSA in

case that a method returned an unexpected value. For exampleconsider provision
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m() : TRUE for methodmwith no parameters and return typeBoolean = {TRUE,FALSE}.

Figure 3.2 depicts the corresponding LTSA. There is only onetransition after the call

of the methodm with the guardRet== TRUE – the transition fromq2 to q3. But there

is no transition fromq2 for the case thatm returnsFalse, thus the execution would be

blocked forever in this case.

Such a deadlock will be treated as a violation of the provision. It is however desir-

able to distinguish between this particular type of deadlock from the other deadlocks

that may potentially occur (in other LTSA). It can be technically done by using transi-

tionst with guardgt pointing to the error statee from each statec immediately follow-

ing a method call with a non-void return value. The guardgt must be complementary

to the guards on all the other transitions starting atc (let gt be a negation of a disjunc-

tion of all the guards). Reachability ofe then represents the deadlock. In the particular

example there would be transition fromq2 to ewith τ label and¬ Ret== TRUE guard.

Perceived strictly, the reachability ofe is always a spurious error. It actually signals

that the generated environment does not respect the provision. On the other hand, there

might be a question whether it is even possible to create an environment that would call

methods of the provisions correctly. For example take provision(m() : TRUE) |∗ and a

reactionm that at least once returnsFALSE and decides whether to returnTRUE or

FALSE in a way, which can not be affected from outside the incomplete model – for

example using non-deterministic choice. In the case of non-deterministic choice it is

surely impossible to create any valid environment and such model becomes unusable.

In the case of deterministic choice there will exist a valid environment, but one might

doubt whether such provision is a happy choice. Thus reachability of e can be a real

error (the case that no valid environment exists) or a spurious error which could be

taken as a recommendation to revisit the provision.

? guard
↑ label
! assignments

s q1 q2 q3 f

?true
↑τ
! /0

?true
↑m()

! /0

?Ret== TRUE
↑τ
! /0

?true
↑τ
! /0

Figure 3.2:LTSADm():TRUE
– a LTSA derived from the provision expressionm() : TRUE

EmbeddingLTSADP in a thread and running several replicas of such threads in par-

allel will form a component, which generates some interleavings of words matching

regular subexpressions ofP. For exampleLTSADm()||n()
replicated twice would form

words of(m()+n()) |(m()+n()). Thus it is necessary to restrain the LTSA in order to

generate words of the desired provision expression (m()||n() in the example). In the
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first place, the overall number of thread replicas is determined as the sum of upper par-

allel boundaries of all the entirely regular subexpressions of the provision expression.

The number of thread replicas will be unlimited if the sum is equal toω.

Furthermore, occurrences of the words matching individualregular subexpressions

need to be limited with respect to the upper parallel boundaries. In them()||n() ex-

ample, bothm() andn() can be executed at most once (according toUm()||n()(m()) =

Um()||n()(n()) = 1). It is then necessary to prevent both threads from executing the

same part of the LTSA. Generally speaking, this can be achieved by using shared vari-

ables which count the number of the threads entering specificparts of theLTSADP.

Transitions leading to such specific parts will increment the variables (counters) along

their execution and special guards, that will be added to thetransitions, will reflect the

upper parallel boundaries.

Each state of theLTSADP overlaps with some entirely regular subexpressions of

P. The exact set of overlapped subexpressions is given byCP ◦ `
−1
P (asCP

(

`−1
P (q)

)

is a set of indexes of the subexpressions ofP that theDP’s state`−1
P (q) overlaps with

– if `−1
P (q) is defined forq). If a transition leaves a state which overlaps with more

subexpressions than the target state, the transition will be called aspecializingtransi-

tion – for it enters a more specialized part of theLTSADP with respect to the overlapped

subexpressions. LetJ⊆ I whereI is an index set of entirely regular subexpressions of

P andJ is such that∀i ∈ J : UP(Ei) 6=ω, thencJ denotes a shared variable with domain

domcJ of size∑
i∈J

UP(Ei), <cJ is a strict total order overdomcJ, and 0cJ, McJ denote

the minimal and the maximal element ofdomcJ respectively. ThecJ variable acts as

a counter of executions of all the specializing transitionsthat leave a state which over-

laps with at least all the subexpressions indexed byJ, and enter a state which overlaps

with at least one subexpression with index inJ.

More formally, lett be a specializing transition fromp to q where neitherp nor q

is the final, the error nor the initial state. ThencJ acts as a counter fort if and only

if J ⊂ CP

(

`−1
P (p)

)

andCP

(

`−1
P (q)

)

⊆ J. Moreover, lett be a transition fromp to

the final statef . ThencJ acts as a counter fort if and only if J ⊂ CP

(

`−1
P (p)

)

and

FP

(

`−1
P (p)

)

⊆ J. The last statement captures the situation that the thread ends in a

state, which overlaps with more expressions that it accepts. Then the thread’s end in

fact means its final specialization to the expressions whichare accepted by the final

state.

Let thent be a transition and{cJ1,cJ2, ...,cJk} a set of variables that act as counters

of t. Let the transitiont have a form(p,gt , lt,at ,q) where p is the source state,gt

is a guard,lt is a label,at is a set of assignments andq is the target state. Then let

t ′ = (p,gt ′, lt,at ′,q) be a transition derived fromt which increments the counters and

also guards their maximal value. Specifically
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• gt ′ = gt ∧
(

¬cJ1 == McJ1

)

∧
(

¬cJ2 == McJ2

)

∧ ...∧
(

¬cJk == McJk

)

• at ′ = at ∪{++cJ1,++cJ2, ...++cJ2}

where++cJ stands for incrementation of the value ofcJ

Let LTSA′DP
denoteLTSADP

with every transitiont replaced witht ′ appropriate to

counters related tot. TheLTSA′DP
then respects the upper parallel boundaries of the

subexpressions ofP.

Note that the incrementation sign++cJ is not directly supported within the LTSA

formalism. It stands for assigning an immediate successor (with respect to<cJ) of the

actual value of the variablecJ back tocJ. The case that actual valuecJ does not have

any successor, which is when the value is equal toMcJ, is prevented by the guard int ′.

As already mentioned,++cJ is not supported by the LTSA formalism, however, it

can be expressed using|DomcJ|−1 transitions – a transition for each value ofDomcJ

exceptMcJ . The transition for a valuev contains the guardcJ==v and the assignment

cJ← v′ wherev′ denotes the immediate successor ofv. Figure 3.3 shows an example

of the expansion of an incrementation. Obviously, if there are more incrementation

assignments on a transition, they can be gradually removed by using repetitive appli-

cation of the scheme on all the newly formed transitions.

The last aspect influencing the proper cooperation of the threads formed byLTSA′DP

lies in the incorporation of the lower parallel guards. In fact, a thread consisting of

LTSA′DP
always generates a word matching a regular subexpression ofP. However,

this is not always the desired behavior as or-parallel operator allows one of its argu-

ments to be omitted. Thus it is necessary to allow threads to skip execution under some

conditions. These conditions are given by the lower parallel guards.

The basic idea is to track whether a word matching individualregular subexpres-

sions has been already generated by using shared variables equivalent to boolean vari-

ables. The variables would be initially set toFALSE and they would be assigned to

TRUE on a transition targetingf from a state corresponding to appropriate final state

of DP. Such variables would represent the propositional variables in the lower paral-

lel guard forP. Finally there would be a new transition froms to f with a condition

equivalent toLP as the guard. This transition would allow a thread to skip itsexecution

– let the transition be calledskippingtransition. Figure 3.4 presents the basic idea on

an example.

Unfortunately, it is not necessary, that each predecessor of the statef corresponds

to a state ofDP which contains only final states representing single regular subexpres-

sions. Recall the functionFP, the compositionFP ◦ `
−1
P gives indexes ofP’s regular

subexpressions that have a final state in the state corresponding to the argument – a

state ofLTSADP
and afterwardsLTSA′DP

. In the example on Figure 3.4, there are both

|FP

(

`−1
P (q4)

)

| = 1 and|FP

(

`−1
P (q5)

)

| = 1. But it is necessary to generalize the
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? guard
↑ label
! assignments

Domc = {ZERO,ONE,TWO,THREE}
<c ∼ 0c = ZERO<c ONE<c TWO<c THREE = Mc

p q

?G
↑L

! A ∪{++c}

p q

?G ∧ (c == ZERO)
↑L

! A ∪{c← ONE}

?G ∧ (c == ONE)
↑L

! A ∪{c← TWO}

?G ∧ (c == TWO)
↑L

! A ∪{c← THREE}

Figure 3.3: Expansion of an incrementation.

basic idea in order to support even such predecessorp of f , that|FP

(

`−1
P (p)

)

|> 1.

Let p be a predecessor off and let forp holdFP

(

`−1
P (p)

)

= {n1,n2, ...,nl}. When

a thread takes the transition fromp to f , it means that the sequence events gener-

ated by the thread matches all the subexpressionsEn1,En2, ...,Enl . Thus just one of

En1,En2, ...,Enl can be taken as fulfilled by the generated word. In other words, the

threadvalidatesjust one ofσEn1
,σEn2

, ...,σEnl
to be true. An interpretation of vari-

ablesσE1,σE2, ...,σEk of the lower parallel guard is calledvalidated, if for every i s.t.

σEi is true there is at least one thread which has validatedσEi to betrue. Finally the

lower parallel guard formula isvalidated, if there is a validated interpretation of vari-

ables s.t. the formula istrue under the interpretation. Focusing back on the skipping

transition, it is clear that it must be enabled just in case that the lower parallel guard

LP is validated.

In order to enable the skipping transition at the right moment, it is necessary to

keep track of the finishing threads and formulate the guard ofthe skipping transition
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? guard
↑ label
! assignments

P= (m()|∗) ||(n()|∗)
LP = σm()∨σm() σm() ∼ l1 σn() ∼ l2

s q1

q2

q3

q4

q5

f

?true
↑τ
! /0

?true
↑m()

! /0

?true
↑τ
! /0 ?true

↑τ
!l1← TRUE

?true
↑n()

! /0 ?true
↑τ
! /0

?true
↑τ

!l2← TRUE

?(l1 == TRUE)∨ (l2 == TRUE)
↑τ
! /0

Figure 3.4: Example of application lower parallel guards.

in terms ofLP validation. The finishing threads can be tracked by countersspecified

as follows. Letp be a state ofLTSA′DP
such that there is a transitiont from p to the

final statef . Let FP

(

`−1
P (p)

)

= {n1,n2, ...,nκ}=: F. Then there is a shared variable

lF with domain of size|F|+1 and a strict total order<F over the domain. The initial

value oflF is the minimal element of its domain 0F . Additionally, letMF denote the

maximal element of the domain. The transitiont = (p,gt , lt,at , f ) will be replaced by

two parallel transitionst ′′ andt ′′′:

• t ′′ = (p,gt ∧ (lF == MF) , lt,at , f )

• t ′′′ = (p,gt ∧ (¬lF == MF) , lt,at ∪{++lF} , f )

Let LTSA′′DP
be an LTSA formed by replacing all the transitions targetingthe final state

f in LTSA′DP
. TheLTSA′′DP

then tracks its last transition within thel{...} variables.

Now it is needed to express the lower parallel guardLP using thel{...} variables for

the guard condition on the skipping transition. A possible way is to find a formulaL ′P
in the disjunctive normal form containing no negations which is equivalent toLP. Such

formula clearly exists sinceLP contains no negations. However, it can be exponentially

larger thanLP. Let L ′P be a disjunction of conjunctionsC1,C2, ...,Cn. Then for every

Ci a formulaLi consisting ofl{...} variables equivalent toCi in terms of validation may

be constructed. Finally the disjunctionL1∨L2∨ ...∨Ln is equivalent toLP (in terms

of validation).
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In the following, a possible way in which theLi formula can be created is proposed.

Let there are exactlylF1,lF1, ..lFm counters tracking all the transitions to the final state

f in LTSA′′DP
. The setsF1,F2, ...,Fm are mutually different subsets ofI , the index

set of the maximal entirely regular subexpressions ofP. Recall that the domain of

lFi has|Fi |+ 1 elements and there is the strict total order<Fi over the domain. Let

bFi be a bijectionbFi : DomlFi
→ {0,1, ..., |Fi|} which respects the order1. Then let

J = { j1, j2, ..., jn} be a subset ofI such that

Ci =
∧

j∈J

σE j

Let F j denote the set{Fi | 1≤ i ≤m ∧ j ∈ Fi} andFJ denoteF j1×F j2 × ...×F jn.

Then the formulaLi that is equivalent toCi in terms of validations has the form

Li =
∨

η∈FJ

(
n∧

j=1

lFj ≥ b−1
Fj

(

min
(

θη
j , |Fj |

))
)

(3.12)

whereθη
j is the number of occurrences ofFj in η, more precisely, the number of

different i s.t. η(i) = Fj .

Let LP be the disjunction ofL1,L2, ...,Ln. ThenLTSAP denotes an LTSA created

from LTSA′′DP
by adding a skipping transitiont in the form(s,LP,τ, /0, f ) wheres, f

are the initial and final states ofLTSA′′DP
respectively. LetC be a component formed

by the thread consisting inLTSAP. Let the thread be replicated as many times, as the

sum of upper parallel boundaries of all entirely regular subexpressions ofP (in case

that the sum isω, the number of threads will be unlimited). In other words, let the sum

form areplication factorof the thread. It is worth mentioning that the component also

contains all the shared variablesc... andl... that appear on the transitions ofLTSAP.

The componentC then preforms all the possible traces of events accepted byP within

all the possible execution paths ofLTSAP while the reactions respond correctly to the

events with respect toP. On the other hand, if a reactions responds incorrectly – i.e.

it yields an unexpected return value, it is immediately apparent as an error or more

precisely as reachability of the error statee.

Note that≥ operator is not defined within LTSA guards. On the other hand,having

a strict total order<v over Domv, the domain of variablev, a setDom≥w
v ⊆ Domv

containing exactly the elements that are not less thanw is well defined for anyw ∈

Domv. Formally, Dom≥w
v = {x | x∈ Domv ∧ ¬(x<v w)} for any w ∈ Domv. Then

any expression in fromv≥w such thatw∈ Domv is equivalent tov∈Dom≥w
v and that

1 ∀x,y∈ DomlNi
: bNi (x)< bNi (y) ⇐⇒ x<Ni y
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can be scripted in form of a guard expression as

∨

X∈Dom≥W
v

(v==X)

For example, letP be the provision expression((m()+n()) || p()) | m(). Let E1,

E2, E3 be the entirely regular subexpressions ofP as they appear inP, i.e. E1 =

m()+n(), E2 = p() andE3 = m(). Then there will be three predecessors of the final

state ofLTSAP – q5, q6 andq7 on Figure 3.5. The first corresponds to the words match-

ingE1, second corresponds to the words matchingE1 intersected with the words match-

ing E3, and the last representsE2. Hence there are countersl{1,3}, l{1} andl{2} for

the lower parallel guard and the lower parallel guard itselfis LP = (σE1∨σE2)∧σE3.

The disjunctive normal formL ′P is then(σE1∧σE3)∨ (σE2∧σE3). The domains of the

counters along with the order are

Doml{1} = Doml{2} = {V0,V1} V0< V1

Doml{1,3} = {V0,V1,V2} V0< V1< V3

From 3.12, the representation ofLP using the counters is

LP =
(
l{1} ≥ V1∧l{1,3} ≥ V1

)
∨
(
l{1,3} ≥ V2

)

∨
(
l{1} ≥ V1∧l{2} ≥ V1

)
∨
(
l{1,3} ≥ V1∧l{2} ≥ V1

)

Figure 3.5 shows the resultingLTSAP for the example.

3.2.2 Imperative Parts

This section describes the way the imperative parts of a TBP model form a VASS which

can be later used for testing reachability of particular thread states by the coverability

of the appropriate VASS configurations. The imperative parts consist of the threads and

the reactions represented by the LTSA structures. For a straightforward representation

using VASS the reactions need to substitute for the calling transitions. This substitution

is very similar to the concept ofinline functions supported by some programming

languages such asC, thus the terminlining or inline expansionwill be used in this text.

After all reactions are inlined into their callers, the imperative parts are formed by a

set of threads only. There are no actual calls (but the labelsare retained) and no need

of stacks which is the main benefit for the straightforward representation using VASS.

Inline Expansion

The expansion consists in replacing the LTSA transition which calls a method with

a LTSA fragment derived from the appropriate reaction. A call transition is a transi-
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? guard
↑ label
! assignments

P= ((m()+n()) || p()) | m()

s q1 q3 q6

q2 q5

q4 q7

f

?true
↑τ
! /0

?¬c{1,3} == V2∧¬c{1} == V1
↑n()

!
{
++c{1,3},++c{1}

}

?true
↑τ
! /0

?true
↑τ

!
{
++l{1}

}

?¬c{1,3} == V2
↑m()

!
{
++c{1,3}

}

?true
↑τ
! /0

?true
↑τ

!
{
++l{1,3}

}

?¬c{2} == V1
↑p()

!
{
++c{2}

}

?true
↑τ
! /0

?true
↑τ

!
{
++l{2}

}

?LG
P
↑τ
! /0

Doml{1}
= Doml{2}

= Domc{1}
= Domc{2}

= {V0,V1}

Initl{1} = Initl{2} = Initc{1} = Initc{2} = V0

Doml{1,3}
= Domc{1,3}

= {V0,V1,V2}

Initc{1,3} = Initc{1,3} = V0

LG
P =

(
l{1}== V1∧

(
l{1,3}== V1∨l{1,3}== V2

))

∨
(
l{1,3}== V2

)
∨
(
l{1}== V1∧l{2}== V1

)

∨
((
l{1,3}== V1∨l{1,3}== V2

)
∧l{2}== V1

)

Figure 3.5: Example ofLTSAP.

tion in the form(p,gc, lc,ac,q) where the labellc is a parametrized label in the form

m(p1, p2, ..., pk). Generally, a call transition is the only one transition entering its tar-

get state and may be followed by any number of transitions which referRet variable

either within its guard or assignments. Recall thatRetvariable is the special purpose

variable for storing return value of a reaction.

The LTSA representing a reaction is generally arbitrary LTSA structure such that

there is no transition starting at any final state – the final states represent states after

return, thus any continuation is useless. Without loss of generality, only one final

state can be assumed as all the transitions pointing to the original final states can be

redirected into a single final state. The transitions pointing to the final state may contain

an assignment toRet, depending on whether the reaction represents a method witha

return value. Note that the successors of a call transition can referRet only if the

reaction returns a value (assignsRet).
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The LTSA fragmentzc,R which replaces a call transitionc = (p,gc, lc,ac,q) in a

call site with local variablesLc (i.e. either a thread or another reaction) of a reactionR

with local variablesLr and a parameter mapping functionρ : N→ Lr is formed using

following steps.

1. Rename the local variablesLr .

The variablesLr need to be renamed in order not to clash with variables of the

call site Lc. Thus letL′r be an alternative set of the local variables such that

L′r ∩ Lc = /0 and letr : Lr → L′r be a bijection that captures the renaming. All

occurrences of each variablel ∈ Lr in the LTSA representing the behaviour of

the reaction need to be replaced withr (l).

2. Assign parameter values.

In order to assign parameters values, it is necessary to add anew initial state

s to the LTSA representing the behaviour of the reaction, which will precede

the original initial states0. The parameter values will be assigned to appropri-

ate local variables within the transition(s,gc,τ,ac∪ξ,s0) whereξ is the set of

assignments{r (ρ(i))← pi | 1≤ i ≤ n}; n is the number of parameters andpi

is the value of thei-th parameter as stated inlc. Note that the transition reuses

guard and assignments from the original call site.

3. Mark entry and end transitions with labels.

In order to keep track of called methods, labels corresponding to the appropriate

events need to be added. Letl ′c = m ↑ (p1, p2, ..., pn) be a parametrized label

which represents the call event appropriate tolc and l ′r = m ↓: Ret or l ′r = m ↓

represent appropriate return event (depending on whether the reaction returns a

value). Then the labell ′c must be added to the entry transition (i.e. the transi-

tion from s to s0 from the previous step) andl ′r to the end transitions (i.e. the

transitions pointing the only final state).

The replacement itself is fairly straightforward. The entry transition ofzc,R, which

is the transition from its initial states, will be moved so that it will start atp, the source

state of the call transitionc. The end transitions, which are the transitions targeting the

only final state ofzc,R, will be redirected toq, the state whichc points to. Thenc will

be removed and the set of local variables associated with thecall site will beLc∪L′r .

Moreover, it is a great opportunity to get a rid of theRetvariable within the inlin-

ing. TheRetvariable has some peculiar properties (e.g. it is not properly typed) that

would eventually complicate its representation within VASS. TheRetvariable will be

replaced with a regular local variable of the same type as thereaction’s return type.

Let rtmp denote such a variable. However, the actual name ofrtmp must be chosen

carefully in order not to clash with any variable inLc or L′r . Thenrtmp will be added
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to the set of local variables associated with the call site, the set will then be equal

to Lc∪ L′r ∪
{
rtmp

}
. Finally, let all the occurrences ofRet within all the transitions

pointing toq or starting atq (i.e. assignments toRetor readsof Ret respectively) be

replaced withrtmp.

Threads to VASS

After all the method calls are expanded, the imperative parts of a TBP model are rep-

resented by threadsT1,T2, ...Tn, whereTi takes the form(Li ,Γi). Having G a set of

global variables,Li is a set of local variables used within the thread andΓi is an LTSA

representation of the thread’s behavior, which refers variablesG∪Li . Moreover, there

is a replication functionR : {1,2, ...,n}→N∪{ω}, which assigns a replication factor

to each thread. A thread will be instantiated as many times, as its replication factor –

ω denotes unlimited number of thread instances. Recall that the replication factor is

equal to the sum of upper parallel boundaries for the threadscreated as environment

from an unbound provision and 1 for regular threads derived from TBP specification.

In order to be able to simulate the threads using VASS, it is necessary to provide an

unique identifier for individual LTSA states, or in other words, some sort of program

counter is needed. Letθi be a set of all states ofΓi , the LTSA fori-th thread, andΘ be a

set of all states of all the threads,Θ = θ1∪θ2∪ ...∪θn. Then letφ : Θ→{1,2, ..., |Θ|}
be a bijection which maps state to its integral identifier.

To keep relation between thread state and the LTSA state, it is necessary to ma-

terializeφ within the LTSA structures as a program counter variable. The program

counter is specific to each thread, thus it will be retained within a local variable. Let

D be a set of constants of size|Θ| which will act as a domain of variables representing

the program counters and letd : D→ {1,2, ..., |Θ|} be a bijection evaluatingD. Then

for all i = 1,2, ...n let pci /∈ Li be a variable with domainDompci = D and initial value

Initpci = d−1(φ(si)), wheresi is the initial state ofΓi . The variablepci will act as

program counter for threadTi , thus letT pc
i =

(
Lpci

i ,Γpc
i

)
be the thread equipped with

program counter corresponding toTi , whereLpc
i = Li ∪{pci} andΓpc

i is a LTSA s.t.

• the set of states, the initial state, the final states and the labels ofΓpc
i are the same

as inΓi ;

• transitions ofΓpc
i are in one-to-one correspondence with those ofΓi ;

• if t = (p,gt , lt ,at,q) is a transition ofΓi andt pc is the corresponding transition

of Γpc
i , thent pc=

(
p,gt , lt,at ∪

{
pci ← d−1(φ(q))

}
,q
)
.

Simply put, each transition assigns the identifier of its target state to the program

counter.
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For explicit encoding of the threads of TBP model into VASS, all local states need

to be enumerated. The setL of all local states is a union of sets of local states of all the

threads. The local statesLT pc
i

of a threadT pc
i are given by all possible valuations of

local variablesLpc
i . Let ζ be the number of all local states, i.e.|L |, then the setL can

be indexed with{1,2, ...,ζ} so thatL =
{
`1, `2, ..., `ζ

}
. Conversely, it is not necessary

to explicitly assign numbers to the global states. The global states are formed by all

possible valuations of global variablesG, let the set of all global states be denoted by

G .

Let s∈ G be a global state, then let the valuation functionγG that maps all global

variables to the values corresponding tosbe denoted aγs. Analogously, let̀ ∈ LT pc
j

be

a local state of a threadT pc
j =

(

Lpc
j ,Γpc

j

)

, then let the valuation functionγLpc
j

that maps

all local variables inLpc
j to the values corresponding to` be denoted asγ`. Additionally,

let ψ be a function mapping local states to the states of LTSA. Moreprecisely, let̀ be

a local state s.t.γ` (pci) is defined, thenψ(`) is Φ−1(d(γ` (pci))), which is the LTSA

state appropriate tò. ψ is well defined because for every` ∈ L there is exactly one

i ∈ {1,2, ...,n} such thatγ` (pci) is defined.

Let W = (S ,c0,δ) be aζ-dimensional VASS such that

• S = G , i.e. the states are formed by the set of all valuations of global variables

• c0 = (s,v) wheres evaluates the global variables as their initial values andv∈

(N0)
ζ s.t.

v(i) =







R ( j) if ∃ j ∈ {1,2, ...,n} : R ( j) 6= ω∧∀v∈ Lpc
j : γ`i (v) = Initv

0 otherwise

i.e. v(i) is equal toR ( j) 6= ω if i-th local state evaluates the local variables of

threadT pc
j as their initial values.

• (s1,s2,w) ∈ δ if and only if

(i) w contains just two non-zero coordinatesw(i) =−1 andw( j) = 1 and there

is a LTSA transitiont =
(
ψ(`i) ,gt, lt ,at ,ψ

(
` j
))

such that

– gt evaluates totrueunderγs1 andγ`i

– at ⊆ {g← γs2 (g) | g∈G}∪
{

l ← γ` j (l) | l ∈ Lpc
1 ∪Lpc

2 ...∪Lpc
n
}

– g← γs2 (g) ∈ at for every global variableg such thatγs1 (g) 6= γs2 (g)

– l ← γ` j (l) ∈ at for every local variablel such thatγ`i (l) 6= γ` j (l)

or

(ii) w contains just one non-zero coordinatew(i) = 1, s1 = s2 and there isj

such that̀ i evaluates exactly all the local variablesLT pc
j

of j-th threadT pc
j
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as their initial values and the replication factor of thej-th threadR ( j) is

ω.

Note that the transitions (i) specify regular transitions derived from the threads’ behav-

ior, whereas the transitions (ii) represent creation of threads with unlimited replication

factor.

The stack-based computation of a model containing the threads T pc
1 ,T pc

2 , ...,Tpc
n

wherei-th thread is instantiatedR (i)-times corresponds to a simulation of the VASS

W described above. Recall that the stack-based computation state consists of valuation

of the global variablesγs and a set of stacks for the threads. Each stack is an ordered

sequence of records in the form(l ,γl) wherel is a state of LTSA andγl is a valuation

of local variables. Note that for this case, as all the methodcalls has been inlined, each

stack will always contain at most one record. LetSi, j denote the stack corresponding

to execution ofj-th instance of thei-th thread for 1≤ i ≤ n and 1≤ j ≤ R (i). Also

note, that this extension of the stack-based computation for the unlimited number of

thread instances induces that the set of stacks is unbounded. Additionally let the stacks

corresponding to the threads with unlimited replication factor be initially empty.

Such a computation stateS corresponds to a configurationc= (s,v) if the global

states corresponds toγs and all the coordinates of the vectorv reflect the stacks ofS.

Let k ∈ N s.t. 1≤ k≤ ζ, thenk-th coordinate ofv represents the number of threads

which reside in the local statèk. The state corresponds to a valuationγk which also

contains the information about the current LTSA statelk = ψ(`k). Then thek-th coor-

dinate reflects the stacks in the computation state if there is exactlyv(k) stacks with the

top-most element equal to(lk,γk).

The transitions that can be executed from a computation state S correspond to the

transitions available fromc in W . Recallδ in the definitionW , concretely the part

(i); it uses exactly the transitions that can be taken fromS. Additionally, the part (ii)

defines transitions corresponding to instantiation of a newthread instance – just for

threads with unbounded replication factor, if there are any. Note that for the threads

with unbounded replication there is an unlimited number of stacks. As these stacks

were initially empty, there is always at least one empty stack which may be used for

the newly created thread. Letl0
i denote the initial state of the LTSA of thei-th thread,

then instantiation ofi-th thread corresponds to adding record(l0
i ,γ

0
Li
) onto stackSi, j

where j is the smallest number s.t.Si, j is empty. With this obvious extension of

the stack-based computation, the VASS transitions available from c correspond to the

computation transitions available fromS.

Clearly, the initial state of the stack-based computationS0 corresponds to the initial

configurationc0 = (s,v) as the stacks of the threads with unlimited replication factor

are empty inS0.
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However, the explicit VASS representation brings huge overhead induced by enu-

merating of all possible local states in practice. This overhead is eliminated within the

symbolic version of counter abstraction, which does not require existence of VASS at

all. Recall that the basic idea is that the model checking phase – i.e. construction of the

Karp and Miller tree – is interleaved with context-aware exploration of the program –

i.e. LTSAs of the threads in our case. The VASS is then not necessary at all, though,

in metaphorical sense, portions of the concrete VASS are constructed on-the-fly within

the exploration.

Algorithm 1: Karp-Miller Tree Construction(adapted and adjusted from [Zha09])

input : P a program or a model, Initial a set of initial configurations

begin
Unexplored← Reached← Initial
Pred← /0
while Unexplored6= /0 do

removec= (s,L, f : L→ N∪{ω}) from Unexplored
P← PREDECESSORSOF (c, Pred) // all predecessors ofc till the root

if c /∈ P then
for l ∈ L do

Steps← EXPLORE(P, c, l)
for (s′,Labandoned,Ltaken) ∈ Stepsdo

L′← (L\Labandoned)∪Ltaken

f ′(x) =







f (x)−1 x∈ Labandoned

f (x)+1 x∈ Ltaken∧x∈ L

1 x∈ Ltaken∧x /∈ L

f (x) otherwise
c′← OMEGA (s′, L′, f ′, P∪{c}) // introduceω to the counters

insertc′ intoUnexplored
addc′ to Reached
add(c,c′) to Pred // c is a predecessor ofc′

Algorithm 1 presents a version of the Karp-Miller tree construction, which ab-

stracts from the actual representation of the model. The algorithm works with a slight-

ly different representation of the configurations; a configuration is newly represented

by a tuple(s,L, f : L→ N∪{ω}) wheres is a global state, i.e. a valuation of global

variables,L is a set of occupied local states andf maps the local states to the number

of thread instances that reside in it. Thef function captures only the local states, that

are occupied in the configurations. Note that if there is an enumeration of all local

states, this representation of the configuration can be totally mapped to the explicit

one, becausef can be obviously extended to all local states:f (l) = 0 for l /∈ L.
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Algorithm 2: The OMEGA Procedure(adapted from [Zha09])

function OMEGA (s, L, f , Predecessors)
for (sp,Lp, fp) ∈ Predecessorsdo

if COVERS ((s,L, f ) , (sp,Lp, fp)) then
for l ∈ L do

f ′(x) =







ω l /∈ Lp

ω l ∈ Lp∧ f (l)> fp(l)

f (l) otherwise

return (s,L, f ′)

function COVERS ((s,L, f ) , (s′,L′, f ′)) // the former covers the later

if ¬(L′ ⊆ L) then
return f alse

for l ′ ∈ L′ do
if f ′(l ′)> f (l ′) then

return f alse

return true

The EXPLORE function in Algorithm 1 performs the context-aware exploration of

the input modelP. The context is specified byc, the current configuration, and the

exploration is limited to steps involving local statel . The function yields viable steps

represented in the from of triplets(s,La,Lt), wheres is a new global state,La is a set

of local states that have been abandoned within the step, andLt is a set of local states

that have been taken within the step.

For illustration, this paragraph presents the way the EXPLORE function works for a

k-dimensional VASS(S ,c0,δ). It takes all transitions starting at the global state of the

current context. Then it filters out transitions that do not contain negative value on the

coordinate corresponding to given local state which limitsthe exploration. Moreover

it filters out all transitions that contain negative value onthe coordinate corresponding

to a local state which is not occupied in the context (or thereis not enough threads).

Then the transitions are transformed to the resulting triplets –s is the target state,La

contains all local states those coordinates are negative asmany times as the absolute

value of the coordinate,Lt contains local state those coordinates are positive as many

times as the value of the coordinate. Note that in generalLa andLt are multi-sets. On

the other hand, simple sets are enough in case of VASS derivedfrom TBP model since

δ ⊆
(

S ×S ×{−1,0,1}k
)

. More precisely, let the set of all local states be enumerat-

ed, i.e.L = {`1, `2, ..., `k}, and letδ⊆
(

S ×S ×{−1,0,1}k
)

. Then
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(s′,La,Lt) ∈ EXPLORE((S ,c0,δ) , (s,L, f : L→ N∪{ω}) , l)

m

(∃(s,s′,v) ∈ δ)(∀i ∈ {1,2, ...,k}) s.t.
(
v(i)+ f (`i)≥ 0

)
∧
(
`i ∈ La ⇐⇒ v(i) =−1

)
∧
(
`i ∈ Lt ⇐⇒ v(i) = 1

)

Moreover, it is convenient to completely omit the VASS and let EXPLORE operate

on the LTSA representation of the threads directly. For thispurpose, letP be a triplet

(G ,T,R ) whereG is a set of all possible valuations of global variablesG, T is a set of

threadsT1,T2, ...,Tn in the formTi =
(
Lpc

i ,Γpc
i

)
, andR : {1,2, ...,n}→ N∪{ω} is the

replication function. The EXPLORE function must then return the steps corresponding

to viable LTSA transitions from given context as well as the steps representing creation

of new thread instances for threads with unlimited replication factor. Since these two

aspects are disjoint and the later does not depend on the local statel , EXPLORE can be

split as follows

EXPLORE(P, c, l) := EXPLORE′ (P, c, l) ∪ NEWTHREADS(P, c)

NEWTHREADS(P, (s,L, f )) contains triplets(s′,La,Lt) such thats′ = s, La = /0
andLt contain one initial local state for each thread with unlimited replication factor.

In particular, a triplet(s, /0,{l}) ∈ NEWTHREADS(P, (s,L, f )) if and only if there is

suchi ∈ {1,2, ...,n} thatψ(l) is the initial state ofΓpc
i , the replication factorR (i) is

equal toω andγl (v) = Initv for all local variablesv∈ Lpc
i .

EXPLORE′ (P, (s,L, f ) , l) contains a triplet(s′,La,Lt) if and only if La= {l}, there

is l ′ s.t. Lt = {l ′}, there isi ∈ {1,2, ...,n} s.t. ψ(l) is a state ofΓpc
i and there is a

transitiont = (ψ(l) ,gt, lt ,at,ψ(l ′)) in the transition relationδ of Γpc
i s.t.

• gt evaluates totrueunderγs andγl

• at ⊆ {v← γs′ (v) | v∈G}∪
{

v← γl ′ (v) | v∈ Lpc
i

}

• v← γs′ (v) ∈ at for every global variablev such thatγs(v) 6= γs′ (v)

• v← γl ′ (v) ∈ at for every local variablev such thatγl (v) 6= γl ′ (v)

Algorithm 3 presents the EXPLORE′ function.

The EXPLORE presented so far works well with the initial configurationc0 =

(s,L, f : L→ N∪{ω}) wheres∈ G s.t. γs evaluates all the global variables as their

initial values,l ∈ L if and only if ∃i ∈ {1,2, ...,n} s.t. ψ(l) is an initial state ofΓpc
i and

γl evaluates all the local variables inLpc
i as their initial values andR (i) 6= ω. For f

holds f (l) = R (i) wherei is a number s.t.ψ(l) is a state ofΓpc
i for all l ∈ L. Note

that this definition is completely analogous to the construction of VASSW from the

threads.
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On the other hand, the symbolic model allows the infinite number of thread in-

stances to occupy thread-local states even in the initial configuration. Therefore, there

would be no need to manage transitions for creating new threads in each step if the

initial configuration already reflected threads with unlimited replication. Hence, an

alternative, and more elegant, approach is to define initialconfigurationc0 = (s,L, f )

as follows:

• s is the initial global state, i.e.s∈ G s.t.∀v∈G : γs(v) = Initv

• l ∈ L if and only if l is an initial local state of a thread, i.e.∃i ∈ {1,2, ...,n} s.t.

ψ(l) is the initial state ofΓpc
i and∀v∈ Lpc

i : γl (v) = Initv

• f (l) = R (i) wherei is a number s.t.ψ(l) is a state ofΓpc
i (∀l ∈ L).

The result of the exploration phase no longer contains the creation of new threads, thus

let the exploration phase be represented only by the function EXPLORE′.

Algorithm 3: The EXPLORE′ Procedure

function EXPLORE′ ((G ,T,R ) , (s,L, f ) , l)
Result← /0
let
(
Lpc

i ,Γpc
i

)
∈ T s.t. ψ(l) ∈ Γpc

i begin // pick the thread whichl belongs to

for (pt ,gt, lt ,at,qt) ∈ δΓpc
i

s.t. pt = ψ(l) do // all transitions fromψ(l)

if VALUEOF (gt , s, l) = true then // is the guard is fulfilled?

(s′, l ′)← ASSIGN((s, l) , at)
add(s′,{l} ,{l ′}) to Result

return Result

function ASSIGN((s, l) , Assignments)

γglob(x) =

{
c x← c∈ Assignments
γs(x) otherwise

x∈ dom(γs)

γloc(x) =

{
c x← c∈ Assignments
γl (x) otherwise

x∈ dom(γl )

s′← the state corresponding toγglob

l ′← the state corresponding toγloc

return (s′, l ′)

3.2.3 Bound Provisions

For the verification of correctness of a TBP model, the provisions are an all-important

part of the protocol. In essence, they determine the desiredproperties of the imperative
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part of the model. This section will describe the way in whichthe bound provisions are

captured within checking an incomplete TBP model using symbolic counter abstrac-

tion.

Recall that in the incomplete model the unbound provisions are restricted so that

each forms a simultaneously regular expression or does not contain full reentrancy.

The reason is to maintain a practical and reasonable way of encoding provisions with

unlimited reentrancy into a finite model such as VASS. In the case of fully re-entrant

provisions a special case of a finite state machine will be utilized. It will be called

counter automatonand technically it can be viewed as regular finite state machine

which additionally contains special symbols on states and transitions that are used to

modify special counters. Conversely, ordinary finite statemachines can be used for

checking provisions which do not contain full reentrancy. The counter automata will

be discussed first.

In the case of counter automata the interpretation of provisions is slightly modified

in contrast with the classical closed model analysis. Simply put, a call sequence that

may occur in parallel with other sequences with respect to a given provision will be

bound to the thread that started it. In depth, a simultaneously regular expression can

be viewed as a parallel composition of regular languages, i.e. sets of call sequences,

specified by entirely regular subexpressions. Each thread is then supposed to issue

method calls with respect to (at least) one of such regular expressions or remain silent

with respect to the events being observed by this particularprovision. In other words,

method calls observed by the provision issued by a thread must form the empty word

λ or a word matching a maximal entirely regular subexpressionof the provision. If

each thread in the model satisfies this condition and additionally the number of threads

matching particular regular subexpression do not exceed upper parallel boundaries de-

fined for the subexpressions (recall Definition 3.5), then the model is considered as

valid with respect to the bad activity and the provision. Let’s remark that the threads

after the inline expansion are considered and the method calls and returns are represent-

ed by the labels on transitions. This approach enables mapping of the infinite nature of

a provision with reentrancy to the infinite nature of the symbolic counter abstraction –

number of threads.

Note that this interpretation of provisions is far more restrictive in comparison with

the closed model analysis – while considering thebad activityproperty – and thus the

incomplete model analysis will be on the safe side. The claimthat any overall sequence

of events valid under terms of incomplete model analysis will also be valid under terms

of closed model analysis is affirmed by Theorem 3.8: if the sequence satisfies lower

parallel guards, it is a direct consequence; otherwise if the sequence is valid in the

first case, it is clearly a prefix of a trace of the provision andthus valid in the second

case. On the other hand, consider a simple case where there are two threads which
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together form a sequence of events matching a regular subexpression of a provision in

the way that the first thread forms a prefix of the sequence and the second thread forms

the rest. Let’s assume that the threads are properly synchronized using locks. Such a

construct will not violate thebad activityproperty in the closed model, whereas in the

incomplete one it is easy to imagine a concrete situation in which it would.

As the above interpretation is more restrictive than the classical approach, it is

natural to ask whether it might be somehow loosened. One possible approach would be

to allow the threads to "reincarnate" – once a thread finishesa sequence that matches a

regular subexpression, it might start another sequence, possibly matching a completely

different subexpression. But this approach would no longerreside on the safe side

since there would be "blind spots" in which it would be impossible to decide whether

the thread had already started a new sequence or whether it was still continuing in the

first one. Although results from such an interpretation might also be interesting, the

safe and more restrictive approach will be focused on.

Counter Automata

As the property of TBP model imposed by the interpretation ofprovisions stated above

is specified, it is necessary to introduce a form of observingmechanism which will

evaluate the property during the checking of the model. An eventual violation of the

property need to be projected into the reachability of a special purpose state, which

will indicate the violation. The observing mechanism can bedefined separately for

each provision separately. This mechanism must fulfill two tasks induced by provision;

(i) to track whether all threads issue call sequences that conform to individual maxi-

mal entirely regular subexpressions and (ii) to monitor thenumber of call sequences

matching the individual subexpressions being issued in parallel.

The first task may be achieved using simulation of the finite state machine that

accepts exactly union of the regular languages (given by thesubexpressions) along the

execution of any thread. The state of the automaton must be encoded into the thread-

local state in order to follow the simulation within the Karp-Miller tree construction. If

a thread-generated sequence of events does not conform to the automaton, then either

the automaton will be required to perform a transition whichis not defined or the thread

will not reside in a state corresponding to a final state of theautomaton as the thread

terminates.

Let Pi be a simultaneously regular provision expression and let itcontainE1,E2,

...,Ek maximal entirely regular subexpressions. Then letAPi be a finite state machine

which accepts union ofE1,E2, ...,Ek regular languages (it may be the automaton stated

in Definition 3.9). Let bijectioncPi : QAPi
→CPi map the statesQAPi

to a set of constants

CPi . The set of constantsCPi will then form a domain of the local variable that will

represent the automaton state within the thread-local states. Thus letqPi, j be a variable
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thatDomqPi , j
= CPi andInitqPi , j

= cPi (s0) wheres0 is the initial state ofAPi . Then let

qPi , j be added to the set of local variables of thej-th thread, The observing mechanism

will then modify the value ofqPi, j according toAPi as thej-th thread issues an event

which is in f ilterPi . Eventually, at the end of the execution of the thread, it will check

whether the thread even issued an event observed by the provision and in that case

whetherqPi, j correspond to a final state ofAPi . These variables will be added to all

threads and the same mechanism will hold for every bound provision. In fact, the

variables might be added only to those threads that may eventually issue an event

observed by the provision. But for the sake of simplicity, let’s add them to all the

threads.

This observing mechanism may be implemented within EXPLORE procedure, how-

ever it is necessary to extend the modelP with the set of bound provisionsPb =

{P1,P2, ...,Pm}. Moreover, it is necessary to signal a violation of the provision so

that it will be reflected in the reachability of thread states. For this purpose, let us

define a fictive threadE with a single local statee and no outgoing transitions. The

observing mechanism will instantiate threadE if there is noAPi transition according

to current event or ifAPi is not in a final or initial state once the appropriate thread

ends. Note that if the automaton is in its initial state, it means that no event observed

by the provision has been issued – of course only if the automaton does not contain

any cycle which involves the initial state, but it can be assumed without loss of gen-

erality 2. Reachability of the statee then reflects violation of the model property de-

fined by the provisions with respect to (i). For clarity, the extended modelP′ then

take the form
(
G , T̄,R ,Pb

)
whereT̄ =

{(
L̄pc

1 ,Γpc
1

)
,
(
L̄pc

2 ,Γpc
2

)
, ...,

(
L̄pc

n ,Γpc
n
)
,E
}

and

L̄pc
i = Lpc

i ∪{qP1,i,qP2,i , ...,qPm,i}. Algorithm 4 then presents the procedure that reflects

provisions with respect to (i).

In order to monitor the number of thread instances that perform a sequence of

events matching individual subexpressions of provisions (task (ii)), it is necessary to

distinguish between particular subexpressions along the thread execution. A very sim-

ilar problem has already been solved in generating components from unbound provi-

sions. In that case, a special finite state machine was used, its states were related to

groups of provision subexpressions and then tracked using counters. That approach

can be reused here with minor modifications..

First, recall the automaton stated in Definition 3.9. This automaton clearly accepts

a language formed by union of the maximal entirely regular subexpressions of the

provision as the definition in fact describes disjunction offinite state machines and

2For every deterministic finite state machine there is an equivalent deterministic finite state machine
that does not contain a cycle involving the initial state. Itcan be constructed bypulling the initial state
out of the cycle, which is for example used in Definition 3.11.
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Algorithm 4: The EXPLORE Procedure With Provisions

function EXPLORE
((

G , T̄,R ,Pb
)
, (s,L, f ) , l

)

Result← /0
let
(
L̄pc

i ,Γpc
i

)
∈ T s.t. ψ(l) ∈ Γpc

i begin // pick the thread whichl belongs to

for (pt ,gt, lt ,at,qt) ∈ δΓpc
i

s.t. pt = ψ(l) do // all transitions fromψ(l)

if VALUEOF (gt ,s, l) = true then // is the guard is fulfilled?

(s′, l ′)← ASSIGN((s, l) , at)

(s′′,La,Lt)← OBSERVE(i)
(
Pb, (s′,{l} ,{l ′}) , lt

)

add(s′′,La,Lt) to Result

return Result

function OBSERVE(i) (Provisions, (s,La,Lt) , Label)
(s′,L′a,L

′
t)← (s,La,Lt)

for Pi ∈ Provisionsdo
L′′t ← L′t
for l ∈ L′t ∧ l 6= edo

l ′← l
if label∈ f ilterPi ∧ label 6= τ then

let j s.t. pcj ∈ dom(γl) begin // l belongs toj-th thread

q← cPi

(
γl
(
qPi, j

))

if ∃(q,Label,q′) ∈ δAPi
then

(q,Label,q′)← a transition inδAPi
from q overLabel

(s, l ′)← ASSIGN
(
(s, l) ,

{
qPi, j ← cPi (q

′)
})

// sunchanged

replacel with l ′ in L′′t
else

adde to L′′t

if THREADEND (l ′) = true then // the thread terminates inl ′

q← cPi

(
γl
(
qPi, j

))

if q /∈ FAPi
∧q 6= initial state ofAPi then

adde to L′′t

L′t ← L′′t
return (s,La,L′t)
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subsequent determinization. Additionally, for the purpose of task (ii) it is necessary

to count also the first automaton’s transition taken by a thread, as the total number

of threads that participate on any of the subexpressions maybe limited by the upper

parallel boundaries. As the definition allows the initial state to be part of a cycle, which

makes impossible to distinguish whether an automaton’s transition from the initial state

correspond to the first event issued by the thread, it is necessary topull the initial state

out of the cycle. Definition 3.11 presents a version of the automaton withpulledinitial

state.

Definition 3.11. Let P be a simultaneously regular provision expression andE1,E2,

...,Ek be the maximal entirely regular subexpressions ofP. Let Ai denote a deter-

ministic finite state machine representingEi. Without loss of generality let∀i, j ∈

{1,2, ...,k} : QAi ∩QA j = /0
ThenOP = (Q,Σ,δ,s0,F) is a finite state machine such that

• the set of statesQ⊆℘

(
k⋃

i=1

QAi

)

;

• the alphabetΣ =
k⋃

i=1

Σi , whereΣi denotes alphabet (input symbols) ofAi ;

• the transition relationδ = δ′∪δ0 whereδ′ is defined as
(S,x,T) ∈ δ′ ⇐⇒ S 6= /0∧T 6= /0

∧ ∀s∈ S∀i ∈ {1,2, ...,k} : (s,x, t) ∈ δAi ⇒ t ∈ T

∧ ∀t ∈ T ∃s∈ S∃i ∈ {1,2, ...,k} : (s,x, t) ∈ δAi

andδ0 is defined as

( /0,x,T) ∈ δ0 ⇐⇒ T 6= /0 ∧ (S,x,T) ∈ δ′

whereS is the set of initial states ofA1,A2, ...,Ak;

• the initial states0 is /0;

• the set of final statesF ⊆Q is defined as follows:

S∈ F ⇐⇒ ∃s∈ S∃i ∈ {1,2, ...,k} : s∈ FAi

Recall the relation between the states of the automaton and entirely regular subex-

pressions of the provision expression. A state is said tooverlapa subexpressionEi

if it contains a state of the subexpression’s automatonAi . The relation was charac-

terized with functionCP : QDP→℘({1,2, ...,k}) and theFP : QDP→℘({1,2, ...,k})

expressed it with respect to the final states (see equations 3.10 and 3.11). This concept

will be used forOP as well, but formally it must be adjusted for thepulled initial state
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in order to make it equivalent to the original initial state.Therefore letSbe the original

initial state, i.e. a set of initial states of automataA1,A2, ...,Ak, thenCP( /0) := CP(S)

andFP( /0) := FP(S). Recall also that a transition is calledspecializingif it starts at a

state which overlaps with more subexpressions than the target state, i.e. it enters a more

specialized part of the automaton. Note that Lemma 3.10 holds for this automaton as

well.

As with the case of environment generating, the observing mechanism will also

count number of threads taking a specializing transition. However, in contrast to the

environment generating, the counters will be represented by fictive threads with single

states – a fictive thread for each counter. Incrementing the counter is then equivalent

to launching a new instance of such a fake thread. Determining whether a counter

can eventually exceed a certain limitm is then equivalent to finding out whether a

configuration where the appropriate thread state is occupied at least(m+1)-times is

reachable.

More concretely, letPi be a simultaneously regular provision expression andOPi be

a deterministic finite sate machine according to Definition 3.9. LetCPi

(

QOPi

)

denote

the range of the functionCP andFPi

(

QOPi

)

denote the range ofFP. For eachR an

element ofCPi

(

QOPi

)

∪FPi

(

QOPi

)

let CP,R denote the fictive thread representing the

counter forR and letlCP,R denote the only local state ofCP,R.

When an automaton associated with a thread takes a specializing transition from

p to q thenR counter will be incremented ifR⊂ C (p) andC (q) ⊆ R, which in other

words says that all counters that might be on a way fromp to q with respect to special-

ization will be incremented. Additionally, when a thread terminates and the observing

automaton is in a final stateq, thenR counter will be incremented ifR⊂ C (q) and

F (q) ⊆ R. This is equivalent to a specializing transition to a state overlapping with

just the subexpressions that are accepted by the final stateq – since it is known that the

thread terminates and it will no longer issue any event, sucha fictive transition may be

taken. Algorithm 5 presents the OBSERVE procedure which increments the counters.

Using this procedure within EXPLORE in Algorithm 4 fulfills both the tasks (i) and (ii).

From the above, it follows that theR’s counter value indicates the number of threads

that have already issued a sequence of events which may be eventually extended to a

word matching a subexpressionEi such thati ∈ R and such a word exists for alli ∈ R.

In other words, any of those threads issued a sequenceu such that for everyi ∈ R there

is a wordv matchingEi andu is a prefix ofv. Thus if a configuration in which the

counter exceeds the sum of upper parallel bounds of the subexpressions indexed with

R is reached, it is necessary that the provision will eventually be violated. Simply

put, any possible extension of the words will form a parallelinterleaving of too many
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Algorithm 5: The OBSERVE Procedure With Counters

function OBSERVE(i+ii) (Provisions, (s,La,Lt) , Label)
(s′,L′a,L

′
t)← (s,La,Lt)

for Pi ∈ Provisionsdo
L′′t ← L′t
for l ∈ L′t ∧ l 6= edo

l ′← l
if label∈ f ilterPi ∧ label 6= τ then

let j s.t. pcj ∈ dom(γl) begin // l belongs toj-th thread

q← cPi

(
γl
(
qPi, j

))

if ∃(q,Label,q′) ∈ δAPi
then

(q,Label,q′)← a transition inδAPi
from q overLabel

(s, l ′)← ASSIGN
(
(s, l) ,

{
qPi, j ← cPi (q

′)
})

// sunchanged

replacel with l ′ in L′′t
L′′t ← L′′t ∪COUNTERS( Pi , CPi (q) , CPi (q

′))

else
adde to L′′t

if THREADEND (l ′) = true then // the thread terminates inl ′

q← cPi

(
γl
(
qPi , j

))

if q /∈ FAPi
∧q 6= initial state ofAPi then

adde to L′′t
else

L′′t ← L′′t ∪COUNTERSINC ( Pi , CPi (q) , FPi (q))

L′t ← L′′t
return (s,La,L′t)

function COUNTERSINC (P,Oversrc,Overtgt)
Result← /0
for R∈ CP(QOP)∪FP(QOP) do // iterate over all possible counters

if Overtgt ⊆ R⊂Oversrc then
addlCP,R to Result

return Result
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words of a subexpression – if only the valid extensions are considered (as the invalid

cause violation immediately). Let the maximal valid value of a counterCP,R be denoted

MCP,R.

MCP,R = ∑
i∈R

UP(Ei)

In summary, if a configuration(s,L, f ) such thate∈ L or any counter is exceeded

(3.13) then the model violates thebad activityproperty.

∃Pi ∈ Pb ∃R∈ CPi

(

QOPi

)

∪FPi

(

QOPi

)

s.t. lCPi ,R
∈ L∧ f

(

lCPi ,R

)

> MCP,R (3.13)

The careful reader will have surely noticed that the lower parallel guards have not

been considered, in contrast with the environment generating. Imagine the checking of

the lower parallel guards in the case of unlimited number of threads. At any point, even

if a lower parallel guard does not hold, there are always infinitely many threads and

each of them may eventually trigger some events that amend the violated lower parallel

guard. Therefore, the only point where it is reasonable to take the lower parallel guards

into account is the point of termination of the last thread. But such point does not exist

in an environment with unlimited number of threads as new thread instance can always

be started. In fact, the lower parallel guard reflects ratherno activityproperty in this

case. Since this work focuses on the models with unlimited number of threads with

respect tobad activity, it is convenient to omit the lower guards in the analysis.

On the other hand, consider a case where a bound provision does not contain full

reentrancy operator. The model still triggers unlimited number of thread instances

as an unbound provision contains full reentrancy, but the bound provision is suddenly

expressible with finite means – deterministic finite state machines. Such state machines

would be simulated along execution of the model in a very similar way as the provision

automata specified above. The main difference is such that this state machine would

be simulated from a global perspective, for all threads at once. Then the states of the

machine would be encoded into global variables instead of local ones. The OBSERVE

procedure for such machines is presented in Algorithm 6. Note that the point where

a thread terminates is no longer considered. The reason is, that another thread may

always change the state of the machine as the machine is simulated globally.

The main benefit of using deterministic finite state machinesover the provision

automata as specified above is that it does not introduce spurious errors while it is

clearly safe. Consider an incomplete model which does not contain full reentrancy

on any bound interfaces and assume that the generated environment does not produce

errors (the LTSA statee contained in the environment is not reachable in any thread).

Then as the finite state machines accept exactly the allowed traces of the provisions,
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for every bad activity error detected within the incompletemodel there is a valid en-

vironment containing a finite number of threads which generates the error trace in the

closed model. On the other hand, let’s take an environment with k threads that is valid

and composition with the incomplete model produces bad activity error detected in

the closed model checking. Such an environment, as it is valid, produces a subset

of the traces produced by the generated environment. Thus the bad activity trace is

also present in the incomplete computation. Consequently there is reachable configu-

ration from which a thread emits an event (over methodm) for which the current state

of a finite state machine that acceptsPi s.t. m∈ f ilterPi does not have any outgoing

transition.

Algorithm 6: The OBSERVE Procedure For Provisions Without Full Reentrancy

function OBSERVE(FSM) (Provisions, (s,La,Lt) , Label)
(s′,L′a,L

′
t)← (s,La,Lt)

for Pi ∈ Provisionsdo
if label∈ f ilterPi ∧ label 6= τ then

q← cPi (γ′s(qPi)) // qPi is a global variable that encodes the state ofF SM Pi

if ∃(q,Label,q′) ∈ δF SM Pi
then

(q,Label,q′)← a transition inδF SM Pi
from q overLabel

(s′′, l)← ASSIGN((s′, /0) , {qPi ← cPi (q
′)})

s′← s′′

else
adde to L′t

return (s′,La,L′t)

Additionally, there might be a possibility of reducing spurious errors induced by

counter automata in their cooperation with ordinal finite state machines being simulat-

ed globally as for provisions without full reentrancy. Somekey ideas of such approach

will be outlined in following section. For the sake of clarity, the globally observed

finite state machines will from here on be calledobservers.

Combining Counter Automata and Observers

The idea of combining the two approaches in order to reduce spurious errors caused by

counter automata is based on several simple observations. Note that in the following

text just key observations and ideas are merely outlined andindeed some of them would

deserve more detailed argumentation or proofs, but these are beyond the scope of this

work. The ideas are presented in order to illustrate available possibilities to reduce the

spurious errors, which might be eventually a subject of further work.
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First, the provisions that contain full reentrancy may alsocontain some subexpres-

sions that are not allowed to be executed in fully re-entrantmanner. Such provisions

checked by counter automata produce spurious errors that might have been avoided if

the not fully re-entrant subexpression were checked separately using an observer. Con-

sider the simple example(m()∗)||((n()∗)|∗). If there were a way to split the provision

into two parts, one that might be checked using observer and the other, containing the

full reentrancy, checked by the provision automaton, then it might produce less spuri-

ous errors. Note that concretely them()∗ part causes spurious error even for such basic

cases, as it is usingsync to synchronize callsm from a reaction to a fully re-entrant

provided method.

Note also that some spurious errors might be avoided using(Q;Q∗)|∗ instead of

Q|∗. These two provisions are equivalent in terms of allowed traces;traces(Q;Q∗)|∗ =

tracesQ|∗, but the former is far less restrictive under the counter automata interpreta-

tion. This fact might be utilized to partially reduce spurious errors even in the case

of pure counter automata. Unfortunately, we are not aware ofany similar construct

applicable for limited reentrancy or parallel in general.

It is worth mentioning the fact that operators| and|| are interchangeable in simul-

taneously regular provisions if considering just bad activity error. Recall that the bad

activity is defined using prefixes of traces. Let’s definepre f ixP as a set of sequences

of events where each sequence is a prefix of a sequence intracesP. Then clearly for

any simultaneously regular provisionP holds pre f ixP = pre f ixP| = pre f ixP|| , where

P| denotes a provision expressions derived fromP where all occurrences of|| were

replaced with| and vice-versa forP||. Thus any simultaneously regular provision can

be flattened into formQ1||Q2||...||Qk where noQi contains| or || operators.

Another useful fact is that provisions operating on the sameset of methods together

form the intersection of their allowed traces. Consider setof provisionsP1,P2, ...,Pn in

a modelM. Let tracesM denote a set of all allowed traces in the modelM andtracesMΣ
is a set of all non-empty sequencess of symbols not inΣ↑/↓DomE

for which exists a an

arbitrary sequences′ s.t. s⊗ s′ ∩ tracesM 6= /0. Simply tracesMΣ correspondtracesM

where all symbols that are not inΣ↑/↓DomE
were erased. Iff ilterPi = f ilterPj ; i 6= j, then

tracesMf ilterP
i ∪ f ilterP

j
⊆ tracesPi ∩ tracesPj

Additionally, if for all Pk s.t.k 6= i∧k 6= j holds thatf ilterPk∩ f ilterPi = /0, then

tracesMf ilterP
i ∪ f ilterP

j
= tracesPi ∩ tracesPj

Note that this fact was also utilized for creating finite state machine for provision driven

computation in open model analysis in [Poc10].
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From the above follows, that ifP andQ are two provisions operating on mutual-

ly disjunct sets of methods, then the provisionP||Q can be split into two provisions

P||
(
Anyf ilterQ

)
and

(
Anyf ilterP

)
||Q whereAnyΣ represents a fictive provision that al-

lows all possible words over symbols ofΣ↑/↓DomE
. The intersection of these two will form

tracesP||Q. Let P do not contain full reentrancy, then the provisionP||
(
Anyf ilterQ

)
can

be checked using observer, asAnyΣ can be expressed as a repetition (*) of alternative

(+) of all the symbols inΣ↑/↓DomE
, which is a regular expression, thus it is possible to

create such a finite state machine. On the other hand,AnyΣ can also be expressed as

fully re-entrant repetition (*) of alternative (+) of all the symbols inΣDomE , which is

a simultaneously regular expression and it is possible to create an counter automaton

for it. Thus if P contains full reentrancy, thenP||
(
Anyf ilterQ

)
can be checked using

counter machine.

So far, this can give an opportunity to split some fully re-entrant provisions into

several parts and the parts containing full reentrancy can be checked using counter au-

tomata, whereas parts without full reentrancy can be checked by observers. However,

if all the parts contain full reentrancy, there is no benefit in splitting the provision, as

all the parts must be still checked using counter automata. Note also, that the condition

on the parts, that they must operate on mutually disjunct sets of methods can be refined

so that they must operate on disjunctive sets of parametrized labels. Then, for exam-

ple, the provision expression((m(TRUE)|∗) : TRUE)||(m(FALSE) : FALSE) can be split as

well.
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4. Prototype Implementation

Part of this thesis is a prototype implementation of the incomplete TBP model analy-

sis. The tool is a part of a larger whole – TBP toolchain, whichcurrently consists of a

library for parsing and converting TBP specifications to a representation of TBP mod-

els (namedTBPLib) and a module for performing analysis over TBP models (named

Badger). Except for the introduced prototype, the toolchain already contains a tool for

checking closed TBP models.

In this chapter, the structure of the TBP toolchain will be briefly described with

emphasis on the parts that were developed for the prototype.The structure overview

can serve as a very brief guide to the sources presented on theattached CD ROM (see

Appendix A). However, the CD ROM contains also generated class documentation,

which better suits this purpose. Then the process of checking the incomplete TBP

model will be outlined as it is performed by the prototype.

4.1 Structure of the TBP Toolchain

As was already mentioned, the toolchain consists of TBPLib and Badger, which are

two separate projects. It is also worth mentioning, that they are both implemented in

Java.

4.1.1 TBPLib

The overall functionality of the library includes parsing of TBP specifications and con-

verting them to a representation of TBP models, including LTS parts and deterministic

finite state machines for observing provisions. During implementation of the prototype

for this thesis, the library was extended with a representation of counter automata, a

module for generating artificial environment in form of LTSAand the inline expan-

sion over LTSA. A special LTSA representation was added, which suits well for the

inline expansion and also covers the extension, that more than one assignment can be

performed on a transition. Table 4.1 presents an overview ofcrucial packages of the

library with brief description. Packages that were introduced or non-trivially modified

during the implementation of the prototype are highlighted.

4.1.2 Badger

The project, where the TBP model checkers are stored is namedBadger. Currently it

contains a tool for closed TBP model analysis and the prototype of incomplete TBP
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package name description
relative to the root package

org.ow2.dsrg.fm.tplib

.architecture Provides means for capturing component ar-
chitecture related to the TBP specifications.

.event Encoding of parametrized events on provi-
sions.

.ltsa Contains classes and interfaces representing
LTS and finite state machines. The extended
LTSA representation was added.

.ltsa.visitor Contains visitors operating on elements
of the previous package. The in-line
expansion is here implemented in class
InlineMethodCallsVisitor.

.node Contains representation of nodes of a syntac-
tical tree of the TBP specification.

.parser Contains parser of TBP specifications gener-
ated using ANTLR.

.provision Contains representation of counter automata.

.provision.actuator Contains classes responsible for the environ-
ment generation.

.provision.actuator.lpg Provides tools for working with lower paral-
lel guards.

.reference Contains classes for capturing references in
the specifications (method, type, variable
and constant names).

.util Contains utility classes (writing LTSA and
FSM as DOT graphs) and a main helper
which provides simplified utilization of the
most common operations provided by the li-
brary (TransformationChain).

Table 4.1: Main structure of TBPLib

80



package name description
relative to the root package

org.ow2.dsrg.fm.badger

.ca Contains the tool for analysing incomplete TBP
models using symboliccounterabstraction.

.ca.karpmiller Contains an representation of the Karp-Miller
tree and an implementation of its construction
procedure.

.ca.statespace Provides representation of local and global
states and the state space exploration phase (the
EXPLORE procedure).

.simulation Closed model analysis – provides interfaces to
be implemented by abehavioral interpreter,
which is a Java code generated from TBP mod-
el.

.translation Closed model analysis – provides tools for gen-
erating the behavioral interpreters.

.traversal Provides means for traversing the behavioral in-
terpreters.

Table 4.2: Main structure of Badger

model analysis using symbolic counter abstraction.

The prototype is mainly implemented inorg.ow2.dsrg.fm.badger.ca package,

where is also the entry point to the application – themain classCheck. Simply put,

it transforms input TBP specifications into a representation of the incomplete TBP

model, converts the bound provisions to counter automata orobservers and generates

environment from the unbound provisions using TBPLib. Thenit starts the Karp-

Miller tree construction and checks whether erroneous configurations are reachable.

If there is an erroneous configuration reachable, it prints the path from root to the

erroneous configuration to a file as a DOT graph.

Table 4.2 presents overview of crucial packages of the library with brief descrip-

tion.

4.2 Limitations

The proof-of-concept prototype implements the key issues of the proposed analysis.

It provides a functional solution for the analysis of TBP specifications that represent

incomplete TBP models. However, in the following text are discussed the main limi-

tations of the implementation.

First, the implementation is not mainly focused on optimality in terms of perfor-

mance. Although some minor optimizations of the Karp-Miller tree construction pro-
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posed in [Zha09] were implemented, there still remains a vast space for further opti-

mizations. Mainly the representation of the VASS configurations and the implementa-

tion of the state space exploration phase might be a subject of further optimizations.

Within the process of generating artificial environments, the lower parallel guards

are currently not fully implemented. As presented in the section 3.2.1, the lower par-

allel guards, which are propositional formulae, must be derived from the provisions,

converted into the disjunctive normal form and then expanded using available counters.

Currently, the conversion into the disjunctive normal formis not implemented1. Thus

the lower parallel guards are constructed as if the provisions contained the and-parallel

operators in place of the actual or-parallel operator occurrences. Such lower parallel

guards are then naturally in the disjunctive normal form andthus they may be directly

expanded. Note that this may affect the environments in the way that they generate

only a subset of the event sequences induced by the provisions.

Also the output of the program in case of a detected error, theerror trace, should

be enhanced in order to make the tool practically usable for identifying real bugs in the

specifications. Currently, the tool writes the path of the Karp-Miller tree which leads

to the error into a file in the form of DOT graph. Although this path coupled with DOT

graphs of the LTSAs (which the tool optionally generates) allows a full reconstruction

of the sequence of the statements which lead to the error, such a reconstruction is te-

dious and it could be performed automatically by the tool. For this purpose, a mapping

of LTSA transitions on appropriate statements in TBP specification should be imple-

mented. Currently, there is a skeleton of such a mapping, butit does not cover the

renaming of variables during the in-line expansion.

On the other hand, it is worth mentioning, that the tool supports two different in-

terpretations of provision expression. The reason is that the TBPLib library originally

interpretedA|k asA∗ |A∗ |...|A∗ andA|∗ asA∗ |A∗ .... But in this work, the inter-

pretationA|k= A||A||...||A, A|∗= A||A||... is strictly followed since the former can be

simply expressed within the later using(A∗)|k and(A∗)|∗. However, in order not to

break other tools that use TBPLib, the behavior could not be simply changed. Instead,

the classes responsible for generating finite state machines from provision expressions

were parametrized. Additionally, in order to make possibleto keep consistency be-

tween the closed model checker and the incomplete model checker, the reentrancy

interpretation can be changed using-rr command-line option.

1It is worth mentioning that at least one algorithm solving this issue is well known.
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Conclusion

In this thesis, a special scenario of analysis of TBP specifications involving unlimited

number of threads was investigated. A particular class of TBP models, called incom-

plete TBP models, was identified. Then a safe analysis of correctness of the incomplete

TBP models under any environment that meets the models provisions was designed.

The correctness is perceived with respect to the presence ofbad activity errors.

The analysis deals with infinite state space using symbolic counter abstraction.

This abstraction reduces the state space symmetries causedby unbounded thread repli-

cation by using counters of the threads residing in individual thread-local states (valu-

ations of local variables). The thread state reachability problem is then reduced to the

VASS coverability problem, which is solved by using the Karp-Miller tree construc-

tion.

The symbolic counter abstraction interleaves the Karp-Miller tree construction with

context-aware state space exploration phase. It prevents the necessity of explicit con-

struction of the VASS and tackles the problem known as local state space explosion.

In this work, the state space exploration phase for the TBP models is designed.

Moreover, the bound provisions (provisions over methods used internally in the

model) need to be represented as the state reachability properties acceptable for the

VASS coverability problem. This is the main challenge of theanalysis and it is very

difficult if even possible in general. This work presents a solution for a specific class of

provisions with full reentrancy and additionally states a solution for provisions without

full reentrancy.

For the provisions with full reentrancy a special case of finite state machines (called

counter automata in this work), which utilize the thread counters to capture parallel

nature of the provisions, was designed. However, the analysis using these automata

unfortunately suffers from the possibility of spurious errors. On the other hand, for the

provisions without full reentrancy, ordinary finite state machines can be utilized and

these do not induce spurious errors at all. Additionally, anapproach to further reduce

the spurious errors induced by the former case by using a combination of the two state

machines was outlined.

In order to perform the incomplete model analysis, which takes into account any

environment that fulfils the unbound provisions of the model(provisions over provid-

ed methods), it is necessary to create an artificial environment that is able to issue

any combination of events allowed in the provisions. Such anenvironment consists

of threads derived from the provisions in a way, which assures all possible executions

of the threads to eventually issue all the allowed sequencesof events. As the pro-

visions are supposed to contain full reentrancy, the numberof the instances of these
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threads is unlimited. The threads cooperate by using special counters, which assure

that interleavings of event sequences generated by the individual threads stay within

the boundaries given by the provision.

Unfortunately, the artificial environment created this waycan possibly introduce

spurious errors in some cases of provisions that distinguish return values of method

calls and do not accept all the possible values at the same time. However, if such

(possibly spurious) error occurs, it is identified early in the environment. Additionally,

as such a spurious error is related to the return value of a provided method, it often

signals that the provisions do not properly capture the internal behavior of the model

and should be reformulated.

As a part of this thesis, a proof-of-concept prototype was developed. The main pur-

pose of the prototype is to capture all the key aspects of the proposed analysis. As the

performance is not the main goal of the implementation, there is a lot of opportunities

for further optimizations. The optimization of the algorithms and implementation is

an open issue which needs to be addressed in order to make the analysis applicable to

large real-life TBP specifications.

Beyond the scope of the incomplete TBP model analysis, the key ideas of the pro-

posed analysis might potentially be used for closed model analysis with unlimited

number of threads. Thus this work also presents a small step towards allowing unlim-

ited thread replication or dynamic thread instantiation inthe TBP specifications. Also,

some aspects of the proposed analysis might possibly be useful for extending the open

model analysis to an unlimited number of threads.
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Appendix A

Content of the enclosed CD ROM

This thesis is accompanied by the CD ROM containing source code and binaries of the

prototype implementation. The CD ROM is organized as follows:

/readme.txt Brief description of the CD ROM content.

/dist/ Binary distribution of the TBP toolchain including the pro-

totype. Contains java archives of TBPLib and Badger. This

directory also contains generated class documentation in

HTML format.

/doc/ Contains electronic version of this thesis.

/src/ Source code of the TBP toolchain including the prototype

and some example TBP specifications.
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